WorldWideScience

Sample records for acclimated complex source

  1. Spatio-Temporal Canopy Complexity and Leaf Acclimation to Variable Canopy Microhabitats.

    Fotis, A. T.

    2014-12-01

    The theory that forests become carbon (C) neutral with maturity has recently been challenged. While a growing body of evidence shows that net C accumulation continues in forests that are centuries old, the reasons remain poorly known. Increasing canopy structural complexity, quantified by high variability in leaf distribution, has been proposed as a mechanism for sustained rates of C assimilation in mature forests. The goal of our research was to expand on these findings and explore a new idea of spatio-temporal canopy structural complexity as a mechanism linking canopy structure to function (C assimilation).Our work takes place at the UMBS AmeriFlux core facility (US-UMB) in northern Michigan, USA. Canopy structure was quantified over 6 seasons with portable canopy LiDAR (PCL) and canopy spatial microhabitat variability was studied using hemispherical photographs from different heights within the canopy. We found a more even distribution of irradiance in more structurally complex canopies within a single year, and furthermore, that between-year variability of spatial leaf arrangement decreased with increasing canopy complexity. We suggest that in complex canopies less redistribution of leaf material over time may lead to more similar light microhabitats within and among years. Conversely, in less complex canopies this relationship can lead to a year-to-year time lag in morphological leaf acclimation since the effects of the previous-year's light environment are reflected in the morphological characteristics of current-year leaves.Our study harnesses unique spatio-temporal resolution measurements of canopy structure and microhabitat that can inform better management strategies seeking to maximize forest C uptake. Future research quantifying the relationship between canopy structure and light distribution will improve performance of ecosystem models that currently lack spatially explicit canopy structure information.

  2. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    Ferro Orozco, A.M., E-mail: mferro@cidca.org.ar [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP. 47 y 116 (B1900AJJ) La Plata (Argentina); Contreras, E.M.; Zaritzky, N.E. [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP. 47 y 116 (B1900AJJ) La Plata (Argentina); Fac. de Ingenieria, UNLP. 47 y 1 (B1900AJJ) - La Plata (Argentina)

    2010-04-15

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (q{sub Cr}) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey {approx} lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  3. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (qCr) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey ∼ lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  4. Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems.

    Ferroni, Lorenzo; Suorsa, Marjaana; Aro, Eva-Mari; Baldisserotto, Costanza; Pancaldi, Simonetta

    2016-07-01

    Vascular plants have evolved a long-term light acclimation strategy primarily relying on the regulation of the relative amounts of light-harvesting complex II (LHCII) and of the two photosystems, photosystem I (PSI) and photosystem II (PSII). We investigated whether such a model is also valid in Selaginella martensii, a species belonging to the early diverging group of lycophytes. Selaginella martensii plants were acclimated to three natural light regimes (extremely low light (L), medium light (M) and full sunlight (H)) and thylakoid organization was characterized combining ultrastructural, biochemical and functional methods. From L to H plants, thylakoid architecture was rearranged from (pseudo)lamellar to predominantly granal, the PSII : PSI ratio changed in favour of PSI, and the photochemical capacity increased. However, regulation of light harvesting did not occur through variations in the amount of free LHCII, but rather resulted from the flexibility of the association of free LHCII with PSII and PSI. In lycophytes, the free interspersed LHCII serves a fixed proportion of reaction centres, either PSII or PSI, and the regulation of PSI-LHCII(-PSII) megacomplexes is an integral part of long-term acclimation. Free LHCII ensures photoprotection of PSII, allows regulated use of PSI as an energy quencher, and can also quench endangered PSI. PMID:27058989

  5. Low Complexity Bayesian Single Channel Source Separation

    Beierholm, Thomas; Pedersen, Brian Dam; Winther, Ole

    We propose a simple Bayesian model for performing single channel speech separation using factorized source priors in a sliding window linearly transformed domain. Using a one dimensional mixture of Gaussians to model each band source leads to fast tractable inference for the source signals....... Simulations with separation of a male and a female speaker using priors trained on the same speakers show comparable performance with the blind separation approach of G.-J. Jang and T.-W. Lee (see NIPS, vol.15, 2003) with a SNR improvement of 4.9 dB for both the male and female speaker. Mixing coefficients...... keeping the complexity low using machine learning and CASA (computational auditory scene analysis) approaches (Jang and Lee, 2003; Roweis, S.T., 2001; Wang, D.L. and Brown, G.J., 1999; Hu, G. and Wang, D., 2003)....

  6. Salt acclimation processes in wheat.

    Janda, Tibor; Darko, Éva; Shehata, Sami; Kovács, Viktória; Pál, Magda; Szalai, Gabriella

    2016-04-01

    Young wheat plants (Triticum aestivum L. cv. Mv Béres) were exposed to 0 or 25 mM NaCl for 11 days (salt acclimation). Thereafter the plants were irrigated with 500 mM NaCl for 5 days (salt stress). Irrigating the plants with a low concentration of NaCl successfully led to a reduction in chlorotic symptoms and in the impairment of the photosynthetic processes when the plants were exposed to subsequent high-dose salt treatment. After exposure to a high concentration of NaCl there was no difference in leaf Na content between the salt-acclimated and non-acclimated plants, indicating that salt acclimation did not significantly modify Na transport to the shoots. While the polyamine level was lower in salt-treated plants than in the control, salt acclimation led to increased osmotic potential in the leaves. Similarly, the activities of certain antioxidant enzymes, namely glutathione reductase, catalase and ascorbate peroxidase, were significantly higher in salt-acclimated plants. The results also suggest that while SOS1, SOS2 or NHX2 do not play a decisive role in the salt acclimation processes in young wheat plants; another stress-related gene, WALI6, may contribute to the success of the salt acclimation processes. The present study suggested that the responses of wheat plants to acclimation with low level of salt and to treatment with high doses of salt may be fundamentally different. PMID:26854409

  7. Seawater Acclimation of Spirulina

    Shaochen GUAN; Yixuan LI; Gan WANG; Lang QIN; Yi ZHU; Yunbo LUO

    2012-01-01

    Abstract [Objective] This study aimed to seek the cultivation method for Spirulina with seawater. [Method] Spirulina was habituated culture progressively with pre- pared seawater acclimation solution. The morphological changes of Spirulina were observed and its biochemical indicators were measured. [Result] A new algae species was obtained, which had better stability and greater average length than Spirulina in fresh water. Compared with the Spirulina in fresh water, the new al- gae species showed no significant change in chlorophyll content, but a 62.8% in- crease in the concentration of phycocyanin. [Conclusion] The method could save resources and cost, which lays the foundation for large scale production and processing of Spirulina.

  8. Foliar temperature acclimation reduces simulated carbon sensitivity to climate

    Smith, Nicholas G.; Malyshev, Sergey L.; Shevliakova, Elena; Kattge, Jens; Dukes, Jeffrey S.

    2016-04-01

    Plant photosynthesis and respiration are the largest carbon fluxes between the terrestrial biosphere and the atmosphere, and their parameterizations represent large sources of uncertainty in projections of land carbon uptake in Earth system models (ESMs). The incorporation of temperature acclimation of photosynthesis and foliar respiration, commonly observed processes, into ESMs has been proposed as a way to reduce this uncertainty. Here we show that, across 15 flux tower sites spanning multiple biomes at various locations worldwide (10° S-67° N), acclimation parameterizations improve a model's ability to reproduce observed net ecosystem exchange of CO2. This improvement is most notable in tropical biomes, where photosynthetic acclimation increased model performance by 36%. The consequences of acclimation for simulated terrestrial carbon uptake depend on the process, region and time period evaluated. Globally, including acclimation has a net effect of increasing carbon assimilation and storage, an effect that diminishes with time, but persists well into the future. Our results suggest that land models omitting foliar temperature acclimation are likely to overestimate the temperature sensitivity of terrestrial carbon exchange, thus biasing projections of future carbon storage and estimates of policy indicators such as the transient climate response to cumulative carbon emissions.

  9. Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P.

    McKew, Boyd A; Metodieva, Gergana; Raines, Christine A; Metodiev, Metodi V; Geider, Richard J

    2015-10-01

    Limitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E. huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C-N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E. huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients. PMID:26119724

  10. Global sourcing of a complex good.

    Van Biesebroeck, Jo; Zhang, Lijun

    2011-01-01

    We analyze a firm that produces a final good from multiple intermediates that can each be sourced domestically or from a low-wage country. The model explicitly incorporates that sourcing decisions of intermediates are interdependent. Equilibrium predictions depend crucially on a key modeling assumption - the nature of the trade friction that foreign production has to overcome. If production abroad involves a fixed cost, offshoring one intermediate unambiguously facilitates offshoring of other...

  11. The effects of cold acclimation on electrocardiogram parameters in five species of turtles.

    Risher, J F; Claussen, D L

    1987-01-01

    The effects of thermal acclimation at 25 or 5 degrees C on electrical activity in the heart were investigated in Pseudemys scripta, Terrapene carolina, Chrysemys picta marginata, Chrysemys picta dorsalis, Chelydra serpentina, and Sternotherus odoratus. The durations of the QRS complex and P-R, R-T and R-R intervals were found to increase with decreasing body temperature in all animals tested. The amplitudes of the P and T waves and QRS complex were dependent upon both acclimation temperature and test temperature. Differences between acclimation groups in the change in QRS amplitudes between 20 and 0 degrees C were statistically significant for all species. PMID:2886260

  12. Global sourcing of complex production processes

    Schwarz, Christian; Suedekum, Jens

    2013-01-01

    We develop a theory of a firm in an environment with incomplete contracts. The firm’s headquarter decides on the complexity, the organization, and the global scale of its production process. Specifically, it decides: i) on the mass of symmetric intermediate inputs that are part of the value chain, ii) if the supplier of each component is an external contractor or an integrated affiliate, and iii) if the supplier is offshored to a foreign low-wage country. Afterwards we consider a related scen...

  13. A novel technology for quick acclimation of an anaerobic microbial consortia used for biodegrading teraphthalic acid(TA)

    2002-01-01

    The seed sludge originated from a methane fermentation reactor was enriched and acclimated with TA as sole carbon source under nitrate respiration mode first for 6 week, and then can be turned to methane fermentation conditions. After 6 weeks processing, the specific rate acclimation. Aftera total of 90 days for the enrichment and acclimation, the fermentative bacteria which originally existed in the seed sludge nearly disappeared, and instead of them, the TA reductive and cleaving bacteria group was formed in the new consortia, which was confirmed by the MPN counts and roll tube counts. Compared with the control experiment, the acclimation period can be shortened by about 50%.

  14. Complex space source theory of spatially localized electromagnetic waves

    Seshadri, SR

    2013-01-01

    The author highlights that there is a need obtain exact full-wave solutions that reduce to the paraxial beams in the appropriate limit. Complex Space Source Theory of Spatially Localized Electromagnetic Waves treats the exact full-wave generalizations of all the basic types of paraxial beam solutions. These are developed by the use of Fourier and Bessel transform techniques and the complex space source theory of spatially localized electromagnetic waves is integrated as a branch of Fourier optics.

  15. Perfrewrite -- Program Complexity Analysis via Source Code Instrumentation

    Kruse, Michael

    2012-01-01

    Most program profiling methods output the execution time of one specific program execution, but not its computational complexity class in terms of the big-O notation. Perfrewrite is a tool based on LLVM's Clang compiler to rewrite a program such that it tracks semantic information while the program executes and uses it to guess memory usage, communication and computational complexity. While source code instrumentation is a standard technique for profiling, using it for deriving formulas is an...

  16. Differential characteristics of photochemical acclimation to cold in two contrasting sweet sorghum hybrids.

    Zegada-Lizarazu, Walter; Fernando Luna, Dario; Monti, Andrea

    2016-08-01

    Sweet sorghum has a photosynthetic system which is highly sensitive to cold stress and hence strongly limits its development in temperate environments; therefore, the identification of key exploitable cold tolerance traits is imperative. From a preliminary field trial, two dissimilar sweet sorghum hybrids (ICSSH31 and Bulldozer), in terms of early vigor and productivity, were selected for a controlled-environment trial aiming at identifying useful traits related to acclimation mechanisms to cold stress. The higher cold tolerance of Bulldozer was partially related to a more efficient photochemical regulation mechanism of the incoming light energy: the higher tolerance of photosystem II (PSII) to photo-inactivation was because of a more effective dissipation capacity of the excess of energy and to a more balanced diversion of the absorbed energy into alternative energy sinks. ICSSH31 increased the dissipation and accumulation of a large amount of xanthophylls, as in Bulldozer, but, at the same time, inactivated the oxygen evolving complex and the re-synthesis of chlorophyll (Chl) a and b, thus, leading to an overproduction of CO2 fixation enzymes after re-warming. In summary, in Bulldozer, the acclimation adjustments of the photosynthetic apparatus occurred through an efficient control of energy transfer toward the reaction centers, and this likely allowed a more successful seedling establishment; ICSSH31, conversely, exhibited a fast re-synthesis of Chl pigments, which appears to divert photosynthates from dry matter accumulation. Such broad acclimation traits may constitute a source for selecting higher genetic gain traits relevant for enlarging the growing season of promising biomass sorghum ideotypes in temperate climates. PMID:26867791

  17. Linear Complexity Lossy Compressor for Binary Redundant Memoryless Sources

    Mimura, Kazushi

    2011-01-01

    A lossy compression algorithm for binary redundant memoryless sources is presented. The proposed scheme is based on sparse graph codes. By introducing a nonlinear function, redundant memoryless sequences can be compressed. We propose a linear complexity compressor based on the extended belief propagation, into which an inertia term is heuristically introduced, and show that it has near-optimal performance for moderate block lengths.

  18. Source speciation resolving hydrochemical complexity of coastal aquifers.

    Sonkamble, Sahebrao; Chandra, Subash; Ahmed, Shakeel; Rangarajan, R

    2014-01-15

    There is a growing concern of seawater intrusion to freshwater aquifers due to groundwater overexploitation in the eastern coastal belt of Southern India. The problem becomes complex in the regions where industrial effluents are also contaminating the freshwater aquifers. In order to understand the hydrochemical complexity of the system, topographic elevation, static water level measurements, major ion chemistry, ionic cross plots, water type contours and factor analysis were applied for 144 groundwater samples of shallow and deep sources from Quaternary and Tertiary coastal aquifers, located within the industrial zone of 25 km(2) area near Cuddalore, Southern India. The ionic cross plots indicates dissolution of halite minerals from marine sources and seawater mixing into inland aquifers up to the level of 9.3%. The factor analysis explains three significant factors totaling 86.3% of cumulative sample variance which includes varying contribution from marine, industrial effluent and freshwater sources. PMID:24246650

  19. Locating the source of spreading in complex networks

    Shen, Zhesi; Fan, Ying; Di, Zengru; Wang, Wen-Xu; Stanley, H Eugene

    2015-01-01

    Locating the sources that trigger a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network, such as the time at which each individual is infected in a large population. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observers. Here we develop an efficient algorithm to locate the source of a diffusion-like process and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insof...

  20. Identification of components associated with thermal acclimation of photosystem II in Synechocystis sp. PCC6803.

    John G Rowland

    Full Text Available BACKGROUND: Photosystem II (PSII is the most thermally sensitive component of photosynthesis. Thermal acclimation of this complex activity is likely to be critically important to the ability of photosynthetic organisms to tolerate temperature changes in the environment. METHODOLOGY/FINDINGS: We have analysed gene expression using whole-genome microarrays and monitored alterations in physiology during acclimation of PSII to elevated growth temperature in Synechocystis sp. PCC 6803. PSII acclimation is complete within 480 minutes of exposure to elevated temperature and is associated with a highly dynamic transcriptional response. 176 genes were identified and classified into seven distinct response profile groups. Response profiles suggest the existence of an early transient phase and a sustained phase to the acclimation response. The early phase was characterised by induction of general stress response genes, including heat shock proteins, which are likely to influence PSII thermal stability. The sustained phase consisted of acclimation-specific alterations that are involved in other cellular processes. Sustained responses included genes involved in phycobillisome structure and modification, photosynthesis, respiration, lipid metabolism and motility. Approximately 60% of genes with sustained altered expression levels have no known function. The potential role of differentially expressed genes in thermotolerance and acclimation is discussed. We have characterised the acclimation physiology of selected gene 'knockouts' to elucidate possible gene function in the response. CONCLUSIONS/SIGNIFICANCE: All mutants show lower PSII rates under normal growth conditions. Basal PSII thermotolerance was affected by mutations in clpB1, cpcC2, hspA, htpG and slr1674. Final PSII thermotolerance was affected by mutations in cpcC2, hik34, hspA and hypA1, suggesting that these gene products play roles in long-term thermal acclimation of PSII.

  1. Linear Complexity Lossy Compressor for Binary Redundant Memoryless Sources

    Mimura, Kazushi

    2011-01-01

    A lossy compression algorithm for binary redundant i.i.d. sources is presented. The proposed scheme is based on sparse graph codes. By introducing a nonlinear function, redundant memoryless sequences can be compressed. We propose a linear complexity compressor based on the extended belief propagation, into which an inertia term is heuristically introduced, and show that it has near optimal performance for moderate blocklengths.

  2. Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities.

    Mayer, Boris F; Ali-Benali, Mohamed Ali; Demone, Jordan; Bertrand, Annick; Charron, Jean-Benoit

    2015-11-01

    Little is known about the capacity of Cannabis sativa to cold-acclimate and develop freezing tolerance. This study investigates the cold acclimation (CA) capacity of nine C. sativa varieties and the underlying genetic and epigenetic responses. The varieties were divided into three groups based on their contrasting CA capacities by comparing the survival of non-acclimated and cold-acclimated plants in whole-plant freeze tests. In response to the CA treatment, all varieties accumulated soluble sugars but only the varieties with superior capacity for CA could maintain higher levels throughout the treatment. In addition, the varieties that acclimated most efficiently accumulated higher transcript levels of cold-regulated (COR) genes and genes involved in de novo DNA methylation while displaying locus- and variety-specific changes in the levels of H3K9ac, H3K27me3 and methylcytosine (MeC) during CA. Furthermore, these hardy C. sativa varieties displayed significant increases in MeC levels at COR gene loci when deacclimated, suggesting a role for locus-specific DNA methylation in deacclimation. This study uncovers the molecular mechanisms underlying CA in C. sativa and reveals higher levels of complexity regarding how genetic, epigenetic and environmental factors intertwine. PMID:25534661

  3. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation

    Jun eMinagawa

    2013-12-01

    Full Text Available Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic supercomplexes undergo supramolecular reorganization within a short timeframe during acclimation to an environmental change. This reorganization includes state transitions that balance the excitation of photosystem I and II by shuttling peripheral antenna proteins between the two, thermal energy dissipation that occurs at energy-quenching sites within the light-harvesting antenna generated for negative feedback when excess light is absorbed, and cyclic electron flow that is facilitated between photosystem I and the cytochrome bf complex when cells demand more ATP and/or need to activate energy dissipation. This review will highlight the recent findings regarding these environmental acclimation events in model organisms with particular attention to the unicellular green alga C. reinhardtii and with reference to the vascular plant A. thaliana, which offers a glimpse into the dynamic behavior of photosynthetic machineries in nature.

  4. Photosynthetic acclimation to high temperatures in wheat

    Sayed, O. H.

    1992-01-01

    Growth and photosynthetic performance were assessed for the Finnish wheat Triticum aestivum L. var. APU under a cool (13/10�C day/night) and a warm (30/25�C day/night) regime. Plants exhibited a certain degree of acclimation to warm growth conditions. This acclimation appeared to involve enhanced performance of both photosystem II and whole-chain electron transport. Enhanced thermal stability of photophosphorylation was also observed in warm-grown plants.

  5. Bacterial Acclimation Inside an Aqueous Battery.

    Dexian Dong

    Full Text Available Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2 and 1.4-2.1 V. Bacterial addition within 1.0×10(10 cells mL(-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  6. Plasma clearance of cadmium and zinc in non-acclimated and metal-acclimated trout

    Chowdhury, M. Jasim; Grosell, M.; McDonald, D.G.; Wood, C.M

    2003-08-20

    Adult rainbow trout were pre-exposed to a sublethal concentration of waterborne cadmium (Cd, 26.7 nmol/l) or waterborne zinc (Zn, 2294 nmol/l) for 30 days to induce acclimation. A single dose of radiolabeled Cd (64.4 nmol/kg) or Zn (183.8 nmol/kg) was injected into the vascular system of non-acclimated and Cd- or Zn-acclimated trout through indwelling arterial catheters. Subsequently, repetitive blood samples over 10 h and terminal tissue samples (liver, heart, bile, stomach, intestine, kidney, gills, muscle, and spleen) were taken to characterize the effect of metal acclimation on clearance kinetics in vivo. Plasma clearance of Cd in Cd-acclimated fish (0.726{+-}0.015 and 0.477{+-}0.012 ml/min per kg for total and newly accumulated Cd, respectively), was faster than that in non-acclimated trout (0.493{+-}0.013 and 0.394{+-}0.009 ml/min per kg). Unlike plasma Cd, the levels of Cd in red blood cells (RBCs) were 1.2-2.2 times higher in Cd-acclimated fish than in non-acclimated fish. At 10 h post-injection, the liver accumulated the highest proportion ({approx}22%) of the injected Cd dose in both non-acclimated and Cd-acclimated fish but did not account for the difference in plasma levels of Cd between two groups. Plasma clearance of Zn ({approx}0.23 ml/min per kg for new Zn) was substantially lower than Cd clearance. Pre-acclimation to waterborne Zn reduced the new Zn levels in RBCs, but did not affect the clearance of Zn from blood plasma or tissue burdens of Zn in fish. Bile concentrations of both Cd and Zn were elevated in acclimated fish, but total bile burden accounted for <1% of the injected metal dose. The results suggest that the detoxification process of injected plasma Cd is stimulated by pre-acclimation to waterborne Cd, and that Zn levels are homeostatically controlled in both non-acclimated and acclimated trout.

  7. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater

    Christensen, A.K.; Hiroi, J.; Schultz, E.T.; McCormick, S.D.

    2012-01-01

    The alewife (Alosa pseudoharengus) is a clupeid that undergoes larval and juvenile development in freshwater preceding marine habitation. The purpose of this study was to investigate osmoregulatory mechanisms in alewives that permit homeostasis in different salinities. To this end, we measured physiological, branchial biochemical and cellular responses in juvenile alewives acclimated to freshwater (0.5p.p.t.) or seawater (35.0p.p.t.). Plasma chloride concentration was higher in seawater-acclimated than freshwater-acclimated individuals (141mmoll -1 vs 134mmoll -1), but the hematocrit remained unchanged. In seawateracclimated individuals, branchial Na +/K +-ATPase (NKA) activity was higher by 75%. Western blot analysis indicated that the abundance of the NKA subunit and a Na+/K+/2Cl- cotransporter (NKCC1) were greater in seawater-acclimated individuals by 40% and 200%, respectively. NKA and NKCC1 were localized on the basolateral surface and tubular network of ionocytes in both acclimation groups. Immunohistochemical labeling for the cystic fibrosis transmembrane conductance regulator (CFTR) was restricted to the apical crypt of ionocytes in seawater-acclimated individuals, whereas sodium/hydrogen exchanger 3 (NHE3) labeling was present on the apical surface of ionocytes in both acclimation groups. Ionocytes were concentrated on the trailing edge of the gill filament, evenly distributed along the proximal 75% of the filamental axis and reduced distally. Ionocyte size and number on the gill filament were not affected by salinity; however, the number of lamellar ionocytes was significantly lower in seawater-acclimated fish. Confocal z-series reconstructions revealed that mature ionocytes in seawater-acclimated alewives occurred in multicellular complexes. These complexes might reduce paracellular Na + resistance, hence facilitating Na+ extrusion in hypo-osmoregulating juvenile alewives after seaward migration. ?? 2012. Published by The Company of Biologists Ltd.

  8. Radiation of complex and noisy sources within enclosures

    Gradoni, Gabriele; Creagh, Stephen; Tanner, Gregor

    Predicting the radiation of complex electromagnetic sources inside semi-open cavities and resonators with arbitrary geometry is a challenging topic both for physics and for engineering. We have exploited a Perron-Frobenius operator to propagate field-field correlation functions of complex and extended sources in free-space. The formula is based on a phase-space picture of the electromagnetic field, using the Wigner distribution function, and naturally captures evanescent as well as diffracted waves. This approach can be extended to study the propagation of correlation functions within cavities, with the ray-dynamical map given by the geometry of the cord connecting a point of the boundary to another. While ray methods provide an efficient way to predict average values of the correlation matrix elements, the use of random matrix theory approaches allows efficient characterisation of statistical fluctuations around these averages. Universal relations are derived and tested in the presence of dissipation for quantum maps and billiard systems. The use of this formalism is discussed in the contexts of open systems with surface roughness. The theory and achieved results are of interest in the simulation of next-generation of wireless communications. Work supported by the UK Engineering and Physical Sciences Research Council.

  9. Costs and benefits of cold acclimation in field released Drosophila

    Kristensen, Torsten N; Hoffmann, Ary A; Overgaard, Johannes;

    2008-01-01

    -acclimated were up to 36 times more likely to find food than the cold-acclimated flies when temperatures were warm. Such costs and strong benefits were not evident in laboratory tests where we found no reduction in heat survival of the cold-acclimated flies. Field release studies, therefore, reveal costs of cold...... for costs and benefits of developmental or adult cold acclimation. Both types of cold acclimation had enormous benefits at low temperatures in the field; in the coldest releases only cold-acclimated flies were able to find a resource. However, this advantage came at a huge cost; flies that had not been cold...

  10. High-frequency incremental methods for electromagnetic complex source points

    Canta, Stefano Mihai

    This dissertation advances knowledge in field-based High-Frequency (HF) incremental methods for electromagnetic Complex Source Points (CSP), and its most immediate impact is a significantly faster analysis and design of reflector antennas. HF incremental methods overcome many difficulties encountered in other ray-tracing techniques, mostly when crossing shadow boundaries in the electromagnetic (EM) field predictions. The combination of HF methods with CSPs allows to speed up EM computations. CSPs are obtained by locating real electric or magnetic dipole sources in complex space. EM field patterns are derived through analytical continuation of the geometrical quantities associated with the source position; the continuation provides an exact Maxwellian description of a Gaussian Beam. When CSPs are used as basis functions, they can represent any radiated field pattern. Then, by truncating negligible beams in the direction of observation, computations are sped up compared to a plane- or spherical-wave based expansion. Because of these facts, CSPs can be used with Physical Optics (PO) based HF methods for the efficient analysis of electrically large reflectors. However, PO does not always provide accurate field predictions, especially in regions of greatest shadowing or at grazing incidence. Therefore, I developed a HF Incremental Fringe Formulation (IFF) for CSPs to provide a correction term for PO that, when added to the total PO field, recovers an accurate estimate of the scattered field at the first asymptotic order. In addition, since PO does not have caustic problems, the new fringe asymptotic recovery is free of caustics for any geometrical configuration, too. Moreover, I also introduced a double diffraction formulation for CSPs, using the Incremental Theory of Diffraction, yielding simulation results very close to those obtained with a Method of Moments (MoM) approach. Unlike ray-based methods, no tracing in complex space is necessary, and no caustics are

  11. Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources.

    Yang, Xiaoying; Liu, Qun; Fu, Guangtao; He, Yi; Luo, Xingzhang; Zheng, Zheng

    2016-05-01

    Environmental problems such as eutrophication caused by excessive nutrient discharge are global challenges. There are complex pollution sources of nitrogen (N) discharge in many river basins worldwide. Knowledge of its pollution sources and their respective load contributions is essential to developing effective N pollution control strategies. N loads from all known anthropogenic pollution sources in the Upper Huai River basin of China were simulated with the process-based SWAT (Soil and Water Assessment Tool) model. The performances of SWAT driven by daily and hourly rainfall inputs were assessed and it was found that the one driven by hourly rainfall outperformed the one driven by daily rainfall in simulating both total nitrogen (TN) and ammonia nitrogen (NH4-N) loads. The hourly SWAT model was hence used to examine the spatiotemporal patterns of TN and NH4-N loads and their source attributions. TN load exhibited significant seasonal variations with the largest in summer and the smallest in spring. Despite its declining proportion of contribution downstream, crop production remained the largest contributor of TN load followed by septic tanks, concentrated animal feedlot operations (CAFOs), municipal sewage treatment plants, industries, and scattered animal feedlot operations (SAFOs). There was much less seasonal variation in NH4-N load. CAFOs remained the largest source of NH4-N load throughout the basin, while contributions from industries and municipal sewage treatment plants were more evident downstream. Our study results suggest the need to shift the focus of N load reduction from "end-of-pipe" sewage treatment to an integrated approach emphasizing stakeholder involvement and source prevention. PMID:26945962

  12. Deposition parameterizations for the Industrial Source Complex (ISC3) model

    Wesely, Marvin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Doskey, Paul V. [Argonne National Lab. (ANL), Argonne, IL (United States); Shannon, J. D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2002-06-01

    Improved algorithms have been developed to simulate the dry and wet deposition of hazardous air pollutants (HAPs) with the Industrial Source Complex version 3 (ISC3) model system. The dry deposition velocities (concentrations divided by downward flux at a specified height) of the gaseous HAPs are modeled with algorithms adapted from existing dry deposition modules. The dry deposition velocities are described in a conventional resistance scheme, for which micrometeorological formulas are applied to describe the aerodynamic resistances above the surface. Pathways to uptake at the ground and in vegetative canopies are depicted with several resistances that are affected by variations in air temperature, humidity, solar irradiance, and soil moisture. The role of soil moisture variations in affecting the uptake of gases through vegetative plant leaf stomata is assessed with the relative available soil moisture, which is estimated with a rudimentary budget of soil moisture content. Some of the procedures and equations are simplified to be commensurate with the type and extent of information on atmospheric and surface conditions available to the ISC3 model system user. For example, standardized land use types and seasonal categories provide sets of resistances to uptake by various components of the surface. To describe the dry deposition of the large number of gaseous organic HAPS, a new technique based on laboratory study results and theoretical considerations has been developed providing a means of evaluating the role of lipid solubility in uptake by the waxy outer cuticle of vegetative plant leaves.

  13. Mass spectra of alkaline earth salts with a FAB source. Complexation with crown ethers

    With a liquid desorption FAB source it is possible to obtain alkaline earth metal ions complexed by a crown ether. Conditions for formation of these complexes ions are examined for selection of the complexing agent in function of cation size. Behaviour of alkaline and alkaline earth compounds are compared allowing the differentiation of ion extraction phenomena by liquid desorption ion source and solvent extraction

  14. Complex source rate estimation for atmospheric transport and dispersion models

    The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate

  15. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species. PMID:26025228

  16. Development of polarized ion source for the JINR accelerator complex

    Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, B.; Belov, A. S.; Zubets, V. N.; Turbabin, A. V.

    2016-02-01

    Status of the JINR polarized ion source development is described. The source is under tests at the test-bench of LHEP, JINR. A charge-exchange plasma ionizer has been tested initially without a storage cell in the ionization region. An unpolarized deuterium ion beam with peak current of 160 mA, 23 keV energy, pulse duration of 100 μs and repetition rate of 1 Hz has been extracted from the ionizer. With a free polarized atomic hydrogen beam injected into the ionizer a polarized proton beam with peak current of 1.4 mA has been obtained. The nearest plans for the source development include tests of the ionizer with the storage cell and tuning of the high frequency transition units installed in their operating position with a Breit-Rabi polarimeter.

  17. Cognitive Complexity of Mathematics Instructional Tasks in a Taiwanese Classroom: An Examination of Task Sources

    Hsu, Hui-Yu; Silver, Edward A.

    2014-01-01

    We examined geometric calculation with number tasks used within a unit of geometry instruction in a Taiwanese classroom, identifying the source of each task used in classroom instruction and analyzing the cognitive complexity of each task with respect to 2 distinct features: diagram complexity and problem-solving complexity. We found that…

  18. Which Sources of Flavonoids: Complex Diets or Dietary Supplements?1

    Egert, Sarah; Rimbach, Gerald

    2011-01-01

    There is increasing interest in the potential health benefits of dietary flavonoids. Fruits and vegetables, tea, and cocoa are rich natural sources of flavonoids. Epidemiological studies have indicated that consumption of these foods is likely to be associated with a reduced risk of cardiovascular disease, but the etiology of this benefit is not yet clearly defined. Furthermore, in some acute interventions, a positive effect of tea and cocoa on vascular function has been reported. An alternat...

  19. ADVANCED ACOUSTIC EMISSION SOURCE LOCATION IN COMPLEX AIRCRAFT STRUCTURE

    Blaháček, Michal; Převorovský, Zdeněk

    Krakow: University of Technology Krakov, 2008 - (Kanji, O.), s. 172-177 ISBN 978-83-7242-478-5. [European Conference on Acoustic Emission Testing EWGAE /28./. Krakow (PL), 17.09.2008-19.09.2008] R&D Projects: GA ČR GA101/07/1518 Institutional research plan: CEZ:AV0Z20760514 Keywords : source location * aircraft structure * fuzzy Subject RIV: BI - Acoustics

  20. Chaos as a Source of Complexity and Diversity in Evolution

    Kaneko, K

    1993-01-01

    The relevance of chaos to evolution is discussed in the context of the origin and maintenance of diversity and complexity. Evolution to the edge of chaos is demonstrated in an imitation game. As an origin of diversity, dynamic clustering of identical chaotic elements, globally coupled each to other, is briefly reviewed. The clustering is extended to nonlinear dynamics on hypercubic lattices, which enables us to construct a self-organizing genetic algorithm. A mechanism of maintenance of diversity, ``homeochaos", is given in an ecological system with interaction among many species. Homeochaos provides a dynamic stability sustained by high-dimensional weak chaos. A novel mechanism of cell differentiation is presented, based on dynamic clustering. Here, a new concept -- ``open chaos" -- is proposed for the instability in a dynamical system with growing degrees of freedom. It is suggested that studies based on interacting chaotic elements can replace both top-down and bottom-up approaches.

  1. Effects of cadmium exposure on the gill proteome of Cottus gobio: Modulatory effects of prior thermal acclimation

    Highlights: • Fish acclimated to elevated temperature were subsequently exposed to cadmium. • Interaction of both stressors on LDH activity and protein expression was complex. • Both stressors have opposite effects at branchial protein expression level. • Proteins belonging to the same functional class exhibited differing responses. • Prior acclimation to elevated temperature modulated the effects of cadmium exposure. - Abstract: Temperature and trace metals are common environmental stressors, and their importance is increasing due to global climate change and anthropogenic pollution. The aim of the present study was to investigate whether acclimation to elevated temperature affects the response of the European bullhead (Cottus gobio) to subsequent cadmium (Cd) exposure by using enzymatic and proteomic approaches. Fish acclimated to 15 (standard temperature), 18 or 21 °C for 28 days were exposed to 1 mg Cd/L for 4 days at the respective acclimation temperature. First, exposure to Cd significantly decreased the activity of the lactate dehydrogenase (LDH) in gills of fish acclimated to 15 or 18 °C. However, an acclimation to 21 °C suppressed the inhibitory effect of Cd. Second, using a proteomic analysis by 2D-DIGE, we observed that thermal acclimation was the first parameter affecting the protein expression profile in gills of C. gobio, while subsequent Cd exposure seemed to attenuate this temperature effect. Moreover, our results showed opposite effects of these two environmental stressors at protein expression level. From the 52 protein spots displaying significant interaction effects of temperature and Cd exposure, a total of 28 different proteins were identified using nano LC–MS/MS and the Peptide and Protein Prophet algorithms of Scaffold software. The identified differentially expressed proteins can be categorized into diverse functional classes, related to protein turnover, folding and chaperoning, metabolic process, ion transport, cell

  2. Effects of cadmium exposure on the gill proteome of Cottus gobio: Modulatory effects of prior thermal acclimation

    Dorts, Jennifer, E-mail: jennifer.dorts@unamur.be [Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Kestemont, Patrick [Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Thézenas, Marie-Laetitia; Raes, Martine [Research Unit in Cell Biology (URBC) (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Silvestre, Frédéric [Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2014-09-15

    Highlights: • Fish acclimated to elevated temperature were subsequently exposed to cadmium. • Interaction of both stressors on LDH activity and protein expression was complex. • Both stressors have opposite effects at branchial protein expression level. • Proteins belonging to the same functional class exhibited differing responses. • Prior acclimation to elevated temperature modulated the effects of cadmium exposure. - Abstract: Temperature and trace metals are common environmental stressors, and their importance is increasing due to global climate change and anthropogenic pollution. The aim of the present study was to investigate whether acclimation to elevated temperature affects the response of the European bullhead (Cottus gobio) to subsequent cadmium (Cd) exposure by using enzymatic and proteomic approaches. Fish acclimated to 15 (standard temperature), 18 or 21 °C for 28 days were exposed to 1 mg Cd/L for 4 days at the respective acclimation temperature. First, exposure to Cd significantly decreased the activity of the lactate dehydrogenase (LDH) in gills of fish acclimated to 15 or 18 °C. However, an acclimation to 21 °C suppressed the inhibitory effect of Cd. Second, using a proteomic analysis by 2D-DIGE, we observed that thermal acclimation was the first parameter affecting the protein expression profile in gills of C. gobio, while subsequent Cd exposure seemed to attenuate this temperature effect. Moreover, our results showed opposite effects of these two environmental stressors at protein expression level. From the 52 protein spots displaying significant interaction effects of temperature and Cd exposure, a total of 28 different proteins were identified using nano LC–MS/MS and the Peptide and Protein Prophet algorithms of Scaffold software. The identified differentially expressed proteins can be categorized into diverse functional classes, related to protein turnover, folding and chaperoning, metabolic process, ion transport, cell

  3. Modular design and the development of complex artifact lesson fron free open source software.

    Alessandro Rossi; Alessandro Narduzzo

    2003-01-01

    Organizational and managerial theories of modularity applied to the design and production of complex artifacts are used to interpret the rise and success of Free/Open Source Software methodologies and practices in software engineering

  4. Waterlogging and submergence stress: affects and acclimation.

    Phukan, Ujjal J; Mishra, Sonal; Shukla, Rakesh Kumar

    2016-10-01

    Submergence, whether partial or complete, imparts some serious consequences on plants grown in flood prone ecosystems. Some plants can endure these conditions by embracing various survival strategies, including morphological adaptations and physiological adjustments. This review summarizes recent progress made in understanding of the stress and the acclimation responses of plants under waterlogged or submerged conditions. Waterlogging and submergence are often associated with hypoxia development, which may trigger various morphological traits and cellular acclimation responses. Ethylene, abscisic acid, gibberellic acid and other hormones play a crucial role in the survival process which is controlled genetically. Effects at the cellular level, including ATP management, starch metabolism, elemental toxicity, role of transporters and redox status have been explained. Transcriptional and hormonal interplay during this stress may provide some key aspects in understanding waterlogging and submergence tolerance. The level and degree of tolerance may vary depending on species or climatic variations which need to be studied for a proper understanding of waterlogging stress at the global level. The exploration of regulatory pathways and interplay in model organisms such as Arabidopsis and rice would provide valuable resources for improvement of economically and agriculturally important plants in waterlogging affected areas. PMID:26177332

  5. On the Communication Complexity of Secret Key Generation in the Multiterminal Source Model

    Mukherjee, Manuj; Kashyap, Navin

    2014-01-01

    Communication complexity refers to the minimum rate of public communication required for generating a maximal-rate secret key (SK) in the multiterminal source model of Csiszar and Narayan. Tyagi recently characterized this communication complexity for a two-terminal system. We extend the ideas in Tyagi's work to derive a lower bound on communication complexity in the general multiterminal setting. In the important special case of the complete graph pairwise independent network (PIN) model, ou...

  6. STATE OF THE ART TECHNIQUES USED FOR NOISE SOURCE IDENTIFICATION ON COMPLEX BODIES

    Corneliu STOICA

    2010-01-01

    Over the last few decades, many approaches have been undertaken in order to asses detailed noise source identification on complex bodies, i.e. aircrafts, cars, machinery. Noise source identification implies to accurately obtain the position and frequency of the dominant noise sources. There are cases where traditional testing methods can not be applied at all or their use involves some limitations. Optical systems used for near field analysis require a line of sight that may not be available....

  7. Complex Evaluation of Light Sources in Case of Electric Power Cost Increase

    Y. N. Kolesnik; A. V. Ivaneychik

    2008-01-01

    The paper gives complex evaluation of efficiency of incandescent lamps, luminescent and light-emitting-diode (LED) light sources in case of electric power price increase. On the basis of experimental table lamp electric power indices of light-emitting-diode (LED) light sources with equivalent luminous flux have been determined. Dependences of main indices of economic efficiency of various light sources on their operational regimes have been obtained and rate of influence on these indices of e...

  8. Locating the source of diffusion in complex networks by time-reversal backward spreading

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  9. Acclimation of subsurface microbial communities to mercury

    de Lipthay, Julia R; Rasmussen, Lasse D; Øregaard, Gunnar;

    2008-01-01

    of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging......We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level...... of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential...

  10. Mathematical model and software complex for computer simulation of field emission electron sources

    Nikiforov, Konstantin [Saint Petersburg State University, Universitetskii prospekt 35, Saint-Petersburg (Russian Federation)

    2015-03-10

    The software complex developed in MATLAB allows modelling of function of diode and triode structures based on field emission electron sources with complex sub-micron geometry, their volt-ampere characteristics, calculating distribution of electric field for educational and research needs. The goal of this paper is describing the physical-mathematical model, calculation methods and algorithms the software complex is based on, demonstrating the principles of its function and showing results of its work. For getting to know the complex, a demo version with graphical user interface is presented.

  11. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation.

    Carmody, Melanie; Crisp, Peter A; d'Alessandro, Stefano; Ganguly, Diep; Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica; Pogson, Barry J

    2016-07-01

    Distinct ROS signaling pathways initiated by singlet oxygen ((1)O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the (1)O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of (1)O2 using the conditional flu mutant. A qPCR time course of (1)O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent (1)O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. PMID:27288360

  12. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    Nadin Pade

    2014-12-01

    Full Text Available The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants.

  13. Generalist-specialist trade-off during thermal acclimation

    Seebacher, Frank; Ducret, Varlérie; Little, Alexander G; Adriaenssens, Bart

    2015-01-01

    The shape of performance curves and their plasticity define how individuals and populations respond to environmental variability. In theory, maximum performance decreases with an increase in performance breadth. However, reversible acclimation may counteract this generalist–specialist trade-off, because performance optima track environmental conditions so that there is no benefit of generalist phenotypes. We tested this hypothesis by acclimating individual mosquitofish (Gambusia holbrooki) to...

  14. Acclimation and thermal tolerance in Antarctic marine ectotherms

    Peck, L.S.; Morley, S.A.; Richard, J.; Clark, M.S.

    2014-01-01

    Antarctic marine species have evolved in one of the coldest and most temperature-stable marine environments on Earth. They have long been classified as being stenothermal, or having a poor capacity to resist warming. Here we show that their ability to acclimate their physiology to elevated temperatures is poor compared with species from temperate latitudes, and similar to those from the tropics. Those species that have been demonstrated to acclimate take a very long time to do so, with Antarc...

  15. A Complex Matrix Factorization approach to Joint Modeling of Magnitude and Phase for Source Separation

    Ahuja, Chaitanya; Nathwani, Karan; Rajesh M. Hegde

    2014-01-01

    Conventional NMF methods for source separation factorize the matrix of spectral magnitudes. Spectral Phase is not included in the decomposition process of these methods. However, phase of the speech mixture is generally used in reconstructing the target speech signal. This results in undesired traces of interfering sources in the target signal. In this paper the spectral phase is incorporated in the decomposition process itself. Additionally, the complex matrix factorization problem is reduce...

  16. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  17. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  18. Novel algorithm on DOA estimation for correlated sources under complex symmetric Toeplitz noise

    Wang Kai; Zhang Yongshun; Shi Dan

    2008-01-01

    To cope with the scenario where both uncorrelated sources and coherent sources coexist,a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented.Under the condition of stationary colored noise field,the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources,then a Toeplitz matrix is constructed for the remained coherent sources.After preprocessing,a propagator method (PM) is employed to find the DOAs without any eigendecomposition.The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity.Simulation results demonstrate the effectiveness and efficiency of the proposed method.

  19. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.

    Carmen Espinoza

    Full Text Available In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further

  20. A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    Lee Dong-Sup

    2015-01-01

    Full Text Available Independent Component Analysis (ICA, one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

  1. Short Duration Heat Acclimation in Australian Football Players.

    Kelly, Monica; Gastin, Paul B; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J

    2016-03-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg(-1)·min(-1)) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac(-)]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac(-)] (all p HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key pointsSome minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat.The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season.Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat training session or some pre-heating prior to exercise. PMID:26957934

  2. Paradoxical acclimation responses in the thermal performance of insect immunity.

    Ferguson, Laura V; Heinrichs, David E; Sinclair, Brent J

    2016-05-01

    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25 to -2.1 ± 0.18 °C, and chill coma recovery time after 72 h at -2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms' response to climate change. PMID:26846428

  3. Acclimation improves salt stress tolerance in Zea mays plants.

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. PMID:27372277

  4. Development of an H- ion source for Japan Proton Accelerator Research Complex upgrade

    A cesium (Cs) free H- ion source driven with a lanthanum hexaboride (LaB6) filament was adopted as an ion source for the first stage of the Japan Proton Accelerator Research Complex (J-PARC). At present, the maximum H- ion current produced by the ion source is 38 mA, using which J-PARC can produce a proton beam power of 0.6 MW by accelerating it with the 181 MeV linac and the 3 GeV rapid cycling synchrotron. In order to satisfy the beam power of 1 MW required for the second stage of the J-PARC in the near future, we have to increase the ion current to more than 60 mA. Therefore, we have started to develop a Cs-seeded ion source by adding an external Cs-seeding system to a J-PARC test ion source that has a structure similar to that of the J-PARC ion source except for the fact that the plasma chamber is slightly larger. As a result, a H- ion current of more than 70 mA was obtained from the ion source using a tungsten filament instead of a LaB6 filament with a low arc discharge power of 15 kW (100 V, 150 A).

