WorldWideScience

Sample records for accompaniedby dna sequestration

  1. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  2. Cytoplasmic sequestration of an O6-methylguanine-DNA methyltransferase enhancer binding protein in DNA repair-deficient human cells

    Frank Y. Chen; Harris, Linda C.; Joanna S Remack; Brent, Thomas P.

    1997-01-01

    O6-Methylguanine-DNA methyltransferase (MGMT), an enzyme that repairs adducts at O6 of guanine in DNA, is a major determinant of susceptibility to simple methylating carcinogens or of tumor response to anticancer chloroethylating drugs. To investigate the mechanisms underlying cellular expression of this DNA repair enzyme, we focused on the role of a 59-bp enhancer of the human MGMT gene in the regulation of its expression. By using chloramphenicol acetyltransferase reporter assays, we found ...

  3. Pulmonary sequestration

    Pulmonary sequestration is a congenital affection consisting in the presence of a cystic mass of no-functional pulmonary tissue without an obvious communication with tracheobronchial tree and that receives all or most of its bloodstream of the anomalous vessels from systemic circulation. Taking into account that presentation of this affection is rare compared to other pulmonary affections (between the 1% and the 2% of all pulmonary resections) and that also the more usual is its definitive treatment before adulthood. The case of man aged 44 is presented coming to consultation due to frequent episodes of pneumonias from more 10 years ago diagnosed as a bronchiectasis. The more significant facts of embryology origin of this affection including: anatomical and pathological features, imaging diagnosis, surgical treatment details, and postoperative course. (author)

  4. CO2 sequestration

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO2 sequestration. Five papers are reviewed: problems and solutions for the CO2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO2; CO2 sequestration in volcanic and ultra-basic rocks; CO2 sequestration, transport and geological storage: scientific and economical perspectives

  5. Lambda gpP-DnaB Helicase Sequestration and gpP-RpoB Associated Effects: On Screens for Auxotrophs, Selection for Rif(R), Toxicity, Mutagenicity, Plasmid Curing.

    Hayes, Sidney; Wang, Wen; Rajamanickam, Karthic; Chu, Audrey; Banerjee, Anirban; Hayes, Connie

    2016-01-01

    The bacteriophage lambda replication initiation protein P exhibits a toxic effect on its Escherichia coli (E. coli) host, likely due to the formation of a dead-end P-DnaB complex, sequestering the replicative DnaB helicase from further activity. Intracellular expression of P triggers SOS-independent cellular filamentation and rapidly cures resident ColE1 plasmids. The toxicity of P is suppressed by alleles of P or dnaB. We asked whether P buildup within a cell can influence E. coli replication fidelity. The influence of P expression from a defective prophage, or when cloned and expressed from a plasmid was examined by screening for auxotrophic mutants, or by selection for rifampicin resistant (Rif(R)) cells acquiring mutations within the rpoB gene encoding the β-subunit of RNA polymerase (RNAP), nine of which proved unique. Using fluctuation assays, we show that the intracellular expression of P evokes a mutator effect. Most of the Rif(R) mutants remained P(S) and localized to the Rif binding pocket in RNAP, but a subset acquired a P(R) phenotype, lost sensitivity to ColE1 plasmid curing, and localized outside of the pocket. One P(R) mutation was identical to rpo*Q148P, which alleviates the UV-sensitivity of ruv strains defective in the migration and resolution of Holliday junctions and destabilizes stalled RNAP elongation complexes. The results suggest that P-DnaB sequestration is mutagenic and supports an earlier observation that P can interact with RNAP. PMID:27338450

  6. Extralobar pulmonary sequestration

    Ulys A

    2011-04-01

    Full Text Available Albertas Ulys, Narimantas Evaldas Samalavicius, Saulius Cicenas, Tadas Petraitis, Mantas Trakymas, Dmitrij Sheinin, Leonid GatijatullinInstitute of Oncology, Vilnius University, Santariskiu, Vilnius, LithuaniaAbstract: Prevalence of pulmonary sequestration accounts for up to 6.4% of all congenital pulmonary malformations. We report on a 40-year-old woman who underwent excision of an aberrant solid retroperitoneal mass in the left subdiaphragmatic area. The mass was identified to be an extralobar pulmonary sequestration. The diagnosis could be made without surgery by percutaneous tissue biopsy and imaging. We encourage keeping in mind pulmonary sequestration anomaly presenting as an aberrant retroperitoneal mass. The aim of this case report is to increase awareness about the condition and review the criteria for its definitive diagnosis and treatment.Keywords: retroperitoneal aberrant mass, extralobar pulmonary sequestration

  7. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of

  8. Briefing on geological sequestration

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  9. Carbon Sequestration in Agricultural Soils

    World Bank

    2009-01-01

    The purpose of this report is to improve the knowledge base for facilitating investments in land management technologies that sequester soil organic carbon. While there are many studies on soil carbon sequestration, there is no single unifying volume that synthesizes knowledge on the impact of different land management practices on soil carbon sequestration rates across the world. A meta-a...

  10. Bile acid sequestrants

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid and...... glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption of the...... enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  11. Bile acid sequestrants for cholesterol

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  12. Briefing on geological sequestration (Tulsa)

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  13. CO2 Sequestration short course

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  14. mineral sequestration by wollastonite carbonation

    Ding, Wenjin; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2014-07-01

    In this paper, we demonstrated a new approach to CO2 mineral sequestration using wollastonite carbonation assisted by sulfuric acid and ammonia. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and 29Si nuclear magnetic resonance. The change in Gibbs free energy from -223 kJ/mol for the leaching reaction of wollastonite to -101 kJ/mol for the carbonation reaction indicated that these two reactions can proceed spontaneously. The leached and carbonated wollastonite showed fibrous bassanite and granular calcium carbonate, respectively, while the crystal structure of pristine wollastonite was destroyed and the majority of the Ca2+ in pristine wollastonite leached. The chemical changes in the phases were monitored during the whole process. A high carbonation rate of 91.1 % could be obtained under the action of sulfuric acid and ammonia at 30 °C at normal atmospheric pressure, indicating its potential use for CO2 sequestration.

  15. Soil Carbon Sequestration in India

    With a large land area and diverse ecoregions, there is a considerable potential of terrestrial/soil carbon sequestration in India. Of the total land area of 329 million hectares (Mha), 297 Mha is the land area comprising 162 Mha of arable land, 69 Mha of forest and woodland, 11 Mha of permanent pasture, 8 Mha of permanent crops and 58 Mha is other land uses. The soil organic carbon (SOC) pool is estimated at 21 Pg (petagram = Pg = 1 x 1015 g billion ton) to 30-cm depth and 63 Pg to 150-cm depth. The soil inorganic carbon (SIC) pool is estimated at 196 Pg to 1-m depth. The SOC concentration in most cultivated soils is less than 5 g/kg compared with 15 to 20 g/kg in uncultivated soils. Low SOC concentration is attributed to plowing, removal of crop residue and other biosolids, and mining of soil fertility. Accelerated soil erosion by water leads to emission of 6 Tg C/y. Important strategies of soil C sequestration include restoration of degraded soils, and adoption of recommended management practices (RMPs) of agricultural and forestry soils. Potential of soil C sequestration in India is estimated at 7 to 10 Tg C/y for restoration of degraded soils and ecosystems, 5 to 7 Tg C/y for erosion control, 6 to 7 Tg C/y for adoption of RMPs on agricultural soils, and 22 to 26 Tg C/y for secondary carbonates. Thus, total potential of soil C sequestration is 39 to 49 (44± 5) Tg C/y

  16. Southeast Regional Carbon Sequestration Partnership

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  17. Carbon sequestration via wood burial

    Zeng Ning

    2008-01-01

    Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux...

  18. Surgical treatment for pulmonary sequestration

    We reviewed 15 patients with pulmonary sequestration. Between 1994 and 2010, 15 patients (five males and 10 females, mean age of 27.2 years old) with pulmonary sequestration were surgically treated at either of two hospitals. Clinical symptoms such as cough, fever, and hemoptysis led to a diagnosis in 13 patients, and the remaining two were incidentally diagnosed on radiograph as part of a health check. Preoperatively, aberrant arteries were identified by contrast-enhanced computed tomography (CT) in 11 cases, but not in 4 cases. Lung lobectomy was performed in 12 patients, segmentectomy in two, and resection of an extrapleural lesion in one; in 11 patients through open thoracotomy and in four using video-assisted thoracic surgery (VATS). In two of the four patients undergoing VATS, the surgical approach was converted from VATS to open thoracotomy because of thick adhesions or a large aberrant artery. Aberrant arteries were successfully occluded with a stapling device in eight patients, ligation-and-resection in six, and suturing in one case of a large aberrant artery. There was no morbidity and no mortality. In conclusion, three-dimensional CT is useful for detecting an aberrant artery in pulmonary sequestration cases, and a stapling device can be used for dividing the aberrant artery. (author)

  19. Mechanisms of Soil Carbon Sequestration

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  20. Chapter 4: Geological Carbon Sequestration

    Friedmann, J; Herzog, H

    2006-06-14

    Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or

  1. Big Sky Carbon Sequestration Partnership

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  2. Big Sky Carbon Sequestration Partnership

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  5. Carbon sequestration in European croplands.

    Smith, Pete; Falloon, Pete

    2005-01-01

    The Marrakech Accords allow biospheric carbon sinks and sources to be included in attempts to meet emission reduction targets for the first commitment period of the Kyoto Protocol. Forest management, cropland management, grazing land management, and re-vegetation are allowable activities under Article 3.4 of the Kyoto Protocol. Soil carbon sinks (and sources) can, therefore, be included under these activities. Croplands are estimated to be the largest biospheric source of carbon lost to the atmosphere in Europe each year, but the cropland estimate is the most uncertain among all land-use types. It is estimated that European croplands (for Europe as far east as the Urals) lose 300 Tg (C) per year, with the mean figure for the European Union estimated to be 78 Tg (C) per year (with one SD=37). National estimates for EU countries are of a similar order of magnitude on a per-area basis. There is significant potential within Europe to decrease the flux of carbon to the atmosphere from cropland, and for cropland management to sequester soil carbon, relative to the amount of carbon stored in cropland soils at present. The biological potential for carbon storage in European (EU 15) cropland is of the order of 90-120 Tg (C) per year, with a range of options available that include reduced and zero tillage, set-aside, perennial crops, deep rooting crops, more efficient use of organic amendments (animal manure, sewage sludge, cereal straw, compost), improved rotations, irrigation, bioenergy crops, extensification, organic farming, and conversion of arable land to grassland or woodland. The sequestration potential, considering only constraints on land use, amounts of raw materials and available land, is up to 45 Tg (C) per year. The realistic potential and the conservative achievable potentials may be considerably lower than the biological potential because of socioeconomic and other constraints, with a realistically achievable potential estimated to be about 20% of the

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  7. Geophysical monitoring technology for CO2 sequestration

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  8. Biochar production for carbon sequestration

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  9. Carbon sequestration via wood burial

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  10. Method for carbon dioxide sequestration

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  11. Carbon dioxide sequestration by mineral carbonation

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  12. Carbon Sequestration in Forests and Soils

    Roger Sedjo; Brent Sohngen

    2012-01-01

    Forests can play a large role in climate change through the sequestration or emission of carbon, an important greenhouse gas; through biological growth, which can increase forest stocks; or through deforestation, which can increase carbon emissions. Carbon is captured not only in tree biomass but also in forest soils. Forest management and public policy can strongly influence the sequestration process. Economic policies can provide incentives for both forest expansion and contraction. Systems...

  13. Chrysotile dissolution rates: Implications for carbon sequestration

    Highlights: • Uncertainties in serpentine dissolution kinetics hinder carbon sequestration models. • A pH dependent, far from equilibrium dissolution rate law for chrysotile. • Fchrysotile (mol/m2/s) = 10−0.21pH−10.57 at 22 °C over pH 2–10. • Laboratory dissolution rates consistent with mine waste weathering observations. • Potential for carbon sequestration in mine tailings and aquifers is assessed. - Abstract: Serpentine minerals (e.g., chrysotile) are a potentially important medium for sequestration of CO2 via carbonation reactions. The goals of this study are to report a steady-state, far from equilibrium chrysotile dissolution rate law and to better define what role serpentine dissolution kinetics will have in constraining rates of carbon sequestration via serpentine carbonation. The steady-state dissolution rate of chrysotile in 0.1 m NaCl solutions was measured at 22 °C and pH ranging from 2 to 8. Dissolution experiments were performed in a continuously stirred flow-through reactor with the input solutions pre-equilibrated with atmospheric CO2. Both Mg and Si steady-state fluxes from the chrysotile surface, and the overall chrysotile flux were regressed and the following empirical relationships were obtained: FMg=-0.22pH-10.02;FSi=-0.19pH-10.37;Fchrysotile=-0.21pH-10.57 where FMg, FSi, and Fchrysotile are the log10 Mg, Si, and molar chrysotile fluxes in mol/m2/s, respectively. Element fluxes were used in reaction-path calculations to constrain the rate of CO2 sequestration in two geological environments that have been proposed as potential sinks for anthropogenic CO2. Carbon sequestration in chrysotile tailings at 10 °C is approximately an order of magnitude faster than carbon sequestration in a serpentinite-hosted aquifer at 60 °C on a per kilogram of water basis. A serpentinite-hosted aquifer, however, provides a larger sequestration capacity. The chrysotile dissolution rate law determined in this study has important implications for

  14. Shallow Carbon Sequestration Demonstration Project

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  15. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-07-01

    In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

  16. Carbon sequestration research and development

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  17. Technological Development in Carbon Sequestration at Petrobras

    Castello Branco, R.; Vazquez Sebastian, G.; Murce, T.; Cunha, P.; Dino, R.; Sartori Santarosa, C.

    2007-07-01

    Petrobras defined, in its mission, the intention to act in a safe and profitable way, with social and environmental responsibility. In its vision, the company decided to be an oil and energy company, taking into account climate change mitigation. These changes were partially caused, without the company's knowledge, for many years, by the burning of fossil fuels. Among many technologies available for this mitigation, carbon sequestration is the one that, in a short space of time, can avoid the collapse of earth's climate. In order to meet this carbon sequestration challenge, there has been established, at CENPES, three strategies for its technological development: (i) establishment of a Systemic Project for Carbon Sequestration within the scope of the Environmental Technology Program - PROAMB; (ii) creation of a Group of Carbon Sequestration Technologies for Climate Change Mitigation - formation of team and qualification program, which includes the realization of the International Seminar on Carbon Sequestration and Climate Change at Petrobras in October 2006; and (iii) Implementation of the Technological Network of Technologies for Climate Change Mitigation. (auth)

  18. Federal Control of Geological Carbon Sequestration

    Reitze, Arnold W. [Univ. of Utah, Salt Lake City, UT (United States)

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  19. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  20. Localised fibrous mesothelioma arising in an intralobar pulmonary sequestration.

    Paksoy, N.; Demircan, A.; Altiner, M; Artvinli, M

    1992-01-01

    A localised fibrous mesothelioma arising from an intralobar lung sequestration occurred in a 64 year old Turkish woman. This appears to be the first report of a mesothelioma occurring within a pulmonary sequestration.

  1. Secondary diaphragmatic eventration after resection of extralobar pulmonary sequestration

    Kaselas C; Papouis G; Grigoriadis G; Kaselas V

    2007-01-01

    Phrenic nerve preservation is an important factor in operations involving the resection of an extralobar pulmonary sequestration. We present a case of secondary diaphragmatic eventration due to damage to the phrenic nerve after resection of an extralobar pulmonary sequestration.

  2. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  3. Intralobar pulmonary sequestration masquerading as congenital lobar emphysema

    Bilal Mirza

    2011-01-01

    Full Text Available Intrapulmonary sequestrations are quite uncommon in pediatric age group. The preoperative diagnosis of pulmonary sequestration is not possible in most of the cases. A 2-year-old boy presented with recurrent episodes of chest infections and respiratory distress. A preoperative diagnosis of congenital lobar emphysema was made on the basis of chest radiograph and computed tomography scan. At operation, an intralobar pulmonary sequestration was found. The sequestration cyst was excised with uneventful recovery.

  4. Intralobar pulmonary sequestration masquerading as congenital lobar emphysema

    Bilal Mirza; Afsheen Batool Raza; Iftikhar Ijaz; Lubna Ijaz; Farah Naz; Afzal Sheikh

    2011-01-01

    Intrapulmonary sequestrations are quite uncommon in pediatric age group. The preoperative diagnosis of pulmonary sequestration is not possible in most of the cases. A 2-year-old boy presented with recurrent episodes of chest infections and respiratory distress. A preoperative diagnosis of congenital lobar emphysema was made on the basis of chest radiograph and computed tomography scan. At operation, an intralobar pulmonary sequestration was found. The sequestration cyst was excised with uneve...

  5. CO2 sequestration and climatic change

    Since about 10 years, the underground sequestration of CO2 has been the object of intensive researches among the scientists working on climatic change. Such a process would open a new way of massive abatement of CO2 emissions. This article presents the different types of disposal sites (saline aquifers, depleted oil and gas fields, deep coal seams), the disposal duration and its stakes, the other processes under study (bio-fixation, carbonation), the risks and safety aspects of CO2 sequestration, the different projects in progress and the economic aspects of this technique. (J.S.)

  6. Developing Carbon Sequestration Forestry for Mitigating Climate Change: Practice and Management of Carbon Sequestration Forestry in China

    2010-01-01

    By elaborating the functions and effects of forestry in mitigating climate change, introducing the concepts and significance of forest carbon sink, forestry carbon sequestration, and carbon sequestration forestry, and summarizing the practices of carbon sequestration forestry in China, the paper came up with the outline for strengthening the management of carbon sequestration forestry, i.e. implementing the Climate Change Forestry Action Plan, reinforcing the accounting and monitoring of national forest car...

  7. Carbon dioxide sequestration by mineral carbonation

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  8. Pulmonary sequestration: Report of three cases

    Stević Ruža

    2009-01-01

    Full Text Available Introduction Pulmonary sequestration is a non-functioning pulmonary parenchyma that is separated from tracheobronchial tree and receives its blood supply via systemic arteries. The diagnosis of sequestration pulmonis is based on clinical symptoms and characteristic radiologic findings. Case reports In this report, radiological findings of pulmonary sequester in three patients with non-resolving pneumonia were retrospectively reviewed. All patients underwent chest x-ray, computerized tomography of thorax and angiography. X-ray revealed in all cases tumorlike, unsharply bordered shadows in the posterior basal parts of the lung, two on the right and one on the left side. Computerized tomography(CT finding showed solid-cystic tumor masses and angiography revealed anomalous blood supply from systemic arteries arising from aorta and running to the shadow in the lung. This finding is typical of bronchopulmonary sequestration. All patients were operated on and histological analysis of operative material confirmed diagnosis of intralobar pulmonary sequestration. Discussion Sequestratio pulmonis can cause a diagnostic problem due to unspecific symptoms and atypical radiographic and CT findings. Therefore, it is important to demonstrate the arterial supply and venous drainage of the sequestered segment preoperatively. Today, with the help of non-invasive imaging techniques such as CT and magnetic resonance imaging (MRI, preoperative diagnosis of pulmonary sequester can be made easily, so, invasive techniques such as angiography are not required frequently.

  9. Southwest Regional Partnership on Carbon Sequestration

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners

  10. International Collaboration on CO2 Sequestration

    Peter H. Israelsson; E. Eric Adams

    2007-06-30

    On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be

  11. SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION

    Brian McPherson

    2004-04-01

    The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential

  12. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    H.J. Herzog; E.E. Adams

    2000-08-23

    The specific objective of our project on CO{sub 2} ocean sequestration is to investigate its technical feasibility and to improve the understanding of any associated environmental impacts. Our ultimate goal is to minimize any impacts associated with the eventual use of ocean carbon sequestration to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2001 off the Kona Coast of Hawaii. At GHGT-4 in Interlaken, we presented a paper detailing our plans. The purpose of this paper is to present an update on our progress to date and our plans to complete the project. The co-authors of this paper are members of the project's Technical Committee, which has been formed to supervise the technical aspects and execution of this project.

  13. Decarbonization and sequestration for mitigating global warming

    Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO2 including its utilization. Removal and recovery of CO2 from power generation plants and sequestration in the ocean represents one possibility of making a major impact on reducing CO2 emissions to the atmosphere. This paper will briefly review the progress made in ocean disposal and present some alternative schemes. (author)

  14. The CO2 capture and sequestration plan

    The CO2 capture and sequestration plan is officially one of the most relevant solution in the world control against the greenhouse gas releases. In spite of the multiplication of the pilot plans, this technology delays however to run up. At the moment, it is always the petroleum and natural gas industries, with the enhanced oil recovery process, which highlight this technology. But, without a modification of the support mechanisms, the chances of succeed of the sector could be compromised. (O.M.)

  15. Intralobar pulmonary sequestration: a case report

    We report the case of a 49-year-old patient with repeated lung infections. Chest x-rays showed a mass in the posterior basal segment of the right lung. Angio tomography and 3D reconstructions showed a blood supply coming from the descending aorta. The analysis of the surgical specimen confirmed the occurrence of intra lobar pulmonary sequestration with a cavitation filled with mucus. (author)

  16. Research on Global Carbon Emission and Sequestration

    2011-01-01

    Prof.Fang Jingyun,member of the Chinese Academy of Science,of Peking University and colleagues published an online article on Science in July,2011 introducing the findings of an international research group about the global carbon emission and sequestration which will produce significant influence on researches on climate change as well as the international climate change policies.The research project was funded by NSFC and MOST.

  17. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Howard J. Herzog; E. Eric Adams

    2002-09-01

    The primary focus of this reporting period was to prepare for conducting the ocean carbon sequestration field experiment during the summer of 2002. We discuss four key aspects of this preparation: (1) Design criteria for a CO{sub 2} flow system mounted on a ship; (2) Inter-model comparison of plume models; (3) Application of a double plume model to compute near field mixing; and (4) Evaluation of tracers.

  18. Southwest Regional Partnership on Carbon Sequestration

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  19. CO2 sequestration in basalts: laboratory measurements

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.

    2010-12-01

    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  20. Integrating Steel Production with Mineral Carbon Sequestration

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  1. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential

  2. Sequestration Options for the West Coast States

    Myer, Larry

    2006-04-30

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source

  3. Unusual presentation of extralobar pulmonary sequestration: a case report

    Jeong, Hae Jeong; Lee, Ki Yeol; Ryu, Seok Jong; Shim, Jae Chan; Lee, Ghi Jae; Kim, Ho Kyun [College of Medicine, Inje Univ., Kimhae (Korea, Republic of)

    2002-05-01

    Extralobar pulmonary sequestration, a rare form of bronchopulmonary sequestration, is a congenital anomaly in which a portion of nonfunctioning lung tissue is surrounded by its own pleura and is supplied by a systemic artery. We describe a case of extralobar pulmonary sequestration with unusual features. CT scanning of the chest demonstrated a non-enhancing, hyperdense mass within the right major fissure, and thoracotomy revealed that the mass received blood from a branch of the right pulmonary artery and drained into the left atrium. The pathologic diagnosis was extralobar pulmonary sequestration.

  4. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration

    Ileana Frasier; Elke Noellemeyer; Eva Figuerola; Leonardo Erijman; Hugo Permingeat; Alberto Quiroga

    2016-01-01

    The objective of the study was to evaluate the effect of a change in management on the soil microbial community and C sequestration. We conducted a 3-year field study in La Pampa (Argentina) with rotation of sorghum (Sorghum bicolor) in zero tillage alternating with rye (Secale cereale) and vetch (Vicia villosa ssp. dasycarpa). Soil was sampled once a year at two depths. Soil organic matter fractions, dissolved organic matter, microbial biomass (MBC) and community composition (DNA extraction,...

  5. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing

  6. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  7. CO2, the promises of geological sequestration

    Trapping part of the world CO2 effluents in the deep underground is a profitable and ecological way to limit the global warming. This digest paper presents the different ways of CO2 sequestration (depleted oil and gas fields, unexploited coal seams, saline aquifers), the other possible solutions for CO2 abatement (injection in the bottom of the ocean, conversion into carbonates by injection into basic rocks, fixation by photosynthesis thanks to micro-algae cultivation), and takes stock of the experiments in progress (Snoehvit field in Norway, European project Castor). (J.S.)

  8. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHP (SECARB)

    Kenneth J. Nemeth

    2005-04-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first 18-months of its two year program. Work during the semiannual period (fifth and sixth project quarters) of the project (October 1, 2004-March 31, 2005) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, no changes occurred during the fifth or sixth quarters of the project. Under Task 2.0 Characterize the Region, refinements have been made to the general mapping and screening of sources and sinks. Integration and geographical information systems (GIS) mapping is ongoing. Characterization during this period was focused on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB continues to expand upon its assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has used results of a survey and focus group meeting to refine approaches that are being taken to educate and involve the public. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB has evaluated findings from work performed during the first 18-months. The focus of the project team has shifted from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team is developing an integrated approach to implementing the most promising opportunities and in setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. Milestones completed during the

  9. Dutch (organic) agriculture, carbon sequestration and energy production

    Burgt, van der G.J.H.M.; Staps, S.; Timmermans, B.

    2010-01-01

    Carbon sequestration in soils is often mentioned in the discussions about climate changes. In this paper the opportunities for carbon sequestration in Dutch agriculture are discussed at farm and national level. Farm internal carbon sources are already completely used in livestock farming. The effect

  10. Today's PTA Advocate: Speak Up to Stop Sequestration

    Chevalier, Jacque

    2012-01-01

    The word sequestration has been in the news lately when talking about the federal budget. Sequestration refers to across-the-board cuts, and depending on where one lives and the amount of federal aid one's community receives, those cuts could amount to as much as 17 percent. That spells bad news for schools unless parents, educators, and other…

  11. Secondary diaphragmatic eventration after resection of extralobar pulmonary sequestration

    Kaselas C

    2007-01-01

    Full Text Available Phrenic nerve preservation is an important factor in operations involving the resection of an extralobar pulmonary sequestration. We present a case of secondary diaphragmatic eventration due to damage to the phrenic nerve after resection of an extralobar pulmonary sequestration.

  12. CARBON SEQUESTRATION: A METHODS COMPARATIVE ANALYSIS

    All human activities are related with the energy consumption. Energy requirements will continue to rise, due to the modern life and the developing countries growth. Most of the energy demand emanates from fossil fuels. Fossil fuels combustion has negative environmental impacts, with the CO2 production to be dominating. The fulfillment of the Kyoto protocol criteria requires the minimization of CO2 emissions. Thus the management of the CO2 emissions is an urgent matter. The use of appliances with low energy use and the adoption of an energy policy that prevents the unnecessary energy use, can play lead to the reduction of carbon emissions. A different route is the introduction of ''clean'' energy sources, such as renewable energy sources. Last but not least, the development of carbon sequestration methods can be promising technique with big future potential. The objective of this work is the analysis and comparison of different carbon sequestration and deposit methods. Ocean deposit, land ecosystems deposit, geological formations deposit and radical biological and chemical approaches will be analyzed

  13. Complement sequestration in ischemic baboon myocardium

    Complement-mediated myocardial tissue injury following ischemia has proposed. In the present study, sequestration of radiolabeled human C5 was estimated in baboon myocardial tissue samples obtained 24 hr following ligation of the left anterior descending coronary artery (n=5 baboons). 125I-C5 and 131I-albumin were intravenously administered 24 hr prior to the ligation procedure; 99T-albumin was injected just prior to sacrifice and used to estimate tissue blood volume. Alternating myocardial tissue samples were evaluated for creatine kinase (CK) content after homogenization or for histology after fixation in neutral buffered formalin. 99Tc, 125I, and 131I were determined in all samples. Both C5 and albumin were sequestered in formalin-fixed tissues. No 131I-albumin was retained in any pellet following homogenization whereas, 125I-C5 was present in tissue pellets obtained from ischemic regions. 125I-C5 bound to myocardium was correlated to the extent of the tissue injury, i.e., as myocardial CK decreased, 125I-C5 sequestration increased. Thus, C5 accumulates in ischemic myocardium, and, in contrast to albumin which is present as a consequence of tissue edema following tissue injury, appears to be tissue-bound

  14. Double-Difference Tomography for Sequestration MVA

    Westman, Erik

    2008-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  15. Carbon Sequestration on Surface Mine Lands

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-10-02

    During this quarter a general forest monitoring program was conducted to measure treatment effects on above ground and below ground carbon C and Nitrogen (N) pools for the tree planting areas. Detailed studies to address specific questions pertaining to Carbon cycling was initiated with the development of plots to examine the influence of mycorrhizae, spoil chemical and mineralogical properties, and use of amendment on forest establishment and carbon sequestration. Efforts continued during this period to examine decomposition and heterotrophic respiration on C cycling in the reforestation plots. Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies to sequester carbon in various terrestrial ecosystems. Reclaimed surface mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. New plantings required the modification and design and installation on monitoring equipment. Maintenance and data monitoring on past and present installations are a continuing operation. The Department of Mining Engineering continued the collection of penetration resistance, penetration depth, and bulk density on both old and new treatment areas. Data processing and analysis is in process for these variables. Project scientists and graduate students continue to present results at scientific meetings, tours and field days presentations of the research areas are being conducted on a request basis.

  16. Sequestrated Thrombolysis: Comparative Evaluation In Vivo

    Purpose: Lysis of a thrombus is a function of the local concentration of thrombolytic enzymes. This study was designed to determine in a porcine model of acute deep vein thrombosis (DVT) whether perithrombic sequestration of small volumes of a concentrated enzyme solution can accelerate the process of thrombolysis.Methods: DVT was induced in both hind limbs using a previously described technique (n = 32). Thirty minutes later the animal was heparinized and unilateral thrombolysis was attempted using 8 mg recombinant tissue plasminogen activator (rt-PA); saline was administered in the opposite leg. For conventional high-volume infusion (CI) (n = 5) rt-PA (0.067 mg/ml) was infused at 1 ml/min. For sequestrated thrombolysis the external iliac vein was endoluminally occluded, and rt-PA (0.25 mg/ml) administered either for proximal injection (ST-P) (n = 5), as a bolus every 3 min through a microcatheter placed via the balloon catheter, or for transthrombic injection (ST-T) (n = 5), as a bolus every 3 min through a Katzen wire in the balloon catheter. At autopsy, the thrombus mass in the iliofemoral veins was measured, and the extent of residual thrombosis in the venous tributaries graded at four sites. From these data a thrombolysis score was calculated.Results: One pig died before thrombolysis could be performed. Only with ST-T was residual thrombus mass in the test limb normalized to control, residual thrombus index (RTI), consistently less than unity. The median RTI of this group was 0.50 (range 0.39-0.97) compared with 1.22 (0.64-1.38) for ST-P and 0.88 (0.37-1.13) for CI. Compared with contralateral controls, a lower grade of residual thrombosis in tributaries was observed in test limbs at more venous sites with ST-T (8/20; 95% confidence interval 5-13) and ST-P (9/20; confidence interval 5-13) than with CI (2/20; confidence interval 0-5) (p= 0.04). A trend toward lower thrombolysis scores was observed with ST-T (p = 0.08). Systemic fibrinogenolysis was not

  17. CO{sub 2} sequestration; Sequestration du CO{sub 2}

    Acket, C

    2008-04-15

    The carbon dioxide is the main gas associated to the human activity, generating consequences on the greenhouse effect. By the use of fossil fuels, the human activity generates each year, about 26 milliards of tons. Only the half of theses releases is absorbed by the nature, the rest reinforces the greenhouse effect. To reduce the emissions two actions are proposed: a better energy consumption and the development of technologies which do not produce, or weakly, greenhouse effect gases. Another way is studied: the carbon sequestration and geological storage. This document details the different technologies of sequestration, the transport and the underground storage. It discusses also the economical and legislative aspects, providing examples and projects. (A.L.B.)

  18. An Overview of Geologic Carbon Sequestration Potential in California

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  19. Management of antenatally diagnosed pulmonary sequestration associated with congenital cystic adenomatoid malformation

    Samuel, M; BURGE, D.

    1999-01-01

    BACKGROUND—Sequestration with associated cystic adenomatoid malformation is rare. A study was undertaken to determine whether pulmonary sequestration associated with congenital cystic adenomatoid malformation has a more favourable natural history than that of sequestration without associated cystic adenomatoid malformation.
METHODS—An outline of the postnatal work up leading to the management of extralobar or intralobar pulmonary sequestration with congenital cystic ad...

  20. Ancient DNA

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  1. PV water pumping for carbon sequestration in dry land agriculture

    Highlights: • A novel model for carbon sequestration in dry land agriculture is developed. • We consider the water-food-energy-climate nexus to assess carbon sequestration. • Using water for carbon sequestration should be assessed critically. • Co-benefits of carbon sequestration should be included in the assessment. • Moisture feedback is part of the nexus model. - Abstract: This paper suggests a novel model for analysing carbon sequestration activities in dry land agriculture considering the water-food-energy-climate nexus. The paper is based on our on-going studies on photovoltaic water pumping (PVWP) systems for irrigation of grasslands in China. Two carbon sequestration projects are analysed in terms of their water productivity and carbon sequestration potential. It is concluded that the economic water productivity, i.e. how much water that is needed to produce an amount of grass, of grassland restoration is low and that there is a need to include several of the other co-benefits to justify the use of water for climate change mitigation. The co-benefits are illustrated in a nexus model including (1) climate change mitigation, (2) water availability, (3) downstream water impact, (4) energy security, (5) food security and (6) moisture recycling. We argue for a broad approach when analysing water for carbon sequestration. The model includes energy security and food security together with local and global water concerns. This makes analyses of dry land carbon sequestration activities more relevant and accurate. Without the nexus approach, the co-benefits of grassland restoration tend to be diminished

  2. Assessing The Effectiveness Of Soil Carbon Sequestration In North America

    Jain, A. K.; Yang, X.; Post, W.

    2006-12-01

    Soil carbon sequestration has been shown to be an important part of a portfolio of carbon sequestration strategies in the U.S. and Canada, and one that can be implemented at relatively low costs. This analysis focuses on the estimate of carbon sequestration in soil as a result of a change from conventional plow tillage (CT) to no-till (NT) in North America and the resulting uptake of CO2 from 1981-2000. We use the terrestrial component of the Integrated Science Assessment Model (ISAM-2), which simulates carbon and nitrogen fluxes as well as the interactions between carbon cycle and nitrogen cycle within the terrestrial biosphere at a 0.5o x 0.5o spatial resolution. To estimate carbon sequestration in soils, following a change in cropland management from CT to NT, we implement empirically-based sequestration estimates, or CMR curves in the ISAM. The CMR curves are based on the mean annual change in soil carbon over the expected duration of active sequestration. These empirical relationships have been developed for changes from CT to NT for five different climate regions, which are consistent with those used in the IPCC guidelines for carbon accounting. To calculate sequestration rates in North America, we use the measured area under NT over the period 1981- 2000. Cropland management (CT to NT) is accompanied by changes in CO2 concentration, climate, land use and land cover, and nitrogen deposition. Since these changes affect carbon and nitrogen cycles, and the interaction between them, which could augment or lessen carbon sequestration, we take a holistic approach to study carbon sequestration by incorporating major environmental changes.

  3. The Fluid Mechanics of Carbon Dioxide Sequestration

    Huppert, Herbert E.; Neufeld, Jerome A.

    2014-01-01

    Humans are faced with a potentially disastrous global problem owing to the current emission of 32 gigatonnes of carbon dioxide (CO2) annually into the atmosphere. A possible way to mitigate the effects is to store CO2 in large porous reservoirs within the Earth. Fluid mechanics plays a key role in determining both the feasibility and risks involved in this geological sequestration. We review current research efforts looking at the propagation of CO2 within the subsurface, the possible rates of leakage, the mechanisms that act to stably trap CO2, and the geomechanical response of the crust to large-scale CO2 injection. We conclude with an outline for future research.

  4. Cascade enzymatic reactions for efficient carbon sequestration.

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  5. HOW TO HARVEST TREES WHILE MAXIMIZING CARBON SEQUESTRATION

    The expected result of this project is a methodology to increase carbon sequestration through forest management and policy analysis. The decision analysis model will demonstrate tradeoffs between carbon storage and net present value through a joint productions possibilities c...

  6. Carbon Sequestration on Utah Rangelands: A Landowner Perspective

    Cook, Seth

    2012-01-01

    Rangelands have significant potential to sequester carbon and contribute to the mitigation of climate change. This research aimed at better understanding the beliefs, attitudes, and perceptions of Utah rangeland owners concerning carbon sequestration and climate change, examining their current grazing management practices in relation to soil carbon sequestration, and exploring factors influencing their likelihood of participating in future programs. Data were collected through interviews of U...

  7. Field validation of chlordecone soil sequestration by organic matter addition

    Clostre, F.; Woignier, T.; RANGON, Luc; Fernandes, P.; Soler, A.; Lesueur-Jannoyer, M.

    2014-01-01

    Purpose The use of chlordecone (CLD) has caused pollution of soils, which are now a source of contamination for crops and ecosystems. Because of its long-term impacts on human health, exposure to CLD is a public health concern and contamination of crops by CLD must be limited. To this end, we conducted field trials on chlordecone sequestration in soil with added compost. Materials and methods The impact of added compost on chlordecone sequestration was measured in nitisols. After characteriza...

  8. Dutch (organic) agriculture, carbon sequestration and energy production

    Burgt, van der, Maarten; Staps, S.; Timmermans, B.

    2008-01-01

    Carbon sequestration in soils is often mentioned in the discussions about climate changes. In this paper the opportunities for carbon sequestration in Dutch agriculture are discussed at farm and national level. Farm internal carbon sources are already completely used in livestock farming. The effect under arable conditions is limited in time and very limited compared to national CO2 emission. External sources are scarce. Energy production out of crop residues and manure via biogas installatio...

  9. The role of carbon sequestration in a global energy future

    Governmental policies and international treaties that aim at curbing the emissions of greenhouse gases and local pollutants can be expected. These regulations will increase the competitiveness of CO2-neutral energy sources, i.e., renewables, nuclear or decarbonization of fossil fuels with CO2-sequestration. The purpose of this paper is to illustrate the potential role carbon sequestration may play if stringent carbon constraints are applied

  10. Water Challenges for Geologic Carbon Capture and Sequestration

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utiliza...

  11. Pulmonary sequestration cyst in a patient of cerebral palsy

    Bilal Mirza; Muhammad Saleem; Lubna Ijaz; Arsalan Qureshi; Afzal Sheikh

    2011-01-01

    Pulmonary sequestration cyst is a rare entity in pediatric patients. Most of the time, it is diagnosed as an incidental finding. It is associated with other congenital anomalies, especially congenital diaphragmatic hernia. We report a patient of cerebral palsy presented with vomiting and recurrent chest infections. He was diagnosed to have hiatal hernia on computed tomography scan of chest. At operation, a pulmonary sequestration cyst along with hiatal hernia, malrotation, and meckel′s divert...

  12. Recovery Act: Geologic Sequestration Training and Research

    Walsh, Peter; Esposito, Richard; Theodorou, Konstantinos; Hannon, Michael; Lamplugh, Aaron; Ellison, Kirk

    2013-06-30

    Work under the project entitled "Geologic Sequestration Training and Research," was performed by the University of Alabama at Birmingham and Southern Company from December 1, 2009, to June 30, 2013. The emphasis was on training of students and faculty through research on topics central to further development, demonstration, and commercialization of carbon capture, utilization, and storage (CCUS). The project had the following components: (1) establishment of a laboratory for measurement of rock properties, (2) evaluation of the sealing capacity of caprocks, (3) evaluation of porosity, permeability, and storage capacity of reservoirs, (4) simulation of CO{sub 2} migration and trapping in storage reservoirs and seepage through seal layers, (5) education and training of students through independent research on rock properties and reservoir simulation, and (6) development of an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. Four graduate students and one undergraduate student participated in the project. Two were awarded Ph.D. degrees for their work, the first in December 2010 and the second in August 2013. A third graduate student has proposed research on an advanced technique for measurement of porosity and permeability, and has been admitted to candidacy for the Ph.D. The fourth graduate student is preparing his proposal for research on CCUS and solid waste management. The undergraduate student performed experimental measurements on caprock and reservoir rock samples and received his B.S.M.E. degree in May 2012. The "Caprock Integrity Laboratory," established with support from the present project, is fully functional and equipped for measurement of porosity, permeability, minimum capillary displacement pressure, and effective permeability to gas in the presence of wetting phases. Measurements are made at ambient temperature and under reservoir conditions, including supercritical CO{sub 2

  13. Herbivore-induced resource sequestration in plants: why bother?

    Orians, Colin M; Thorn, Alexandra; Gómez, Sara

    2011-09-01

    Herbivores can cause numerous changes in primary plant metabolism. Recent studies using radioisotopes, for example, have found that insect herbivores and related cues can induce faster export from leaves and roots and greater partitioning into tissues inaccessible to foraging herbivores. This process, termed induced resource sequestration, is being proposed as an important response of plants to cope with herbivory. Here, we review the evidence for resource sequestration and suggest that associated allocation and ecological costs may limit the benefit of this response because resources allocated to storage are not immediately available to other plant functions or may be consumed by other enemies. We then present a conceptual model that describes the conditions under which benefits might outweigh costs of induced resource sequestration. Benefits and costs are discussed in the context of differences in plant life-history traits and biotic and abiotic conditions, and new testable hypotheses are presented to guide future research. We predict that intrinsic factors related to life history, ontogeny and phenology will alter patterns of induced sequestration. We also predict that induced sequestration will depend on certain external factors: abiotic conditions, types of herbivores, and trophic interactions. We hope the concepts presented here will stimulate more focused research on the ecological and evolutionary costs and benefits of herbivore-induced resource sequestration. PMID:21431939

  14. Potential and economics of CO2 sequestration

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO2. Some techniques could be used to reduced CO2 emission and stabilize atmospheric CO2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO2 emissions such as renewable or nuclear energy, iii) capture and store CO2 from fossil fuels combustion, and enhance the natural sinks for CO2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO2 and to review the various options for CO2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could make a

  15. Carbon Sequestration on Surface Mine Lands

    Donald H. Graves; Christopher Barton; Bon Jun Koo; Richard Sweigard; Richard Warner

    2004-11-30

    The first quarter of 2004 was dedicated to tree planting activities in two locations in Kentucky. During the first year of this project there was not available mine land to plant in the Hazard area, so 107 acres were planted in the Martin County mine location. This year 120 acres were planted in the Hazard area to compensate for the prior year and an additional 57 acres were planted on Peabody properties in western Kentucky. Additional sets of special plots were established on each of these areas that contained 4800 seedlings each for carbon sequestration demonstrations. Plantings were also conducted to continue compaction and water quality studies on the newly established areas as well as continual measurements of the first year's plantings. Total plantings on this project now amount to 357 acres containing 245,960 seedlings. During the second quarter of this year monitoring systems were established for all the new research areas. Weather data pertinent to the research as well as hydrology and water quality monitoring continues to be conducted on all areas. Studies established to assess specific questions pertaining to carbon flux and the invasion of the vegetation by small mammals are being quantified. Experimental practices initiated with this research project will eventually allow for the planting on long steep slopes with loose grading systems and allow mountain top removal areas to be constructed with loose spoil with no grading of the final layers of rooting material when establishing trees for the final land use designation. Monitoring systems have been installed to measure treatment effects on both above and below ground carbon and nitrogen pools in the planting areas. Soil and tissue samples were collected from both years planting and analyses were conducted in the laboratory. Examination of decomposition and heterotropic respiration on carbon cycling in the reforestation plots continued during the reporting period. Entire planted trees were

  16. Photobiological hydrogen production and carbon dioxide sequestration

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  17. Natural CO2 Analogs for Carbon Sequestration

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  18. Alliance for Sequestration Training, Outreach, Research & Education

    Olson, Hilary

    2013-09-01

    The Sequestration Training, Outreach, Research and Education (STORE) Alliance at The University of Texas at Austin completed its activity under Department of Energy Funding (DE- FE0002254) on September 1, 2013. The program began as a partnership between the Institute for Geophysics, the Bureau of Economic Geology and the Petroleum and Geosystems Engineering Department at UT. The initial vision of the program was to promote better understanding of CO2 utilization and storage science and engineering technology through programs and opportunities centered on training, outreach, research and technology transfer, and education. With over 8,000 hrs of formal training and education (and almost 4,500 of those hours awarded as continuing education credits) to almost 1,100 people, STORE programs and activities have provided benefits to the Carbon Storage Program of the Department of Energy by helping to build a skilled workforce for the future CCS and larger energy industry, and fostering scientific public literacy needed to continue the U.S. leadership position in climate change mitigation and energy technologies and application. Now in sustaining mode, the program is housed at the Center for Petroleum and Geosystems Engineering, and benefits from partnerships with the Gulf Coast Carbon Center, TOPCORP and other programs at the university receiving industry funding.

  19. Carbon sequestration using sea water agriculture

    Platt, Joseph B. [Planetary Design Corp., Phoenix, AZ (United States)

    1998-09-01

    An innovative biomass technology is described which is being used in the Activities Implemented Jointly programme which seeks to promote climatic change mitigation and economic development through cooperation between developed and developing countries. Commercially viable halophyte farms are being created by the American Planetary Design Corporation in Mexico and India. Halophytes are salt resistant plants which can be cultivated on desert lands using sea water for irrigation. Virtually all parts of one such plant, salicornia, yields useful by-products which include seed oil rich in polyunsaturates, animal feed, protein rich flour, and particle board from the waste. These by-products contribute to the economics of a biomass crop which contributes to carbon sequestration and makes use of land which cannot support other crops. The economics can be further improved where halophyte farming is integrated with aquaculture. Sea water is first pumped into raceways that grow shrimp, then into ponds for fin fish; finally the nutrient rich waste water, which is a major concern for the aquaculture industry, is applied to the halophyte fields where it enriches the crop. (UK)

  20. Carbon sequestration R&D overview

    Swift, Justine [Office of Fossil Energy, U.S. Department of Energy (United States)

    2008-07-15

    In this presentation the author discusses over the technological options for the handling of carbon. He shows the objectives and challenges of the program of carbon sequestration of the Department of Energy of the United States, as well as a table with the annual CO{sub 2} emissions in the United States; a graph with the world-wide capacity of CO{sub 2} geologic storage and a listing with the existing projects of CCS at the moment in the world. [Spanish] En esta presentacion el autor platica sobre las opciones tecnologicas para el manejo del carbono. Muestra los objetivos y retos del programa de secuestro de carbono del Departamento de Energia de los Estados Unidos, asi como una tabla con las emisiones anuales de CO{sub 2} en los Estados Unidos; un grafico con la capacidad mundial de almacenamiento de CO{sub 2} en el subsuelo y un listado con los proyectos de CCS existentes actualmente en el mundo.

  1. CO{sub 2} sequestration technologies

    Ketzer, Marcelo [Brazilian Carbon Storage Research Center (Brazil)

    2008-07-15

    In this presentation the importance of the capture and sequestration of CO{sub 2} is outlined for the reduction of gas discharges of greenhouse effect; then the principles of CO{sub 2} storage in geologic formations are reviewed; afterwards, the analogs for the CO{sub 2} storage are commented, such as the storage of the acid gas, the natural gas storage and the natural CO{sub 2} deposits. Also it is spoken on the CO{sub 2} storage in coal, in water-bearing saline deposits and in oil fields, and finally the subject of the safety and monitoring of the CO{sub 2} storage is reviewed. [Spanish] En esta presentacion se expone la importancia de la captura y secuestro de CO{sub 2} para la reduccion de emisiones de gases de efecto invernadero; luego se tratan los principios de almacenamiento de CO{sub 2} en formaciones geologicas; despues se comentan los analogos para el almacenamiento de CO{sub 2} como el almacenamiento del gas acido, el almacenamiento de gas natural y los yacimientos naturales de CO{sub 2}. Tambien se habla sobre el almacenamiento de CO{sub 2} en carbon, acuiferos salinos y yacimientos petroliferos y por ultimo se toca el tema de la seguridad y monitoreo del almacenamiento de CO{sub 2}.

  2. Cost evaluation of CO2 sequestration by aqueous mineral carbonation

    A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a basic design was made for the major process equipment, and total investment costs were estimated with the help of the publicly available literature and a factorial cost estimation method. Finally, the sequestration costs were determined on the basis of the depreciation of investments and variable and fixed operating costs. Estimated costs are 102 and 77 euro/ton CO2 net avoided for wollastonite and steel slag, respectively. For wollastonite, the major costs are associated with the feedstock and the electricity consumption for grinding and compression (54 and 26 euro/ton CO2 avoided, respectively). A sensitivity analysis showed that additional influential parameters in the sequestration costs include the liquid-to-solid ratio in the carbonation reactor and the possible value of the carbonated product. The sequestration costs for steel slag are significantly lower due to the absence of costs for the feedstock. Although various options for potential cost reduction have been identified, CO2 sequestration by current aqueous carbonation processes seems expensive relative to other CO2 storage technologies. The permanent and inherently safe sequestration of CO2 by mineral carbonation may justify higher costs, but further cost reductions are required, particularly in view of (current) prices of CO2 emission rights. Niche applications of mineral carbonation with a solid residue such as steel slag as feedstock and/or a useful carbonated product hold the best prospects for an economically feasible CO2 sequestration process

  3. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES; SEMIANNUAL

    In order to plan for potential CO(sub 2) mitigation mandates, utilities need better information on CO(sub 2) mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO(sub 2) sequestration technologies and practices, both geologic storage of captured CO(sub 2) and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO(sub 2) sequestration, including captured CO(sub 2) storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO(sub 2) sequestration options. Designs and data collection are nearly complete for each of the CO(sub 2) sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO(sub 2). No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO(sub 2) sequestration options that differ in timing and permanence of CO(sub 2) sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget

  4. Making carbon dioxide sequestration feasible: Toward federal regulation of CO2 sequestration pipelines

    As the United States moves closer to a national climate change policy, it will have to focus on a variety of factors affecting the manner in which the country moves toward a future with a substantially lower carbon footprint. In addition to encouraging renewable energy, smart grid, clean fuels and other technologies, the United States will need to make substantial infrastructure investments in a variety of industries. Among the significant contributors to the current carbon footprint in the United States is the use of coal as a major fuel for the generation of electricity. One of the most important technologies that the United States can employ to reduce its carbon footprint is to sequester the carbon dioxide ('CO2') from coal-fired power plants. This article focuses on the legal and policy issues surrounding a critical piece of the necessary sequestration infrastructure: CO2 pipelines that will carry CO2 from where it is removed from fuel or waste gas streams to where it will be sequestered. Ultimately, this article recommends developing a federally regulated CO2 pipeline program to foster the implementation of carbon sequestration technology.

  5. Carbon dioxide sequestration by mineral carbonation. Literature Review

    In order to prevent CO2 concentrations in the atmosphere rising to unacceptable levels, carbon dioxide can be separated from the flue gas of, for example, a power plant and subsequently sequestrated. Various technologies for carbon dioxide sequestration have been proposed, such as storage in depleted gas fields, oceans and aquifers. An alternative sequestration route is the so-called 'mineral CO2 sequestration' route in which CO2 is chemically stored in solid carbonates by the carbonation of minerals. As mineral feedstock, rocks that are rich in alkaline earth silicates can be used. Examples are olivine (MgSiO4) and wollastonite (CaSiO3). Mineral CO2 sequestration has some fundamental advantages compared to other sequestration routes. The formed products are thermodynamically stable and therefore the sequestration of CO2 is permanent and safe. Furthermore, the sequestration capacity is large because large suitable feedstock deposits are available worldwide. Finally, the carbonation reactions are exothermic and occur spontaneously in nature. The reaction rates of the process at atmospheric conditions, however, are much too slow for an industrial process. Therefore, research focuses on increasing the reaction rate in order to obtain an industrial viable process. Optimisation of the process conditions is constrained by the thermodynamics of the process. Increasing the temperature and CO2 pressure accelerates the reaction rate, but gaseous CO2 is favoured over mineral carbonates at high temperatures. Using water or another solvent to extract the reactive component from the matrix accelerates the process. Pre-treatment of the mineral by size reduction and thermal or mechanical activation and optimisation of the solution chemistry result in major improvements of the reaction rate. During recent years, laboratory-scale experiments have shown major improvements of the conversion rates by developing various process routes and optimising process conditions. The most

  6. CO2 Sequestration within Spent Oil Shale

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  7. Carbon sequestration by young Norway spruce monoculture

    Pokorny, R.; Rajsnerova, P.; Kubásek, J.

    2012-04-01

    Many studies have been focused on allometry, wood-mass inventory, carbon (C) sequestration, and biomass expansion factors as the first step for the evaluation of C sinks of different plant ecosystems. To identify and quantify these terrestrial C sinks, and evaluate CO2 human-induced emissions on the other hand, information for C balance accounting (for impletion of commitment to Kyoto protocol) are currently highly needed. Temperate forest ecosystems have recently been identified as important C sink. Carbon sink might be associated with environmental changes (elevated [CO2], air temperature, N deposition etc.) and large areas of managed fast-growing young forests. Norway spruce (Pice abies L. Karst) is the dominant tree species (35%) in Central European forests. It covers 55 % of the total forested area in the Czech Republic, mostly at high altitudes. In this contribution we present C sequestration by young (30-35 year-old) Norway spruce monocultures in highland (650-700 m a.s.l., AT- mean annual temperature: 6.9 ° C; P- annual amount of precipitation: 700 mm; GL- growing season duration: 150 days) and mountain (850-900 m a.s.l.; AT of 5.5 ° C; P of 1300 mm; and GL of 120 days) areas and an effect of a different type of thinning. However, the similar stem diameter at the breast height and biomass proportions among above-ground tree organs were obtained in the both localities; the trees highly differ in their height, above-ground organ's biomass values and total above ground biomass, particularly in stem. On the total mean tree biomass needle, branch and stem biomass participated by 22 %, 24 % and 54 % in highland, and by 19 %, 23 % and 58 % in mountain area, respectively. Silvicultural management affects mainly structure, density, and tree species composition of the stand. Therefore, dendrometric parameters of a tree resulted from genotype, growth conditions and from management history as well. Low type of thinning (LT; common in highland) stimulates rather tree

  8. Carbon sequestration potential of extensive green roofs.

    Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

    2009-10-01

    Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter. PMID:19848177

  9. Contribution of Donana wetlands to carbon sequestration.

    Edward P Morris

    Full Text Available Inland and transitional aquatic systems play an important role in global carbon (C cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water CO2 fluxes in the wetlands of Doñana Natural Area (SW Spain were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010-2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous CO2 transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of CO2 (-0.8 and 36.3 mmol(CO2 m(-2 d(-1. Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and -1.2 mmol(CO2 m(-2 d(-1. Overall, Doñana's water bodies were a net annual source of CO2 (5.2 mol(C m(-2 y(-1. Up-scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous CO2 transport (13.1 Gg(C y(-1. Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net CO2 sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation, suggesting potential for the modification of C sequestration.

  10. Simultaneous leaching and carbon sequestration in constrained aqueous solutions

    Phelps, Tommy Joe [ORNL; Moon, Ji Won [ORNL; Roh, Yul [Chonnam National University, Gwangju; Cho, Kyu Seong [ORNL

    2011-01-01

    The behavior of metal ions leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.

  11. Carbon sequestration and its role in the global carbon cycle

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  12. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  13. [Seagrass ecosystems: contributions to and mechanisms of carbon sequestration].

    Qiu, Guang-Long; Lin, Hsing-Juh; Li, Zong-Shan; Fan, Hang-Qing; Zhou, Hao-Lang; Liu, Guo-Hua

    2014-06-01

    The ocean's vegetated habitats, in particular seagrasses, mangroves and salt marshes, each capture and store a comparable amount of carbon per year, forming the Earth's blue carbon sinks, the most intense carbon sinks on the planet. Seagrass meadows, characterized by high primary productivity, efficient water column filtration and sediment stability, have a pronounced capacity for carbon sequestration. This is enhanced by low decomposition rates in anaerobic seagrass sediments. The carbon captured by seagrass meadows contributes significantly to the total blue carbon. At a global scale, seagrass ecosystems are carbon sink hot spots and have profound influences on the global carbon cycle. This importance combined with the many other functions of seagrass meadows places them among the most valuable ecosystems in the world. Unfortunately, seagrasses are declining globally at an alarming rate owing to anthropogenic disturbances and climate change, making them also among the most threatened ecosystems on the Earth. The role of coastal systems in carbon sequestration has received far too little attention and thus there are still many uncertainties in evaluating carbon sequestration of global seagrass meadows accurately. To better assess the carbon sequestration of global seagrass ecosystems, a number of scientific issues should be considered with high priorities: 1) more accurate measurements of seagrass coverage at national and global levels; 2) more comprehensive research into species- and location-specific carbon sequestration efficiencies; 3) in-depth exploration of the effects of human disturbance and global climate change on carbon capture and storage by seagrass ecosystems. PMID:25223044

  14. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (

  15. Fatal splenic sequestration crisis in adult sickle cell-beta thalassaemia.

    van Rhee, F; Balsitis, M.; French, E. A.

    1991-01-01

    Fatal acute splenic sequestration crisis in an adult patient with sickle cell-beta+ thalassaemia is described. To our knowledge fatal splenic sequestration in adult sickle cell-beta thalassaemia has not been previously reported.

  16. Geo-Spatial Technologies for Carbon Sequestration Monitoring and Management

    V. Jeyanny

    2011-01-01

    Full Text Available Problem statement: Globally, the quantification of Carbon Sequestration (CS potential of various ecosystems is a challenge. There is an urgent need for technologies that can quantify CS potential cost-efficiently in a repeated and organized manner. Approach: Remote Sensing (RS and Geographic Information System (GIS have great potential in current estimation, future prediction and management of carbon sequestration potential in terrestrial ecosystems. This review discusses the current utilization of RS and GIS technologies in CS management in various sectors. Results: Deployment of RS and GIS for CS sequestration improves accuracy, reduces costs, increases productivity, and provides current observations from a regional scale. Conclusion: This review demonstrates the synergistic role of RS and GIS technologies in improving CS management.

  17. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G

    2016-06-01

    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. PMID:27048926

  18. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  19. State and Regional Control of Geological Carbon Sequestration

    Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Durrant, Marie [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  20. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have

  1. Bronchopulmonary sequestration in a 60 year old man.

    Naffaa, Lena; Tank, Jay; Ali, Sara; Ong, Cesar

    2014-10-01

    We report a case of bronchopulmonary sequestration (BPS) in a 60 year old man with recurrent cough. After failed antibiotic therapy for presumed left lower lobe (LLL) pneumonia seen on chest radiographs, bronchoscopy was performed revealing cryptogenic organizing pneumonia. Further work-up with thoracic imaging demonstrates a feeding artery from the thoracic aorta to the LLL consolidation indicating the presence of BPS. A brief review of the clinical and radiological features and management options of BPS are listed, with particular emphasis on the various imaging modalities and techniques in the diagnosis and pre-surgical planning of intralobar sequestration. PMID:25426223

  2. Evaluating the seismic risk of mineral carbon sequestration

    Balcerak, Ernie

    2013-04-01

    Geologic carbon sequestration, in which carbon is captured and stored underground, has been proposed as one way to mitigate the climatic effects of carbon dioxide emissions. One method of geologic carbon sequestration is to inject carbon dioxide in aqueous solution into rocks. However, as the solution fills the pore space in the rocks, the fluid pressure on the rocks increases, potentially increasing the risk of earthquakes. Another option would be to inject carbon dioxide solutions into mafic rocks; the silicate minerals in these rocks react with the carbon dioxide, leaving solid carbonate reaction products, which decrease the amount of pore fluid.

  3. Carbon Sequestration on Surface Mine Lands

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    reclamation practice. In addition, experiments were integrated within the reforestation effort to address specific questions pertaining to sequestration of carbon (C) on these sites.

  4. Current Status and Development Prospect of Carbon Sequestration Forestry in China

    2009-01-01

    Carbon sequestration forestry plays an important role in climate change and global warming mitigation, and thus gains more and more attention around the world. The paper introduced the concept, the significance and the status of carbon sequestration forestry in China, discussed existing issues and put forward countermeasures and suggestions to address these issues. Finally, development prospect of carbon sequestration forestry was analyzed.

  5. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    2010-06-14

    ... of Energy Efficiency and Renewable Energy Notice of the Carbon Sequestration--Geothermal Energy... the Carbon Sequestration--Geothermal Energy--Science Joint Workshop. SUMMARY: The DOE Geothermal....geothermal.energy.gov . DATES: The Carbon Sequestration--Geothermal Energy--Science Joint Workshop will...

  6. DNA Book

    Kawai, Jun; Hayashizaki, Yoshihide

    2003-01-01

    We propose herein a new method of DNA distribution, whereby DNA clones or PCR products are printed directly onto the pages of books and delivered to users along with relevant scientific information. DNA sheets, comprising water-soluble paper onto which DNA is spotted, can be bound into books. Readers can easily extract the DNA fragments from DNA sheets and amplify them using PCR. We show that DNA sheets can withstand various conditions that may be experienced during bookbinding and deli...

  7. Cleaving DNA with DNA

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  8. Additional carbon sequestration benefits of grassland diversity restoration

    De Deyn, G.B.; Shiel, R.S.; Ostle, N.J.; McNamara, N.P.; Oakley, S.; Young, I.; Freeman, C.; Fenner, N.; Quirk, H.; Bardgett, R.D.

    2011-01-01

    1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To t

  9. Additional carbon sequestration benefits of grassland diversity restoration

    Deyn, de G.B.; Shiel, R.S.; Ostle, N.J.; McNamara, N.P.; Oakley, S.; Young, I.; Freeman, C.; Fenner, N.; Quirk, H.; Bardgett, R.D.

    2011-01-01

    1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To t

  10. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  11. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  12. The effect of soil fauna on carbon sequestration in soil

    Frouz, Jan; Pižl, Václav; Kaneda, Satoshi; Šimek, Miloslav

    2008-01-01

    Roč. 10, - (2008). ISSN 1029-7006. [EGU General Assembly 2008. 13.04.2008-18.04.2008, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * carbon sequestration * soil Subject RIV: EH - Ecology, Behaviour

  13. Carbon sequestration in the agricultural soils of Europe

    Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, A.

    2004-01-01

    In this review, technical and economically viable potentials for carbon sequestration in the agricultural soils of Europe by 2008¿2012 are analysed against a business-as-usual scenario. We provide a quantitative estimation of the carbon absorption potential per hectare and the surface of agricultura

  14. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  15. Barriers and Prospects of Carbon Sequestration in India.

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects. PMID:26563072

  16. Soil carbon sequestration and biochar as negative emission technologies.

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. PMID:26732128

  17. 3D multidetector CT angiographic evaluation of intralobular bronchopulmonary sequestration

    Marwah Ruchira

    2010-01-01

    Full Text Available We report a case of intralobar pulmonary sequestration with special emphasis on computed tomography (CT angiography in determining the arterial supply and venous drainage, thus providing a detailed knowledge of the vasculature, which is of vital importance in surgery. The 3D volume rendering technique and maximum intensity projection images provide the vascular road map for the surgeon.

  18. Impact of soil movement on carbon sequestration in agricultural ecosystems.

    McCarty, G W; Ritchie, J C

    2002-01-01

    Recent modeling studies indicate that soil erosion and terrestrial sedimentation may establish ecosystem disequilibria that promote carbon (C) sequestration within the biosphere. Movement of upland eroded soil into wetland systems with high net primary productivity may represent the greatest increase in storage capacity potential for C sequestration. The capacity of wetland systems to capture sediments and build up areas of deposition has been documented as well as the ability of these ecosystems to store substantial amounts of C. The purpose of our work was to assess rates of sediment deposition and C storage in a wetland site adjacent to a small first-order stream that drains an agricultural area. The soils of the wetland site consist of a histosol buried by sediments from the agricultural area. Samples of deposited sediments in the riparian zone were collected in 5 cm increments and the concentration of 137Cs was used to determine the 1964 and 1954 deposition layers. Agricultural activity in the watershed has caused increased sediment deposition to the wetland. The recent upland sediment is highly enriched in organic matter indicating that large amounts of organic C have been sequestered within this zone of sediment deposition. Rates of sequestration are much higher than rates that have occurred over the pre-modern history of the wetland. These data indicate the increased sedimentation rates in the wetland ecosystem are associated with increased C sequestration rates. PMID:11822721

  19. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    P. UNKEFER; M. EBINGER; ET AL

    2001-02-01

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies. A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation

  20. Impact of parameter uncertainty on carbon sequestration modeling

    Bandilla, K.; Celia, M. A.

    2013-12-01

    Geologic carbon sequestration through injection of supercritical carbon dioxide (CO2) into the subsurface is one option to reduce anthropogenic CO¬2 emissions. Widespread industrial-scale deployment, on the order of giga-tonnes of CO2 injected per year, will be necessary for carbon sequestration to make a significant contribution to solving the CO2 problem. Deep saline formations are suitable targets for CO2 sequestration due to their large storage capacity, high injectivity, and favorable pressure and temperature regimes. Due to the large areal extent of saline formations, and the need to inject very large amounts of CO2, multiple sequestration operations are likely to be developed in the same formation. The injection-induced migration of both CO2 and resident formation fluids (brine) needs to be predicted to determine the feasibility of industrial-scale deployment of carbon sequestration. Due to the larger spatial scale of the domain, many of the modeling parameters (e.g., permeability) will be highly uncertain. In this presentation we discuss a sensitivity analysis of both pressure response and CO2 plume migration to variations of model parameters such as permeability, compressibility and temperature. The impact of uncertainty in the stratigraphic succession is also explored. The sensitivity analysis is conducted using a numerical vertically-integrated modeling approach. The Illinois Basin, USA is selected as the test site for this study, due to its large storage capacity and large number of stationary CO2 sources. As there is currently only one active CO2 injection operation in the Illinois Basin, a hypothetical injection scenario is used, where CO2 is injected at the locations of large CO2 emitters related to electricity generation, ethanol production and hydrocarbon refinement. The Area of Review (AoR) is chosen as the comparison metric, as it includes both the CO2 plume size and pressure response.

  1. Carbon sequestration in coal-beds with structural deformation effects

    Carbon dioxide sequestration in a coal-bed is a profitable method to reduce the concentration of greenhouse gas in the atmosphere and to recover byproduct methane from the coal seam. The important factor to be considered is the stability of the coal-bed with the increased carbon dioxide injection. It is crucial to avoid carbon dioxide escaping from the coal seam caused by structural deformation. Meanwhile, structural deformation also depends on such properties of the geological coal basin as fracture state and phase equilibrium, especially the porosity, permeability and saturation of the coal seam. In this study, a structural deformation effect was simulated with the purpose of predicting carbon dioxide storage in the environment of a typical unmineable coal seam. As an example, Appalachian Basin is considered in the deformation analysis of carbon dioxide sequestration based on the variable saturation model. Moreover, the comparison between simulations with and without the account of structural deformation is given. The results indicate that modeling of structural deformation in carbon sequestration is feasible by directly coupling structure terms to a variable saturated model. Moreover, introducing structural deformation effects into carbon sequestration modeling is important because it affects the fluid flow and leads to a faster drop of the resulting capillary pressure and relative permeability of the gas phase. This faster drop directly results in the diminished carbon dioxide storage capacity in a coal-bed basin. In addition, structural deformation modeling in carbon sequestration simulations can provide important insights into how to avoid carbon leakage and seepage by monitoring the effective stress and displacement of coal-bed basin during carbon dioxide injection.

  2. Regulating forest rotation to increase CO{sub 2} sequestration

    Gong, P.; Kristroem, B.

    1999-06-01

    Previous studies have shown that the optimal forest rotation age increases considerably if the benefits of CO{sub 2} sequestration are included in rotation decisions. While these studies provide some guidelines for managing public forests, private forest owners may not choose the socially optimal rotation age. This paper discusses a regulation measure to increase CO{sub 2} sequestration in privately owned forests. The regulation problem is treated as a sequential game, where the regulator chooses a subsidy scheme and forest owners respond by changing rotation ages. A private forest owner receives a subsidy at the time of harvesting if he/she changes the rotation age towards the socially optimal one. The subsidy is proportional to the associated change in timber yield. The forest owner`s objective is to maximize the net present value of after-tax timber production profits and subsidies. The regulator`s decision problem is to find the subsidy rate that maximizes the net benefits of implementing the policy (the net of increased CO{sub 2} sequestration benefits, subsidy costs, and changes in forestry taxation income). Empirical results for Swedish examples show that the optimal subsidy rate is sensitive to the marginal benefit of CO{sub 2} sequestration, the social discount rate, and site quality. The optimal subsidy rate is found to be significantly lower than the marginal benefit of CO{sub 2} sequestration. With the proposed subsidy scheme, private forest owners will choose rotation ages longer than the Faustmann rotation, but significantly shorter than the socially optimal rotation age 21 refs, 6 tabs. Arbetsrapport 272

  3. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP - REPORT ON GEOPHYSICAL TECHNIQUES FOR MONITORING CO2 MOVEMENT DURING SEQUESTRATION

    Gasperikova, Erika; Gasperikova, Erika; Hoversten, G. Michael

    2005-10-01

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of CO{sub 2}. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  4. Numerical simulation and optimization of CO2 sequestration in saline aquifers for enhanced storage capacity and secured sequestration

    Zheming Zhang, Ramesh K. Agarwal

    2013-01-01

    Full Text Available Saline aquifer geological carbon sequestration (SAGCS is considered most attractive among other options for geological carbon sequestration (GCS due to its huge sequestration capacity. However, in order to fully exploit its potential, efficient injection strategies need to be investigated for enhancing the storage efficiency and safety along with economic feasibility. In our previous work, we have developed a new hybrid code by integration of the multi-phase CFD simulator TOUGH2 with a genetic algorithm (GA optimizer, designated as GA-TOUGH2. This paper presents the application of GA-TOUGH2 on two optimization problems: (a design of an optimal water-alternating-gas (WAG injection scheme for a vertical injector in a generic aquifer and (b the design of an optimal injection pressure management scheme for a horizontal injector in a generic aquifer to optimize its storage efficiency. The optimization results for both applications are promising in achieving the desired objectives of enhancing the storage efficiency significantly while reducing the plume migration, brine movement and pressure impact. The results also demonstrate that the GA-TOUGH2 code holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.

  5. New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales).

    Smith, Matthew E; Amses, Kevin R; Elliott, Todd F; Obase, Keisuke; Aime, M Catherine; Henkel, Terry W

    2015-12-01

    Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. PMID:26732137

  6. Organic nutrient enrichment in the oligotrophic ocean: Impacts on remineralization, carbon sequestration, and community structure

    Mackey, K. R.; Paytan, A.; Post, A. F.

    2007-12-01

    In oligotrophic seas where inorganic nitrogen (N) and phosphorus (P) are below the limits of detection, organic forms of these nutrients may constitute greater than 90% of the total N and P in the euphotic zone. The combined enzymatic activity of phytoplankton and heterotrophic bacteria determines the rate of nutrient remineralization, thereby influencing phytoplankton growth rates and carbon sequestration in these regions. In this study we investigated the effects of fertilization with ammonium (NH4), nitrate (NO3), nitrite (NO2), and phosphate (PO4) as well as various forms of organic N (urea, glycine) and P (deoxyribonucleic acid, 2- aminoethyl phosphonic acid, phytic acid) on the growth and taxonomic composition of the phytoplankton community in the Gulf of Aqaba, Red Sea. The impacts of these changes on nutrient cycling and biological assimilation were also assessed. Organic N additions led to phytoplankton growth when given together with PO4, yielding 2-3 fold increases in chlorophyll a (Chl a) and cell density relative to initial levels. Moreover, our results show that addition of NH4 or NO3 led to accumulation of extra-cellular NO2, suggesting that incomplete assimilatory reduction of NO3 by phytoplankton as well as chemoautotrophic oxidation of NH4 by ammonium oxidizing microbes contributed to NO2 formation. These findings conflict with earlier studies in the Gulf that attributed NO2 formation solely to the phytoplankton community. Organic P additions also led to 2-3 fold increases in Chl a and cell density relative to initial levels when given together with NH4 and NO3. Compared to other P additions, DNA led to the rapid accumulation of extra-cellular PO4, indicating substantial nucleotidase activity in excess of the amount needed to meet phytoplankton growth requirements. These results show the importance and interconnectivity of phytoplankton and heterotrophic bacteria communities in contributing to nutrient cycling and carbon sequestration in

  7. Assessment of Carbon Sequestration in German Alley Cropping Systems

    Tsonkova, P. B.; Quinkenstein, A.; Böhm, C.; Freese, D.

    2012-04-01

    Alley cropping systems (ACS) are agroforestry practices in which perennial trees or shrubs are grown in wide rows and arable crops are cultivated in the alleys between the tree rows. Recently, ACS which integrate stripes of short rotation coppices into conventional agricultural sites have gained interest in Germany. These systems can be used for simultaneous production of crops and woody biomass which enables farmers to diversify the provision of market goods. Adding trees into the agricultural landscape creates additional benefits for the farmer and society also known as ecosystem services. An ecosystem service provided by land use systems is carbon sequestration. The literature indicates that ACS are able to store more carbon compared to agriculture and their implementation may lead to greater benefits for the environment and society. Moreover, carbon sequestration in ACS could be included in carbon trading schemes and farmers rewarded additionally for the provision of this ecosystem service. However, methods are required which are easy to use and provide reliable information regarding change in carbon sequestration with change of the land use practice. In this context, our aim was to develop a methodology to assess carbon sequestration benefit provided by ACS in Germany. Therefore, the change of carbon in both soil and biomass had to be considered. To predict the change in soil carbon our methodology combined the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the soil organic carbon balance recommended by the Association of German Agricultural Investigation and Research Centers (VDLUFA). To reflect the change in biomass carbon average annual yields were adopted. The results showed that ACS established on agricultural sites can increase the carbon stored because in the new soil-plant system carbon content is higher compared to agriculture. ACS have been recommended as suitable land use systems for marginal sites, such as post-mining areas. In

  8. DNA supercoiling inhibits DNA knotting.

    Burnier Y.; Dorier J.; Stasiak A.

    2008-01-01

    Despite the fact that in living cells DNA molecules are long and highly crowded, they are rarely knotted. DNA knotting interferes with the normal functioning of the DNA and, therefore, molecular mechanisms evolved that maintain the knotting and catenation level below that which would be achieved if the DNA segments could pass randomly through each other. Biochemical experiments with torsionally relaxed DNA demonstrated earlier that type II DNA topoisomerases that permit inter- and intramolecu...

  9. Erosion of soil organic carbon: implications for carbon sequestration

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  10. Red cell survival and sequestration in acute intermittent porphyria

    Life span and sequestration of red cells have been studied in twenty one proved cases of acute intermittent porphyria of different age and sex group from Bikaner District, Rajasthan State (India). Chromium-51 labelled red cells were used in the study and the excess count method of Bughe Jones and Szur was used to calculate the index of sequestration. The mean apparent half survival time of erythrocytes in the control subjects was 25.9 +- 2.9 (S.D.) days and the same in the prophyria patients was 27.0 +- 3.8 days. This shows that the life span of red cells is normal in both the patient and the control. Excess destruction of red blood cells was found to take place in either spleen or liver in the disease and no excess accumulation of erythrocytes occurred over spleen as compared to liver. (M.G.B.)