  5. Extended alternating-temperature cold acclimation and culture duration improve pear shoot cryopreservation.

    Chang, Y; Reed, B M

    2000-06-01

    Meristems of many pear genotypes can be successfully cryopreserved following 1 week of cold acclimation, but an equal number do not survive the process or have very little regrowth. This study compared commonly used cold acclimation protocols to determine whether the cold acclimation technique used affected the cold hardiness of shoots or the regrowth of cryopreserved meristems. In vitro-grown pear (Pyrus L.) shoots were cold acclimated for up to 16 weeks, then either the shoot tips were tested for cold hardiness or the meristems were cryopreserved by controlled freezing. Cold acclimation consisted of alternating temperatures (22 degrees C with light/-1 degrees C darkness with various photo- and thermoperiods) or a constant temperature (4 degrees C with an 8-h photoperiod or darkness). Compared with nonacclimated controls, both alternating- and constant-temperature acclimation significantly improved postcryopreservation regrowth of P. cordata Desv. and P. pashia Buch. -Ham. ex D. Don meristems. Alternating-temperature acclimation combined with either an 8-h photoperiod or darkness was significantly better than constant-temperature acclimation. Alternating-temperature shoot acclimation for 2 to 5 weeks significantly increased postcryopreservation meristem regrowth, and recovery remained high for up to 15 weeks acclimation. Postcryopreservation meristem regrowth increased with 1 to 5 weeks of constant-temperature acclimation and then declined with longer acclimation. Shoot cold hardiness varied with the acclimation procedure. The LT(50) of shoots acclimated for 10 weeks with alternating temperatures was -25 degrees C; that with constant temperature was -14.7 degrees C; and that of the nonacclimated control was -10 degrees C. Less frequent transfer of cultures also improved acclimation of shoots. Shoots grown without transfer to fresh medium for 6-12 weeks had higher postcryopreservation recovery with shorter periods of acclimation than shoots with a 3-week transfer

  6. FREEZING IN NON-ACCLIMATED OATS: A COMPARISON OF THERMAL RESPONSE AND HISTOLOGY OF RECOVERING CROWNS IN GRADUAL AND RAPIDLY FROZEN PLANTS.

    Freezing in winter cereals is a complex phenomenon that can affect various plant tissues differently. To better understand how freezing affects specific tissue in the over wintering organ (crown) of winter cereal crops, non acclimated oats were frozen to -3°C over an extended period and tissue dama...

  7. Drinking and water balance during exercise and heat acclimation

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  8. UV-B Perception and Acclimation in Chlamydomonas reinhardtii.

    Tilbrook, Kimberley; Dubois, Marine; Crocco, Carlos D; Yin, Ruohe; Chappuis, Richard; Allorent, Guillaume; Schmid-Siegert, Emanuel; Goldschmidt-Clermont, Michel; Ulm, Roman

    2016-04-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  9. Short Duration Heat Acclimation in Australian Football Players

    Monica Kelly, Paul B. Gastin, Daniel B Dwyer, Simon Sostaric, Rodney J. Snow

    2016-03-01

    Full Text Available This study examined if five sessions of short duration (27 min, high intensity, interval training (HIIT in the heat over a nine day period would induce heat acclimation in Australian football (AF players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1 and randomly allocated into either a heat acclimation (Acc (n = 7 or Control (Con group (n = 7. The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH, whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH. Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% VO2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH during which VO2, blood lactate concentration ([Lac-], heart rate (HR, rating of perceived exertion (RPE, thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p < 0.05 during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007 after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited.

  10. Uncertainty estimation in sediment fingerprinting un-mixing models: impact of source characterisation and complexity

    Sherriff, Sophie; Rowan, John; Franks, Stewart; Walden, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2014-05-01

    Sediment fingerprinting techniques are being applied more frequently to inform soil and water management issues. Identification of sediment source areas and assessment of their relative contributions are essential in targeting cost-effective mitigation strategies. Sediment fingerprinting utilises natural sediment properties (e.g. chemical, magnetic, radiometric) to trace the contributions from different source areas by 'unmixing' a catchment outlet sample back to its constituent sources. Early qualitative approaches have been superseded by quantitative methodologies using multiple (composite) tracers coupled with linear programming. Despite the inclusion of fingerprinting results in environmental management strategies, techniques are subject to potentially significant uncertainties. Intra-source heterogeneity, although widely recognised as a source of uncertainty, is difficult to address, particularly in large study catchments, or where source collection is restricted. Inadequate characterisation may result in the translation of significant uncertainties to a group fingerprint and onward to contribution estimates. Franks and Rowan (2000) developed an uncertainty inclusive un-mixing model (FR2000+) based on Bayesian Monte-Carlo methods. Source area contributions are reported with confidence intervals which incorporate sampling and un-mixing uncertainties. Consequently the impact of uncertainty on the reliability of predictions can be considered. The aim of this study is to determine the impact of source area sampling resolution and spatial complexity on source area contribution estimates and their relative uncertainty envelope. High resolution source area sampling was conducted in a 10 km2 intensive grassland catchment in Co. Wexford, Ireland, according to potential field and non-field sources. Seven potential source areas were sampled; channel banks (n=55), road verges (n=44), topsoils (n=35), subsoils (n=32), tracks (n=6), drains (n=2) and eroding ditches (n=5

  11. Short Duration Heat Acclimation in Australian Football Players

    Kelly, Monica; Gastin, Paul B.; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J.

    2016-01-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38....

  12. Managing Multiple Sources of Competitive Advantage in a Complex Competitive Environment

    Alexandre Howard Henry Lapersonne

    2013-12-01

    Full Text Available The aim of this article is to review the literature on the topic of sustained and temporary competitive advantage creation, specifically in dynamic markets, and to propose further research possibilities. After having analyzed the main trends and scholars’ works on the subject, it was concluded that a firm which has been experiencing erosion of its core sources of economic rent generation, should have diversified its strategy portfolio in a search for new sources of competitive advantage, ones that could compensate for the decline of profits provoked by intensive competitive environments. This review concludes with the hypothesis that firms, who have decided to enter and manage multiple competitive environments, should have developed a multiple strategies framework approach. The management of this source of competitive advantage portfolio should have allowed persistence of a firm’s superior economic performance through the management of diverse temporary advantages lifecycle and through a resilient effect, where a very successful source of competitive advantage compensates the ones that have been eroded. Additionally, the review indicates that economies of emerging countries, such as the ones from the BRIC block, should present a more complex competitive environment due to their historical nature of cultural diversity, social contrasts and frequent economic disruption, and also because of recent institutional normalization that has turned the market into hypercompetition. Consequently, the study of complex competition should be appropriate in such environments.

  13. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    Emanuela eDattolo

    2013-06-01

    Full Text Available For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in the shallow (-5m and a deep (-25m portions of a single meadow, (i we generated two reciprocal EST (Expressed Sequences Tags libraries using a Suppressive Subtractive Hybridization (SSH approach, to obtain depth/specific transcriptional profiles, and (ii we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear o be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  14. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss

    Sappal, Ravinder [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); MacDougald, Michelle [Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John’s, NL, A1B 3V6 (Canada); Fast, Mark [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Siah, Ahmed [British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada)

    2015-08-15

    Highlights: • Sequential inhibition and activation allows assessment of multiple segments of the electron transport system. • Warm acclimation and hypoxia-reoxygenation have global effects on the electron transport system. • Warm acclimation and hypoxia-reoxygenation sensitize the electron transport system to copper. • Thermal stress, hypoxia-reoxygenation and copper act additively to impair mitochondrial function. - Abstract: Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20 °C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0–20 μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I–IV (CI–IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11 → 20 °C) in temperature increased mitochondrial oxidation rates supported by CI–IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI–IV, reduced RCR for all except

  15. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss

    Highlights: • Sequential inhibition and activation allows assessment of multiple segments of the electron transport system. • Warm acclimation and hypoxia-reoxygenation have global effects on the electron transport system. • Warm acclimation and hypoxia-reoxygenation sensitize the electron transport system to copper. • Thermal stress, hypoxia-reoxygenation and copper act additively to impair mitochondrial function. - Abstract: Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20 °C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0–20 μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I–IV (CI–IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11 → 20 °C) in temperature increased mitochondrial oxidation rates supported by CI–IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI–IV, reduced RCR for all except

  16. Performance of pond-wetland complexes as a preliminary processor of drinking water sources.

    Wang, Weidong; Zheng, Jun; Wang, Zhongqiong; Zhang, Rongbin; Chen, Qinghua; Yu, Xinfeng; Yin, Chengqing

    2016-01-01

    Shijiuyang Constructed Wetland (110 hm(2)) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond-wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited. PMID:26899651

  17. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation

    Campbell, Douglas; Hurry, Vaughan; Adrian K Clarke; Gustafsson, Petter; Öquist, Gunnar

    1998-01-01

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluore...

  18. Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis

    Grenchik, M. K.; Donelson, J. M.; Munday, P. L.

    2013-03-01

    Tropical species are predicted to have limited capacity for acclimation to global warming. This study investigated the potential for developmental thermal acclimation by the tropical damselfish Pomacentrus moluccensis to ocean temperatures predicted to occur over the next 50-100 years. Newly settled juveniles were reared for 4 months in four temperature treatments, consisting of the current-day summer average (28.5 °C) and up to 3 °C above the average (29.5, 30.5 and 31.5 °C). Resting metabolic rate (RMR) of fish reared at 29.5 and 31.5 °C was significantly higher than the control group reared at 28.5 °C. In contrast, RMR of fish reared at 30.5 °C was not significantly different from the control group, indicating these fish had acclimated to their rearing temperature. Furthermore, fish that developed in 30.5 and 31.5 °C exhibited an enhanced ability to deal with acute temperature increases. These findings illustrate that developmental acclimation may help coral reef fish cope with warming ocean temperatures.

  19. Molecular processes of transgenerational acclimation to a warming ocean

    Veilleux, Heather D.

    2015-07-20

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change1, 2, 3, 4; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  20. Phospholipase A2 activity during cold acclimation of wheat

    Phospholipase A2 (EC 3.1.1.4; PLA2) activity in wheat (Triticum aestivum L.) crown tissue from plants undergoing cold acclimation and/or chilling stress was investigated in a moderately cold tolerant winter wheat, a spring wheat, and a poorly cold tolerant winter wheat. Activity levels were inv...

  1. Effect of elevated CO2 concentration: Acclimation of Rubisco

    Urban, Otmar; Šprtová, Miroslava

    Volume 1. 1. Brno : Global Change Research Centre, Academy of Sciences of the Czech Republic, v. v. i, 2015 - (Urban, O.; Klem, K.), s. 78-88 ISBN 978-80-87902-14-1 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : CO2 concentration * Rubisco * acclimation Subject RIV: EH - Ecology, Behaviour

  2. Freshwater fish internals as a promising source of biologically active lipid complexes

    Samoilovа D. A.

    2015-12-01

    Full Text Available The research on development of technology of fat extraction from freshwater fish entrails has been carried out. The study of mass composition of freshwater fish internals has shown that the highest content of fat (averaged 13,8 % is typical for internals of fish like carp, perch, silver carp, pike. The higher content is typical for silver carp (14.4 % permitting the possibility of its use as a source of lipid complexes. The chemical composition of the internal organs of researched objects has been studied; to justify the rational modes of extracting lipid complexes from freshwater fish internals the methods of extracting fat (thermal, enzymatic and low temperature have been tested. The quality indicators of raw fat have been analyzed and the conclusion on possibility of combining the ways of oil extraction in order to increase its output and improve the quality characteristics has been made

  3. Determining complex crystal structures from high pressure single-crystal diffraction data collected on synchrotron sources

    McMahon, M. I.; Loa, I.; Stinton, G. W.; Lundegaard, L. F.

    2013-08-01

    As part of a Long Term Project, single-crystal diffraction techniques have been developed for use at the high pressure beamlines ID09 and ID27 at the European Synchrotron Radiation Facility, and have been utilised to determine the crystal structures of various high pressure phases, including those with incommensurate structures, at both high and low temperatures. The same techniques have also been used to determine the structures of high pressure phases at the SRS, Diamond and Petra-III synchrotron sources. In this paper, we describe technical details of the methods developed, and describe some of the considerations necessary for planning experiments and collecting and processing the data. We then illustrate the quality of data that can be obtained, and the complexity of the structures that can be refined, using recent results obtained from complex high pressure phases of N2 and Ba.

  4. Storage of ionizing radiation ampoule sources on the base of stand complex 'Baikal-1'

    Repository for spent ionizing irradiation ampoule sources (IRAS) on the basis of scientific-research reactor complex 'Baikal-1' was established and put into operation in 1995. It is meant for placing for the long-term storage of spent IRAS delivered from different enterprises and institutions of the Republic of Kazakhstan. Earlier spent IRAS were sent for processing and storage to enterprises of Russian Federation. Activities on acceptance, transportation and placing for storage of the spent IRAS helped to improve essentially the ecology in many regions of Kazakhstan and to restart the activity in oncological centers. At present there was accepted and placed into the repository more than 16,000 IRAS and among them 27 sources with oncological activity more than 2,000 Ci every. (author)

  5. STATE OF THE ART TECHNIQUES USED FOR NOISE SOURCE IDENTIFICATION ON COMPLEX BODIES

    Corneliu STOICA

    2010-03-01

    Full Text Available Over the last few decades, many approaches have been undertaken in order to asses detailed noise source identification on complex bodies, i.e. aircrafts, cars, machinery. Noise source identification implies to accurately obtain the position and frequency of the dominant noise sources. There are cases where traditional testing methods can not be applied at all or their use involves some limitations. Optical systems used for near field analysis require a line of sight that may not be available. The state-of-the-art technology for this purpose is the use of a large number of microphones whose signals are acquired simultaneously, i.e. microphone phased array. Due to the excessive cost of the instruments and the data acquisition system required, the implementation of this technology was restricted to governmental agencies (NASA, DLR and big companies such as Boeing and Airbus. During the past years, this technique was developed in wind tunnels and some universities to perform noise source identification on scale airframes, main landing gear models, and aerodynamic profiles (used on airplanes, helicopter rotors and wind mills.

  6. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    Saikin, Semion K; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alan; Tang, Joseph Kuo-Hsiang

    2014-01-01

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal ve...

  7. Complex Sources of Variation in Tissue Expression Data: Analysis of the GTEx Lung Transcriptome.

    McCall, Matthew N; Illei, Peter B; Halushka, Marc K

    2016-09-01

    The sources of gene expression variability in human tissues are thought to be a complex interplay of technical, compositional, and disease-related factors. To better understand these contributions, we investigated expression variability in a relatively homogeneous tissue expression dataset from the Genotype-Tissue Expression (GTEx) resource. In addition to identifying technical sources, such as sequencing date and post-mortem interval, we also identified several biological sources of variation. An in-depth analysis of the 175 genes with the greatest variation among 133 lung tissue samples identified five distinct clusters of highly correlated genes. One large cluster included surfactant genes (SFTPA1, SFTPA2, and SFTPC), which are expressed exclusively in type II pneumocytes, cells that proliferate in ventilator associated lung injury. High surfactant expression was strongly associated with death on a ventilator and type II pneumocyte hyperplasia. A second large cluster included dynein (DNAH9 and DNAH12) and mucin (MUC5B and MUC16) genes, which are exclusive to the respiratory epithelium and goblet cells of bronchial structures. This indicates heterogeneous bronchiole sampling due to the harvesting location in the lung. A small cluster included acute-phase reactant genes (SAA1, SAA2, and SAA2-SAA4). The final two small clusters were technical and gender related. To summarize, in a collection of normal lung samples, we found that tissue heterogeneity caused by harvesting location (medial or lateral lung) and late therapeutic intervention (mechanical ventilation) were major contributors to expression variation. These unexpected sources of variation were the result of altered cell ratios in the tissue samples, an underappreciated source of expression variation. PMID:27588449

  8. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    Contaminant fate in coastal areas impacted by golf course runoff is not well understood. This report summarizes trace metal, pesticide and PCB residues for colonized periphyton, Ruppia maritima (widgeon grass), Callinectes sapidus Rathbun (blue crabs) and Crassostrea virginica Gemlin (Eastern oyster) collected from areas adjacent to a Florida golf course complex which receive runoff containing reclaimed municipal wastewater. Concentrations of 19 chlorinated pesticides and 18 PCB congeners were usually below detection in the biota. In contrast, 8 trace metals were commonly detected although concentrations were not usually significantly different for biota collected from reference and non-reference coastal areas. Residue concentrations in decreasing order were typically: zinc, arsenic, copper, chromium, lead, nickel, cadmium and mercury. Mean BCF values for the eight trace metals ranged between 160-57 000 (periphyton), 79-11 033 (R. maritima), 87-162 625 (C. virginica) and 12-9800 (C. sapidus). Most trace metal residues in periphyton colonized adjacent to the golf complex, were either similar to or significantly less than those reported for periphyton colonized in nearby coastal areas impacted by urban stormwater runoff and treated municipal and industrial wastewater discharges. Consequently, the recreational complex does not appear to be a major source of bioavailable contaminants locally nor in the immediate watershed based on results for the selected biota

  9. Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level

    Fanucchi, Francesca

    2012-06-01

    This study used 2DE to investigate how Arabidopsis thaliana modulates protein levels in response to freezing stress after sub-lethal exposure at - 10 °C, both in cold-acclimated and in non-acclimated plants. A map was implemented in which 62 spots, corresponding to 44 proteins, were identified. Twenty-two spots were modulated upon treatments, and the corresponding proteins proved to be related to photosynthesis, energy metabolism, and stress response. Proteins demonstrated differences between control and acclimation conditions. Most of the acclimation-responsive proteins were either not further modulated or they were down-modulated by freezing treatment, indicating that the levels reached during acclimation were sufficient to deal with freezing. Anabolic metabolism appeared to be down-regulated in favor of catabolic metabolism. Acclimated plants and plants submitted to freezing after acclimation showed greater reciprocal similarity in protein profiles than either showed when compared both to control plants and to plants frozen without acclimation. The response of non-acclimated plants was aimed at re-modulating photosynthetic apparatus activity, and at increasing the levels of proteins with antioxidant-, molecular chaperone-, or post-transcriptional regulative functions. These changes, even less effective than the acclimation strategy, might allow the injured plastids to minimize the production of non-useful metabolites and might counteract photosynthetic apparatus injuries. © 2012 Elsevier B.V. All rights reserved.

  10. Multi-generation cadmium acclimation and tolerance in Daphnia magna Straus

    The cladoceran Daphnia magna was acclimated for seven generations to cadmium concentrations ranging from 0 (control) to 250 μg/l Cd (corresponding to a free ion activity of 4.60 nM Cd2+). Acute and chronic cadmium tolerance as well as cadmium accumulation were monitored as a function of acclimation time. After two to three generations of acclimation to concentrations ranging from 0.23 to 1.11 nM Cd2+ increases in acute tolerance were maximal (factor 7.2) and significant. Acclimation for seven generations to the same acclimation concentrations did result in an increased chronic cadmium tolerance (21 days EC50 values increased). Organisms acclimated to 1.93 nM Cd2+ were equally or more sensitive than non-acclimated daphnids in acute and chronic toxicity tests. Cadmium contents in D. magna increased significantly as a function of the acclimation concentration. Maximum body burdens of 236±30 μg Cd/g dry weight were measured in organisms exposed to 4.60 nM Cd2+, but detoxification mechanisms were only successful up to 82±20 μg Cd/g dry weight as this concentration did not cause major decreases in survival and reproduction in chronic toxicity tests. As the potential positive effect of acclimation on cadmium tolerance disappeared with successive acclimation generations and increasing acclimation concentrations, it is concluded that multi-generation acclimation studies are important for the evaluation of the long-term effects of environmental toxicants. - Multi-generation acclimation studies are important for evaluating long-term effects of aquatic pollutants

  11. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The

  12. Gas exchange under water : acclimation of terrestrial plants to submergence

    Mommer, Liesje

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little attention. This thesis, therefore, aims to investigate in depth the effects of acclimation to submergence on underwater gas exchange capacity of terrestrial plants. It elucidates the beneficial effects ...

  13. Thermal acclimation under constant temperatures: Exercise in ecological fantasy?

    Gvoždík, Lumír; Měráková, Eva; Šamajová, Pavlína

    Prague : Society for Experimental Biology, 2010. s. 103. [SEB Annual Main Meeting 2010. 30.06.2010-03.07.2010, Prague] R&D Projects: GA ČR GA206/06/0953; GA ČR GAP506/10/2170 Institutional research plan: CEZ:AV0Z60930519 Keywords : thermal acclimation * ectotherms Subject RIV: EG - Zoology http://www.sebiology.org/meetings/Past_Meetings/prague/Abstracts/A3.pdf

  14. Impacts of Hypersaline Acclimation on Chlorpyrifos Toxicity to Salmonids

    Maryoung, Lindley Anne

    2014-01-01

    As part of their unique life cycle, most Pacific salmonids transition from freshwater to saltwater, requiring various adjustments in physiology. However, molecular mechanisms underlying this transition are largely unknown. Additionally, acclimation to hypersaline conditions enhances the acute toxicity of certain thioether organophosphate and carbamate pesticides in some species of euryhaline fish, yet sublethal impacts have been far less studied. The current study aimed to determine underlyin...

  15. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis

    Minagawa, Jun

    2013-01-01

    Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic...

  16. Pulmonary ventilation following acclimation to a hot environment

    Beaudin, Andrew Edward

    2007-01-01

    Human pulmonary ventilation and the hyperoxic-centrally mediated ventilatory response to CO2 were studied before and after a 10-day passive heat acclimation (HA). It was hypothesized pulmonary ventilation during a passively- or actively-induced hyperthermia would adapt similarily to thermolytic heat loss responses and that chemosensitivity would be increased following HA. Following HA, onset of increased cutaneous vasodilatation, eccrine sweating and ventilation in both passively- and activel...

  17. Internal Filters : Prospects for UV-Acclimation in Higher Plants

    Caldwell, Martyn M.; Robberecht, Ronald; Flint, Stephan D.

    1983-01-01

    Wavelength-selective absorption of solar radiation within plant leaves allows penetration of visible radiation to the chloroplats, while removing much of the damaging ultraviolet-B radiation. Flavonoids are important in this wavelength-selective absorption. Induction of flavonoid synthesis by solar radiation, and specifically by UV-B radiation, is discussed as this relates to the potential acclimation of plants to enhanced solar UV-B radiation that would result from stratospheric ozone reduct...

  18. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  19. Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding

    Yongjian Nian

    2013-01-01

    Full Text Available A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC is proposed in this paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression. Multilinear regression model is introduced for distributed lossless compression in order to improve the quality of side information. Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is competitive with that of the state-of-the-art compression algorithms for hyperspectral images.

  20. The effects of transistor source-to-gate bridging faults in complex CMOS gates

    Visweswaran, G. S.; Ali, Akhtar-Uz-Zaman M.; Lala, Parag K.; Hartmann, Carlos R. P.

    1991-06-01

    A study of the effect of gate-to-source bridging faults in the pull-up section of a complex CMOS gate is presented. The manifestation of these faults depends on the resistance value of the connection causing the bridging. It is shown that such faults manifest themselves either as stuck-at or stuck-open faults and can be detected by tests for stuck-at and stuck-open faults generated for the equivalent logic current. It is observed that for transistor channel lengths larger than 1 microns there exists a range of values of the bridging resistance for which the fault behaves as a pseudo-stuck-open fault.

  1. Cardiovascular adaptations supporting human exercise-heat acclimation.

    Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N

    2016-04-01

    This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. PMID:26905458

  2. Complex sources of air-soil-water pollution processes in the Miyun reservoir region

    YANG; Dongzhen; XU; Xiangde; LIU; Xiaoduan; XU; Qing; DING

    2005-01-01

    The comprehensive impact of atmospheric dry deposition and wet deposition and the pollution sources of farmlands, mining areas, and towns along the Baihe River on the water quality of Miyun reservoir is investigated from the angle of the complex sources of air-soil-water pollution processes, in the context of the 1990-2001 precipitation chemical data at Shangdianzi station--a WMO regional background air pollution monitoring station 15 km far from the Miyun reservoir, in conjunction with the atmospheric dry deposition and wet deposition data of the 2002-2003 Beijing City Air Pollution Observation Field Experiment (BECAPEX). Analysis results suggest that the major ions in precipitation in the Miyun reservoir region in this period were SO, NO, NH and Ca2+; wet acid deposition quantity of Miyun reservoir in the summer half year (April to September) was greater than the quantity in the winter half year (October to March), and the annual wet acid deposition in the reservoir exhibited a rising trend with the mean 1038.45 t, the maximum 1766.31 t occurred in 1996, and the minimum 604.02 t in 1994; the long-term averaged pH of atmospheric precipitation in the Miyun reservoir region was 5.20, i.e. weakly acidic, and the interannual variation of pH values displayed a falling trend. pH values of water body at various depths in the Miyun reservoir were all greater than 7.0, but they exhibited vertical and horizontal nonhomogeneity, and at the same region pH decreased vertically with depth; the 2002 and 2003 annual dustfalls in the Miyun reservoir were 13513.08 t and 3577.64 t, respectively, and the spring dustfall was the number one in a year, accounting for the 61.91% and 44.56% of the annual totals of 2002 and 2003, respectively. Because the atmospheric dry deposition and wet depositions contain multiple types heavy metal elements and harmful elements, they to some extent exacerbated the eutrophication, acidification and potential heavy metal pollution of the reservoir water

  3. Salt marsh plants ( Juncus maritimus and Scirpus maritimus) as sources of strong complexing ligands

    Mucha, Ana P.; Almeida, C. Marisa R.; Bordalo, Adriano A.; Vasconcelos, M. Teresa S. D.

    2008-03-01

    This work aimed to evaluate, in vitro, the capability of roots of salt marsh plants to release strong Cu-complexing ligands and to ascertain whether Cu contamination would stimulate ligands' exudation or not. The sea rush Juncus maritimus and the sea-club rush Scirpus maritimus, both from the lower Douro river estuary (NW Portugal), were used. Plants were collected seasonally, four times a year in 2004, during low tide. After sampling, plant roots were washed for removal of adherent particles and immersed for 2 h in a solution that matched salinity (3) and pH (7.5) of the pore water from the same location and spiked with Cu 2+ in the range 0-1600 nM to obtain plant exudates. In the final solutions as well as in sediment pore water total dissolved Zn and Cu, Cu-complexing ligand concentrations and the respective conditional stability constants ( KCuL') values were determined by voltammetry. This study demonstrated that plants are able to release, in a short period of time, relatively high amounts of strong Cu-complexing ligands (56-265 nmol g root-1), which differed among plants and sampling site but were independent of the season. Cu contamination did not stimulate exudation of Cu-complexing ligands. On the other hand, in media contaminated with Cu both plants accumulated relatively high amounts (29-83%) of the initially dissolved Cu, indicating that they have alternative internal mechanisms for Cu detoxification. Cu exchange between roots and medium (either accumulation in contaminated medium or release in the absence of Cu) was more intense for S. maritimus than for J. maritimus. It was observed that exudate solutions obtained in the absence of added Cu and sediment pore water (the densities of roots observed inside the salt marsh where comparable to those used in the in vitro experiments), displayed similarities in terms of total dissolved metals, Cu-complexing ligands concentrations, values of KCuL' (12 < log KCuL' < 14), as well as patterns of variation among

  4. USING PROTEOMICS TO STUDY THE COMPLEXITIES OF STRESS ADAPTATION IN WOODY PLANTS

    Winter survival of woody plants in temperate climates depends on their ability to acclimate to freezing temperatures. The ability to cold acclimate in woody plants can be quite complex. Different organs (buds vs. leaves) and tissues (xylem vs. bark) can differ dramatically in the extent of their c...

  5. Physiological responses in rufous-collared sparrows to thermal acclimation and seasonal acclimatization.

    Maldonado, Karin Evelyn; Cavieres, Grisel; Veloso, Claudio; Canals, Mauricio; Sabat, Pablo

    2009-04-01

    A large number of physiological acclimation studies assume that flexibility in a certain trait is both adaptive and functionally important for organisms in their natural environment; however, it is not clear how an organism's capacity for temperature acclimation translates to the seasonal acclimatization that these organisms must accomplish. To elucidate this relationship, we measured BMR and TEWL rates in both field-acclimatized and laboratory-acclimated adult rufous-collared sparrows (Zonotrichia capensis). Measurements in field-acclimatized birds were taken during the winter and summer seasons; in the laboratory-acclimated birds, we took our measurements following 4 weeks at either 15 or 30 degrees C. Although BMR and TEWL rates did not differ between winter and summer in the field-acclimatized birds, laboratory-acclimated birds exposed to 15 degrees C exhibited both a higher BMR and TEWL rate when compared to the birds acclimated to 30 degrees C and the field-acclimatized birds. Because organ masses seem to be similar between field and cold-acclimated birds whereas BMR is higher in cold-acclimated birds, the variability in BMR cannot be explained completely by adjustments in organ masses. Our findings suggest that, although rufous-collared sparrows can exhibit thermal acclimation of physiological traits, sparrows do not use this capacity to cope with minor to moderate fluctuations in environmental conditions. Our data support the hypothesis that physiological flexibility in energetic traits is a common feature of avian metabolism. PMID:19011873

  6. Reproductive acclimation to increased water temperature in a tropical reef fish.

    Jennifer M Donelson

    Full Text Available Understanding the capacity of organisms to cope with projected global warming through acclimation and adaptation is critical to predicting their likely future persistence. While recent research has shown that developmental acclimation of metabolic attributes to ocean warming is possible, our understanding of the plasticity of key fitness-associated traits, such as reproductive performance, is lacking. We show that while the reproductive ability of a tropical reef fish is highly sensitive to increases in water temperature, reproductive capacity at +1.5°C above present-day was improved to match fish maintained at present-day temperatures when fish complete their development at the higher temperature. However, reproductive acclimation was not observed in fish reared at +3.0°C warmer than present-day, suggesting limitations to the acclimation possible within one generation. Surprisingly, the improvements seen in reproduction were not predicted by the oxygen- and capacity-limited thermal tolerance hypothesis. Specifically, pairs reared at +1.5°C, which showed the greatest capacity for reproductive acclimation, exhibited no acclimation of metabolic attributes. Conversely, pairs reared at +3.0°C, which exhibited acclimation in resting metabolic rate, demonstrated little capacity for reproductive acclimation. Our study suggests that understanding the acclimation capacity of reproductive performance will be critically important to predicting the impacts of climate change on biological systems.

  7. Comparative biochemical methane potential of paragrass using an unacclimated and an acclimated microbial consortium.

    Nuchdang, Sasikarn; Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-05-01

    The effect of inoculum sources on the anaerobic digestion of paragrass was investigated. Two types of sludge were used as the inoculums: an anaerobic sludge obtained from a domestic wastewater treatment plant (OS) and a sludge acclimated to fibrous substrates in raw palm oil mill effluent (AMC). Microbial activity assays showed that the AMC had hydrolytic and acetogenic activities two times greater than the activities of the OS. In addition, the production of methane from acetate by the AMC occurred without a lag phase, while it took 8 days for the OS to start producing methane from the same substrate. The biochemical methane potential after 80 days digestion was 316 ml STP/g VS(added) using the AMC, and 277 ml STP/g VS(added) using the OS. The methane potential of the paragrass was estimated to be 3337 Nm(3) CH4/ha a. PMID:25727758

  8. Acclimation, adaptation, traits and trade-offs in plankton functional type models: reconciling terminology for biology and modelling

    Flynn, Kevin J.; St. John, Michael; Raven, John A.;

    2015-01-01

    ideally only be considered for describing intra-generational interactions; in applications between generations, and certainly between unrelated species, such concepts should be avoided. We suggest that systems biology approaches, through to complex adaptive/acclimative systems modelling, with explicit......We propose definitions in terminology to enhance ongoing collaborations between biologists and modellers on plankton ecology. Organism “functional type” should refer to commonality in ecology not biogeochemistry; the latter is largely an emergent property of the former, while alignment with ecology...

  9. Effect of thermal acclimation on thermal preference, resistance and locomotor performance of hatchling soft-shelled turtle

    Mei-Xian WU,Ling-Jun HU, Wei DANG, Hong-Liang LU, Wei-Guo DU

    2013-12-01

    Full Text Available The significant influence of thermal acclimation on physiological and behavioral performance has been documented in many ectothermic animals, but such studies are still limited in turtle species. We acclimated hatchling soft-shelled turtles Pelodiscus sinensis under three thermal conditions (10, 20 and 30 °C for 4 weeks, and then measured selected body temperature (Tsel, critical thermal minimum (CTMin and maximum (CTMax, and locomotor performance at different body temperatures. Thermal acclimation significantly affected thermal preference and resistance of P. sinensis hatchlings. Hatchling turtles acclimated to 10 °C selected relatively lower body temperatures and were less resistant to high temperatures than those acclimated to 20 °C and 30 °C. The turtles’ resistance to low temperatures increased with a decreasing acclimation temperature. The thermal resistance range (i.e. the difference between CTMax and CTMin, TRR was widest in turtles acclimated to 20 °C, and narrowest in those acclimated to 10 °C. The locomotor performance of turtles was affected by both body temperature and acclimation temperature. Hatchling turtles acclimated to relatively higher temperatures swam faster than did those acclimated to lower temperatures. Accordingly, hatchling turtles acclimated to a particular temperature may not enhance the performance at that temperature. Instead, hatchlings acclimated to relatively warm temperatures have a better performance, supporting the “hotter is better” hypothesis [Current Zoology 59 (6 : 718–724, 2013 ].

  10. Cross acclimation between heat and hypoxia: Heat acclimation improves cellular tolerance and exercise performance in acute normobaric hypoxia

    Ben James Lee

    2016-03-01

    Full Text Available Background. The potential for cross acclimation between environmental stressors is not well understood. Thus the aim of this investigation was to determine the effect of fixed-workload heat or hypoxic acclimation on cellular, physiological and performance responses during post acclimation hypoxic exercise in humans. Method. Twenty-one males (age 22 ± 5 years; stature 1.76 ± 0.07m; mass 71.8 ± 7.9kg; V ̇O2 peak 51 ± 7mL.kg-1.min-1 completed a cycling hypoxic stress test (HST and self-paced 16.1km time trial (TT before (HST1, TT1, and after (HST2, TT2 a series of 10 daily 60 min training sessions (50% N V ̇O2peak in control (CON, n = 7; 18°C, 35%RH, hypoxic (HYP, n = 7; or hot (HOT, n = 7; 40°C, 25% RH conditions. Results. TT performance in hypoxia was improved following both acclimation treatments, HYP (-3:16 ± 3:10 mins:sec; p = 0.0006 and HOT (-2:02 ± 1:02 mins:sec; p = 0.005, but unchanged after CON (+0:31 ± 1:42 mins:sec. Resting monocyte heat shock protein 72 (mHSP72 increased prior to HST2 in HOT (62 ± 46% and HYP (58 ± 52%, but was unchanged after CON (9 ± 46%, leading to an attenuated mHSP72 response to hypoxic exercise in HOT and HYP HST2 compared to HST1 (p < 0.01. Changes in extracellular hypoxia-inducible factor 1-α followed a similar pattern to those of mHSP72. Physiological strain index (PSI was attenuated in HOT (HST1 = 4.12 ± 0.58, HST2 = 3.60 ± 0.42; p = 0.007 as a result of a reduced HR (HST1 = 140 ± 14 b.min-1; HST2 131 ± 9 b.min-1 p = 0.0006 and Trectal (HST1 = 37.55 ± 0.18°C; HST2 37.45 ± 0.14°C; p = 0.018 during exercise. Whereas PSI did not change in HYP (HST1 = 4.82 ± 0.64, HST2 4.83 ± 0.63. Conclusion. Heat acclimation improved cellular and systemic physiological tolerance to steady state exercise in moderate hypoxia. Additionally we show, for the first time, that heat acclimation improved cycling time trial performance to a magnitude similar to that achieved by hypoxic acclimation.

  11. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  12. Potential pathogenicity of Aeromonas hydrophila complex strains isolated from clinical, food, and environmental sources.

    Albarral, Vicenta; Sanglas, Ariadna; Palau, Montserrat; Miñana-Galbis, David; Fusté, M Carmen

    2016-04-01

    Aeromonas are autochthonous inhabitants of aquatic environments, including chlorinated and polluted waters, although they can also be isolated from a wide variety of environmental and clinical sources. They cause infections in vertebrates and invertebrates and are considered to be an emerging pathogen in humans, producing intestinal and extra-intestinal diseases. Most of the clinical isolates correspond to A. hydrophila, A. caviae, and A. veronii bv. Sobria, which are described as the causative agents of wound infections, septicaemia, and meningitis in immunocompromised people, and diarrhoea and dysenteric infections in the elderly and children. The pathogenic factors associated with Aeromonas are multifactorial and involve structural components, siderophores, quorum-sensing mechanisms, secretion systems, extracellular enzymes, and exotoxins. In this study, we analysed a representative number of clinical and environmental strains belonging to the A. hydrophila species complex to evaluate their potential pathogenicity. We thereby detected their enzymatic activities and antibiotic susceptibility pattern and the presence of virulence genes (aer, alt, ast, and ascV). The notably high prevalence of these virulence factors, even in environmental strains, indicated a potential pathogenic capacity. Additionally, we determined the adhesion capacity and cytopathic effects of this group of strains in Caco-2 cells. Most of the strains exhibited adherence and caused complete lysis. PMID:26889703

  13. A Low-Complexity Source Encoding Assisted Multiple Access Protocol for Voice/Data Integrated Networks

    Nariman Farvardin

    2005-02-01

    Full Text Available We present and evaluate the performance of a reduced complexity variation to the source encoding assisted multiple access (SEAMA protocol for integrating voice and data over a wireless network. This protocol, denoted as slow movable-boundary SEAMA (SMB-SEAMA, uses the same embedded and multistate voice encoder used in the original SEAMA protocol. However, in SMB-SEAMA, the movable voice/data boundary is not set based on the frame-by-frame bandwidth demand of the voice subsystem, but on the number of ongoing voice calls and the acceptable average distortion level. This results in a protocol that, at the network layer, is packet switched for both voice and data; however, from the data traffic point of view, voice looks like circuit switched. Analytical results show that SMB-SEAMA is a very efficient MAC protocol and present a model for analyzing the performance of queuing systems with a variable number of servers, each with constant service time. Consequently, while reducing the refreshing rate of the movable boundary by three orders of magnitude, simulation results demonstrate that SMB-SEAMA does not significantly degrade the system performance (less than 8% reduction in throughput and it still performs better than packet reservation multiple access (PRMA, the other known packet-switched scheme, which updates the boundary during every transmit frame.

  14. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  15. Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.

    Liu, Chenlin; Wang, Xiuliang; Wang, Xingna; Sun, Chengjun

    2016-07-01

    The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae. PMID:27161450

  16. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus).

    Du, Sherry N N; Mahalingam, Sajeni; Borowiec, Brittney G; Scott, Graham R

    2016-04-15

    Many fish encounter hypoxia in their native environment, but the role of mitochondrial physiology in hypoxia acclimation and hypoxia tolerance is poorly understood. We investigated the effects of hypoxia acclimation on mitochondrial respiration, O2kinetics, emission of reactive oxygen species (ROS), and antioxidant capacity in the estuarine killifish ( ITALIC! Fundulus heteroclitus). Killifish were acclimated to normoxia, constant hypoxia (5 kPa O2) or intermittent diel cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia) for 28-33 days and mitochondria were isolated from liver. Neither pattern of hypoxia acclimation affected the respiratory capacities for oxidative phosphorylation or electron transport, leak respiration, coupling control or phosphorylation efficiency. Hypoxia acclimation also had no effect on mitochondrial O2kinetics, but ITALIC! P50(the O2tension at which hypoxia inhibits respiration by 50%) was lower in the leak state than during maximal respiration, and killifish mitochondria endured anoxia-reoxygenation without any impact on mitochondrial respiration. However, both patterns of hypoxia acclimation reduced the rate of ROS emission from mitochondria when compared at a common O2tension. Hypoxia acclimation also increased the levels of protein carbonyls and the activities of superoxide dismutase and catalase in liver tissue (the latter only occurred in constant hypoxia). Our results suggest that hypoxia acclimation is associated with changes in mitochondrial physiology that decrease ROS production and may help improve hypoxia tolerance. PMID:26896545

  17. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  18. Source Resolution and Risk Apportionment of Air Emission Sources in AN Industrial Complex for Risk Reduction Considerations: AN Air Waste Management Methodology.

    Mukerjee, Shaibal

    The purpose of this study was to develop an air waste management methodology for apportioning the health risks associated with air emission source categories that are identified in a given airshed. This was implemented by expanding the receptor model technique to assess the non-carcinogenic and carcinogenic inhalation risks to an exposed population for certain element pollutants determined to be coming from specific emission sources. The concept was demonstrated using air quality data from a mid-sized industrial complex located in a rural/residential area. It was demonstrated that risks from identified, major elemental emission categories can be quantified and that a total, additive risk be determined for main source categories in the airshed. Potential risk reduction measures were targeted at main risk sources without arbitrarily reducing risk for all sources in the airshed thereby making it a cost-effective approach. Dispersion modeling was utilized from previous emission inventory data so that risk estimates for these sources could be modeled at other receptor points in the airshed. The factor analytic procedure for Source Resolution in the initial receptor modeling approach was used to show whether the ambient data fitted a Maximum-Likelihood Factor Analysis or Principal Component Analysis for identifying underlying emission sources. It was also shown how Maximum -Likelihood Factor Analysis can be a stronger source resolution procedure as opposed to Principal Component Analysis since Factor Analysis is metrically invariant. Finally, the use of the ambient air data for total particulates was used to expand the Source Resolution and Risk Apportionment concepts to augment the Bubble Policy currently used in Air Quality Management.

  19. Heat and cold acclimation in helium-cold hypothermia in the hamster.

    Musacchia, X. J.

    1972-01-01

    A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.

  20. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site.

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas. PMID:24077332

  1. Atmospheric Pressure Ion Source Development: Experimental Validation of Simulated Ion Trajectories within Complex Flow and Electrical Fields

    Wissdorf, Walter; Lorenz, Matthias; Pöhler, Thorsten; Hönen, Herwart; Benter, Thorsten

    2013-10-01

    Three-dimensionally (3D) resolved ion trajectory calculations within the complex viscous flow field of an atmospheric pressure ion source are presented. The model calculations are validated with spatially resolved measurements of the relative sensitivity distribution within the source enclosure, referred to as the distribution of ion acceptance (DIA) of the mass analyzer. In previous work, we have shown that the DIA shapes as well as the maximum signal strengths strongly depend on ion source operational parameters such as gas flows and temperatures, as well as electrical field gradients established by various source electrode potentials (e.g., capillary inlet port potential and spray shield potential). In all cases studied, distinct, reproducible, and, to some extent, surprising DIA patterns were observed. We have thus attempted to model selected experimental operational source modes (called operational points) using a validated computational flow dynamics derived 3D-velocity field as an input parameter set for SIMION/SDS, along with a suite of custom software for data analysis and parameter set processing. Despite the complexity of the system, the modeling results reproduce the experimentally derived DIA unexpectedly well. It is concluded that SIMION/SDS in combination with accurate computational fluid dynamics (CFD) input data and adequate analysis software is capable of successfully modeling operational points of an atmospheric pressure ion (API) source. This approach should be very useful in the computer-aided design of future API sources.

  2. Model of complex integrated use of alternative energy sources for highly urbanized areas

    Ivanova Elena Ivanovna

    2014-04-01

    Full Text Available The increase of population and continuous development of highly urbanized territories poses new challenges to experts in the field of energy saving technologies. Only a multifunctional and autonomous system of building engineering equipment formed by the principles of energy efficiency and cost-effectiveness meets the needs of modern urban environment. Alternative energy sources, exploiting the principle of converting thermal energy into electrical power, show lack of efficiency, so it appears to be necessary for reaching a visible progress to skip this middle step. A fuel cell, converting chemical energy straight into electricity, and offering a vast diversity of both fuel types and oxidizing agents, gives a strong base for designing a complex integrated system. Regarding the results of analysis and comparison conducted among the most types of fuel cells proposed by contemporary scholars, a solid oxide fuel cell (SOFC is approved to be able to ensure the smooth operation of such a system. While the advantages of this device meet the requirements of engineering equipment for modern civil and, especially, dwelling architecture, its drawbacks do not contradict with the operating regime of the proposed system. The article introduces a model of a multifunctional system based on solid oxide fuel cell (SOFC and not only covering the energy demand of a particular building, but also providing the opportunity for proper and economical operation of several additional sub-systems. Air heating and water cooling equipment, ventilating and conditioning devices, the circle of water supply and preparation of water discharge for external use (e.g. agricultural needs included into a closed circuit of the integrated system allow evaluating it as a promising model of further implementation of energy saving technologies into architectural and building practice. This, consequently, will positively affect both ecological and economic development of urban environment.