  11. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    K. Lorenz; R. Lal

    2007-12-31

    This research project was aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of RMS and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. Restoration of disturbed land is followed by the application of nutrients to the soil to promote the vegetation development. Reclamation is important both for preserving the environmental quality and increasing agronomic yields. Since reclamation treatments have significant influence on the rate of soil development, a study on subplots was designed with the objectives of assessing the potential of different biosolids on soil organic C (SOC) sequestration rate, soil development, and changes in soil physical and water transmission properties. All sites are owned and maintained by American Electric Power (AEP). These sites were reclaimed by two techniques: (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover.

  12. A psychological effect of having a potentially viable sequestration strategy

    Matsumoto Katsumi

    2006-07-01

    Full Text Available Abstract Purposeful carbon sequestration by direct injection into the deep ocean can store carbon for centuries. Even after injected carbon begins to leak back out to the atmosphere, much of the injected carbon will remain sequestered because of the acid neutralizing capacity of seawater. The slow leakage that occurs centuries into the future can give a false sense of security that the carbon and climate problem is under control. If this were to cause policy makers to become less vigilant about reducing the total emissions of anthropogenic carbon, our descendants would be penalized with having much higher carbon dioxide content in the atmosphere when leakage begins. This "carelessness feedback" would apply to other forms of sequestration that are not permanent. To avoid falling into this trap requires generations of policy makers to be aware of the feedback and committed to intergenerational equity.

  13. Options for accounting carbon sequestration in German forests

    Rueter Sebastian; Bormann Kristin; Riedel Thomas; Koehl Michael; Krug Joachim; Elsasser Peter

    2009-01-01

    Abstract Background The Accra climate change talks held from 21–27 August 2008 in Accra, Ghana, were part of an ongoing series of meetings leading up to the Copenhagen meeting in December 2009. During the meeting a set of options for accounting carbon sequestration in forestry on a post-2012 framework was presented. The options include gross-net and net-net accounting and approaches for establishing baselines. Results This article demonstrates the embedded consequences of Accra Accounting Opt...

  14. Geothermal energy combined with CO2 sequestration: An additional benefit

    Salimi, H.; Wolf, K.H.A.A.; Bruining, J.

    2012-01-01

    In this transition period from a fossil-fuel based society to a sustainable-energy society, it is expected that CO2 capture and subsequent sequestration in geological formations plays a major role in reducing greenhouse gas emissions. An alternative for CO2 emission reduction is to partially replace conventional-energy for heating and cooling buildings (e.g., cogeneration units) with geothermal energy. A mixture of CO2 with cold return water injected into geothermal reservoirs can be the inte...

  15. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  16. Bronchopulmonary sequestration in a 60 year old man

    Naffaa, Lena; Tank, Jay; Ali, Sara; Ong, Cesar

    2014-01-01

    We report a case of bronchopulmonary sequestration (BPS) in a 60 year old man with recurrent cough. After failed antibiotic therapy for presumed left lower lobe (LLL) pneumonia seen on chest radiographs, bronchoscopy was performed revealing cryptogenic organizing pneumonia. Further work-up with thoracic imaging demonstrates a feeding artery from the thoracic aorta to the LLL consolidation indicating the presence of BPS. A brief review of the clinical and radiological features and management o...

  17. Technological Learning for Carbon Capture and Sequestration Technologies

    K. Riahi; Rubin, E.S.; Taylor, M. R.; L. Schrattenholzer; Hounshell, D.

    2004-01-01

    This paper analyzes potentials of carbon capture and sequestration technologies (CCT) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCT. In order to get a reasonable guide to future technological progress in managing CO2 emissions, we review past experience in controlling sulfur dioxide (SO2) emissions from power plants. By doing so, we quantify a "learning curve" for CCT, which describes the relationship between ...

  18. Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration

    McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.

    2006-12-01

    Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.

  19. CO2 Sequestration Potential of Texas Low-Rank Coals

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2003-07-01

    The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

  20. DNA vaccines

    Coban, Cevayir; Kobiyama, Kouji; Jounai, Nao; Tozuka, Miyuki; Ishii, Ken J.

    2013-01-01

    Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA...

  1. Environmental non-government organizations' perceptions of geologic sequestration

    Environmental non-governmental organizations (NGOs) have been influential in shaping public perceptions of environmental problems, their causes and potential solutions. Over the last decade, carbon capture and storage (CCS) has emerged as a potentially important technological response to climate change. In this paper we investigate how leading US NGOs perceive geologic sequestration, a potentially controversial part of CCS. We examine how and why their perceptions and strategies might differ, and if and how they plan to shape public perceptions of geologic sequestration. We approach these questions through semi-structured interviews with representatives from a range of NGOs, supplemented by content analysis of their documents. We find that while all the NGOs are committed to combating climate change, their views on CCS as a mitigation strategy vary considerably. We find that these views are correlated with NGOs' histories of activism and advocacy, as well as with their sources of funding. Overall, most of these NGOs accept the necessity of geologic sequestration, while only a small fraction do not

  2. CT imaging of splenic sequestration in sickle cell disease

    Pooling of blood in the spleen is a frequent occurrence in children with sickle cell diseases, particularly in the first few years of life, resulting in what is termed ''splenic sequestration crisis.'' The spectrum of severity in this syndrome is wide, ranging from mild splenomegaly to massive enlargement, circulatory collapse, and even death. The diagnosis is usually clinical, based on the enlargement of the spleen with a drop in hemoglobin level by >2 g/dl, and it is rare that imaging studies are ordered. However, in the patient who presents to the emergency department with non-specific findings of an acute abdomen, it is important to recognize the appearance of sequestration on imaging studies. We studied seven patients utilizing contrast-enhanced CT scans and found two distinct patterns - multiple, peripheral, non-enhancing low-density areas or large, diffuse areas of low density in the majority of the splenic tissue. Although radiological imaging is not always necessary to diagnose splenic sequestration, in those situations where this diagnosis is not immediately obvious, it makes an important clarifying contribution. (orig.)

  3. CO2 sequestration using principles of shell formation

    Lee, Seung-Woo; Jang, Young-Nam [CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources (Korea, Republic of); Lee, Si-Hyun; Lim, Kyoung-Soo; Jeong, Soon-Kwan [Energy Conservation Research Department of Clean Energy System Research Center, Korea Institute of Energy Research (Korea, Republic of)

    2011-06-15

    The biomimetic sequestration of carbon dioxide to reduce the CO2 emitted into the atmosphere is introduced in this paper. Bivalve shells are used as a good model of CO2 sequestration in this paper, because the shell is derived from the calcium ions and CO2 in seawater. Carbonic anhydrase, hemocyte from diseased shell (HDS) and extrapallial fluid (EFP) are involved in shell formation. This paper compares the soluble protein extracted from Crassostrea gigas with bovine carbonic anhydrase II in terms of their ability to promote CO2 hydration and the production of calcium precipitates. The result demonstrates that HDS has more functional groups to bind calcium ions in aqueous systems, and a different process of calcium precipitation, than does bovine carbonic anhydrase II. To understand molecular weight and secondary protein structure, mass-spectroscopic analysis (MALDI-TOF) and circular dichroism (CD) analysis were used. With regard to EPF, EPF related to shell formation is composed of several fractions and plays a role in sequestration of CO2.

  4. Carbon sequestration, optimum forest rotation and their environmental impact

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost–benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO2. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: ► Carbon sequestration in forestry is an environmental benefit. ► It moderates the problem of global warming. ► It prolongs the gestation period in harvesting. ► This paper uses British data in less favoured districts for growing Sitka spruce species.

  5. Accelerated Sequestration of Terrestrial Plant Biomass in the Deep Ocean

    Strand, S. E.

    2010-12-01

    One of the most efficient uses of aboveground agricultural residues to reduce atmospheric CO2 is burial in sites removed from contact with the atmosphere and in which degradation of lignocellulose is inhibited (Strand and Benford 2009). Similarly by burying forest residues greater benefits for atmospheric carbon accrue compared to incineration or bioethanol production. Accessible planetary sites that are most removed from contact with the atmosphere are primarily the deep ocean sediments. Many deep ocean sediment ecologies are acclimated to massive inputs of terrestrial plant biomass. Nonetheless, marine degradation rates of lignocellulose are slower than terrestrial rates (Keil et al. 2010). Additionally, anaerobic conditions are easily achieved in many deep ocean sediments, inhibiting lignocellulose degradation further, while the dominance of sulfate in the water column as electron acceptor prevents the release of methane from methanogenesis to the atmosphere. The potential benefit of massive removal of excess terrestrial biomass to the deep ocean will be estimated and compared to other uses including biochar and BECS. The impact of the biomass on the marine environment will be discussed and potential sequestration sites in the Gulf of Mexico and the Atlantic compared. Keil, R. G., J. M. Nuwer, et al. (2010). "Burial of agricultural byproducts in the deep sea as a form of carbon sequestration: A preliminary experiment." Marine Chemistry (In Press, online 6 August 2010). Strand, S. E. and G. Benford (2009). "Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments." Environ. Sci. Technol. 43(4): 1000-1007.

  6. Carbon Sequestration Potential in Mangrove Wetlands of Southern of India

    Chokkalingam, L.; Ponnambalam, K.; Ponnaiah, J. M.; Roy, P.; Sankar, S.

    2012-12-01

    Mangrove forest and the soil on which it grows are major sinks of atmospheric carbon. We present the results of a study on the carbon sequestration in the ground biomass of Avicennia marina including the organic carbon deposition, degradation and preservation in wetland sediments of Muthupet mangrove forest (southeast coast of India) in order to evaluate the influence of forests in the global carbon cycle. The inventory for estimating the ground biomass of Avicennia marina was carried out using random sampling technique (10 m × 10 m plot) with allometric regression equation. The carbon content in different vegetal parts (leaves, stem and root) of mangrove species and associated marshy vegetations was estimated using the combustion method. We observe that the organic carbon was higher (ca. 54.8%) recorded in the stems of Aegiceras corniculatum and Salicornia brachiata and lower (ca. 30.3%) in the Sesuvium portulacastrum leaves. The ground biomass and carbon sequestration of Avicennia marina are 58.56±12.65 t/ ha and 27.52±5.95 mg C/ha, respectively. The depth integrated organic carbon model profiles indicate an average accumulation rate of 149.75gC/m2.yr and an average remineralization rate of 32.89gC/m2.yr. We estimate an oxidation of ca. 21.85% of organic carbon and preservation of ca. 78.15% of organic carbon in the wetland sediments. Keywords: Above ground biomass, organic carbon, sequestration, mangrove, wetland sediments, Muthupet.

  7. Nucleophilic substitution as a mechanism of atrazine sequestration in soil

    Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Shao, Juan [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China)

    2015-03-02

    Highlights: • Atrazine tends to form nonextractable bound residue in soil. • Nucleophilic substitution is a pathway leading to atrazine sequestration in soil. • Sulfur containing amino acids are likely to play an important role as nucleophiles during this process. - Abstract: Formation of nonextractable residue was widely observed as a sink of atrazine (ATZ) in soil. However, the mechanisms by which ATZ binds to soil organic matter remain unclear. In this study, we demonstrated that neucleophilic substitution could serve an important pathway causing ATZ sequestration. The carbon bonded to the chlorine in ATZ molecule is partially positively charged due to the strong electronegativity of chlorine and is susceptible to the attack of nucleophiles such as aniline. Since aromatic amines are relatively rare in natural soils, amino acids/peptides were hypothesized to act as the main nucleophiles in real environment. However, substantially ATZ transformation was only observed in the presence of those species containing thiol functionality. Thus, we speculated that it was the thiol group in amino acids/peptides acting as the nucleophile. Nitrogen in amino acids was in fact not an active nucleophile toward ATZ. In addition to the sulfur-containing amino acids, other thiol compounds, and sulfide were also proved to be reactive to ATZ. Thus, the sequestration potential of ATZ probably correlates to the availability of thiol compounds in soil.

  8. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate. PMID:20698546

  9. Optimization geological sequestration of CO2 by capillary trapping mechanisms

    Wildenschild, D.; Harper, E.; Herring, A. L.; Armstrong, R. T.

    2012-12-01

    Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. Sequestration is achieved by capturing carbon dioxide (CO2) gas effluent from coal fired power plants and injecting it into saline aquifers. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore scale. Pairs of analogous fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, non-wetting fluid viscosity, and flow rate, were altered to characterize their impact on capillary trapping. Through the use of computed x-ray microtomography (CMT), we were able to quantify distinct differences between initial (post NW phase imbibition) and residual (post wetting fluid flood) non-wetting phase saturations. Alterations to the viscosity of the non-wetting and wetting fluid phases were made during experimentation; results indicate that the viscosity of the non-wetting fluid is the parameter of interest as residual saturations increased with increasing viscosity. These observed trends will be used to identify optimal conditions for trapping CO2 during subsurface sequestration.

  10. Implementation of Emission Trading in Carbon Dioxide Sequestration Optimization Management

    Zhang, X.; Duncan, I.

    2013-12-01

    As an effective mid- and long- term solution for large-scale mitigation of industrial CO2 emissions, CO2 capture and sequestration (CCS) has been paid more and more attention in the past decades. A general CCS management system has complex characteristics of multiple emission sources, multiple mitigation technologies, multiple sequestration sites, and multiple project periods. Trade-off exists among numerous environmental, economic, political, and technical factors, leading to varied system features. Sound decision alternatives are thus desired for provide decision supports for decision makers or managers for managing such a CCS system from capture to the final geologic storage phases. Carbon emission trading has been developed as a cost-effective tool for reducing the global greenhouse gas emissions. In this study, a carbon capture and sequestration optimization management model is proposed to address the above issues. The carbon emission trading is integrated into the model, and its impacts on the resulting management decisions are analyzed. A multi-source multi-period case study is provided to justify the applicability of the modeling approach, where uncertainties in modeling parameters are also dealt with.

  11. CT imaging of splenic sequestration in sickle cell disease

    Sheth, S.; Piomelli, S. [Columbia Univ., New York, NY (United States). Dept. of Pediatrics; Ruzal-Shapiro, C.; Berdon, W.E. [Columbia Univ., New York, NY (United States). Div. of Pediatric Radiology

    2000-12-01

    Pooling of blood in the spleen is a frequent occurrence in children with sickle cell diseases, particularly in the first few years of life, resulting in what is termed ''splenic sequestration crisis.'' The spectrum of severity in this syndrome is wide, ranging from mild splenomegaly to massive enlargement, circulatory collapse, and even death. The diagnosis is usually clinical, based on the enlargement of the spleen with a drop in hemoglobin level by >2 g/dl, and it is rare that imaging studies are ordered. However, in the patient who presents to the emergency department with non-specific findings of an acute abdomen, it is important to recognize the appearance of sequestration on imaging studies. We studied seven patients utilizing contrast-enhanced CT scans and found two distinct patterns - multiple, peripheral, non-enhancing low-density areas or large, diffuse areas of low density in the majority of the splenic tissue. Although radiological imaging is not always necessary to diagnose splenic sequestration, in those situations where this diagnosis is not immediately obvious, it makes an important clarifying contribution. (orig.)

  12. Community perceptions of carbon sequestration: insights from California

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  13. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 οC and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  14. SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION

    Friedmann, S J

    2007-08-31

    Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-term storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other

  15. Analysis and Comparison of Carbon Capture & Sequestration Policies

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  16. THERMODYNAMIC ANALYSIS OF CARBON SEQUESTRATION METHODS IN LIGNITE POWER PLANTS

    The green house effect is a very pressing issue of our times due to the big impact it will have in the future of life in our planet. The temperature increase of the earth which is the major impact of the greenhouse effect may change forever the climate and the way of life in many countries. It may lead to the reduction of agricultural production and at the end to famine, in several nations. The minimization of CO2 emissions and the introduction of new energy sources is the only solution to the catastrophe that is coming if inaction prevails. The objective of this work is to analyze the methods of the CO2 removal from the flue gases of power plants that use solid fuels. It is especially fit to the Greek conditions where the main fuel used is lignite. Three methods have been examined and compared thermodynamically. These are: (a) Removal of CO2 from the flue gas stream by absorption, (b) The combustion of lignite with pure oxygen and (c) The gasification of lignite. The lignite used in the analysis is the Greek lignite, produced at the Western Macedonia mines. The power plant, before carbon sequestration, has an efficiency of 39%, producing 330MW of electric power. After sequestration, the CO2 is compressed to pressures between 80-110 atm, before its final disposal. In the first method, the sequestration of CO2 is done utilizing a catalyst. The operation requires electricity and high thermal load which is received from low pressure steam extracted from the turbines. Additionally, electricity is required for the compression of the CO2 to 100 bars. This leads to a lower efficiency of the power plant by by 13%. In the second method, the lignite combustion is done with pure O2 produced at an air separation unit. The flue gasses are made up of CO2 and water vapor. This method requires electricity for carbon dioxide compression and the Air Separation unit, thus, the power plant efficiency is lowered by 26%. In the lignite gasification method, the products are a mixture of

  17. Soil carbon sequestration in mixed farming landscapes: Insights from the Lachlan soil carbon project

    Pearson, Leonie J.; Crean, Jason; Badgery, Warwick; Murphy, Brian; Rawson, Andrew; Capon, Timothy; Reeson, Andrew

    2012-01-01

    The potential for soil carbon sequestration to play a significant role in meeting Australia’s greenhouse reduction targets has attracted widespread interest. Despite this interest, the economic scope for soil carbon sequestration remains poorly understood and the practical approaches that could be used to capture any opportunities have not been explored. In this paper we present preliminary results on a pilot soil carbon sequestration variable price, reverse tender auction in the mixed (wheat...

  18. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells

    Débora M. Portilho

    2016-01-01

    Full Text Available During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated.

  19. Predicting and Evaluating the Effectiveness of Ocean Carbon Sequestration by Direct Injection

    Caldeira, K; Herzog, H J; Wickett, M E

    2001-04-24

    Direct injection of CO{sub 2} into the ocean is a potentially effective carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection and develop the appropriate analytic framework to allow us to compare the effectiveness of this strategy with other carbon management options. Here, after a brief review of direct oceanic injection, we estimate the effectiveness of ocean carbon sequestration using one dimensional and three dimensional ocean models. We discuss a new measure of effectiveness of carbon sequestration in a leaky reservoir, which we denote sequestration potential. The sequestration potential is the fraction of global warning cost avoided by sequestration in a reservoir. We show how these measures apply to permanent sequestration and sequestration in leaky reservoirs, such as the oceans, terrestrial biosphere, and some geologic formations. Under the assumptions of a constant cost of carbon emission and a 4% discount rate, injecting 900 m deep in the ocean avoids {approx}90% of the global warming cost associated with atmospheric emission; an injection 1700 m deep would avoid > 99 % of the global warming cost. Hence, for discount rates in the range commonly used by commercial enterprises, oceanic direct injection may be nearly as economically effective as permanent sequestration at avoiding global warming costs.

  20. DNA Methylation

    Alokail, Majed S.; Alenad, Amal M

    2015-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication e...

  1. DNA looping.

    Matthews, K S

    1992-01-01

    DNA-looping mechanisms are part of networks that regulate all aspects of DNA metabolism, including transcription, replication, and recombination. DNA looping is involved in regulation of transcriptional initiation in prokaryotic operons, including ara, gal, lac, and deo, and in phage systems. Similarly, in eukaryotic organisms, the effects of enhancers appear to be mediated at least in part by loop formation, and examples of DNA looping by hormone receptor proteins and developmental regulator...

  2. DNA structure

    Bowater, R

    2003-01-01

    Deoxyribonucleic acid (DNA) is a polymer of nucleotides. In the cell, DNA usually adopts a double-stranded helical form, with complementary base-pairing holding the two strands together. The most stable conformation is called B-form DNA, although other structures can occur under specific conditions.

  3. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  4. Southwest Regional Partnership on Carbon Sequestration Phase II

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the

  5. Effects of forest fertilization on C sequestration and GHG emissions

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N2O) and consumption of methane (CH4) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO2). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N2O production and CH4 oxidation in order to determine the complex and often contradictory effects of fertilizers on N2O emission and CH4 oxidation in forest soils. The actual N2O, CO2, and CH4 fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity

  6. Carbon sequestration in sinks. An overview of potential and costs

    Kolshus, Hans H.

    2001-07-01

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  7. Trace Metal Source Terms in Carbon Sequestration Environments

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  8. Effects of forest fertilization on C sequestration and GHG emissions

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Bull, G.Q.; Northway, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Resources Management; Mohn, W.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Microbiology and Immunology

    2005-07-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N{sub 2}O) and consumption of methane (CH{sub 4}) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO{sub 2}). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N{sub 2}O production and CH{sub 4} oxidation in order to determine the complex and often contradictory effects of fertilizers on N{sub 2}O emission and CH{sub 4} oxidation in forest soils. The actual N{sub 2}O, CO{sub 2}, and CH{sub 4} fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity.

  9. Carbon sequestration in sinks. An overview of potential and costs

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  10. [Intralobar pulmonary sequestration with multiple arterial blood supply].

    Uroz Tristán, J; Mogueya, S A; Poenaru, D; Martínez Lagares, F; Arteaga García, R; Sanchís Solera, L; López-Pinto Ruiz, J

    1994-04-01

    We report the case of a 4 years old boy, who presented at our institution with reiterative neumonia affecting left basal lobe. Anomalous vascular appearance was detected in the chest x-ray. With the suspicion of pulmonary sequestration we carried on Digital Intravenous Angiography by Substraction (DIVAS) and aortogram. The anomalous systemic arterial supply was formed by 6 vessels coming from the thoracic aorta and going into the left lower lobe basal segment. Lobectomy was performed and previous diagnosis was confirmed pathologically. PMID:8086288

  11. Biogeologic Carbon Sequestration - a Cost-Effective Proposal

    Shaw, G. H.; Kuhns, R.

    2009-05-01

    Carbon sequestration has been proposed as a strategy for reducing the impact of carbon dioxide emissions from burning of fossil fuels. There are two main routes: 1) capture CO2 emissions from power plants or other large point sources followed by some form of "burial/sequestration", and 2) extraction of CO2 from the ambient atmosphere (involving substantial concentration relative to atmospheric levels) also followed by burial/sequestration. In either case the goal is to achieve significant long-term isolation of CO2 at an economically sustainable price, perhaps measured by some "market price" for CO2, such as the European carbon futures market, where the price is now (2/3/09) about 14-15/tonne of CO2. The second approach, removal of CO2 from the atmosphere, has the potential benefit of reversing the previous buildup of atmospheric CO2, and perhaps even providing a means to "adjust" terrestrial climate by regulating atmospheric CO2 concentrations. For the present, ideas of planetary "geo-engineering" are not as popular as reducing the impact of continued CO2 emissions. In fact, the energy and capital costs of extraction from a dilute atmosphere appear to make this approach uneconomical. Proposals to fertilize the open ocean suffer from concerns about long term ecosystem effects, to say nothing of a lack of verifiability. There is, however, an approach using biological systems that can not only extract significant amounts of CO2, but can do so cost-effectively. Lakes are known in which primary productivity approaches or exceeds 1gm C/cm2-yr. This equates to removal of 35,000 tonnes of CO2 per km2 per year, with a "market value" of about 500,000/yr. Such productivity only occurs under highly eutrophic conditions, and presumably requires significant nutrient additions. As such it would be unthinkable to pursue this technique on a large scale in extant lakes. If, however, it is possible to produce one or more large artificial lakes under acceptable conditions it is

  12. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    Mohammad, Muneer; Ehsani, Mehrdad

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon c...

  13. Sequestration and storage of CO2: a solution

    350 participants coming from 25 countries, manufacturers, searchers, economists, financiers, deciders of the public and private sectors have met in September for a colloquium in order to discuss and consider the most realistic and promising ways to considerably reduce the CO2 releases. Francois Loos, French Minister of the Industry, has begun this conference, showing the interest of the government about this question. Interest that he has reaffirmed during the petroleum yearly days wishing that a 'pilot unit of sequestration and underground storage of CO2 be rapidly built in France'. (O.M.)

  14. The economic potential of carbon sequestration in Californian agricultural land

    Catala-Luque, Rosa

    This dissertation studies the potential success of a carbon sequestration policy based on payments to farmers for adoption of alternative, less intensive, management practices in California. Since this is a first approach from a Californian perspective, we focus on Yolo County, an important agricultural county of the State. We focus on the six more important crops of the region: wheat, tomato, corn, rice, safflower, and sunflower. In Chapter 1, we characterize the role of carbon sequestration in Climate Change policy. We also give evidence on which alternative management practices have greenhouse gas mitigation potential (reduced tillage, cover-cropping, and organic systems) based on a study of experimental sites. Chapter 2 advances recognizing the need for information at the field level, and describes the survey designed used to obtain data at the field level, something required to perform a complete integrated assessment of the issue. The survey design is complex in the sense that we use auxiliary information to obtain a control (subpopulation of conventional farmers)-case (subpopulation of innovative farmers) design with stratification for land use. We present estimates for population quantities of interest such as total variable costs, profits, managerial experience in different alternatives, etc. This information efficiently gives field level information for innovative farmers, a missing piece of information so far, since our sampling strategy required the inclusion with probability one of farmers identified as innovative. Using an agronomic process model (DayCent) for the sample and population units, we construct carbon mitigation cost curves for each crop and management observed. Chapter 3 builds different econometric models for cross-sectional data taking into account the survey design, and expanding the sample size constructing productivity potential under each alternative. Based on the yield productivity potential modeled for each unit, we conclude that a

  15. Chromium labeling of erythrocytes and their application in clearance and sequestration studies during malaria

    The erythrocyte labeling, clearance and sequestration procedures are outlined for the mouse model system. Significant hematologic and pathologic changes occur during malaria infection, among them anemia, hypocomplementemia, hepatomegaly and splenomegaly. The 51Cr-label studies have been performed to determine the effects of Plasmodium bergheii malaria infection upon the course of clearance and sequestration of antibody-sensitized erythrocytes

  16. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    2010-04-12

    ...EPA is proposing a rule to require reporting on carbon dioxide (CO2) injection and geologic sequestration (GS). The proposed rulemaking does not require control of greenhouse gases (GHGs), rather it requires only monitoring and reporting of CO2 injection and geologic sequestration. EPA first proposed that suppliers of CO2 be subject to mandatory GHG reporting......

  17. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    2010-12-01

    ... Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register / Vol. 75 , No. 230 / Wednesday, December 1... sequestration of carbon dioxide and all other facilities that conduct injection of carbon dioxide. This rule... may determine''). These regulations will affect owners or operators of carbon dioxide (CO...

  18. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects.

    Yadav, Raju R; Krishnamurthi, Kannan; Mudliar, Sandeep N; Devi, S Saravana; Naoghare, Pravin K; Bafana, Amit; Chakrabarti, Tapan

    2014-06-01

    Anthropogenic activities have substantially increased the level of greenhouse gases (GHGs) in the atmosphere and are contributing significantly to the global warming. Carbon dioxide (CO2 ) is one of the major GHGs which plays a key role in the climate change. Various approaches and methodologies are under investigation to address CO2 capture and sequestration worldwide. Carbonic anhydrase (CA) mediated CO2 sequestration is one of the promising options. Therefore, the present review elaborates recent developments in CA, its immobilization and bioreactor methodologies towards CO2 sequestration using the CA enzyme. The promises and challenges associated with the efficient utilization of CA for CO2 sequestration and scale up from flask to lab-scale bioreactor are critically discussed. Finally, the current review also recommends the possible future needs and directions to utilize CA for CO2 sequestration. PMID:24740638

  19. Radiological diagnosis of pulmonary sequestration: review of six cases, including one bilateral

    Radiological diagnosis of pulmonary sequestration: review of six cases, including one bilateral. Pulmonary sequestration is an uncommon disorder consisting of aberrant pulmonary tissue that has no normal connection with the bronchial tree or with the pulmonary arteries, but is supplied by a systemic artery which usually arises from the aorta. Six cases of pulmonary sequestration are presented and the radiological manifestation of this rare congenital disorder are discussed. These sequestrations were intralobar/unilateral in four patients, extralobar/unilateral in one and extralobar/bilateral in the other patient. Special attention is given to the extremely uncommon bilateral sequestration. To our knowledge only four cases of this form of disease has been described in the literature. (author)

  20. Offsetting China's CO2 Emissions by Soil Carbon Sequestration

    Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool. Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25% of the annual fossil fuel emissions in China

  1. pH-Responsive Micelle Sequestrant Polymers Inhibit Fat Absorption.

    Qian, Jian; Sullivan, Bradley P; Berkland, Cory

    2015-08-10

    Current antiobesity therapeutics are associated with side effects and/or poor long-term patient compliance, necessitating development of more efficacious and safer alternatives. Herein, we designed and engineered a new class of orally acting pharmaceutical agents, or micelle sequestrant polymers (MSPs), that could respond to the pH change in the gastrointestinal (GI) tract and potentially sequester lipid micelles; inhibiting lipid absorption through a pH-triggered flocculation process. These MSPs, derived from poly(2-(diisopropylamino)ethyl methacrylate) and poly(2-(dibutylamino)ethyl methacrylate), were soluble in acidic media, but they transitioned to become insoluble around pH 7.2 and 6.1, respectively. MSPs showed substantial bile acid and triglyceride sequestration capacity with fast pH response tested in vitro. In vivo study showed that orally dosed MSPs significantly enhanced fecal elimination of triglycerides and bile acids. Several MSPs increased fecal elimination of triglycerides by 9-10 times compared with that of the control. In contrast, fecal concentration of bile acids, but not triglycerides, was increased by cholestyramine or Welchol. Importantly, fecal elimination of bile acids and triglycerides was unaltered by addition of control dietary fibers. MSPs may serve as a novel approach to weight loss that inhibits excess caloric intake by preventing absorption of excess dietary triglycerides. PMID:26133544

  2. Seagrass restoration enhances "blue carbon" sequestration in coastal waters.

    Jill T Greiner

    Full Text Available Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years, were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and ²¹⁰Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m⁻² yr⁻¹. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone.

  3. Soil carbon sequestration via cover crops- A meta-analysis

    Poeplau, Christopher; Don, Axel

    2014-05-01

    Agricultural soils are depleted in soil organic carbon (SOC) and have thus a huge potential to sequester SOC. This can primarily be achieved by increasing carbon inputs into the soil. Replacing winter fallows by cover crop cultivation for green manure has many benefits for the soil and forms an additional carbon input. An increase in carbon concentration has been reported in several studies worldwide. However, the effect on SOC stocks, as well as the influence of environmental parameters and management on SOC dynamics is not known. We therefore conducted a meta-analysis to investigate those issues. A total of 33 studies, comprising 47 sites and 147 plots were compiled. A pedotransfer function was used to estimate bulk densities and calculate SOC stocks. SOC stock change was found to be a linear function of time since introduction, with an annual sequestration rate of 0.32 Mg C ha-1 yr-1. Since no saturation was visible in the observations, we used the model RothC to estimate a new steady state level and the resulting total SOC stock change for an artificial "average cropland". The total average SOC stock change with an annual input of 1.87 Mg C ha-1 yr-1 was 16.76 Mg C ha-1 for the average soil depth of 22 cm. We estimated a potential global SOC sequestration of 0.12±0.03 Pg C yr-1, which would compensate for 8 % of the direct annual greenhouse gas emissions from agriculture.

  4. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    Mohammad, Muneer

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon capture include post-combustion capture, pre-combustion capture and oxy-combustion capture, which are under active research globally. Mineral carbonation has been investigated as a suitable technique for long term storage of CO2. Sequestration is a highly energy intensive process and the additional energy is typically supplied by the power plant itself. This leads to a reduction in net amount of CO2 captured because of extra CO2 emitted. This paper presents a quantitative analysis of the energy consumption during sequestra...

  5. Rock Physics of Geologic Carbon Sequestration/Storage

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  6. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fang, Yilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-23

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  7. Soil microstructure and organic matter: keys for chlordecone sequestration.

    Woignier, T; Fernandes, P; Soler, A; Clostre, F; Carles, C; Rangon, L; Lesueur-Jannoyer, M

    2013-11-15

    Past applications of chlordecone, a persistent organochlorine pesticide, have resulted in diffuse pollution of agricultural soils, and these have become sources of contamination of cultivated crops as well as terrestrial and marine ecosystems. Chlordecone is a very stable and recalcitrant molecule, mainly present in the solid phase, and has a strong affinity for organic matter. To prevent consumer and ecosystem exposure, factors that influence chlordecone migration in the environment need to be evaluated. In this study, we measured the impact of incorporating compost on chlordecone sequestration in andosols as a possible way to reduce plant contamination. We first characterized the transfer of chlordecone from soil to plants (radish, cucumber, and lettuce). Two months after incorporation of the compost, soil-plant transfers were reduced by a factor of 1.9-15 depending on the crop. Our results showed that adding compost modified the fractal microstructure of allophane clays thus favoring chlordecone retention in andosols. The complex structure of allophane and the associated low accessibility are important characteristics governing the fate of chlordecone. These results support our proposal for an alternative strategy that is quite the opposite of total soil decontamination: chlordecone sequestration. PMID:24056248

  8. Risk Assessment of Carbon Sequestration for Terrestrial Ecosystems in China

    Shi Xiaoli; Wu Shaohong; Dai Erfu; Zhao Dongsheng; Pan mao

    2012-01-01

    Climate change will alter the capacity of carbon seques- tration, and the risk assessment of carbon sequestration for terres- trial ecosystems will be helpful to the decision-making for climate change countermeasures and international climate negotiations. Based on the net ecosystem productivity of terrestrial ecosystems simulated by Atmosphere Vegetation Integrated Model, each grid of the risk criterion was set by time series trend analysis. Then the risks of carbon sequestration of terrestrial ecosystems were investigated. The results show that, in the IPCCSRES-B2 climate scenario, climate change will bring risks of carbon sequestra- tion, and the high-risk level will dominate terrestrial ecosystems. The risk would expand with the increase of warming degree. By the end of the long-term of this century, about 60% of the whole country will face the risk; Northwest China, mountainous areas in Northeast China, middle and lower reaches plain of Yangtze River areas, Southwest China and Southeast China tend to be extremely vulnerable. Risk levels in most regions are likely to grow with the increase of warming degree, and this increase will mainly occur during the near-term to mid-term. Northwest China will become an area of high risks, and deciduous coniferous forests, temperate mixed forests and desert grassland tend to be extremely vulnerable.

  9. Adsorption and desorption on coals for CO2 sequestration

    WANG Zuo-tang; FU Zhen-kun; ZHANG Ban-gan; WANG Guo-xiong; RUDOLPH Victor; HUO Li-wen

    2009-01-01

    Adsorption and desorption of carbon dioxide, methane and other gases on coals has been investigated experimentally using representative Zhongliangshan coals. Gas adsorption is one of the major concerns for both CO2 sequestration and methane recovery processes. The experiments were carried out using both single and multi-component mixtures at 25 ℃ and 30 ℃ with the highest pressure of 12 MPa. The coal was under moisture equilibrated conditions. This provides experimental data from which a predictive assessment of CO2 sequestration and/or methane recovery can be conducted. The results show that for pure gasses the CH4 adsorption capacity is higher than the N2 adsorption capacity but lower than the CO2 adsorption capacity. Injection of CO2 or other gases into the coal significantly affects CH4 desorption. This allows the enhancement of CH4 recovery from the coals, thus supplying more clean energy while sequestering significant amounts of CO2 thereby reducing the greenhouse effect from human beings.

  10. Iron sequestration in young deep-sea sediments

    Baldermann, Andre; Warr, Laurence; Letofsky-Papst, Ilse; Böttcher, Michael

    2014-05-01

    average) within the upper 25 m of sediment. Within the first 3 meters of the sedimentary pile, iron sequestration related to green clay formation is ~11 times higher than that of pyritization. Even at greater depths ≥ 3 mbsf, where the pyritization reaction becomes progressively more important and 29 to 66% of the initial detrital ferrihydrite input is almost dissolved, ~50% of iron sequestration can be attributed to glauconitization. Initial mass balance calculations of the sediment's iron budget indicate that iron sequestration at ODP Site 959 is mainly controlled by the competing rates of pyritization and glauconitization. Iron sequestration associated with early diagenetic green clay formation could significantly impact the bioavailability of reactive iron in marine aqueous systems and thus influence both the marine iron cycle and deep biosphere environment. The role of deep-water glauconitization on iron availability and sequestration should be considered in future ocean-atmospheric models of the iron biogeochemical cycle. Baldermann, A., Warr, L.N., Grathoff, G.H. & Dietzel, M. (2013) The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana Marginal Ridge. Clays and Clay Minerals, 61, 258-276.

  11. Ocean carbon sequestration by fertilization: An integrated bioeochemical assessment

    Gruber, N.; Sarmiento, J.L.; Gnandesikan, A.

    2005-05-31

    Under this grant, the authors investigated a range of issues associated with the proposal to fertilize the ocean with nutrients (such as iron) in order to increase the export of organic matter from the ocean's near surface waters and consequently increase the uptake of CO{sub 2} from the atmosphere. There are several critical scientific questions that have the potential to be make-or-break issues for this proposed carbon sequestration mechanism: (1) If iron is added to the ocean, will export of organic carbon from the surface actually occur? Clearly, if no export occurs, then there will be no sequestration. (2) if iron fertilization does lead to export of organic carbon from the surface of the ocean, how much CO{sub 2} will actually be removed from the atmosphere? Even if carbon is removed from the surface of the ocean, this does not guarantee that there will be significant removal of CO{sub 2} from the atmosphere, since the CO{sub 2} may be supplied by a realignment of dissolved inorganic carbon within the ocean. (3) What is the time scale of any sequestration that occurs? If sequestered CO{sub 2} returns to the atmosphere on a relatively short time scale, iron fertilization will not contribute significantly to slowing the growth of atmospheric CO{sub 2}. (4) Can the magnitude of sequestration be verified? If verification is extremely difficult or impossible, this option is likely to be viewed less favorably. (5) What unintended consequences might there be from fertilizing the ocean with iron? If these are severe enough, they will be a significant impact on policy decisions. Most research on carbon sequestration by fertilization has focused on the first of these issues. Although a number of in situ fertilization experiments have successfully demonstrated that the addition of iron leads to a dramatic increase in ocean productivity, the question of whether this results in enhanced export remains an open one. The primary focus of the research was on the

  12. Molecular sequestration stabilizes CAP-DNA complexes during polyacrylamide gel electrophoresis.

    Fried, M G; G.Liu

    1994-01-01

    The gel electrophoresis mobility shift assay is widely used for qualitative and quantitative characterization of protein complexes with nucleic acids. Often it is found that complexes that are short-lived in free solution (t1/2 of the order of minutes) persist for hours under the conditions of gel electrophoresis. We have investigated the influence of polyacrylamide gels on the pseudo first-order dissociation kinetics of complexes containing the E.coli cyclic AMP receptor protein (CAP) and la...

  13. DNA Immunization

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed.

  14. DNA deoxyribophosphodiesterase.

    Franklin, W A; Lindahl, T

    1988-01-01

    A previously unrecognized enzyme acting on damaged termini in DNA is present in Escherichia coli. The enzyme catalyses the hydrolytic release of 2-deoxyribose-5-phosphate from single-strand interruptions in DNA with a base-free residue on the 5' side. The partly purified protein appears to be free from endonuclease activity for apurinic/apyrimidinic sites, exonuclease activity and DNA 5'-phosphatase activity. The enzyme has a mol. wt of approximately 50,000-55,000 and has been termed DNA deox...

  15. CO2 Sequestration Potential of Texas Low-Rank Coals

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0

  16. Modulation of UvrD helicase activity by covalent DNA-protein cross-links.

    Kumari, Anuradha; Minko, Irina G; Smith, Rebecca L; Lloyd, R Stephen; McCullough, Amanda K

    2010-07-01

    UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3' to 5' direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD interactions with proteins bound to DNA have significant biological implications, the effects of covalent DNA-protein cross-links on UvrD helicase activity have not been characterized. Herein, we demonstrate that UvrD-catalyzed strand separation was inhibited on a DNA strand to which a 16-kDa protein was covalently bound. Our sequestration studies suggest that the inhibition of UvrD activity is most likely due to a translocation block and not helicase sequestration on the cross-link-containing DNA substrate. In contrast, no inhibition of UvrD-catalyzed strand separation was apparent when the protein was linked to the complementary strand. The latter result is surprising given the earlier observations that the DNA in this covalent complex is severely bent ( approximately 70 degrees ), with both DNA strands making multiple contacts with the cross-linked protein. In addition, UvrD was shown to be required for replication of plasmid DNAs containing covalent DNA-protein complexes. Combined, these data suggest a critical role for UvrD in the processing of DNA-protein cross-links. PMID:20444702

  17. Electrical Resistance Tomography Field Trials to Image CO2 Sequestration

    Newmark, R.

    2003-12-01

    If geologic formations are used to sequester or store carbon dioxide (CO2) for long periods of time, it will be necessary to verify the containment of injected CO2 by assessing leaks and flow paths, and by understanding the geophysical and geochemical interactions between the CO2 and the geologic minerals and fluids. Remote monitoring methods are preferred, to minimize cost and impact to the integrity of the disposal reservoir. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are most sensitive to the presence and nature of the fluids contained in the medium. High resolution tomographs of electrical properties have been used with success for site characterization, monitoring subsurface migration of fluids in instances of leaking underground tanks, water infiltration events, subsurface steam floods, contaminant movement, and assessing the integrity of subsurface barriers. These surveys are commonly conducted utilizing vertical arrays of point electrodes in a crosswell configuration. Alternative ways of monitoring the reservoir are desirable due to the high costs of drilling the required monitoring boreholes Recent field results obtained using steel well casings as long electrodes are also promising. We have conducted field trials to evaluate the effectiveness of long electrode ERT as a potential monitoring approach for CO2 sequestration. In these trials, CO2 is not being sequestered but rather is being used as a solvent for enhanced oil recovery. This setting offers the same conditions expected during sequestration so monitoring secondary oil recovery allows a test of the method under realistic physical conditions and operational constraints. Field experience has confirmed the challenges identified during model studies. The principal difficulty are the very small signals due to the fact that formation changes occur only over a small segment of the 5000 foot length of the electrodes. In addition

  18. Experimental observations of dolomite dissolution in geologic carbon sequestration conditions

    Luhmann, A. J.; Kong, X.; Tutolo, B. M.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    One sequestration scenario proposed to reduce CO2 emissions involves injecting CO2 into saline formations or hydrocarbon reservoirs, where dolomite frequently occurs. To better understand fluid-mineral interactions in these sequestration settings, we have conducted a series of single-pass, flow-through experiments on dolomite core samples with CO2-bearing brine. An important component of the experimental design was to maintain the fabric of the rock so as to more accurately simulate fluid flow in natural dolomite-bearing systems. Seven experiments were conducted at 100°C and a pore-fluid pressure of 150 bars with a fluid containing 1 molal NaCl and 0.6 molal dissolved CO2. Flow rates ranged from 0.01 to 1 ml/min. Each experiment was terminated before dissolution breakthrough, but permeability increased by approximately an order of magnitude for all experiments. In general, Ca and Mg concentrations were initially high, but then decreased with reaction progress. We hypothesize that time-dependent changes in fluid chemistry reflect reduction in reactive surface area. Fluid chemistry also indicates preferential removal of Ba, Mn, and Sr with respect to Ca and Mg. In the extreme case, 70% of the Ba was removed from one core, while only 3% of the Ca, Mg, or the entire core mass was removed by dissolution. Ongoing work is focused on identifying elemental distributions throughout the rock to better understand the dissolution process. With fluid chemistry and BET surface area, we model dissolution rate as a function of core length using reactive transport simulations and compare our whole rock, far from equilibrium dissolution rates with analogous data reported in the literature. Finally, X-ray computed tomography images enable reconstructions of dissolution patterns, and they are being used to explore the effect of pore space heterogeneity on flow path development. Geologic carbon sequestration in dolomite will produce significant dissolution at the brine/CO2 interface

  19. Feasibility of Large-Scale Ocean CO2 Sequestration

    Peter Brewer; James Barry

    2001-09-30

    Direct ocean injection of CO{sub 2} is one of several approaches under consideration to sequester carbon dioxide in order to stabilize atmospheric CO{sub 2} near 550 ppm (2X preindustrial CO{sub 2} levels). Without significant efforts to stabilize greenhouse gas emissions, the Earth is expected to experience extreme climate warming consequences associated with the projected high ({approx}3-4X preindustrial) atmospheric CO{sub 2} levels in the next 100 to 200 years. Research funded by DOE-Office of Fossil Energy under this award is based on the development of novel experimental methods by MBARI to deploy small quantities (5-45 l) of liquid CO{sub 2} in the deep-sea for the purposes of investigating the fundamental science underlying the concepts of ocean CO{sub 2} sequestration. This project is linked closely with studies funded by the Office of Science and the Monterey Bay Aquarium Research Institute (MBARI). The objectives of studies in marine chemistry funded by the Office of Fossil Energy and MBARI are to: (1) Determine the long term fate of CO{sub 2} hydrate in the deep-sea, (2) Investigate the geochemical changes in marine sediments and pore waters associated with CO{sub 2} disposal, and (3) Investigate the transfer of CO{sub 2} from the hydrate phase to the oceanic water column as a boundary condition for ocean modeling of the fate of the released material. These activities extend the results of recent studies using the deep-sea CO{sub 2} deployment system, which characterized several features of liquid CO{sub 2} released into the sea, including hydrate formation and factors influencing dissolution rates of CO{sub 2}. Results from this project are relevant in determining the efficacy of carbon sequestration and the degree of perturbation of seawater chemistry. Biological studies, funded jointly by the Office of Science, Office of Fossil Energy, and MBARI, focus on the environmental consequences of CO{sub 2} release in the deep-sea. The specific objectives

  20. Cleaving DNA with DNA

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-01-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This “deoxyribozyme” can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min−1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domai...

  1. A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2

    Kithil, P. W.

    2007-12-01

    Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources

  2. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function; FINAL

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration conts are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change

  3. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration costs are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change.

  4. DNA glue

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.;

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  5. Forest and wood products role in carbon sequestration

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  6. Animals as an indicator of carbon sequestration and valuable landscapes

    Jan Szyszko

    2011-05-01

    Full Text Available Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance, representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use.

  7. Management of water extracted from carbon sequestration projects

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods

  8. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  9. The Carbon Sequestration Potential of Tree Crop Plantations

    Kongsager, Rico; Napier, Jonas; Mertz, Ole

    2013-01-01

    ), oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and orange (Citrus sinesis) – cultivated in the tropics. Measurements were conducted in Ghana and allometric equations were applied to estimate biomass. The largest C potential was found in the rubber plantations (214 tC/ha). Cocoa (65 t...... been suggested for integration into REDD+(reducing emissions from deforestation, forest degradation and enhancement of forest C stocks) currently being negotiated under the United Nations FCCC. We assess the aboveground C sequestration potential of four major plantation crops – cocoa (Theobroma cacao...... forest or agricultural land, and not on land with oldgrowth forest. We also show that simple C assessment methods can give reliable results, which makes it easier for developing countries to partake in REDD+ or other payment schemes....

  10. CO2 capture and sequestration: the association's point of view

    This document gives an overview of the opinion of the FNE (France Nature Environnement), a French association involved in the protection of the environment, about the idea of developing technologies enabling the capturing and sequestrating of carbon dioxide. It outlines that industries are considering such technologies as the adequate solution as they would allow a development of activities while limiting greenhouse gas releases. But the FNE has an opposite point of view; advantages and limitations of this technology are thus discussed (reduction of greenhouse gas emissions but with an increase of energy consumption, industrial hazards, mobilization of large financial resources). The principles under which such technologies could be used and financed in some specific situations and under precise conditions are then discussed. Notably, it stresses the importance of a limitation of public financing, of participation and communication, of judicial guarantees

  11. Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration

    Newell, P.; Martinez, M. J.; Bishop, J. E.

    2014-12-01

    Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Distribution characteristics of liquid sequestration in rats with sepsis

    Bin LI

    2012-03-01

    Full Text Available Objective To investigate the distribution characteristics of organs with liquid sequestration during fluid resuscitation in rats with sepsis. Methods Fifty male Wistar rats were randomly divided into five groups: control group (n=10, sepsis group (n=10, crystalloid group (n=10, albumin group (n=10, and artificial colloid (HAES group (n=10. The sepsis model was reproduced by cecal ligation and puncture. The mean arterial pressure was monitored with carotid artery intubation. Twelve hours after fluid infusion by micro-infusion pump via the femoral vein, tissues from the heart, liver, lungs, kidney (right, and small intestine were harvested to observe the pathological changes and calculate the tissue water content. Results The water content of every visceral tissue was higher in the sepsis group than in the control group (P < 0.05; the water content in the heart, liver, and lung tissues was higher in the albumin group than in the crystalloid group (P < 0.05. The water content in both albumin and crystalloid groups was higher than that in the sepsis group (P < 0.05. Moreover, the water content in the heart, liver, and lungs in the HAES group was lower than that in the crystalloid and albumin groups (P < 0.05. Cellular injuries were more severe in the heart, liver, and lungs than in the intestine and kidney in the crystalloid group and albumin group under electron-microscope. Conclusion Liquid sequestration exists mainly in the lungs, heart, and liver of rats with sepsis during fluid resuscitation. The phenomenon is less evident in the kidney and small intestine. Artificial colloid can reduce capillary leak with a good volume expansion effect.

  13. The role of renewable bioenergy in carbon dioxide sequestration

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  14. Phorbol ester stimulates calcium sequestration in saponized human platelets

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent 45Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated 45Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate

  15. Geologic Carbon Sequestration: Leakage Potential and Policy Implications

    Bielicki, J. M.; Peters, C. A.; Fitts, J. P.; Wilson, E. J.

    2014-12-01

    The geologic reservoirs that could be used for long-term sequestration of carbon dioxide (CO2) may have natural or manmade pathways that allow injected CO2, or the brine it displaces, to leak into overlying formations. Using a basin-scale leakage estimation model, we investigated the geophysical parameters that govern this leakage, and the resulting accumulations of leaked fluids in overlying formations. The results are discussed in the context of two polices aimed at governing long-term sequestration and protecting groundwater: the U.S. DOE guideline for storage permanence and the U.S. EPA UIC Program Class VI Rule. For a case study of CO2 injection into the Mt. Simon sandstone in the Michigan sedimentary basin, we showed that (1) the U.S. DOE guideline would allow for more leakage from larger injection projects than for smaller ones; (2) leakage amounts are determined mostly by well leakage permeability rather than by variation in formation permeabilities; (3) numerous leaking wells with anomalously high leakage permeabilities are necessary in order to achieve substantial leakage rates; (4) leakage can reach potable groundwater but intervening stratigraphic traps reduce the amount to be multiple orders of magnitude less than the leakage out of the reservoir, and (5) this leakage can reduce the Area of Review that is defined by the U.S. EPA as the area within which leakage can threaten groundwater. In summary, leakage that exceeds the U.S. DOE storage permanence goal would occur only under extreme conditions, the amount that reaches shallow potable groundwater may be inconsequential from a pollution standpoint, and leakage may be beneficial. Future federal policies should be harmonized to achieve the dual goals of protecting groundwater while allowing for adaptive management that incorporates uncertainties and imperfections inherent in geologic reservoirs.

  16. Caprock Breach: A Threat to Secure Geologic Sequestration

    Selvadurai, A. P.; Dong, W.

    2013-12-01

    The integrity of caprock in providing a reliable barrier is crucial to several environmental geosciences endeavours related to geologic sequestration of CO2, deep geologic disposal of hazardous wastes and contaminants. The integrity of geologic barriers can be compromised by several factors. The re-activation of dormant fractures and development of new fractures in the caprock during the injection process are regarded as effects that can pose a threat to storage security. Other poromechanical influences of pore structure collapse due to chemically induced erosion of the porous fabric resulting in worm-hole type features can also contribute to compromising storage security. The assessment of the rate of steady or transient seepage through defects in the caprock can allow geoscientists to make prudent evaluations of the effectiveness of a sequestration strategy. While complicated computational simulations can be used to calculate leakage through defects, it is useful to explore alternative analytical results that could be used in providing preliminary estimates of leakage rates through defects in the caprock in a storage setting. The relevance of such developments is underscored by the fact that the permeability characteristics of the storage formation, the fracture and the surficial rocks overlying the caprock can rarely be quantified with certainty. This paper presents the problem of a crack in a caprock that connects to a storage formation and an overburden rock or surficial soil formation. The geologic media are maintained at constant far-field flow potentials and leakage takes place at either steady or transient conditions. The paper develops an analytical result that can be used to estimate the steady seepage through the crack. The analytical result can also be used to estimate the leakage through hydraulically non-intersecting cracks and leakage from caprock-well casing interfaces. The analytical result is used to estimate the accuracy of a computational

  17. Phorbol ester stimulates calcium sequestration in saponized human platelets

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.

  18. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  19. Endovascular treatment of intralobar pulmonary sequestration with vascular plug: A case report

    Intralobar pulmonary sequestration is a rare entity, which requires surgical resection as the treatment of choice. Recently, endovascular treatment for occlusion of the feeding artery has been frequently used with the increased availability regarding a variety of embolic materials, such as gelatin sponge particles, polyvinyl alcohol particles, and coils. Authors described the successful treatment of intralobar pulmonary sequestration with a Type II Amplatzer Vascular Plug and antibiotic soaked gelatin sponge particles for complete occlusion of the feeding artery regarding intralolar pulmonary sequestration. Neither recanalization of the feeding artery for the sequestered lung nor other complications occurred during a 1 year follow up

  20. Carbon sequestration from fossil fuels and biomass - long-term potentials

    Carbon sequestration and disposal from fossil fuels combustion is gaining attraction as a means to deal with climate change. However, CO2 emissions from biomass combustion can also be sequestered. If that is done, biomass energy with carbon sequestration (BECS) would become a net negative carbon sink that would at the same time deliver carbon free energy (heat, electricity or hydrogen) to society. Here we estimate some global technoeconomical potentials for BECS, and we also present some rough economics of electricity generation with carbon sequestration

  1. The United States Department of Energy's Regional Carbon Sequestration Partnerships Program Validation Phase.

    Litynski, John T; Plasynski, Sean; McIlvried, Howard G; Mahoney, Christopher; Srivastava, Rameshwar D

    2008-01-01

    This paper reviews the Validation Phase (Phase II) of the Department of Energy's Regional Carbon Sequestration Partnerships initiative. In 2003, the U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) to help determine and implement the technology, infrastructure, and regulations most appropriate to promote carbon sequestration in different regions of the nation. The objectives of the Characterization Phase (Phase I) were to characterize the geologic and terrestrial opportunities for carbon sequestration; to identify CO(2) point sources within the territories of the individual partnerships; to assess the transportation infrastructure needed for future deployment; to evaluate CO(2) capture technologies for existing and future power plants; and to identify the most promising sequestration opportunities that would need to be validated through a series of field projects. The Characterization Phase was highly successful, with the following achievements: established a national network of companies and professionals working to support sequestration deployment; created regional and national carbon sequestration atlases for the United States and portions of Canada; evaluated available and developing technologies for the capture of CO(2) from point sources; developed an improved understanding of the permitting requirements that future sequestration activities will need to address as well as defined the gap in permitting requirements for large scale deployment of these technologies; created a raised awareness of, and support for, carbon sequestration as a greenhouse gas (GHG) mitigation option, both within industry and among the general public; identified the most promising carbon sequestration opportunities for future field tests; and established protocols for project implementation, accounting, and management. Economic evaluation was started and is continuing and will be a factor in project selection. During the

  2. DNA probes

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  3. [DNA computing].

    Błasiak, Janusz; Krasiński, Tadeusz; Popławski, Tomasz; Sakowski, Sebastian

    2011-01-01

    Biocomputers can be an alternative for traditional "silicon-based" computers, which continuous development may be limited due to further miniaturization (imposed by the Heisenberg Uncertainty Principle) and increasing the amount of information between the central processing unit and the main memory (von Neuman bottleneck). The idea of DNA computing came true for the first time in 1994, when Adleman solved the Hamiltonian Path Problem using short DNA oligomers and DNA ligase. In the early 2000s a series of biocomputer models was presented with a seminal work of Shapiro and his colleguas who presented molecular 2 state finite automaton, in which the restriction enzyme, FokI, constituted hardware and short DNA oligomers were software as well as input/output signals. DNA molecules provided also energy for this machine. DNA computing can be exploited in many applications, from study on the gene expression pattern to diagnosis and therapy of cancer. The idea of DNA computing is still in progress in research both in vitro and in vivo and at least promising results of these research allow to have a hope for a breakthrough in the computer science. PMID:21735816

  4. CARBON SEQUESTRATION AND LAND MANAGEMENT AT DOD INSTALLATIONS: AN EXPLORATORY STUDY

    This report explores the influence of management practices such as tree harvesting, deforestation, and reforestation on carbon sequestration potential by DOD forests by performing a detailed analysis of a specific installation, Camp Shelby, Mississippi. amp Shelby was selected fo...

  5. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    Zeng, Ning; King, Anthony W.; Zaitchik, Ben; Wullschleger, Stan D.; Gregg, Jay Sterling; Wang, Shaoqiang; Kirk-Davidoff, Dan

    2013-01-01

    A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative...... emissions). Earlier estimates of the theoretical potential of wood harvest and storage (WHS) based on coarse wood production rates were 10±5 GtC y−1. Starting from this physical limit, here we apply a number of practical constraints: (1) land not available due to agriculture; (2) forest set aside as...... more efficient wood use without increasing harvest, finds 0.1–0.5 GtC y−1 available for carbon sequestration. We suggest a range of 1–3 GtCy−1 carbon sequestration potential if major effort is made to expand managed forests and/or to increase harvest intensity. The implementation of such a scheme at...

  6. Computed Tomography Demonstration of Systemic Arterial Supply to Lung Without Sequestration

    We present two cases of systemic arterial supply to lung without sequestration diagnosed confidently based on imaging findings on computed tomography scan, thereby obviating the need for invasive diagnostic procedures

  7. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean. PMID:19320149

  8. Progress report to the Iowa Department of Natural Resources : Carbon Sequestration Project

    US Fish and Wildlife Service, Department of the Interior — This is a progress report on carbon sequestration studies in progress at Neal Smith National Wildlife Refuge. The objectives of the project are to: estimate carbon...

  9. Carbon Sequestration in Dryland and Irrigated Agroecosystems: Quantification at Different Scales for Improved Prediction

    Verma, Shashi B; Cassman, Kenneth G; Arkebauer, Timothy J; Hubbard, Kenneth G; Knops, Johannes M; Suyker, Andrew E

    2012-09-14

    The overall objective of this research is to improve our basic understanding of the biophysical processes that govern C sequestration in major rainfed and irrigated agroecosystems in the north-central USA.

  10. DNA methylation

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  11. DNA data

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  12. Ancient DNA

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of t...

  13. DNA Photolyasen

    Maul, Melanie

    2009-01-01

    Neben der fehlerfreien Weitergabe der genetischen Information während der Zellteilung durch einen intakten Replikationsapparat, ist auch die Aufrechterhaltung der genetischen Integrität der DNA durch Reparaturenzyme entscheidend für das Überleben der Zellen, sowie für einen gesunden Organismus. Um die genomische Integrität zu wahren, entwickelten sich im Laufe der Evolution verschiedene Mechanismen, u.a. die Exzisionreparatur von geschädigter DNA oder die direkte chemische R...

  14. DNA damage

    Kumari, Sunita; Rastogi, Rajesh P.; Singh, Kanchan L.; Singh, Shailendra P; Sinha, Rajeshwar P.

    2008-01-01

    Even under the best of circumstances, DNA is constantly subjected to chemical modifications. Several types of DNA damage such as SSB (single strand break), DSB (double strand break), CPDs (cyclobutane pyrimidine dimers), 6-4PPs (6-4 photoproducts) and their Dewar valence isomers have been identified that result from alkylating agents, hydrolytic deamination, free radicals and reactive oxygen species formed by various photochemical processes including UV radiation. There are a n...

  15. DNA expressions - A formal notation for DNA

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  16. Land-Use Change and Carbon Sinks: Econometric Estimation of the Carbon Sequestration Supply Function

    Plantinga, Andrew J.; Robert N. Stavins; Ruben N. Lubowski

    2005-01-01

    When and if the United States chooses to implement a greenhouse gas reduction program, it will be necessary to decide whether carbon sequestration policies, such as those that promote forestation and discourage deforestation, should be part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration. In contrast with previous approaches, we econometrically examine micro-data on revealed landowner preferences, modeling six major private land...

  17. Analysis of ex situ processes of CO2 sequestration. Final report

    The aim of this study is to bring quantitative elements to evaluate the validation of the CO2 mineral sequestration to limit the greenhouse effect gases. This analysis aims to calculate the CO2 accounting of the system (internal energy production balance the energy expend) sequestrated CO2 and produced CO2. The first part detailed the possible experimental solutions. Then two carbonation processes, direct and indirect, have been chosen of the analysis. (A.L.B.)

  18. A Novel Strategy for Carbon Capture and Sequestration by rHLPD Processing

    Li, Qinghua; Gupta, Surojit; Tang, Ling; Quinn, Sean; Atakan, Vahit; Riman, Richard E.

    2016-01-01

    Monoethanolamine (MEA) scrubbing is an energy-intensive process for carbon capture and sequestration (CCS) due to the regeneration of amine in stripping towers at high temperature (100–120°C) and the subsequent pressurization of CO2 for geological sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD), which is able to solidify (densify) monolithic materials without using high temperature kilns. Then, we integrate MEA-based CCS proc...

  19. A Novel Strategy of Carbon Capture and Sequestration by rHLPD Processing

    Richard Eric Riman

    2016-01-01

    Monoethanolamine (MEA) scrubbing is an energy intensive process for Carbon Capture and Sequestration (CCS) due to the regeneration of amine in stripping towers at high temperature (100-120 ºC) and the subsequent pressurization of CO2 for geologic sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD), which is able to solidify (densify) monolithic materials without using high temperature kilns. Then we integrate MEA-based CCS proces...

  20. Pulmonary sequestration infected with nontuberculous mycobacteria:a report of two cases and literature review

    Won-Jung Koh; Goohyeon Hong; Kwhanmien Kim; Soomin Ahn; Joungho Han

    2012-01-01

    We report two cases of pulmonary sequestration infected with nontuberculous mycobacteria(NTM):Mycobacterium avium and Mycobacterium abscessus. Chest computed tomography showed pneumonic consolidation in the right lower lobe, which received a systemic blood supply from the descending aorta in both patients. Video-assisted thoracoscopic surgeries were successfully performed and pathological examinations revealed multiple caseating granulomas. A review of the literature revealed only seven previous case reports of pulmonary sequestration infected with NTM, and no case with Mycobacterium abscessus has been reported.

  1. An equity assessment of introducing uncertain forest carbon sequestration in EU climate policy

    Large emissions of greenhouse gases are expected to cause major environmental problems in the future. European policy makers have therefore declared that they aim to implement cost-efficient and fair policies to reduce carbon emissions. The purpose of this paper is to assess whether the cost of the EU policies for 2020 can be reduced through the inclusion of carbon sequestration as an abatement option while equity is also improved. The assessment is done by numerical calculations using a chance-constrained partial equilibrium model of the EU Emissions Trading Scheme and national effort-sharing targets, where forest sequestration is introduced as an uncertain abatement option. Fairness is evaluated by calculation of Gini-coefficients for six equity criteria to policy outcomes. The estimated Gini-coefficients range between 0.11 and 0.32 for the current policy, between 0.16 and 0.66 if sequestration is included and treated as certain, and between 0.19 and 0.38 when uncertainty about sequestration is taken into account and policy-makers wish to meet targets with at least 90 per cent probability. The results show that fairness is reduced when sequestration is included and that the impact is larger when sequestration is treated as certain. - Highlights: • We model EU's CO2 emission reduction targets to 2020 for the 27 member states. • We assess the equity of including forest carbon sequestration in EU policy with six equity criteria. • A stochastic partial equilibrium model is used, in which abatement cost is minimised. • Current burden sharing within the EU is quite fair when compared with current income inequality. • The abatement cost is reduced and inequality increased when including sequestration

  2. CO2 plume management in saline reservoir sequestration

    Frailey, S.M.; Finley, R.J.

    2011-01-01

    A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very

  3. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading

  4. Hydrogeologic Modeling for Monitoring, Reporting and Verification of Geologic Sequestration

    Kolian, M.; De Figueiredo, M.; Lisa, B.

    2011-12-01

    In December 2010, EPA finalized Subpart RR of the Greenhouse Gas (GHG) Reporting Program, which requires facilities that conduct geologic sequestration (GS) of carbon dioxide (CO2) to report GHG data to EPA annually. The GHG Reporting Program requires reporting of GHGs and other relevant information from certain source categories in the United States, and information obtained through Subpart RR will inform Agency decisions under the Clean Air Act related to the use of carbon dioxide capture and sequestration for mitigating GHGs. This paper examines hydrogeologic modeling necessities and opportunities in the context of Subpart RR. Under Subpart RR, facilities that conduct GS by injecting CO2 for long-term containment in subsurface geologic formations are required to develop and implement an EPA-approved site-specific monitoring, reporting, and verification (MRV) plan; and report basic information on CO2 received for injection, annual monitoring activities and the amount of CO2 geologically sequestered using a mass balance approach. The major components of the MRV plan include: identification of potential surface leakage pathways for CO2 and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways; delineation of the monitoring areas; strategy for detecting and quantifying any surface leakage of CO2; and the strategy for establishing the expected baselines for monitoring CO2 surface leakage. Hydrogeologic modeling is an integral aspect of the design of an MRV plan. In order to prepare an adequate monitoring program that addresses site specific risks over the full life of the project the MRV plan must reflect the full spatial extent of the free phase CO2 over time. Facilities delineate the maximum area that the CO2 plume is predicted to cover and how monitoring can be phased in over this area. The Maximum Monitoring Area (MMA) includes the extent of the free phase CO2 plume over the lifetime of the project plus a buffer zone of one

  5. Enhanced Performance Assessment System (EPAS) for carbon sequestration.

    Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

    2010-09-01

    Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for

  6. Necrotizing arteritis occurring in an intralobar pulmonary sequestration of a patient without systemic vasculitis syndrome.

    Hashimoto, Hirotsugu; Hara, Kei; Matsumoto, Jun; Nashiro, Tamaki; Nagano, Masaaki; Kusakabe, Masashi; Kurata, Atsushi; Kuroda, Masahiko; Suzuki, Yoshio; Horiuchi, Hajime

    2016-01-01

    Necrotizing arteritis is a complex lesion of pulmonary hypertension, as are plexiform lesions, and is classically recognized as grade 6 in the Heath and Edwards grading scheme for hypertensive pulmonary vascular disease. The vascular changes observed in intralobar pulmonary sequestration have been reported to be similar to those observed in pulmonary hypertension, such as plexiform lesions. However, necrotizing arteritis occurring in an intralobar sequestration of a patient without systemic vasculitis syndrome has never been reported to our knowledge. Here, we report a case of a 38-year-old woman with pulmonary sequestration detected on a medical checkup. She was treated with surgery, and subsequent pathological analyses revealed necrotizing vasculitis in her sequestrated lung. We suspected systemic vasculitis syndromes, such as Takayasu arteritis, polyarteritis nodosa, and antineutrophil cytoplasmic antibody-associated vasculitis. However, physical and blood examination did not show any other abnormalities, and hence, she did not have systemic vasculitis syndrome. Immunohistochemical analyses of the resected specimen showed that inflammatory cells of the arteries were mainly composed of T lymphocytes. T-lymphocytic inflammation with little neutrophil and histiocyte infiltration may be a pathological feature of necrotizing arteritis observed in pulmonary sequestration. This is the first case to our knowledge of necrotizing arteritis in an intralobar pulmonary sequestration of a patient without systemic vasculitis syndrome. PMID:26874730

  7. Carbon sequestration from waste via conversion to charcoal : equipment for a small scale operation

    Gupta, S.C. [Cenovus Energy Inc., Calgary, AB (Canada); Struyk, A. [AST Technical Services, Calgary, AB (Canada); Gilbert, D. [GTEC Consulting, Calgary, AB (Canada)

    2010-07-01

    Carbon capture and sequestration (CCS) is not very cost effective in oilsand operations. For that reason, this study examined the feasibility of using charcoal sequestration (CS) as an alternative carbon offset method to CCS. The economics of the charcoal approach depends on 2 factors, notably the cost of the feed biomass and the cost of processing. The first factor was addressed in this study by using municipal waste as feedstock which is available free of charge. Since the cost of processing depends on the apparatus and the scale of operation, a robust kiln was designed to convert waste at remote industrial camp sites to charcoal. In charcoal sequestration, carbon contained in a portion of naturally produced biomass is preserved in solid form by converting it to charcoal, thus preventing it from entering into atmosphere as carbon dioxide. The paper showed that the newly designed equipment can contribute to a reduction in waste disposal costs and that the study can serve as a demonstration and data collection project for waste-to-charcoal projects for carbon sequestration. These demo projects can also help evaluate various aspects of this novel method of sequestration, and enhance public awareness on the subject. In view of the growing per capita waste worldwide, use of municipal waste as feedstock for charcoal sequestration can be a significant measure of carbon offset at global scale. 10 refs., 7 figs.

  8. What Is Mitochondrial DNA?

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  9. DNA and RNA sensor

    LIU; Tao; LIN; Lin; ZHAO; Hong; JIANG; Long

    2005-01-01

    This review summarizes recent advances in DNA sensor. Major areas of DNA sensor covered in this review include immobilization methods of DNA, general techniques of DNA detection and application of nanoparticles in DNA sensor.

  10. Influence of ocean CO2 sequestration on bacterial production

    Carbon dioxide in the atmosphere is a major greenhouse gas. Increasing atmospheric concentrations are believed to be responsible for a gradual warming of the Earth. Strategies to reduce anthropogenic CO2 emissions to the atmosphere by sequestration underground or in the deep ocean are being investigated. An international collaboration to conduct a field experiment on CO2 ocean sequestration was initiated in December 1997. The primary objective of this project is to obtain data that can be applied to assess environmental impacts of direct injection of CO2 into the deep ocean. The collaboration is being implemented by a research team comprising engineers and scientists from five nations: Japan, the US, Norway, Canada, and Australia. This paper focuses on studies being conducted as part of the field experiment to investigate the influence of decreased seawater pH from CO2 dissolution on bacterial production in the ocean. A preliminary analysis of the variation in bacterial production under different values of pH and temperature, conducted in July 1999, indicated that there was no measurable effect on the microbial population in the first 24 h of the experiment. However, there was a rapid decline in bacterial production with decreases in pH over a 96 h incubation period. In addition, the impact of reduced pH was more pronounced when the bacteria were grown at warmer temperatures, i.e. with a more rapid potential production rate. Subsequent laboratory experiments were conducted in June 2000 using pressure chambers to determine the effect of depressurization on bacterial production. For this effort, seawater samples were collected from a 600 m deep pipeline off the Kona coast of the island of Hawaii. Water was placed in a pressure chamber and allowed to stabilize for 48 h at the ambient pressure and temperature of 600 m depth at the sampling location. After 48 h, the water was depressurized and acidified with CO2 to pH values of 6.95 and 5.6. The acidified water and an

  11. FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION

    Dr. Peter Brewer; Dr. James Barry

    2002-09-30

    We have continued to carry out creative small-scale experiments in the deep ocean to investigate the science underlying questions of possible future large-scale deep-ocean CO{sub 2} sequestration as a means of ameliorating greenhouse gas growth rates in the atmosphere. This project is closely linked to additional research funded by the DoE Office of Science, and to support from the Monterey Bay Aquarium Research Institute. The listing of project achievements here over the past year reflects these combined resources. Within the last project year we have: (1) Published a significant workshop report (58 pages) entitled ''Direct Ocean Sequestration Expert's Workshop'', based upon a meeting held at MBARI in 2001. The report is available both in hard copy, and on the NETL web site. (2) Carried out three major, deep ocean, (3600m) cruises to examine the physical chemistry, and biological consequences, of several liter quantities released on the ocean floor. (3) Carried out two successful short cruises in collaboration with Dr. Izuo Aya and colleagues (NMRI, Osaka, Japan) to examine the fate of cold (-55 C) CO{sub 2} released at relatively shallow ocean depth. (4) Carried out two short cruises in collaboration with Dr. Costas Tsouris, ORNL, to field test an injection nozzle designed to transform liquid CO{sub 2} into a hydrate slurry at {approx}1000m depth. (5) In collaboration with Prof. Jill Pasteris (Washington University) we have successfully accomplished the first field test of a deep ocean laser Raman spectrometer for probing in situ the physical chemistry of the CO{sub 2} system. (6) Submitted the first major paper on biological impacts as determined from our field studies. (7) Submitted a paper on our measurements of the fate of a rising stream of liquid CO{sub 2} droplets to Environmental Science & Technology. (8) Have had accepted for publication in Eos the first brief account of the laser Raman spectrometer success. (9) Have had two

  12. Carbon Sequestration in Unconventional Reservoirs: Advantages and Limitations

    Zakharova, N. V.; Slagle, A. L.; Goldberg, D.

    2014-12-01

    To make a significant impact on anthropogenic CO2 emissions, geologic carbon sequestration would require thousands of CO2 repositories around the world. Unconventional reservoirs, such as igneous rocks and fractured formations, may add substantial storage capacity and diversify CO2 storage options. In particular, basaltic rocks represent a promising target due to their widespread occurrence, potentially suitable reservoir structure and high reactivity with CO2, but a comprehensive evaluation of worldwide CO2 sequestration capacity in unconventional reservoirs is lacking. In this presentation we summarize available data on storage potential of basaltic rocks and fractured formations illustrated by field examples from the Columbia River Basalt, the Newark Rift Basin and IODP Site 1256, and discuss potential limiting factors, such as effective porosity and the risk of inducing earthquakes by CO2 injections. Large Igneous Provinces (LIPs), low-volume flows and intrusions, and ocean floor basalt represent three general classes of basaltic reservoirs, each characterized by different structure and storage capacity. Oceanic plateaus and LIPs are projected to have the highest CO2 storage capacity, on the order of thousands gigatons (Gt) per site, followed by continental LIPs and ocean floor basalts (hundreds to thousands Gt per site). Isolated basalt flows and intrusions are likely to offer only low- to moderate-capacity options. An important limiting factor on CO2 injection volumes and rates is the risk of inducing earthquakes by increasing pore pressure in the subsurface. On continents, available in situ stress analysis suggests that local stress perturbations at depth may create relaxed stress conditions, allowing for pore pressure increase without reactivating fractures and faults. Remote storage sites on oceanic plateaus and below the seafloor are advantageous due to low impact of potential seismic and/or leakage events. Other effects, such as thermal stresses created

  13. Carbon sequestration in California agriculture, 1980-2000.

    Kroodsma, David A; Field, Christopher B

    2006-10-01

    To better understand agricultural carbon fluxes in California, USA, we estimated changes in soil carbon and woody material between 1980 and 2000 on 3.6 x 10(6) ha of farmland in California. Combining the CASA (Carnegie-Ames-Stanford Approach) model with data on harvest indices and yields, we calculated net primary production, woody production in orchard and vineyard crops, and soil carbon. Over the 21-yr period, two trends resulted in carbon sequestration. Yields increased an average of 20%, corresponding to greater plant biomass and more carbon returned to the soils. Also, orchards and vineyards increased in area from 0.7 x 10(6) ha to 1.0 x 10(6) ha, displacing field crops and sequestering woody carbon. Our model estimates that California's agriculture sequestered an average of 19 g C x m(-2) x yr(-1). Sequestration was lowest in non-rice annual cropland, which sequestered 9 g C x m(-2) x yr(-1) of soil carbon, and highest on land that switched from annual cropland to perennial cropland. Land that switched from annual crops to vineyards sequestered 68 g C x m(-2) x yr(-1), and land that switched from annual crops to orchards sequestered 85 g C x m(-2) x yr(-1). Rice fields, because of a reduction in field burning, sequestered 55 g C x m(-2) x yr(-1) in the 1990s. Over the 21 years, California's 3.6 x 10(6) ha of agricultural land sequestered 11.0 Tg C within soils and 3.5 Tg C in woody biomass, for a total of 14.5 Tg C statewide. This is equal to 0.7% of the state's total fossil fuel emissions over the same time period. If California's agriculture adopted conservation tillage, changed management of almond and walnut prunings, and used all of its orchard and vineyard waste wood in the biomass power plants in the state, California's agriculture could offset up to 1.6% of the fossil fuel emissions in the state. PMID:17069388

  14. DNA nanotechnology

    Nadrian C Seeman

    2003-01-01

    We are all aware that the DNA found in cells is a double helix consisting of two antiparallel strands held together by specific hydrogen-bonded base pairs; adenine (A always pairs with thymine (T, and guanine (G always pairs with cytosine (C. The specificity of this base pairing and the ability to ensure that it occurs in this fashion (and not some other1 is key to the use of DNA in materials applications. The double helical arrangement of the two molecules leads to a linear helix axis, linear not in the geometrical sense of being a straight line, but in the topological sense of being unbranched. Genetic engineers discovered in the 1970s how to splice together pieces of DNA to add new genes to DNA molecules2, and synthetic chemists worked out convenient syntheses for short pieces of DNA (up to ∼100–150 units in the 1980s3. Regardless of the impact of these technologies on biological systems, hooking together linear molecules leads only to longer linear molecules, with circles, knots, and catenanes perhaps resulting from time to time.