  3. Integration of polyamines in the cold acclimation response.

    Alcázar, Rubén; Cuevas, Juan C; Planas, Joan; Zarza, Xavier; Bortolotti, Cristina; Carrasco, Pedro; Salinas, Julio; Tiburcio, Antonio F; Altabella, Teresa

    2011-01-01

    Temperature is one of the most important environmental factors limiting the geographical distribution of plants and accounts for significant reductions in the yield of agriculturally important crops. Low temperature damages many plant species, especially those adapted to tropical climates. In contrast, some species from temperate regions are able to develop freezing tolerance in response to low-non-freezing temperature, an adaptive process named cold acclimation. Numerous molecular, biochemical and physiological changes occur during cold acclimation, most of them being associated with significant changes in gene expression and metabolite profiles. During recent years, transcriptomic and metabolomic approaches have allowed the identification of cold-responsive genes and main metabolites which accumulate in plants exposed to cold. The obtained data support the previously held idea that polyamines (PAs) are involved in plant responses to cold, although their specific role is still not well understood. In this review, we synthesize published data regarding PA-responses to cold stress and integrate them with global transcriptional and metabolic changes. The potential of PA genetic engineering for the development of plants resistant to cold and freezing temperatures, and their plausible mechanisms of action are also discussed. PMID:21421344

  4. Light acclimation in Porphyridium purpureum (Rhodophyta): Growth, photosynthesis, and phycobilisomes

    Levy, I.; Gantt, E. (Smithsonian Institution, WA (USA))

    1988-12-01

    Acclimation to three photon flux densities 10, 35, 180 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} was determined in laboratory cultures of Porphyridium purpureum Bory, Drew and Ross. Cultures grown at low, medium, and high PPFDs had compensation points of <3, 6, and 20 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1}, respectively, and saturating irradiances in the initial log phase of 90, 115, 175 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} and up to 240 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} in late log phase. High light cells had the smallest photosynthetic unit size (phycobiliproteins plus chlorophyll), the highest photosynthetic capacity, and the highest growth rates. Photosystem I reaction centers (P700) per cell remained proportional to chlorophyll at ca. 110 chl/P700. However, phycobiliprotein content decreased as did the phycobilisome number (ca. 50%) in high light cells, whereas the phycobilisome size remained the same as in medium and low light cells. We concluded that acclimation of this red alga to varied PPFDs was manifested by the plasticity of the photosystem II antennae with little, if any, affect noted on photosystem I.

  5. Physiological acclimation of a desert antelope, Arabian oryx (Oryx leucoryx), to long-term food and water restriction.

    Ostrowski, Stéphane; Williams, Joseph B; Mésochina, Pascal; Sauerwein, Helga

    2006-03-01

    Desert mammals often experience scarcity of drinking water and food for prolonged periods. In this study, the first long-term acclimation experiment in a non-domesticated desert-adapted ungulate, we investigated the mechanisms used by the Arabian oryx Oryx leucoryx, to adjust its physiology to progressive food and water restriction over 5 months, an experimental regimen and time course chosen to mimic what it typically experiences between spring and late summer in the desert. At the end of the acclimation period, oryx consumed less than one and half of food and water of animals in the control group and lost 8.2+/-2.6% of their initial body mass. Experimental animals reduced their mass-specific resting metabolic rate (RMR) and total evaporative water loss (TEWL) by 16.2 and 25.7%, respectively, and maintained a digestive efficiency of about 70%. We found no support for the idea that reduced RMR in oryx correlated with a decreased thyroid hormone concentration in plasma. At the end of the 5 months acclimation, oryx continued to mobilize fatty acids to fuel metabolism, and did not use protein breakdown as a major source of gluconeogenesis. Oryx in the experimental group reduced their water intake by 70% and maintained constant plasma osmolality. They adjusted their water budget by reducing mass-specific TEWL, increasing urine osmolality and reducing urine volume by 40%, and excreting feces with <50% water content. Oryx have an unusually low TEWL compared with other arid-zone ungulates; both hydrated and water-deprived individuals have TEWL values, 51.7 and 39.3%, respectively, of allometric predictions for arid-zone ungulates. PMID:16283332

  6. Complexity

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  7. STUDY OF THE EFFECTIVENESS OF COMPLEX USE OF RENEWABLE ENERGY SOURCES IN THE REGIONAL POWER SECTOR OF THE REPUBLIC OF THE UNION OF MYANMAR

    Malinin N. K.; Pugachev R. V.; Chan N. A.

    2014-01-01

    This article aims to study the prospects of energy complexes on the basis of renewable energy sources to supply electricity to the stand-alone consumers in different regions of Myanmar. In order to do that territory of Myanmar is divided into some regions according to their amount of renewable energy sources, methods for determining the optimum parameters and operation of energy complex on the basis of renewable energy sources are developed and the cost-effectiveness of those energy complexes...

  8. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  9. Bayesian Source Separation Applied to Identifying Complex Organic Molecules in Space

    Knuth, Kevin H; Choinsky, Joshua; Maunu, Haley A; Carbon, Duane F

    2014-01-01

    Emission from a class of benzene-based molecules known as Polycyclic Aromatic Hydrocarbons (PAHs) dominates the infrared spectrum of star-forming regions. The observed emission appears to arise from the combined emission of numerous PAH species, each with its unique spectrum. Linear superposition of the PAH spectra identifies this problem as a source separation problem. It is, however, of a formidable class of source separation problems given that different PAH sources potentially number in the hundreds, even thousands, and there is only one measured spectral signal for a given astrophysical site. Fortunately, the source spectra of the PAHs are known, but the signal is also contaminated by other spectral sources. We describe our ongoing work in developing Bayesian source separation techniques relying on nested sampling in conjunction with an ON/OFF mechanism enabling simultaneous estimation of the probability that a particular PAH species is present and its contribution to the spectrum.

  10. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  11. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  12. Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl.

    Bravo, León A; Saavedra-Mella, Felipe A; Vera, Felipe; Guerra, Alexi; Cavieres, Lohengrin A; Ivanov, Alexander G; Huner, Norman P A; Corcuera, Luis J

    2007-01-01

    The effects of cold acclimation of two ecotypes (Antarctic and Andes) of Colobanthus quitensis (Kunth) Bartl. Caryophyllaceae on their photosynthetic characteristics and performance under high light (HL) were compared. Non-acclimated plants of the Antarctic ecotype exhibited a higher (34%) maximal rate of photosynthesis than the Andes ecotype. In cold-acclimated plants the light compensation point was increased. Dark respiration was significantly increased during the exposure to 4 degrees C in both ecotypes. Cold-acclimated Antarctic plants showed higher Phi(PSII) and qP compared with the Andes ecotype. In addition, the Antarctic ecotype exhibited higher heat dissipation (NPQ), especially in the cold-acclimated state, which was mainly associated with the fast relaxing component of non-photochemical quenching (NPQ(F)). By contrast, the Andes ecotype exhibited a lower NPQ(F) and a significant increase in the slowly relaxing component (NPQ(s)) at low temperature and HL, indicating higher sensitivity to low temperature-induced photoinhibition. Although the xanthophyll cycle was fully operational in both ecotypes, cold-acclimated Antarctic plants exposed to HL exhibited higher epoxidation state of the xanthophyll cycle pigments (EPS) compared with the cold-acclimated Andes ecotype. Thus, the photosynthetic apparatus of the Antarctic ecotype operates more efficiently than that of the Andes one, under a combination of low temperature and HL. The ecotype differences are discussed in relation to the different climatic conditions of the two Colobanthus. PMID:18057038

  13. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  14. Source Contamination in X-ray Studies of Star-Forming Regions: Application to the Chandra Carina Complex Project

    Getman, Konstantin V; Feigelson, Eric D; Townsley, Leisa K; Povich, Matthew S; Garmire, Gordon P; Montmerle, Thierry; Yonekura, Yoshinori; Fukui, Yasuo

    2011-01-01

    We describe detailed simulations of X-ray-emitting populations to evaluate the levels of contamination by both Galactic and extragalactic X-ray sources unrelated to a star-forming region under study. For Galactic contaminations, we consider contribution from main-sequence stars and giants (not including cataclysmic variables and other classes of accretion-driven X-ray binary systems) as they make the dominant contribution at the position of the Carina Nebula. The simulations take into consideration a variety of technical factors involving a Galactic population synthesis model, stellar X-ray luminosity functions, Chandra telescope response, source detection methodology, and possible spatial variations in the X-ray background and absorption through molecular clouds. When applied to the 1.42 square-degree field of the Chandra Carina Complex Project (CCCP), the simulations predict ~5000 contaminating sources (1 source per square arcminute of the survey), evenly distributed across the field. The results of the sim...

  15. Iron Hill (Powderhorn) carbonatite complex, Gunnison County, CO - A potential source of several uncommon mineral resources

    Van Gosen, B. S.; Lowers, H.A.

    2007-01-01

    The Iron Hill (Powderhorn) carbonatite complex is a 31-kM2 (12-sq mile) alkalic intrusion located about 35 km (22 miles) south-southwest of Gunnison, CO. The intrusion has been well studied and described because of its classic petrology and architecture ofa carbonatite-alkalic complex. The complex is also noteworthy because it contains enrichments of titanium, rare earth elements, thorium, niobium (columbium), vanadium and deposits of vermiculite and nepheline syenite. In particular, the complex is thought to host the largest titanium and niobium resources in the United States, although neither has been developed. It may be economic to extract multiple resources from this complex with a well-coordinated mine and mill plan.

  16. Sources

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  17. Handling complex source structures in global EM induction studies: from C-responses to new arrays of transfer functions

    Püthe, Christoph; Kuvshinov, Alexey; Olsen, Nils

    2015-04-01

    The C-response is a conventional transfer function in global electromagnetic induction research and is traditionally determined from observations of magnetic variations in the vertical and horizontal components. Its interpretation relies on the assumption that the source of the variations is well approximated by a large-scale symmetric (magnetospheric) ring current, described by a single spherical harmonic. However, there is growing evidence for a more complex structure of this source. In this paper, we investigate the variability of C-responses due to sources different from the dominating large-scale symmetric ring current. We show that the effect is significant and persists at all periods. Describing the magnetospheric source by a single spherical harmonic coefficient thus injects substantial errors into the estimated responses. To overcome the problem, we introduce arrays of alternative transfer functions that relate the components of the magnetic variation to different spherical harmonic coefficients. These transfer functions can handle a complex spatial structure of the magnetospheric source. Compared to C-responses, we observe a significant increase in the coherencies relating input and output quantities of the new transfer functions, especially at high latitudes. This increases the usability of observatory magnetic data for the recovery of global 3-D mantle conductivity structure.

  18. An isotopomer strategy to detect plant acclimation to increasing atmospheric CO2

    Augusti, A.; Betson, T. R.; Schleucher, J.

    2009-04-01

    Abundances of deuterium (D) and 18O in precipitation carry climate signals. Both isotopes are incorporated into leaf photosynthate, and in a second step into tree rings. Strikingly, while D and 18O climate signals in precipitation are related, tree-ring records of both isotopes do not generally go in parallel. This contribution investigates this discrepancy, based on a comparison of the fractionation mechanisms for both isotopes. We present a strategy to detect plant acclimation on time scales of centuries from intramolecular deuterium distributions (D isotopomers). We showed recently that specific C-H groups of glucose units exchange with water during cellulose synthesis in tree trunks, in agreement with the biochemistry of cellulose formation. Most importantly, this result allows separating influences of source water and of D fractionations in the plant, and hence to isolate climate signals and physiological signals. NMR measurements of intramolecular D distributions of glucose demonstrate that each C-H group has a distinct abundance (each D isotopomer), corresponding to its unique biochemical history, and can serve as independent information channel. Therefore, isotopomers increase the information content of isotopes several-fold. Thus, using D isotopomers, a situation may be achieved where experimental quantities overdetermine the number of variables to be reconstructed. This increased information content can be retrieved along the following strategies. Similar to C-O groups that exchange during cellulose synthesis, D isotopomers of C-H groups which heavily exchange should adopt the D abundance of source water and associated climate signals. We will present tree-ring results that support the feasibility of this approach. C-H groups that are not affected by isotope exchange are passed from leaves to the trunk, and can therefore transmit leaf-level information to tree rings. On the leaf level, overall D abundance of photosynthate is influenced by transpiration

  19. Threshold disorder as a source of diverse and complex behavior in random nets

    McGuire, P.C.; Bohr, Henrik; Clark, J.W.; Haschke, R.; Pershing, C.L.; Rafelski, J.

    2002-01-01

    by default. Surprisingly, RSANNs exhibit only a small repertoire of rather complex limit-cycle patterns when all parameters are fixed. This repertoire of complex patterns is also rather stable with respect to small parameter changes. These two unexpected results may generalize to the study of other...... complex systems. In order to reach beyond this seemingly disabling 'stable and small' aspect of the limit-cycle repertoire of RSANNs, we have found that if an RSANN has threshold disorder above a critical level, then there is a rapid increase of the size of the repertoire of patterns. The repertoire size...

  20. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    Alexander Klotz

    2015-03-01

    Full Text Available Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS by a precise dosage of l-methionine-sulfoximine (MSX mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction.

  1. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink.

    Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl

    2015-01-01

    Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959

  2. Hf isotopic evidence for a cogenetic magma source for the Bushveld Complex and associated felsic magmas

    VanTongeren, J. A.; Zirakparvar, N. A.; Mathez, E. A.

    2016-04-01

    Here, we test the hypothesis that the rhyolitic lavas of the Rooiberg Group and granophyres associated with the roof of the Bushveld Complex are differentiation products of Bushveld-age mafic liquids. We present Lu-Hf isotopic compositions in zircons from roof rocks that have been interpreted to represent thermally metamorphosed and remelted Rooiberg Group lavas and from granophyres interpreted to be differentiation products of the cumulate rocks that make up the Bushveld Complex. All of these rocks were found to possess εHf (2.06 Ga) statistically indistinguishable from the intrusion-wide average εHf (2.06 Ga) value of - 8.6 ± 1.2 of the Bushveld Complex. Our results, combined with chronologic and field relations, suggest that the felsic rocks were generated by fractional crystallization of Bushveld mafic liquids, including those that gave rise to the cumulate rocks of the Bushveld Complex.

  3. The distance-to-source trend in vanadium and arsenic exposures for residents living near a petrochemical complex.

    Yuan, Tzu-Hsuen; Chio, Chia-Pin; Shie, Ruei-Hao; Pien, Wei-Hsu; Chan, Chang-Chuan

    2016-05-01

    Biological monitoring of vanadium (V) and arsenic (As) for residents living near a big petrochemical complex has not been previously studied. This study aims to investigate distance-to-source trends in urinary levels and dispersion-estimated concentrations of V and As in areas surrounding a petrochemical complex in central Taiwan. Our study subjects were 1424 residents living in the townships up to ~40 km from the petrochemical complex, and categorized as near (Zone A), further (Zone B) and furthest (Zone C) from the complex. Urinary and ambient V and As levels were analyzed by inductively coupled plasma mass spectrometry. Two-stage dispersion model was used to estimate V and As concentrations at each study subject's address. Multiple linear regression models were used to study the effects of distance-to-source and estimated air concentrations of V and As on the urinary V and As levels of study subjects. Area-wide levels of both V and As showed a high-to-low trend in urinary levels (μg/g-creatinine) from Zone A (V with 2.86±2.30 and As with 104.6±147.9) to Zone C (V with 0.73±0.72 and As with 73.8±90.8). For study subjects, urinary V and As levels were decreased by 0.09 and 1.17 μg/g-creatinine, respectively, with 1 km away from the emission source of the petrochemical complex, and urinary V levels were significantly elevated by 0.38 μg/g-creatinine with a 1 ng/m(3) increase in estimated ambient V concentrations at their addresses. Our study concludes a distance-to-source gradient in V and As exposures exists for residents living near a petrochemical complex with oil refineries and coal-fired power plants and two-stage dispersion model can predict such a trend for V when inhalation is the major exposure route, but not for As that exposure may be from multiple sources and exposure routes. PMID:25690586

  4. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. PMID:25113459

  5. ISOLATION, SCREENING, CHARACTERIZATION AND DETERMINATION OF B-COMPLEX VITAMINS BY LACTOBACILLUS STRAINS FROM DIFFERENT SOURCES OF MEAT

    Abishek Manisagar

    2012-01-01

    In this study, isolation, screening, characterization, antibiotic susceptibility tests, curing & Determination of B-complex vitamin production by potent probiotic Lactobacillus strains from different sources of meat was analysed. 250 grams of intestine parts of goat meat and beef each were transferred to MRS broth to screen the potent probiotic Lactobacillus strains. Initially 57 strains were isolated and confirmed by gram`s staining and catalase tests. After that, 51 strains selected for fur...

  6. Biparametric Adaptive Filter: detection of compact sources in complex microwave backgrounds

    López-Caniego, M.; Vielva, P.

    2012-01-01

    In this article we consider the detection of compact sources in maps of the Cosmic Microwave Background radiation (CMB) following the philosophy behind the Mexican Hat Wavelet Family (MHWn) of linear filters. We present a new analytical filter, the Biparametric Adaptive Filter (BAF), that is able to adapt itself to the statistical properties of the background as well as to the profile of the compact sources, maximizing the amplification and improving the detection process. We have tested the ...

  7. Managing Multiple Sources of Competitive Advantage in a Complex Competitive Environment

    Alexandre Howard Henry Lapersonne

    2013-01-01

    The aim of this article is to review the literature on the topic of sustained and temporary competitive advantage creation, specifically in dynamic markets, and to propose further research possibilities. After having analyzed the main trends and scholars’ works on the subject, it was concluded that a firm which has been experiencing erosion of its core sources of economic rent generation, should have diversified its strategy portfolio in a search for new sources of competitive advantage, ones...

  8. Brain electric correlates of strong belief in paranormal phenomena: intracerebral EEG source and regional Omega complexity analyses.

    Pizzagalli, D; Lehmann, D; Gianotti, L; Koenig, T; Tanaka, H; Wackermann, J; Brugger, P

    2000-12-22

    The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation. PMID:11120441

  9. MAGIC reveals a complex morphology within the unidentified gamma-ray source HESS J1857+026

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Carreto, D Fidalgo; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hayashida, M; Herrera, J; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Nowak, N; Wilhelmi, E de Oña; Orito, R; Overkemping, A; Klepser, S; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R

    2014-01-01

    HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H.E.S.S. as part of its Galactic plane survey. Given its broadband spectral energy distribution and its spatial coincidence with the young energetic pulsar PSR J1856+024, the source has been put forward as a pulsar wind nebula (PWN) candidate. MAGIC has performed follow-up observations aimed at mapping the source down to energies approaching 100 GeV in order to better understand its complex morphology. HESS J1857+026 was observed by MAGIC in 2010, yielding 29 hours of good quality stereoscopic data that allowed us to map the source region in two separate ranges of energy. We present an energy spectrum of the region, which bridges the gap between the GeV emission measured by Fermi-LAT and the multi-TeV emission measured by H.E.S.S., together with a detailed analysis of its energy-dependent morphology. We couple these results with archival multi-wavelength data and outline evidence in favor of a two-source scenario, whereby one source is ...

  10. Stabilisation of carbonyl free amidinato-manganese(II) hydride complexes: "masked" sources of manganese(I) in organometallic synthesis.

    Fohlmeister, Lea; Jones, Cameron

    2016-01-28

    Reaction of the amidinato-manganese(ii) bromide complex, [{(κ(2)-N,N'-Piso)Mn(μ-Br)}3(THF)2] (Piso = [(DipN)2CBu(t)](-), Dip = 2,6-diisopropylphenyl), with K[BHEt3] affords the first example of a structurally authenticated amidinato-manganese(ii) hydride complex, [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2], via a process which involves a change in the amidinate coordination mode. Treatment of the bulkier precursor complex, [{(Piso'')Mn(μ-Br)}n] (Piso'' = [(Dip''N)2CBu(t)](-), Dip'' = C6H2Pr(i)2(CPh3)-2,6,4), with K[BHEt3] did not lead to an isolable manganese hydride complex, but its reaction with the magnesium(i) complex, [{((Mes)Nacnac)Mg}2] ((Mes)Nacnac = [(MesNCMe)2CH](-), Mes = mesityl), did. This reaction presumably proceeds via a reactive manganese(i) intermediate, which abstracts hydrogen from a reaction component to give [{(κ(2)-N,N'-Piso'')Mn(μ-H)}3]. A comparison of the reactivities of [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2] and the isomorphous manganese(i) complex, [{(N-,η(3)-arene-Piso)Mn}2], toward CO, O2 and N2O was carried out. Reactions with the manganese(i) and manganese(ii) species gave identical results, namely the formation of the manganese(i) carbonyl complex, [(κ(2)-N,N'-Piso)Mn(CO)4] (reactions with CO), and the manganese(iii)-μ-oxo complex, [{(κ(2)-N,N'-Piso)Mn(μ-O)}2] (reactions with O2 and N2O). These results indicate that [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2] can act as a "masked" source of an amidinato-manganese(i) fragment in synthetic transformations. PMID:26674008

  11. Threshold disorder as a source of diverse and complex behavior in random nets

    McGuire, P.C.; Bohr, Henrik; Clark, J.W.;

    2002-01-01

    initially follows a power-law function of the magnitude of the threshold disorder. As the disorder increases further, the limit-cycle patterns themselves become simpler until at a second critical level most of the limit cycles become simple fixed points. Nonetheless, for moderate changes in the threshold......We study the diversity of complex spatio-temporal patterns in the behavior of random synchronous asymmetric neural networks (RSANNs). Special attention is given to the impact of disordered threshold values on limit-cycle diversity and limit-cycle complexity in RSANNs which have 'normal' thresholds...... complex systems. In order to reach beyond this seemingly disabling 'stable and small' aspect of the limit-cycle repertoire of RSANNs, we have found that if an RSANN has threshold disorder above a critical level, then there is a rapid increase of the size of the repertoire of patterns. The repertoire size...

  12. Cold-acclimation increases the predatory efficiency of the aphidophagous coccinellid Adalia bipunctata

    Sørensen, Christian Hougaard; Toft, Søren; Kristensen, Torsten Nygård

    2013-01-01

    a heat knock down assay as well as the effects of rearing temperature on pupal survival and adult mass. We demonstrate that ladybirds acclimated to a certain temperature consume more aphids at that temperature than ladybirds acclimated to other temperatures. Acclimating ladybirds to cold temperatures...... thermal regimes. Here, we report on the effects of rearing temperature (15, 20 and 25 °C) of A. bipunctata on aphid predation at similar test temperatures and under cold semi-natural conditions. Furthermore we assessed the upper thermal critical limit of ladybirds from the three rearing temperatures using...... also increased their body-size but reduced pupal survival and heat resistance, suggesting costs associated with acclimation. Our findings have implications for the application of ladybirds as bio-control agents in different thermal environments. The results can be used to improve the efficiency of pest...

  13. Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback

    Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.

    2015-10-01

    Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.

  14. Gelation in protein extracts from cold acclimated and non-acclimated winter rye (Secale cereale L. cv Musketeer).

    Lim, Ze Long; Low, Nicholas H; Moffatt, Barbara A; Gray, Gordon R

    2013-04-01

    A protein gel is a three-dimensional network consisting of molecular interactions between biopolymers that entrap a significant volume of a continuous liquid phase (water). Molecular interactions in gels occur at junction zones within and between protein molecules through electrostatic forces, hydrogen bonding, hydrophobic associations (van der Waals attractions) and covalent bonding. Gels have the physicochemical properties of both solids and liquids, and are extremely important in the production and stability of a variety of foods, bioproducts and pharmaceuticals. In this study, gelation was induced in phenol extracted protein fractions from non-acclimated (NA) and cold-acclimated (CA) winter rye (Secale cereale L. cv Musketeer) leaf tissue after repeated freeze-thaw treatments. Gel formation only occurred at high pH (pH 12.0) and a minimum of 3-4 freeze-thaw cycles were required. The gel was thermally stable and only a specific combination of chemical treatments could disrupt the gel network. SDS-PAGE analysis identified ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) as the major protein component in the gel, although Rubisco itself did not appear to be a factor in gelation. Raman spectroscopy suggested changes in protein secondary structure during freeze-thaw cycles. Overall, the NA and CA gels were similar in composition and structure, with the exception that the CA gel appeared to be amyloidic in nature based on thioflavin T (ThT) fluorescence. Protein gelation, particularly in the apoplast, may confer protection against freeze-induced dehydration and potentially have a commercial application to improve frozen food quality. PMID:23348601

  15. MAGIC reveals a complex morphology within the unidentified gamma-ray source HESS J1857+026

    MAGIC Collaboration; Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; Delgado Mendez, C.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hayashida, M.; Herrera, J.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Klepser, S.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Nowak, N.; de Oña Wilhelmi, E.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saggion, A.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.

    2014-11-01

    Aims: HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H.E.S.S. as part of its Galactic plane survey. Given its broadband spectral energy distribution and its spatial coincidence with the young energetic pulsar PSR J1856+0245, the source has been put forward as a pulsar wind nebula (PWN) candidate. MAGIC has performed follow-up observations aimed at mapping the source down to energies approaching 100 GeV in order to better understand its complex morphology. Methods: HESS J1857+026 was observed by MAGIC in 2010, yielding 29 h of good quality stereoscopic data that allowed us to map the source region in two separate ranges of energy. Results: We detected very-high-energy gamma-ray emission from HESS J1857+026 with a significance of 12σ above 150 GeV. The differential energy spectrum between 100 GeV and 13 TeV is described well by a power law function dN/dE = N0(E/1TeV)-Γ with N0 = (5.37 ± 0.44stat ± 1.5sys) × 10-12 (TeV-1 cm-2 s-1) and Γ = 2.16 ± 0.07stat ± 0.15sys, which bridges the gap between the GeV emission measured by Fermi-LAT and the multi-TeV emission measured by H.E.S.S.. In addition, we present a detailed analysis of the energy-dependent morphology of this region. We couple these results with archival multiwavelength data and outline evidence in favor of a two-source scenario, whereby one source is associated with a PWN, while the other could be linked with a molecular cloud complex containing an Hii region and a possible gas cavity.

  16. Heat shock response of the blue crab Portunus pelagicus:thermal stress and acclimation

    Suhaila Qari

    2014-01-01

    Objective:To determine the effect of prior heat shock on the CTMax of differently acclimated Portunus pelagicus (P. pelagicus) as well as the time course of the changes in CTMax post heat shock. Methods: Crabs P. pelagicus were held in laboratory aquaria in tanks, which were supplied with filtered and aerated seawater. Crabs were acclimated at 20 °C, 25 °C, 30 °C and 35 °C for 3 weeks before their CTMax was determined. The CTMax was recorded for each crab as the median temperature during the 5 min period when a crab was not able to right itself, the average CTMax was calculated. The effect of heat shock on subsequent CTMax was measured. Crabs were heat shocked at temperature 1 °C lower than the CTMax for 20 min, followed by either 0.5 h, 1 h or 1.5 h recovery at 20 °C. The same procedure was repeated at other acclimation temperatures (25 °C, 30 °C and 35 °C). Results: Temperature acclimation of P. pelargicus from 20-35 °C progressively increased the CTMax. Acclimation at 35 °C the CTMax was 42.66 °C, whereas acclimation at 20 °C the CTMax was 39.8 °C. In P. pelagicus acclimated, at 20 °C the CTMax values after heat shock were significantly higher than crabs in control for 30 min, 1 h and 1.5 h after heat shock. In the 25 °C and 30 °C acclimated crabs, the CTMax values after heat shock were significantly higher than control only in 30 min and 1 h after heat shock. No significant differences in 35 °C acclimated crabs between control and heat shocked crabs were found after recovery for 30 min, 1 h, or 1.5 h. Conclusions: Heat shock caused significant rises in the CTMax, however, this increase was progressively reduced with longer recovery times at the acclimation temperature. For 20 °C acclimated crabs, the increased CTMax was still evident after 90 min, but for 25 °C and 30 °C crabs, the response was over after 90 min. Heat shock of 35 °C crabs was problematical, the CTMax gave no increased thermotolerance. It must be concluded that the

  17. Boreal and temperate trees show strong acclimation of respiration to warming.

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated. PMID:26982730

  18. Upregulation of aquaporin expression in the salivary glands of heat-acclimated rats

    Naotoshi Sugimoto; Kentaro Matsuzaki; Hiroaki Ishibashi; Masao Tanaka; Toshioki Sawaki; Yoshimasa Fujita; Takafumi Kawanami; Yasufumi Masaki; Toshiro Okazaki; Joji Sekine; Shoichi Koizumi; Akihiro Yachie; Hisanori Umehara; Osamu Shido

    2013-01-01

    It is known that aquaporin (AQP) 5 expression in the apical membrane of acinar cells in salivary glands is important for the secretion of saliva in rodents and humans. Although heat acclimation enhances saliva secretion in rodents, the molecular mechanism of how heat induces saliva secretion has not been determined. Here, we found that heat acclimation enhanced the expression of AQP5 and AQP1 in rat submandibular glands concomitant with the promotion of the HIF-1α pathway, leading to VEGF ind...

  19. Dynamic compositional changes of detergent-resistant plasma membrane microdomains during plant cold acclimation

    Minami, Anzu; Furuto, Akari; Uemura, Matsuo

    2010-01-01

    Plants increase their freezing tolerance upon exposure to low, non-freezing temperatures, which is known as cold acclimation. Cold acclimation results in a decrease in the proportion of sphingolipids in the plasma membrane in many plants including Arabidopsis thaliana. The decrease in sphingolipids has been considered to contribute to the increase in the cryostability of the plasma membrane through regulating membrane fluidity. Recently we have proposed a possibility of another important sphi...

  20. Fertilization and allelopathy modify Pinus halepensis saplings crown acclimation to shade

    Monnier, Y.; Vila, B.; Bousquet-Mélou, A.; Prévosto, B.; Fernandez, C

    2011-01-01

    Pinus halepensis Mill. is a Mediterranean pioneer forest species with shade intolerance features. The purpose of this study is to better understand how stand fertility and allelopathic properties of adult trees influence shade acclimation of saplings. Crown growth and morphological plasticity were studied under different light, fertilization, and allelopathic conditions in a nursery experiment. We tested whether shade-acclimation capacity increases with fertilization, and is affected by autot...

  1. Effects of acclimation on poststocking dispersal and physiological condition of age-1 pallid sturgeon

    Oldenburg, E.W.; Guy, C.S.; Cureton, E.S.; Webb, M.A.H.; Gardner, W.M.

    2011-01-01

    The objective of this study was to evaluate the effects of acclimation to flow and site-specific physicochemical water conditions on poststocking dispersal and physiological condition of age-1 hatchery-reared pallid sturgeon. Fish from three acclimation treatments were radio-tagged, released at two locations (Missouri River and Marias River), and monitored using passive telemetry stations. Marias treatment was acclimated to flow and site-specific physicochemical conditions, Bozeman treatment was acclimated to flow only, and controls had no acclimation (reared under traditional conservation propagation protocol). During both years, fish released in the Missouri River dispersed less than fish released in the Marias River. In 2005, Marias treatment dispersed less and nearly twice as many fish remained in the Missouri River reach as compared to control fish. In 2006, pallid sturgeon dispersed similarly among treatments and the number of fish remaining in the Missouri River reach was similar among all treatments. Differences in poststocking dispersal between years were related to fin curl which was present in all fish in 2005 and only 26% in 2006. Pallid sturgeon from all treatments in both years had a greater affinity for the lower reaches of the Missouri River than the upper reaches. Thus, release site influenced poststocking dispersal more than acclimation treatment. No difference was observed in relative growth rate among treatments. However, acclimation to flow (i.e., exercise conditioning) prevented fat accumulation from rupturing hepatocytes. Acclimation conditions used in this study did not benefit pallid sturgeon unless physiological maladies were present. Overriding all treatment effects was stocking location; thus, natural resource agencies need to consider stocking location carefully to reduce poststocking dispersal. ?? 2011 Blackwell Verlag, Berlin.

  2. Source pollution control program at the Camacari Petrochemical Complex: overall and individual improvements

    Freire, P.A.; Neto, D.B.; Carvalho, D.M. [CETREL S.A., Camacari, BA (Brazil)

    1993-12-31

    Along with the technical progress experienced by the Camacari Petrochemical Complex in the last few years, new policies, following new worldwide trends, in pollution control and prevention became mandatory. This work describes some of these experiences as well as future perspectives. 3 refs., 2 fig., 13 tabs.

  3. Low complexity source and channel coding for mm-wave hybrid fiber-wireless links

    Lebedev, Alexander; Vegas Olmos, Juan José; Pang, Xiaodan;

    2014-01-01

    performance of several encoded high-definition video sequences constrained by the channel bitrate and the packet size. We argue that light video compression and low complexity channel coding for the W-band fiber-wireless link enable low-delay multiple channel 1080p wireless HD video transmission....

  4. Sources

    2015-01-01

    Sources Fondation Pablo Iglesias. Alcala de Henares. Sections : Archives privées de Manuel ArijaArchives extérieuresArchives FNJS de EspañaPrensa Archives Générales de l’Administration. Alcala de Henares. Sections : Opposition au franquismeSig. 653 Sig TOP 82/68.103-68.602.Índice de las cartas colectivas, Relaciones, Cartas al Ministro de Información de Marzo de 1965. c.662. Sources cinématographiques Filmothèque Nationale d’Espagne.NO.DO. N° 1157C. 08/03/1965.aguirre Javier, Blanco vertical....

  5. Benefit of heat acclimation is limited by the evaporative potential when wearing chemical protective clothing.

    Chang, S K; Gonzalez, R R

    1999-08-01

    Heat acclimation-induced sweating responses have the potential of reducing heat strain for chemical protective garment wearers. However, this potential benefit is strongly affected by the properties of the garment. If the clothing ensemble permits sufficient evaporative heat dissipation, then heat acclimation becomes helpful in reducing heat strain. On the other hand, if the garment creates an impenetrable barrier to moisture, no benefit can be gained from heat acclimation as the additional sweating cannot be evaporated. Ten subjects were studied exercising on a treadmill while wearing two different chemical protective ensembles. Skin heat flux, skin temperature, core temperature, metabolic heat production and heart rate were measured. It was found that the benefit of heat acclimation is strongly dependent on the ability of the body to dissipate an adequate amount of heat evaporatively. The evaporative potential (EP), a measure of thermal insulation modified by moisture permeability, of the clothing ensemble offers a quantitative index useful to determine, a priori, whether heat acclimation would be helpful when wearing protective clothing system. The data show that when EP is < 15%, heat acclimation affords no benefit. An evaporative potential graph is created to aid in this determination. PMID:10504888

  6. Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart.

    Johnson, Amy C; Turko, Andy J; Klaiman, Jordan M; Johnston, Elizabeth F; Gillis, Todd E

    2014-06-01

    Thermal acclimation can alter cardiac function and morphology in a number of fish species, but little is known about the regulation of these changes. The purpose of the present study was to determine how cold acclimation affects zebrafish (Danio rerio) cardiac morphology, collagen composition and connective tissue regulation. Heart volume, the thickness of the compact myocardium, collagen content and collagen fiber composition were compared between control (27°C) and cold-acclimated (20°C) zebrafish using serially sectioned hearts stained with Picrosirius Red. Collagen content and fiber composition of the pericardial membrane were also examined. Cold acclimation did not affect the volume of the contracted heart; however, there was a significant decrease in the thickness of the compact myocardium. There was also a decrease in the collagen content of the compact myocardium and in the amount of thick collagen fibers throughout the heart. Cold-acclimated zebrafish also increased expression of the gene transcript for matrix metalloproteinase 2, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 2 and collagen Type I α1. We propose that the reduction in the thickness of the compact myocardium as well as the change in collagen content may help to maintain the compliance of the ventricle as temperatures decrease. Together, these results clearly demonstrate that the zebrafish heart undergoes significant remodeling in response to cold acclimation. PMID:24577447

  7. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  8. Short-term Cold Acclimation Recruits Brown Adipose Tissue in Obese Humans.

    Hanssen, Mark J W; van der Lans, Anouk A J J; Brans, Boudewijn; Hoeks, Joris; Jardon, Kelly M C; Schaart, Gert; Mottaghy, Felix M; Schrauwen, Patrick; van Marken Lichtenbelt, Wouter D

    2016-05-01

    Recruitment of brown adipose tissue (BAT) has emerged as a potential tool to combat obesity and associated metabolic complications. Short-term cold acclimation has been shown not only to enhance the presence and activity of BAT in lean humans but also to improve the metabolic profile of skeletal muscle to benefit glucose uptake in patients with type 2 diabetes. Here we examined whether short-term cold acclimation also induced such adaptations in 10 metabolically healthy obese male subjects. A 10-day cold acclimation period resulted in increased cold-induced glucose uptake in BAT, as assessed by [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography. BAT activity was negatively related to age, with a similar trend for body fat percentage. In addition, cold-induced glucose uptake in BAT was positively related to glucose uptake in visceral white adipose tissue, although glucose uptake in visceral and subcutaneous white adipose tissue depots was unchanged upon cold acclimation. Cold-induced skeletal muscle glucose uptake tended to increase upon cold acclimation, which was paralleled by increased basal GLUT4 localization in the sarcolemma, as assessed through muscle biopsies. Proximal skin temperature was increased and subjective responses to cold were slightly improved at the end of the acclimation period. These metabolic adaptations to prolonged exposure to mild cold may lead to improved glucose metabolism or prevent the development of obesity-associated insulin resistance and hyperglycemia. PMID:26718499

  9. Effects of acclimation to handling on performance, reproductive, and physiological responses of Brahman-crossbred heifers.

    Cooke, R F; Arthington, J D; Austin, B R; Yelich, J V

    2009-10-01

    The objective of this study was to evaluate the effects of acclimation to handling on growth, plasma concentrations of progesterone (P4) and cortisol, temperament, and reproductive performance of Brahman-crossbred heifers. Over 2 consecutive years, 37 Braford and 43 Brahman x Angus heifers were initially evaluated, within 30 d after weaning, for BW and puberty status via transrectal ultrasonography and plasma P4 concentrations (d 0 and 10), and for temperament by measurements of chute score, pen score, and exit velocity (d 10 only). On d 11, heifers were stratified by breed, puberty status, temperament score, BW, and age and randomly assigned to receive or not (control) the acclimation treatment. Acclimated heifers were exposed to a handling process 3 times weekly (Mondays, Wednesdays, and Fridays) for 4 wk (d 11 to 39 of the experiment). The acclimation treatment was applied individually to heifers by processing them through a handling facility, whereas control heifers remained undisturbed on pasture. Heifer puberty status, evaluated via plasma P4 concentrations and transrectal ultrasonography, and BW were assessed again on d 40 and 50, d 80 and 90, and d 120 and 130. Blood samples collected before (d 10) and at the end of the acclimation period (d 40) were also analyzed for plasma concentrations of cortisol. Heifer temperament was assessed again on d 40 of the study. No interactions containing the effects of treatment, breed, and year were detected. Acclimated heifers had reduced (P Brahman-crossbred heifers. PMID:19617508

  10. APPLICATION-AGNOSTIC INTERACTIVE DATA: MANAGING HCI COMPLEXITY AT THE SOURCE

    Ashraf Gaffar

    2013-01-01

    In the domain of Human Computer Interaction (HCI), the communication between humans and software is an ongoing challenge. On the one hand, humans have growing needs and expectations. On the other hand, software has more advanced features and functionalities. This dual complexity growth results in difficulty in interaction. User interface is the battleground where sophisticated cognitive demands need to be resolved between the user and the software for effective communication. When interaction...

  11. Dithiocarbamate Complexes as Single Source Precursors to Metal Sulfide Nanoparticles for Applications in Catalysis

    Roffey, A. R.

    2014-01-01

    Herein we report the solvothermal decomposition of a range of metal dithiocarbamate complexes for the synthesis of metal sulfide nanoparticles. Metal sulfides exist in a variety of structural phases, some of which are known to be catalytically active towards various processes. The aim of this work was to synthesise a variety of different metal sulfide phases for future catalysis testing, particularly the iron sulfide greigite (Fe3S4, a thiospinel containing Fe2+ and Fe3+) which is to be teste...

  12. MITIGATION OF RISKS OF MAPPING COMPLEX DATA SOURCES ON THE EXAMPLE OF SOLVENCY II PROJECT

    Abrahamyan, Nazeli

    2015-01-01

    The purpose of this diploma thesis is to describe the basic principles of Business Intelligence, its meaning in business reporting with focus on ensuring relevant information for stakeholders and consequently to identify the major risk factors in complex data mapping process of a project carried out for an insurance company Solvency II regulatory reporting. The identification of risks is based on a detailed analysis of the mapping process and its weak points. The main benefit of the thesis wi...

  13. The Netherlands. Complex ground source heat drilling for horticultural works; Niederlande. Komplexe Erdwaermebohrung fuer Gartenbaubetriebe

    Kilian, Dieter [DrillTec GUT GmbH, Deggendorf (Germany)

    2012-11-01

    For the past six months, the Dutch gardening industry looked to Honselersdijk near Rotterdam with great expectations. There, five market gardening businesses planned to heat their greenhouses with geothermal heat instead of natural gas. After technically complex drilling operations, hot water is now flowing at a rate of up to 50 litres per second; the drilling project remained fascinating to the last for everybody involved.

  14. EROD activity in thermally-acclimated gizzard shad -- What do the differences mean?

    The authors examined liver EROD activity in gizzard shad, Dorosoma cepedianum, following a diesel spill at Bruce Nuclear Generating Station A. The spill occurred in late December 1995 through early January 1996, at which time gizzard shad are thermally captive in the heated discharge. Further, the nearby discharge of Bruce Nuclear Generating Station B provided a control. Fish were collected and livers sampled within two weeks of the spill and at roughly seven weeks after the spill. At both times, significant differences in EROD were apparent between collection sites; however, the higher activity was consistently observed at the control site. The authors are unable to identify a source of induction at the control site or to explain the differences in EROD activity between sites, although there were slight but consistent differences in the size of fish and water temperatures at the two sites. They are also examining liver antioxidant activity in these fish. Clearly, use of EROD activity in interpreting the potential effects of oil spill on gizzard shad will have to be held in abeyance pending further understanding of the biology of these fish and in particular the confounding effects of winter acclimation to a thermal discharge

  15. Decomposition of molybdate-hexamethylenetetramine complex: One single source route for different catalytic materials

    Decomposition of ammonium heptamolybdate-hexamethylentetramine (HMTA) complex (HMTA)2(NH4)4Mo7O24.2H2O was studied as a function of treatment conditions in the range 300-1173 K. The evolution of solid products during decomposition was studied by thermal analysis and in situ EXAFS. Depending on the nature of the gas used for treatment, single phases of highly dispersed nitrides Mo2N, carbide Mo2C, or oxide MoO2 can be obtained. The nature of the products obtained was explained by qualitative thermodynamical considerations. Morphology of the solids considerably depends on such preparation parameters as temperature and mass velocity of the gas flow. For the nitride-based materials, catalytic activity was evaluated in the model thiophene HDS reaction. It was demonstrated that NH3-treated samples showed better catalytic activity than N2-treated ones due to cleaner surface and better morphology. Transmission microscopy, XRD and XPS studies showed that MoS2 is formed on the surface during HDS reaction or sulfidation with H2S. Optimized nitride-derived catalysts showed mass activity several times higher than unsupported MoS2 or MoS2/Al2O3 reference catalyst. - Graphical Abstract: Depending on the conditions, decomposition of molybdate-HTMA complex yields highly dispersed molybdenum nitride, carbide or oxide. Research highlights: → Decomposition of molybdate-HTMA complex yields highly dispersed Mo2N, Mo2C or MoO2. → In situ EXAFS shows formation of common amorphous product MoCxNyOz at 673 K. → Crystalline Mo2N with surface area near 200 m2/g was obtained at 823 K. → High mass activity in thiophene HDS was observed.

  16. Science from Gaia: How to Deal with a Complex Billion-Source Catalogue and Data Archive

    Brown, Anthony G. A.

    The Gaia mission will provide us with an unprecedented stereoscopic map of the heavens and will likely be the astronomical data resource for decades thereafter, representing a tremendous discovery potential. I will summarize the Gaia mission and the expected catalogue contents and then show how the complexities of the catalogue, and the science we want to extract from it, will force us to be very ambitious in the way we publish the Gaia catalogue. Truly unlocking its potential requires integrating the Gaia catalogue with other sky surveys and using advanced statistical approaches to extracting the science, ultimately aiming at facilitating hypothesis testing against the raw image pixels collected by Gaia.

  17. The Role of Phosphorylation in Redox Regulation of Photosynthesis Genes psaA and psbA during Photosynthetic Acclimation of Mustard

    Sebastian Steiner; Lars Dietzel; Yvonne Schr(o)ter; Vidal Fey; Raik Wagner; Thomas Pfannschmidt

    2009-01-01

    The long-term response (LTR) to light-quality gradients improves performance and survival of plants in dense stands.It involves redox-controlled transcriptional regulation of the plastome-encoded genes psaAB (encoding the P700 apoproteins of photosystem I) and psbA (encoding the D1 protein of photosystem II) and requires the action of plastid-localized kinases.To study the potential impact of phosphorylation events on plastid gene expression during the LTR,we analyzed mustard seedlings acclimated to light sources favoring either photosystem I or photosystem II.Primer extension analyses of psaA transcripts indicate that the redox regulation occurs at the principal bacterial promoters,suggesting that the plastid encoded RNA polymerase (PEP) is the target for redox signals.Chloroplast protein fractions containing PEP and other DNA-binding proteins were purified from mustard via heparin-Sepharose chromatography.The biochemical prop-erties of these fractions were analyzed with special emphasis on promoter recognition and specificity,phosphorylation state,and kinase activity.The results demonstrate that the LTR involves the action of small DNA-binding proteins; three of them exhibit specific changes in the phosphorylation state.Auto-phosphorylation assays,in addition,exhibit large differ-ences in the activity of endogenous kinase activities.Chloroplast run-on transcription experiments with the kinase inhib-itor H7 and the reductant DTF indicate that phosphorylation events are essential for the mediation of redox signals toward psaA and psbA transcription initiation,but require the synergistic action of a thiol redox signal.The data support the idea that redox signals from the thylakoid membrane are linked to gene expression via phosphorylation events; however,thismediation appears to require a complex network of interacting proteins rather than a simple phosphorelay.