  15. Mineland reclamation and soil organic carbon sequestration in Ohio

    The mining industry has been continuously involved in initiatives to reduce the emission of green house gases in to atmosphere. Control measures have been introduced in all steps starting from the mining of coal to energy production. Reclamation of mined land was and is one of the eco-friendly measures adopted by the industry. Apart from the inherent benefits of reclamation to improve on and offsite environmental quality, its potential to produce biomass and enhance soil organic carbon (SOC) has not been addressed. Reclamative effects of establishing forest and pasture with (graded) and without topsoil (ungraded) application on soil quality and soil carbon sequestration was studied on mine land in Ohio. The SOC pool for 0--30 cm depth for the undisturbed control sites was 56.6 MgC/ha for forest and 66.3 MgC/ha for pasture. In comparison, the SOC pool in the forest and pasture of graded mineland for 0--30 cm depth after 25 years of reclamation was 58.9 MgC/ha and 62.7 MgC/ha respectively. In ungraded mineland, the SOC pool in the 0--30 cm depth after 30 years of reclamation was 51.5 MgC/ha in forest and 58.9 MgC/ha in the pasture

  16. Selective derivatization and sequestration of ribose from a prebiotic mix.

    Springsteen, Greg; Joyce, Gerald F

    2004-08-11

    Observations regarding the catalytic potential of RNA and the role of RNA in biology have formed the basis for the "RNA world" hypothesis, which suggests that a genetic system based on self-replicating polyribonucleotides preceded modern biology. However, attempts to devise a realistic prebiotic synthesis of nucleic acids from simple starting materials have been plagued by problems of poor chemical selectivity, lack of stereo- and regiospecificity, and similar rates of formation and degradation of some of the key intermediates. For example, ribose would have been only a small component of a highly complex mix of sugars resulting from the condensation of formaldehyde in a prebiotic world. In addition, ribose is more reactive and degrades more rapidly compared with most other monosaccharides. This study demonstrates an approach for the preferential sequestration of ribose relative to other sugars that takes advantage of its greater reactivity. Cyanamide reacts especially rapidly with ribose to form a stable bicyclic adduct. This product crystallizes spontaneously in aqueous solution, whereas the corresponding products derived from threose, galactose, glucose, mannose, and each of the other pentoses do not. Furthermore, when employing a racemic mixture of d- and l-ribose, enantiomerically twinned crystals are formed that contain discrete homochiral domains. PMID:15291561

  17. Accelerated carbonation of brucite in mine tailings for carbon sequestration.

    Harrison, Anna L; Power, Ian M; Dipple, Gregory M

    2013-01-01

    Atmospheric CO(2) is sequestered within ultramafic mine tailings via carbonation of Mg-bearing minerals. The rate of carbon sequestration at some mine sites appears to be limited by the rate of CO(2) supply. If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO(2) annually, offsetting mine emissions. The effect of supplying elevated partial pressures of CO(2) (pCO(2)) at 1 atm total pressure, on the carbonation rate of brucite [Mg(OH)(2)], a tailings mineral, was investigated experimentally with conditions emulating those at Mount Keith Nickel Mine (MKM), Western Australia. Brucite was carbonated to form nesquehonite [MgCO(3) · 3H(2)O] at a rate that increased linearly with pCO(2). Geochemical modeling indicated that HCO(3)(-) promoted dissolution accelerated brucite carbonation. Isotopic and aqueous chemistry data indicated that equilibrium between CO(2) in the gas and aqueous phases was not attained during carbonation, yet nesquehonite precipitation occurred at equilibrium. This implies CO(2) uptake into solution remains rate-limiting for brucite carbonation at elevated pCO(2), providing potential for further acceleration. Accelerated brucite carbonation at MKM offers the potential to offset annual mine emissions by ~22-57%. Recognition of mechanisms for brucite carbonation will guide ongoing work to accelerate Mg-silicate carbonation in tailings. PMID:22770473

  18. Neutralization of red mud using CO2 sequestration cycle

    A laboratory study was conducted to investigate the ability of neutralization of red mud (RM) using carbon dioxide gas sequestration cycle at ambient conditions. The neutralized red mud (NRM) was characterized by XRD, SEM, EDX, FT-IR and auto titration method. X-ray diffraction pattern of NRM was revealed that the intensity of gibbsite was increased prominently and formed ilmenite due to dissolution of minerals. EDX analysis was showed that the %(w/w) of Na, C, O, Si were higher in the carbonated filtrate as compared to the RM and NRM. The permanently sequestered CO2%(w/w) per 10 g of red mud were ∼26.33, ∼58.01, ∼55.37, and ∼54.42 in NRM and first, second, third cycles of carbonated filtrate, respectively. The pH of red mud was decreased from ∼11.8 to ∼8.45 and alkalinity was decreased from ∼10,789 to ∼178 mg/L. The acid neutralizing capacity of NRM was ∼0.23 mol H+/kg of red mud. The specific advantages of these cyclic processes are that, large amount of CO2 can be captured as compared to single step.

  19. SEQUESTRATION AND TREATMENT OF VADOSE ZONE SOLVENTS USING EDIBLE OILS

    Edible oils have emerged as an effective treatment amendment for a variety of contaminants. When applied to chlorinated volatile organic compounds (cVOCs) in the saturated zone, edible oils have been shown to enhance anaerobic bioremediation and sequester the contaminants. However, edible oils have not been applied to the vadose zone for contaminant treatment. Soybean oil was injected into the vadose zone in M-Area at the Department of Energy's (DOE) Savannah River Site (SRS) as a research study to evaluate the effectiveness of edible oils for solvent sequestration and the ability to change a vadose system from aerobic to anaerobic to initiate reductive dechlorination. The proposed use of this technique would be an enhanced attenuation/transition step after active remediation. The goals of the research were to evaluate oil emplacement methods and monitoring techniques to measure oil placement, partitioning and degradation. Gas sampling was the cornerstone for this evaluation. Analyses for cVOCs and biotransformation products were performed. Overall, the cVOC concentration/flux reduction was 75-85% in this vadose zone setting. Destruction of the cVOCs by biotic or abiotic process has not yet been verified at this site. No reductive dechlorination products have been measured. The deployment has resulted in a substantial generation of light hydrocarbon gases and geochemical conditions that would support cometabolism

  20. Science Data Management for a CO2-Sequestration project

    Behrends, K.; Conze, R.

    2012-04-01

    Funded by the CO2Man/Pilotstandort Ketzin project, a German CO2-sequestration research-project, a data management system been developed which tries to integrate operating data and a wide range of science data: basic geological field data, but also more complex well logging data, reservoir simulation files and other file types, in particular from geochemistry and (sub-)surface geophysics. Although the software system itself has a distributed architecture, goal of the software development project was to make the data accessible to users by providing a unified, centralized view on the data. Aside from its primary data distribution function, collaboration features are also supported, and there is also a mandate to serve as a long-term digital archive. The software development process was challenged by the total data volume, size of indvidual files, diversity of file formats and the fact that files were accumulated, with intermissions, over a period of nearly 40 years starting with a set of historical geological field data from the 1960s and 1970s. The data management system comprises an interactive web application enabling the end users, i.e. project scientists, to download custom data sets, search documents, search file metadata and create composite plots of well-logging data and other geoscience data.

  1. Sequestration of carbon dioxide (CO2) using red mud.

    Yadav, Vishwajeet S; Prasad, Murari; Khan, Jeeshan; Amritphale, S S; Singh, M; Raju, C B

    2010-04-15

    Red mud, an aluminium industry hazardous waste, has been reported to be an inexpensive and effective adsorbent. In the present work applicability of red mud for the sequestration of green house gases with reference to carbon dioxide has been studied. Red mud sample was separated into three different size fractions (RM I, RM II, RM III) of varying densities (1.5-2.2 g cm(-3)). Carbonation of each fraction of red mud was carried out separately at room temperature using a stainless steel reaction chamber at a fixed pressure of 3.5 bar. Effects of reaction time (0.5-12 h) and liquid to solid ratio (0.2-0.6) were studied for carbonation of red mud. Different instrumental techniques such as X-ray diffraction, FTIR and scanning electron microscope (SEM) were used to ascertain the different mineral phases before and after carbonation of each fraction of red mud. Characterization studies revealed the presence of boehmite, cancrinite, chantalite, hematite, gibbsite, anatase, rutile and quartz. Calcium bearing mineral phases (cancrinite and chantalite) were found responsible for carbonation of red mud. Maximum carbonation was observed for the fraction RM II having higher concentration of cancrinite. The carbonation capacity is evaluated to be 5.3 g of CO(2)/100 g of RM II. PMID:20036053

  2. Modeling of induced seismicity during mineral carbon sequestration

    Yarushina, V.; Bercovici, D. A.

    2013-12-01

    Rapidly developing carbon capture and storage (CCS) technologies are a promising way of reducing the climate impact of greenhouse gases. These technologies involve injecting large amounts of CO2-bearing fluids underground, which potentially leads to high pore pressure and the conditions for seismic activity in the proximity of the injection site. Previously, we developed a simple conceptual model to estimate the seismic risk of mineral or mafic CCS operations (Yarushina & Bercovici, GRL vol.40, doi:10.1002/grl.50196, 2013). In this model, the storage reservoir is treated as a porous rock with grains that evolve during carbonation reactions. Seismic triggering occurs when local stresses at grain-grain contacts reach the Mohr-Coulomb failure criterion. We showed that injection of CO2 into reactive mafic or ultramafic rocks potentially reduces seismic risk since carbonation reactions increase the contact area between the rock grains and reduce the local stresses. Here we further develop this model and consider the effect of fluid injection flux and pressure gradients along grain boundaries on induced seismicity. Grain evolution not only changes the stress support but also alters the matrix permeability, which in turn affects the driving pressure gradients and the associated deviatoric stresses. The resulting coupled porous flow, chemical reactive grain-growth and failure model is an important step in understanding the seismic risks of carbon sequestration.

  3. Sequestration of carbon dioxide (CO2) using red mud

    Red mud, an aluminium industry hazardous waste, has been reported to be an inexpensive and effective adsorbent. In the present work applicability of red mud for the sequestration of green house gases with reference to carbon dioxide has been studied. Red mud sample was separated into three different size fractions (RM I, RM II, RM III) of varying densities (1.5-2.2 g cm-3). Carbonation of each fraction of red mud was carried out separately at room temperature using a stainless steel reaction chamber at a fixed pressure of 3.5 bar. Effects of reaction time (0.5-12 h) and liquid to solid ratio (0.2-0.6) were studied for carbonation of red mud. Different instrumental techniques such as X-ray diffraction, FTIR and scanning electron microscope (SEM) were used to ascertain the different mineral phases before and after carbonation of each fraction of red mud. Characterization studies revealed the presence of boehmite, cancrinite, chantalite, hematite, gibbsite, anatase, rutile and quartz. Calcium bearing mineral phases (cancrinite and chantalite) were found responsible for carbonation of red mud. Maximum carbonation was observed for the fraction RM II having higher concentration of cancrinite. The carbonation capacity is evaluated to be 5.3 g of CO2/100 g of RM II.

  4. Sensitivity of geochemical monitoring for CO2 sequestration in basalt

    Zakharova, N. V.; Goldberg, D.; Herron, M.; Grau, J.

    2010-12-01

    Continental flood basalts is a promising target for carbon dioxide (CO2) storage due to high storage capacity, presence of seals, and potential for geochemical trapping which results in binding CO2 into stable carbonate minerals. The success of long-term CO2 storage in igneous rocks highly depends on our ability to monitor mineralization under in situ conditions. The direct chemistry measurements on cores are costly and typically do not provide continuous coverage. In this study we investigate the potential of borehole geochemical logging for monitoring of CO2 mineralization in basalt. Neutron-induced capture gamma ray spectroscopy tools allow obtaining in-situ concentration logs for up to 10 major elements which can be used to construct a quantitative mineralogical model. While this usually provides good bulk mineralogy estimates, detecting small-volume mineral alteration in volcanic rocks remains challenging, especially if borehole conditions are poor. We analyze Schlumberger Elemental Capture Spectroscopy logs and chemical core analysis from the pilot CO2 sequestration project in the Columbia River flood basalt. We use the geochemical spectroscopy logs and quantitative modeling to quantify their sensitivity to secondary mineralization in basalt. We apply statistical analysis to explain the variance in elemental concentrations (and other logs) and establish detection limits for various mineral alteration products in basalt. We use these results to evaluate monitoring capabilities and limitations of geochemical logging for CO2 mineralization after underground injection in basalt and suggest areas for future research.

  5. Sediment transport and carbon sequestration characteristics along mangrove fringed coasts

    TU Qiang; YANG Shengyun; ZHOU Qiulin; YANG Juan

    2015-01-01

    Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boun-daries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often“environmentally sensitive”to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, altho-ugh the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth andδ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.

  6. Enhanced oil recovery & carbon sequestration building on successful experience

    Stern, Fred [BEPC (United States)

    2008-07-15

    In this paper it is spoken of the experiences in the capture and sequestration of CO{sub 2} in the companies Basin Electric Power Cooperative (BEPC) and Dakota Gasification Company (DGC); their by-products are mentioned and what these companies are making to control the CO{sub 2} emissions. Their challenges to compress CO{sub 2} are presented and how they have reduced the CO{sub 2} emissions in the DGC of the 2000 to the 2008; how they use CO{sub 2} to enhance the oil recovery and which are their challenges in the CO{sub 2} transport. [Spanish] En esta ponencia se habla de las experiencias en la captura y secuestro de CO{sub 2} en las empresas Basin Electic Power Cooperative (BEPC) y Dakota Gasification Campany (DGC); se mencionan sus subproductos y que estan haciendo estas empresas para controlar las emisiones de CO{sub 2}. Se presentan sus retos para comprimir CO{sub 2} y como han reducido las emisiones de CO{sub 2} en la DGC del 2000 al 2008; como utilizan el CO{sub 2} para mejorar la recuperacion de petroleo y sus cuales son retos en el transporte de CO{sub 2}.

  7. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  8. CO2 sequestration using calcium-silicate concrete

    This study examined the feasibility of sequestering carbon dioxide (CO2) using calcium silicate while developing a strong and durable concrete building product. In addition to offering a solution for a safe, environmentally sound manner to sequester carbon dioxide, the carbonation curing of concrete has the potential to provide a permanent storage for exhaust CO2. The calcium compounds in cement react with CO2 through the early-age carbonation curing, forming geologically stable calcium carbonates. In this study, both type 10 and type 30 Portland cements were used as CO2 binders in concretes with 0, 25, 50, and 75 per cent quartz aggregates and lightweight aggregates. The sequestration took place in a chamber under 0.5 MPa pressure at ambient temperature for a duration of 2 hours. The recovered CO2 from flue gas was simulated using a 100 per cent concentration of CO2. The CO2 uptake was quantified by direct mass gain and by an infrared-based carbon analyzer. The performance of the carbonated concrete was evaluated by its strength. In 2 hours, a CO2 uptake of 9 to 16 per cent by binder mass was achieved. The carbonation curing of concrete was found to provide better strength, stability, permeability and abrasion resistance in concrete products without steel reinforcement. 10 refs., 4 tabs., 10 figs

  9. Efficient parallel simulation of CO2 geologic sequestration insaline aquifers

    Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

    2007-01-01

    An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The new parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.

  10. Potential and economics of CO{sub 2} sequestration; Sequestration du CO{sub 2}: faisabilite et cout

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J. [CEA Saclay, 91 - Gif sur Yvette (France). Direction des Sciences de la Matiere; Ducroux, R. [Centre d' Initiative et de Recherche sur l' Energie et l' Environnement, CIRENE, 91 - Palaiseau (France)

    2001-07-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO{sub 2}. Some techniques could be used to reduced CO{sub 2} emission and stabilize atmospheric CO{sub 2} concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO{sub 2} emissions such as renewable or nuclear energy, iii) capture and store CO{sub 2} from fossil fuels combustion, and enhance the natural sinks for CO{sub 2} (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO{sub 2} and to review the various options for CO{sub 2} sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO{sub 2} and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO{sub 2} emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO{sub 2} emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO{sub 2} is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon

  11. DNA nanotechnology

    Seeman, Nadrian C.

    2003-01-01

    Since Watson and Crick’s determination of its structure nearly 50 years ago, DNA has come to fill our lives in many areas, from genetic counseling to forensics, from genomics to gene therapy. These, and other ways in which DNA affects human activities, are related to its function as genetic material, not just our genetic material, but the genetic material of all living organisms. Here, we will ignore DNA’s biological role; rather, we will discuss how the properties that make it so successful ...

  12. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  13. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    Verba, Circe A; O& #x27; Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Class H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.

  14. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the

  15. Southwestern Regional Partnership For Carbon Sequestration (Phase 2): Pump Canyon CO2-ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO2 sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO2-enhanced coalbed methane (CO2/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO2 sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO2 was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO2 movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO2. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO2 fluxes, and tracers were used to help in tracking the injected CO2. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  16. Synthetic DNA

    O’ Driscoll, Aisling; Sleator, Roy D.

    2013-01-01

    With world wide data predicted to exceed 40 trillion gigabytes by 2020, big data storage is a very real and escalating problem. Herein, we discuss the utility of synthetic DNA as a robust and eco-friendly archival data storage solution of the future.

  17. DNA Investigations.

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  18. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  19. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared

  20. Vertically-integrated Approaches for Carbon Sequestration Modeling

    Bandilla, K.; Celia, M. A.; Guo, B.

    2015-12-01

    Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.

  1. Carbon Stocks and Sequestration: How much do we know?

    Mathabane, N.; Kelsey, K.; Neff, J. C.

    2012-12-01

    As anthropogenic CO¬¬2 emissions in America increase, both Washington D.C. and state governments look for ways to offset those carbon increases. Our forests provide an opportunity for carbon sequestration, assuming well-informed and deliberate management practices. Accurate spatial and temporal estimates of carbon stocks are integral to developing wise management practices. Spatial carbon stock estimates are often represented in carbon maps while temporal estimates are calculated using computer models. These maps and models come from a variety of sources such as the United States Department of Agriculture (USDA), the Forest Service (FS), and independent researchers. Here we evaluate the Forest Service's Forest Vegetation Simulator (FVS) to determine its sensitivity to input changes as well as its predictive ability over time. We analyze field data collected from a site in the San Juan National Forest. This site was clearcut in 1920, allowing us to model a complete regrowth over 90 years. Using biomass-to-carbon equations, we compare present-day carbon storage to FVS model projections. Finally, we look at the Forest Inventory and Analysis (FIA) database and a spatial carbon map developed by researchers at the University of Colorado to assess the validity of landscape-scale estimates. Results indicate that the four spatial carbon estimates we use vary by only 25% while the temporal carbon estimates diverge radically from field data. Knowledge of carbon uptake rates is one of the most pressing questions in atmospheric and ecological science. It is imperative that carbon models be improved to achieve this goal. Spatial and temporal comparisons such as the one conducted here are needed to provide the groundwork for model development. Carbon estimates for Shearer Creek in the San Juan National Forest based on four different methods: the Forest Vegetation Simulator, the USDA Forest Inventory and Analysis Database, a spatial carbon map from the University of Colorado

  2. Sequestration Resins for Accelerating Removal of Radioactive Contaminants

    The Electric Power Research Institute (EPRI) is developing sequestration resins that can be used in the treatment of nuclear plant water streams for the enhanced removal of ionic cobalt. EPRI is focusing on three key areas of success: 1. Plant safety. The resins that are synthesized must be fully tested to determine that no leachable species or decomposition products (in the event of a resin bed failure) would be introduced to the plant. 2. Acceptable system performance. The resins are currently being synthesized in a powdered form for use in the reactor water clean-up and fuel pool clean-up systems that utilize pre-coatable filter elements. The resins must have effective flocking behavior; uniform application over the underlay resin and efficient removal from the septa elements after use. Bead type resins are also under development. 3. Enhanced cobalt removal. The resins are expected to out-perform the currently used ion exchange resins in the removal of ionic cobalt. During nuclear plant maintenance or refueling outages, current ion exchange resins may require several days to reduce concentrations of cobalt (for example, radio-cobalt 60Co and 58Co) and other activated corrosion products to safe levels in reactor coolant streams. This performance limitation often delays key maintenance activities. EPRI's resins are expected to provide at least a three-fold increase in removal capacity in light water reactor coolants. These resins also offer the potential for higher overall removal efficiencies reducing occupational exposures and waste management costs. This paper addresses issues from the range of novel resin development for radio-cobalt removal from synthesis at the bench-top level through scale-up to demonstration of use in an actual operating nuclear power plant. (authors)

  3. Biochar: a synthesis of its agronomic impact beyond carbon sequestration.

    Spokas, Kurt A; Cantrell, Keri B; Novak, Jeffrey M; Archer, David W; Ippolito, James A; Collins, Harold P; Boateng, Akwasi A; Lima, Isabel M; Lamb, Marshall C; McAloon, Andrew J; Lentz, Rodrick D; Nichols, Kristine A

    2012-01-01

    Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits. PMID:22751040

  4. Diaphyseal sequestration of the metacarpal and metatarsal bone in cattle

    Between 1990 and 1993 ten cows with diaphyseal sequestration of the metacarpal or metatarsal bone were brought to the Clinic for Food Animals and Horses, University of Bern. History, clinical and radiographic findings at admission, therapy, and clinical and radiographic short- and longterm results were evaluated retrospectively. Six animals had a history of trauma. The metatarsal bone (n = 9) was much more frequently affected than the metacarpal bone (n = 1). Lameness was slight in seven cases and intermediate in three cases. Soft tissue swelling was present in all cases, and fistula formation in eight cases. Sequestrectomy was performed in nine cases, the exuberant new bone circumferentially removed in three of these cases, and the skin primarily closed in all nine cases treated surgically. One animal with a small sequestrum, showing no fistula formation, was treated conservatively. Four to 44 months after surgery, interviews with the owners by telephone revealed that the recovery had been satisfactory in all ten cases. At the same time period, clinical and radiographic examinations of the six animals that were still alive were performed by a veterinarian additionally. Normal limb function had been restored in all six animals, although the affected limb was clearly distinctable from the unaffected contralateral limb, because of its increased diameter. From the results of this study we concluded that longterm prognosis after sequestrectomy is favourable; primary wound closure can be attempted with good success. Cosmetically promising results, however, can only be achieved, if sequestrectomy is performed early enough in the course of the disease or if the exuberant new bone is surgically removed

  5. Biocatalytic CO2 sequestration based on shell regeneration

    Lee, S.

    2012-04-01

    Carbon dioxide, CO2, is one of the green gases, being uniformly distributed over the earth's surface. Recently, a variety of methods exists or has been proposed for pre- or post-emission capture and sequestration of CO2. However, CCS (carbon capture & storage) do not quarntee permanent treatment of CO2 and could ingenerate environment risks. Some organisms convert CO2 into exoskeleton (e.g., mollusks) or energy sources (e.g., plants) during metabolism under atmospheric conditions. One of representative biomaterials in ocean is bivalve shell to be composed of CaCO3. Calcium carbonate is not only abundant material in the world but also thermodynamically stable mineral in the capture of CO2. Bivalve has produced CaCO3 under seawater condition, in other word, near atmospheric conditions (1 atm. and around 20-25 oC). At the inorganic point, the synthesis of CaCO3 is as followed. Ca2+ + CO32- -> CaCO3 The bivalve shell plays an important role to protect bivalve's internal organs from prodetor. What will be happened if the shell is damaged and a hole is made? Bivalve must cover the hole to prevent the oxidation of internal organs as fast as possible. From in vitro crystallization test of a notched shell, rapid CaCO3 production was identified at the damaged area. The biocatalyst related to shell regeneration was purified and named as SPSR (Soluble Protein related to Shell Regeneration) that is obtained from the oyster, Crassostrea gigas. And in vitro CaCO3 crystallization test was used to calculate the crystal growth rate of SPSR on CaCO3 crystallization. The characteristics of SPRR are discussed at the point of CO2 hydration and rapid CaCO3 synthesis. To develop the bioinspired process based on shell regeneration concept, the analysis of protein structure has been studied and the immobilization has been carried out for easy recovery of SPSR.

  6. Sequestration of organochlorine pesticides in soils of distinct organic carbon content

    Zhang Na [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); Yang Yu [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Tao Shu, E-mail: taos@urban.pku.edu.cn [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Liu Yan; Shi Kelu [Laboratory for Earth Surface Processing, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2011-03-15

    In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for {alpha}-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. - Research highlights: > Soil organic carbon content determines the OCP sequestration fraction in soil. > Magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. > The more hydrophobic compounds have relatively higher sequestration fractions in soils with SOC contents >2%. > DDD may have higher sorption by soil organic matter than DDE. - The effect of soil organic matter on the sequestration of organochlorine pesticides (HCHs and DDTs) in soils was investigated in an innovative microcosm chamber.

  7. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    Joan M. Ogden

    2004-05-01

    In this third semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period September 2003 through March 2004. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  8. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  9. Sequestration of organochlorine pesticides in soils of distinct organic carbon content

    In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for α-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. - Research highlights: → Soil organic carbon content determines the OCP sequestration fraction in soil. → Magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. → The more hydrophobic compounds have relatively higher sequestration fractions in soils with SOC contents >2%. → DDD may have higher sorption by soil organic matter than DDE. - The effect of soil organic matter on the sequestration of organochlorine pesticides (HCHs and DDTs) in soils was investigated in an innovative microcosm chamber.

  10. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    Joan M. Ogden

    2005-11-29

    In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2005 The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We carried out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  11. A simulation method for the rapid screening of potential depleted oil reservoirs for CO2 sequestration

    The reduction of greenhouse gases emission is a growing concern of many industries. The oil and gas industry has a long commercial practice of gas injection, enhanced oil recovery (EOR) and gas storage. Using a depleted oil or gas reservoir for CO2 storage has several interesting advantages. The long-term risk analysis of the CO2 behavior and its impact on the environment is a major concern. That is why the selection of an appropriate reservoir is crucial to the success of a sequestration operation. Our modeling study, based on a synthetic reservoir, quantifies uncertainties due to reservoir parameters in order to establish a set of guidelines to select the most appropriate depleted reservoirs. Several production and sequestration scenarios are investigated in order to quantify key parameter for CO2 storage. The influence of parameters such as API gravity, heterogeneity (Dykstra-Parson coefficient), pressure support (water injection) and cap rock integrity are analyzed. Estimation of sequestration capacity is proposed through a sequestration factor (SF) estimated for different reservoir production drives. Multiple regression relationships were developed, allowing SF estimation. CO2 sequestration optimization highlights the best clean oil recovery strategy (CO2 injection and/or oil production)

  12. Geologic CO2 sequestration in saline aquifers accounting for dual permeability/porosity environments.

    Randolph, J. B.; Saar, M. O.

    2008-12-01

    The State of Minnesota, like many regions of the United States and beyond, has mandated significant reductions in CO2 emissions by mid-century, and geologic CO2 sequestration is recognized as one means by which to meet emissions goals. Unfortunately, the state, like many other regions, does not contain sedimentary basins that meet the currently established criteria for CO2 sequestration in deep saline aquifers. That is, existing basins, though expansive, are shallower (e.g., the Mount Simon aquifer in Minnesota) or less permeable (e.g., the Midcontinental Rift System) than sedimentary units that are typically considered for sequestration. The field of karst hydrogeology recognizes the importance of multiple permeability/porosity systems in groundwater transport and storage. High permeability fracture networks permit rapid groundwater transport while the large, lower permeability matrix allows for significant storage. With this motivation, we develop a geologic CO2 sequestration model, using TOUGH2 and TOUGHREACT, which accounts for the presence of multiple permeability/porosity structures. Capillary forces play an important role in these multiphase, multi-permeability and porosity systems. Our preliminary models investigate whether the Midcontinental Rift System could prove a viable candidate for geologic CO2 sequestration, should suitable fracture networks (among other criteria) be located there.

  13. CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE

    Joan M. Ogden

    2003-12-01

    In this second semi-annual progress report, we describe research results from an ongoing study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the six-month period March 2003 through September 2003. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and attempt to identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We are carrying out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  14. A review of CO2 sequestration projects and application in China.

    Tang, Yong; Yang, Ruizhi; Bian, Xiaoqiang

    2014-01-01

    In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 10(9) t for all onshore oilfields; 30.483 × 10(9) t for major gas fields between 900 m and 3500 m of depth; 143.505 × 10(9) t for saline aquifers; and 142.67 × 10(9) t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4-CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration. PMID:25302323

  15. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  16. A Review of CO2 Sequestration Projects and Application in China

    Yong Tang

    2014-01-01

    Full Text Available In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration.

  17. DNA Repair by Reversal of DNA Damage

    Yi, Chengqi; He, Chuan

    2013-01-01

    Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-,...

  18. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration

    Ileana Frasier

    2016-04-01

    Full Text Available The objective of the study was to evaluate the effect of a change in management on the soil microbial community and C sequestration. We conducted a 3-year field study in La Pampa (Argentina with rotation of sorghum (Sorghum bicolor in zero tillage alternating with rye (Secale cereale and vetch (Vicia villosa ssp. dasycarpa. Soil was sampled once a year at two depths. Soil organic matter fractions, dissolved organic matter, microbial biomass (MBC and community composition (DNA extraction, qPCR, and phospholipid FAME profiles were determined. Litter, aerial- and root biomass were collected and all material was analyzed for C and N. Results showed a rapid response of microbial biomass to a bacterial dominance independent of residue quality. Vetch had the highest diversity index, while the fertilized treatment had the lowest one. Vetch–sorghum rotation with high N mineralization rates and diverse microbial community sequestered more C and N in stable soil organic matter fractions than no-till sorghum alone or with rye, which had lower N turnover rates. These results reaffirm the importance of enhanced soil biodiversity for maintaining soil ecosystem functioning and services. The supply of high amounts of N-rich residues as provided by grass–legume cover crops could fulfill this objective.

  19. DNA Methylation

    İzmirli, Müzeyyen; Tufan, Turan; Alptekin, Davut

    2012-01-01

    Methylation is a chemical reaction in biological systems for normal genome regulation and development. It is a well known type of epigenetic mechanism. Methylation which regulates gene expression via epigenetic events like gene activation, repression, and chromatin remodelling, consists of two methylation systems. One of these systems is DNA methylation whereas the other is protein (histone) methylation. These systems are associated with some fundamental abnormalities and diseases. This revi...

  20. DNA Nanorobotics

    Hamdi M; Ferreira A

    2006-01-01

    This paper presents a molecular mechanics study for new nanorobotic structures using molecular dynamics (MD) simulations coupled to virtual reality (VR) techniques. The operator can design and characterize through molecular dynamics simulation the behavior of bionanorobotic components and structures through 3-D visualization. The main novelty of the proposed simulations is based on the mechanical characterization of passive/active robotic devices based on double stranded DNA molecules. Their ...

  1. DNA Methylation

    Muzeyyen Izmirli; Turan Tufan; Davut Alptekin

    2012-01-01

    Methylation is a chemical reaction in biological systems for normal genome regulation and development. It is a well known type of epigenetic mechanism. Methylation which regulates gene expression via epigenetic events like gene activation, repression, and chromatin remodelling, consists of two methylation systems. One of these systems is DNA methylation whereas the other is protein (histone) methylation. These systems are associated with some fundamental abnormalities and diseases. This revie...

  2. Pulmonary Sequestration with Renal Aplasia and Elevated SUV Level in PET/CT

    Serdar Şen

    2012-01-01

    Full Text Available Extralobar sequestration with other bronchopulmonary malformations is commonly seen; however, the association of extralobar sequestration with renal aplasia is very rare. A 75-year-old female patient was admitted with back pain. Ultrasonography revealed aplasia of the left kidney and tomography showed 6×4.5 cm sized tumor in the left hemithorax at the posterobasal area. The lesion has focally increased glycolytic activity (SUVmax: 3.2 at the left upper pole on positron emission tomography scan (PET/CT. Sequestrectomy was performed after the confirmation by frozen section that the lesion was benign and of extrapulmonary sequestration. No complication occurred during postoperative and 50-month follow-up period.

  3. Imaging diagnosis for intralobar pulmonary sequestration by subclassification of CT findings in bronchoalveolar structures

    We examined the chest CT findings in 12 cases of intralobar pulmonary sequestration. We classified 4 subtypes by evaluating bronchial and alveolar structures, thus: type A (3 cases), mild cylindrical dilatation of the bronchial structure and hyperlucent alveolar structure; type B (3 cases), marked cylindrical dilatation of the bronchial structure and hyperlucent alveolar structure; type C (2 cases), multicystic dilatation of the bronchial structure and alveolar structure without hyperlucency; and type D (4 cases), multicystic dilatation of the bronchial structure and absence of any alveolar structure. All 77 cases (present and previously reported cases) with CT-documented intralobar pulmonary sequestration could be classified into 4 subtypes: type A 9%, type B 34%, type C 19%, and type D 38%. We concluded that these 4 types were useful for the radiological diagnosis of intralobar pulmonary sequestration. (author)

  4. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

  5. An economic evaluation of carbon emission and carbon sequestration for the forestry sector in Malaysia

    Forestry is an important sector in Malaysia. The long term development of the forestry sector will definitely affect the future amounts of carbon sequestration and emission of the country. This paper evaluates various forestry economic options that contribute to the reduction of carbon dioxide in the atmosphere. The analysis shows that, although forest plantation could sequester the highest amount of carbon per unit area, natural forests which are managed for sustainable timber production are the cheapest option for per-unit area carbon sequestrated. In evaluating forest options to address the issues of carbon sequestration and emission, the paper proposes that it should be assessed as an integral part of overall long term forestry development of the country which takes into account the future demands for forestry goods and services, financial resources, technology and human resource development. (Author)

  6. The Effect of Gasification Biochar on Soil Carbon Sequestration, Soil Quality and Crop Growth

    Hansen, Veronika

    New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...... and pot and field experiments was used to study the effect of straw and wood biochar on carbon sequestration, soil quality and crop growth. Overall, the biochar amendment improved soil chemical and physical properties and plant growth and showed a potential for soil carbon sequestration without having...... have been raised about the potential negative impacts of incorporating bioenergy residuals (biochar) in soil and increasing the removal of crop residues such as straw, possibly reducing important soil functions and services for maintaining soil quality. Therefore, a combination of incubation studies...

  7. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: A solid-state NMR, EXAFS and PXRD study

    Dithmer, Line; Lipton, Andrew S; Reitzel, Kasper;

    2015-01-01

    Phosphate (Pi) sequestration by a lanthanum (La) exchanged clay mineral (La-Bentonite), which is extensively used in chemical lake restoration, was investigated on the molecular level using a combination of 31P and 139La solid state NMR spectroscopy (SSNMR), extended X-ray absorption spectroscopy...... formed upon Pi sequestration is in close proximity to the clay matrix....

  8. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  9. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    Elliot, T R; Celia, M A

    2012-04-01

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed. PMID:22352312

  10. Comparison of carbon sequestration potential in agricultural and afforestation farming systems

    Chinsu Lin

    2013-04-01

    Full Text Available In the last few decades, many forests have been cut down to make room for cultivation and to increase food or energy crops production in developing countries. In this study, carbon sequestration and wood production were evaluated on afforested farms by integrating the Gaussian diameter distribution model and exponential diameter-height model derived from sample plots of an afforested hardwood forest in Taiwan. The quantity of sequestrated carbon was determined based on aboveground biomass. Through pilot tests run on an age-volume model, an estimation bias was obtained and used to correct predicted volume estimates for a farm forest over a 20-year period. An estimated carbon sequestration of 11,254 t C was observed for a 189ha-hardwood forest which is equivalent to 41,264 t CO2. If this amount of carbon dioxide were exchanged on the Chicago Climate Exchange (CCX market, the income earned would be 821 US$ ha- 1. Carbon sequestration from rice (Oryza sativa or sugarcane (Saccharum officinarum production is discharged as a result of straw decomposition in the soil which also improves soil quality. Sugarcane production does not contribute significantly to carbon sequestration, because almost all the cane fiber is used as fuel for sugar mills. As a result of changing the farming systems to hardwood forest in this study area, carbon sequestration and carbon storage have increased at the rate of 2.98 t C ha- 1 year- 1. Net present value of afforestation for a 20-year period of carbon or wood management is estimated at around US$ 30,000 given an annual base interest rate of 3 %.