  18. Safe operations of unmanned systems for reconnaissance in complex environments Army technology objective (SOURCE ATO): a year later

    Kott, N. Joseph, III; Mottern, Edward; Keys van Lierop, Tracy; Gray, Jeremy P.

    2012-06-01

    This paper examines the testbed autonomy system, software technologies developed or enhanced, and an overview of the Enhanced Experiment during the second year of the SOURCE ATO. Over the past year, the Safe Operations of Unmanned systems for Reconnaissance in Complex Environments (SOURCE) program continued to make enhancements to LADAR and image based Perception, Intelligence, Control and Tactical Behavior technologies. These are required for autonomous collaborative unmanned systems. The hardware and software technologies are installed on a TARDEC developed testbed, the Autonomous Platform Demonstrator (APD). Ultimately, soldiers will be utilized to conduct safe operation testing scenarios in cluttered dynamic environments using Autonomous Navigation System (ANS) perception and processing hardware as well as software. Soldier testing will take place during October 2012 at Camp Lejeune MOUT facility in North Carolina.

  19. Two-dimensional complex source point solutions: application to propagationally invariant beams, optical fiber modes, planar waveguides, and plasmonic devices.

    Sheppard, Colin J R; Kou, Shan S; Lin, Jiao

    2014-12-01

    Highly convergent beam modes in two dimensions are considered based on rigorous solutions of the scalar wave (Helmholtz) equation, using the complex source point formalism. The modes are applicable to planar waveguide or surface plasmonic structures and nearly concentric microcavity resonator modes in two dimensions. A novel solution is that of a vortex beam, where the direction of propagation is in the plane of the vortex. The modes also can be used as a basis for the cross section of propagationally invariant beams in three dimensions and bow-tie-shaped optical fiber modes. PMID:25606756

  20. Ground motion in the presence of complex topography: Earthquake and ambient noise sources

    Hartzell, Stephen; Meremonte, Mark; Ramírez-Guzmán, Leonardo; McNamara, Daniel

    2014-01-01

    To study the influence of topography on ground motion, eight seismic recorders were deployed for a period of one year over Poverty Ridge on the east side of the San Francisco Bay Area, California. This location is desirable because of its proximity to local earthquake sources and the significant topographic relief of the array (439 m). Topographic amplification is evaluated as a function of frequency using a variety of methods, including reference‐site‐based spectral ratios and single‐station horizontal‐to‐vertical spectral ratios using both shear waves from earthquakes and ambient noise. Field observations are compared with the predicted ground motion from an accurate digital model of the topography and a 3D local velocity model. Amplification factors from the theoretical calculations are consistent with observations. The fundamental resonance of the ridge is prominently observed in the spectra of data and synthetics; however, higher‐frequency peaks are also seen primarily for sources in line with the major axis of the ridge, perhaps indicating higher resonant modes. Excitations of lateral ribs off of the main ridge are also seen at frequencies consistent with their dimensions. The favored directions of resonance are shown to be transverse to the major axes of the topographic features.

  1. Transcriptome characterization of Ishige okamurae (Phaeophyceae) shows strong environmental acclimation

    QU Jieqiong; WANG Xumin; CHI Shan; WU Shuangxiu; SUN Jing; LIU Cui; CHEN Shengping; YU Jun; LIU Tao

    2014-01-01

    Ishige okamurae, with leathery branched narrow fronds consisting of cylindrical hairs, is the typical species of the genus Ishige, which is considered as one of the most basal genera in the phylogeny of the Phaeophy-ceae. Apart from great public interest from the evolutionary respect, more attention has been brought on the abundant bioactive compounds in I. okamurae for therapeutic or economic considerations, such as di-phlorethohydroxycarmalol and ishigoside. Yet little is known about related key genes or metabolic pathways involved in I. okamurae, which calls upon us to carry out global analyses of transcriptome by next generation sequencing. Altogether, we obtained 78 583 assembled scaffolds with N50 of 1 709 nucleotides, and 25 357 unigenes with significant BLAST matches (E-value cutoff of 10-5). In terms of characterization of the tran-scriptome of I. okamurae, we focused on anti-stress metabolic pathways and synthetic routes of bioactive compounds in an attempt to obtain a better understanding of the interactive organism-environment regula-tory networks. Pathway-based analysis helped us to deepen our comprehension of the interaction between I. okamurae and its surroundings, with MAPK signal pathway as an example. Furthermore, we discovered a wide range of novel putative functional proteins that could be of wide application, such as Rab family, using sequence-based transcriptome. In conclusion, transcriptome characterization of I. okamurae (Phaeophy-ceae) shows strong environmental acclimation.

  2. UV-B radiation and acclimation in timberline plants

    Turunen, Minna [Arctic Centre, University of Lapland, PO Box 122, FI-96101 Rovaniemi (Finland)]. E-mail: minna.turunen@ulapland.fi; Latola, Kirsi [Thule Institute, PO Box 7300, FI-90014 University of Oulu, Oulu (Finland)

    2005-10-15

    Research has shown that some plants respond to enhanced UV-B radiation by producing smaller and thicker leaves, by increasing the thickness of epidermis and concentration of UV-B absorbing compounds of their surface layers and activation of the antioxidant defence system. The response of high-altitude plants to UV-B radiation in controlled conditions is often less pronounced compared to low-altitude plants, which shows that the alpine timberline plants are adapted to UV-B. These plants may have a simultaneous co-tolerance for several stress factors: acclimation or adaptation to the harsh climate can also increase tolerance to UV-B radiation, and vice versa. On the other hand, alpine timberline plants of northern latitudes may be less protected against increasing UV-B radiation than plants from more southern latitudes and higher elevations due to harsh conditions and weaker preadaptation resulting from lower UV-B radiation exposure. It is evident that more long-term experimental field research is needed in order to study the interaction of climate, soil and UV-B irradiance on the timberline plants. - More long-term field research is needed to assess the interaction of climate, soil and UV-B on timberline plants.

  3. Sources

    2011-01-01

    A. SOURCES STATISTIQUES 1. Statistiques générales Annuaire statistique international, SDN (à partir de 1926). Mémorandum sur le commerce international et sur les balances des paiements, annuel à partir de 1927 (numéros rétrospectifs 1912-1926, 1913-1927), [3 volumes : aperçu général ; balances des paiements ; statistiques du commerce extérieur ; utilise les données nationales disponibles. Très utile]. Annuaire statistique de la France. Annuaire statistique de la Belgique. Statistiques économi...

  4. Sources

    2013-01-01

    I–SOURCES MANUSCRITES Archivio di Stato di Roma (ASR) Presidenza dell’Annona e Grascia : bb. 67-68, Lista dei misuratori del grano, 1658-1660. bb. 352-377, Nota dei grani introdotti e venduti in Roma, 1657-1715. bb. 412-419, Ristretto delle assegne dei grani date dai mercanti, 1680-1687. b. 1470, Registro delle lettere del Prefetto dell’Annona, 1659-1660. b. 1706, Libri di entrata e uscita dei grani dell’abbondanza (Ripetta), 16581670. bb. 1930-1931, Debiti e crediti dei fornai, 1658-1660. b....

  5. Sources

    2014-01-01

    Sources éditées : ABADAL i de VINYALS, Ramon d', Catalunya carolingia, II, Els diplomes carolingis a Catalunya, 2 vol., Barcelone, 1926-1952, cit. CC. ACHERY, D', Luc, Spicilegium sive collectio veterum aliquot scriptorum..., E. Baluze et E. Martène éd., Paris, 1723, tome 3. ALART, Bernard, Privilèges et titres relatifs aux franchises, institutions et propriétés communales de Roussillon et de Cerdagne depuis le xie siècle jusqu 'à l'an 1660... Première partie, Perpignan, 1878. ALART, Bernard,...

  6. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  7. Study of the Effect of SRT on Microbial Diversity in Laboratory-scale Sequencing Batch Reactors Using Acclimated and Non-Acclimated Seed

    Tellez, Berenice

    2011-07-07

    Solids Retention Time (SRT) is an important design parameter in activated sludge wastewater treatment systems. In this study, the effect of SRT on the bacterial community structure and diversity was examined in replicate lab-scale activated sludge sequencing batch reactors were operated for a period of 8 weeks and seeded with acclimated or non-acclimated sludge. Four SBRs (acclimated) were set up as duplicates and operated at an SRT of 2 days, and another set of four SBRs (non-acclimated) were operated at an SRT of 10 days. To characterize the microbial community in the SBRs, 16S rRNA gene pyrosequencing was used to measure biodiversity and to assess the reproducibility and stability of the bacterial community structure in replicate reactors. Diversity results showed that SBRs operated at an SRT of 10 days are more diverse than SBRs operated at an SRT of 2 days. This suggests that engineering decision could enhance diversity in activated sludge systems. Cluster analysis based on phylogenetic information revealed that the bacterial community structure was not stable and replicated SBRs evolved differently.

  8. Fresh water acclimation elicits a decrease in plasma corticosteroids in the euryhaline Atlantic stingray, Dasyatis sabina.

    Evans, Andrew N; Nunez, B Scott

    2015-10-01

    It is thought that the elasmobranch corticosteroid hormone 1α-hydroxycorticosterone (1α-B) functions as both a glucocorticoid (GC) and mineralocorticoid (MC). Classical antinatriuretic MC activities would run counter to the osmoregulatory strategy of euryhaline elasmobranchs acclimating to fresh water (FW). Therefore we hypothesize that FW acclimation will be accompanied by a decrease in plasma corticosteroids in these animals. However, events that activate the "fight-or-flight" response could mask changes associated with acclimation to lower salinities. To better define the MC role of corticosteroids in elasmobranchs, we designed a transfer system that allows the acclimation of Atlantic stingrays (Dasyatis sabina) from seawater (SW) to FW over 12h while minimizing other extraneous stressors. Blood and interrenal glands were sampled from one group of stingrays 24h after FW transfer, while another group was sampled two weeks after FW transfer. Two other groups served as mock-transfer controls in that they were treated and sampled in the same way, but remained in SW for the entire period. Plasma corticosteroids, osmolality, chloride, and urea were significantly lower in FW-acclimated stingrays (compared to mock-transfer stingrays) 24h after FW transfer. This pattern remained after two weeks in FW, with the exception that plasma corticosteroids returned to pre-acclimation levels. There were no significant differences between experimental groups in interrenal levels of mRNAs encoding key steroidogenic proteins (steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme). Temporally decreased corticosteroid levels during FW acclimation are consistent with the unique strategy of euryhaline elasmobranchs, whereby lower plasma osmolality is maintained in FW vs. SW environments to reduce hydromineral gradients. PMID:26315386

  9. Photosynthetic acclimation in the context of structural constraints to carbon export from leaves.

    Adams, William W; Watson, Amy M; Mueh, Kristine E; Amiard, Véronique; Turgeon, Robert; Ebbert, Volker; Logan, Barry A; Combs, Andrew F; Demmig-Adams, Barbara

    2007-01-01

    The potential role of foliar carbon export features in the acclimation of photosynthetic capacity to differences and changes in light environment was evaluated. These features included apoplastic vs. symplastic phloem loading, density of loading veins, plasmodesmatal frequency in intermediary cells, and the ratio of loading cells to sieve elements. In initial studies, three apoplastic loaders (spinach, pea, Arabidopsis thaliana) exhibited a completely flexible photosynthetic response to changing light conditions, while two symplastic loaders (pumpkin, Verbascum phoeniceum), although able to adjust to different long-term growth conditions, were more limited in their response when transferred from low (LL) to high (HL) light. This suggested that constraints imposed by the completely physical pathway of sugar export might act as a bottleneck in the export of carbon from LL-acclimated leaves of symplastic loaders. While both symplastic loaders exhibited variable loading vein densities (low in LL and high in HL), none of the three apoplastic loaders initially characterized exhibited such differences. However, an additional apoplastic species (tomato) exhibited similar differences in vein density during continuous growth in different light environments. Furthermore, in contrast to the other apoplastic loaders, photosynthetic acclimation in tomato was not complete following a transfer from LL to HL. This suggests that loading vein density and loading cells per sieve element, and thus apparent loading surface capacity, play a major role in the potential for photosynthetic acclimation to changes in light environment. Photosynthetic acclimation and vein density acclimation were also characterized in the slow-growing, sclerophytic evergreen Monstera deliciosa. This evergreen possessed a lower vein density during growth in LL compared to HL and exhibited a more severely limited potential for photosynthetic acclimation to increases in light environment than the rapidly

  10. Thyroid hormone regulates cardiac performance during cold acclimation in zebrafish (Danio rerio).

    Little, Alexander G; Seebacher, Frank

    2014-03-01

    Limitations to oxygen transport reduce aerobic scope and thereby activity at thermal extremes. Oxygen transport in fish is facilitated to a large extent by cardiac function so that climate variability may reduce fitness by constraining the performance of the heart. In zebrafish (Danio rerio), thyroid hormone (TH) regulates skeletal muscle function and metabolism in response to thermal acclimation. Here, we aimed to determine whether TH also regulates cardiac function during acclimation. We used propylthiouracil and iopanoic acid to induce hypothyroidism in zebrafish over a 3 week acclimation period to either 18 or 28°C. We found that cold-acclimated fish had higher maximum heart rates and sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) activity than warm-acclimated fish. Hypothyroid treatment significantly decreased these responses in the cold-acclimated fish, but it did not affect the warm-acclimated fish. TH did not influence SERCA gene transcription, nor did it increase metabolic rate, of isolated whole hearts. To verify that physiological changes following hypothyroid treatment were in fact due to the action of TH, we supplemented hypothyroid fish with 3,5-diiodothryronine (T2) or 3,5,3'-triiodothyronine (T3). Supplementation of hypothyroid fish with T2 or T3 restored heart rate and SERCA activity to control levels. We also show that, in zebrafish, changes in cardiac output in response to warming are primarily mediated by heart rate, rather than by stroke volume. Thus, changes in heart rate are important for the overall aerobic capacity of the fish. In addition to its local effects on heart phenotype, we show that TH increases sympathetic tone on the heart at rest and during maximum exercise. Our findings reveal a new pathway through which fish can mitigate the limiting effects of temperature variability on oxygen transport to maintain aerobic scope and promote thermal tolerance. PMID:24265422

  11. Complex behavior and source model of the tremor at Arenal volcano, Costa Rica

    Lesage, Philippe; Mora, Mauricio M.; Alvarado, Guillermo E.; Pacheco, Javier; Métaxian, Jean-Philippe

    2006-09-01

    Typical records of volcanic tremor and explosion quakes at Arenal volcano are analyzed with a high-resolution time-frequency method. The main characteristics of these seismic signals are: (1) numerous regularly spaced spectral peaks including both odd and even overtones; (2) frequency gliding in the range [0.9-2] Hz of the fundamental peak; (3) frequency jumps with either positive or negative increments; (4) tremor episodes with two simultaneous systems of spectral peaks affected by independent frequency gliding; (5) progressive transitions between spasmodic tremor and harmonic tremor; (6) lack of clear and systematic relationship between the occurrence of explosions and tremor. Some examples of alternation between two states of oscillation characterized by different fundamental frequencies are also observed. Some tremor and explosion codas are characterized by acoustic and seismic waves with identical spectral content and frequency gliding, which suggests a common excitation process. We propose a source model for the tremor at Arenal in which intermittent gas flow through fractures produces repetitive pressure pulses. The repeating period of the pulses is stabilized by a feedback mechanism associated with standing or traveling waves in the magmatic conduit. The pressure pulses generate acoustic waves in the atmosphere and act as excitation of the interface waves in the conduit. When the repeating period of the pulses is stable enough, they produce regularly spaced spectral peaks by the Dirac comb effect and hence harmonic tremor. When the period stability is lost, because of failures in the feedback mechanism, the tremor becomes spasmodic. The proposed source model of tremor is similar to the sound emission process of a clarinet. Fractures in the solid or viscous layer capping the lava pool in the crater act as the clarinet reed, and the conduit filled with low velocity bubbly magma is equivalent to the pipe of the musical instrument. The frequency gliding is

  12. Field-testing a new directional passive air sampler for fugitive dust in a complex industrial source environment.

    Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J

    2014-01-01

    Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions. PMID:24296778

  13. Natural and Anthropogenic Source of Heavy Metals Pollution in the Soil Samples of an Industrial Complex; a Case Study

    Maryam Mohammadi Roozbahani

    2015-06-01

    Full Text Available Background: Soil serves as a major reservoir for contaminants as it can bind to various chemicals. The aim of this study was to evaluate the levels of some metals (Cd, Cu, Fe and V in soil samples collected from different stations of Ahvaz Industrial Complex II to determine the natural and anthropogenic contribution of metal in the soil. Methods: This was an experimental study that carried out in 2013. Soil samples were obtained from 9 stations and were subjected to bulk digestion and chemical partitioning. Concentrations of Cd, Cu, Fe and V in soil were determined by ICP-OES. Contaminant factor (CF and geo-accumulation index (I-geo were used to evaluate the soil pollution in the samples. ANOVA, Duncan Multiple Range and Pearson correlation coefficient matrix tests was used to analyze the data. Results: According to I-geo results, the soil samples of the Ahvaz Industrial Complex II could be classified as strongly to very strongly pollute for Cd and it was unpolluted to moderately pollute for Cu, Fe and V. The amount of anthropogenic pollution was more than that of natural sources and the anthropogenic order of metals pollution was Fe (88%> Cu (83%> Cd (75%> V (61%. Conclusion: Metals concentrations are the highest at a distance of 300m from the pollution source. V, Cu and Cd pollutants are probably originated from oil industries.

  14. Mineralogical sources of groundwater fluoride in Archaen bedrock/regolith aquifers: mass balances from the Peninsular Granite Complex, southern India

    Hallett, Bethan; Burgess, William; Valsami-Jones, Eugenia

    2014-05-01

    Fluoride in groundwater-sourced drinking water is a widespread concern in India, particularly in the granitic gneiss bedrock/regolith catchments of Andhra Pradesh, one of the most severely affected states. Mobilisation of F- to groundwater is ultimately the consequence of bedrock weathering and regolith development, yet in crystalline bedrock/regolith terrain of the Peninsular Granite Complex, which constitutes a strategically important aquifer environment in India, uncertainties persist in relation to the relative contribution of the different F-bearing minerals and their distribution between the bedrock and the regolith. Even the relative significance of the bedrock and regolith as sources of fluoride to groundwater is disputed, as are explanations of seasonal and/or secular trends in groundwater F-. There are important implications for management of the groundwater resource. Understanding the mechanisms and progress of chemical weathering of the granitic gneiss is key to these questions, ie how effectively is F removed from its primary source(s) as the bedrock weathers? And, to what extent is F- flushed from the weathering profile and/or re-sequestered by secondary mineral phases as the regolith develops? To address these questions we have applied optical petrography, XRD, scanning electron microprobe analysis, whole-rock chemical analysis and leaching experiments to samples of bedrock and regolith from two catchments in Andhra Pradesh. We have quantified the distribution of F between its individual mineralogical sources, and between bedrock and regolith. Experiments show there is no straightforward relationship between whole-rock F content and leached [F-]; in some instances regolith samples leach higher F- concentrations than the fresh granitic gneiss. Results shed light on conflicting conceptual models of F release to groundwater in gneissic bedrock/regolith aquifers. Accounting for groundwater [F-], simple estimates of groundwater flux in the catchments

  15. Chemical complexity and source of the White River Ash, Alaska and Yukon

    Preece, S.J.; McGimsey, Robert G.; Westgate, J.A.; Pearce, N.J.G.; Hartmann, W.K.; Perkins, W.T.

    2014-01-01

    The White River Ash, a prominent stratigraphic marker bed in Alaska (USA) and Yukon (Canada), consists of multiple compositional units belonging to two geochemical groups. The compositional units are characterized using multiple criteria, with combined glass and ilmenite compositions being the best discriminators. Two compositional units compose the northern group (WRA-Na and WRA-Nb), and two units are present in the eastern group (WRA-Ea and the younger, WRA-Eb). In the proximal area, the ca. 1900 yr B.P. (Lerbekmo et al., 1975) WRA-Na displays reverse zoning in the glass phase and systematic changes in ilmenite composition and estimated oxygen fugacity from the base to the top of the unit. The eruption probably tapped different magma batches or bodies within the magma reservoir with limited mixing or mingling between them. The 1147 cal yr B.P. (calibrated years, approximately equivalent to calendric years) (Clague et al., 1995) WRA-Ea eruption is only weakly zoned, but pumices with different glass compositions are present, along with gray and white intermingled glass in individual pumice clasts, indicating the presence of multiple magmatic bodies or layers. All White River Ash products are high-silica adakites and are sourced from the Mount Churchill magmatic system.

  16. ISOLATION, SCREENING, CHARACTERIZATION AND DETERMINATION OF B-COMPLEX VITAMINS BY LACTOBACILLUS STRAINS FROM DIFFERENT SOURCES OF MEAT

    Abishek Manisagar

    2012-06-01

    Full Text Available In this study, isolation, screening, characterization, antibiotic susceptibility tests, curing & Determination of B-complex vitamin production by potent probiotic Lactobacillus strains from different sources of meat was analysed. 250 grams of intestine parts of goat meat and beef each were transferred to MRS broth to screen the potent probiotic Lactobacillus strains. Initially 57 strains were isolated and confirmed by gram`s staining and catalase tests. After that, 51 strains selected for further biochemical tests to confirm all were Lactobacillus. Later, 41 strains were selected for antibiotic susceptibility tests by using three different classes of antibiotics viz., tetracycline, ampicilin, and streptomycin. Those strains which showed resistant to all three antibiotics used, further selected for curing of plasmid DNA and again antibiotic susceptibility tests was performed by the same antibiotics used before. Finally, only 5 strains were selected as potent probiotic Lactobacillus and unfortunately all strains from Beef intestine derived. Then, determination of B-Complex vitamin production of those selected 5 potent probiotic Lactobacillus by thin layer chromatographic method; Spectroflurophotometric method and RP-HPLC method were performed. From those methods confirmed as, all the five Lactobacillus strains were producing only riboflavin among the B-Complex vitamins, in trace amounts when compared to standard riboflavin and control (media without Lactobacillus. Those five isolated potent probiotic strains of Lactobacillus were named as B-01; B-06; B-12; B-21 & B-23. (The term B refers Lactobacillus strains isolated from Beef intestine and numeric value refers particular strain.

  17. Effect of salinity on methanogenic propionate degradation by acclimated marine sediment-derived culture.

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-12-01

    Degradation of propionate under high salinity is needed for biomethane production from salt-containing feedstocks. In this study, marine sediment-derived culture was evaluated to determine the effect of salinity on methanogenic propionate degradation. Microbes in marine sediments were subjected to fed-batch cultivation on propionate for developing acclimatized cultures. The rate of propionate degradation increased eightfold during 10 rounds of cultivation. Microbial community composition was determined through pyrosequencing of 16S rRNA gene amplicons after 10 rounds of cultivation. Taxa analysis was conducted for the reads obtained by pyrosequencing. Known propionate degraders were undetectable in the acclimated culture. Comparison of bacterial taxa in the original sediment with those in the acclimated culture revealed that the populations of four bacterial taxa were significantly increased during acclimation. Methanolobus was the predominant archaea genus in the acclimated culture. The propionate degradation rate of the acclimated culture was not affected by salinity of up to equivalent of 1.9 % NaCl. The rate decreased at higher salinity levels and was more than 50 % of the maximum rate even at equivalent of 4.3 % NaCl. PMID:26364311

  18. Effects of warm acclimation on physiology and gonad development in the sea urchin Evechinus chloroticus.

    Delorme, Natalí J; Sewell, Mary A

    2016-08-01

    The physiology of the New Zealand sea urchin Evechinus chloroticus was evaluated through feeding, respiration, growth and gonad growth in adult animals acclimated for 90days at 18°C (annual mean temperature) and 24°C (ambient summer temperature (21°C) +3°C). Measured parameters with representative rates of assimilation efficiency were used to calculate scope for growth (SfG) for each treatment. All physiological parameters were negatively affected at 24°C, showing a decrease in feeding rate which coincided with negative growth and gonad development at the end of the acclimation period, and a decrease in respiration rate suggesting metabolic depression. Histology of gonad samples after the acclimation period also showed no gametic material in animals acclimated at 24°C. All animals acclimated at 24°C had negative growth, differing from the calculated SfG which indicated that the animals had sufficient energy for production. The results suggest that calculated SfG in echinoderms should be used together with actual measurements of growth in individuals as, by itself, SfG may underestimate the actual effect of ocean warming when animals are exposed to stressful conditions. Overall, considering the total loss of reproductive output observed in E. chloroticus at higher temperatures, an increase in seawater temperature could dramatically influence the persistence of northern populations of this species, leading to flow-on effects in the subtidal ecosystem. PMID:27043875

  19. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings.

    Cheesman, Alexander W; Winter, Klaus

    2013-09-01

    Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes between 30/22 °C and 39/31 °C. Under well-watered conditions, all species showed optimal growth at temperatures above those currently found in their native range. While non-pioneer species experienced catastrophic failure or a substantially reduced growth rate under the highest temperature regime employed (i.e. daily average of 35 °C), growth in three lowland pioneers showed only a marginal reduction. In a subsequent experiment, three species (Ficus insipida, Ormosia macrocalyx, and Ochroma pyramidale) were cultivated at two temperatures determined as sub- and superoptimal for growth, but which resulted in similar biomass accumulation despite a 6°C difference in growth temperature. Through reciprocal transfer and temperature adjustment, the role of thermal acclimation in photosynthesis and respiration was investigated. Acclimation potential varied among species, with two distinct patterns of respiration acclimation identified. The study highlights the role of both inherent temperature tolerance and thermal acclimation in determining the ability of tropical tree species to cope with enhanced temperatures. PMID:23873999

  20. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge-Evaluation of biokinetic coefficients

    Unacclimated and acclimated activated sludges were examined for their ability to degrade 4-CP (4-chlorophenol) in the presence and absence of a readily growing substrate using aerobic batch reactors. The effects of 4-CP on the μ (specific growth rate), COD removal efficiency, Y (yield coefficient), and q (specific substrate utilization rate) were investigated. It was observed that the toxicity of 4-CP on the culture decreased remarkably after acclimation. For example, the IC50 value on the basis of μ was found to increase from 130 to 218mg/L with the acclimation of the culture. Although an increase in 4-CP concentration up to 300mg/L has no adverse effect on the COD removal efficiency of the acclimated culture, a considerable decrease was observed in the case of an unacclimated culture. Although 4-CP removal was not observed with an unacclimated culture, almost complete removal was achieved with the acclimated culture, up to 300mg/L. The Haldane kinetic model adequately predicted the biodegradation of 4-CP and the kinetic constants obtained were qm=41.17mg/(gMLVSSh), Ks=1.104mg/L, and Ki=194.4mg/L. The degradation of 4-CP led to formation of 5-chloro-2-hydroxymuconic semialdehyde, which was further metabolized, indicating complete degradation of 4-CP via a meta-cleavage pathway

  1. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation

    Welch, Megan J.; Watson, Sue-Ann; Welsh, Justin Q.; McCormick, Mark I.; Munday, Philip L.

    2014-12-01

    Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2 (refs , ). However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for transgenerational acclimation of reef fish olfactory preferences and behavioural lateralization at moderate (656 μatm) and high (912 μatm) end-of-century CO2 projections. Juvenile spiny damselfish, Acanthochromis polyacanthus, from control parents (446 μatm) exhibited an innate avoidance to chemical alarm cue (CAC) when reared in control conditions. In contrast, juveniles lost their innate avoidance of CAC and even became strongly attracted to CAC when reared at elevated CO2 levels. Juveniles from parents maintained at mid-CO2 and high-CO2 levels also lost their innate avoidance of CAC when reared in elevated CO2, demonstrating no capacity for transgenerational acclimation of olfactory responses. Behavioural lateralization was also disrupted for juveniles reared under elevated CO2, regardless of parental conditioning. Our results show minimal potential for transgenerational acclimation in this fish, suggesting that genetic adaptation will be necessary to overcome the effects of ocean acidification on behaviour.

  2. Thermogenin amount and activity in hamster brown fat mitochondria: effect of cold acclimation

    Sundin, U.; Moore, G.; Nedergaard, J.; Cannon, B.

    1987-05-01

    To investigate the acclimation process in a hibernator, four different parameters of thermogenin amount and activity were investigated in brown adipose tissue mitochondria from cold-exposed and cold-acclimated Syrian hamsters. Hamsters, which are hibernators, have been considered to be primed for thermogenesis and thus not to show cold-acclimation effects, but here a significant increase in (/sup 3/H)GDP-binding capacity was observed, and this increase was paralleled by an increase in thermogenin antigen amount, as measured in an enzyme-linked immunosorbent assay. The transient nature of the effect of cold exposure on (/sup 3/H)GDP binding, characteristically observed with rat mitochondria, was not observed with hamster mitochondria, and the increase in (/sup 3/H)GDP binding occurred without a change in the dissociation constant. The increase in thermogenin amount was paralleled by an increase both in GDP-sensitive Cl/sup -/ permeability of the mitochondria and in GDP-sensitive respiration. It was established that it is the maximal activity of thermogenin that is rate limiting for thermogenesis in isolated mitochondria, provided that an optimal substrate is used (such as palmitoyl carnitine). Cold acclimation also increased the total amount of mitochondria in the tissue, leading totally to a sixfold increase in thermogenin content of the hamster. It is concluded that hamsters show the expected physiological, pharmacological, and biochemical signs of cold acclimation.

  3. Enzyme activity, hormone concentration in tree shrew (Tupaia belangeri during cold acclimation

    Lin Zhang

    2012-08-01

    Full Text Available Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. The tree shrew (Tupaia belangeri, is a unique species of small mammals which is origin of island in the Oriental realm. The present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake, metabolism, uncoupling protein 1 (UCP1 in brown adipose tissue (BAT, and other biochemical characters of T. belangeri during cold exposure about 21 days. Our data demonstrate that cold acclimation induced a remarkable increase in body mass, a significant increase in energy intake and metabolic rate, and high expression of UCP1 in BAT of T. belangeri. Cold acclimation induced an increase in cytochrome c oxidase (COX and Thyroidhormones (T3/T4. These data supported that T. belangeri increased the body mass and increased energy intake and expenditure under cold acclimation. Increased expression of UCP1 was potentially involved in the regulation of energy metabolism and thermogenic capacity following cold acclimation. And it through changes in enzyme activity and hormone concentration under cold acclimation, and suggested temperature changes play an important role in the regulation of thermogenic capacity in tree shrew.

  4. Thermogenin amount and activity in hamster brown fat mitochondria: effect of cold acclimation

    To investigate the acclimation process in a hibernator, four different parameters of thermogenin amount and activity were investigated in brown adipose tissue mitochondria from cold-exposed and cold-acclimated Syrian hamsters. Hamsters, which are hibernators, have been considered to be primed for thermogenesis and thus not to show cold-acclimation effects, but here a significant increase in [3H]GDP-binding capacity was observed, and this increase was paralleled by an increase in thermogenin antigen amount, as measured in an enzyme-linked immunosorbent assay. The transient nature of the effect of cold exposure on [3H]GDP binding, characteristically observed with rat mitochondria, was not observed with hamster mitochondria, and the increase in [3H]GDP binding occurred without a change in the dissociation constant. The increase in thermogenin amount was paralleled by an increase both in GDP-sensitive Cl- permeability of the mitochondria and in GDP-sensitive respiration. It was established that it is the maximal activity of thermogenin that is rate limiting for thermogenesis in isolated mitochondria, provided that an optimal substrate is used (such as palmitoyl carnitine). Cold acclimation also increased the total amount of mitochondria in the tissue, leading totally to a sixfold increase in thermogenin content of the hamster. It is concluded that hamsters show the expected physiological, pharmacological, and biochemical signs of cold acclimation

  5. APPLICATION-AGNOSTIC INTERACTIVE DATA: MANAGING HCI COMPLEXITY AT THE SOURCE

    Ashraf Gaffar

    2013-12-01

    Full Text Available In the domain of Human Computer Interaction (HCI, the communication between humans and software is an ongoing challenge. On the one hand, humans have growing needs and expectations. On the other hand, software has more advanced features and functionalities. This dual complexity growth results in difficulty in interaction. User interface is the battleground where sophisticated cognitive demands need to be resolved between the user and the software for effective communication. When interaction involves big data retrieval, communication often takes the form of software displaying data, and users comprehending their meaning, then requesting more date, or requesting some processing to be applied on the displayed data. We explore two main issues of big data user interaction: Encoding and structure. First, data encoding is typically application-dependent, and has little value without its owner software. Similarly, data structuring will make all data items follow welldefined structure (e.g. tables that preserves its meaning for software tools to manipulate. Structure is preferred as it allows for easy and accurate data processing, but the majority of valuable data is unstructured, heterogeneous sets of mixed contents (text, links, tables, graphics, audio, video, etc.. While great for human consumption, it is not scalable and does not lend itself readily to tools. We propose a new approach for “stand-alone” big data approach that has application-agnostic encoding using XML, and is also well structured for easy processing. We show a comprehensive process of creating and disseminating large amounts of data effectively with both syntax and semantic contents built-in and preserved, independent of any application used. We use text-based patterns as a case study to demonstrate the problem with big, heterogeneous, rich data and build a system to help its dissemination and assimilation process.

  6. Defining the sources of low-flow phosphorus transfers in complex catchments

    Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km2) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination

  7. Defining the sources of low-flow phosphorus transfers in complex catchments.

    Arnscheidt, J; Jordan, P; Li, S; McCormick, S; McFaul, R; McGrogan, H J; Neal, M; Sims, J T

    2007-08-15

    Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km(2)) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination. PMID:17512972

  8. Preliminary experimental investigation of a complex dual-band high power microwave source

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO

  9. Preliminary experimental investigation of a complex dual-band high power microwave source

    Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-01

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  10. Preliminary experimental investigation of a complex dual-band high power microwave source

    Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  11. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.

    2016-04-01

    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  12. Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain

    Li, Fadong; Pan, Guoying; Tang, Changyuan; Zhang, Qiuying; Yu, Jingjie

    2008-09-01

    Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca-HCO3 type water with depleted δ18O and δD (mean value of -8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca-Na-Mg-HCO3-Cl-SO4 type), and heavier δ18O and δD were observed (around -8‰ δ18O). Before the surface water with mean δ18O of -8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of -8.8‰ δ18O) were similar to those of transferred water (-8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca-HCO3, Na-HCO3, to Na-SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the

  13. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  14. Phosphinochalcogenoic amido complexes of Zinc and cadmium as novel single-source precursors for the deposition of group II- VI semiconductors

    The paper reports the use of phosphinochalcogenoic amido complexes of zinc and cadmium as single-source precursors for the deposition of group II-VI semiconductor films.Observed thermal and decomposition characteristics are discussed. Phosphinochalcogenoic complexes of zinc and cadmium were found to decompose to ME. 17refs., 2figs

  15. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance.

    Kosmala, Arkadiusz; Bocian, Aleksandra; Rapacz, Marcin; Jurczyk, Barbara; Zwierzykowski, Zbigniew

    2009-01-01

    Festuca pratensis (meadow fescue) as the most frost-tolerant species within the Lolium-Festuca complex was used as a model for research aimed at identifying the cellular components involved in the cold acclimation (CA) of forage grasses. The work presented here also comprises the first comprehensive proteomic research on CA in a group of monocotyledonous species which are able to withstand winter conditions. Individual F. pratensis plants with contrasting levels of frost tolerance, high frost tolerant (HFT) and low frost tolerant (LFT) plants, were selected for comparative proteomic research. The work focused on the analysis of leaf protein accumulation before and after 2, 8, and 26 h, and 3, 5, 7, 14, and 21 d of CA, using high-throughput two-dimensional electrophoresis, and on the identification of proteins which were accumulated differentially between the selected plants by the application of mass spectrometry. The analyses of approximately 800 protein profiles revealed a total of 41 (5.1%) proteins that showed a minimum of a 1.5-fold difference in abundance, at a minimum of one time point of CA for HFT and LFT genotypes. It was shown that significant differences in profiles of protein accumulation between the analysed plants appeared relatively early during cold acclimation, most often after 26 h (on the 2nd day) of CA and one-half of the differentially accumulated proteins were all parts of the photosynthetic apparatus. Several proteins identified here have been reported to be differentially accumulated during cold conditions for the first time in this paper. The functions of the selected proteins in plant cells and their probable influence on the level of frost tolerance in F. pratensis, are discussed. PMID:19553368

  16. The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L

    We assessed the effects of irradiance received during growth on the vulnerability of Fagus sylvatica L. xylem vessels to water-stress-induced embolism. The measurements were conducted on (1) potted saplings acclimated for 2 years under 100% and 12% incident global radiation and (2) branches collected from sun-exposed and shaded sides of adult trees. Both experiments yielded similar results. Light-acclimated shoots were less vulnerable to embolism. Xylem water potential levels producing 50% loss of hydraulic conductivity were lower in sun-exposed branches and seedlings than in shade-grown ones (–3·0 versus –2·3 MPa on average). The differences in vulnerability were not correlated with differences in xylem hydraulic conductivity nor vessel diameter. Resistance to cavitation was correlated with transpiration rates, midday xylem and leaf water potentials in adult trees. We concluded that vulnerability to cavitation in Fagus sylvatica may acclimate to contrasting ambient light conditions. (author)

  17. Influence of muscular work on the vestigial effects of cold acclimation

    Sobolev, V.I.; Chirva, G.I.

    1981-11-01

    The persistence of the vestigial effects of long-term cold acclimation and the effects of regular muscular work on these effects are investigated in studies on male albino rats preliminarily exposed to a temperature of 2 C for 28 days. Measurements of the calorigenic effect of noradrenaline, cold tolerance at -25 C, the level of working hyperthermia and organ and tissue weights were performed on the first, tenth, 20th, and 30th days of the post-acclimation period in control rats and rats performing 50 min of treadwheel exercise daily. Results indicate noradrenaline-dependent thermogenesis to be the most persistent effect of long-term cold acclimation. Muscular activity is found to accelerate the process of deacclimation due to its effects on physical, and then chemical, thermoregulation.

  18. Combined effects of temperature acclimation and cadmium exposure on mitochondrial function in eastern oysters Crassostrea virginica gmelin (Bivalvia: Ostreidae).

    Cherkasov, Anton S; Ringwood, Amy H; Sokolova, Inna M

    2006-09-01

    Cadmium and temperature have strong impacts on the metabolic physiology of aquatic organisms. To analyze the combined impact of these two stressors on aerobic capacity, effects of Cd exposure (50 microg/L) on mitochondrial function were studied in oysters (Crassostrea virginica) acclimated to 12 and 20 degrees C in winter and to 20 and 28 degrees C in fall. Cadmium exposure had different effects on mitochondrial bioenergetics of oysters depending on the acclimation temperature. In oysters acclimated to 12 degrees C, Cd exposure resulted in elevated intrinsic rates of mitochondrial oxidation, whereas at 28 degrees C, a rapid and pronounced decrease of mitochondrial oxidative capacity was found in Cd-exposed oysters. At the intermediate acclimation temperature (20 degrees C), effects of Cd exposure on intrinsic rates of mitochondrial oxidation were negligible. Degree of coupling significantly decreased in mitochondria from 28 degrees C-acclimated oysters but not in that from 12 degrees C- or 20 degrees C-acclimated oysters. Acclimation at elevated temperatures also increased sensitivity of oyster mitochondria to extramitochondrial Cd. Variation in mitochondrial membrane potential explained 41% of the observed variation in mitochondrial adenosine triphosphate synthesis and proton leak between different acclimation groups of oysters. Temperature-dependent sensitivity of metabolic physiology to Cd has significant implications for toxicity testing and for extrapolation of laboratory studies to field populations of aquatic poikilotherms, indicating the importance of taking into account the thermal regime of the environment. PMID:16986802

  19. [Study on biodegradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols].

    Zhang, Wen; Chen, Ling; Ji, Jun-Ping; Xia, Si-Qing

    2007-06-01

    Purpose of this study was to determine the treatability of 2,4-dichlorophenol (2,4-DCP) by anaerobic granular sludge which was acclimated by mixed mono-chlorphenols (2-CP, 4-MCP). The characteristic of degradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols was investigated through shake flask study and performance of continuous flow anaerobic bioreactors. The difference of degradation of 2,4-DCP by acclimated and unacclimated sludge was also compared. 2,4-DCP was degraded at 50 h and 180 h respectively for acclimated and unacclimated sludge, which testified that acclimated sludge could more effectively degrade 2,4-DCP. Although the intermediate product 4-MCP was present in both reaction system, 4-MCP could be degraded completely after 400 h in the acclimated sludge but accumulated in the unacclimated sludge. Therefore, acclimation by the mixed mono-chlorphenols (2-CP, 4-MCP) could enhance the ability of para- and meta-dechlorination for anaerobic sludge and increase the treatability of 2,4-DCP. The results of continuous anaerobic sludge-suspended carrier bioreactor (ASSCB) indicate that inoculation of the acclimated sludge by mixed mono-chlorphenols can degrade two mono-chlorphenols simultaneously, shorten the setup period, and increase the efficiency of degrading 2,4-DCP. 2-CP was easily degraded with removal rate of over 80% . While the removal rate of 4-MCP was fluctuating within 30% - 80% with changes of its influent concentration. PMID:17674731

  20. Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law

    LI Jun; CHEN LinGen; SUN FengRui

    2009-01-01

    The optimal configuration of a heat engine operating between a finite high-temperature source and an infinite low-temperature reservoir is derived by using finite time thermodynamics based on a complex heat transfer law, including Newtonian heat transfer law, linear phenomenological heat transfer law, radiative heat transfer law, Dulong-Petit heat transfer law, generalized convective heat transfer law and generalized radiative heat transfer law, q∝ (△Tn). In the engine model the only irreversibility of finite rate heat transfer is considered. The optimal relation between the power output and efficiency of the heat engine is also derived by using an equivalent temperature of the hot reservoir. The obtained re-sults include those obtained in recent literature and can provide some theoretical guidance for the de-signs of practical engines.

  1. Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law

    2009-01-01

    The optimal configuration of a heat engine operating between a finite high-temperature source and an infinite low-temperature reservoir is derived by using finite time thermodynamics based on a complex heat transfer law,including Newtonian heat transfer law,linear phenomenological heat transfer law,radiative heat transfer law,Dulong-Petit heat transfer law,generalized convective heat transfer law and generalized radiative heat transfer law,q ∝(△T n). In the engine model the only irreversibility of finite rate heat transfer is considered. The optimal relation between the power output and efficiency of the heat engine is also derived by using an equivalent temperature of the hot reservoir. The obtained results include those obtained in recent literature and can provide some theoretical guidance for the designs of practical engines.

  2. Embryonic developmental temperatures modulate thermal acclimation of performance curves in tadpoles of the frog Limnodynastes peronii.

    Frank Seebacher

    Full Text Available Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how temperatures experienced during early embryonic development affect thermal performance curves of later life history stages in the frog Limnodynastes peronii. We tested the hypotheses that a the embryonic environment affects mean trait values only; b temperature at which performance of tadpoles is maximal shifts with egg incubation temperatures so that performance is maximised at the incubation temperatures, and c incubation temperatures modulate the capacity for reversible acclimation in tadpoles. Growth rates were greater in warm (25°C compared to cold (15°C acclimated (6 weeks tadpoles regardless of egg developmental temperatures (15°C or 25°C, representing seasonal means. The breadth of the performance curve of burst locomotor performance (measured at 10, 15, 20, 25, and 30°C, representing annual range is greatest when egg developmental and acclimation temperatures coincide. The mode of the performance curves shifted with acclimation conditions and maximum performance was always at higher temperatures than acclimation conditions. Performance curves of glycolytic (lactate dehydrogenase activities and mitochondrial (citrate synthase and cytochrome c oxidase enzymes were modulated by interactions between egg incubation and acclimation temperatures. Lactate dehydrogenase activity paralleled patterns seen in burst locomotor performance, but oxygen consumption rates and mitochondrial enzyme activities did not mirror growth or locomotor performance. We show that embryonic developmental conditions can modulate performance curves of later life-history stages, thereby conferring flexibilty to respond to environmental conditions later in life.

  3. The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings

    Luo Lei; Lin Shan-zhi; Zheng Hui-quan; Lei Yang; Zhang Qian; Zhang Zhi-yi

    2007-01-01

    We investigated the changes in the contents of H2O2, malonaldehyde (MDA) and endogenous antioxidants, the activities of protective enzymes and some critical enzymes involved in the ascorbate-glutathione (ASA-GSH) cycle as well as freezing resistance(expressed as LT50) and correlations mentioned above, in detail using Populus suaveolens cuttings. The purpose was to explore the physiological mechanism of the enhancement of freezing resistance induced by freezing acclimation at -20℃, and to elucidate the physiological mechanisms by which trees adapt to freezing. The results showed that freezing acclimation enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), monodehydroascorbate reductase (MDAR), ascorbate peroxidase(APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). And it increased the contents of reduced ascorbate(ASA), reduced glutathione (GSH), dehydroascorbate (DHA) and oxidized glutathione (GSSG). However, H2O2 and MDA contents and LT50 of cuttings were decreased. LT50 in cuttings was found to be closely correlated to the levels of SOD, POD, CAT, APX,DHAR, MDAR, GR, H2O2, MDA, ASA, GSH, DHA and GSSG during freezing acclimation. This suggested that the enhancement of freezing resistance of cuttings induced by freezing acclimation may relate to the distinct increase for the levels of SOD, POD, CAT,APX, DHAR, MDAR,GR,ASA, GSH, DHA, and GSSG. In addition, the observed levels of APX, DHAR, MDAR, GR, ASA, DHA,GSH and GSSG were higher than those of SOD, POD and CAT during freezing acclimation. It indicated that a higher capacity of the ASA-GSH cycle is required for H2O2 detoxification, and growth and development of cuttings. Based on the obtained results, it can be concluded that the ASA-GSH cycle plays an important role in enhancement of freezing resistance of P. suaveolens cuttings during freezing acclimation.