  11. Carbon storage and sequestration by trees in urban and community areas of the United States

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m−2 of tree cover and sequestration densities average 0.28 kg C m−2 of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes). -- Highlights: •Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes. •Total tree carbon storage in U.S. urban and community areas is estimated at 1.36 billion tonnes. •Net carbon sequestration in U.S. urban areas varies by state and is estimated at 18.9 million tonnes per year. •Overlap between U.S. forest and urban forest carbon estimates is between 247 million and 303 million tonnes. -- Field and tree cover measurements reveal carbon storage and sequestration by trees in U.S. urban and community areas

  12. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  13. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  14. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel; Reitzel, Kasper

    2016-01-01

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La–P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock®). Short term (7 days) P adsorption studies revealed a significant negative effect of added...... DOC on the P sequestration of Phoslock®, whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state 31P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P...

  15. Ecosystem Controls on C & N Sequestration Following Afforestation of Agricultural Lands

    E.A. Paul, S.J. Morris, R.T. Conant

    2013-03-05

    In our project, we proposed to continue analysis of our available soil samples and data, and to develop new studies to answer the following objectives: Objective 1) Broaden field based studies of ecosystem C and N compartments to enhance current understanding of C and N sequestration and dynamics. Objective 2) Improve our understanding of mechanism controlling C and N stabilization and dynamics. Objective 3) Investigate the interrelated role of soil temperature and organism type and activity as controlling mechanism in SOC dynamics and sequestration.

  16. Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations

    Zoback, Mark D. [Stanford Univ., CA (United States); Kovscek, Anthony R. [Stanford Univ., CA (United States); Wilcox, Jennifer [Stanford Univ., CA (United States)

    2013-09-30

    This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

  17. Integrating science, economics and law into policy: The case of carbon sequestration in climate change policy

    Richards, Kenneth

    Carbon sequestration, the extraction and storage of carbon from the atmosphere by biomass, could potentially provide a cost-effective means to reduce net greenhouse gas emissions. The claims on behalf of carbon sequestration may be inadvertently overstated, however. Several key observations emerge from this study. First, although carbon sequestration studies all report results in terms of dollars per ton, the definition of that term varies significantly, meaning that the results of various analyses can not be meaningfully compared. Second, when carbon sequestration is included in an energy-economy model of climate change policy, it appears that carbon sequestration could play a major, if not dominant role in a national carbon emission abatement program, reducing costs of emissions stabilization by as much as 80 percent, saving tens of billions of dollars per year. However, the results are very dependant upon landowners' perceived risk. Studies may also have overstated the potential for carbon sequestration because they have not considered the implementation process. This study demonstrates that three factors will reduce the cost-effectiveness of carbon sequestration. First, the implementation costs associated with measurement and governance of the government-private sector relation are higher than in the case of carbon source control. Second, legal constraints limit the range of instruments that the government can use to induce private landowners to expand their carbon sinks. The government will likely have to pay private parties to expand their sinks, or undertake direct government production. In either case, additional revenues will be required, introducing social costs associated with excess burden. Third, because of the very long time involved in developing carbon sinks (up to several decades) the government may not be able to make credible commitments against exactions of one type or another that would effectively reduce the value of private sector investments

  18. A Multi-Level Approach to Outreach for Geologic Sequestration Projects

    Greenberg, S.E.; Leetaru, H.E.; Krapac, I.G.; Hnottavange-Telleen, K.; Finley, R.J.

    2009-01-01

    Public perception of carbon capture and sequestration (CCS) projects represents a potential barrier to commercialization. Outreach to stakeholders at the local, regional, and national level is needed to create familiarity with and potential acceptance of CCS projects. This paper highlights the Midwest Geological Sequestration Consortium (MGSC) multi-level outreach approach which interacts with multiple stakeholders. The MGSC approach focuses on external and internal communication. External communication has resulted in building regional public understanding of CCS. Internal communication, through a project Risk Assessment process, has resulted in enhanced team communication and preparation of team members for outreach roles. ?? 2009 Elsevier Ltd. All rights reserved.

  19. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    Ogden, Joan M

    2004-01-01

    In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO2 sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2004. The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H2 and electricity with CO2 sequestration. This is accomplishe...

  20. Extralobar pulmonary sequestration with venous drainage to the portal vein: a case report

    Kamata, S.; Sawai, T.; Nose, K.; Hasagawa, T.; Nakajima, K.; Soh, H.; Okada, A. [Department of Paediatric Surgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2000-07-01

    Venous drainage to the portal vein in pulmonary sequestration is rare. A 7-month-old girl was referred to our hospital following surgery for ventricular septal defect because of a left upper abdominal mass with a large feeding artery from the abdominal aorta and venous drainage to the portal vein. She had had frequent pulmonary infections and was growth retarded. MRI demonstrated that the mass was above the left diaphragm, suggesting extralobar sequestration. An extralobar sequestered lung was resected at thoracotomy. Diagnostic problems and clinical features are presented. (orig.)

  1. Extralobar Pulmonary Sequestration Presenting with Recurring Massive Pleural Effusion in a Young Woman: A Challenging Case.

    Davoli, Fabio; Turello, Davide; Valente, Guido; Rena, Ottavio; Roncon, Alberto; Baietto, Guido; Casadio, Caterina

    2016-01-01

    We report a case of extralobar pulmonary sequestration (ELS) in a young woman, presenting with right recurring massive pleural effusion. The patient initially underwent a diagnostic Video Assisted Thoracic Surgery (VATS) for a suspected diffuse malignancy. After the aspiration of the pleural effusion we observed a highly vascularised cystic mass, with its origin from the right lower lobe. As we tried to retract the right lower lobe, the mass broke with massive bleeding requiring emergency right lateral thoracotomy. The mass was succesfully excised, resembling an extra-lobar pulmonary sequestration. The patient was discharged on post-operative day 5. PMID:26546093

  2. Capture and geological sequestration of CO2: fighting against global warming

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO2 sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO2 emissions between today and 2050. The CO2 capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  3. Mineral Influence on Microbial Survival During Carbon Sequestration

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    . Growth media was allowed to flow through a sand-packed column at a constant flow rate with pulses of liquid CO2 injected directly into the column. Preliminary data of dissolved iron measured from the effluent indicates that biofilm columns show a slight increase in dissolved iron concentrations before and after CO2 exposure in comparison to abiotic columns. These findings imply the important relationship between microbes and minerals during CO2 sequestration. The ability minerals have to contribute to the selection of microbes has important consequences to the survival of different microbial populations in the subsurface and the consequent biogeochemical changes that may happen.

  4. Private valuation of carbon sequestration in forest plantations

    Guitart, A. Bussoni [Facultad de Agronomia, Universidad de la Republica. Avda. E. Garzon, 780, CP 12.900, Montevideo (Uruguay); Rodriguez, L.C. Estraviz [Escola Superior de Agricultura ' ' Luiz de Queiroz' ' , Universidad de Sao, Paulo (Brazil)

    2010-01-15

    Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO{sub 2-e}) stored within a certain forest area. Potential CO{sub 2-e} above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO{sub 2-e}){sup -} {sup 1} and US$7.19 (MgCO{sub 2-e}){sup -} {sup 1} for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C{sup -} {sup 1} and US$35.1 Mg C{sup -} {sup 1} and yearly payments of US$4.4 m{sup -} {sup 3} and US$8.2 m{sup -} {sup 3} due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value, an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is

  5. Carbon sequestration in agricultural soils: a potential carbon trading opportunity?

    Full text: Emissions trading schemes emerging in Australia and internationally create a market mechanism by which release of greenhouse gases incurs a cost, and implementation of abatement measures generates a financial return. There is growing interest amongst Australian landholders in emissions trading based on sequestration of carbon in soil through modified land management practices. Intensively cropped soils have low carbon content, due to disturbance, erosion and regular periods of minimal organic matter input. Because cropping soils in Australia have lost a substantial amount of carbon there is significant potential to increase carbon stocks through improved land management practices. Evidence from long term trials and modelling indicates that modified cropping practices (direct drilling, stubble retention, controlled traffic) have limited impact on soil carbon (0 to +2 tC02e ha-' year1) whereas conversion from cropping to pasture gives greater increases. Small-increases in soil carbon over large areas can contribute significantly to mitigation of Australia's greenhouse gas emissions. Furthermore, increase in soil organic matter will improve soil health, fertility and resilience. However, the inclusion of soil carbon offsets in an emissions trading scheme cannot occur until several barriers are overcome. The first relates to credibility. Quantification of the extent to which specific land management practices can sequester carbon in different environments will provide the basis for promotion of the concept. Current research across Australia is addressing this need. Secondly, cost-effective and accepted methods of estimating soil carbon change must be available. Monitoring soil carbon to document change on a project scale is not viable due to the enormous variability in carbon stocks on micro and macro scales. Instead estimation of soil carbon change could be undertaken through a combination of baseline measurement to assess the vulnerability of soil carbon

  6. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  7. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    K. Lorenz; M.K. Shukla; R. Lal

    2006-04-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed mine soils (RMS). The experimental sites were characterized by distinct age chronosequences of reclaimed mine soil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by American Electrical Power. These sites were reclaimed (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover. This report presents the results from two forest sites reclaimed with topsoil application and reclaimed in 1994 (R94-F) and in 1973 (R73-F), and two forest sites without topsoil application and reclaimed in 1969 (R69-F) and 1962 (R62-F). Results from one site under grass without topsoil application and reclaimed in 1962 (R62-G) are also shown. Three core soil samples were collected from each of the experimental sites and each landscape position (upper, middle and lower) for 0-15 and 15-30 cm depths, and saturated hydraulic conductivity (Ks), volumes of transport (VTP) pores, and available water capacity (AWC) were determined. No significant differences were observed in VTP and AWC in 0-15 cm and 15-30 cm depths among the sites R94-F and R73-F reclaimed with topsoil application and under continuous forest cover (P<0.05). VTP and AWC did also not differ among upper, middle and lower landscape positions. However, saturated hydraulic conductivity in 0-15 cm depth at R73-F was significantly lower at the lower compared to the upper landscape position. No significant differences were observed for Ks among landscape positions at R94-F. No significant differences were observed in VTP and AWC among landscape positions and depths within R69-F, R62-F and R62-G. However, saturated hydraulic conductivity was higher in 0-15 cm depth at R62-F than at R69-F and R62-G. At the latter site, Ks was higher in the upper compared to the lower landscape position whereas Ks did not

  8. DNA repair

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  9. Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds

    Scott R. Reeves

    2003-03-31

    In October, 2000, the U.S. Department of Energy, through contractor Advanced Resources International, launched a multi-year government-industry R&D collaboration called the Coal-Seq project. The Coal-Seq project is investigating the feasibility of CO{sub 2} sequestration in deep, unmineable coalseams, by performing detailed reservoir studies of two enhanced coalbed methane recovery (ECBM) field projects in the San Juan basin. The two sites are the Allison Unit, operated by Burlington Resources, and into which CO{sub 2} is being injected, and the Tiffany Unit, operating by BP America, into which N{sub 2} is being injected (the interest in understanding the N{sub 2}-ECBM process has important implications for CO{sub 2} sequestration via flue-gas injection). The purposes of the field studies are to understand the reservoir mechanisms of CO{sub 2} and N{sub 2} injection into coalseams, demonstrate the practical effectiveness of the ECBM and sequestration processes, an engineering capability to simulate them, and to evaluate sequestration economics. In support of these efforts, laboratory and theoretical studies are also being performed to understand and model multi-component isotherm behavior, and coal permeability changes due to swelling with CO{sub 2} injection. This report describes the results of an important component of the overall project, applying the findings from the San Juan Basin to a national scale to develop a preliminary assessment of the CO{sub 2} sequestration and ECBM recovery potential of U.S. coalbeds. Importantly, this assessment improves upon previous investigations by (1) including a more comprehensive list of U.S. coal basins, (2) adopting technical rationale for setting upper-bound limits on the results, and (3) incorporating new information on CO{sub 2}/CH{sub 4} replacement ratios as a function of coal rank. Based on the results of the assessment, the following conclusions have been drawn: (1) The CO{sub 2} sequestration capacity of U

  10. Wrinkled DNA.

    Arnott, S.; Chandrasekaran, R.; Puigjaner, L C; Walker, J K; Hall, I H; Birdsall, D L; Ratliff, R L

    1983-01-01

    The B form of poly d(GC):poly d(GC) in orthorhombic microcrystallites in oriented fibers has a secondary structure in which a dinucleotide is the repeated motif rather than a mononucleotide as in standard, smooth B DNA. One set of nucleotides (probably GpC) has the same conformations as the smooth form but the alternate (CpG) nucleotides have a different conformation at C3'-O3'. This leads to a distinctive change in the orientation of the phosphate groups. Similar perturbations can be detecte...

  11. Active DNA Demethylation Mediated by DNA Glycosylases

    Zhu, Jian-Kang

    2009-01-01

    Active DNA demethylation is involved in many vital developmental and physiological processes of plants and animals. Recent genetic and biochemical studies in Arabidopsis have demonstrated that a subfamily of DNA glycosylases function to promote DNA demethylation through a base excision-repair pathway. These specialized bifunctional DNA glycosylases remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, resulting in a gap that is then filled with an unmethylated ...

  12. φ29 DNA polymerase

    Blanco, Luis; Bernad, Antonio; Salas, Margarita

    1996-01-01

    An improved method for determining the nucleotide base sequence of a DNA molecule employs a φ-29 type DNA polymerase modified to have reduced or no exonuclease activity. The method includes annealing the DNA molecule with a primer molecule able to hybridize to the DNA molecule; incubating the annealed mixture in a vessel containing four different deoxynucleoside triphosphates, a DNA polymerase, and one or more DNA synthesis terminating agents which terminate DNA synthesis at a specific nucleo...

  13. Test/QA Plan for Verification of Isotopic Carbon Dioxide Analyzers for Carbon Sequestration Monitoring

    The purpose of this verification test is to generate performance data on isotopic CO2 analyzers with a particular focus on applications relevant to GCS monitoring applications, specifically for the sequestration of CO2 from a coal-fired power plant. The data generated from this ...

  14. Cropping Intensity Impacts on Soil Aggregation and Carbon Sequestration in the Central Great Plains

    The predominant cropping system in the Central Great Plains is conventional tillage (CT) winter wheat–summer fallow. We investigated the effect 15 yrs of variable cropping intensity, fallow frequency, and tillage (CT and no-till [NT]) had on soil organic C (SOC) sequestration, particulate organic ma...

  15. The Rousse CO2 capture and sequestration plan moves to the monitoring stage

    An international geologist team has met up last 4 October on the site of Total firm at Rousse (France). At the program: presentation of the CO2 capture and sequestration plan carried out on the nearby Lacq site, and exchanges of expertise on this testing technology. After the first stage of the injection phase, the challenge is now in the monitoring. (O.M.)

  16. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  17. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation

    A 40 year projection of potential carbon sequestration is based on USDA Forest Service Forest Inventory and Analysis (FIA) data from the state of Georgia. The objective is to compare carbon sequestration under a sustainable management strategy versus a preservation strategy. FIA plots are projected ahead in time with hotdeck matching. This matches each subject plot with another plot from the database that represents the subject plot at a future time. The matched plot sequences are used to provide input data to a harvest scheduling program to generate a management strategy for the state. The sequestration from the management strategy is compared with a preservation strategy that involves no harvesting. Harvested wood is assumed to go into products with various half life decay rates. Carbon sequestration is increased as increasing proportions go into wood for energy, which is treated like a product with an infinite half life. Therefore, the harvested carbon does not return immediately to the atmosphere. Public land and land close to cities is assumed to be unavailable, and all other private land is assumed to be accessible. The results are presented as gigatonnes of CO2 equivalent to make them directly comparable to US annual carbon emissions. The conclusion is that forest management will sequester more above-ground carbon than preservation over a 40 year period if the wood is used for products with an average half life greater than 5 years.

  18. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per;

    2006-01-01

    An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......, using measured data only (level II plots) or a combination of measurements and model calculations (level I plots). Net C sequestration by forests in Europe (both trees and soil) was estimated at 0.117 Gton yr(-1), with the C sequestration in stem wood being approximately four times as high (0.094 Gton...

  19. Does soil fauna increase carbon mineralization or carbon sequestration in soil

    Frouz, Jan

    České Budějovice : Institute of Soil Biology BC AS CR, 2009. s. 22. [Central European Workshop on Soil Zoology /10./. 21.04.2009-24.04.2009, České Budějovice] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * carbon mineralization * carbon sequestration Subject RIV: EH - Ecology, Behaviour

  20. Utilization of multiple waste streams for acid gas sequestration and multi-pollutant control

    Soong, Y.; Dilmore, R.M.; Hedges, S.W.; Howard, B.H.; Romanov, V. [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA (United States)

    2012-03-15

    A novel CO{sub 2} sequestration concept is reported that combines SO{sub 2} removal and CO{sub 2} capture and sequestration, using a bauxite-processing residue which is a waste product and with waste brine water from oil/gas production. The bauxite residue/brine mixture of 46/54 v/v exhibited a CO{sub 2} sequestration capacity of > 0.078 mol L{sup -1} when exposed to pure CO{sub 2} at 20 C and 2.73 MPa. At a higher temperature of 140 C, a bauxite residue/brine mixture of 80/20 v/v indicated a CO{sub 2} sequestration capacity of > 0.094 mol L{sup -1} when exposed to pure CO{sub 2} at 3.85 MPa. Under the same reaction conditions, an identical ratio of reaction mixture exposed to simulated flue gas at a similar initial pressure was capable of sequestering 0.16 mol of CO{sub 2} and > 99.9 % of the applied SO{sub 2}. Calcite formation was verified as a product of bauxite/brine mixture carbonation. The caustic bauxite residues (pH 12.5-13.5) and acidic wastewater brine (pH 3-5) are also effectively neutralized after participating as reactive reagents in the conceptual process. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Assessment of biomass and carbon sequestration potentials of standing Pongamia pinnata in Andhra University, Visakhapatnam, India

    Annissa Muhammed Ahmedin, Keredin Temam Siraj,

    2013-07-01

    Full Text Available The significance of forested areas in carbon sequestration is conventional, and well renowned. But, hardly any attempts have been made to study the potential of trees in carbon sequestration from urban areas. Andhra University was selected for the study in Visakhapatnam city with the objectives of quantifying the total carbon sequestration by Pongamia pinata. Stratified random sampling was used for assessing biomass in two site and about 230 P. pinnata trees were taken. Biomass was calculated using Non-destructive allometric models. The biomass carbon content was taken as 55% of the tree biomass. Soil samples were taken from soil profile up to 40 cm depth for deep soils and up to bedrock for shallow soils at an interval of 10 and 20 cm for top and sub-soil respectively. Walkley‐Black Wet Oxidation method was applied for measuring soil organic carbon. Belowground biomass was estimated by the Root:Shoot ratio relationship. Total biomass and soil carbon was higher in Site-2 than in Site-1. Total carbon sequestration in Site-2 was found 1.59 times higher compared to Site-1 but the mean SOC stored was found higher in Site-1 than in Site-2, i.e.,14.48 tC/ha and 10.33 tC/ha, respectively.

  2. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis

    Nicolette Prevost

    2011-12-01

    Full Text Available Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing. Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze. A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.

  3. The Carbon Sequestration Potential of Soils: Some Data from Northern Italian Regions

    Fabio Petrella

    2007-06-01

    Full Text Available It is well known that soil plays, within terrestrial ecosystems, an essential role in many biogeochemical cycles and in the regulation of greenhouse gas fluxes. Less known, and often underestimated, is the importance of carbon sequestration potential of soil, especially trough humified carbon. Even within the agro-forestry practices of the Kyoto Protocol, most of the attention is devoted to the biomass carbon storage, rather than soil carbon sequestration. The highest potentialities for carbon sequestration are related to the arable lands, that accounts for the 11% of earth surface; the increase of 0.1% of organic carbon content in the 0-30 cm layer of cultivated soils, achievable with minor adjustment of agronomic practices, is equivalent to the sequestration of 5,000 millions t of carbon. On the other hand, the conversion of a grasslands into cultivated land determine, during 50-70 years, a release of 80-150 t CO2 ha-1.Within this paper the estimate of soil organic carbon of three Northern Italian regions is presented.

  4. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore

    Zagrobelny, Mika; Olsen, Carl Erik; Pentzold, Stefan;

    2014-01-01

    Considering the staggering diversity of bioactive natural products present in plants, insects are only able to sequester a small number of phytochemicals from their food plants. The mechanisms of how only some phytochemicals are sequestered and how the sequestration process takes place remains...

  5. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  6. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  7. High Sequestration, Low Emission, Food Secure Farming. Organic Agriculture - a Guide to Climate Change & Food Security

    Jordan, Robert; Müller, Adrian; Oudes, Anne

    2009-01-01

    - affordable high sequestration practices based on local resources - enables continuous farmer-based adaptation to climate change - ideal for the improvement of the world’s 400 million smallholder farms - locally adapted, affordable and people centered - empowers local communities - established practices, systems and markets - experience, practices and expertise to share

  8. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems

    Soil Organic Carbon (SOC) is an integral part of maintaining and measuring soil sustainability. This study was undertaken to document and better understand the relationships between two livestock-crop-forage systems and the sequestration of SOC with regards to soil sustainability and was conducted o...

  9. Congenital diaphragmatic hernia with recurrent gastric volvulus and pulmonary sequestration: A “chance” combination

    Kumar, Kashish; Khanna, Vikram; Dhua, Anjan Kumar; Bhatnagar, Veereshwar

    2016-01-01

    Congenital diaphragmatic hernia (CDH) is a known cause of secondary gastric volvulus. It is also known that bronchopulmonary sequestration (BPS) may be associated with CDH. An extremely rare case of BPS associated with gastric volvulus in a girl with left sided CDH is being reported. PMID:26862295

  10. Congenital diaphragmatic hernia with recurrent gastric volvulus and pulmonary sequestration: A "chance" combination

    Kashish Kumar

    2016-01-01

    Full Text Available Congenital diaphragmatic hernia (CDH is a known cause of secondary gastric volvulus. It is also known that bronchopulmonary sequestration (BPS may be associated with CDH. An extremely rare case of BPS associated with gastric volvulus in a girl with left sided CDH is being reported.

  11. Carbon sequestration by fruit trees--Chinese apple orchards as an example.

    Ting Wu

    Full Text Available Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits.

  12. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States.

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L; Wu, Yiping; Young, Claudia J

    2015-10-13

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands' contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency's land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal. PMID:26417074

  13. Mixed form of congenital cystic adenomatoid malformation and extralobar bronchopulmonary sequestration : a case report

    Bronchopulmonary sequestration (BPS) and congenital cystic adenomatoid malformation (CCAM) are rare, but both should be included in the differential diagnosis of fetal lung mass. We experienced a mixed form of Stocker type-III CCAM and extralobar BPS, and present this case, together with a review of the related literature. (author)

  14. GEO-SEQ Best Practices Manual. Geologic Carbon Dioxide Sequestration: Site Evaluation to Implementation

    Benson, Sally M.; Myer, Larry R.; Oldenburg, Curtis M.; Doughty, Christine A.; Pruess, Karsten; Lewicki, Jennifer; Hoversten, Mike; Gasperikova, Erica; Daley, Thomas; Majer, Ernie; Lippmann, Marcelo; Tsang, Chin-Fu; Knauss, Kevin; Johnson, James; Foxall, William; Ramirez, Abe; Newmark, Robin; Cole, David; Phelps, Tommy J.; Parker, J.; Palumbo, A.; Horita, J.; Fisher, S.; Moline, Gerry; Orr, Lynn; Kovscek, Tony; Jessen, K.; Wang, Y.; Zhu, J.; Cakici, M.; Hovorka, Susan; Holtz, Mark; Sakurai, Shinichi; Gunter, Bill; Law, David; van der Meer, Bert

    2004-10-23

    The first phase of the GEO-SEQ project was a multidisciplinary effort focused on investigating ways to lower the cost and risk of geologic carbon sequestration. Through our research in the GEO-SEQ project, we have produced results that may be of interest to the wider geologic carbon sequestration community. However, much of the knowledge developed in GEO-SEQ is not easily accessible because it is dispersed in the peer-reviewed literature and conference proceedings in individual papers on specific topics. The purpose of this report is to present key GEO-SEQ findings relevant to the practical implementation of geologic carbon sequestration in the form of a Best Practices Manual. Because our work in GEO-SEQ focused on the characterization and project development aspects, the scope of this report covers practices prior to injection, referred to as the design phase. The design phase encompasses activities such as selecting sites for which enhanced recovery may be possible, evaluating CO{sub 2} capacity and sequestration feasibility, and designing and evaluating monitoring approaches. Through this Best Practices Manual, we have endeavored to place our GEO-SEQ findings in a practical context and format that will be useful to readers interested in project implementation. The overall objective of this Manual is to facilitate putting the findings of the GEO-SEQ project into practice.

  15. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    Northern mid-latitude forests are a larger terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition. (author)

  16. Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects

    The Kyoto Protocol is the first step towards achieving the objectives of the United Nations Framework Convention on Climate Change and aims among others to promote 'the protection and enhancement of carbon sinks and reservoirs'. To encourage afforestation for carbon sequestration a project must be economically viable. This study uses a model to analyse the impact on project viability of a range of carbon monitoring options, international carbon credit value and discount rate, applied to a Pinus radiata afforestation project in New Zealand. Monitoring carbon in conjunction with conventional forest inventory shows the highest return. Long-term average carbon accounting has lower accounting costs, compared to annual and 5 yearly accounting, as monitoring is only required every 5-10 years until the long-term average is attained. In this study we conclude that monitoring soil carbon stocks is not economically feasible using any of the accounting methods, when carbon is valued at US$ 10/t. This conclusion may be relevant to forest carbon sequestration projects elsewhere in the world and suggests care is needed in selecting the appropriate carbon monitoring options to avoid the risk that costs could be higher than any monetary benefits from terrestrial carbon sequestration. This would remove any commercial incentive to afforest for carbon sequestration reasons and severely limit the use of forest sinks as part of any package of measures addressing the ultimate objective of the UNFCCC

  17. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    M.K. Shukla; R. Lal

    2004-07-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, bulk and core soil samples were collected from all 13 experimental sites for 0-15 cm, 15-30 cm, and 30-50 cm depths. In addition, 54 experimental plots (4 x 4 m) were established at three separate locations on reclaimed minesites to assess the influence of compost application on SOC during project period 2. This report presents the results from two sites reclaimed during 1978. The first site is under grass and the other under forest cover. The soil bulk density ({rho}{sub b}), SOC, total nitrogen (TN) concentrations and stocks were determined for these two sites on a 20 x 20 m grid. The preliminary analysis showed that the {rho}{sub b} ranged from 0.88 Mg m{sup -3} to 1.16 Mg m{sup -3} for 0-15 cm, 0.91 Mg m{sup -3} to 1.32 Mg m{sup -3} for 15-30 cm, and 1.37 Mg m{sup -3} to 1.93 Mg m{sup -3} for 30-50 cm depths in Cumberland tree site, and it's statistical variability was low. The variability in {rho}{sub b} was also low in Wilds grass site and ranged from 0.82 Mg m{sup -3} to 1.18 Mg m{sup -3} for 0-15 cm, 1.04 Mg m{sup -3} to 1.37 Mg m{sup -3} for 15-30 cm, and 1.18 Mg m{sup -3} to 1.83 Mg m{sup -3} for 30-50 cm depths. The {rho}{sub b} showed strong spatial dependence for 0-15 cm depth only in the Cumberland tree site. The SOC concentrations and stocks were highly variable with CV > 0.36 from all depths in both Wilds grass site and Cumberland tree site. The SOC stocks showed strong spatial dependence for 0-15 cm and 15-30 cm depths and moderate to strong for 20-50 cm depth in the Cumberland tree site. In contrast

  18. A preliminary study of CO2 sequestration of cement paste

    Choi, Y.; Lee, H.; Hwang, J.; Oh, J.; Lee, J.

    2013-12-01

    Recently, CO2 capture and storage technologies to reduce CO2 concentration in the atmosphere have been extensively studied because global warming is a worldwide issue. Waste cement is a potential raw material for mineral carbonation. In general, carbonation refers a calcite forming reaction in hydrated cement. The carbonation of portlandite in hydrated cement is very straightforward. However, the carbonation of CSH (calcium silicate hydrate: CaO-SiO2-H2O) composing the largest portion of hydrated cement involved in complex reactions and is a key to increase the carbonation efficiency of waste cement. The present study was conducted to have basic information for utilizing waste cement as a raw material for CO2 sequestration. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized, and fine grains sizing less than 0.15mm was used for experiment. For the direct aqueous carbonation experiment, 15g of sample is reacted with 200 ml of 1M NaHCO3 in 500ml HDPE bottle. 1M NaCl and 0.25 M MgCl2 was used for additives after leaching test with 0.25, 0.5, 1.0 and 1.5M NaCl and MgCl2 solutions, and the carbonation efficiency of these additives was evaluated. After reaction, the reacted cement paste and supernatant solution were separated from centrifuging at 5000rpm. The reacted cement paste was analyzed with XRD, DSC/TGA and SEM/EDS. The supernatant solution was filtered with 0.45um membrane filter, and nitric acid was added to lower 2 for preventing calcite precipitation. Then, chemical composition of solution was analyzed with ICP-OES. The leaching of Ca ion is increased with increasing NaCl concentration and is maximized at 1M solution. Extremely small leaching of Si ion indicates that NaCl feebly affect on the carbonation of CSH. The leaching of Ca ion in MgCl2 solution is 10 times greater than in NaCl solution and is maximized at 0.5M solution. The increased Ca leaching is probably caused by the decalcification of

  19. Destruction and Sequestration of H2O on Mars

    Clark, Benton

    2016-07-01

    The availability of water in biologically useable form on any planet is a quintessential resource, even if the planet is in a zone habitable with temperature regimes required for growth of organisms (above -18 °C). Mars and most other planetary objects in the solar system do not have sufficient liquid water at their surfaces that photosynthesis or chemolithoautotrophic metabolism could occur. Given clear evidence of hydrous mineral alteration and geomorphological constructs requiring abundant supplies of liquid water in the past, the question arises whether this H2O only became trapped physically as ice, or whether there could be other, more or less accessible reservoirs that it has evolved into. Salts containing S or Cl appear to be ubiquitous on Mars, having been measured in soils by all six Mars landed missions, and detected in additional areas by orbital investigations. Volcanoes emit gaseous H2S, S, SO2, HCl and Cl2. A variety of evidence indicates the geochemical fate of these gases is to be transformed into sulfates, chlorides, chlorates and perchlorates. Depending on the gas, the net reaction causes the destruction of between one and up to eight molecules of H2O per atom of S or Cl (although hydrogen atoms are also released, they are lost relatively rapidly to atmospheric escape). Furthermore, the salt minerals formed often incorporate H2O into their crystalline structures, and can result in the sequestration of up to yet another six (sometimes, more) molecules of H2O. In addition, if the salts are microcrystalline or amorphous, they are potent adsorbents for H2O. In certain cases, they are even deliquescent under martian conditions. Finally, the high solubility of the vast majority of these salts (with notable exception of CaSO4) can result in dense brines with low water activity, aH, as well as cations which can be inimical to microbial metabolism, effectively "poisoning the well." The original geologic materials on Mars, igneous rocks, also provide some

  20. Carbon sequestration from boreal wildfires via Pyrogenic Carbon production

    Santin, Cristina; Doerr, Stefan; Preston, Caroline

    2014-05-01

    allowed, for the first time, quantifying the whole range of PyC components found in-situ immediately after a typical boreal forest fire. The fire examined had a fireline intensity of ~8000 kw/m, which is typical of boreal fires in NW Canada and we found that more than 18% of the fuel consumed was converted to PyC. This rate by far exceeds previous estimates (1-3%) and suggests that PyC production has indeed been substantially underestimated. As boreal forests are the world's largest terrestrial biome and contain half of the forest ecosystem C with a third its net primary productivity being consumed by fire every year, our findings could imply that PyC production from wildfires is a potential carbon sequestration mechanism of sufficient magnitude that warrants inclusion in boreal and perhaps global C budget estimations.

  1. Capture and Sequestration of CO2 at the Boise White Paper Mill

    B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

    2010-06-16

    This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporation’s Econamine Plus™ carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOE’s Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately

  2. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  3. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil.

    Shrestha, Raj K; Lal, Rattan

    2006-08-01

    Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an

  4. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  5. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  6. Carbon Sequestration in Mediterranean Tidal Wetlands: San Francisco Bay and the Ebro River Delta (Invited)

    Callaway, J.; Fennessy, S.; Ibanez, C.

    2013-12-01

    Tidal wetlands accumulate soil carbon at relatively rapid rates, in large part because they build soil to counteract increases in sea-level rise. Because of the rapid rates of carbon sequestration, there is growing interest in evaluating carbon dynamics in tidal wetlands around the world; however, few measurements have been completed for mediterranean-type tidal wetlands, which tend to have relatively high levels of soil salinity, likely affecting both plant productivity and decomposition rates. We measured sediment accretion and carbon sequestration rates at tidal wetlands in two mediterranean regions: the San Francisco Bay Estuary (California, USA) and the Ebro River Delta (Catalonia, Spain). Sampling sites within each region represented a range of conditions in terms of soil salinity and plant communities, and these sites serve as potential analogs for long-term carbon sequestration in restored wetlands, which could receive credits under emerging policies for carbon management. Within San Francisco Bay, we collected six sediment cores per site at four salt marshes and two brackish tidal wetlands (two transects with three stations per transect at each site) in order to identify spatial variation both within and among wetlands in the Estuary. At the Ebro Delta, individual sediment cores were collected across 14 tidal wetland sites, including salt and brackish marshes from impounded areas, river mouths, coastal lagoon, and open bay settings. Cores were collected to 50 cm, and cores were dated using 137Cs and 210Pb. Most sites within San Francisco accreted 0.3-0.5 cm/yr, with slightly higher rates of accretion at low marsh stations; accretions rates based on 137Cs were slightly higher than those based on 210Pb, likely because of the shorter time frame covered by 137Cs dating. Accretion rates from the Ebro Delta sites were similar although more variable, with rates based on 137Cs ranging from 0.1 to 0.9 cm/yr and reflecting the wide range of conditions and management

  7. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change. PMID

  8. Investigating the Potential for Large-Scale Carbon Dioxide Sequestration in Shale Gas Formations

    Edwards, R.; Celia, M. A.; Kanno, C.; Bandilla, K.; Doster, F.

    2014-12-01

    Recent studies [Godec et al., Int. J. Coal. Geol., 2013; Liu et al., IJGGC, 2013; Tao and Clarens, ES&T, 2013] have suggested the possibility of geological CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. The kinetics and practicality of injecting large amounts of CO2 into shale gas wells at the appropriate scale remain as open questions. To further investigate the feasibility of CO2 sequestration, models of gas flow and storage in a horizontal shale gas well were developed based on observed behavior of gas production data and the associated models that are consistent with those observations [Patzek et al., PNAS, 2013]. Both analytical and numerical models were used to investigate the well-scale kinetics of CO2 injection into a typical shale gas well. It was found that relatively low rates could be injected into individual wells compared with CO2 emissions from large industrial sources, and that injection rates would rapidly decline with time. Based on typical well parameters, 170 wells would be required to inject the emissions from one large coal-fired power plant over a 15 year period. Significant practical and logistical challenges to industrial-scale CO2 sequestration in depleted shale gas formations arise due to the relatively low injection rates, low storage capacity of individual wells and large numbers of wells required. These challenges include the difficulty of managing the required large, ever-changing networks of injection wells, potentially prohibitive energy requirements, and leakage concerns in hydraulically fractured wells. The combination of these factors, and the fact that they are all likely less of an issue for other potential geological sequestration targets such as deep saline aquifers, mean that targets in conventional formations are more likely to be suitable for industrial-scale CO2 sequestration.

  9. Leucocyte sequestration in endotoxemia and the effect of low-molecular-weight dextran

    Leucocyte sequestration in various organs during endotoxin-induced shock in sheep was studied using leucocytes labelled with indium 111 oxine. A moderate dose of Escherichia coli endotoxin (10 μg/kg body weight) was slowly infused intravenously in 16 sheep, 9 of which subsequently received a continuous i.v. infusion of low-molecular-weight dextran (LMWD) given at an infusion rate of 15 ml/h over 4 h, starting 30 min after administration of the endotoxin. By that time, signs of acute lung injury had developed, thus mimicking a clinical situation. The remaining animals were untreated and served as controls. A marked increase in lung, liver and kidney leucocyte sequestration, together with a sharp, corresponding drop in splenic activity and leucocyte count in peripheral blood, occurred shortly after the endotoxin infusion in both groups. However, after 90 min there was a significantly lower leucocyte activity in the lungs, liver and kidneys of LMWD-treated animals as compared with controls. Less marked hemodynamic and respiratory alterations were also observed in animals treated with LMWD. The present study confirms previous reports that significant leucocyte sequestration in the lungs occurs early during endotoxemia. Furthermore, we found that leucocyte sequestration also occurs in the liver and kidneys, which could explain the development of multi-organ failure, frequently described in clinical sepsis. Even after injury to organs, LMWD infusion seems to be beneficial by significantly lowering leucocyte sequestration and could therefore be justified as an addition to the arsenal of interventions used in the treatment of endotoxemia. (orig.)