  4. Contribution of a 3D ray tracing model in a complex medium to the localization of infra-sound sources

    Localisation of infra-sound sources is a difficult task due to large propagation distances at stake and because of the atmospheric complexity. In order to resolve this problem, one can seek as many necessary information as the comprehension of wave propagation, the role and influence of the atmosphere and its spatio-temporal variations, the knowledge of sources and detection parameters, but also the configuration of the stations and their global spreading. Two methods based on the construction of propagation tables depending on station, date and time are introduced. Those tables require a long range propagation tool to simulate the propagation through a complex medium, which are carried out by WASP-3D Sph a 3D paraxial ray tracing based-theory tool integrating both amplitude estimation and horizontal wind fields in space and time. Tables are centered on the receptor. They describe spatial variations of the main observation parameters and offer a snapshot of the atmospheric propagation depending on the range for every simulated phase. For each path, celerity, azimuth deviation, attenuation and return altitude are predicted and allow building the tables. The latter help to identify detected phases and are integrated in an accurate localization procedure. The procedure is tested on three case study, such as the explosion of gas-pipeline in Belgium 2004 near Ghislenghien, the explosion of a military facility in 2007 in Novaky, Slovakia and the explosion of the Buncefield oil depot in 2005 in the United Kingdom, where event specificities, propagation parameters and used configurations are introduced. The accuracy and optimization of the localization are discussed. A validation study is presented regarding International Monitoring System stations along a meridian - I18DK (Greenland, Denmark), I51UK (Bermuda, United Kingdom), I25FR (Guyane, France), I08BO (La Paz, Bolivia), I01AR (Paso Flores, Argentina), I02AR (Ushuaia, Argentina), I54US (Antarctica, U.S.A.) - to

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  6. Effects of Low-Temperature Acclimation and Oxygen Stress on Tocopheron Production in Euglena gracilis Z

    1985-01-01

    The effects of low-temperature acclimation and oxygen stress on tocopheron production were examined in the unicellular phytoflagellate Euglena gracilis Z. Cells were cultured photoheterotrophically at 27.5 ± 1°C with 5% carbon dioxide-95% air and 740 microeinsteins m−2 s−1 (photosynthetically active radiation) and served as controls. Low-temperature acclimation (12.5 ± 1°C) and high-oxygen stress (5% carbon dioxide-95% oxygen) were individually examined in the mass culturing of the algae. Chr...

  7. Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae)

    Sogn Andersen, Guri; Pedersen, Morten Foldager; Nielsen, Søren Laurentius

    2013-01-01

    is a cold-temperate species, and increasing seawater temperature has been suggested as one of the major causes of the decline. Several studies have shown that S. latissima can acclimate to a wide range of temperatures. However, local adaptations may render the extrapolation of existing results inappropriate....... We investigated the potential for thermal acclimation and heat tolerance in S. latissima collected from three locations along the south coast of Norway. Plants were kept in laboratory cultures at three different growth temperatures (10, 15, and 20°C) for 4–6 weeks, after which their photosynthetic...

  8. Temperature-Acclimated Brown Adipose Tissue Modulates Insulin Sensitivity in Humans

    Lee, Paul; Smith, Sheila; Linderman, Joyce; Courville, Amber B.; Brychta, Robert J.; Dieckmann, William; Werner, Charlotte D.; Chen, Kong Y.; Celi, Francesco S.

    2014-01-01

    In rodents, brown adipose tissue (BAT) regulates cold- and diet-induced thermogenesis (CIT; DIT). Whether BAT recruitment is reversible and how it impacts on energy metabolism have not been investigated in humans. We examined the effects of temperature acclimation on BAT, energy balance, and substrate metabolism in a prospective crossover study of 4-month duration, consisting of four consecutive blocks of 1-month overnight temperature acclimation (24°C [month 1] → 19°C [month 2] → 24°C [month...

  9. Gastrointestinal uptake and fate of cadmium in rainbow trout acclimated to sublethal dietary cadmium

    Chowdhury, M.J.; McDonald, D.G.; Wood, C.M

    2004-08-10

    Adult rainbow trout were pre-exposed to a sublethal concentration of dietary Cd (500 mg/kg dry wt.) for 30 days to induce acclimation. A gastrointestinal dose of radiolabeled Cd (276 {mu}g/kg wet wt.) was infused into the stomach of non-acclimated and Cd-acclimated trout through a stomach catheter. Repetitive blood samples over 24 h and terminal tissue samples were taken to investigate the gastrointestinal uptake, plasma clearance kinetics, and tissue distribution of Cd. Only a small fraction of the infused dose (non-acclimated: 2.4%; Cd-acclimated: 6.6%) was internalized across the gut wall, while most was bound in the gut tissues (10-24%) or remained in the lumen (16-33%) or lost from the fish ({approx}50%) over 24 h. Cadmium loading during pre-exposure produced a profound increase of total Cd in the blood plasma ({approx}28-fold) and red blood cells (RBC; {approx}20-fold). The plasma Cd-time profiles consisted of an apparent rising (uptake) phase and a declining (clearance) phase with a maximum value of uptake in 4 h, suggesting that uptake of gastrointestinally infused Cd was very rapid. Acclimation to dietary Cd did not affect plasma Cd clearance ({approx}0.5 ml/min), but enhanced new Cd levels in the plasma (but not in the RBC), and resulted in a longer half-life for plasma Cd. Tissue total and new Cd levels varied in different regions of the gastrointestinal tract, and overall levels in gut tissues were much greater than in non-gut tissues, reflecting the Cd exposure route. Dietary Cd, but not the infused Cd, greatly increased total Cd levels of all gut tissues in the order posterior-intestine (640-fold) > cecae (180-fold) > mid-intestine (94-fold) > stomach (53-fold) in Cd-acclimated fish relative to naieve fish. Among non-gut tissues in the Cd-acclimated fish, the great increases of total Cd levels were observed in the liver (73-fold), kidney (39-fold), carcass (35-fold), and gills (30-fold). The results provide some clear conclusions that may be useful

  10. Carbon Nanotubes, Nanocrystal Forms, and Complex Nanoparticle Aggregates in common fuel-gas combustion sources and the ambient air

    Aggregated multiwall carbon nanotubes (with diameters ranging from ∼3 to 30nm) and related carbon nanocrystal forms ranging in size from 0.4 to 2 μm (average diameter) have been collected in the combustion streams for methane/air, natural gas/air, and propane gas/air flames using a thermal precipitator. Individual particle aggregates were collected on carbon/formvar-coated 3mm nickel grids and examined in a transmission electron microscope, utilizing bright-field imaging, selected-area electron diffraction analysis, and energy-dispersive X-ray spectrometry techniques. The natural gas and propane gas sources were domestic (kitchen) stoves, and similar particle aggregates collected in the outdoor air were correspondingly identified as carbon nanocrystal aggregates and sometimes more complex aggregates of silica nanocrystals intermixed with the carbon nanotubes and other carbon nanocrystals. Finally, and in light of the potential for methane-series gas burning as major sources of carbon nanocrystal aggregates in both the indoor and outdoor air, data for natural gas consumption and corresponding asthma deaths and incidence are examined with a degree of speculation regarding any significance in the correlations

  11. Statistical source identification of major and trace elements in groundwater downward the tailings dam of Miduk Copper Complex, Kerman, Iran.

    Kargar, Maryam; Khorasani, Neamatolah; Karami, Mahmoud; Rafiee, Gholamreza; Naseh, Reza

    2012-10-01

    Identifying the possible sources of potential harmful metals in groundwater systems plays a crucial role in evaluating the potential risks to residents and local plant cover. An attempt was made to define the origin of Al, Cd, Cu, Fe, Mo, Ni, and Pb in groundwater using multivariate statistic approaches [principal component analysis (PCA), hierarchical cluster analysis], and tailings sequential extraction by the method of Tessier et al. The concentrations of studied elements were measured in 42 samples collected from 15 stations surrounding and downward the tailings dam of Miduk Copper Complex, central province of Kerman, Iran. According to the PCA results, confirmed by cluster dendrogram and metal content measurement of tailings sequential extracts, two components accounting for nearly 73% of the total variance, controlled the heavy metal variability and classified the possible source of groundwater contamination into two categories: (1) upper seepage which controls the variability of Cd, Cu, Fe, Ni, and Pb and (2) toe seepage of tailings dump affecting on Mo and Al concentration in downstream groundwater. PMID:22048922

  12. Orthostatic responses to dietary sodium restriction during heat acclimation

    Szlyk, Patricia C.; Sils, Ingrid V.; Caretti, David M.; Moore, Robert J.; Armstrong, Lawrence E.; Tartarini, Kim A.; Francesconi, Ralph P.; Askew, Eldon W.; Hubbard, Roger W.

    1994-01-01

    Several studies have shown that individuals consuming low-salt diets and working in the heat have an increased risk or incidence of heat injury, suggestive of inadequate cardiovascular adjustment. Furthermore, others have shown that prolonged work in hot climates can precipitate orthostatic hypotension and syncope. This study was designed to evaluate the effects of moderate-salt (MS) and low-salt (LS) diets on the circulatory responses and incidence of presyncopal symptoms to an orthostatic test (OT) during successive days of heat acclimation (HA). Seventeen unacclimatized male soldiers (mean +/- SE: age 20+/-1 yrs) participated in this two-phase study. The first phase consisted of a seven day dietary stabilization period during which all subjects consumed similar diets of about 4000 kcal/day containing 8g NaCl and lived in a dormitory setting (21 C, 30% RH). The second phase commenced on day eight and consisted of dietary NaCl restriction and 10 days HA (days 8-17). Volunteers were randomly assigned to either the MS diet (n=9) providing 8g NaCl/day or the LS diet (n=8) furnishing just 4g NaCl/day. The acquisition of HA was manifested in both groups by reductions in exercising rectal temperature and heart rate (HR); these characteristics were similar in the MS and LS diets. The OT was performed at 21 C on day seven of the stabilization phase and on days 9, 11, 13, 15, and 17 of the HA phase, before and after 8.5 hr of intermittent treadmill walking in a hot environment. Blood pressure (BP) and HR responses at 1,2, and 4 min and any presyncopal symptoms were recorded after assuming an upright position from recumbency. All subjects completed the OT before and after prolonged exercise in the heat without incidence of either hypotension or presyncopal symptoms irrespective of dietary-salt intake and day of HA. The results indicate that the prolonged work in the heat can be performed without orthostatic hypotension or syncope while consuming 4g NaCl/day with adequate

  13. Metabolic and hormonal acclimation to heat stress in domesticated ruminants.

    Bernabucci, U; Lacetera, N; Baumgard, L H; Rhoads, R P; Ronchi, B; Nardone, A

    2010-07-01

    a minor portion of the reduced milk yield from environmentally induced hyperthermic cows. How these metabolic changes are initiated and regulated is not known. It also remains unclear how these changes differ between short-term v. long-term heat acclimation to impact animal productivity and well-being. A better understanding of the adaptations enlisted by ruminants during heat stress is necessary to enhance the likelihood of developing strategies to simultaneously improve heat tolerance and increase productivity. PMID:22444615

  14. Studies of the source complex behaviour and of the ultrasound radiation of contact flexible multi-element transducers; Etudes du comportement complexe de source et du rayonnement ultrasonore des traducteurs multi-elements flexibles au contact

    Amory, V

    2007-12-15

    This work deals with the ultrasonic nondestructive testing of parts with complex geometries using soft multi-element sensors. The different types of contact control configurations are presented first. Then, the difficulties encountered with conventional contact transducers are explained and the multi-element piezoelectric transducers technology, developed to meet these difficulties, is presented. The second chapter presents the results of finite-element calculations showing the complexity of a transducer in a condition of testing utilization. In a same configuration, the radiated far field calculated by finite-elements is compared to the measurement in order to validate the way the source behaviour is calculated. However, despite the efficiency of the finite-elements simulation, this tool is numerically too costly and cannot be used to optimize a full multi-element transducer. Therefore, a realistic source model is built and implemented in a radiation code based on high-frequency asymptotic approximations where only L and T volume waves are calculated. The incapacity of this model to reproduce the behaviour of T waves in some directions of propagation has led to give a particular attention to the fore-waves, neglected in the radiation calculation. Chapter 3 treats of the building of an exact radiation model taking into consideration the fore-waves contribution emitted by a contact transducer exerting a random space-time distribution constraint at the surface of the considered medium. A radiation model, based on the calculation of exact Green functions of the Lamb problem is proposed. The exact model is particularly interesting in the case of sensor geometries with a long length with respect to other dimensions (2D case). Field calculation results are shown for an element of the matrix network (3D case) and for a linear element (2D case). A study of different existing approached models is carried out as well. The last chapter presents some results of the field

  15. The Acclimation Process of New CEOs in Community Colleges: Important Lessons Learned.

    Hammons, James O.; Murphree, Jackie

    1999-01-01

    Describes the process by which new community college presidents acclimate to their roles. Discusses a survey of 71 new community college CEOs. Provides conclusions and implications for improved practice, and includes recommended (and not recommended) actions and suggestions for current and future CEOs and boards of trustees. Contains 45…

  16. Acclimation of Photosynthesis to Light and Canopy Nitrogen Distribution: an Interpretation

    Thornley, J. H. M.

    2004-01-01

    • Background and Aims Acclimation of photosynthesis to light and its connection with canopy nitrogen (N) distribution are considered. An interpretation of a proportionality between light‐saturated photosynthesis and local averaged leaf irradiance is proposed by means of a simple model.

  17. Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA

    Inhibition of methanogens by long chain fatty acids (LCFA) and the low numbers of LCFA-degrading bacteria are limitations to exploit biogas production from fat-rich wastewaters. Generally reactors fail due to excessive LCFA accumulation onto the sludge. Here, long-term acclimation and bioaugmentation with a LCFA-degrading coculture were hypothesized as strategies to enhance methanogenic conversion of these compounds. Anaerobic sludges previously exposed to LCFA for more than 100 days converted a specific biomass-associated substrate of (3.2 ± 0.1) kg·kg−1 with very short lag phases (<1 day), whereas non-acclimated sludges showed lag phases of 11–15 days for metabolizing (1.6–1.8) kg·kg−1. Addition of a coculture of Syntrophomonas zehnderi and Methanobacterium formicicum to sludges previously loaded with LCFA and containing different amounts of biomass-associated substrate (from (0.5–3.2) kg·kg−1) did not improve methane production neither lag phases were shortened, indicating that the endogenous microbiota are not a limiting factor. Clearly, we show that long-term sludge acclimation to LCFA is essential for high rate methanogenesis from LCFA. - Highlights: • Long-term sludge acclimation results in more resilient microbial communities to LCFA. • Excessive LCFA accumulation onto the biomass should be prevented. • Bioaugmentation does not improve methane production by LCFA-overloaded sludge

  18. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  19. Acclimation of Norway spruce photosynthetic apparatus to the combined effect of high irradiance and temperature

    Štroch, M.; Vrábl, D.; Podolinská, J.; Kalina, J.; Urban, Otmar; Špunda, V.

    2010-01-01

    Roč. 167, č. 8 (2010), s. 597-605. ISSN 0176-1617 R&D Projects: GA ČR GA522/07/0759 Institutional research plan: CEZ:AV0Z60870520 Keywords : diurnal courses * picea abies * thermal acclimation * thermal energy dissipation * xanthophyll cycle Subject RIV: ED - Physiology Impact factor: 2.677, year: 2010

  20. Cold stress and acclimation – what is important for metabolic adjustment?

    Janská, A.; Maršík, Petr; Zelenková, S.; Ovesná, J.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 395-405. ISSN 1435-8603 R&D Projects: GA MZe QH81287; GA AV ČR KJB400550705 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cold acclimation * crops * metabolomics Subject RIV: GE - Plant Breeding Impact factor: 2.409, year: 2010

  1. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.

    McLeod, Bruce

    2003-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  2. Acclimation of Plant Populations to Shade: Photosynthesis, Respiration, and Carbon Use Efficiency

    Frantz, Jonathan M.; Bugbee, Bruce

    2005-01-01

    Cloudy days cause an abrupt reduction in daily photosynthetic photon flux (PPF), but we have a poor understanding of how plants acclimate to this change. We used a unique lo-chamber, steady-state, gas-exchange system to continuously measure daily photosynthesis and night respiration of populations of a starch accumulator [tomato (Lycopersicone scukntum Mill. cv. Micro-Tina)] and a sucrose accumulator [lettuce (Latuca sativa L ev. Grand Rapids)] over 42 days. AI1 measurements were done at elevated CO2, (1200micr-/mol) avoid any CO2 limitations and included both shoots and roots. We integrated photosynthesis and respiration measurements separately to determine daily net carbon gain and carbon use efficiency (CUE) as the ratio of daily net C gain to total day-time C fixed over the 42-day period. After 16 to 20 days of growth in constant PPF, plants in some chambers were subjected to an abrupt PPF reduction to simulate shade or a series of cloudy days. The immediate effect and the long term acclimation rate w'ere assessed from canopy quantum yield and carbon use efficiency. The effect of shade on carbon use efficiency and acclimation was much slower than predicted by widely used growth models. It took 12 days for tomato populations to recover their original CUE and lettuce CUE never completely acclimated. Tomatoes, the starch accumulator, acclimated to low light more rapidly than lettuce, the sucrose accumulator. Plant growth models should be modified to include the photosynthesis/respiration imbalance and resulting inefficiency of carbon gain associated with changing PIT conditions on cloudy days.

  3. Plasma membrane rafts of rainbow trout are subject to thermal acclimation.

    Zehmer, John K; Hazel, Jeffrey R

    2003-05-01

    Rafts are cholesterol- and sphingolipid-enriched microdomains of the plasma membrane (PM) that organize many signal transduction pathways. Interactions between cholesterol and saturated lipids lead to patches of liquid-ordered membrane (rafts) phase-separating from the remaining PM. Phase behavior is temperature sensitive, and acute changes in temperature experienced by poikilotherms would be expected to perturb raft structure, necessitating an acclimatory response. Therefore, with thermal acclimation, we would expect compositional changes in the raft directed to offset this perturbation. Using differential and density gradient centrifugation, we separated PM from the livers of rainbow trout acclimated to 5 degrees C and 20 degrees C into raft-enriched (raft) and raft-depleted PM (RDPM). Compared with RDPM, the raft fractions were enriched in cholesterol, the beta(2)-adrenergic receptor and adenylyl cyclase, which are commonly used markers for this microdomain. Furthermore, cholesterol was enriched in all fractions from warm-compared with cold-acclimated animals, but this increase was 3.4 times greater in raft than in PM. We developed a novel approach for measuring membrane molecular interaction strength (and thus the tendency to stabilize raft structure) based on the susceptibility of membranes to detergent. Specifically, studies with model vesicles demonstrated that the capacity of a membrane to accommodate detergent prior to solubilization (saturation point) was a good index of this property. The saturation point of the isolated membrane preparations was temperature sensitive and was significantly different in 5 degrees C- and 20 degrees C-acclimated RDPM when assayed at 5 degrees C and 20 degrees C, respectively. By contrast, this comparison in rafts was not significantly different, suggesting compensation of this property. These data suggest that compositional changes made in the PM during thermal acclimation act to offset thermal perturbation of the raft but

  4. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation.

    Keen, Adam N; Shiels, Holly A; Crossley, Dane A

    2016-07-01

    Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in

  5. Contribution d'un modèle 3D de tracé de rayons dans un milieu complexe pour la localisation de sources infrasonores

    Mialle, Pierrick

    2007-01-01

    Localisation of infrasound sources is a difficult task due to large propagation distances at stake and because of the atmospheric complexity. In order to resolve this problem, one can seek as many necessary information as the comprehension of wave propagation, the role and influence of the atmosphere and its spatio-temporal variations, the knowledge of sources and detection parameters, but also the configuration of the stations and their global spreading. Two methods based on the construction...

  6. The photosynthetic acclimation response of Lolium perenne to four years growth in a free-air CO{sub 2} enrichment (FACE) facility

    Creasey, R. [Univ. of Essex (United Kingdom)

    1996-11-01

    In this study, the photosynthetic responses of field grown Lolium perenne to ambient (354 {mu}mol mol{sup -1}) and elevated (600 {mu}mol mol{sup -1}) C{sub a} were measured. The experiment utilized the FACE facility at Eschikon, Switzerland; here the L. Perenne swards had been grown at two nitrogen treatments, with six cuts per year, for 4 years. The study revealed a significant decrease in Rubisco activity (Vcmax) in the low nitrogen FACE plots; this is consistent with the theories of source-sink imbalance resulting in feedback inhibition and down-regulation. Such negative acclimation was not wholly supported by diurnal investigations which revealed an average stimulation of 53.38% and 52.78% in the low and high nitrogen, respectively. However, light response curves and AI investigations also suggested down-regulation, especially in the low nitrogen. SI is expected to decrease in response to elevated C{sub a}, if any change is seen. This was indeed observed in the high nitrogen plots but for the low nitrogen a significant increase was found. Conclusions drawn from this project center around the implications of negative acclimation to future crop productivity. For instance, inter-specific differences in response to elevated C{sub a} may result in ecosystem changes and new management techniques may be necessary. However, real predictions cannot be made from leaf level studies alone as these may not represent the overall changes at the whole plant level.

  7. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster

    Overgaard, Johannes; Tomcala, Ales; Sørensen, Jesper G;

    2008-01-01

    Adaptative responses of ectothermic organisms to thermal variation typically involve the reorganization of membrane glycerophospholipids (GPLs) to maintain membrane function. We investigated how acclimation at 15, 20 and 25 degrees C during preimaginal development influences the thermal tolerance...

  8. Fructan accumulation and transcription of candidate genes during cold acclimation in three varieties of Poa pratensis

    Rao, R Shyama Prasad; Andersen, Jeppe Reitan; Dionisio, Giuseppe; Boelt, Birte

    2011-01-01

    to different environments: Northern Norway, Denmark, and the Netherlands. Fructan content increased significantly during cold acclimation and varieties showed significant differences in the level of fructan accumulation. cDNA sequences of putative fructosyltransferase (FT), fructan exohydrolase (FEH......Poa pratensis, a type species for the grass family (Poaceae), is an important cool season grass that accumulates fructans as a polysaccharide reserve. We studied fructan contents and expression of candidate fructan metabolism genes during cold acclimation in three varieties of P. pratensis adapted......), and cold acclimation protein (CAP) genes were identified and cloned. In agreement with a function in fructan biosynthesis, transcription of a putative sucrose:fructan 6-fructosyltransferase (Pp6-SFT) gene was induced during cold acclimation and fructan accumulation in all three P. pratensis varieties...

  9. The Coordination of Gene Expression within Photosynthesis Pathway for Acclimation of C4 Energy Crop Miscanthus lutarioriparius

    Xing, Shilai; Kang, Lifang; Xu, Qin; Fan, Yangyang; Wei LIU; Zhu, Caiyun; Song, Zhihong; Wang, Qian; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE) compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation pote...

  10. Ascorbic Acid Biosynthesis and Brackish Water Acclimation in the Euryhaline Freshwater White-Rimmed Stingray, Himantura signifer

    Wong, Samuel Z. H.; Ching, Biyun; Chng, You R.; Wong, Wai P.; Chew, Shit F.; Ip, Yuen K.

    2013-01-01

    L-gulono-γ-lactone oxidase (Gulo) catalyzes the last step of ascorbic acid biosynthesis, which occurs in the kidney of elasmobranchs. This study aimed to clone and sequence gulonolactone oxidase (gulo) from the kidney of the euryhaline freshwater stingray, Himantura signifer, and to determine the effects of acclimation from freshwater to brackish water (salinity 20) on its renal gulo mRNA expression and Gulo activity. We also examined the effects of brackish water acclimation on concentration...

  11. Epoxycarotenoid-mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes.

    Takezawa, Daisuke; Watanabe, Naoki; Ghosh, Totan Kumar; Saruhashi, Masashi; Suzuki, Atsushi; Ishiyama, Kanako; Somemiya, Shinnosuke; Kobayashi, Masatomo; Sakata, Yoichi

    2015-04-01

    Plants acclimate to environmental stress signals such as cold, drought and hypersalinity, and provoke internal protective mechanisms. Abscisic acid (ABA), a carotenoid-derived phytohormone, which increases in response to the stress signals above, has been suggested to play a key role in the acclimation process in angiosperms, but the role of ABA in basal land plants such as mosses, including its biosynthetic pathways, has not been clarified. Targeted gene disruption of PpABA1, encoding zeaxanthin epoxidase in the moss Physcomitrella patens was conducted to determine the role of endogenous ABA in acclimation processes in mosses. The generated ppaba1 plants were found to accumulate only a small amount of endogenous ABA. The ppaba1 plants showed reduced osmotic acclimation capacity in correlation with reduced dehydration tolerance and accumulation of late embryogenesis abundant proteins. By contrast, cold-induced freezing tolerance was less affected in ppaba1, indicating that endogenous ABA does not play a major role in the regulation of cold acclimation in the moss. Our results suggest that the mechanisms for osmotic acclimation mediated by carotenoid-derived synthesis of ABA are conserved in embryophytes and that acquisition of the mechanisms played a crucial role in terrestrial adaptation and colonization by land plant ancestors. PMID:25545104

  12. Acclimation of Trichodesmium erythraeum ISM101 to high and low irradiance analysed on the physiological, biophysical and biochemical level.

    Andresen, Elisa; Lohscheider, Jens; Setlikova, Eva; Adamska, Iwona; Simek, Miloslav; Küpper, Hendrik

    2010-01-01

    As the nonheterocystous diazotrophic cyanobacterium Trichodesmium lives both at the ocean surface and deep in the water column, it has to acclimate to vastly different irradiances. Here, we investigate its strategy of light acclimation in several ways. In this study, we used spectrally resolved fluorescence kinetic microscopy to investigate the biophysics of photosynthesis in individual cells, analysed cell extracts for pigment and phycobiliprotein composition, measured nitrogenase activity and the abundance of key proteins, and assayed protein synthesis/degradation by radioactive labelling. After acclimation to high light, Trichodesmium grew faster at 1000 micromol m(-2) s(-1) than at 100 micromol m(-2) s(-1). This acclimation was associated with decreasing cell diameter, faster protein turnover, the down-regulation of light-harvesting pigments and the outer part of the phycobiliprotein antenna, the up-regulation of light-protective carotenoids, changes in the coupling of phycobilisomes to the reaction centres and in the coupling of individual phycobiliproteins to the phycobilisomes. The latter was particularly interesting, as it represents an as yet unreported light acclimation strategy. Only in the low light-acclimated culture and only after the onset of actinic light did phycourobilin and phycoerythrin contribute to photochemical fluorescence quenching, showing that these phycobiliproteins may become quickly (in seconds) very closely coupled to photosystem II. This fast reversible coupling also became visible in the nonphotochemical changes of the fluorescence quantum yield. PMID:19863729

  13. Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures.

    Noyola, Javier; Caamal-Monsreal, Claudia; Díaz, Fernando; Re, Denisse; Sánchez, Adolfo; Rosas, Carlos

    2013-01-01

    Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38-0.78g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30°C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4°C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (Pmaya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México. PMID:24229799

  14. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio)

    Boisen, A M Z; Amstrup, J; Novak, I; Grosell, M

    2003-01-01

    that this is achieved at least in part by a greatly enhanced apparent uptake capacity and affinity for both ions. Zebrafish maintain plasma and whole body electrolyte concentrations similar to most other freshwater teleosts even in deionized water containing only 35 microM NaCl, i.e soft water. We...... recorded an extremely low transport affinity constant (K(m)) of 8+/-1 microM for the active uptake of Cl(-) in soft water acclimated fish, while other transport kinetic parameters were in agreement with reports for other freshwater organisms. While both Na(+) and Cl(-) uptake in soft water clearly depends...... on apical proton pump activity, changes in abundance and possibly localization of this protein did not appear to contribute to soft water acclimation. Active Cl(-) uptake was strongly dependent on branchial carbonic anhydrase (CA) activity regardless of water type, while the response of Na...

  15. Photosynthetic acclimation to enriched CO{sub 2} concentrations in Pinus Ponderosa

    Torres, M.P. [California State Univ., Humbolt, CA (United States)

    1995-11-01

    By the middle of the 21st century earth`s ambient CO{sub 2} level is expected to increase two-fold ({approximately}350 umol/L). Higher levels of CO{sub 2} are expected to cause major changes in the morphological, physiological, and biochemical traits of the world`s vegetation. Therefore, we constructed an experiment designed to measure the long-term acclimation processes of Pinus Ponderosa. As a prominent forest conifer, Pinus Ponderosa is useful when assessing a large scale global carbon budget. Eighteen genetically variable families were exposed to 3 different levels of CO{sub 2} (350 umol/L, 525 umol/L, 700 umol/L), for three years. Acclimation responses were quantified by assays of photosynthetic rate, chlorophyll fluorescence, and chlorophyll pigment concentrations.

  16. Effect of acclimation and nutrient supply on 5-tolyltriazole biodegradation with activated sludge communities.

    Herzog, Bastian; Yuan, Heyang; Lemmer, Hilde; Horn, Harald; Müller, Elisabeth

    2014-07-01

    The corrosion inhibitor 5-tolyltriazole (5-TTri) can have a detrimental impact on aquatic systems thus implying an acute need to reduce the effluent concentrations of 5-TTri. In this study, 5-TTri biodegradation was enhanced through acclimation and nutrient supply. Activated sludge communities (ASC) were setup in nine subsequent ASC generations. While generation two showed a lag phase of five days without biodegradation, generations four to nine utilized 5-TTri right after inoculation, with biodegradation rates from 3.3 to 5.2 mg L(-1)d(-1). Additionally, centrifuged AS supernatant was used to simulate the nutrient conditions in wastewater. This sludge supernatant (SS) significantly enhanced biodegradation, resulting in removal rates ranging from 3.2 to 5.0 mg L(-1)d(-1) without acclimation while the control groups without SS observed lower rates of ⩽ 2.2 mg L(-1)d(-1). PMID:24841493

  17. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species

    Stæhr, P. A.; Birkeland, M. J.

    2006-01-01

    Temperature acclimation in two mesophilic microalgae, Microcystis aeruginosa (Cyanobacteriales) and Scenedesmus acutus (Chlorococcales), was studied by measuring growth rate, photosynthesis, respiration, cell size, cellular pigment content and Chl a-specific light absorption. Phytoplankton were...... grown as nutrient-replete semicontinuous cultures for 2 weeks at 5, 15 and 25°C, during which growth rate was determined from changes in Chl a. Gross photosynthesis (GP) was measured as 14C assimilation at saturating light and respiration (R) was measured as O2 uptake along a temperature gradient from 0...... to 40°C. Net photosynthesis (NP) was determined as the difference between GP and R. For both species, acclimation to increasing growth temperatures resulted in increasing growth rate, cellular pigment content and decreasing cell size and Chl a-specific light absorption. Scenedesmus acutus and M...

  18. A Case for Site Acclimation in the Reintroduction of the Endangered Razorback Sucker (Xyrauchen Texanus)

    United States Geological Survey

    1999-01-01

    Two site-acclimation studies (Mueller and Marsh 1998, Foster and Mueller 1999) were conducted in 1997 and 1998. The primary emphasis was habitat use and dispersal but we also examined if the rapid dispersal, typically associated with hatchery-produced razorback suckers (suckers), could be mitigated by allowing fish a period of time to recover from stocking-induced stress. Findings of those studies and existing physiological literature suggest that current stocking protocols may subject stoc...

  19. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions

    Mishra, Anamika; Heyer, A. G.; Mishra, Kumud

    2014-01-01

    Roč. 10, č. 38 (2014). ISSN 1746-4811 R&D Projects: GA MŠk EE2.3.20.0246; GA MŠk 7E12047 Institutional support: RVO:67179843 Keywords : high-throughput screening * chlorophyll a fluorescence transients * cold tolerance * cold acclimation * whole plant * Arabidopsis thaliana Subject RIV: EH - Ecology, Behaviour Impact factor: 3.102, year: 2014

  20. Fish pre-acclimation temperature only modestly affects cadmium toxicity in Atlantic salmon hepatocytes.

    Olsvik, Pål A; Søfteland, Liv; Hevrøy, Ernst M; Rasinger, Josef D; Waagbø, Rune

    2016-04-01

    An emerging focus in environmental toxicology is how climate change will alter bioavailability and uptake of contaminants in organisms. Ectothermic animals unable to adjust their temperature by local migration, such as farmed fish kept in net pens, may become more vulnerable to contaminants in warmer seas. The aim of this work was to study cadmium (Cd) toxicity in cells obtained from fish acclimated to sub-optimal growth temperature. Atlantic salmon hepatocytes, harvested from fish pre-acclimated either at 15°C (optimal growth temperature) or 20°C (heat-stressed), were exposed in vitro to two concentrations of Cd (control, 1 and 100µM Cd) for 48h. Cd-induced cytotoxicity, determined with the xCELLigence system, was more pronounced in cells from fish pre-acclimated to a high temperature than in cells from fish grown at optimal temperature. A feed spiked with antioxidants could not ameliorate the Cd-induced cytotoxicity in cells from temperature-stressed fish. At the transcriptional level, Cd exposure affected 11 out of 20 examined genes, of which most are linked to oxidative stress. The transcriptional levels of a majority of the altered genes were changed in cells harvested from fish grown at sub-optimal temperature. Interaction effects between Cd exposure and fish pre-acclimation temperature were seen for four transcripts, hmox1, mapk1, fth1 and mmp13. Overall, this study shows that cells from temperature-stressed fish are modestly more vulnerable to Cd stress, and indicate that mechanisms linked to oxidative stress may be differentially affected in temperature-stressed cells. PMID:27033036

  1. Warm acclimation and oxygen depletion induce species-specific responses in salmonids.

    Anttila, Katja; Lewis, Mario; Prokkola, Jenni M; Kanerva, Mirella; Seppänen, Eila; Kolari, Irma; Nikinmaa, Mikko

    2015-05-15

    Anthropogenic activities are greatly altering the habitats of animals, whereby fish are already encountering several stressors simultaneously. The purpose of the current study was to investigate the capacity of fish to respond to two different environmental stressors (high temperature and overnight hypoxia) separately and together. We found that acclimation to increased temperature (from 7.7±0.02°C to 14.9±0.05°C) and overnight hypoxia (daily changes from normoxia to 63-67% oxygen saturation), simulating climate change and eutrophication, had both antagonistic and synergistic effects on the capacity of fish to tolerate these stressors. The thermal tolerance of Arctic char (Salvelinus alpinus) and landlocked salmon (Salmo salar m. sebago) increased with warm acclimation by 1.3 and 2.2°C, respectively, but decreased when warm temperature was combined with overnight hypoxia (by 0.2 and 0.4°C, respectively). In contrast, the combination of the stressors more than doubled hypoxia tolerance in salmon and also increased hypoxia tolerance in char by 22%. Salmon had 1.2°C higher thermal tolerance than char, but char tolerated much lower oxygen levels than salmon at a given temperature. The changes in hypoxia tolerance were connected to the responses of the oxygen supply and delivery system. The relative ventricle mass was higher in cold- than in warm-acclimated salmon but the thickness of the compact layer of the ventricle increased with the combination of warm and hypoxia acclimation in both species. Char had also significantly larger hearts and thicker compact layers than salmon. The results illustrate that while fish can have protective responses when encountering a single environmental stressor, the combination of stressors can have unexpected species-specific effects that will influence their survival capacity. PMID:25827840

  2. Consequences of thermal acclimation for the mating behaviour and swimming performance of female mosquito fish

    Wilson, Robbie S; Condon, Catriona H.L; Johnston, Ian A.

    2007-01-01

    The mating system of eastern mosquito fish (Gambusia holbrooki) is dominated by male sexual coercion, where all matings are forced and females never appear to cooperate and actively avoid all attempts. Previous research has shown that male G. holbrooki offer a model system for examining the benefits of reversible thermal acclimation for reproductive success, but examining the benefits to female avoidance behaviour has been difficult. In this study, we examined the ability of non-male-deprived...

  3. Intraspecific variation in thermal acclimation of photosynthesis across a range of temperatures in a perennial crop.

    Zaka, Serge; Frak, Ela; Julier, Bernadette; Gastal, François; Louarn, Gaëtan

    2016-01-01

    Interest in the thermal acclimation of photosynthesis has been stimulated by the increasing relevance of climate change. However, little is known about intra-specific variations in thermal acclimation and its potential for breeding. In this article, we examined the difference in thermal acclimation between alfalfa (Medicago sativa) cultivars originating from contrasting origins, and sought to analyze the mechanisms in play. A series of experiments was carried out at seven growth temperatures between 5 and 35 °C using four cultivars from temperate and Mediterranean origin. Leaf traits, the photosynthetic rate at 25 °C (A400 (25)), the photosynthetic rate at optimal temperature (A400 (opt)), the thermal optimum of photosynthesis (Topt), and the photosynthetic parameters from the Farqhuar model were determined. Irrespective of cultivar origin, a clear shift in the temperature responses of photosynthesis was observed as a function of growth temperature, affecting thermal optimum of photosynthesis, photosynthetic rate at optimal temperature and photosynthetic rate at 25 °C. For both cultivars, Topt values increased linearly in leaves grown between 5 and 35 °C. Relative homeostasis of A400 (25) and A400 (opt) was found between 10 °C and 30 °C growth temperatures, but sharp declines were recorded at 5 and 35 °C. This homeostasis was achieved in part through modifications to leaf nitrogen content, which increased at extreme temperatures. Significant changes were also recorded regarding nitrogen partitioning in the photosynthetic apparatus and in the temperature dependence of photosynthetic parameters. The cultivars differed only in terms of the temperature response of photosynthetic parameters, with Mediterranean genotypes displaying a greater sensitivity of the maximum rate of Rubisco carboxylation to elevated temperatures. It was concluded that intra-specific variations in the temperature acclimation of photosynthesis exist among alfalfa cultivars

  4. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum

    Schellenberger Costa, Benjamin; Jungandreas, Anne; Jakob, Torsten; Weisheit, Wolfram; Mittag, Maria; Wilhelm, Christian

    2012-01-01

    The objective of the present study was to test the hypothesis that the acclimation to different light intensities in the diatom Phaeodactylum tricornutum is controlled by light quality perception mechanisms. Therefore, semi-continuous cultures of P. tricornutum were illuminated with equal amounts of photosynthetically absorbed radiation of blue (BL), white (WL), and red light (RL) and in combination of two intensities of irradiance, low (LL) and medium light (ML). Under LL conditions, growth ...

  5. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings

    Cheesman, Alexander W.; Winter, Klaus

    2013-01-01

    Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes betwee...

  6. Constraints to hydraulic acclimation under reduced light in two contrasting Phaseolus vulgaris cultivars.

    Matzner, Steven L; Rettedal, David D; Harmon, Derek A; Beukelman, MacKenzie R

    2014-08-01

    Two cultivars of Phaseolus vulgaris L. were grown under three light levels to determine if hydraulic acclimation to light occurs in herbaceous annuals and whether intraspecific trade-offs constrain hydraulic traits. Acclimation occurred in response to reduced light and included decreased stomatal density (SD) and increased specific leaf area (SLA). Reduced light resulted in lower wood density (WD); decreased cavitation resistance, measured as the xylem pressure causing a 50 % reduction in stem conductivity (P50); and increased hydraulic capacity, measured as average leaf mass specific transpiration (E(LM)). Significant or marginally significant trade-offs between P50 and WD, WD and E(LM), and E(LM) and P50 reflected variation due to both genotype and environmental effects. A trade-off between WD and P50 within one cultivar indicated that morphological adjustment was constrained. Coordinated changes in WD, P50, and E(LM) within each cultivar in response to light were consistent with trade-offs constraining plasticity. A water-use efficiency (WUE, measured as δ(13)C) versus hydraulic capacity (E(LM)) trade-off was observed within each cultivar, further indicating that hydraulic trade-offs can constrain acclimation. Larger plants had lower hydraulic capacity (E(LM)) but greater cavitation resistance, WD, and WUE. Distinct hydraulic strategies were observed with the cultivar adapted to irrigated conditions having higher stomatal conductance and stem flow rates. The cultivar adapted to rain-fed conditions had higher leaf area and greater cavitation resistance. Hydraulic trade-offs were observed within the herbaceous P. vulgaris resulting from both genotype and environmental effects. Trade-offs within a cultivar reflected constraints to hydraulic acclimation in response to changing light. PMID:24863433

  7. WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat

    Vitamvas, P.; Saalbach, Gerhard; Prasil, I.T.;

    2007-01-01

    The amount of proteins soluble upon boiling (especially WCS120 proteins) and the ability to develop frost tolerance (FT) after cold acclimation was studied in two frost-tolerant winter wheat cultivars, Mironovskaya 808 and Bezostaya 1. Protein get Not analysis, mass spectrometry (MS) and image...... cultivars. Moreover, the differences of CA and NA samples of the MIR were shown by Liquid chromatography (LC)-tandem mass spectrometry (MS/MS). (c) 2006 Etsevier GmbH. All rights reserved....

  8. Rumen bacterial communities can be acclimated faster to high concentrate diets than currently implemented feedlot programs

    Anderson, C L; Schneider, C.J.; Erickson, G.E.; MacDonald, J C; Fernando, S. C.

    2016-01-01

    Abstract Aims Recent studies have demonstrated RAMP ®, a complete starter feed, to have beneficial effects for animal performance. However, how RAMP may elicit such responses is unknown. To understand if RAMP adaptation results in changes in the rumen bacterial community that can potentially affect animal performance, we investigated the dynamics of rumen bacterial community composition in corn‐adapted and RAMP‐adapted cattle. Methods and Results During gradual acclimation of the rumen bacter...

  9. Heat acclimation and physical training adaptations of young women using different contraceptive hormones.

    Armstrong, Lawrence E; Maresh, Carl M; Keith, Nicole R; Elliott, Tabatha A; Vanheest, Jaci L; Scheett, Timothy P; Stoppani, James; Judelson, Daniel A; De Souza, Mary Jane

    2005-05-01

    Although endogenous and exogenous steroid hormones affect numerous physiological processes, the interactions of reproductive hormones, chronic exercise training, and heat acclimation are unknown. This investigation evaluated the responses and adaptations of 36 inactive females [age 21 +/- 3 (SD) yr] as they undertook a 7- to 8-wk program [heat acclimation and physical training (HAPT)] of indoor heat acclimation (90 min/day, 3 days/wk) and outdoor physical training (3 days/wk) while using either an oral estradiol-progestin contraceptive (ORAL, n = 15), a contraceptive injection of depot medroxyprogesterone acetate (DEPO, n = 7), or no contraceptive (EU-OV, n = 14; control). Standardized physical fitness and exercise-heat tolerance tests (36.5 degrees C, 37% relative humidity), administered before and after HAPT, demonstrated that the three subject groups successfully (P heat (i.e., rectal temperature, heart rate) and improved muscular endurance (i.e., sit-ups, push-ups, 4.6-km run time) and body composition characteristics. The stress of HAPT did not disrupt the menstrual cycle length/phase characteristics, ovulation, or plasma hormone concentrations of EU-OV. No between-group differences (P > 0.05) existed for rectal and skin temperatures or metabolic, cardiorespiratory, muscular endurance, or body composition variables. A significant difference post-HAPT in the onset temperature of local sweating, ORAL (37.2 +/- 0.4 degrees C) vs. DEPO (37.7 +/- 0.2 degrees C), suggested that steroid hormones influenced this adaptation. In summary, virtually all adaptations of ORAL and DEPO were similar to EU-OV, suggesting that exogenous reproductive hormones neither enhanced nor impaired the ability of women to complete 7-8 wk of strenuous physical training and heat acclimation. PMID:15598669

  10. Effects of acclimation on water and electrolitic disbalance in soldiers during exertional heat stress

    Radaković Sonja S.

    2007-01-01

    Full Text Available Background/Aim. Exertional heat stress is a common problem in military services. The aim of this study was to examine changes in body water and serum concentrations of some electrolites in soldiers during exertional heat stress (EHST, as well as effects of 10-day passive or active acclimation in a climatic chamber. Methods. Forty male soldiers with high aerobic capacity, performed EHST either in cool (20 ºC, 16 ºC WBGT-wet bulb globe temperature, or hot (40 ºC, 25 ºC WBGT environment, unacclimatized, or after 10 days of passive or active acclimation. The subjects were allowed to drink tap water ad libitum during EHST. Mean skin (Tsk and tympanic (Tty temperatures and heart rates (HR measured physiological strain, while sweat rate (SwR, and serum concentrations of sodium, potassium and osmolality measured changes in water and electrolyte status. Blood samples were collected before and immediately after the EHST. Results. Exertional heat stress in hot conditions induced physiological heat stress (increase in Tty, HR, and SwR, with significant decrease in serum sodium concentration (140.6±1.52 before vs 138.5±1.0 mmol/l after EHST, p < 0.01 and osmolality (280.7±3.8 vs 277.5±2.6 mOsm/kg, p < 0.05 in the unacclimatized group. The acclimated soldiers suffered no such effects of exertional heat stress, despite almost the same degree of heat strain, measured by Tty, HR and SwR. Conclusion. In the trained soldiers, 10-day passive or active acclimation in a climatic chamber can prevent disturbances in water and electrolytic balance, i.e. decrease in serum sodium concentrations and osmolality induced by exertional heat stress.

  11. Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies

    Paul M Brakefield; Jeroen Pijpe; Bas J Zwaan

    2007-04-01

    Plasticity is a crucial component of the life cycle of invertebrates that live as active adults throughout wet and dry seasons in the tropics. Such plasticity is seen in the numerous species of Bicyclus butterflies in Africa which exhibit seasonal polyphenism with sequential generations of adults with one or other of two alternative phenotypes. These differ not only in wing pattern but in many other traits. This divergence across a broad complex of traits is associated with survival and reproduction either in a wet season that is favourable in terms of resources, or mainly in a dry season that is more stressful. This phenomenon has led us to examine the bases of the developmental plasticity in a model species, B. anynana, and also the evolution of key adult life history traits, including starvation resistance and longevity. We now understand something about the processes that generate variation in the phenotype, and also about the ecological context of responses to environmental stress. The responses clearly involve a mix of developmental plasticity as cued by different environments in pre-adult development, and the acclimation of life history traits in adults to their prevailing environment.

  12. Can leaf net carbon gain acclimate to keep up with global warming?

    Vico, Giulia; Manzoni, Stefano; Way, Danielle; Hurry, Vaughan

    2016-04-01

    Plants are able to adjust their physiological activity to fluctuations and long-term changes in their growing environment. Nevertheless, projected increases in temperature will occur with unprecedented speed. Will global warming exceed the thermal acclimation capacity of leaves, thus reducing net CO2 assimilation? Such a reduction in net CO2 assimilation rate (Anet) in response to warming may deplete ecosystems' net primary productivity, with global impacts on the carbon cycling. Here we combine data on net photosynthetic thermal acclimation to changes in temperature with a probabilistic description of leaf temperature variability. We analytically obtain the probability distribution of the net CO2 assimilation rate as a function of species-specific leaf traits and growing conditions. Using this approach, we study the effects of mean leaf temperature and its variability on average Anet and the frequency of occurrence of sub-optimal thermal conditions. To maximize the net CO2 assimilation in warmer conditions, the thermal optimum for Anet (Topt) must track the growing temperature. Observations suggest that plants' thermal acclimation capacity is limited, so that growing temperatures cannot be tracked by the Topt. It is thus likely that net CO2 assimilation rates will decline in the future. Furthermore, for set leaf traits, large fluctuations in leaf temperature reduce average Anet and increase the frequency of occurrence of sub-optimal conditions for net CO2 assimilation.

  13. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation.

    Barnes, Paul W; Flint, Stephan D; Ryel, Ronald J; Tobler, Mark A; Barkley, Anne E; Wargent, Jason J

    2015-08-01

    The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought. PMID:25465528

  14. Differential accumulation of two glycine-rich proteins during cold-acclimation alfalfa.

    Ferullo, J M; Vézina, L P; Rail, J; Laberge, S; Nadeau, P; Castonguay, Y

    1997-03-01

    Two mRNAs, MsaCiA and MsaCiB, encoding for proteins harboring glycine-rich motifs, accumulate in alfalfa during cold acclimation. Fusion polypeptides containing the amino acid sequences deduced from these mRNAs were produced in Escherichia coli and used to raise antibodies. Each antibody cross-reacted specifically with soluble polypeptides, MSACIA-32 and MSACIB, respectively. These polypeptides were detectable only in crowns of cold-acclimated plants, even though MsaCiA mRNA accumulated in both crows and leaves during cold acclimation. The analysis of parietal proteins showed that several MSACIA-related proteins, with a molecular mass of 32, 41 and 68 kDa, did accumulate in leaf cell walls and one of 59 kDa crown cell walls. This diversity is most probably due to a tissue-specific maturation of MSACIA. A discrepancy was found between the time-course of accumulation of MSACIB and the one of the corresponding transcript. These results indicate that timing and localization of MSACIA and MSACIB expression are different, and suggest that this differential expression involves both transcriptional and post-transcriptional events. Comparisons made among six cultivars of contrasting freezing tolerance suggest that low tolerance could be explained by failure to accumulate proteins like MSACIA and MSACIB at a sufficient level. PMID:9132054

  15. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.

    Toxopeus, Jantina; Jakobs, Ruth; Ferguson, Laura V; Gariepy, Tara D; Sinclair, Brent J

    2016-06-01

    Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species. PMID:27039032

  16. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg-1 day-1. The efflux rate constant was 0.091 day-1 following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 μg Cu L-1 for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  17. Cadmium accumulation, gill Cd binding, acclimation, and physiological effects during long term sublethal Cd exposure in rainbow trout

    Juvenile rainbow trout, on 3% of body weight daily ration, were exposed to 0 (control), 3, and 10 μg l-1 Cd (as Cd(NO3)2 · 4H2O) in moderately hard (140 mg l-1 as CaCO3), alkaline (95 mg l-1 as CaCO3, pH 8.0) water for 30 days. Particular attention focused on acclimation, and on whether a gill surface binding model, originally developed in dilute softwater, could be applied in this water quality to fish chronically exposed to Cd. Only the higher Cd concentration caused mortality (30%, in the first few days). The costs of acclimation, if any, in our study were subtle since no significant effects of chronic Cd exposure were seen in growth rate, swimming performance (stamina and UCrit), routine O2 consumption, or whole body ion levels. Substantial acclimation occurred in both exposure groups, manifested as 11- to 13-fold increases in 96-h LC50 values. In water quality regulations, which are based on toxicity tests with non-acclimated fish only, this remarkable protective effect of acclimation is not taken into account. Cd accumulated in a time- and concentration-dependent fashion to 60-120x (gills), 8-20x (liver), 2-7x (carcass), and 5-12x (whole bodies) control levels by 30 days. Chronically accumulated gill Cd could not be removed by ethylenediaminetetraacetic acid (EDTA) challenge. These gill Cd concentrations were 20- to 40-fold greater than levels predicted by the gill-binding model to cause mortality during acute exposure. In short-term gill Cd-binding experiments (up to 70 μg l-1 exposures for 3 h), gill Cd burden increased as predicted in control fish, but was not detectable against the high background concentrations in acclimated fish. In light of these results, Cd uptake/turnover tests were performed using radioactive 109Cd to improve sensitivity. With this approach, a small saturable binding component was seen, but could not be related to toxic response in acclimated fish. Acclimated trout internalized less 109Cd than control fish, but interpretation was

  18. Rapid Rejuvenation of the Source of a Backarc Sheeted Magmatic Complex (Torres del Paine, Patagonia): Evidence From Hf isotopes in Zircon

    Ewing, T. A.; Muntener, O.; Leuthold, J.; Chiaradia, M.; Baumgartner, L. P.; Putlitz, B.

    2014-12-01

    The Miocene Torres del Paine intrusive complex (TPIC) in Patagonia is a spectacularly exposed example of a bimodal shallow crustal laccolith, made up of a sill complex and a subvertical feeder system. The TPIC was emplaced in a back-arc setting, but slightly older arc-related intrusive units in this area testify to an earlier shift from an arc to a backarc setting. The entire ~88 km3 main complex was emplaced over short time scales of 162 ± 11 ka between ~12.4 and 12.6 Ma, with mafic units from the feeder zone found to be older than mafic units from the sill complex1,2. We aim to assess whether successive pulses of mafic magmatism can tap different geochemical reservoirs in sheeted magmatic complexes emplaced on such short timescales. Hf isotope compositions of individual zircons from mafic units from both the feeder zone and the sill complex were determined by solution MC-ICPMS. Zircons from all units have Hf isotope compositions that indicate a slightly enriched mantle source. Zircons from the mafic sill complex units have higher (more juvenile) initial ɛHf than zircons from feeder zone mafic units. The shift towards more depleted Hf isotope compositions in the sill complex units, which are younger, demonstrates the rapid input of new juvenile material into the source region between ~12.6 Ma and ~12.5 Ma. A similar shift is also seen in bulk rock Nd and Sr isotope data for related samples3. The Hf isotope data demonstrate that significant variability in source geochemistry is possible for sheeted magmatic complexes built up on very short timescales. Analysis of zircons from a range of dikes and intrusive bodies external to the main Torres del Paine complex, with ages that span ~12-29 Ma, will provide a more complete picture in time and space of the geochemical evolution of this magmatic system as it switches between an arc and backarc setting. 1Leuthold et al., 2012, EPSL, 325: 85-92 2Michel et al., 2008, Geology, 36: 459-462 3Leuthold et al., 2013, JPET, 54

  19. The Acclimation of Phaeodactylum tricornutum to Blue and Red Light Does Not Influence the Photosynthetic Light Reaction but Strongly Disturbs the Carbon Allocation Pattern

    Jungandreas, Anne; Schellenberger Costa, Benjamin; Jakob, Torsten; von Bergen, Martin; Baumann, Sven; Wilhelm, Christian

    2014-01-01

    Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL) to blue light (BL) and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited simila...

  20. Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B

    Hampton, E J; Hofmann, W; Horns, D; Uchiyama, Y; Wagner, S

    2016-01-01

    We present the results of our investigation, using a Chandra X-ray observation, into the stellar population of the massive star formation region G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray point sources in our observation using the source detection algorithm \\texttt{wavdetect}. 35 X-ray sources are associated with the HII complex G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity (0.3-10\\,keV) of $\\sim10^{30.5}$\\,erg/s, typical of B7-B5 type stars. The potential ionising source of G5.89-0.39B known as Feldt's star is possibly identified in our observation with an unabsorbed X-ray luminosity suggestive of a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a single thermal plasma APEC model with kT$\\sim$5\\,keV, and column density N$_{\\rm H}=2.6\\times10^{22}$\\,cm$^{-2}$ (A...

  1. The synthesis and structure of a cadmium complex of dimorpholinodithioacetylacetonate and its use as single source precursor for CdS thin films or nanorods.

    Ramasamy, Karthik; Malik, Mohammad A; O'Brien, Paul; Raftery, James

    2009-03-28

    A facile method for the preparation of dimorpholides of dithioacetylacetonate is described together with a X-ray single crystal structure of the ligand and of [Cd(msacmsac)(2)(NO(3))(2)] (msacmsac = dimorpholinodithioacetylacetonate). The cadmium complex has been used as a single source precursor for the deposition of the CdS thin films by the aerosol assisted chemical vapour deposition (AACVD) method or as nanorods by thermolysis in oleylamine. The thin films and nanorods were characterized by electronic spectra (UV-Vis), photoluminescence (PL), X-ray diffraction (XRD), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). To the best of our knowledge [Cd(msacmsac)(2)(NO(3))(2)] is the first complex in its class to be used as a single source precursor to deposit CdS thin films or nanoparticles. PMID:19274298

  2. A Study of Complex Substructures in a Foothill Belt of North western Taiwan Using Two-Dimensional Gravity Multiple-Source Model Inversion

    Chun-Yi Yu; Chieh-Hou Yang; Kenn-Ming Yang; Rong-Ching Cheng; and Shiuh-Tsann Huang

    2009-01-01

    The goal of this paper is to improve the capability of gravity inversion assessment of complex structures using a multiple-source model as indicated by a study of a foothill belt of north western Taiwan. In this study, a gravity inversion computer program is applied based on research developed by Tsai, which contains a Marquardt inversion algorithm for mathematical calculations and incorporates constraints on geological parameters. The computed and modified geological parameters are transform...

  3. Iron-sulfur Proteins Are the Major Source of Protein-bound Dinitrosyl Iron Complexes Formed in Escherichia coli Cells under Nitric Oxide Stress

    Landry, Aaron P.; Duan, Xuewu; Huang, Hao; Ding, Huangen

    2011-01-01

    Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not the proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs ...

  4. Normal alkanes and the unresolved complex mixture as diagnostic indicators of hydrocarbon source contributions to marine sediments of the Northern Gulf of Alaska

    Coal beds, hydrocarbon source rocks, and natural oil seeps represent potentially significant sources of hydrocarbons contamination of marine sediments in the northern Gulf of Alaska. Intensive studies of several supposedly diagnostic polycyclic aromatic (PAH) and aliphatic hydrocarbon compounds have been conducted to solve the controversy of whether the hydrocarbons come from natural or anthropogenic sources. These hydrocarbons could be associated with a refractory matrix not biologically available, as strongly suggested by the n-alkane profile characteristic of the marine sediments. There are similarities between the unresolved complex mixture (UCM) profile of the marine sediments and those of eroding coals and source rocks. However, there were differences with the UCM of seep oils entering the Gulf of Alaska. The seep-oils possess low concentrations of n-alkanes due to biodegradation before entering the Gulf of Alaska, and have large UCM and PAH concentrations. Additional strong constraints are placed on hydrocarbon contributions from natural sources to the marine sediments of the northern portion of the Gulf of Alaska as a result of inclusion of n-alkane and UCM results into hydrocarbon source allocation models. The authors indicated that seep-oils are unlikely to be significant contributors. 19 refs., 1 tab., 6 figs

  5. Carbon as a source for yellow luminescence in GaN: Isolated C{sub N} defect or its complexes

    Christenson, Sayre G.; Xie, Weiyu; Sun, Y. Y., E-mail: suny4@rpi.edu; Zhang, S. B., E-mail: zhangs9@rpi.edu [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-10-07

    We study three carbon defects in GaN, isolated C{sub N} and its two complexes with donors C{sub N}–O{sub N}, and C{sub N}–Si{sub Ga}, as a cause of the yellow luminescence using accurate hybrid density functional calculation, which includes the semi-core Ga 3d electrons as valence electrons and uses a larger 300-atom supercell. We show that the isolated C{sub N} defect yields good agreement with experiment on the photoluminescence (PL) peak position, zero-phonon line, and thermodynamic defect transition level. We find that the defect state of the complexes that is involved in the PL process is the same as that of the C{sub N} defect. The role of the positively charged donors (O{sub N} or Si{sub Ga}) next to C{sub N} is to blue-shift the PL peak. Therefore, the complexes cannot be responsible for the same PL peak as isolated C{sub N}. Our detailed balance analysis further suggests that under thermal equilibrium at typical growth temperature, the concentration of isolated C{sub N} defect is orders of magnitude higher than the defect complexes, which is a result of the small binding energy in these complexes.

  6. Carbon as a source for yellow luminescence in GaN: Isolated CN defect or its complexes

    We study three carbon defects in GaN, isolated CN and its two complexes with donors CN–ON, and CN–SiGa, as a cause of the yellow luminescence using accurate hybrid density functional calculation, which includes the semi-core Ga 3d electrons as valence electrons and uses a larger 300-atom supercell. We show that the isolated CN defect yields good agreement with experiment on the photoluminescence (PL) peak position, zero-phonon line, and thermodynamic defect transition level. We find that the defect state of the complexes that is involved in the PL process is the same as that of the CN defect. The role of the positively charged donors (ON or SiGa) next to CN is to blue-shift the PL peak. Therefore, the complexes cannot be responsible for the same PL peak as isolated CN. Our detailed balance analysis further suggests that under thermal equilibrium at typical growth temperature, the concentration of isolated CN defect is orders of magnitude higher than the defect complexes, which is a result of the small binding energy in these complexes

  7. Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B

    Hampton, E. J.; Rowell, G.; Hofmann, W.; Horns, D.; Uchiyama, Y.; Wagner, S.

    2016-09-01

    We present the results of our investigation, using a Chandra X-ray observation, into the stellar population of the massive star formation region G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray point sources in our observation using the source detection algorithm wavdetect. 35 X-ray sources are associated with the HII complex G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity (0.3-10 keV) of ∼1030.5erg /s, typical of B7-B5 type stars. The potential ionising source of G5.89-0.39B known as Feldt's star is possibly identified in our observation with an unabsorbed X-ray luminosity suggestive of a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a single thermal plasma APEC model with kT ∼ 5 keV, and column density NH = 2.6 ×1022cm-2 (AV ∼ 10). The residual (source-subtracted) X-ray emission towards G5.89-0.39A and B is about 30% and 25% larger than their respective stacked source luminosities. Assuming this residual emission is from unresolved stellar sources, the total B-type-equivalent stellar content in G5.89-0.39A and B would be 75 stars, consistent with an earlier estimate of the total stellar mass of hot stars in G5.89-0.39. We have also looked at the variability of the 35 X-ray sources in G5.89-0.39. Ten of these sources are flagged as being variable. Further studies are needed to determine the exact causes of the variability, however the variability could point towards pre-main sequence stars. Such a stellar population could provide sufficient kinetic energy to account for a part of the GeV to TeV gamma-ray emission in the source HESSJ1800-240B. However, future arc-minute angular resolution gamma-ray imaging will be needed to disentangle the potential gamma-ray components powered by G5.89-0.39 from those powered by the

  8. Differential usage of storage carbohydrates in the CAM bromeliad Aechmea 'Maya' during acclimation to drought and recovery from dehydration.

    Ceusters, Johan; Borland, Anne M; Londers, Elsje; Verdoodt, Veerle; Godts, Christof; De Proft, Maurice P

    2009-02-01

    CAM requires a substantial investment of resources into storage carbohydrates to account for nocturnal CO(2) uptake, thereby restricting carbohydrate partitioning to other metabolic activities, including dark respiration, growth and acclimation to abiotic stress. Flexible modulation of carbon flow to the different competing sinks under changing environmental conditions is considered a key determinant for the growth, productivity and ecological success of the CAM pathway. The aim of the present study was to examine how shifts in carbohydrate partitioning could assure maintenance of photosynthetic integrity and a positive carbon balance under conditions of increasing water deprivation in CAM species. Measurements of gas exchange, leaf water relations, malate, starch and soluble sugar (glucose, fructose and sucrose) contents were made in leaves of the CAM bromeliad Aechmea 'Maya' over a 6-month period of drought and subsequently over a 2-month period of recovery from drought. Results indicated that short-term influences of water stress were minimized by elevating the level of respiratory recycling, and carbohydrate pools were maintained at the expense of export for growth while providing a comparable nocturnal carbon gain to that in well-watered control plants. Longer term drought resulted in a disproportionate depletion of key carbohydrate reserves. Sucrose, which was of minor importance for providing substrate for the dark reactions under well-watered conditions, became the major source of carbohydrate for nocturnal carboxylation as drought progressed. Flexibility in terms of the major carbohydrate source used to sustain dark CO(2) uptake is therefore considered a crucial factor in meeting the carbon and energy demands under limiting environmental conditions. Recovery from CAM-idling was found to be dependent on the restoration of the starch pool, which was used predominantly for provision of substrate for nocturnal carboxylation, while net carbon export was limited

  9. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. PMID:27010349

  10. Ultrastructural and Extracellular Protein Changes in Cell Suspension Cultures of Populus euphratica Associated with Low Temperature-induced Cold Acclimation

    Dai Huanqin; Lu Cunfu; Zhang Hui; Zhang Xujia

    2003-01-01

    Populus euphratica Olive is the only tree species that can grow in the saline land and also survive cold winters in northwest China, and it plays a very important role in stabilizing the vulnerable ecosystem there. A cell suspension culture was initiated from callus derived from plantlets of Populus euphratica. Cold acclimation was induced (LT50 of-17.5 ℃) in cell suspension at 4-5 ℃ in the dark for 30 days and the freezing tolerance increased from LT50 of-12.5 ℃ in nonacclimated cells to LT50 of-17.5 ℃ in cold-acclimated cells. Microvacuolation, cytoplasmic augmentation and accumulation of starch granules were observed in cells that were cold-acclimated by exposure to low temperatures. Several qualitative and quantitative changes in proteins were noted during cold acclimation. Antibodies to carrot extracellular (apoplastic) 36 kD antifreeze protein did not cross react on immunoelectroblots with extracellular proteins in cell suspension culture medium of Populus euphratica, indicating no common epitopes in the carrot 36 kD antifreeze protein and P euphratica extracellular proteins. The relationship of these changes to cold acclimation in Populus euphratica cell cultures was discussed.

  11. Limited effectiveness of heat acclimation to soldiers wearing US Army and US Air Force chemical protective clothing. Technical report

    Chang, S.K.; Gonzalez, R.R.

    1995-11-01

    Heat acclilmation-induced sweating responses have the potential of reducing heat strain for soldiers wearing chemical protective garment. However, this potential benefit is strongly affected by the properties of the garment. If the clothing ensemble permits sufficient evaporative heat dissipation, then heat acclimation becomes helpful in reducing heat strain. On the other hand, if the garment creates an impenetrable barrier to moisture, no benefit can be gained from heat acclimation as the additional sweating cannot be evaporated. We studied 10 subjects exercising on a treadmill while wearing two different U.S. military chemical protective ensembles. Skin heat flux, skin temperature, core temperature, metabolic heat production, and heart rate were measured. We found that the benefit of heat acclimation is strongly dependent on an unimpeded ability of evaporative heat loss from skin areas. The evaporative potential (EP), a measure of thermal insulation modified by moisture permeability, of the clothing ensemble offers a quantitative index useful to determine whether heat acclimation is helpful while protective clothing system. Our data show that when EP is less than 15%, heat acclimation affords no benefit. An evaporative potential graph is created to aid in this determination.

  12. Alterations of calf venous and arterial compliance following acclimation to heat administered at a fixed daily time in humans

    Maruyama, Megumi; Hara, Toshiko; Hashimoto, Michio; Koga, Miki; Shido, Osamu

    2006-05-01

    We investigated the effects of heat acclimation on venous and arterial compliance in humans. Four male and four female volunteers were exposed to an ambient temperature of 40°C and relative humidity of 40% for 4 h (1330 1730 hours) per day for 9 10 consecutive days. The calf venous compliance (CV) was estimated using venous occlusion plethysmography with a mercury-in-silastic strain gauge placed around the right calf at its maximum girth. The compliance of the small (CSA) and large (CLA) arteries were assessed by reflective and capacitance compliance by analyzing the radial artery blood pressure waveforms, basing on the use of a modified Windkessel model. The calf CV, CSA, CLA, systolic and diastolic blood pressures, heart rate and core temperature were determined twice a day, 0930 1100 hours (AM test) and 1500 1630 hours (PM test), in both heat-acclimated and non-heat-acclimated (control) conditions. Heat acclimation appeared to decrease blood pressures, heart rate and significantly lowered core temperature only in the PM test. In the control condition, the calf CV was not affected by the time of day and the CSA was significantly depressed in the PM test. After acclimation to heat, the calf CV significantly increased and the CSA did not decrease in the PM test. The results presented suggest that repeated heat exposure in humans, for 4 h at a fixed time daily, increases the calf CV and the CSA particularly during the period when the subjects were previously exposed to heat.

  13. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  14. Characteristics of total gaseous mercury (TGM) concentrations in an industrial complex in South Korea: impacts from local sources

    Seo, Yong-Seok; Jeong, Seung-Pyo; Holsen, Thomas M.; Han, Young-Ji; Choi, Eunhwa; Park, Eun Ha; Kim, Tae Young; Eum, Hee-Sang; Park, Dae Gun; Kim, Eunhye; Kim, Soontae; Kim, Jeong-Hun; Choi, Jaewon; Yi, Seung-Muk

    2016-08-01

    Total gaseous mercury (TGM) concentrations were measured every 5 min in Pohang, Gyeongsangbuk-do, Korea, during summer (17-23 August 2012), fall (9-17 October 2012), winter (22-29 January 2013), and spring (26 March-3 April 2013) to (1) characterize the hourly and seasonal variations of atmospheric TGM concentrations; (2) identify the relationships between TGM and co-pollutants; and (3) identify likely source directions and locations of TGM using the conditional probability function (CPF), conditional bivariate probability function (CBPF) and total potential source contribution function (TPSCF). The TGM concentration was statistically significantly highest in fall (6.7 ± 6.4 ng m-3), followed by spring (4.8 ± 4.0 ng m-3), winter (4.5 ± 3.2 ng m-3) and summer (3.8 ± 3.9 ng m-3). There was a weak but statistically significant negative correlation between the TGM concentration and ambient air temperature (r = -0.08, p<0.05). Although the daytime temperature (14.7 ± 10.0 °C) was statistically significantly higher than that in the nighttime (13.0 ± 9.8 °C) (p<0.05), the daytime TGM concentration (5.3 ± 4.7 ng m-3) was statistically significantly higher than that in the nighttime (4.7 ± 4.7 ng m-3) (p<0.01), possibly due to local emissions related to industrial activities and activation of local surface emission sources. The observed ΔTGM / ΔCO was significantly lower than that of Asian long-range transport, but similar to that of local sources in Korea and in US industrial events, suggesting that local sources are more important than those of long-range transport. CPF, CBPF and TPSCF indicated that the main sources of TGM were iron and manufacturing facilities, the hazardous waste incinerators and the coastal areas.

  15. Characteristics of total gaseous mercury (TGM) concentrations in an industrial complex in South Korea: impacts from local sources

    Seo, Yong-Seok; Jeong, Seung-Pyo; Holsen, Thomas M.; Han, Young-Ji; Choi, Eunhwa; Park, Eun Ha; Kim, Tae Young; Eum, Hee-Sang; Park, Dae Gun; Kim, Eunhye; Kim, Soontae; Kim, Jeong-Hun; Choi, Jaewon; Yi, Seung-Muk

    2016-08-01

    Total gaseous mercury (TGM) concentrations were measured every 5 min in Pohang, Gyeongsangbuk-do, Korea, during summer (17-23 August 2012), fall (9-17 October 2012), winter (22-29 January 2013), and spring (26 March-3 April 2013) to (1) characterize the hourly and seasonal variations of atmospheric TGM concentrations; (2) identify the relationships between TGM and co-pollutants; and (3) identify likely source directions and locations of TGM using the conditional probability function (CPF), conditional bivariate probability function (CBPF) and total potential source contribution function (TPSCF). The TGM concentration was statistically significantly highest in fall (6.7 ± 6.4 ng m-3), followed by spring (4.8 ± 4.0 ng m-3), winter (4.5 ± 3.2 ng m-3) and summer (3.8 ± 3.9 ng m-3). There was a weak but statistically significant negative correlation between the TGM concentration and ambient air temperature (r = -0.08, pstatistically significantly higher than that in the nighttime (13.0 ± 9.8 °C) (pstatistically significantly higher than that in the nighttime (4.7 ± 4.7 ng m-3) (p<0.01), possibly due to local emissions related to industrial activities and activation of local surface emission sources. The observed ΔTGM / ΔCO was significantly lower than that of Asian long-range transport, but similar to that of local sources in Korea and in US industrial events, suggesting that local sources are more important than those of long-range transport. CPF, CBPF and TPSCF indicated that the main sources of TGM were iron and manufacturing facilities, the hazardous waste incinerators and the coastal areas.

  16. The miocene Ashizuri complex (SW Japan): source and magma differentiation of an alkaline plutonic assemblage in an island-arc environment

    The Ashizuri complex, mainly composed of gabbro, syenite and granite, belongs to the Shimanto Middle Miocene magmatic province and represents one of the rare examples of a within-plate-like alkaline complex in an island-arc setting. This complex is temporally and spatially associated with calc-alkaline volcano-plutonic bodies and, in a lesser amount, with T- to E-MORB and arc tholeites. The least evolved rocks of the Ashizuri complex are enriched in light rare earth elements ((La/Yb)n = 8-16) and other incompatible elements (e.g., Ba/La ≅ 11-13; Ba/Nb ≅ 9-11), features of intra-plate alkali basalts. These features are also characteristic of the more evolved rocks of acidic composition. Trace element petrogenetic modelling suggests that all the different components of the suite are co-magmatic and points out the major role of crystal fractionation process in its genesis. Sr and Nd isotopic data (εNdi = -0.59 to +2.56; εSri = -9.19 to + 2.90) suggest that assimilation as well as crystal fractionation occurred. Derivation through mixing of a MORB-like source and an old enriched component (e.g., sediment or old crust), or through partial melting of lower crust cannot explain both the elemental and isotopic signature of the Ashizuri suite. An OIB-type enriched mantle source is required. By comparison with volcanic rocks in southwest Japan and in the neighbouring Philippine Sea oceanic plate, this source is believed to lie not in the sub-Japan lithosphere but deeper in the asthenosphere prevalent under Japan and the Philippine Sea Plate. (authors). 83 refs., 8 figs., 7 tabs

  17. Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2

    Drewry, D. T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.-Z.; Sivapalan, M.

    2010-12-01

    The ability to accurately predict land-atmosphere exchange of mass, energy, and momentum over the coming century requires the consideration of plant biochemical, ecophysiological, and structural acclimation to modifications of the ambient environment. Amongst the most important environmental changes experienced by terrestrial vegetation over the last century has been the increase in ambient carbon dioxide (CO2) concentrations, with a projected doubling in CO2 from preindustrial levels by the middle of this century. This change in atmospheric composition has been demonstrated to significantly alter a variety of leaf and plant properties across a range of species, with the potential to modify land-atmosphere interactions and their associated feedbacks. Free Air Carbon Enrichment (FACE) technology has provided significant insight into the functioning of vegetation in natural conditions under elevated CO2, but remains limited in its ability to quantify the exchange of CO2, water vapor, and energy at the canopy scale. This paper addresses the roles of ecophysiological, biochemical, and structural plant acclimation on canopy-scale exchange of CO2, water vapor, and energy through the application of a multilayer canopy-root-soil model (MLCan) capable of resolving changes induced by elevated CO2 through the canopy and soil systems. Previous validation of MLCan flux estimates were made for soybean and maize in the companion paper using a record of six growing seasons of eddy covariance data from the Bondville Ameriflux site. Observations of leaf-level photosynthesis, stomatal conductance, and surface temperature collected at the SoyFACE experimental facility in central Illinois provide a basis for examining the ability of MLCan to capture vegetation responses to an enriched CO2 environment. Simulations of control (370 [ppm]) and elevated (550 [ppm]) CO2 environments allow for an examination of the vertical variation and canopy-scale responses of vegetation states and fluxes

  18. Retrieval Can Increase or Decrease Suggestibility Depending on How Memory Is Tested: The Importance of Source Complexity

    Chan, Jason C. K.; Wilford, Miko M.; Hughes, Katharine L.

    2012-01-01

    Taking an intervening test between learning episodes can enhance later source recollection. Paradoxically, testing can also increase people's susceptibility to the misinformation effect--a finding termed retrieval-enhanced suggestibility (RES, Chan, Thomas, & Bulevich, 2009). We conducted three experiments to examine this apparent contradiction.…

  19. Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.

    Kimberly, David A; Salice, Christopher J

    2014-07-01

    The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects. PMID:24623389

  20. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  1. Multigenerational acclimation of Daphnia magna to mercury: relationships between biokinetics and toxicity.

    Tsui, Martin T K; Wang, Wen-Xiong

    2005-11-01

    We examined the effects of multigenerational exposure of mercury (Hg) on Hg toxicity and biokinetics in a population of Daphnia magna. After chronic Hg exposure at 3.8 microg Hg/L, the first generation (F0) adults had an elevated 24-h median lethal concentration (LC50) of Hg (76 microg/L) when compared to the control adults (56 microg/L). The dissolved influx rate of Hg was depressed significantly in the Hg-treated adults, which was accompanied by a reduced ingestion rate and enhanced induction of metallothionein-like proteins (MTLP). The second-generation (F1) juveniles originating from the control and exposed lines had no major differences in these parameters (except the dietary assimilation efficiency). Recovery from Hg stress enhanced the vulnerability of F1 adults to Hg toxicity, with a reduced 48-h LC50 (44 microg/L) and a decreased concentration of MTLP (80% of control). Nevertheless, Hg-treated F1 adults had similar tolerance (in terms of LC50s) as the control line, indicating that D. magna acclimated to Hg stress after the first generation of exposure. No major difference occurred in the Hg biokinetics and toxicity among different groups of F2 daphnids. However, the F2 neonates produced by the Hg-treated F1 adults had much higher 48-h LC50 (149 microg/L) and MTLP concentration (148% of control) when there was continuous Hg exposure after birth. We concluded that acclimation to Hg stress occurred quickly in D. magna, though animals recovering from Hg stress were more vulnerable to Hg toxicity. Both ingestion rate and MTLP may not be good biomarkers of Hg stress in the field, because acclimation can be achieved through multigenerational exposure to elevated Hg concentrations. PMID:16398130

  2. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    Xiao, Xi

    2015-12-02

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  3. Annual variation in photo acclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina.

    Vráblíková, Hana; McEvoy, Maria; Solhaug, Knut Asbjørn; Barták, Milos; Gauslaa, Yngvar

    2006-05-01

    Seasonal variation in maximal photochemical quantum yield (F(V)/F(M)) of photosystem II (PS II), light adapted quantum yield (Phi(II)) of PS II, non-photochemical quenching (NPQ), contents of chlorophylls, and xanthophyll cycle pigments (VAZ) was studied in Xanthoria parietina repeatedly sampled in one location in S Norway during one year. The seasonal course in the susceptibility to photoinhibition was evaluated as high light-induced changes (1,800 micromol photons m(-2) s(-1) for 24h) in F(V)/F(M), Phi(II), and NPQ, measured as the ability to recover after 2 and 20 h at low light in control thalli with a natural cortical parietin screen, and in thalli from which parietin had been removed prior to high light exposures. F(V)/F(M), Phi(II), chlorophyll content, and the conversion state of VAZ (DEPS) reached minimum in spring. At the same time, yearly maxima of VAZ content and NPQ were recorded. Thereafter, F(V)/F(M), Phi(II), and chlorophyll content increased gradually, reaching maximum values in late autumn. DEPS peaked already in summer. Similarly, VAZ and NPQ decreased from early summer until winter. All data show that the X. parietina photobiont acclimates to seasonal changes in solar radiation, consistent with the lichen's preference for well-lit habitats. However, a comparison with a study of seasonal acclimation in the X. parietina mycobiont shows that in order to understand the seasonal photobiont acclimation, one has to consider the seasonal variation in internal screening caused by the fungal regulation of the PAR-absorbing parietin. A joint effort of both bionts seems to be required to avoid serious photoinhibition. PMID:16481192

  4. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming.

    Xi Xiao

    Full Text Available Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia-Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16-30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius' model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  5. Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.

    Darby Harris

    Full Text Available Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR. Relative crystallinity index (RCI is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes.

  6. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    Dang Fei; Zhong Huan [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2009-09-14

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg{sup -1} day{sup -1}. The efflux rate constant was 0.091 day{sup -1} following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 {mu}g Cu L{sup -1} for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  7. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon.

    Pattanaik, Bagmi; Busch, Andrea W U; Hu, Pingsha; Chen, Jin; Montgomery, Beronda L

    2014-05-01

    Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium Fremyella diplosiphon undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in F. diplosiphon. RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically. PMID:24623652

  8. Temporal dynamics of changes in reactive oxygen species (ROS) levels and cellular morphology are coordinated during complementary chromatic acclimation in Fremyella diplosiphon.

    Singh, Shailendra P; Miller, Haley L; Montgomery, Beronda L

    2013-10-14

    Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes. PMID:24122367

  9. Effect of moderate hypoxia at three acclimation temperatures on stress responses in Atlantic cod with different haemoglobin types

    Methling, Caroline; Aluru, Neelakanteswar; Vijayan, Mathilakath M;

    2010-01-01

    geographical distribution pattern, and differences in preferred temperature of cod with different haemoglobin types, the study was extended to include haemoglobin polymorphism. We hypothesised that the differences in temperature preference between HbI-1 and HbI-2 type cod might also be reflected in a...... difference in stress response to hypoxia exposure. Two hsp70-isoforms (labelled a and b) were detected and they differed in expression in the gills but not in the liver of Atlantic cod. Acclimation temperature significantly affected the expression of hsp70 in the liver, and in an isoform-specific manner in...... the gills. Hypoxia exposure increased the expression of hsp70 in the liver, but not the gills, of cod and this response was not influenced by the acclimation temperature. The expression of hsp70 in both tissues did not differ between fish with different haemoglobin types. Acclimation temperature...

  10. Effects of both ecdysone and the acclimation to low temperature, on growth and metabolic rate of juvenile freshwater crayfish Cherax quadricarinatus (Decapoda, Parastacidae

    Anouk Chaulet

    2013-06-01

    Full Text Available Growth, metabolic rate, and energy reserves of Cherax quadricarinatus (von Martens, 1868 juveniles were evaluated in crayfish acclimated for 16 weeks to either 25ºC (temperature near optimum or 20ºC (marginal for the species. Additionally, the modulating effect of ecdsyone on acclimation was studied. After 12 weeks of exposure, weight gain of both experimental groups acclimated to 25ºC (control: C25, and ecdysone treated: E25 was significantly higher than that of those groups acclimated to 20ºC (C20 and E20. A total compensation in metabolic rate was seen after acclimation from 25ºC to 20ºC; for both the control group and the group treated with ecdysone. A Q10value significantly higher was only observed in the group acclimated to 20ºC and treated with ecdysone. A reduction of glycogen reserves in both hepatopancreas and muscle, as well as a lower protein content in muscle, was seen in both groups acclimated to 20ºC. Correspondingly, glycemia was always higher in these groups. Increased lipid levels were seen in the hepatopancreas of animals acclimated to 20ºC, while a higher lipid level was also observed in muscle at 20ºC, but only in ecdysone-treated crayfish.

  11. CO2 and HCO3- uptake in marine diatoms acclimated to different CO2 concentrations.

    Burkhardt, S.; Amoroso, G.; Riebesell, Ulf

    2001-01-01

    Rates of cellular uptake of CO2 and HCO3- during steady-state photosynthesis were measured in the marine diatoms Thalassiosira weissflogii and Phaeodactylum tricornutum, acclimated to CO2 partial pressures of 36, 180, 360, and 1,800 ppmv. In addition, in vivo activity of extracellular (eCA) and intracellular (iCA) carbonic anhydrase was determined in relation to CO2 availability. Both species responded to diminishing CO2 supply with an increase in eCA and iCA activity. In P. tricornutum, eCA ...

  12. The mechanism of the acclimation of Nannochloropsis oceanica to freshwater deduced from its transcriptome profiles

    Guo, Li; Yang, Guanpin

    2015-10-01

    In this study, we compared the transcriptomes of Nannochloropsis oceanica cultured in f/2 medium prepared with sea-water and freshwater, respectively, aiming to understand the acclimation mechanism of this alga to freshwater. Differentially expressed genes were mainly assigned to the degradation of cell components, ion transportation, and ribosomal biogenesis. These findings indicate that the algal cells degrade its components (mainly amino acids and fatty acids) to yield excessive energy (ATP) to maintain cellular ion (mainly K+ and Ca2+) homeostasis, while the depletion of amino acids and ATP, and the reduction of ribosomes attenuate the protein translation and finally slow down the cell growth.

  13. IGF-I and branchial IGF receptor expression and localization during salinity acclimation in striped bass

    Tipsmark, Christian Kølbaek; Luckenbach, John Adam; Madsen, Steffen; Borski, Russell John

    2007-01-01

    The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass (Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small,...... first time in teleosts that IGF-IR and Na+-K+-ATPase are localized in putative chloride cells at the base of the lamellae, identifying these cells in the gill as a target for IGF-I and IGF-II. Overall the data suggest a hyperosmoregulatory role of IGF-I in this species....

  14. Lactate threshold predicting time-trial performance: impact of heat and acclimation

    Lorenzo, Santiago; Minson, Christopher T.; Babb, Tony G.; Halliwill, John R.

    2011-01-01

    The relationship between exercise performance and lactate and ventilatory thresholds under two distinct environmental conditions is unknown. We examined the relationships between six lactate threshold methods (blood- and ventilation-based) and exercise performance in cyclists in hot and cool environments. Twelve cyclists performed a lactate threshold test, a maximal O2 uptake (V̇o2max) test, and a 1-h time trial in hot (38°C) and cool (13°C) conditions, before and after heat acclimation. Eigh...

  15. Ascorbic Acid Biosynthesis and Brackish Water Acclimation in the Euryhaline Freshwater White-Rimmed Stingray, Himantura signifer.

    Samuel Z H Wong

    Full Text Available L-gulono-γ-lactone oxidase (Gulo catalyzes the last step of ascorbic acid biosynthesis, which occurs in the kidney of elasmobranchs. This study aimed to clone and sequence gulonolactone oxidase (gulo from the kidney of the euryhaline freshwater stingray, Himantura signifer, and to determine the effects of acclimation from freshwater to brackish water (salinity 20 on its renal gulo mRNA expression and Gulo activity. We also examined the effects of brackish water acclimation on concentrations of ascorbate, dehydroascorbate and ascorbate + dehydroascorbate in the kidney, brain and gill. The complete cDNA coding sequence of gulo from the kidney of H. signifer contained 1323 bp coding for 440 amino acids. The expression of gulo was kidney-specific, and renal gulo expression decreased significantly by 67% and 50% in fish acclimated to brackish water for 1 day and 6 days, respectively. There was also a significant decrease in renal Gulo activity after 6 days of acclimation to brackish water. Hence, brackish water acclimation led to a decrease in the ascorbic acid synthetic capacity in the kidney of H. signifer. However, there were significant increases in concentrations of ascorbate and ascorbate + dehydroascorbate in the gills (after 1 or 6 days, and a significant increase in the concentration of ascorbate and a significant decrease in the concentration of dehydroascorbate in the brain (after 1 day of fish acclimated to brackish water. Taken together, our results indicate that H. signifer might experience greater salinity-induced oxidative stress in freshwater than in brackish water, possibly related to its short history of freshwater invasion. These results also suggest for the first time a possible relationship between the successful invasion of the freshwater environment by some euryhaline marine elasmobranchs and the ability of these elasmobranchs to increase the capacity of ascorbic acid synthesis in response to hyposalinity stress.

  16. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models

    Bagley, Justin; Rosenthal, David M.; Ruiz-Vera, Ursula M.; Siebers, Matthew H.; Kumar, Praveen; Ort, Donald R.; Bernacchi, Carl J.

    2015-02-01

    There is an increasing necessity to understand how climate change factors, particularly increasing atmospheric concentrations of CO2 ([CO2]) and rising temperature, will influence photosynthetic carbon assimilation (A). Based on theory, an increased [CO2] concomitant with a rise in temperature will increase A in C3 plants beyond that of an increase in [CO2] alone. However, uncertainty surrounding the acclimation response of key photosynthetic parameters to these changes can influence this response. In this work, the acclimation responses of C3 photosynthesis for soybean measured at the SoyFACE Temperature by Free-Air CO2 Enrichment experiment are incorporated in a leaf biochemical and canopy photosynthesis model. The two key parameters used as model inputs, the maximum velocity for carboxylation (Vc,max) and maximum rate of electron transport (Jmax), were measured in a full factorial [CO2] by temperature experiment over two growing seasons and applied in leaf- and canopy-scale models to (1) reassess the theory of combined increases in [CO2] and temperature on A, (2) determine the role of photosynthetic acclimation to increased growth [CO2] and/or temperature in leaf and canopy predictions of A for these treatments, and (3) assess the diurnal and seasonal differences in leaf- and canopy-scale A associated with the imposed treatments. The results demonstrate that the theory behind combined increases in [CO2] and temperature is sound; however, incorporating more recent parameterizations into the photosynthesis model predicts greater increases in A when [CO2] and temperature are increased together. Photosynthetic acclimation is shown to decrease leaf-level A for all treatments; however, in elevated [CO2] the impact of acclimation does not result in any appreciable loss in photosynthetic potential at the canopy scale. In this analysis, neglecting photosynthetic acclimation in heated treatments, with or without concomitant rise in [CO2], leads to modeled overestimates of

  17. Ascorbic Acid Biosynthesis and Brackish Water Acclimation in the Euryhaline Freshwater White-Rimmed Stingray, Himantura signifer.

    Wong, Samuel Z H; Ching, Biyun; Chng, You R; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2013-01-01

    L-gulono-γ-lactone oxidase (Gulo) catalyzes the last step of ascorbic acid biosynthesis, which occurs in the kidney of elasmobranchs. This study aimed to clone and sequence gulonolactone oxidase (gulo) from the kidney of the euryhaline freshwater stingray, Himantura signifer, and to determine the effects of acclimation from freshwater to brackish water (salinity 20) on its renal gulo mRNA expression and Gulo activity. We also examined the effects of brackish water acclimation on concentrations of ascorbate, dehydroascorbate and ascorbate + dehydroascorbate in the kidney, brain and gill. The complete cDNA coding sequence of gulo from the kidney of H. signifer contained 1323 bp coding for 440 amino acids. The expression of gulo was kidney-specific, and renal gulo expression decreased significantly by 67% and 50% in fish acclimated to brackish water for 1 day and 6 days, respectively. There was also a significant decrease in renal Gulo activity after 6 days of acclimation to brackish water. Hence, brackish water acclimation led to a decrease in the ascorbic acid synthetic capacity in the kidney of H. signifer. However, there were significant increases in concentrations of ascorbate and ascorbate + dehydroascorbate in the gills (after 1 or 6 days), and a significant increase in the concentration of ascorbate and a significant decrease in the concentration of dehydroascorbate in the brain (after 1 day) of fish acclimated to brackish water. Taken together, our results indicate that H. signifer might experience greater salinity-induced oxidative stress in freshwater than in brackish water, possibly related to its short history of freshwater invasion. These results also suggest for the first time a possible relationship between the successful invasion of the freshwater environment by some euryhaline marine elasmobranchs and the ability of these elasmobranchs to increase the capacity of ascorbic acid synthesis in response to hyposalinity stress. PMID:23825042

  18. How Growing Complexity of Consumer Choices and Drivers of Consumption Behaviour Affect Demand for Animal Source Foods.

    Perry, B D; Grace, D C

    2015-12-01

    Many societies are spoiled for choice when they purchase meat and other livestock products, and around the globe food choice has grown dramatically in the last two decades. What is more, besides the cost and obvious health concerns influencing commodity section, an increasing proportion of choices is made to contribute to the achievement of certain ideals, such as natural resource management, climate change mitigation, animal welfare concerns and personal lifestyle. At the same time, human health considerations are becoming more important for consumption choices as richer societies, and increasingly the urban poor in low- and middle-income countries, face an unprecedented epidemic of over-consumption and associated diet-related non-communicable diseases. Animal source foods are considered significant contributors to this trend. This paper reviews this complicated arena, and explores the range of considerations that influence consumers' preferences for meat and other animal source foods. This paper also argues that deeper drivers of consumption behaviour of many foods may act in opposition to the articulated preferences for choices around animal source food consumption. We review how the returns to different causes are being valued, how emerging metrics are helping to manage and influence consumption behaviours, and draw conclusions regarding options which influence food choice. PMID:26682899

  19. Exercise- and methylcholine-induced sweating responses in older and younger men: effect of heat acclimation and aerobic fitness

    Inoue, Y.; Havenith, George; Kenney, W. Larry; Loomis, Joseph L.; Buskirk, Elsworth R.