  10. Carbon Sequestration and Carbon Markets for Tree-Based Intercropping Systems in Southern Quebec, Canada

    Kiara S. Winans

    2016-01-01

    Full Text Available Since agriculture directly contributes to global anthropogenic greenhouse gas (GHG emissions, integrating trees into agricultural landscapes through agroforestry systems is a viable adaptive strategy for climate change mitigation. The objective of this study was to evaluate the carbon (C sequestration and financial benefits of C sequestration according to Quebec’s Cap-and-Trade System for Greenhouse Gas Emissions Allowances (C & T System or the Système de plafonnement et d’échange de droits d’émission de gaz à effet de serre du Québec (SPEDE program for two experimental 10-year-old tree-based intercropping (TBI systems in southern Quebec, Canada. We estimated total C stored in the two TBI systems with hybrid poplar and hardwoods and adjacent non-TBI systems under agricultural production, considering soil, crop and crop roots, litterfall, tree and tree roots as C stocks. The C sequestration of the TBI and adjacent non-TBI systems were compared and the market value of the C payment was evaluated using the net present value (NPV approach. The TBI systems had 33% to 36% more C storage than adjacent non-TBI systems. The financial benefits of C sequestration after 10 years of TBI practices amounted to of $2,259–$2,758 CAD ha−1 and $1,568–$1,913 CAD ha−1 for St. Edouard and St. Paulin sites, respectively. We conclude that valorizing the C sequestration of TBI systems could be an incentive to promote the establishment of TBI for the purpose of GHG mitigation in Quebec, Canada.

  11. DNA ligase I, the replicative DNA ligase

    Howes, Timothy R.L.; Tomkinson, Alan E.

    2012-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each...

  12. A reversible metal ion fueled DNA three-way junction molecular device for ``turn-on and -off'' fluorescence detection of mercury ions (II) and biothiols respectively with high selectivity and sensitivity

    Ma, Long; Wu, Guanrong; Li, Yufeng; Qin, Ping; Meng, Lingpei; Liu, Haiyan; Li, Yuyin; Diao, Aipo

    2015-10-01

    We constructed a reversible molecular device in the nanoscale based on a DNA three-way junction (3WJ) fueled by Hg2+ binding and sequestration. It is highly responsive to external stimuli, which brings about optically detectable global structural changes. Such a DNA device can serve as a novel ``turn-on and -off'' fluorescent sensor for Hg2+ and biothiol detection with high selectivity and sensitivity.We constructed a reversible molecular device in the nanoscale based on a DNA three-way junction (3WJ) fueled by Hg2+ binding and sequestration. It is highly responsive to external stimuli, which brings about optically detectable global structural changes. Such a DNA device can serve as a novel ``turn-on and -off'' fluorescent sensor for Hg2+ and biothiol detection with high selectivity and sensitivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04688b

  13. DNA modifications: Another stable base in DNA

    Brazauskas, Pijus; Kriaucionis, Skirmantas

    2014-12-01

    Oxidation of 5-methylcytosine has been proposed to mediate active and passive DNA demethylation. Tracking the history of DNA modifications has now provided the first solid evidence that 5-hydroxymethylcytosine is a stable epigenetic modification.

  14. Synthesis of DNA

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  15. Sperm DNA oxidative damage and DNA adducts.

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  16. DNA glycosylases: in DNA repair and beyond

    Jacobs, Angelika L.; Schär, Primo

    2011-01-01

    The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereb...

  17. DNA vaccines and bacterial DNA in immunity

    Bandholtz, Lisa Charlotta

    2002-01-01

    This thesis describes DNA-based vaccination and the importance of bacterial DNA in different immunological perspectives. Intranasal (i.n.) DNA vaccination utilizing a plasmid encoding the chlamydial heat shock protein 60 (p-hsp-60) generated lower bacterial burden and reduced pathology in the lungs of mice after subsequent infection with C. pneumoniae. This DNA vaccine- induced protection was dependent on T cells and induction of IFN-gamma. Co-administration of a plasmid...

  18. DNA encoding a DNA repair protein

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  19. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices

    Chappell, Adrian; Baldock, Jeffrey A.

    2016-09-01

    Improved management of agricultural land has the potential to reduce greenhouse gas emissions and to reduce atmospheric CO2 via soil carbon sequestration. However, SOC stocks are reduced by soil erosion which is commonly omitted from calculations of crop production, C cycling, C sequestration and C accounting. We used fields from the wind eroded dryland cropping region of Western Australia to demonstrate the global implications for C sequestration and C accounting of omitting soil erosion. For the fields we previously estimated mean net (1950s-1990) soil erosion of 1.2 ± 1.0 t ha-1 y-1. The mean net (1990-2013) soil erosion increased by nearly four times to 4.4 ± 2.1 t ha-1 y-1. Conservation agriculture has evidently not reduced wind erosion in this region. The mean net (1990-2013) SOC erosion was up to 0.2 t C ha-1 y-1 across all sampled fields and similar to measured sequestration rates in the region (up to 0.5 t C ha-1 y-1; 10 years) for many management practices recommended for building SOC stocks. The minimum detectable change (MDC; 10 years) of SOC without erosion was up to 0.2 t C ha-1 y-1 whilst the MDC of SOC with erosion was up to 0.4 t C ha-1 y-1. These results illustrate the generally applicable outcome: (i) if SOC erosion is equal to (or greater than) the increase in SOC due to management practices, the change will not be detectable (or a loss will be evident); (ii) without including soil erosion in SOC sequestration calculations, the monitoring of SOC stocks will lead to, at best the inability to detect change and, at worst the false impression that management practices have failed to store SOC. Furthermore, continued omission of soil erosion in crop production, C accounting and C sequestration will most likely undermine confidence in policy designed to encourage adoption of C farming and the attendant benefits for soil stewardship and food security.

  20. Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration

    Hoversten, G. Michael; Gasperikova, Erika

    2003-10-31

    Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly

  1. Lessons Learned from Ongoing Field Tests of Geologic CO2 Sequestration

    McPherson, B.; McColpin, G.; Rutledge, J.; Pawar, R.; Deo, M.; Rose, P.; Lee, S.; Han, W.; Lu, C.

    2008-12-01

    We present lessons learned - an attempt to describe what we know and do not know- based on ongoing field tests of geologic carbon sequestration. The Southwest Regional Partnership on Carbon Sequestration, funded by the U.S. Department of Energy and managed by DOE's National Energy Technology Laboratory, is conducting three separate field tests of geologic sequestration that include extensive monitoring and analysis of the fate of injected CO2. The CO2 injection sites include the Aneth oilfield in southern Utah, the coalbed "fairway" in the San Juan basin in northern New Mexico, and the SACROC oilfield in the Permian basin of west Texas. Results of the ongoing sequestration field tests are both encouraging and problematic. At the San Juan basin coalbed injection test, we forecasted coalbed swelling following injection to be detectable at the surface. Tiltmeter results indicated subsidence, not uplift, and poroelastic models of the site suggest that swelling is likely occurring, but cleat compaction may be responsible for the net subsidence. In a similar context, initial poroelastic models of the Aneth, Utah injection site suggested minimal rock strain would be induced by the 100,000 tons of CO2 injected over the past year, but this forecast is belied by daily microearthquakes recorded at the site (albeit very small events: M -1 to 0 ). On the other hand, our initial multiphase flow models of the Aneth site provided forecasts of CO2 migration that turned out to be extremely consistent with observed tracer test results, suggesting that our estimated permeability distributions and other model parameters were effective to some extent. These field tests suggest that probably the greatest challenges are (1) verification or confirmation of trapping mechanisms, and (2) monitoring of processes in the "intermediate zone," the section of strata above the sequestration formation topseal unit and below the upper 100 m of the section, (3) developing meaningful geologic

  2. Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands

    Batalla, Inma M.; Knudsen, Marie Trydeman; Mogensen, Lisbeth; Hierro, O.; Pinto, M.; Hermansen, John Erik

    2015-01-01

    The link between climate change and livestock production has made carbon footprint based on life cycle assessment a world-wide indicator to assess and communicate the amount of greenhouse gases emitted per unit of product. Nevertheless, the majority of studies have not included soil carbon...... sequestration in the carbon footprint calculations. Especially in grasslands, soil carbon sequestration might be a potential sink to mitigate greenhouse gas emissions in the livestock sector. However, there is no commonly accepted methodology on how to include soil carbon sequestration in carbon footprint...... calculations. In this study, the carbon footprint of sheep milk was estimated from 12 farms in Northern Spain. Before taken into account contribution from soil carbon sequestration in the calculation, the carbon footprint values varied from 2.0 to 5.2 kg CO2 eq. per kg Fat and Protein Corrected Milk (FPCM...

  3. 广东省营造碳汇林的思考%Thoughts on Carbon Sequestration Afforestation in Guangdong Province

    李清湖; 林中大

    2014-01-01

    阐述了碳汇造林的重要意义,分析了广东省碳汇林建设的有利条件以及发展现状,指出近年来碳汇造林存在的主要问题,并提出了促进碳汇造林建设的具体对策,为广东省碳汇林业发展提供借鉴。%This paper illustrated the significance of carbon sequestration afforestation and analysed the advan-tage conditions and current status of carbon sequestration forestry construction in Guangdong province. The ma-jor problems of carbon sequestration afforestation in recent years were also pointed out. Besides,the paper pro-posed concrete countermeasures to promote the development of carbon sequestration forestry in Guangdong prov-ince.

  4. What is Carbon? Conceptualising carbon and capabilities in the context of community sequestration projects in the global South

    Twyman, Chasca; Smith, Thomas; Arnall, Alex

    2015-01-01

    Carbon has been described as a ‘surreal commodity.’ While carbon trading, storage, sequestration, and emissions have become a part of the contemporary climate lexicon, how carbon is understood, valued, and interpreted by actors responsible for implementing carbon sequestration projects is still unclear. In this review paper, we are concerned with how carbon has come to take on a range of meanings. In particular, we appraise what is known about the situated meanings that people involved in del...

  5. Carbon Sequestration Potential of Teak Plantations of Different Agro-Climatic Zones and Age-Gradations of Southern India

    Milkuri Chiranjeeva Reddy; R. M. Priya; S. L. Madiwalar

    2014-01-01

    Carbon sequestration potential of teak plantations in different agro-climatic zones of Southern India, viz. Northern Dry Zone, Northern Transition Zone, and Hilly Zone were studied. Teak plantations belonging to three age gradations viz. 10, 15 and 20 years were considered for the study. Above ground biomass was computed based on volume estimation and wood density after considering three 10 x 10 m plots. Carbon sequestration potential of teak plantations on farmlands differed significantly wi...

  6. Comparison of the Farming System and Carbon Sequestration between Conventional and Organic Rice Production in West Java, Indonesia

    M. Faiz Syuaib; Masakazu Komatsuzaki

    2010-01-01

    Organic farming provides many benefits in Indonesia: it can improve soil quality, food quality and soil carbon sequestration. This study was designed to compare soil carbon sequestration levels between conventional and organic rice farming fields in west Java, Indonesia. The results from soil analysis indicate that organic farming leads to soil with significantly higher soil carbon storage capacity than conventional farming. Organic farming can also cut some farming costs, but it requires abo...

  7. Carbon Sequestration in Community Forests: Trade-offs, Multiple Outcomes and Institutional Diversity in the Bolivian Amazon

    Bottazzi, Patrick; Crespo, David; Soria, Harry; Dao, Quoc-Hy; Serrudo, Marcelo; Benavides, Jean Paul; Schwarzer, Stefan; Rist, Stephan

    2014-01-01

    Carbon sequestration in community forests presents a major challenge for the Reducing Emissions from Deforestation and Forest Degradation (REDD+) programme. This article uses a comparative analysis of the agricultural and forestry practices of indigenous peoples and settlers in the Bolivian Amazon to show how community-level institutions regulate the trade-offs between community livelihoods, forest species diversity, and carbon sequestration. The authors argue that REDD+ implementation in suc...

  8. Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio

    Ogden, Joan M; Johnson, Nils; Yang, Christopher; Ni, Jason; Lin, Zhenhong; Figueroa, José; Johnson, Joshua

    2005-01-01

    Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration DOE/NETL (CCS 2005), Arlington, VA, May 2 - 5, 2005 Researchers at the University of California, Davis, in support of the Department of Energy's Fossil Energy programs, are developing engineering/economic/geographic models of fossil hydrogen energy systems with carbon capture and sequestration. In this paper, we present initial results from an ongoing assessment of alternative transition strategies from toda...

  9. ECOLOGICAL, ECONOMIC AND SOCIAL ISSUES OF IMPLEMENTING CARBON DIOXIDE SEQUESTRATION TECHNOLOGIES IN THE OIL AND GAS INDUSTRY IN RUSSIA

    Alexey Cherepovitsyn; Alina Ilinova

    2016-01-01

    The objective of this paper is to define the main approaches to the implementation of carbon dioxide sequestration technologies in the oil and gas industry in Russia, and also to identify ecological, economic and social issues of their usage. Promotion of the technology of carbon dioxide (CO2) sequestration by means of capturing and injecting it into underground reservoirs is a promising mechanism of reducing carbon dioxide concentration. Carbon capture and storage (CCS) technologies might be...

  10. Human placental DNA methyltransferase: DNA substrate and DNA binding specificity.

    Wang, R.Y.; Huang, L. H.; Ehrlich, M

    1984-01-01

    We have partially purified a DNA methyltransferase from human placenta using a novel substrate for a highly sensitive assay of methylation of hemimethylated DNA. This substrate was prepared by extensive nick translation of bacteriophage XP12 DNA, which normally has virtually all of its cytosine residues replaced by 5-methylcytosine (m5C). Micrococcus luteus DNA was just as good a substrate if it was first similarly nick translated with m5dCTP instead of dCTP in the polymerization mixture. At ...

  11. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy’s law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green’s function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  12. What prospects for soil carbon sequestration in the CDM? COP-6 and beyond

    Although generally supported by international experts and the United Nations Intergovernmental Panel on Climate Change (IPCC), carbon (C) sequestration has long been a contentious and difficult issue in global climate negotiations. As the recent sixth Conference of the Parties (COP-6) held in The Hague in November 2000 demonstrated, the 'sinks' issue divides both the industrialized countries and the developing countries. To understand the background of the C sink controversy, and in order to assess the political acceptability of direct foreign investments in soil C sequestration in developing countries as an eligible climate policy measure, this paper briefly summarizes the main issues in the international policy debate on sinks. The paper finally analyzes the informal outcomes of COP-6 and attempts to predict the outcomes of the resumed COP-6 (COP-6 bis) to be held in July 2001. (author)

  13. A new look at ocean carbon remineralization for estimating deepwater sequestration

    Guidi, L.; Legendre, L.; Reygondeau, Gabriel; Uitz, J.; Stemmann, L.; Henson, S.A.

    2015-01-01

    The "biological carbon pump" causes carbon sequestration in deep waters by downward transfer of organic matter, mostly as particles. This mechanism depends to a great extent on the uptake of CO2 by marine plankton in surface waters and subsequent sinking of particulate organic carbon (POC) through...... the water column. Most of the sinking POC is remineralized during its downward transit, and modest changes in remineralization have substantial feedback on atmospheric CO2 concentrations, but little is known about global variability in remineralization. Here we assess this variability based on modern...... provinces, where these estimates range between -50 and +100% of the commonly used globally uniform remineralization value. We apply the regionalized values to satellite-derived estimates of upper ocean POC export to calculate regionalized and ocean-wide deep carbon fluxes and sequestration. The resulting...

  14. Rare presentation of intralobar pulmonary sequestration associated with repeated episodes of ventricular tachycardia.

    Rao, D Sheshagiri; Barik, Ramachandra

    2016-07-26

    Arterial supply of an intralobar pulmonary sequestration (IPS) from the coronary circulation is extremely rare. A significant coronary steal does not occur because of dual or triple sources of blood supply to sequestrated lung tissue. We present a 60-year-old woman who presented to us with repeated episodes of monomorphic ventricular tachycardia (VT) in last 3 mo. Radio frequency ablation was ineffective. On evaluation, she had right lower lobe IPS with dual arterial blood supply, i.e., right pulmonary artery and the systemic arterial supply from the right coronary artery (RCA). Stress myocardial perfusion scan revealed significant inducible ischemia in the RCA territory. Coronary angiogram revealed critical stenosis of proximal RCA just after the origin of the systemic artery supplying IPS. The critical stenosis in the RCA was stented. At 12 mo follow-up, she had no further episodes of VT or angina. PMID:27468336

  15. Development of a Software Framework for System-Level Carbon Sequestration Risk Assessment

    Miller, R.

    2013-02-28

    The overall purpose of this project was to identify, evaluate, select, develop, and test a suite of enhancements to the GoldSim software program, in order to make it a better tool for use in support of Carbon Capture and Sequestration (CCS) projects. The GoldSim software is a foundational tool used by scientists at NETL and at other laboratories and research institutions to evaluate system-level risks of proposed CCS projects. The primary product of the project was a series of successively improved versions of the GoldSim software, supported by an extensive User’s Guide. All of the enhancements were tested by scientists at Los Alamos National Laboratory, and several of the enhancements have already been incorporated into the CO{sub 2}-PENS sequestration model.

  16. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  17. Global potential for carbon sequestration. Geographical distribution, country risk and policy implications

    Benitez, Pablo C. [Department of Economics, University of Victoria, PO Box 1700 STN CSC, Victoria, BC (Canada); McCallum, Ian; Obersteiner, Michael [Forestry Project, International Institute for Applied Systems Analysis (Austria); Yamagata, Yoshiki [National Institute for Environmental Studies (Japan)

    2007-01-15

    We have provided a framework for identifying least-cost sites for afforestation and reforestation and deriving carbon sequestration cost curves at a global level in a scenario of limited information. Special attention is given to country risk in developing countries and the sensitivity to spatial datasets. Our model results suggest that within 20 years and considering a carbon price of USD 50/tC, tree-planting activities could offset 1 year of global carbon emissions in the energy sector. However, if we account for country risk considerations-associated with political, economic and financial risks - carbon sequestration is reduced by approximately 60%. With respect to the geography of supply, illustrated by grid-scale maps, we find that most least-cost sites are located in regions of developing countries such as the Sub-Sahara, Southeast Brazil and Southeast Asia. (author)

  18. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  19. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas

    Chen, Kevin G.; Valencia, Julio C.; Lai, Barry; Zhang, Guofeng; Paterson, Jill K.; Rouzaud, François; Berens, Werner; Wincovitch, Stephen M.; Garfield, Susan H.; Leapman, Richard D.; Hearing, Vincent J.; Gottesman, Michael M.

    2006-06-01

    Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an 8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. cancer | melanosomes | skin | tumor therapy | multidrug resistance

  20. 信息动态%Dual poroelastic response of coal to C02 sequestration

    2011-01-01

    Geological sequestration of CO2 in coal seams shows great potential to reduce greenhouse gas emissions and has been studied worldwide in recent years. The typical dual-porosity property and organic component of coal together with the liquid state and steady property of C02, as well as methane production make coal seams a promising target.However, the C02 sequestration in coal seams involved a serial of mechanical problems such as coal deformation, the adsorption, seepage and diffusion of gas, which restricted the implement of this technology. Studied the multi-physics system which coupled the coal deformation, gas adsorption, seepage and diffusion equations on the basis of poroelastic medium, theory analysis and numerical simulation, and the following conclusions are obtained.

  1. Severe Vesico-ureteral Reflux and Urine Sequestration: Mathematical Relations and Urodynamic Consequences

    de Jesus, Lisieux Eyer

    2009-01-01

    Some simple mathematical formulae to calculate the volumes of proximal pyeloureteral reflexive systems are presented, and the results are compared to bladder capacity values. Using the results of the calculi, the author discusses possible implications of severe urinary sequestration in the pyeloureteral systems. Using geometrical and topological approximations we calculate the volumes of ureters and renal pelvises, applying in vivo measurements obtained from conventional ultrasound, retrograde cystourethrograms and topographic anatomic references. Approximations use 2 decimals and assumed $\\pi$ value was 3.14. Ureteral and pyelic volumes are calculated, respectively, from the mathematical formula for the cylinder and cone volumes. Dolicomegaureter are compensated using proportional calculi. Bladder volumes are estimated from conventional formulae. Proximal urinary sequestration is compared between infants and older children with VUR. Mechanisms of direct induction of bladder urodynamic failure from VUR are su...

  2. Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution

    Halberg, Niels; Hermansen, John Erik; Kristensen, Ib Sillebak;

    2010-01-01

    Organic rules for grazing and access to outdoor areas in pig production may be met in different ways, which express compromises between considerations for animal welfare, feed self-reliance and negative environmental impact such as greenhouse gas emissions and nitrate pollution. This article...... weight pig, which was significantly higher than the indoor fattening system and the tent system, yielding 2.9 and 2.8 kg CO2-eq. kg-1 pig, respectively. This was 7-22% higher compared with Danish conventional pig production but, due to the integration of grass-clover in the organic crop rotations...... these had an estimated net soil carbon sequestration. When carbon sequestration was included in the LCA then the organic systems had lower greenhouse gas emissions compared with conventional pig production. Eutrophication in nitrate equivalents per kg pig was 21-65% higher in the organic pig systems...

  3. Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E;

    2015-01-01

    Crop management factors, such as tillage, rotation, and straw retention, need to be long-term to allow conclusions on effects on crop yields, nitrate leaching, and carbon sequestration. In 2002, two field experiments, each including four cash crop rotations, were established on soils with 9 and 15......% clay, under temperate, coastal climate conditions. Direct drilling and harrowing to two different depths were compared to plowing with respect to yield, nitrate N leaching, and carbon sequestration. For comparison of yields across rotations, grain and seed dry matter yields for each crop were converted...... retention did not significantly increase yields, nor did it reduce leaching, while fodder radish (Raphanus sativus L.) as a catch crop was capable of reducing nitrate leaching to a low level. Thus, YSL of winter wheat (Triticum aestivum L.) was higher than for spring barley (Hordeum vulgare L.) grown after...

  4. Intralobar pulmonary sequestration associated with marked elevation of serum carbohydrate antigen 19-9.

    Ambiru, Satoshi; Nakamura, Shunta; Fukasawa, Motoji; Mishima, Osamu; Kuwahara, Takeichiro; Takeshi, Akihiko

    2009-12-01

    This report describes a 62-year-old man who experienced elevated serum carbohydrate antigen 19-9 (CA19-9) levels (>500 U/mL) for 4 years, and was finally diagnosed with right intralobar pulmonary sequestration. Surgery confirmed the presence an aberrant artery arising from the descending thoracic aorta and entering the right lower lobe basal segment. Immunohistochemistry demonstrated markedly positive staining of CA19-9 in the ciliated cylindrical epithelia, alveoli, and mucus in the cysts. After pulmonary resection, CA19-9 levels decreased to within a normal range. Therefore, the cause of the elevated serum CA19-9 levels in this case was almost certainly due to intralobar pulmonary sequestration. PMID:19932280

  5. The ecological and economic potential of carbon sequestration in forests: examples from South America.

    de Koning, Free; Olschewski, Roland; Veldkamp, Edzo; Benítez, Pablo; López-Ulloa, Magdalena; Schlichter, Tomás; de Urquiza, Mercedes

    2005-05-01

    Costs of reforestation projects determine their competitiveness with alternative measures to mitigate rising atmospheric CO2 concentrations. We quantify carbon sequestration in above-ground biomass and soils of plantation forests and secondary forests in two countries in South America-Ecuador and Argentina-and calculate costs of temporary carbon sequestration. Costs per temporary certified emission reduction unit vary between 0.1 and 2.7 USD Mg(-1) CO2 and mainly depend on opportunity costs, site suitability, discount rates, and certification costs. In Ecuador, secondary forests are a feasible and cost-efficient alternative, whereas in Argentina reforestation on highly suitable land is relatively cheap. Our results can be used to design cost-effective sink projects and to negotiate fair carbon prices for landowners. PMID:16042281

  6. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria.

    Kumar, Kanhaiya; Dasgupta, Chitralekha Nag; Nayak, Bikram; Lindblad, Peter; Das, Debabrata

    2011-04-01

    CO(2) sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO(2) in the atmosphere. They, in addition to CO(2) capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO(2) are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO(2) present in the flue gas including SO(X), NO(X). However, there are additional factors like the availability of light, pH, O(2) removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO(2) sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor. PMID:21334885

  7. Acute Splenic Sequestration Crisis in a 70-Year-Old Patient With Hemoglobin SC Disease.

    Squiers, John J; Edwards, Anthony G; Parra, Alberto; Hofmann, Sandra L

    2016-01-01

    A 70-year-old African American female with a past medical history significant for chronic bilateral shoulder pain and reported sickle cell trait presented with acute-onset bilateral thoracolumbar pain radiating to her left arm. Two days after admission, Hematology was consulted for severely worsening microcytic anemia and thrombocytopenia. Examination of the patient's peripheral blood smear from admission revealed no cell sickling, spherocytes, or schistocytes. Some targeting was noted. A Coombs test was negative. The patient was eventually transferred to the medical intensive care unit in respiratory distress. Hemoglobin electrophoresis confirmed a diagnosis of hemoglobin SC disease. A diagnosis of acute splenic sequestration crisis complicated by acute chest syndrome was crystallized, and red blood cell exchange transfusion was performed. Further research is necessary to fully elucidate the pathophysiology behind acute splenic sequestration crisis, and the role of splenectomy to treat hemoglobin SC disease patients should be better defined. PMID:27047980

  8. Method and apparatus for ion sequestration and a nanostructured metal phosphate

    Mattigod, Shas V.; Fryxell, Glen E.; Li, Xiaohong; Parker, Kent E.; Wellman, Dawn M.

    2010-04-06

    A nanostructured substance, a process for sequestration of ionic waste, and an ion-sequestration apparatus are disclosed in the specification. The nanostructured substance can comprise a Lewis acid transition metal bound to a phosphate, wherein the phosphate comprises a primary structural component of the substance and the Lewis acid transition metal is a reducing agent. The nanostructured substance has a Brunner-Emmet-Teller (BET) surface area greater than or equal to approximately 100 m.sup.2/g, and a distribution coefficient for an analyte, K.sub.d, greater than or equal to approximately 5000 ml/g. The process can comprise contacting a fluid and a nanostructured metal phosphate. The apparatus can comprise a vessel and a nanostructured metal phosphate. The vessel defines a volume wherein a fluid contacts the nanostructured metal phosphate.

  9. Pilot inquiry on the perception of the CO2 capture and sequestration technology in France

    We led a communication experiment on the perception of carbon capture and sequestration, an emergent climate change mitigation technology. We tested the sensitivity of the approbation level to the effects of 1/ Additional information on the risks and 2/ Semantics (Storage versus Sequestration). We collected about 600 answers using on-line self-selected survey. Results reveals that semantics can have a significant effect on the level of appreciation. The survey also shows the opinion is not firmly anchored, as an additional information has a significant effect. The information about risks led respondents to decrease their level of appreciation. Admittedly, this method does not allow to control well the sample biases. The results only allow to reject the hypothesis 'Semantic and additional information are neutral'. This pilot allowed us to elaborate a full-scale experiment, given to a representative sample of the French population in April 2007. (authors)

  10. Pulmonary sequestration. A 131I whole body scintigraphy false-positive result

    A 35-year-old woman affected by a well-differentiated papillary thyroid carcinoma was referred to our hospital to perform a 131Iodine (131I) whole body scintigraphy for restaging purpose. The patient had been previously treated with total thyroidectomy and three subsequent doses of 131I for the ablation of a remnant jugular tissue and a suspected metastatic focus at the superior left hemi-thorax. In spite of the previous treatments with 131I, planar and tomographic images showed the persistence of an area of increased uptake at the superior left hemi-thorax. This finding prompted the surgical resection of the lesion. Histological examination of the surgical specimen showed the presence of a pulmonary tissue consistent with pulmonary sequestration. Even though rare, pulmonary sequestration should be included in the potential causes of false-positive results of radioiodine scans. (author)

  11. The Ecological and Economic Potential of Carbon Sequestration in Forests: Examples from South America

    Koning, Free de; Olschewski, Roland; Veldkamp, Edzo; Benitez, Pablo; Lopez-Ulloa, Magdalena; Schlichter, Tomas; Urquiza, Mercedes de [Georg-August Univ., Goettingen (Germany)

    2005-05-01

    Costs of reforestation projects determine their competitiveness with alternative measures to mitigate rising atmospheric CO{sub 2} concentrations. We quantify carbon sequestration in above-ground biomass and soils of plantation forests and secondary forests in two countries in South America: Ecuador and Argentina, and calculate costs of temporary carbon sequestration. Costs per temporary certified emission reduction unit vary between 0.1 and 2.7 USD/Mg CO{sub 2} and mainly depend on opportunity costs, site suitability, discount rates, and certification costs. In Ecuador, secondary forests are a feasible and cost-efficient alternative, whereas in Argentina reforestation on highly suitable land is relatively cheap. Our results can be used to design cost-effective sink projects and to negotiate fair carbon prices for landowners.

  12. Global potential for carbon sequestration. Geographical distribution, country risk and policy implications

    We have provided a framework for identifying least-cost sites for afforestation and reforestation and deriving carbon sequestration cost curves at a global level in a scenario of limited information. Special attention is given to country risk in developing countries and the sensitivity to spatial datasets. Our model results suggest that within 20 years and considering a carbon price of USD 50/tC, tree-planting activities could offset 1 year of global carbon emissions in the energy sector. However, if we account for country risk considerations-associated with political, economic and financial risks - carbon sequestration is reduced by approximately 60%. With respect to the geography of supply, illustrated by grid-scale maps, we find that most least-cost sites are located in regions of developing countries such as the Sub-Sahara, Southeast Brazil and Southeast Asia. (author)

  13. Economic consequences of consideration of permanence, leakage and additionality for soil carbon sequestration projects

    This paper introduces, explains, and describes methods for addressing the issues of permanence, leakage, and additionality (PLA) of agricultural soil carbon sequestration (ASCS) activities at the project level. It is important to cast these as project-level issues, because they relate to the integrity and consistency of using location-specific ASCS projects as an offset against GHG emissions generated in other sectors (e.g., energy). The underlying objective is to understand and quantify what the net carbon benefits of an ASCS project are once we account for the fact that (1) the sequestered carbon may be stored impermanently, (2) the project may displace emissions outside the project boundaries (leakage), and (3) the project's carbon sequestration may not be entirely additional to what would have occurred anyway under business-as-usual (no project) conditions. This article evaluates methods for identifying and estimating PLA and gauges the potential magnitude of these effects on the economic returns to a project

  14. Diamond electrodes for trace alpha pollutant sequestration via covalent grafting of nitrilotriacetic acid (NTA) ligand

    Graphical abstract: - Highlights: • A straightforward method for NTA ligand covalent immobilization on BBD electrode was described. • This work also demonstrated for the first time that the BDD electrode could easily be functionalized using electrochemical oxidation of aromatic aminated compounds. • NTA functionalized surfaces exhibit a reversible actinide trace sequestration. - Abstract: We describe a very simple and efficient route to functionalize boron-doped-diamond (BDD) electrodes with a chelating nitrilotriacetic acid (NTA) ligand. The BDD electrode surface was first functionalized with a carboxylic acid group via electrochemical grafting of 4-aminophenylcarboxylic acid in aqueous solution and subsequently linked to NTA ligand via a coupling reaction with amine terminated NTA ligand in PBS solution (pH 7.5). Modified BBD surfaces were characterized using X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The present study has demonstrated that NTA functionalized BDD surfaces can successfully be used for reversible 241Am sequestration in aqueous solution

  15. A spatial resolution threshold of land cover in estimating terrestrial carbon sequestration in four counties in Georgia and Alabama, USA

    Zhao, S.Q.; Liu, S.; Li, Z.; Sohl, T.L.

    2010-01-01

    Changes in carbon density (i.e., carbon stock per unit area) and land cover greatly affect carbon sequestration. Previous studies have shown that land cover change detection strongly depends on spatial scale. However, the influence of the spatial resolution of land cover change information on the estimated terrestrial carbon sequestration is not known. Here, we quantified and evaluated the impact of land cover change databases at various spatial resolutions (250 m, 500 m, 1 km, 2 km, and 4 km) on the magnitude and spatial patterns of regional carbon sequestration in four counties in Georgia and Alabama using the General Ensemble biogeochemical Modeling System (GEMS). Results indicated a threshold of 1 km in the land cover change databases and in the estimated regional terrestrial carbon sequestration. Beyond this threshold, significant biases occurred in the estimation of terrestrial carbon sequestration, its interannual variability, and spatial patterns. In addition, the overriding impact of interannual climate variability on the temporal change of regional carbon sequestration was unrealistically overshadowed by the impact of land cover change beyond the threshold. The implications of these findings directly challenge current continental- to global-scale carbon modeling efforts relying on information at coarse spatial resolution without incorporating fine-scale land cover dynamics.

  16. CO{sub 2} Sequestration Potential of Charqueadas Coal Field in Brazil

    Romanov, V [NETL

    2012-10-23

    The I2B coal seam in the Charqueadas coal field has been evaluated as a target for enhanced coal bed methane production and CO{sub 2} sequestration. The samples were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam as �3� cores. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.

  17. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Bandana Devi

    2013-05-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as a major sink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied under different plantation forest ecosystems comprising of eight different tree species: Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnusnitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57±48.99tha-1 and below ground (42.47±10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera(118.37±1.49 tha-1 and minimum (36.50±9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86±10.34 tha-1 in Alnus nitida, and minimum (170.83±20.60 tha-1 in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79±2.0 tha-1. Carbon sequestration (7.91±3.4 tha-1 and CO2 mitigation potential (29.09±12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions for sustainable management of fragile hilly ecosystem.

  18. Enforcement-proof contracts with moral hazard in precaution: ensuring ‘permanence’ in carbon sequestration

    Ian A. MacKenzie; Ohndorf, Markus; Palmer, Charles

    2010-01-01

    Opportunistic behaviour due to incomplete contract enforcement is a risk in many economic transactions such as forest carbon sequestration contracts. In this paper, an enforcement-proof incentive contract is developed in which a buyer demands a guaranteed delivery of a good or service given a productive upfront payment, moral hazard in precaution, and the potential for opportunistic contract breach. The optimal design of forest carbon contracts to ensure permanence is derived. Buyer lia...

  19. Gasification biochar as soil amendment for carbon sequestration and soil quality

    Hansen, Veronika

    2014-01-01

    Thermal gasification of biomass is an efficient and flexible way to generate energy. Besides the energy, avaluable by-product, biochar, is produced. Biochar contains a considerable amount of recalcitrant carbon thathas potential for soil carbon sequestration and soil quality improvement if recycled...... back to agriculture soils. To determine the effect of gasification biochar on soil processes and crop yield, a short-term incubation study was conducted and a field trial has been established....

  20. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    S. Zhao

    2009-03-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at local to global scales.

  1. Intralobar pulmonary sequestration: a case report; Sequestro broncopulmonar intralobar: relato de caso

    Nacif, Marcelo Souto; Miranda, Bruno Jose de Pinho; Caramel, Juliana Mauro [Fundacao Educacional Serra dos Orgaos, Teresopolis, RJ (Brazil). Centro de Ciencias Biomedicas. Faculdade de Medicina de Teresopolis]. E-mail: marcelonacif30@hotmail.com; Lima Filho, Heliantho de Siqueira [Hospital da Beneficencia Portuguesa de Sao Paulo, SP (Brazil); Jauregui, Gustavo Federico [Hospital Geral de Bonsucesso, Rio de Janeiro, RJ (Brazil); Santos, Alair Augusto Sarmet Moreira Damas dos [Instituto de Pos-graduacao Medica Carlos Chagas (IPGMCC), Niteroi, RJ (Brazil). Curso de Pos-graduacao em Radiologia; Mello, Ricardo Andrade Fernandes de [Colegio Brasileiro de Radiologia e Diagnostico por Imagem, Sao Paulo, SP (Brazil)

    2001-02-01

    We report the case of a 49-year-old patient with repeated lung infections. Chest x-rays showed a mass in the posterior basal segment of the right lung. Angio tomography and 3D reconstructions showed a blood supply coming from the descending aorta. The analysis of the surgical specimen confirmed the occurrence of intra lobar pulmonary sequestration with a cavitation filled with mucus. (author)

  2. Conservation Agriculture and Soil Carbon Sequestration; Between Myth and Farmer Reality

    Improving food security, environmental preservation and enhancing livelihood should be the main targets of the innovators of today's farming systems. Conservation agriculture (CA), based on minimum tillage, crop residue retention and crop rotations, has been proposed as an alternative system combining benefits for the farmer with advantages for the society. This paper reviews the potential impact of CA on C sequestration by synthesizing the knowledge of carbon and nitrogen cycling in agriculture, summarizing the influence of tillage, residue management and crop rotation on soil organic carbon stocks and compiling the existing case study information. To evaluate the C sequestration capacity of farming practices, their influence on emissions from farming activities should be considered together with their influence on soil C stocks. The largest contribution of CA to reducing emissions from farming activities is made by the reduction of tillage operations. The soil C case study results are not conclusive. In 7 of the 78 cases withheld, the soil C stock was lower in zero compared to conventional tillage, in 40 cases it was higher and in 31 of the cases there was no significant difference. The mechanisms that govern the balance between increased or no sequestration after conversion to zero tillage are not clear, although some factors that play a role can be distinguished e.g. root development and rhizodeposits, baseline soil C content, bulk density and porosity, climate, landscape position and erosion/deposition history. Altering crop rotation can influence soil C stocks by changing quantity and quality of organic matter input. More research is needed, especially in the tropical areas where good quantitative information is lacking. However, even if C sequestration is questionable in some areas and cropping systems, CA remains an important technology that improves soil processes, controls soil erosion and reduces tillage-related production costs. (author)

  3. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.