    The purpose of this investigation was to examine the effects of aging and aerobic fitness on exercise- and methylcholine-induced sweating responses during heat acclimation. Five younger [Y group - age: 23+/-1 (SEM) years; maximal oxygen consumption (V.O2max): 47+/-3 ml.kg-1.min-1], four highly fit older (HO group - 63+/-3 years; 48+/-4 ml.kg-1.min-1) and five normally fit older men (NO group - 67+/-3 years; 30+/-1 ml.kg-1.min-1) who were matched for height, body mass and percentage fat, were heat acclimated by daily cycle exercise ( 35% V.O2max for 90 min) in a hot (43°C, 30% RH) environment for 8 days. The heat acclimation regimen increased performance time, lowered final rectal temperature (Tre) and percentage maximal heart rate (%HRmax), improved thermal comfort and decreased sweat sodium concentration similarly in all groups. Although total body sweating rates (M.sw) during acclimation were significantly greater in the Y and HO groups than in the NO group (PHO>NO, and on the forearm Y=HO>NO. No group differences were observed for activated sweat gland density at any site. The SGO at the respective sites increased in the post-acclimation test regardless of group (P<0.01), but on the thigh the magnitude of the increase was lower in the NO (P<0.02) and HO (P=0.07) groups than in the Y group. These findings suggest that heat tolerance and the improvement with acclimation are little impaired not only in highly fit older but also normally fit older men, when the subjects exercised at the same relative exercise intensity. Furthermore, the changes induced by acclimation appear associated with an age-related decrease in V.O2max. However methylcholine-activated SGO and the magnitude of improvement of SGO with acclimation are related not only to V.O2max but also to aging, suggesting that sensitivity to cholinergic stimulation decreases with aging.

  20. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions.

    Nowicka, Beatrycze; Pluciński, Bartosz; Kuczyńska, Paulina; Kruk, Jerzy

    2016-08-01

    Acclimation to heavy metal-induced stress is a complex phenomenon. Among the mechanisms of heavy metal toxicity, an important one is the ability to induce oxidative stress, so that the antioxidant response is crucial for providing tolerance to heavy metal ions. The effect of chronic stress induced by ions of five heavy metals, Ag, Cu, Cr (redox-active metals) Cd, Hg (nonredox-active metals) on the green microalga Chlamydomonas reinhardtii was examined at two levels - the biochemical (content of photosynthetic pigments and prenyllipid antioxidants, lipid peroxidation) and the physiological (growth rate, photosynthesis and respiration rates, induction of nonphotochemical quenching of chlorophyll fluorescence). The expression of the genes which encode the enzymes participating in the detoxification of reactive oxygen species (APX1, CAT1, FSD1, MSD1) was measured. The other gene measured was one required for plastoquinone and α-tocopherol biosynthesis (VTE3). The application of heavy metal ions partly inhibited growth and biosynthesis of chlorophyll. The growth inhibition was accompanied by enhanced lipid peroxidation. An increase in the content of prenyllipid antioxidants was observed in cultures exposed to Cr2O7(2-), Cd(2+) (α- and γ-tocopherol and plastoquinone) and Cu(2+) (only tocopherols). The induction of nonphotochemical quenching was enhanced in cultures exposed to Cu(2+), Cr2O7(2-) and Cd(2+), as compared to the control. Chronic heavy metal-induced stress led to changes in gene expression dependent on the type and concentration of heavy metal ions. The up-regulation of antioxidant enzymes was usually accompanied by the up-regulation of the VTE3 gene. PMID:27104807

  1. Evolution of the late Pleistocene Mojanda-Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources

    Robin, Claude; Eissen, Jean-Philippe; Samaniego, Pablo; Martin, H; Hall, M; Cotten, J.

    2009-01-01

    The Mojanda-Fuya Fuya Volcanic Complex consists of two nearby volcanoes, Mojanda and Fuya Fuya. The older one, Mojanda volcano (0.6 to 0.2 Ma), was first constructed by andesites and high-silica andesites forming a large stratovolcano (Lower Mojanda). This edifice was capped by a basaltic andesite and andesitic cone (Upper Mojanda), which collapsed later to form a 3-km-wide summit caldera, after large phreatomagmatic eruptions. The Lower Fuya Fuya edifice was constructed by the extrusion of v...

  2. Natural and Anthropogenic Source of Heavy Metals Pollution in the Soil Samples of an Industrial Complex; a Case Study

    Maryam Mohammadi Roozbahani; Soheil Sobhanardakani; Hoda Karimi; Rezvan Sorooshnia

    2015-01-01

    Background: Soil serves as a major reservoir for contaminants as it can bind to various chemicals. The aim of this study was to evaluate the levels of some metals (Cd, Cu, Fe and V) in soil samples collected from different stations of Ahvaz Industrial Complex II to determine the natural and anthropogenic contribution of metal in the soil. Methods: This was an experimental study that carried out in 2013. Soil samples were obtained from 9 stations and were subjected to bulk digestion and che...

  3. Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting patterns of leaf emergence and maturation.

    Ishii, Hiroaki; Ohsugi, Yoshihiro

    2011-08-01

    We compared light acclimation potential among three evergreen broadleaved species with contrasting patterns of shoot elongation, leaf emergence and leaf maturation. Understory saplings were transferred to a high-light environment before bud break, grown for 13 months, and then transferred back to the understory to observe subsequent carry-over effects. Acclimation potential was highest and sapling mortality was lowest for Cinnamomum japonicum Sieb. ex Nakai. Indeterminate growth and successive leaf emergence allowed this species to acclimate to both high and low light by adjusting leaf production as well as leaf properties. Sapling mortality occurred after both transfers for Camellia japonica L., which also has indeterminate growth and successive leaf emergence. In this species, carry-over effects were observed at the individual level, but leaf-level acclimation potential was high. Acclimation potential was lowest and sapling mortality occurred soon after the transfer to high light for Quercus glauca Thunb. ex Murray. Determinate growth and flush-type leaf emergence resulted in significant carry-over effects in this species. Indeterminate growth and successive leaf emergence increase whole-plant acclimation potential by extending the period of growth and architectural development during the growing season. Similarly, we inferred that delayed leaf maturation, observed in many evergreen species, increases the acclimation potential of current-year leaves by extending the period of leaf development. In evergreen species, the acclimation potential of preexisting leaves determines the role that leaf turnover plays in whole-plant light acclimation, resulting in diverse strategies for light acclimation among species, as observed in this study. PMID:21868403

  4. Einstein and M{\\o}ller energy-momentum complexes for a new regular black hole solution with a nonlinear electrodynamics source

    Radinschi, I; Grammenos, Th; Islam, Sayeedul

    2016-01-01

    A study about the energy and momentum distributions of a new charged regular black hole solution with a nonlinear electrodynamics source is presented. The energy and momentum are calculated using the Einstein and M{\\o}ller energy-momentum complexes. The results show that in both pseudotensorial prescriptions the expressions for the energy of the gravitational background depend on the mass $M$ and the charge $q$ of the black hole, an additional factor $\\beta $ coming from the spacetime metric considered, and the radial coordinate $r$, while in both prescriptions all the momenta vanish. Further, it is pointed out that in some limiting and particular cases the two complexes yield the same expression for the energy distribution as that obtained in the relevant literature for the Schwarzschild black hole solution.

  5. Heterocyclic dithiocarbamato-iron(III) complexes: single-source precursors for aerosol-assisted chemical vapour deposition (AACVD) of iron sulfide thin films.

    Mlowe, Sixberth; Lewis, David J; Malik, Mohammad Azad; Raftery, James; Mubofu, Egid B; O'Brien, Paul; Revaprasadu, Neerish

    2016-02-14

    Tris-(piperidinedithiocarbamato)iron(III) (1) and tris-(tetrahydroquinolinedithiocarbamato)iron(iii) (2) complexes have been synthesized and their single-crystal X-ray structures were determined. Thermogravimetric analysis (TGA) of the complexes showed decomposition to iron sulfide. Both complexes were then used as single-source precursors for the deposition of iron sulfide thin films by aerosol-assisted chemical vapour deposition (AACVD). Energy-dispersive X-ray (EDX) spectroscopy confirmed the formation of iron sulfide films. The addition of tert-butyl thiol almost doubled the sulfur content in the deposited films. Scanning electron microscopy (SEM) images of the iron sulfide films from both complexes showed flakes/leaves/sheets, spherical granules and nanofibres. The sizes and shapes of these crystallites depended on the nature of the precursor, temperature, solvent and the amount of tert-butyl thiol used. The observed optical properties are dependent upon the variation of reaction parameters such as temperature and solvent. Powder X-ray diffraction (p-XRD) studies revealed that pyrrhotite, hexagonal (Fe0.975S), marcasite and smythite (Fe3S4) phases were differently deposited. PMID:26732865

  6. Monte Carlo simulations of complex geometries and an optimal 6cobalt source design using the integrated TIGER series (ITS 3.0)

    In this work, the ITS 3.0/ACCEPT Monte Carlo code was used to determine the absorbed dose rates in a complex target consisting of various materials and densities. Dose rates in 512 sample vials packaged in dry ice and polyethylene were irradiated simultaneously using a 6Co semi-cylindrical source array. The vials were distributed in two carriers set 1 m apart each holding 256 vials. For this specific target and source geometry, dose rate variations of ±6% were achieved among 226 vials in the first carrier, and among 203 vials exposed to a lower dose rate in the second carrier. Dose rate variations were found to depend only slightly on the backscatter contribution from the radiation vault walls

  7. Fields of a tightly focused radially polarized laser beam: the truncated series versus the complex-source-point spherical wave representation

    Salamin, Yousef I.

    2009-03-01

    In this paper, the fields of a radially polarized fundamental Gaussian beam are derived with a complex-source-point spherical wave approach and then compared and contrasted with those derived recently from a Lax series to the order of ɛ15, where ɛ is the diffraction angle. It is shown that the domain of validity of the derived fields is restricted by a discontinuity built into the vector potential from which they are obtained. Furthermore, in disagreement with recent experimental observations, the axial field intensity decreases with tighter focusing (decreasing waist radius at focus).

  8. Assessment of Barotrauma from Rapid Decompression of Depth-Acclimated Juvenile Chinook Salmon Bearing Radiotelemetry Transmitters

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; Ebberts, Blaine D.; Langeslay, Mike; Ahmann, Martin L.; Feil, Daniel H.; Skalski, J. R.; Townsend, Richard L.

    2009-11-01

    This study investigated the mortality of and injury to juvenile Chinook salmon Oncorhynchus tshawytscha exposed to simulated pressure changes associated with passage through a large Kaplan hydropower turbine. Mortality and injury varied depending on whether a fish was carrying a transmitter, the method of transmitter implantation, the depth of acclimation, and the size of the fish. Juvenile Chinook salmon implanted with radio transmitters were more likely than those without to die or sustain injuries during simulated turbine passage. Gastric transmitter implantation resulted in higher rates of injury and mortality than surgical implantation. Mortality and injury increased with increasing pressure of acclimation. Injuries were more common in subyearling fish than in yearling fish. Gas emboli in the gills and internal hemorrhaging were the major causes of mortality. Rupture of the swim bladder and emphysema in the fins were also common. This research makes clear that the exposure of juvenile Chinook salmon bearing radiotelemetry transmitters to simulated turbine pressures with a nadir of 8-19 kPa can result in barotrauma, leading to immediate or delayed mortality. The study also identified sublethal barotrauma injuries that may increase susceptibility to predation. These findings have significant implications for many studies that use telemetry devices to estimate the survival and behavior of juvenile salmon as they pass through large Kaplan turbines typical of those within the Columbia River hydropower system. Our results indicate that estimates of turbine passage survival for juvenile Chinook salmon obtained with radiotelemetry devices may be negatively biased.

  9. Body mass, Thermogenesis and energy metabolism in Tupaia belangeri during cold acclimation

    Wan-long Zhu

    2012-05-01

    Full Text Available In order to study the relationship between energy strategies and environmental temperature, basal metabolic rate (BMR, nonshivering thermogenesis (NST, the total protein contents, mitochondrial protein contents, state and state respiratory ability, cytochrome C oxidase activity Ⅲ Ⅳ of liver, heart, diaphragm, gastrocnemius and brown adipose tissue (BAT, serum leptin level and serum thyroid hormone levels were measured in tree shrews (Tupaia belangeri during cold exposure (5±1oC for 1 day, 7 days,14days,21 days. The results showed that body mass increased, BMR and NST increased, the change of liver mitochondrial protein content was more acutely than total protein. The mitochondrial protein content of heart and BAT were significantly increased during cold-exposed, however the skeletal muscle more moderate reaction. The state Ⅲ and state Ⅳ mitochondrial respiration of these tissues were enhanced significantly than the control. The cytochrome C oxidase activity with cold acclimation also significantly increased except the gastrocnemius. Liver, muscle, BAT, heart and other organs were concerned with thermoregulation during the thermal regulation process above cold-exposed. There is a negative correlation between leptin level and body mass. These results suggested that T. belangeri enhanced thermogenic capacity during cold acclimation, and leptin participated in the regulation of energy balance and body weight in T. belangeri.

  10. Chloroplast osmotic adjustment allows for acclimation of photosynthesis to low water potentials

    Previously in this laboratory, studies indicated that photosynthesis (PS) of chloroplasts isolated from spinach plants which underwent osmotic adjustment during in situ water deficits was inhibited less at low osmotic potentials (Psi/sub s/) in vitro than PS of plastids isolated from well watered plants. In this study, an attempt was made to determine if chloroplast acclimation to low Psi/sub s/ was associated with in situ stromal solute accumulation. During a 14d stress cycle, in situ stromal volume was estimated by measuring (using the 3H2O, 14C-sorbitol silicon oil centrifugation technique) the stromal space of plastids in solutions which had the Psi/sub s/ adjusted to the leaf Psi/sub s/. During the first lid of the cycle, stromal volume did not decline, despite a decrease of over 20% in the leaf RWC. After this time, stromal volume dropped rapidly. In situ stromal Psi/sub s/ was also estimated during a stress cycle. These studies indicated that stromal Psi/sub s/ was lowered by net solute accumulation. The data presented in this report suggest that chloroplast acclimation to low Psi/sub s/ may involve stromal solute accumulation and volume maintenance during cell water loss

  11. Disease and thermal acclimation in a more variable and unpredictable climate

    Raffel, Thomas R.; Romansic, John M.; Halstead, Neal T.; McMahon, Taegan A.; Venesky, Matthew D.; Rohr, Jason R.

    2013-02-01

    Global climate change is shifting the distribution of infectious diseases of humans and wildlife with potential adverse consequences for disease control. As well as increasing mean temperatures, climate change is expected to increase climate variability, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments conducted in 80 independent incubators, and field data on disease-associated frog declines in Latin America, support the framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was opposite to the pattern of growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. If similar acclimation responses influence other host-parasite systems, as seems likely, then present models, which generally ignore small-scale temporal variability in climate, might provide poor predictions for climate effects on disease.

  12. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses.

    Muramatsu, Masayuki; Hihara, Yukako

    2012-01-01

    Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments. PMID:22006212

  13. Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification.

    Liang, Bin; Kong, Deyong; Ma, Jincai; Wen, Chongqing; Yuan, Tong; Lee, Duu-Jong; Zhou, Jizhong; Wang, Aijie

    2016-09-01

    Improvement of the stability of functional microbial communities in wastewater treatment system is critical to accelerate pollutants detoxification in cold regions. Although biocathode communities could accelerate environmental pollutants degradation, how to acclimate the cold stress and to improve the catalytic stability of functional microbial communities are remain poorly understood. Here we investigated the structural and functional responses of antibiotic chloramphenicol (CAP) reducing biocathode communities to constant low temperature 10 °C (10-biocathode) and temperature elevation from 10 °C to 25 °C (S25-biocathode). Our results indicated that the low temperature acclimation with electrical stimulation obviously enhanced the CAP nitro group reduction efficiency when comparing the aromatic amine product AMCl2 formation efficiency with the 10-biocathode and S25-biocathode under the opened and closed circuit conditions. The 10-biocathode generated comparative AMCl maximum as the S25-biocathode but showed significant lower dehalogenation rate of AMCl2 to AMCl. The continuous low temperature and temperature elevation both enriched core functional community in the 10-biocathode and S25-biocathode, respectively. The 10-biocathode functioning stability maintained mainly through selectively enriching cold-adapted functional species, coexisting metabolically similar nitroaromatics reducers and maintaining the relative abundance of key electrons transfer genes. This study provides new insights into biocathode functioning stability for accelerating environmental pollutants degradation in cold wastewater system. PMID:27183211

  14. Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats.

    Tang, Qianzi; Huang, Wenyao; Guan, Jiuqiang; Jin, Long; Che, Tiandong; Fu, Yuhua; Hu, Yaodong; Tian, Shilin; Wang, Dawei; Jiang, Zhi; Li, Xuewei; Li, Mingzhou

    2015-08-10

    Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation. PMID:25958351

  15. Isopods failed to acclimate their thermal sensitivity of locomotor performance during predictable or stochastic cooling.

    Matthew S Schuler

    Full Text Available Most organisms experience environments that vary continuously over time, yet researchers generally study phenotypic responses to abrupt and sustained changes in environmental conditions. Gradual environmental changes, whether predictable or stochastic, might affect organisms differently than do abrupt changes. To explore this possibility, we exposed terrestrial isopods (Porcellio scaber collected from a highly seasonal environment to four thermal treatments: (1 a constant 20°C; (2 a constant 10°C; (3 a steady decline from 20° to 10°C; and (4 a stochastic decline from 20° to 10°C that mimicked natural conditions during autumn. After 45 days, we measured thermal sensitivities of running speed and thermal tolerances (critical thermal maximum and chill-coma recovery time. Contrary to our expectation, thermal treatments did not affect the thermal sensitivity of locomotion; isopods from all treatments ran fastest at 33° to 34°C and achieved more than 80% of their maximal speed over a range of 10° to 11°C. Isopods exposed to a stochastic decline in temperature tolerated cold the best, and isopods exposed to a constant temperature of 20°C tolerated cold the worst. No significant variation in heat tolerance was observed among groups. Therefore, thermal sensitivity and heat tolerance failed to acclimate to any type of thermal change, whereas cold tolerance acclimated more during stochastic change than it did during abrupt change.

  16. THE RELIABILITY OF ADOLESCENT THERMOREGULATORY RESPONSES DURING A HEAT ACCLIMATION PROTOCOL

    Craig A. Williams

    2009-12-01

    Full Text Available This study investigated the between trial variation of thermoregulatory measures during a heat acclimation protocol. Eight 14-16 y old boys completed three bouts of 20-min cycling at 45 % peak VO2 in a hot environment (35.1 ± 1.2 °C and 46. 4 ± 1.0 % relative humidity on two occasions separated by a minimum of 24 h. Reliability was assessed through analysis of within-subject variation, the change in the mean, and retest correlation for measurements of aural temperature (Tau, mean skin temperature (Tsk, heart rate (HR and oxygen uptake (VO2. Between trial differences were low for Tau, Tskbout1, Tskbout2and3 and HR with coefficients of variation 0.6 %, 1.5 %, 0.5 % and 4.0 %, respectively. The results demonstrate good reliability that will allow future investigators to precisely determine the extent of heat acclimation protocols in relation to the measurement error

  17. Source Apportionment of Particulate Matter (PM10 In an Integrated Coal Mining Complex of Jharia Coalfield, Eastern India, A Review.

    Debananda Roy

    2014-04-01

    Full Text Available Coal based thermal power generation accounts for 44.7% of the world's electricity and coal alone provides about 80% of the total energy demand in India. Energy-intensive industries deteriorate the air quality of the residential areas due to release of different pollutants, especially a range of deleterious heavy metals like Hg, Cd, Cu, Pb, and Cr. Near about 53.3 percent of the coal produced every year in India has been used for thermal generation. Jharia Coalfield (JCF is major contributor of coking coal in India. JCF receives particulate matter from various sources such as, opencast coal mining and its associated activities, thermal power stations, automobiles, generator sets fuel burning, construction activities, domestic coal, cooking gas burning, etc. and even the background contribution of natural dust (crustal origin can not be ruled out, particularly, in the zones having loose topsoil. Concentration of particulate matter causes harmful impacts to the society. These multiple sources are contributing to particulates pollution in the study area.

  18. Plant acclimation impacts carbon allocation to isoprene emissions: evidence from past to future CO2 levels

    de Boer, Hugo J.; van der Laan, Annick; Dekker, Stefan C.; Holzinger, Rupert

    2016-04-01

    Isoprene (C5H8) is produced in plant leaves as a side product of photosynthesis, whereby approximately 0.1-2.0% of the photosynthetic carbon uptake is released back into the atmosphere via isoprene emissions. Isoprene biosynthesis is thought to alleviate oxidative stress, specifically in warm, dry and high-light environments. Moreover, isoprene biosynthesis is influenced by atmospheric CO2 concentrations in the short term (CO2 concentration (Ci), and in the long term (>weeks) via acclimation in photosynthetic biochemistry. In order to understand the effects of CO2-induced climate change on carbon allocation in plants it is therefore important to quantify how isoprene biosynthesis and emissions are effected by both short-term responses and long-term acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. In addition to environmental conditions, this imbalance is determined by the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (V cmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 levels representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. Plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters V cmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis

  19. The Iron Hill (Powderhorn) Carbonatite Complex, Gunnison County, Colorado - A Potential Source of Several Uncommon Mineral Resources

    Van Gosen, Bradley S.

    2009-01-01

    A similar version of this slide show was presented on three occasions during 2008: two times to local chapters of the Society for Mining, Metallurgy, and Exploration (SME), as part of SME's Henry Krumb lecture series, and the third time at the Northwest Mining Association's 114th Annual Meeting, held December 1-5, 2008, in Sparks (Reno), Nevada. In 2006, the U.S. Geological Survey (USGS) initiated a study of the diverse and uncommon mineral resources associated with carbonatites and associated alkaline igneous rocks. Most of these deposit types have not been studied by the USGS during the last 25 years, and many of these mineral resources have important applications in modern technology. The author chose to begin this study at Iron Hill in southwestern Colorado because it is the site of a classic carbonatite complex, which is thought to host the largest known resources of titanium and niobium in the United States.

  20. Use of HNO(3) as the source of NO to prepare a nitric oxide complex of ruthenium.

    Drew, Michael G B; Nag, Samik; Datta, Dipankar

    2008-05-01

    Reaction of cis-Ru(bisox)(2)Cl(2), where bisox is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, with HNO(3) in 1 : 4 molar proportion in boiling water under N(2) atmosphere and subsequent addition of an excess of NaClO(4).H(2)O yields [Ru(bisox)(HL)(NO)](ClO(4))(NO(3)) (1). HL is a hydrolysed form of bisox where one of the oxazoline rings opens up. X-Ray crystallography shows that 1 contains an octahedral RuN(5)O core. HL binds the metal through an imino N, an amide N and an alcoholic O atom. Reaction of cis-Ru(bisox)(2)Cl(2) with an excess of NaNO(2) in water gives cis-Ru(bisox)(2)(NO(2))(2) (2). On acidification by HClO(4) in methanol, is smoothly converted to cis-[Ru(bisox)(2)(NO(2))(NO)](ClO(4))(2) (3) due to equilibrium (1). [Formula: see text] (1) The X-ray crystal structures of 2 and 3 have also been determined. NO binds Ru in 1 and 3 linearly. The Ru-NO bond length in 1 is 1.764(13) A and that in 3 is approximately 1.78 A. All the three complexes have been characterised by FTIR, NMR and ESIMS. The NO stretching frequencies in 1 and 3 are 1897 and 1936 cm(-1) respectively. While 3 reverts back to 2 readily in presence of OH(-) [equilibrium (1)], 1 does not react with OH(-). It is concluded that while in the reaction of cis-Ru(bisox)(2)Cl(2) with HNO(3), bisox is hydrolysed following abstraction of NO from HNO(3), generation of the nitrosyl complex 3 via reaction (1) is not accompanied with such hydrolysis. PMID:18414755

  1. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    Stuart Fogel

    2015-09-01

    Full Text Available A spindle detection method was developed that: 1 extracts the signal of interest (i.e., spindle-related phasic changes in sigma relative to ongoing “background” sigma activity using complex demodulation, 2 accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and 3 employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile. Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles.

  2. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia.

    Lavigne, Franck; Degeai, Jean-Philippe; Komorowski, Jean-Christophe; Guillet, Sébastien; Robert, Vincent; Lahitte, Pierre; Oppenheimer, Clive; Stoffel, Markus; Vidal, Céline M; Surono; Pratomo, Indyo; Wassmer, Patrick; Hajdas, Irka; Hadmoko, Danang Sri; de Belizal, Edouard

    2013-10-15

    Polar ice core records attest to a colossal volcanic eruption that took place ca. A.D. 1257 or 1258, most probably in the tropics. Estimates based on sulfate deposition in these records suggest that it yielded the largest volcanic sulfur release to the stratosphere of the past 7,000 y. Tree rings, medieval chronicles, and computational models corroborate the expected worldwide atmospheric and climatic effects of this eruption. However, until now there has been no convincing candidate for the mid-13th century "mystery eruption." Drawing upon compelling evidence from stratigraphic and geomorphic data, physical volcanology, radiocarbon dating, tephra geochemistry, and chronicles, we argue the source of this long-sought eruption is the Samalas volcano, adjacent to Mount Rinjani on Lombok Island, Indonesia. At least 40 km(3) (dense-rock equivalent) of tephra were deposited and the eruption column reached an altitude of up to 43 km. Three principal pumice fallout deposits mantle the region and thick pyroclastic flow deposits are found at the coast, 25 km from source. With an estimated magnitude of 7, this event ranks among the largest Holocene explosive eruptions. Radiocarbon dates on charcoal are consistent with a mid-13th century eruption. In addition, glass geochemistry of the associated pumice deposits matches that of shards found in both Arctic and Antarctic ice cores, providing compelling evidence to link the prominent A.D. 1258/1259 ice core sulfate spike to Samalas. We further constrain the timing of the mystery eruption based on tephra dispersal and historical records, suggesting it occurred between May and October A.D. 1257. PMID:24082132

  3. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  4. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3708, Which Performs Type II Complementary Chromatic Acclimation.

    Hirose, Yuu; Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    To explore the variation of the light-regulated genes during complementary chromatic acclimation (CCA), we determined the complete genome sequence of the cyanobacterium Geminocystis sp. strain NIES-3708. Within the light-regulated operon for CCA, we found genes for phycoerythrin but not phycocyanin, suggesting that this cyanobacterium modulates phycoerythrin composition only (type II CCA). PMID:25953174

  5. Daily Acclimation Handling Does Not Affect Hippocampal Long-Term Potentiation or Cause Chronic Sleep Deprivation in Mice

    Vecsey, Christopher G.; Wimmer, Mathieu E. J.; Havekes, Robbert; Park, Alan J.; Perron, Isaac J.; Meerlo, Peter; Abel, Ted

    2013-01-01

    Study Objectives: Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to

  6. Mitochondrial Acclimation Capacities to Ocean Warming and Acidification Are Limited in the Antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons

    Strobel, Anneli; Graeve, Martin; Poertner, Hans O.; Mark, Felix C

    2013-01-01

    Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen ...

  7. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens.

    Küpper, Hendrik; Parameswaran, Aravind; Leitenmaier, Barbara; Trtílek, Martin; Setlík, Ivan

    2007-01-01

    Acclimation of hyperaccumulators to heavy metal-induced stress is crucial for phytoremediation and was investigated using the hyperaccumulator Thlaspi caerulescens and the nonaccumulators T. fendleri and T. ochroleucum. Spatially and spectrally resolved kinetics of in vivo absorbance and fluorescence were measured with a novel fluorescence kinetic microscope. At the beginning of growth on cadmium (Cd), all species suffered from toxicity, but T. caerulescens subsequently recovered completely. During stress, a few mesophyll cells in T. caerulescens became more inhibited and accumulated more Cd than the majority; this heterogeneity disappeared during acclimation. Chlorophyll fluorescence parameters related to photochemistry were more strongly affected by Cd stress than nonphotochemical parameters, and only photochemistry showed acclimation. Cd acclimation in T. caerulescens shows that part of its Cd tolerance is inducible and involves transient physiological heterogeneity as an emergency defence mechanism. Differential effects of Cd stress on photochemical vs nonphotochemical parameters indicate that Cd inhibits the photosynthetic light reactions more than the Calvin-Benson cycle. Differential spectral distribution of Cd effects on photochemical vs nonphotochemical quenching shows that Cd inhibits at least two different targets in/around photosystem II (PSII). Spectrally homogeneous maximal PSII efficiency (F(v)/F(m)) suggests that in healthy T. caerulescens all chlorophylls fluorescing at room temperature are PSII-associated. PMID:17688582

  8. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China.

    Yonggang Chi

    Full Text Available BACKGROUND: Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulative experiment was conducted to elevate foliar temperature (Tleaf by 2.07°C in a temperate steppe in northern China. Rd/Tleaf curves (responses of dark respiration to Tleaf, An/Tleaf curves (responses of light-saturated net CO2 assimilation rates to Tleaf, responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (Ag to Tleaf, and foliar nitrogen (N concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year and 2011 (a wet year. Significant thermal acclimation of Rd to 6-year experimental warming was found. However, An had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of Rd was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. CONCLUSIONS/SIGNIFICANCE: Warming decreased the temperature sensitivity (Q10 of the response of Rd/Ag ratio to Tleaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.

  9. Low-dose prospective ECG-triggering dual-source CT angiography in infants and children with complex congenital heart disease: first experience

    Cheng, Zhaoping; Wang, Ximing; Duan, Yanhua; Wu, Lebin; Wu, Dawei; Chao, Baoting; Liu, Cheng; Xu, Zhuodong [Shandong University, Shandong Medical Imaging Research Institute, Jinan, Shandong (China); Li, Hongxin; Liang, Fei [Shandong Provincial Hospital, Department of Cardiovascular Surgery, Jinan, Shandong (China); Xu, Jian; Chen, Jiuhong [Siemens. Ltd. China, CT Research Collaboration, Beijing (China)

    2010-10-15

    To explore the clinical value of low-dose prospective ECG-triggering dual-source CT (DSCT) angiography in infants and children with complex congenital heart disease (CHD) compared with transthoracic echocardiography (TTE). Thirty-five patients (mean age: 16 months, range: 2 months to 6 years; male 15; mean weight: 12 kg) underwent low-dose prospective ECG-triggering DSCT angiography and TTE. Surgeries were performed in 29 patients, and conventional cardiac angiography (CCA) was performed in 8 patients. The accuracy was calculated based on the surgical and/or CCA findings. The overall imaging quality was evaluated on a five-point scale. A total of 146 separate cardiovascular deformities were confirmed. DSCT missed three atrial septal defects and a patent ductus arteriosus. The accuracy of DSCT angiography and TTE was 97.3% (142/146) and 92.5% (135/146), respectively. Overall test parameters for DSCT angiography and TTE were similar (sensitivity, 97.3% vs 92.5%; specificity, 99.8% vs 99.8%). The average subjective image quality score was 4.3 {+-} 0.7. The mean effective dose was 0.38 {+-} 0.09 mSv. Prospective ECG-triggering DSCT angiography with a very low effective radiation dose allows the accurate diagnosis of anomalies in infants and children with complex CHD compared with TTE. It has great promise to become a commonly used second-line technique for complex CHD. (orig.)

  10. Cadmium (II) pyrrolidine dithiocarbamate complex as single source precursor for the preparation of CdS nanocrystals by microwave irradiation and conventional heating process

    Marx Nirmal, R. [Department of Physics, Anna University Chennai, Chennai, Tamil Nadu 600025 (India); Pandian, K. [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025 (India); Sivakumar, K., E-mail: ksivakumar@annauniv.edu [Department of Physics, Anna University Chennai, Chennai, Tamil Nadu 600025 (India)

    2011-01-15

    The complex of cadmium with pyrrolidine dithiocarbamate Cd(pdtc){sub 2} has been used as single source precursor for the synthesis of CdS nanoparticles. The formation of CdS nanostructures was achieved by thermal decomposition of the complex under microwave irradiation and conventional heating in presence of hexadecylamine. The CdS nanoparticles with disordered close-packed structure were obtained under microwave irradiation, whereas wurtzite hexagonal phase CdS nanorods were obtained by conventional heating method (up to 150 deg. C). Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and high resolution transmission electron microscopy (HRTEM) studies also were carried out to study the structure and morphology of nanoparticles. The optical property of the CdS nanoparticles was studied by UV-visible and fluorescence emission spectral studies. Fluorescence measurements on the CdS nanoparticles show a strong emission spectrum with two sub bands that are attributed to band-edge and surface-defect emissions. The reduction of a suitable cadmium metal complex is considered to be one of the single pot methods to generate CdS semiconductor nanoparticles with different shapes and high yield.

  11. Cadmium (II) pyrrolidine dithiocarbamate complex as single source precursor for the preparation of CdS nanocrystals by microwave irradiation and conventional heating process

    The complex of cadmium with pyrrolidine dithiocarbamate Cd(pdtc)2 has been used as single source precursor for the synthesis of CdS nanoparticles. The formation of CdS nanostructures was achieved by thermal decomposition of the complex under microwave irradiation and conventional heating in presence of hexadecylamine. The CdS nanoparticles with disordered close-packed structure were obtained under microwave irradiation, whereas wurtzite hexagonal phase CdS nanorods were obtained by conventional heating method (up to 150 deg. C). Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and high resolution transmission electron microscopy (HRTEM) studies also were carried out to study the structure and morphology of nanoparticles. The optical property of the CdS nanoparticles was studied by UV-visible and fluorescence emission spectral studies. Fluorescence measurements on the CdS nanoparticles show a strong emission spectrum with two sub bands that are attributed to band-edge and surface-defect emissions. The reduction of a suitable cadmium metal complex is considered to be one of the single pot methods to generate CdS semiconductor nanoparticles with different shapes and high yield.

  12. Old and juvenile source of Paleozoic and Mesozoic basaltic magmas in the Acatlán and Ayú complexes, Southern Mexico: Nd isotopic constraints

    Keppie, J. Duncan; Dostal, Jaroslav; Shellnutt, J. Gregory

    2016-06-01

    The Neoproterozoic-Paleozoic Acatlán Complex and the Mesozoic Ayú Complex of southern Mexico consist of clastic rocks and rift-related igneous rocks inferred to have originated along a rifted passive margin in southwestern Mexico, either in an inactive (Neoproterozoic-Ordovician) or an active (Devonian-Carboniferous and Triassic-Early Jurassic) tectonic setting. The latter formed on the inner margin of a backarc basin. These passive margin rocks were partly underthrust beneath the Acatlán Complex, into which they were subsequently extruded: extrusion was synchronous with the backarc basin development. Thus, (i) the Neoproterozoic-Ordovician rocks underwent underthrusting, high-pressure metamorphism, and extrusion during the Late Devonian-Carboniferous (365-330 Ma); (ii) the Carboniferous rocks underwent underthrusting, amphibolite facies metamorphism, and extrusion during the Permian and Triassic; and (iii) the Triassic-Lower Jurassic rocks underwent underthrusting, amphibolite facies metamorphism, and extrusion during the Jurassic. Nd isotopic data from tholeiitic mafic rocks on either side of the HP extrusion zone reveal that both were underlain by similar peri-Rodinian subcontinental lithospheric mantle in the Neoproterozoic-Ordovician, which was supplemented in the Devonian-Carboniferous and Triassic-Early Jurassic by a juvenile depleted mantle source. The alternation of underthrusting and backarc rifting accompanied by extrusion may be related to flattening and steepening of the Beniof zone, respectively.

  13. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone (Haliotis discus hannai Ino) and its acute response to thermal exposure

    LI Jiaqi; HE Qingguo; SUN Hui; LIU Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses,especially thermal stress.Here we examined the response of Hsp70gene to both chronic and acute thermal exposure in Pacific abalone (Haliotis discus hannai Ino).For the chronic exposure,abalones were maintained at 8,12,20,and 30℃ for four months and their mRNA levels were measured.The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30℃-acclimated group,followed by the 8℃-acclimated group and then the 12℃- and 20℃-acclimated groups.After the long-term acclimation,gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8℃ and 38℃ for 30 min.Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure.The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups.Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions,through which they deal with the stress of thermal variations.

  14. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme

    Chidawanyika, Frank; Terblanche, John S

    2011-01-01

    Sterile insect release (SIR) is used to suppress insect pest populations in agro-ecosystems, but its success hinges on the performance of the released insects and prevailing environmental conditions. For example, low temperatures dramatically reduce SIR efficacy in cooler conditions. Here, we report on the costs and benefits of thermal acclimation for laboratory and field responses of codling moth, Cydia pomonella. Using a component of field fitness, we demonstrate that low temperature acclimated laboratory-reared moths are recaptured significantly more (∼2–4×) under cooler conditions in the wild relative to warm-acclimated or control moths. However, improvements in low temperature performance in cold-acclimated moths came at a cost to performance under warmer conditions. At high ambient temperatures, warm-acclimation improved field performance relative to control or cold-acclimated moths. Laboratory assessments of thermal activity and their limits matched the field results, indicating that these laboratory assays may be transferable to field performance. This study demonstrates clear costs and benefits of thermal acclimation on laboratory and field performance and the potential utility of thermal pretreatments for offsetting negative efficacy in SIR programmes under adverse thermal conditions. Consequently, the present work shows that evolutionary principles of phenotypic plasticity can be used to improve field performance and thus possibly enhance pest control programmes seeking increased efficacy. PMID:25568003

  15. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland.

    Zieliński, Mateusz; Dopieralska, Jolanta; Belka, Zdzislaw; Walczak, Aleksandra; Siepak, Marcin; Jakubowicz, Michal

    2016-04-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ((87)Sr/(86)Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of (87)Sr/(86)Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows (87)Sr/(86)Sr values around 0.7104-0.7105. Variations in (87)Sr/(86)Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32mg/L. We find that strong variations in (87)Sr/(86)Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high (87)Sr/(86)Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the "baseline" for bioavailable (87)Sr/(86)Sr in the past. PMID:26802358

  16. The Lagoa Real subalkaline granitic complex (south Bahia, Brazil): a source for uranium mineralizations associated with Na-Ca metasomatism

    In the central zone of the Sao Francisco Craton (South Bahia), the lower Proterozoic Lagoa Real granites and orthogneisses overthrust to the West the younger Urandi and Espinhaco metamorphic series, probably a late Brazilian event. This thrust is related to the regional metamorphism (amphibolite facies) of the Lagoa Real granites and induces a reverse HP metamorphism in the over thrusted series. Undeformed granites (sao Timoeto type) present two feldspars, perthitic orthoclase largely predominant over plagioclase (oligoclase ≥ albite), blue quartz, Fe-rich amphibole and biotite ± clinopyroxene assemblages, ilmenite ≥ magnetite, zircon, apatite, allanite and Nb ± Ti-REE oxides and silicates. The crystallization of the granites begins at high temperature and under low fO2 and PH2O conditions. Fractional crystallization of pyroxene and plagioclase leads to silica enrichment during magmatic differentiation. Increasing fO2 and PH2O are observed during this evolution. Orthogneisses show strongly recrystallized paragenesis: equal abundance of non-perthitic microcline and plagioclase (oligoclase ≤ albite), quartz, more Al-rich amphibole and biotite, magnetite, sphene, zircon, allanite, Nb ± Ti-REE oxides and silicates, and ± apatite. HT Na and Ca metasomatism occurs 330 Ma later than granite emplacement and is synchronous with important uranium mineralizations. Major elements and trace-elements geochemistry of the granites and orthogneisses indicate subalkaline to alkaline typology. Incompatible behaviour of Th, REE, Y, Zr, Nb, and F points out a convergence with alkaline magmatism. CI, F, Th, Y, REE, NB enrichments and Ba, Sr depletions are also related to a late magmatic stage. U-Th-rich and metamict accessory minerals of the granites represent a favorabl source for the Lagoa Real uranium ore-deposits

  17. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    Vicente Castro

    Full Text Available Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control, 0.65 (medium intensity and 1.31 (high intensity body lengths s(-1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first

  18. Phenotypic flexibility of energetics in acclimated Siberian hamsters has a narrower scope in winter than in summer.

    Boratyński, Jan S; Jefimow, Małgorzata; Wojciechowski, Michał S

    2016-04-01

    As photoperiod shortens with the approach of winter, small mammals should reduce their energy expenditure to survive periods of food limitation. However, within seasons, animals should balance their energy budgets as abiotic conditions change, sometimes unpredictably; cold spells should increase heat production, while warm spells should do the opposite. Therefore, we addressed specific questions about the possible interactions between seasonal acclimatization and the intra-seasonal phenotypic flexibility of metabolic rate. We hypothesized that phenotypic flexibility in small mammals differs seasonally and is greater in summer than in winter, and predicted that seasonal adjustments in energetics, which are driven by photoperiod, overwhelm the influence of variations in the thermal environment. We measured body mass, basal metabolic rate (BMR), facultative non-shivering thermogenesis (fNST), body temperature, and calculated minimum thermal conductance in Siberian hamsters Phodopus sungorus. Animals were acclimated to winter-like, and then to summer-like conditions and, within each season, were exposed twice, for 3 weeks to 10, 20 or 28 °C. We used differences between values measured after these short acclimation periods as a measure of the scope of phenotypic flexibility. After winter acclimation, hamsters were lighter, had lower whole animal BMR, higher fNST than in summer, and developed heterothermy. After these short acclimations to the above-mentioned temperatures, hamsters showed reversible changes in BMR and fNST; however, these traits were less flexible in winter than in summer. We conclude that seasonal acclimation affects hamster responses to intra-seasonal variations in the thermal environment. We argue that understanding seasonal changes in phenotypic flexibility is crucial for predicting the biological consequences of global climate changes. PMID:26803319

  19. Associations between the acclimation of phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate

    William Walter Adams

    2014-02-01

    Full Text Available The companion cells (CCs and/or phloem parenchyma cells (PCs in foliar minor veins of some species exhibit invaginations that are amplified when plants develop in high light (HL compared to low light (LL. Leaves of plants that develop under HL also exhibit greater maximal rates of photosynthesis compared to those that develop under LL, suggesting that the increased membrane area of CCs and PCs of HL-acclimated leaves may provide for greater levels of transport proteins facilitating enhanced sugar export. Furthermore, the degree of wall invagination in PCs (Arabidopsis thaliana or CCs (pea of fully expanded LL-acclimated leaves increased to the same level as that present in HL-acclimated leaves seven days following transfer to HL, and maximal photosynthesis rates of transferred leaves of both species likewise increased to the same level as in HL-acclimated leaves. In contrast, transfer of Senecio vulgaris from LL to HL resulted in increased wall invagination in CCs, but not PCs, and such leaves furthermore exhibited only partial upregulation of photosynthetic capacity following LL to HL transfer. Moreover, a significant linear relationship existed between the level of cell wall ingrowths and maximal photosynthesis rates across all three species and growth light regimes. A positive linear relationship between these two parameters was also present for two ecotypes (Sweden, Italy of the winter annual A. thaliana in response to growth at different temperatures, with significantly greater levels of PC wall ingrowths and higher rates of photosynthesis in leaves that developed at cooler versus warmer temperatures. Treatment of LL-acclimated plants with the stress hormone methyl jasmonate also resulted in increased levels of wall ingrowths in PCs of A. thaliana and S. vulgaris but not in CCs of pea and S. vulgaris. The possible role of PC wall ingrowths in sugar export versus as physical barriers to the movement of pathogens warrants further attention.

  20. Environmental temperature and physiological polymorphism of populations. II. The relation of changes in the organismal heat resistance to its initial level during heat acclimation

    Ushakov, B.P.; Amosova, I.S.; Chernokozheva, I.S.; Dregolskaya, I.N.; Pashkova, I.M.; Skholl, E.D.

    1977-01-01

    Study was made of the changes in the organismal heat resistance level and average values were obtained for clones and siblings of Hydra oligactis, Asellus acquaticus, Drosophila melanogaster, Strongylocentrotus droebachiensis (embryos) and Rana temporaria (tadpoles) during short-term heat acclimation (sibacclimation method). In all the species studied a negative correlation was observed between the initial heat resistance level of clones and siblings and its increase during heat acclimation. Reaction norm during temperature resistance acclimation of poikilotherms depends on the initial organismal heat resistance inherent in each genotype.

  1. A Preliminary Assessment of Barotrauma Injuries and Acclimation Studies for Three Fish Species

    Brown, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Ricardo W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-15

    Fish that pass hydro structures either through turbine passage, deep spill, or other deep pathways can experience rapid decreases in pressure that can result in barotrauma. In addition to morphology and physiology of the fish’s swim bladder, the severity of barotrauma is directly related to the volume of undissolved gas in fish prior to rapid decompression and the lowest pressure the fish experience as they pass hydro structures (termed the “nadir”). The volume of undissolved gas in fish is influenced by the depth of acclimation (the pressure at which the fish is neutrally buoyant); therefore, determining the depth where fish are neutrally buoyant is a critical precursor to determining the relationship between pressure changes and injury or mortality.