    Zagrobelny, Mika; Olsen, Carl Erik; Pentzold, Stefan; Fürstenberg-Hägg, Joel; Jørgensen, Kirsten; Bak, Søren; Møller, Birger Lindberg; Motawia, Mohammed Saddik

    2014-01-01

    Considering the staggering diversity of bioactive natural products present in plants, insects are only able to sequester a small number of phytochemicals from their food plants. The mechanisms of how only some phytochemicals are sequestered and how the sequestration process takes place remains largely unknown. In this study the model system of Zygaena filipendulae (Lepidoptera) and their food plant Lotus corniculatus is used to advance the knowledge of insect sequestration. Z. filipendulae larvae are dependent on sequestration of the cyanogenic glucosides linamarin and lotaustralin from their food plant, and have a much lower fitness if reared on plants without these compounds. This study investigates the fate of the cyanogenic glucosides during ingestion, sequestration in the larvae, and in the course of insect ontogeny. To this purpose, double-labeled linamarin and lotaustralin were chemically synthesized carrying two stable isotopes, a (2)H labeled aglucone and a (13)C labeled glucose moiety. In addition, a small amount of (14)C was incorporated into the glucose residue. The isotope-labeled compounds were applied onto cyanogenic L. corniculatus leaves that were subsequently presented to the Z. filipendulae larvae. Following ingestion by the larvae, the destiny of the isotope labeled cyanogenic glucosides was monitored in different tissues of larvae and adults at selected time points, using radio-TLC and LC-MS analyses. It was shown that sequestered compounds are taken up intact, contrary to earlier hypotheses where it was suggested that the compounds would have to be hydrolyzed before transport across the gut. The uptake from the larval gut was highly stereo selective as the β-glucosides were retained while the α-glucosides were excreted and recovered in the frass. Sequestered compounds were rapidly distributed into all analyzed tissues of the larval body, partly retained throughout metamorphosis and transferred into the adult insect where they were

  4. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (pdensity and the environmental/anthropogenic factors (R(2)=0.59). The soil pH, land use, and elevation are the most important factors for determining SOC dynamics. In contrast, the effect of the reclamation age on the SOC density is negligible, where SOC content in the land reclaimed during years 1047-1724 is as low as that reclaimed during years 1945-2004. The scenario analysis results indicate that the carbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year. PMID:27196991

  5. Long-Term Effects of Cover Crops on Crop Yields, Soil Organic Carbon Stocks and Sequestration

    Kenneth Olson; Stephen A. Ebelhar; Lang, James M.

    2014-01-01

    A 12-year cover crops study on the effects on SOC sequestration, storage, retention and loss and corn and soybean yields was conducted in southern Illinois. The use of cover crops for the maintenance and restoration of soil organic carbon (SOC) and soil productivity of previously eroded soils were evaluated. No-till (NT), chisel plow (CP), and moldboard plow (MP) treatment plots with and without cover crops were established in 2001. The plot area was on sloping with a ...

  6. Net Carbon Sequestration Potential and Emissions in Home Lawn Turfgrasses of the United States

    Selhorst, Adam; Lal, Rattan

    2013-01-01

    Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha-1 year-1 to 5.4 Mg C ha-1 year-1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0-96.3 ± 6.0 Mg C ha-1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha-1 year-1 and 45.8 ± 3.5 Mg C ha-1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha-1 year-1) and fertilizer use (63.6 kg Ce ha-1 year-1) for all sites totaled 254.3 kg Ce ha-1 year-1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year-1 under low management regimes and 7551.4 Gg Ce year-1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.

  7. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration.

    Xiong, Xiong; Grunwald, Sabine; Myers, D Brenton; Ross, C Wade; Harris, Willie G; Comerford, Nicolas B

    2014-09-15

    Historically, Florida soils stored the largest amount of soil organic carbon (SOC) among the conterminous U.S. states (2.26 Pg). This region experienced rapid land use/land cover (LULC) shifts and climate change in the past decades. The effects of these changes on SOC sequestration are unknown. The objectives of this study were to 1) investigate the change in SOC stocks in Florida to determine if soils have acted as a net sink or net source for carbon (C) over the past four decades and 2) identify the concomitant effects of LULC, LULC change, and climate on the SOC change. A total of 1080 sites were sampled in the topsoil (0-20 cm) between 2008 and 2009 representing the current SOC stocks, 194 of which were selected to collocate with historical sites (n = 1251) from the Florida Soil Characterization Database (1965-1996) for direct comparison. Results show that SOC stocks significantly differed among LULC classes--sugarcane and wetland contained the highest SOC, followed by improved pasture, urban, mesic upland forest, rangeland, and pineland while crop, citrus and xeric upland forest remained the lowest. The surface 20 cm soils acted as a net sink for C with the median SOC significantly increasing from 2.69 to 3.40 kg m(-2) over the past decades. The SOC sequestration rate was LULC dependent and controlled by climate factors interacting with LULC. Higher temperature tended to accelerate SOC accumulation, while higher precipitation reduced the SOC sequestration rate. Land use/land cover change observed over the past four decades also favored the C sequestration in soils due to the increase in the C-rich wetland area by ~140% and decrease in the C-poor agricultural area by ~20%. Soils are likely to provide a substantial soil C sink considering the climate and LULC projections for this region. PMID:25010945

  8. Numerical Modeling of a Potential Geological CO2 Sequestration Site at Minden (Germany)

    Naderi Beni, A.; Michael Kühn; R. Meyer; C. Clauser

    2012-01-01

    We study opportunities for CO2 sequestration in geological formations of the state North Rhine Westphalia in Germany. Simulations are performed for evaluating a potential site within the Bunter sandstone formation near the town of Minden in a depth of around 3,000 m using the numerical simulator TOUGHREACT. Our focus is on three CO2 storage mechanisms: (1) hydrodynamic trapping, (2) dissolution trapping, and (3) mineral trapping. The results show that due to buoyancy the injected CO2 phase in...

  9. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    Dr. Atul Jain

    2005-04-17

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics

  10. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Bandana Devi

    2013-07-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as amajorsink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied underdifferent plantation forest ecosystems comprising of eight different tree species viz. Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnus nitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57 ą 48.99 tha-1 and below ground (42.47 ą 10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera (118.37 ą 1.49 tha-1 and minimum (36.50 ą 9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86ą 10.34 tha-1 in Alnus nitida, and minimum (170.83ą 20.60 tha-1in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79 ą 2.0 tha-1. Carbon sequestration (7.91ą 3.4 tha-1 and CO2 mitigation potential (29.09 ą 12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions forsustainable management of fragile hilly ecosystem. 

  11. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature.

    Rushendra Revathy, T D; Palanivelu, K; Ramachandran, A

    2016-04-01

    Rapid increase of CO2 concentration in the atmosphere has forced the international community towards adopting actions to restrain from the impacts of climate change. Moreover, in India, the dependence on fossil fuels is projected to increase in the future, implying the necessity of capturing CO2 in a safe manner. Alkaline solid wastes can be utilized for CO2 sequestration by which its disposal issues in the country could also be met. The present work focuses to study direct mineral carbonation of steelmaking slag (SS) at room temperature and low-pressure conditions (carbonation of SS was carried out in a batch reactor with pure CO2 gas. The process parameters that may influence the carbonation of SS, namely, CO2 gas pressure, liquid to solid ratio (L/S) and reaction time were also studied. The results showed that maximum sequestration of SS was attained in the aqueous route with a capacity of 82 g of CO2/kg (6 bar, L/S ratio of 10 and 3 h). In the gas-solid route, maximum sequestration capacity of about 11.1 g of CO2/kg of SS (3 bar and 3 h) was achieved indicating that aqueous route is the better one under the conditions studied. These findings demonstrate that SS is a promising resource and this approach could be further developed and used for CO2 sequestration in the country. The carbonation process was evidenced using FT-IR, XRD, SEM and TG analysis. PMID:26681331

  12. Carbon sequestration for different management alternatives in sweet chestnut coppice in northern Spain

    Prada, Marta; Bravo Oviedo, Felipe; Berdasco, Lorena; Canga, Elena; Martínez Alonso, Celia

    2016-01-01

    This paper provides an innovative approach to assessing carbon sequestration in sweet chestnut coppice taking into account the importance of carbon fluxes in the whole forest-industry value chain in the mitigation of climate change. The goals of this study were: to evaluate the baseline carbon capture of sweet chestnut forest in the north of Spain; to assess the effect of thinning and extending the rotation period on carbon storage; and to evaluate the substitution effect of using...

  13. Carbon capture and sequestration: how much does this uncertain option affect near-term policy choices?

    Bosetti, Valentina; Gilotte, Laurent

    2006-01-01

    Policy makers as well as many economists recognize geological Carbon Capture and Sequestration (CCS) as a key option to avoid costly emission reduction. While an extreme perspective is to envision CCS as a magic bullet to solve the issue of climate change, the economics perspective is more balanced and see it as a part of a portfolio of mitigation actions. Besides, as any novel mitigation technology, CCS can be implemented with a twofold purpose; on one side it can substitute some other techn...

  14. Small-scale dissolution, precipitation, deformation and fracturing during CO2 sequestration (Invited)

    Meakin, P.; Austrheim, H.; Huang, H.; Malthe-Sorenssen, A.

    2010-12-01

    The coupling between solute transport, geochemistry and geomechanical processes is critically important in subsurface CO2 sequestration. A better understanding of these processes at small scales could play an important role in the evaluation of large-scale CO2 sequestration reservoir performance and the development of improved CO2 sequestration technology. Insights obtained from the analysis of rock specimens from sites at which natural CO2 sequestration is occurring (the Oman ophiolite, the Solund Basin, Norway and the Snake River Plain), laboratory experiments and computer simulations of dissolution and growth with level set interface capturing and of fracturing due to volume changing solid-solid transformations with discrete element models will be presented. Our results suggest that the coupling between volume changing geochemical processes, deformation and fracturing plays an important role in the weathering of mafic and ultramafic rocks, and that these coupled processes also have an important impact on their CO2 storage capacity. While the growth of solid carbonates and other minerals from supersaturated solutions occludes pore volumes, reducing both permeability and porosity, the disjoining pressure associate with thin liquids films allows growth to continue in mineral filled pores, and the force of crystallization associated with this growth becomes large enough to cause fracturing. Our results suggest that fracturing due to volume increasing, solvent mediated, solid-solid transitions generates new reactive surfaces (surfaces at which dissolution can occur). This accelerates serpentinization and the formation of carbonates in mafic and ultramafic rocks, and increases the extent of reaction (formation of serpentine or carbonates). The characteristic mesh texture associated with serpentinization is attributed to force of crystallization fracturing coupled with growth.

  15. Towards zero-waste mineral carbon sequestration via two-way valorization of ironmaking slag

    Chiang, Yi Wai; Santos, Rafael; Elsen, Jan; Meesschaert, Boudewijn; Martens, Johan; Van Gerven, Tom

    2014-01-01

    A three-stage process was developed to transform blast furnace slag (BFS) into two valuable products: precipitated calcium carbonate (PCC) and zeolitic materials. The conceptualized process aims to simultaneously achieve sustainable CO2 sequestration and solid waste elimination. Calcium is first selectively extracted by leaching with an organic acid, followed by carbonation of the leachate to precipitate CaCO3. In parallel, the hydrothermal conversion of the extracted solid residues in alkali...

  16. Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2004-01-01

    A conceptual model of CO2 injection in bedded sandstone-shale sequences has been developed using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments. Numerical simulations were performed with the reactive fluid flow and geochemical transport code TOUGHREACT to analyze mass transfer between sandstone and shale layers and CO2 immobilization through carbonate precipitation. Results indicate that most CO2 sequestration occurs in the sandstone. The m...

  17. Modeling CO2 Sequestration and Enhanced Gas Recovery in Complex Unconventional Reservoirs

    Vasilikou, Foteini

    2014-01-01

    Geologic sequestration of CO2 into unmineable coal seams is proposed as a way to mitigate the greenhouse gas effect and potentially contribute to economic prosperity through enhanced methane recovery. In 2009, the Virginia Center for Coal and Energy Research (VCCER) injected 907 tonnes of CO2 into one vertical coalbed methane well for one month in Russell County, Virginia (VA). The main objective of the test was to assess storage potential of coal seams and to investigate the potential of ...

  18. Carbon Sequestration and Sedimentation in Mangrove Swamps Influenced by Hydrogeomorphic Conditions and Urbanization in Southwest Florida

    Daniel A. Marchio

    2016-05-01

    Full Text Available This study compares carbon sequestration rates along two independent tidal mangrove creeks near Naples Bay in Southwest Florida, USA. One tidal creek is hydrologically disturbed due to upstream land use changes; the other is an undisturbed reference creek. Soil cores were collected in basin, fringe, and riverine hydrogeomorphic settings along each of the two tidal creeks and analyzed for bulk density, total organic carbon profiles, and sediment accretion. Radionuclides 137Cs and 210Pb were used to estimate recent sediment accretion and carbon sequestration rates. Carbon sequestration rates (mean ± standard error for seven sites in the two tidal creeks on the Naples Bay (98 ± 12 g-C m−2·year−1 (n = 18 are lower than published global means for mangrove wetlands, but consistent with other estimates from the same region. Mean carbon sequestration rates in the reference riverine setting were highest (162 ± 5 g-C m−2·year−1, followed by rates in the reference fringe and disturbed riverine settings (127 ± 6 and 125 ± 5 g-C m−2·year−1, respectively. The disturbed fringe sequestered 73 ± 10 g-C m−2·year−1, while rates within the basin settings were 50 ± 4 g-C m−2·year−1 and 47 ± 4 g-C m−2·year−1 for the reference and disturbed creeks, respectively. These data support our hypothesis that mangroves along a hydrologically disturbed tidal creek sequestered less carbon than did mangroves along an adjacent undisturbed reference creek.

  19. Economic impacts of carbon sequestration in reforestation: examples from boreal and moist tropical conditions.

    Niskanen, Anssi; Saastamoinen, Olli; Rantala, Tapio

    1996-01-01

    Part I Climate Change The impact of carbon sequestration on the financial profitability of four tree plantation cases in Finland and the Philippines were examined. On the basis of stem wood growth; the accumulation of carbon in forest biomass, the formation and decomposition of litter, and the carbon flows in wood-based products were assessed for each reforestation case representing boreal (Finland) and moist tropical conditions (the Philippines). Using different unit values for carbon seq...

  20. Seagrass Restoration Enhances “Blue Carbon” Sequestration in Coastal Waters

    Jill T Greiner; Karen J McGlathery; John Gunnell; McKee, Brent A.

    2013-01-01

    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as “blue carbon,” accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zostera marina , restoration in carbon storage in ...

  1. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks

    Marbà, Núria; Arias-Ortiz, Ariane; Masqué, Pere; Kendrick, Gary A.; Mazarrasa, Inés; Bastyan, Geoff R.; García-Orellana, Jordi; Duarte, Carlos M.

    2015-01-01

    © 2015 British Ecological Society. Seagrass meadows are sites of high rates of carbon sequestration and they potentially support 'blue carbon' strategies to mitigate anthropogenic CO2 emissions. Current uncertainties on the fate of carbon stocks following the loss or revegetation of seagrass meadows prevent the deployment of 'blue carbon' strategies. Here, we reconstruct the trajectories of carbon stocks associated with one of the longest monitored seagrass restoration projects globally. We d...

  2. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  3. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    S. Q. Zhao

    2009-08-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at the local to global scales.

  4. Dissolution and carbonation of mechanically activated olivine-Investigating CO2 sequestration possibilities

    Haug, Tove Anette

    2010-01-01

    Mineral carbonation used for CO2 sequestration faces three main challenges: increasing the overall carbonation rate, handle large amounts of feedstock and products, and developing a practical process with commercially acceptable energy consumption. High intensity milling, also called mechanical activation, has been found to increase the extraction rate of metals in the metallurgical industry. The focus of this PhD study has been the use of mechanical activation as a pre-treatment method withi...

  5. Dissolution and carbonation of mechanically activated olivine-Investigating CO2 sequestration possibilities

    Haug, Tove Anette

    2010-01-01

    Mineral carbonation used for CO2 sequestration faces three main challenges: increasing the overall carbonation rate, handle large amounts of feedstock and products, and developing a practical process with commercially acceptable energy consumption.High intensity milling, also called mechanical activation, has been found to increase the extraction rate of metals in the metallurgical industry. The focus of this PhD study has been the use of mechanical activation as a pre-treatment method within...

  6. Soil carbon sequestration and the CDM. Opportunities and challenges for Africa

    Ringius, Lasse

    1999-12-17

    The agriculture sector dominates the economies of most sub-Saharan countries, contributing about one-third of the region's GDP, accounting for forty percent of the export, and employing about two-thirds of the economically active population. Moreover, some soils in sub-Saharan Africa could, by providing sinks for carbon sequestration, play an important role in managing global climate change. Improvements in agricultural techniques and land use practices could lead to higher agricultural productivity and accumulate soil carbon. Hence, soil carbon sequestration could produce local economic income as well as social and other benefits in Africa. The Clean Development Mechanism (CDM) established in the 1997 Kyoto Protocol is designed to give developed countries with high domestic abatement cost access to low-cost greenhouse gas abatement projects in developing countries, and to benefit developing countries selling projects to investors in developed countries. It is presently unclear whether the CDM will provide credit for sink enhancement and permit broader sink activities. Unfortunately, few cost estimates of soil carbon sequestration strategies presently exist. While these costs are uncertain and all input costs have not been estimated, manure-based projects in small-holdings in Kenya could increase maize yield significantly and sequester one ton of soil carbon for a net cost of -US$806. Clearly, such projects would be very attractive economically. There is presently an urgent need to launch useful long-term (>10 years) field experiments and demonstration projects in Africa. Existing data are not readily comparable, it is uncertain how large amount of carbon could be sequestered, findings are site-specific, and it is unclear how well the sites represent wider areas. To develop CDM projects, it is important that experimental trials generate reliable and comparable data. Finally, it will be important to estimate local environmental effects and economic benefits

  7. Understanding Carbon Sequestration Options in the United States: Capabilities of a Carbon Management Geographic Information System

    Dahowski, Robert T.; Dooley, James J.; Brown, Daryl R.; Mizoguchi, Akiyoshi; Shiozaki, Mai

    2001-04-03

    While one can discuss various sequestration options at a national or global level, the actual carbon management approach is highly site specific. In response to the need for a better understanding of carbon management options, Battelle in collaboration with Mitsubishi Corporation, has developed a state-of-the-art Geographic Information System (GIS) focused on carbon capture and sequestration opportunities in the United States. The GIS system contains information (e.g., fuel type, location, vintage, ownership, rated capacity) on all fossil-fired generation capacity in the Untied States with a rated capacity of at least 100 MW. There are also data on other CO2 sources (i.e., natural domes, gas processing plants, etc.) and associated pipelines currently serving enhanced oil recovery (EOR) projects. Data on current and prospective CO2 EOR projects include location, operator, reservoir and oil characteristics, production, and CO2 source. The system also contains information on priority deep saline aquifers and coal bed methane basins with potential for sequestering CO2. The GIS application not only enables data storage, flexible map making, and visualization capabilities, but also facilitates the spatial analyses required to solve complex linking of CO2 sources with appropriate and cost-effective sinks. A variety of screening criteria (spatial, geophysical, and economic) can be employed to identify sources and sinks most likely amenable to deployment of carbon capture and sequestration systems. The system is easily updateable, allowing it to stay on the leading edge of capture and sequestration technology as well as the ever-changing business landscape. Our paper and presentation will describe the development of this GIS and demonstrate its uses for carbon management analysis.

  8. Application of an Expanded Sequestration Estimate to the Domestic Energy Footprint of the Republic of Ireland

    Bernadette O’Regan; Richard Moles; Conor Walsh

    2010-01-01

    The need for global comparability has led to the recent standardization of ecological footprint methods. The use of global averages and necessary methodological assumptions has questioned the ability of the ecological footprint to represent local or national specific concerns. This paper attempts to incorporate greater national relevancy by expanding the sequestration estimate used to calculate the annual carbon footprint of domestic Irish energy use. This includes expanding existing study bo...

  9. Willingness to Pay for Carbon Sequestration and Co-Benefits of Forests in Turkey

    Ahmet Tolunay; Çağlar Başsüllü

    2015-01-01

    Scientists express concern about increasing levels of greenhouse gases mainly due to fossil fuel consumption and deforestation. In response to the latter, policy-makers have introduced a range of policy measures to conserve and enhance forest ecosystems for carbon sequestration. The costs for policy measures to maintain ecosystem services can be calculated easily, but especially non-market/non-use benefits of forests are not easy to estimate. Economics can help designing climate change polici...

  10. A model for regional analysis of carbon sequestration and timber production

    Backéus, Sofia; Wikström, Peder; Lämås, Tomas

    2005-01-01

    The greenhouse effect is one of our most severe current environmental problems. Forests make up large ecosystems and can play an important role in mitigating the emissions of CO2, the most important greenhouse gas. Different management regimes affect the ability of forests to sequester carbon. It is important to investigate in what way we best can use forests to mitigate the greenhouse effect. It is also important to study what effect different actions, done to increase carbon sequestration, ...

  11. Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization.

    Mata-Garrido, Jorge; Casafont, Iñigo; Tapia, Olga; Berciano, Maria T; Lafarga, Miguel

    2016-01-01

    There is growing evidence that defective DNA repair in neurons with accumulation of DNA lesions and loss of genome integrity underlies aging and many neurodegenerative disorders. An important challenge is to understand how neurons can tolerate the accumulation of persistent DNA lesions without triggering the apoptotic pathway. Here we study the impact of the accumulation of unrepaired DNA on the chromatin architecture, kinetics of the DNA damage response and transcriptional activity in rat sensory ganglion neurons exposed to 1-to-3 doses of ionizing radiation (IR). In particular, we have characterized the structural, molecular and transcriptional compartmentalization of unrepaired DNA in persistent DNA damaged foci (PDDF). IR induced the formation of numerous transient foci, which repaired DNA within the 24 h post-IR, and a 1-to-3 PDDF. The latter concentrate DNA damage signaling and repair factors, including γH2AX, pATM, WRAP53 and 53BP1. The number and size of PDDF was dependent on the doses of IR administered. The proportion of neurons carrying PDDF decreased over time of post-IR, indicating that a slow DNA repair occurs in some foci. The fine structure of PDDF consisted of a loose network of unfolded 30 nm chromatin fiber intermediates, which may provide a structural scaffold accessible for DNA repair factors. Furthermore, the transcription assay demonstrated that PDDF are transcriptionally silent, although transcription occurred in flanking euchromatin. Therefore, the expression of γH2AX can be used as a reliable marker of gene silencing in DNA damaged neurons. Moreover, PDDF were located in repressive nuclear environments, preferentially in the perinucleolar domain where they were frequently associated with Cajal bodies or heterochromatin clumps forming a structural triad. We propose that the sequestration of unrepaired DNA in discrete PDDF and the transcriptional silencing can be essential to preserve genome stability and prevent the synthesis of

  12. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Steven M. Masutani

    2001-08-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  13. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  14. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO(sub 2) from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO(sub 2) sequestration. University of Hawaii initiated effort on system optimization of the CO(sub 2) sequestration system

  15. Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA

    Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'-that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

  16. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  17. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  18. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Dr. T. Nakamura

    2003-05-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, PSI conducted preparation work on direct feeding of coal combustion gas to microalgae and developed a design concept for photobioreactors for biofixation of CO{sub 2} and photovoltaic power generation. Aquasearch continued their effort on characterization of microalgae suitable for CO{sub 2} sequestration and preparation for pilot scale demonstration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  19. Global Supply for Carbon Sequestration. Identifying Least-Cost Afforestation Sites Under Country Risk Considerations

    We have provided a framework for identifying least-cost sites for carbon sequestration and deriving carbon sequestration cost curves at a global level in a scenario of limited information. The method is based on determining sequestration costs for geographical explicit units (50km grid cells), based on GIS parameters on land-use and ecosystem properties, and aggregated economic data. Special attention is given to country risk considerations and the sensitivity to special datasets. Our model results suggest that within 20 years and considering a carbon price of USD 50/tC, afforestation could offset one year of global carbon emissions in the energy sector. However, if we account for country risk considerations - associated with political, economic and and financial risks - the carbon supply is reduced to about 60%. With respect to the geography of supply, illustrated by grid-scale maps, we find that most least-cost projects are located in Africa, South America and Asia, assuming a 5% discount rate without risk. Once risk is factored into the equation, these countries become more expensive to operate in

  20. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2003-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started the first full scale carbon sequestration tests with propane combustion gases. Aquasearch started to model the costs associated with biomass harvest from different microalgal strains. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  1. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  2. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil

    Qian Kuimei; Wang Liping; Yin Ningning

    2012-01-01

    A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycorrhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil.A complex substrate of coal gangue,fly ash and sludge was used as reclaimed mine soil,and ryegrass was planted with AMF inoculation to construct a plant-complex substrate-microbe ecological restoration system.The changes to the soil organic carbon (SOC),activities of soil enzymes and glomalin-related soil protein (GRSP) were measured and the effects of AMF on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil were analyzed.The results show that the contents of GRSP (total glomalin (TG) and easily extractable glomalin (EEG)),SOC and activities of enzymes increased,and the increments were higher in the AMF inoculation treated plant-complex substrate-microbe ecological restoration systems than those with no AMF inoculated treatments after 12 months of ryegrass growth.TG,EEG and soil enzyme activity have a significant positive correlation,and the correlative coefficient was 0.427-0.573; SOC and TG,EEG have a significant positive correlation (p < 0.01 ),indicating that AMF plays an important role in carbon sequestration of reclaimed mine soils.

  3. An equivalence factor between CO2 avoided emissions and sequestration. Description and applications in forestry

    Concern about the issue of permanence and reversibility of the effects of carbon sequestration has led to the need to devise accounting methods that quantify the temporal value of storing carbon that has been actively sequestered or removed from the atmosphere, as compared to carbon stored as a result of activities taken to avoid emissions. This paper describes a method for accounting for the atmospheric effects of sequestration-based land-use projects in relation to the duration of carbon storage. Firstly, the time period over which sequestered carbon should be stored in order to counteract the radiative forcing effect of carbon emissions was calculated, based on the residence time and decay pattern of atmospheric CO2, its Absolute Global Warming Potential. This time period was called the equivalence time, and was calculated to be approximately 55 years. From this equivalence time, the effect of storage of 1 t CO2 for 1 year was derived, and found to be similar to preventing the effect of the emission of 0.0182 t CO2. Potential applications of this tonne.year figure, here called the equivalence factor, are then discussed in relation to the estimation of atmospheric benefits over time of sequestration-based land use projects. 15 refs

  4. Estimating the carbon sequestration capacity of shale formations using methane production rates.

    Tao, Zhiyuan; Clarens, Andres

    2013-10-01

    Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces. Here, a computational method is proposed for estimating the CO2 sequestration capacity of a fractured shale formation and it is applied to the Marcellus shale in the eastern United States. The model is based on historical and projected CH4 production along with published data and models for CH4/CO2 sorption equilibria and kinetics. The results suggest that the Marcellus shale alone could store between 10.4 and 18.4 Gt of CO2 between now and 2030, which represents more than 50% of total U.S. CO2 emissions from stationary sources over the same period. Other shale formations with comparable pressure-temperature conditions, such as Haynesville and Barnett, could provide significant additional storage capacity. The mass transfer kinetic results indicate that injection of CO2 would proceed several times faster than production of CH4. Additional considerations not included in this model could either reinforce (e.g., leveraging of existing extraction and monitoring infrastructure) or undermine (e.g., leakage or seismicity potential) this approach, but the sequestration capacity estimated here supports continued exploration into this pathway for producing carbon neutral energy. PMID:23988277

  5. Simulating the effects of forest managements on carbon sequestration: TREPLEX- Management model development

    Wang, W.; Peng, C.; Lei, X.; Zhang, T.; Kneeshaw, D.; Larocque, G.

    2009-05-01

    With common concern surrounding the impact of increased atmospheric CO2 on global climate change, the role of forest management (i.e. thinning) on carbon sequestration is growing as a hotspot in the post Kyoto period. However, the combination strategies between forest management and carbon management are less established. Jack pine is one of the most important commercial and reforestation species in lake states of the United States and Canada, and the specie was reported to show stronger response to forest management like thinning. Obviously, there is an urgent need for understanding how harvesting intensity (i.e., thinning) affects C sequestration in jack pine stands. The aim of this study is to quantify and predict the biomass and carbon sequestration in thinned jack pine stands in eastern Canada. TRIPLEX is a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. The TRIPLEX-Management concept model was developed. The following carbon components were considered: above ground live biomass carbon, standing dead biomass carbon, harvested wood product carbon and soil organic carbon. Thinning was linked with LAI (Leaf Area Index), stand density and soil conditions and included in NPP and biomass production and allocation models. The model was also integrated with DBH distribution models, biomass allometric models, and wood products C models as well as the established height-diameter models. It is expected to optimize thinning regimes for carbon and forest management in order to mitigate climate change impacts.

  6. Quantification of soil organic carbon sequestration potential in cropland:A model approach

    2010-01-01

    Agroecosystems have a critical role in the terrestrial carbon cycling process.Soil organic carbon(SOC) in cropland is of great importance for mitigating atmospheric carbon dioxide increases and for global food security.With an understanding of soil carbon saturation,we analyzed the datasets from 95 global long-term agricultural experiments distributed across a vast area spanning wide ranges of temperate,subtropical and tropical climates.We then developed a statistical model for estimating SOC sequestration potential in cropland.The model is driven by air temperature,precipitation,soil clay content and pH,and explains 58% of the variation in the observed soil carbon saturation(n=76).Model validation using independent data observed in China yielded a correlation coefficient R2 of 0.74(n=19,P<0.001).Model sensitivity analysis suggested that soils with high clay content and low pH in the cold,humid regions possess a larger carbon sequestration potential than other soils.As a case study,we estimated the SOC sequestration potential by applying the model in Henan Province.Model estimations suggested that carbon(C) density at the saturation state would reach an average of 32 t C ha-1 in the top 0-20 cm soil depth.Using SOC density in the 1990s as a reference,cropland soils in Henan Province are expected to sequester an additional 100 Tg C in the future.

  7. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-07-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  8. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  9. Ozone Effects on Global Net Primary Production and Carbon Sequestration Using a Biogeochemistry Model

    Felzer, B. S.; Kicklighter, D. W.; Melillo, J. M.; Wang, C.; Zhuang, Q.; Prinn, R. G.

    2002-12-01

    The effects of air pollution on vegetation may provide another important control on the carbon cycle that has not yet been widely considered. Prolonged exposure to high levels of ozone, in particular, has been observed to inhibit photosynthesis by direct cellular damage within the leaves and through changes in stomatal conductance. We have incorporated simple empirical equations derived for hardwoods, pines, and crops into the Terrestrial Ecosystem Model (TEM, version 4.3) to explore spatial and temporal variations of ozone effects on net primary productivity (NPP) and carbon sequestration across the globe. Although our results show up to a 2% reduction in annual NPP as a result of historical ozone levels during the late 1980s-early 1990s, regionally this reduction is much larger. The largest decreases (up to 39% in some locations) occur in the eastern U.S., Europe, and China, during months with high ozone levels and substantial production. Carbon sequestration during the early 1990s is reduced by as much as 0.43 PgC/yr, or 15%, with the presence of ozone. Thus the effects of ozone on net primary production and carbon sequestration should be factored into future calculations of the global carbon budget.

  10. EXTRAPULMONARY SEQUESTRATION WITH PULMONARY HYPOPLASIA AND MULTICYSTIC RENAL DYSPLASIA : A RARE CASE REPORT

    Anita

    2015-05-01

    Full Text Available Pulmonary sequestration is a rare anomaly which consists of the presence of pulmonary tissue that is not attached to the rest of the lung and does not communicate with the trachea. [1] It could be intrapulmonary or extrapulmonary. We report a case of extrapulmonary sequestration with brief review of literature. A 22 years old primigravida underwent an ultrasonography at 24 weeks of gestation which revealed a single live fetus with bilateral pleural effusion, fetal hydrops and the fetal thorax showed mediastinal shift to the right. A hyperechoic mass was present in the left thoracic cavity with a systemic blood supply to it. Termination of pregnancy was advised as the findings were incompatible with life and the fetus autopsied. Significant gross findings were a hypoplastic left lung, a grey - white spongy mass adjacent to the left lung but no t attached to it and present outside the pleural cavity which derived its blood supply via a branch from the thoracic aorta and caused a shift in the mediastinal structures to the right. Both kidneys showed multiple cystic spaces. Microscopically the mass showed multiple cystically dilated alveolar spaces and ducts lined by cuboidal to tall columnar epithelium, the left lung showed features of pulmonary hypoplasia and the microscopic findings in both the kidneys were suggestive of multicystic renal dysplasi a. Hence, it was reported as a case of left sided extrapulmonary sequestration with hypoplastic left lung and bilateral renal cystic dysplasia.

  11. Quantification of soil organic carbon sequestration potential in cropland: a model approach.

    Qin, ZhangCai; Huang, Yao

    2010-07-01

    Agroecosystems have a critical role in the terrestrial carbon cycling process. Soil organic carbon (SOC) in cropland is of great importance for mitigating atmospheric carbon dioxide increases and for global food security. With an understanding of soil carbon saturation, we analyzed the datasets from 95 global long-term agricultural experiments distributed across a vast area spanning wide ranges of temperate, subtropical and tropical climates. We then developed a statistical model for estimating SOC sequestration potential in cropland. The model is driven by air temperature, precipitation, soil clay content and pH, and explains 58% of the variation in the observed soil carbon saturation (n=76). Model validation using independent data observed in China yielded a correlation coefficient R (2) of 0.74 (n=19, Pcold, humid regions possess a larger carbon sequestration potential than other soils. As a case study, we estimated the SOC sequestration potential by applying the model in Henan Province. Model estimations suggested that carbon (C) density at the saturation state would reach an average of 32 t C ha(-1) in the top 0-20 cm soil depth. Using SOC density in the 1990s as a reference, cropland soils in Henan Province are expected to sequester an additional 100 Tg C in the future. PMID:20697876

  12. Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China

    2006-01-01

    <正>Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.

  13. Optimization of capillary trapping for application in geological carbon dioxide sequestration

    Harper, E.; Wildenschild, D.; Armstrong, R. T.; Herring, A. L.

    2011-12-01

    Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. Sequestration is achieved by capturing carbon dioxide (CO2) gas effluent from coal fired power plants and injecting it into saline aquifers. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore scale. Pairs of analogous fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, non-wetting fluid viscosity and flow rate, were altered to characterize their impact on capillary trapping. Through the use of computed x-ray microtomography (CMT), we were able to quantify distinct differences between initial (post NW phase imbibition) and residual (post wetting fluid flood) non-wetting phase saturations. Observed trends will be used to identify optimal conditions for trapping CO2 during subsurface sequestration.

  14. Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition

    Takashi Onikubo

    2015-03-01

    Full Text Available Nucleoplasmin (Npm is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

  15. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO2 sequestration and methane recovery in coal-beds within different regional specifics

  16. Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA

    Failey, Elisabeth L.; Dilling, Lisa

    2010-04-01

    Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'—that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

  17. A Novel Strategy of Carbon Capture and Sequestration by rHLPD Processing

    Richard Eric Riman

    2016-01-01

    Full Text Available Monoethanolamine (MEA scrubbing is an energy intensive process for Carbon Capture and Sequestration (CCS due to the regeneration of amine in stripping towers at high temperature (100-120 ºC and the subsequent pressurization of CO2 for geologic sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD, which is able to solidify (densify monolithic materials without using high temperature kilns. Then we integrate MEA-based CCS processing and mineral carbonation by using rHLPD technology. This integration is designated as rHLPD-Carbon Sequestration (rHLPD-CS process. Our results show that the CO2 captured in the MEA-CO2 solution was sequestered by the mineral (wollastonite CaSiO3 carbonation at a low operating temperature (60 ºC and simultaneously monolithic materials with a compressive strength of ~121 MPa were formed. This suggests that the use of rHLPD-CS technology eliminates the energy consumed for CO2-MEA stripping and CO2 compression and also sequesters CO2 to form value-added products, which have a potential to be utilized as construction and infrastructure materials. In contrast to the high energy requirements and excessive greenhouse gas emissions from conventional Portland cement manufacturing, our calculations show that the integration of rHLPD and CS technologies provides a low energy alternative to production of traditional cementitious binding materials.

  18. A Finite-Element Model for Simulation of Carbon Dioxide Sequestration

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2014-09-01

    Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accurately—even for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.

  19. Application of an Expanded Sequestration Estimate to the Domestic Energy Footprint of the Republic of Ireland

    Bernadette O’Regan

    2010-08-01

    Full Text Available The need for global comparability has led to the recent standardization of ecological footprint methods. The use of global averages and necessary methodological assumptions has questioned the ability of the ecological footprint to represent local or national specific concerns. This paper attempts to incorporate greater national relevancy by expanding the sequestration estimate used to calculate the annual carbon footprint of domestic Irish energy use. This includes expanding existing study boundaries to include additional carbon pools such as the litter, dead and soil pools. This generated an overall estimate of 4.38 tonnes of carbon per hectare per year (t C/ha/yr, resulting in an ecological footprint estimate of 0.49 hectares per capita (ha/cap The method employed in this paper also incorporated the potential role of grassland as a carbon sink. The caveat that the resultant value is dependent on the choice of study boundary is discussed. Including the lateral movement of carbon embodied in farm products (effectively placing the boundary around the farm gate reduces the estimate of grassland carbon sequestration by approximately 44% to 1.82 t C/ha/yr. When a footprint calculated using an overall sequestration estimate (based on the distribution of Irish grassland and forestry is translated into global hectares (gha, the standardized value is reduced by 35%.

  20. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-07-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.