  2. No Inbreeding depression for low temperature developmental acclimation across multiple drosophila species

    Kristensen, Torsten Nygård; Loeschcke, Volker; Bilde, Trine;

    2011-01-01

    Populations are from time to time exposed to stressful temperatures. Their thermal resistance levels are determined by inherent and plastic mechanisms, which are both likely to be under selection in natural populations. Previous studies on Drosophila species have shown that inherent resistance is...... highly species specific, and differs among ecotypes (e.g., tropical and widespread species). Apart from being exposed to thermal stress many small and fragmented populations face genetic challenges due to, for example, inbreeding. Inbreeding has been shown to reduce inherent resistance levels toward...... stressful temperatures, but whether adaptation to thermal stress through plastic responses also is affected by inbreeding is so far not clear. In this study, we test inherent cold resistance and the ability to respond plastically to temperature changes through developmental cold acclimation in inbred and...

  3. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  4. Microtopographic hydrologic variability change resulting from vegetation acclimation response to elevated atmospheric CO2

    Le, P. V.; Kumar, P.

    2015-12-01

    The elevated concentration of atmospheric CO2 increases the ratio of carbon fixation to water loss from plants or water use efficiency, which reduces transpiration. However, the magnitude of the effects of this vegetation acclimation on hydrologic dynamics, such as soil moisture content and surface runoff controlled by microtopographic variability on the land surface, remains unclear. Here we integrate a multi-layer canopy-root-soil model (MLCan) with a coupled surface-subsurface flow model (GCSFlow) to capture the acclimation responses of vegetation to climate change and predict how these changes affect hydrologic dynamics on landscapes at fine scales. The model is implemented on a hybrid CPU-GPU parallel computing environment to overcome challenges associated with the high density of computational grid and nonlinear solvers. The model is capable of simulating large-scale heterogeneities due to both microtopography and soils and lateral water fluxes at emerging lidar-scale resolutions (~1m). We demonstrate that hybrid computing is feasible for detailed, large-scale ecohydrologic modeling, which has been previously assumed to be an intractable computational problem. Simulations are performed for corn crop in the Goose Creek watershed in central Illinois, USA at present and projected higher concentrations of atmospheric CO2, 400 ppm and 550 ppm, respectively. The results show a net decrease of 11% for the average annual evapotranspiration of corn, which increases water content in the soil and at the land surface. These results highlight the critical role of a warming climate on atmospheric-soil-vegetation interactions and the need to understand other dynamics near the soil surface associated with water and vegetation.

  5. Daphnetin methylation stabilizes the activity of phosphoribulokinase in wheat during cold acclimation.

    Kane, Khalil; Moheb, Amira; Fukushi, Yukihara; Roy, René; Hüner, Norman P A; Ibrahim, Ragai K; Sarhan, Fathey

    2012-10-01

    The methylation of daphnetin (7,8-dihydroxycoumarin) to its 8-methyl derivative is catalyzed by a wheat (Triticum aestivum L.) O-methyltransferase (TaOMT1). This enzyme is regulated by cold and photosystem II excitation pressure (plastid redox state). Here, we investigated the biological significance of this methylation and its potential role in modulating the activity of kinases in wheat. To identify the potential kinases that may interact with daphnetin in wheat, the soluble protein extract from aerial parts of cold-acclimated wheat was purified by DEAE-cellulose separation and affinity chromatography on a daphnetin derivative (7,8-dihydroxy-4-coumarin acetic acid)-EAH sepharose column. Mass spectrometric analysis indicated that wheat phosphoribulokinase (TaPRK) is the major kinase that binds to daphnetin. This TaPRK plays an important role in regulating the flow of carbon through the Calvin cycle, by catalyzing the final step in the regeneration of ribulose 1,5-bisphosphate from ribulose-5-phosphate (Ru5P) and ATP. The activities of TaPRK, endogenous or recombinant, are inhibited by daphnetin in a specific and dose-dependent manner, but not by its monomethyl derivative (7-methyl, 8-hydroxycoumarin). Furthermore, HPLC-MS analysis of wheat extracts reveals that 7,8-dimethoxycoumarin is more abundant than its monomethyl derivative. The results also show that cold acclimation does not alter the level of TaPRK mRNA or its enzyme activity, and thus ensures the stable generation of ribulose 1,5-biphosphate. PMID:22827600

  6. Emerging Perspectives on the Mechanisms,Regulation, and Distribution of Light Color Acclimation in Cyanobacteria

    Andrian Gutu; David M. Kehoe

    2012-01-01

    Chromatic acclimation (CA) provides many cyanobacteria with the ability to tailor the properties of their lightharvesting antennae to the spectral distribution of ambient light.CA was originally discovered as a result of its dramatic cellular phenotype in red and green light.However,discoveries over the past decade have revealed that many pairs of light colors,ranging from blue to infrared,can trigger CA responses.The capacity to undergo CA is widespread geographically,occurs in most habitats around the world,and is found within all major cyanobacterial groups.In addition,many other cellular activities have been found to be under CA control,resulting in distinct physiological and morphological states for cells under different light-color conditions.Several types of CA appear to be the result of convergent evolution,where different strategies are used to achieve the final goal of optimizing light-harvesting antenna composition to maximize photon capture.The regulation of CA has been found to occur primarily at the level of RNA abundance.The CA-regulatory pathways uncovered thus far are two-component systems that use phytochrome-class photoreceptors with sensor-kinase domains to control response regulators that function as transcription factors.However,there is also at least one CAregulatory pathway that operates at the post-transcriptional level.It is becoming increasingly clear that large numbers of cyanobacterial species have the capacity to acclimate to a wide variety of light colors through the use of a range of different CA processes.

  7. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress.

    Sperdouli, Ilektra; Moustakas, Michael

    2012-04-15

    The relationships among photosynthetic acclimation, proline (Pro), soluble sugar (SS), and anthocyanin (An) accumulation in Arabidopsis thaliana leaves to the onset of drought stress (OnDS), mild (MiDS) and moderate drought stress (MoDS), were evaluated. As leaf water content (LWC) decreased, metabolic concentrations (Pro, SS, and An) increased and were negatively and significantly correlated with LWC. Thus, these metabolites may have an important role in the acclimation process to drought stress (DS). No correlations among Pro, SS and An accumulation with the quantum efficiency of PSII photochemistry (Φ(PSII)) and the excitation pressure (1-q(P)) were observed under DS. This implies that, while metabolites increased in a drought-dependent way, PSII activity did not decrease in the same pattern. Our results indicated that, under MoDS, A. thaliana leaves were able to maintain oxidative compounds such as malondialdeyde, an end product of lipid peroxidation, within the range of control leaves, and to cope with oxidative damage, as was evident by the decreased excitation pressure (1-q(P)) and similar (ns difference) Φ(PSII) to that of control leaves. In addition, a statistically significant increased accumulation of Pro, SS and An was recorded only under MoDS compared to controls. The better PSII functioning of MoDS Arabidopsis leaves may reflect the greater capacity of these leaves to undertake key metabolic adjustments, including increased Pro, SS and An accumulation, to maintain a higher antioxidant protection and a better balance between light capture and energy use. PMID:22305050

  8. Characteristics of fat metabolism in skeletal muscle of rats after hypobaric hypoxic acclimation

    Mao Sunzhong; Gao Yuqi; Chen Jian; Liu Fuyi; Gao Wenxiang; Huang Jian; Liao Weigong; Cai Mingchun

    2008-01-01

    Objective: To investigate the characteristics of fat metabolism in rat skeletal muscle after hypobaric hypoxia acclimation. Methods: Sprague-Dawley rats were divided into 3 groups randomly: control group (H0), hypoxic 5-day group (H5), and hypoxic 15-day group (HI5). Animals of H5 and 15 groups were exposed to hypobaric hypoxia chamber simulating 5 000 m high altitude for 5 d or 15 d respectively, 23 h per day. H0 group stayed outside of chamber.The level of fatty acid oxidation and uptake, and glucose oxidation were examined, and the level of non-esterified fatty acids (NEFA), ATP and phosphocreatine (PCr) were also assayed in rat skeletal muscles. Results: The contents of ATP and PCr in H5 group were lower than those in H0 and H15 groups (P<0.05), while there was no significant difference between H0 and H15. Compared with H0, the blood NEFA level in all hypoxia groups was increased significantly (P<0.05). The muscle NEFA level in HI5 group was greatly higher than that in H0 and H5 groups. The rates of fatty acid oxidation and uptake in H15 group were significantly higher than those in H0 and H5 groups (P<0.05), and the rate of glucose oxidation in all hypoxia groups was significantly decreased than that in H0 group (P<0.05). Conclusion: It is concluded that the enhanced fat oxidation may be one of the mechanisms in the maintenance of energy homeostasis after hypobaric hypoxic acclimation.

  9. Acclimation of photosynthetic parameters is not the icing on the cake. It is the cake.

    Prentice, Iain Colin; Wang, Han; Togashi, Henrique; Keenan, Trevor; Davis, Tyler; Wright, Ian

    2015-04-01

    Photosynthesis and transpiration are tightly coupled through stomatal behaviour and therefore it is impossible to understand and parsimoniously model one without also considering the other. The ratio of leaf-internal to ambient carbon dioxide concentration (ci:ca ratio) is a measure of the "exchange rate" between water and carbon. We have shown that it is possible to predict the observed dependencies of ci:ca on environmental factors (temperature, vapour pressure deficit and atmospheric pressure) based on the "least-cost hypothesis", which states that plants minimize the sum of the unit costs (respiration per unit assimilation) of maintaining the capacities for carbon fixation (Vcmax) and water transport. Moreover, with the help of the "co-ordination hypothesis" (the long-accepted idea that Rubisco capacity and electron transport tend to co-limit photosynthesis) it is possible to predict not only how ci:ca should vary, but also how Vcmax and electron transport capacity (Jmax) should vary, in space and time. We will present empirical support for this idea based on both ecophysiological measurements at the leaf scale, and analysis of carbon dioxide flux measurements at the ecosystem scale. We conclude that acclimation of photosynthetic parameters is pervasive. This is fundamental because it predicts a quite different set of environmental responses than those that are usually applied in models that incorrectly assume constancy of parameter values with time and within plant functional types (PFTs). In addition, acclimation actually simplifies modelling because it describes universal relationships that apply across all PFTs with the C3 photosynthetic pathway, and it removes the need to specify parameters such as Vcmax and Jmax as if they were properties of PFTs.

  10. Complex faulting in the Quetta Syntaxis: fault source modeling of the October 28, 2008 earthquake sequence in Baluchistan, Pakistan, based on ALOS/PALSAR InSAR data

    Usman, Muhammad; Furuya, Masato

    2015-09-01

    The Quetta Syntaxis in western Baluchistan, Pakistan, is the result of an oroclinal bend of the western mountain belt and serves as a junction for different faults. As this area also lies close to the left-lateral strike-slip Chaman fault, which marks the boundary between the Indian and Eurasian plates, the resulting seismological behavior of this regime is very complex. In the region of the Quetta Syntaxis, close to the fold and thrust belt of the Sulaiman and Kirthar Ranges, an earthquake with a magnitude of 6.4 (Mw) occurred on October 28, 2008, which was followed by a doublet on the very next day. Six more shocks associated with these major events then occurred (one foreshock and five aftershocks), with moment magnitudes greater than 4. Numerous researchers have tried to explain the source of this sequence based on seismological, GPS, and Environmental Satellite (ENVISAT)/Advanced Synthetic Aperture Radar (ASAR) data. Here, we used Advanced Land Observing Satellite (ALOS)/Phased Array-type L-band Synthetic Aperture Radar (PALSAR) InSAR data sets from both ascending and descending orbits that allow us to more completely detect the deformation signals around the epicentral region. The results indicated that the shock sequence can be explained by two right-lateral and two left-lateral strike-slip faults that also included reverse slip. The right-lateral faults have a curved geometry. Moreover, whereas previous studies have explained the aftershock crustal deformation with a different fault source, we found that the same left-lateral segment of the conjugate fault was responsible for the aftershocks. We thus confirmed the complex surface deformation signals from the moderate-sized earthquake. Intra-plate crustal bending and shortening often seem to be accommodated as conjugate faulting, without any single preferred fault orientation. We also detected two possible landslide areas along with the crustal deformation pattern.

  11. Modeling and Simulation of Current Source Inverter Fed Synchronous Motor in Complex Frequency Domain Taking the Transition Zone From Induction Motor to Synchronous Motor Mode into Account

    A.B. Chattopadhyay

    2014-02-01

    Full Text Available Modeling of synchronous motor plays a dominant role in designing complicated drive system for different applications, especially large blower fans etc for steel industries. As synchronous motor has no inherent starting torque generally it is started as an induction motor with the help of a damper winding and it pulls into synchronism under certain conditions. The present paper exactly concentrates on this particular zone of transition from induction motor to synchronous motor mode for a current source inverter fed synchronous motor drive system. Due to complexity of synchronous motor in terms of number of windings and finite amount of air gap saliency, direct modeling of such transition zone in time domain becomes cumbersome at the first instance of modeling. That is why the modeling in complex frequency domain (s-domain has been taken up using small perturbation model. Such a model clearly shows role of induction motor as noise function or disturbance function with respect to the open loop block diagram of synchronous motor. Such finding can be quantized in terms of important results and that is done in the present paper such that the results can help the designer for the successful design of a synchronous motor drive system.

  12. Tracing source terranes using U-Pb-Hf isotopic analysis of detrital zircons: provenance of the Orhanlar Unit of the Palaeotethyan Karakaya subduction-accretion complex, NW Turkey

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel

    2016-04-01

    Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector

  13. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  14. Geochemistry of the Neoproterozoic metasediments of Malhaq and Um Zariq formations, Kid metamorphic complex, Sinai, Egypt: Implications for source-area weathering, provenance, recycling, and depositional tectonic setting

    El-Bialy, Mohammed Zaky

    2013-08-01

    The Um Zariq and Malhaq formations occupy roughly the northern half of the Kid metamorphic complex of SE Sinai, in the NE part of the Arabian-Nubian Shield. The Um Zariq Formation metasediments are relicts of an old sedimentary sequence (Cryogenian; 813 ± 6 Ma), whereas the Malhaq Formation records several phases of Ediacaran sedimentation and volcanic activity (615-607 Ma). The Um Zariq Formation is mainly represented by well-bedded metapelitic schists, while the Malhaq Formation comprises a series of structureless to schistose felsic to intermediate metavolcanics interbedded with mica-rich phyllites and schists. The Um Zariq metasediments are depleted in SiO2, CaO and K2O and enriched in TiO2, Al2O3 and K2O relative to those of the Malhaq Formation. Aside from the relatively low Ni and Cr concentrations, compatible transition elements of these metasediments are comparable to average crustal contents. Except for marked Sr depletion, LILEs are around average continental crust values. Pronounced negative Nb-Ta anomalies and enrichment of Um Zariq samples in Th, U, Zr, Ti and Y relative to Malhaq ones are the main features of HFSEs. The REE patterns of all samples are parallel to sub-parallel LREE-enriched, with distinct negative Eu anomalies and weakly fractionated HREE segments. The source rocks of the Malhaq Formation metasediments underwent mild to moderate chemical weathering, whereas those of the Um Zariq Formation have suffered severe chemical weathering. These metasediments are predominately derived from felsic to intermediate igneous sources, with a particular slight addition from recycled sedimentary source to the Malhaq Formation metasediments. They are collectively geochemically immature and have suffered minor sedimentary recycling, with the experience of the Malhaq Formation metasediments from higher degree of sorting and reworking. The Malhaq and Um Zariq metasediments were originally deposited in a continental arc setting, most probably back

  15. The protective effect of heat acclimation from hypoxic damage in the brain involves changes in the expression of glutamate receptors

    Yacobi, Assaf; Stern Bach, Yael; Horowitz, Michal

    2014-01-01

    Long-term heat acclimation (34 °C, 30d) alters the physiological responses and the metabolic state of organisms. It also improves ability to cope with hypoxic stress via a cross-tolerance mechanism. Within the brain, the hippocampal and frontal cortex neurons are the most sensitive to hypoxia and cell death is mainly caused by calcium influx via glutamate-gated ion channels, specifically NMDA and AMPA receptors. GluN1 subunit levels of NMDA-R correspond to NMDA-R levels. GluN2B/GluN2A subunit ratio is a qualitative index of channel activity; a higher ratio implies lower calcium permeability. The GluA2 subunit of AMPA-R controls channel permeability by inhibiting calcium penetration. Here, in rats model we (i)used behavioral-assessment tests to evaluate heat acclimation mediated hypoxic (15’ 4.5 ± 0.5% O2) neuroprotection, (ii) measured protein and transcript levels of NMDA-R and AMPA-R subunits before and after hypoxia in the hippocampus and the frontal cortex, to evaluate the role of Ca2+ in neuro-protection/cross-tolerance. Behavioral tests confirmed hypoxic tolerance in long-term (30d) but not in short-term (2d) heat acclimated rats. Hypoxic tolerance in the long-term acclimated phenotype was accompanied by a significant decrease in basal NMDA receptor GluN1 protein and an increase in its mRNA. The long-term acclimated rats also showed post ischemic increases in the GluN2B/GluN2A subunit ratio and GluA2 subunit of the AMPA receptor, supporting the hypothesis that reduced calcium permeability contributes to heat acclimation mediated hypoxia cross-tolerance. Abrupt post ischemic change in GluN2B/GluN2A subunit ratio with no change in NMDA-R subunits transcript levels implies that post-translational processes are inseparable acclimatory cross-tolerance mechanism.

  16. Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size

    Vezina, Francois; Jalvingh, Kirsten M.; Dekinga, Anne; Piersma, Theunis

    2006-01-01

    Seasonal acclimatization and experimental acclimation to cold in birds typically results from increased shivering endurance and elevated thermogenic capacity leading to improved resistance to cold. A wide array of physiological adjustments, ranging from biochemical transformations to organ mass vari

  17. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma.

    Savitch, L V; Barker-Astrom, J; Ivanov, A G; Hurry, V; Oquist, G; Huner, N P; Gardeström, P

    2001-12-01

    The effects of short-term cold stress and long-term cold acclimation on the light reactions of photosynthesis were examined in vivo to assess their contributions to photosynthetic acclimation to low temperature in Arabidopsis thaliana (L.) Heynh.. All photosynthetic measurements were made at the temperature of exposure: 23 degrees C for non-acclimated plants and 5 degrees C for cold-stressed and cold-acclimated plants. Three-day cold-stress treatments at 5 degrees C inhibited light-saturated rates of CO2 assimilation and O2 evolution by approximately 75%. The 3-day exposure to 5 degrees C also increased the proportion of reduced QA by 50%, decreased the yield of PSII electron transport by 65% and decreased PSI activity by 31%. In contrast, long-term cold acclimation resulted in a strong but incomplete recovery of light-saturated photosynthesis at 5 degrees C. The rates of light-saturated CO2 and O2 gas exchange and the in vivo yield of PSII activity under light-saturating conditions were only 35-40% lower, and the relative redox state of QA only 20% lower, at 5 degrees C after cold acclimation than in controls at 23 degrees C. PSI activity showed full recovery during long-term cold acclimation. Neither short-term cold stress nor long-term cold acclimation of Arabidopsis was associated with a limitation in ATP, and both treatments resulted in an increase in the ATP/NADPH ratio. This increase in ATP/NADPH was associated with an inhibition of PSI cyclic electron transport but there was no apparent change in the Mehler reaction activity in either cold-stressed or cold-acclimated leaves. Cold acclimation also resulted in an increase in the reduction state of the stroma, as indicated by an increased total activity and activation state of NADP-dependent malate dehydrogenase, and increased light-dependent activities of the major regulatory enzymes of the oxidative pentose-phosphate pathway. We suggest that the photosynthetic capacity during cold stress as well as cold

  18. Influence of nutrient supply on shade-sun acclimation of Picea abies seedlings: effects on foliar morphology, photosynthetic performance and growth.

    Grassi, G.; Minotta, G.

    2000-05-01

    Norway spruce seedlings (Picea abies Karst.) were grown in low light for one year, under conditions of adequate and limiting nutrition, then transferred to high light. Three months after transfer we measured photosynthesis, leaf nitrogen concentration, leaf chlorophyll concentration and leaf mass per area (LMA) of current-year and 1-year-old shoots; silhouette area ratio (SAR, the ratio of shoot silhouette area to projected needle area) was also measured in current-year shoots. At the foliage level, the effects of light and nutrient treatments differed markedly. Light availability during foliage expansion primarily affected LMA and SAR (morphological acclimation at the needle and shoot level, respectively). By contrast, nutrient supply in high light affected photosynthetic capacity per unit of leaf tissue (physiological acclimation at the cellular level) but did not affect LMA and SAR. The capacity for shade-sun acclimation in foliage formed before transfer to high light differed greatly from that of foliage formed following the transfer. The morphological inflexibility of mature needles (measured by LMA) limited their shade-sun acclimation potential. In contrast, at high nutrient supply, shoots that developed just after the change in photosynthetic photon flux density largely acclimated, both morphologically and physiologically, to the new light environment. The acclimation response of both current- and 1-year-old shoots was prevented by nutrient limitation. Analysis of growth at the whole-plant level largely confirmed the conclusions drawn at the shoot level. We conclude that nutrient shortage subsequent to the opening of a canopy gap may strongly limit the acclimation response of Norway spruce seedlings. Successful acclimation was largely related to the plant's ability to produce sun foliage and adjust whole-plant biomass allocation rapidly. PMID:12651514

  19. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster.

    Vladimír Koštál

    Full Text Available BACKGROUND: Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately -5°C exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH and long-term cold acclimation, shift the LLT by only a few degrees at the maximum. PRINCIPAL FINDINGS: We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt(50 during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h. Such marked physiological plasticity in Lt(50 (in contrast to LLT suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM and trehalose (up to 36.5 mM were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position increased at the expense of glycerophosphocholines. CONCLUSION: Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring.

  20. Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance.

    Bocian, Aleksandra; Kosmala, Arkadiusz; Rapacz, Marcin; Jurczyk, Barbara; Marczak, Łukasz; Zwierzykowski, Zbigniew

    2011-07-15

    Perennial ryegrass (Lolium perenne) is a high quality forage and turf grass mainly due to its excellent nutritive values and rapid establishment rate. However, this species has limited ability to perform in harsh winter climates. Though winter hardiness is a complex trait, it is commonly agreed that frost tolerance (FT) is its main component. Species growing in temperate regions can acquire FT through exposure to low, non-lethal temperatures, a phenomenon known as cold acclimation (CA). The research on molecular basis of FT has been performed on the model plants, but they are not well adapted to extreme winter climates. Thus, the mechanisms of cell response to low temperature in winter crops and agronomically important perennial grasses have yet to be revealed. Here, two L. perenne plants with contrasting levels of FT, high frost tolerant (HFT) and low frost tolerant (LFT) plants, were selected for comparative proteomic research. The work focused on analyses of leaf protein accumulation before and after 2, 8, 26 h, and 3, 5, 7, 14 and 21 days of CA, using a high-throughput two-dimensional electrophoresis, and on the identification of proteins which were accumulated differentially between the selected plants by the application of mass spectrometry (MS). Analyses of 580 protein profiles revealed a total of 42 (7.2%) spots that showed at a minimum of 1.5-fold differences in protein abundance, at a minimum of at one time point of CA between HFT and LFT genotypes. It was shown that significant differences in profiles of protein accumulation between the analyzed plants appeared most often on the 5th (18 proteins) and the 7th (19 proteins) day of CA. The proteins derived from 35 (83.3%) spots were successfully identified by the use of MS and chloroplast proteins were shown to be the major group selected as differentially accumulated during CA. The functions of the identified proteins and their probable influence on the level of FT in L. perenne are discussed. PMID

  1. A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa)

    Laurent, Oscar; Zeh, Armin

    2015-11-01

    Combined U-Pb and Lu-Hf isotope data from zircon populations are widely used to constrain Hadean-Archean crustal evolution. Linear Hf isotope-age arrays are interpreted to reflect the protracted, internal reworking of crust derived from the (depleted) mantle during a short-lived magmatic event, and related 176Lu/177Hf ratios are used to constrain the composition of the reworked crustal reservoir. Results of this study, however, indicate that Hf isotope-age arrays can also result from complex geodynamic processes and crust-mantle interactions, as shown by U-Pb and Lu-Hf isotope analyses of zircons from well characterized granitoids of the Pietersburg Block (PB), northern Kaapvaal Craton (South Africa). Apart from scarce remnants of Paleoarchean crust, most granitoids of the PB with ages between 2.94 and 2.05 Ga (n = 32) define a straight Hf isotope-age array with low 176Lu/177Hf of 0.0022, although they show a wide compositional range, were derived from various sources and emplaced successively in different geodynamic settings. The crustal evolution occurred in five stages: (I) predominately mafic crust formation in an intra-oceanic environment (3.4-3.0 Ga); (II) voluminous TTG crust formation in an early accretionary orogen (3.0-2.92 Ga); (III) internal TTG crust reworking and subduction of TTG-derived sediments in an Andean-type setting (2.89-2.75 Ga); (IV) (post-)collisional high-K magmatism from both mantle and crustal sources (2.71-2.67 Ga); and (V) alkaline magmatism in an intra-cratonic environment (2.05-2.03 Ga). The inferred array results from voluminous TTG crust formation during stage II, and involvement of this crust during all subsequent stages by two different processes: (i) internal crust reworking through both partial melting and assimilation at 2.89-2.75 Ga, leading to the formation of biotite granites coeval with minor TTGs, and (ii) subduction of TTG-derived sediments underneath the PB, causing enrichment of the mantle that subsequently became

  2. Effect of short-term heat acclimation on endurance time and skin blood flow in trained athletes

    Chen TI

    2013-06-01

    Full Text Available Tsung-I Chen,1,2 Pu-Hsi Tsai,3 Jui-Hsing Lin,4 Ning-Yuean Lee,5 Michael TC Liang61Graduate Institute of Sport Science, National Taiwan Sport University, Taoyuan, 2Center for Physical Education, Tzu Chi University, Hualien, 3Department of Sport and Leisure, National Quemoy University, Kinmen, 4Department of Physical Education, National Pingtung University of Education, Pingtung, 5College of Living Technology, Tainan University of Technology, Tainan, Taiwan; 6Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA, USABackground: To examine whether short-term, ie, five daily sessions, vigorous dynamic cycling exercise and heat exposure could achieve heat acclimation in trained athletes and the effect of heat acclimation on cutaneous blood flow in the active and nonactive limb.Methods: Fourteen male badminton and table tennis athletes (age = 19.6 ± 1.2 years were randomized into a heat acclimation (EXP, n = 7 or nonheat acclimation (CON, n = 7 group. For 5 consecutive days, the EXP group was trained using an upright leg cycle ergometer in a hot environment (38.4°C ± 0.4°C, while the CON group trained in a thermoneutral environment (24.1°C ± 0.3°C. For both groups, the training intensity and duration increased from a work rate of 10% below ventilatory threshold (VT and 25 minutes per session on day 1, to 10% above VT and 45 minutes per session on day 5. Subjects performed two incremental leg cycle exercise tests to exhaustion at baseline and post-training in both hot and thermoneutral conditions. Study outcome measurements include: maximum oxygen uptake (VO2max; exercise heart rate (HR; O2 pulse; exercise time to exhaustion (tmax; skin blood flow in the upper arm (SkBFa and quadriceps (SkBFq; and mean skin (Tsk.Results: The significant heat-acclimated outcome measurements obtained during high-intensity leg cycling exercise in the high ambient environment are: (1 56%–100% reduction in cutaneous

  3. Inter and intra-specific variation in photosynthetic acclimation response to long term exposure of elevated carbon dioxide

    Wilkinson, M. [Univ. of Essex, Colchester (United Kingdom)]|[Writtle Coll. (United Kingdom)

    1996-08-01

    The response of intra and interspecific variation in photosynthetic acclimation to growth at elevated atmospheric CO{sub 2} concentration (600{micro}mol mol-l) in six important grassland species was investigated. Plants were grown in a background sward of Lolium perenne and measurements were made after four years of growth at elevated C{sub a}. Elevated CO{sub 2} was maintained using a FACE (Free-Air Carbon Enrichment) system. Significant intra and interspecific variation in acclimation response was demonstrated. The response of adaxial and abaxial stomatal conductance to elevated CO{sub 2} was also investigated. The stomatal conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated C{sub a}. Significant asymmetric responses in stomatal conductance was demonstrated in D. glomerata and T. pratense. Analysis of stomatal indices and densities indicated that the observed reductions in stomatal conductance were probably the result of changes in stomatal aperture.

  4. John Day Fall Chinook/Salmon Mitigation Plan Acclimation and Imprinting Site Feasibility Study: Summary Report : Completion Report.

    U.S. Fish and Wildlife Service; Sverdrup Corporation; United States. Bonneville Power Administration.

    1987-09-01

    The purpose of this Plan is to replace upriver bright fall chinook salmon which were lost by construction of the John Day Dam. This will be accomplished by releasing salmon fry and smolts, incubated in the Spring Creek and Bonneville Hatcheries, at several upriver locations. Prior to release it is desired to feed and acclimate the juvenile fish to relieve the stress of truck transport, and to imprint them to the release site. This will ultimately produce adult chinook salmon that return to their historic spawning areas through traditional common property fisheries. It will also provide sexually mature broodstock fish that can be captured and spawned to supplement continued hatchery operation. This report summarizes results of an engineering feasibility study done for 10 potential acclimation sites on the Columbia, Yakima and Walla Walla Rivers. A detailed report has been prepared for each site and each is bound separately.

  5. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel;

    2008-01-01

    Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant......'s improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis...

  6. The potential of the MAGIC TOM Parental accessions to explore the genetic variability in tomato acclimation to repeated cycles of water deficit and recovery

    Julie eRipoll

    2016-01-01

    Full Text Available Episodes of water deficit (WD during the crop cycle of tomato may negatively impact plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate WD may induce a plant memory effect which is known to stimulate plant acclimation and defenses for upcoming stress episodes. The objective of this study was to analyze the positive and negative impacts of repeated episodes of WD at the plant and fruit levels. Three episodes of WD (-38 %, -45 % and -55 % of water supply followed by three periods of recovery (WD treatments, were applied to the 8 parents of the Multi-Parent Advanced Generation Inter-Cross population which offers the largest allelic variability observed in tomato. Predawn and midday water potentials, chlorophyll a fluorescence, growth and fruit quality traits (contents in sugars, acids, carotenoids and ascorbic acid (AsA were measured throughout the experiment. Important genotypic variations were observed both at the plant and fruit levels and variations in fruit and leaf traits were found not to be correlated. Overall, the WD treatments were at the origin of important osmotic regulations, reduction of leaf growth, acclimation of photosynthetic functioning, notably through an increase in the chlorophyll content and in the quantum yield of the electron transport flux until PSI acceptors (J0RE1/JABS. The effects on fruit sugar, acid, carotenoid and AsA contents on a dry matter basis ranged from negative to positive to nil depending on genotypes and stress intensity. Three small fruit size accessions were richer in AsA on a fresh matter basis, due to concentration effects. So, fruit quality was improved under WD mainly through concentration effects. On the whole, two accessions, LA1420 and Criollo appeared as interesting genetic resources, cumulating adaptive traits both at the leaf and fruit levels. Our observations show that the complexity involved in plant responses, when considering a broad range of

  7. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  8. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2014-01-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequ...

  9. De novo Synthesis and Assembly of rRNA into Ribosomal Subunits during Cold Acclimation in Escherichia coli.

    Piersimoni, Lolita; Giangrossi, Mara; Marchi, Paolo; Brandi, Anna; Gualerzi, Claudio O; Pon, Cynthia L

    2016-04-24

    During the cold adaptation that follows a cold stress, bacterial cells undergo many physiological changes and extensive reprogramming of their gene expression pattern. Bulk gene expression is drastically reduced, while a set of cold shock genes is selectively and transiently expressed. The initial stage of cold acclimation is characterized by the establishment of a stoichiometric imbalance of the translation initiation factors (IFs)/ribosomes ratio that contributes to the preferential translation of cold shock transcripts. Whereas de novo synthesis of the IFs following cold stress has been documented, nothing was known concerning the activity of the rrn operons during the cold acclimation period. In this work, we focus on the expression of the rrn operons and the fate of rRNA after temperature downshift. We demonstrate that in Escherichia coli, rRNA synthesis does not stop during the cold acclimation phase, but continues with greater contribution of the P2 compared to the P1 promoter and all seven rrn operons are active, although their expression levels change with respect to pre-stress conditions. Eight hours after the 37°→10°C temperature downshift, the newly transcribed rRNA represents up to 20% of total rRNA and is preferentially found in the polysomes. However, with respect to the de novo synthesis of the IFs, both rRNA transcription and maturation are slowed down drastically by cold stress, thereby accounting in part for the stoichiometric imbalance of the IFs/ribosomes. Overall, our data indicate that new ribosomes, which are possibly suitable to function at low temperature, are slowly assembled during cold acclimation. PMID:26953262

  10. Oxygen Consumption and Swimming Performance in Hypoxia-Acclimated Rainbow Trout Salmo Gairdneri

    BUSHNELL, PG; STEFFENSEN, JF; JOHANSEN, K

    1984-01-01

    -1 in hypoxiaacclimated fish. 3. Normoxic oxygen consumption of control fish ranged from 97.5 mg O2 kg-1 h-1(5.5cm s-1) to 318.5 mg O2 kg-1 h-1 (54.8 cm s-1) and did not differ significantly from that of hypoxia-acclimated fish in normoxia. 4. Reduction of ambient P002 from normoxia to 60mmHg or 40mm...

  11. Acclimation of Trichodesmium erythraeum ISM101 to high and low irradiance analysed on the physiological, biophysical and biochemical level

    Andresen, E.; Lohscheider, J.; Šetlíková, Eva; Adamska, I.; Šimek, Miloslav; Küpper, H.

    2010-01-01

    Roč. 185, č. 1 (2010), s. 173-188. ISSN 0028-646X R&D Projects: GA ČR GA206/08/1683 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60660521 Keywords : light acclimation * protein turnover * regulation of photosynthesis for nitrogen fixation Subject RIV: EE - Microbiology, Virology Impact factor: 6.516, year: 2010

  12. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances.

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  13.     Developmental acclimation affects clinal variation in stress resistance traits in Drosophila buzzatii

    Sarup, Pernille Merete; Loeschcke, Volker

    2010-01-01

      Patterns of clinal genetic variation in Drosophila are often characterized after rearing at constant temperatures. However, clinal patterns might change after acclimation if populations differ in their plastic response to fluctuating environments. We studied longevity, starvation and heat knock...... temperatures, especially in heat knock-down, for which clinal patterns disappeared when flies were reared at constant temperatures. This result emphasises the importance of determining whether populations originating from different environments differ in their plastic responses to stress....

  14. Automated Non-invasive Video-Microscopy of Oyster Spat Heart Rate during Acute Temperature Change: Impact of Acclimation Temperature

    Domnik, Nicolle J.; Polymeropoulos, Elias T.; Elliott, Nicholas G.; Frappell, Peter B.; Fisher, John T.

    2016-01-01

    We developed an automated, non-invasive method to detect real-time cardiac contraction in post-larval (1.1–1.7 mm length), juvenile oysters (i.e., oyster spat) via a fiber-optic trans-illumination system. The system is housed within a temperature-controlled chamber and video microscopy imaging of the heart was coupled with video edge-detection to measure cardiac contraction, inter-beat interval, and heart rate (HR). We used the method to address the hypothesis that cool acclimation (10°C vs. 22°C—Ta10 or Ta22, respectively; each n = 8) would preserve cardiac phenotype (assessed via HR variability, HRV analysis and maintained cardiac activity) during acute temperature changes. The temperature ramp (TR) protocol comprised 2°C steps (10 min/experimental temperature, Texp) from 22°C to 10°C to 22°C. HR was related to Texp in both acclimation groups. Spat became asystolic at low temperatures, particularly Ta22 spat (Ta22: 8/8 vs. Ta10: 3/8 asystolic at Texp = 10°C). The rate of HR decrease during cooling was less in Ta10 vs. Ta22 spat when asystole was included in analysis (P = 0.026). Time-domain HRV was inversely related to temperature and elevated in Ta10 vs. Ta22 spat (P < 0.001), whereas a lack of defined peaks in spectral density precluded frequency-domain analysis. Application of the method during an acute cooling challenge revealed that cool temperature acclimation preserved active cardiac contraction in oyster spat and increased time-domain HRV responses, whereas warm acclimation enhanced asystole. These physiologic changes highlight the need for studies of mechanisms, and have translational potential for oyster aquaculture practices.

  15. Intracerebroventricular administration of leptin increase physical activity but has no effect on thermogenesis in cold-acclimated rats

    Gang-Bin Tang; Xiang-Fang Tang; Kui Li; De-Hua Wang

    2015-01-01

    Most small homotherms display low leptin level in response to chronic cold exposure. Cold-induced hypoleptinemia was proved to induce hyperphagia. However, it is still not clear whether hypoleptinemia regulates energy expenditure in cold condition. We try to answer this question in chronic cold-acclimated rats. Results showed that 5-day intracerebroventricular(ICV) infusion of leptin (5 μg/day) had no effects on basal and adaptive thermogenesis and uncoupling protein 1 expression. Physical ac...

  16. Predictive Big Data Analytics: A Study of Parkinson’s Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations

    Dinov, Ivo D.; Heavner, Ben; Tang, Ming; Glusman, Gustavo; Chard, Kyle; Darcy, Mike; Madduri, Ravi; Pa, Judy; Spino, Cathie; Kesselman, Carl; Foster, Ian; Deutsch, Eric W.; Price, Nathan D.; Van Horn, John D.; Ames, Joseph; Clark, Kristi; Hood, Leroy; Hampstead, Benjamin M.; Dauer, William; Toga, Arthur W.

    2016-01-01

    Background A unique archive of Big Data on Parkinson’s Disease is collected, managed and disseminated by the Parkinson’s Progression Markers Initiative (PPMI). The integration of such complex and heterogeneous Big Data from multiple sources offers unparalleled opportunities to study the early stages of prevalent neurodegenerative processes, track their progression and quickly identify the efficacies of alternative treatments. Many previous human and animal studies have examined the relationship of Parkinson’s disease (PD) risk to trauma, genetics, environment, co-morbidities, or life style. The defining characteristics of Big Data–large size, incongruency, incompleteness, complexity, multiplicity of scales, and heterogeneity of information-generating sources–all pose challenges to the classical techniques for data management, processing, visualization and interpretation. We propose, implement, test and validate complementary model-based and model-free approaches for PD classification and prediction. To explore PD risk using Big Data methodology, we jointly processed complex PPMI imaging, genetics, clinical and demographic data. Methods and Findings Collective representation of the multi-source data facilitates the aggregation and harmonization of complex data elements. This enables joint modeling of the complete data, leading to the development of Big Data analytics, predictive synthesis, and statistical validation. Using heterogeneous PPMI data, we developed a comprehensive protocol for end-to-end data characterization, manipulation, processing, cleaning, analysis and validation. Specifically, we (i) introduce methods for rebalancing imbalanced cohorts, (ii) utilize a wide spectrum of classification methods to generate consistent and powerful phenotypic predictions, and (iii) generate reproducible machine-learning based classification that enables the reporting of model parameters and diagnostic forecasting based on new data. We evaluated several

  17. Food restriction attenuates oxidative stress in brown adipose tissue of striped hamsters acclimated to a warm temperature.

    Zhang, Ji-Ying; Zhao, Xiao-Ya; Wang, Gui-Ying; Wang, Chun-Ming; Zhao, Zhi-Jun

    2016-05-01

    It has been suggested that the up-regulation of uncoupling proteins (UCPs) decreases reactive oxygen species (ROS) production, in which case there should be a negative relationship between UCPs expression and ROS levels. In this study, the effects of temperature and food restriction on ROS levels and metabolic rate, UCP1 mRNA expression and antioxidant levels were examined in the brown adipose tissue (BAT) of the striped hamsters (Cricetulus barabensis). The metabolic rate and food intake of hamsters which had been restricted to 80% of ad libitum food intake, and acclimated to a warm temperature (30°C), decreased significantly compared to a control group. Hydrogen peroxide (H2O2) levels were 42.9% lower in food restricted hamsters than in the control. Malonadialdehyde (MDA) levels of hamsters acclimated to 30°C that were fed ad libitum were significantly higher than those of the control group, but 60.1% lower than hamsters that had been acclimated to the same temperature but subject to food restriction. There were significantly positive correlations between H2O2 and, MDA levels, catalase activity, and total antioxidant capacity. Cytochrome c oxidase activity and UCP1 mRNA expression significantly decreased in food restricted hamsters compared to the control. These results suggest that warmer temperatures increase oxidative stress in BAT by causing the down-regulation of UCP1 expression and decreased antioxidant activity, but food restriction may attenuate the effects. PMID:27157336

  18. Simultaneous enhancement of phenolic compound degradations by Acinetobacter strain V2 via a step-wise continuous acclimation process.

    Lin, Johnson; Sharma, Vikas; Milase, Ridwaan; Mbhense, Ntuthuko

    2016-06-01

    Phenol degradation enhancement of Acinetobacter strain V2 by a step-wise continuous acclimation process was investigated. At the end of 8 months, three stable adapted strains, designated as R, G, and Y, were developed with the sub-lethal concentration of phenol at 800, 1100, and 1400 mg/L, respectively, from 400 mg/L of V2 parent strain. All strains degraded phenol at their sub-lethal level within 24 h, their growth rate increased as the acclimation process continued and retained their degradation properties even after storing at -80 °C for more than 3 years. All adapted strains appeared coccoid with an ungranulated surface under electron microscope compared to typical rod-shaped parental strain V2 . The adapted Y strain also possessed superior degradation ability against aniline, benzoate, and toluene. This study demonstrated the use of long term acclimation process to develop efficient and better pollutant degrading bacterial strains with potentials in industrial and environmental bioremediation. PMID:26471472

  19. The significance of cysteine synthesis for acclimation to high light conditions.

    Speiser, Anna; Haberland, Stefan; Watanabe, Mutsumi; Wirtz, Markus; Dietz, Karl-Josef; Saito, Kazuki; Hell, Rüdiger

    2014-01-01

    Situations of excess light intensity are known to result in the emergence of reactive oxygen species that originate from the electron transport chain in chloroplasts. The redox state of glutathione and its biosynthesis contribute importantly to the plant's response to this stress. In this study we analyzed the significance of cysteine synthesis for long-term acclimation to high light conditions in Arabidopsis thaliana. Emphasis was put on the rate-limiting step of cysteine synthesis, the formation of the precursor O-acetylserine (OAS) that is catalyzed by serine acetyltransferase (SERAT). Wild type Arabidopsis plants responded to the high light condition (800 μmol m(-2) s(-1) for 10 days) with synthesis of photo-protective anthocyanins, induction of total SERAT activity and elevated glutathione levels when compared to the control condition (100 μmol m(-2) s(-1)). The role of cysteine synthesis in chloroplasts was probed in mutant plants lacking the chloroplast isoform SERAT2;1 (serat2;1) and two knock-out alleles of CYP20-3, a positive interactor of SERAT in the chloroplast. Acclimation to high light resulted in a smaller growth enhancement than wild type in the serat2;1 and cyp20-3 mutants, less induction of total SERAT activity and OAS levels but similar cysteine and glutathione concentrations. Expression analysis revealed no increase in mRNA of the chloroplast SERAT2;1 encoding SERAT2;1 gene but up to 4.4-fold elevated SERAT2;2 mRNA levels for the mitochondrial SERAT isoform. Thus, lack of chloroplast SERAT2;1 activity or its activation by CYP20-3 prevents the full growth response to high light conditions, but the enhanced demand for glutathione is likely mediated by synthesis of OAS in the mitochondria. In conclusion, cysteine synthesis in the chloroplast is important for performance but is dispensable for survival under long-term exposure to high light and can be partially complemented by cysteine synthesis in mitochondria. PMID:25653656

  20. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors

    Peter A. Ajibade

    2011-08-01

    Full Text Available The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm, 2.91 eV (426 nm and 4.27 eV (290 nm for the ZnS, CdS and HgS samples respectively.

  1. ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors.

    Onwudiwe, Damian C; Ajibade, Peter A

    2011-01-01

    The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively. PMID:22016607

  2. Differential expression of duplicated LDH-A genes during temperature acclimation of weatherfish Misgurnus fossilis. Functional consequences for the enzyme.

    Zakhartsev, Maxim; Lucassen, Magnus; Kulishova, Liliya; Deigweiher, Katrin; Smirnova, Yuliya A; Zinov'eva, Rina D; Mugue, Nikolay; Baklushinskaya, Irina; Pörtner, Hans O; Ozernyuk, Nikolay D

    2007-03-01

    Temperature acclimation in poikilotherms entails metabolic rearrangements provided by variations in enzyme properties. However, in most cases the underlying molecular mechanisms that result in structural changes in the enzymes are obscure. This study reports that acclimation to low (5 degrees C) and high (18 degrees C) temperatures leads to differential expression of alternative forms of the LDH-A gene in white skeletal muscle of weatherfish, Misgurnus fossilis. Two isoforms of LDH-A mRNA were isolated and characterized: a short isoform (= 1332 bp) and a long isoform ( = 1550 bp), which both have 5'-UTRs and ORFs of the same length (333 amino acid residues), but differ in the length of the 3'-UTR. In addition, these two mRNAs have 44 nucleotide point mismatches of an irregular pattern along the complete sequence, resulting in three amino acid mismatches (Gly214Val; Val304Ile and Asp312Glu) between protein products from the short and long mRNA forms, correspondingly LDH-A(alpha) and LDH-A(beta) subunits. It is expected that the beta-subunit is more aliphatic due to the properties of the mismatched amino acids and therefore sterically more restricted. According to molecular modelling of M. fossilis LDH-A, the Val304Ile mismatch is located in the subunit contact area of the tetramer, whereas the remaining two mismatches surround the contact area; this is expected to manifest in the kinetic and thermodynamic properties of the assembled tetramer. In warm-acclimated fish the relative expression between alpha and beta isoforms of the LDH-A mRNA is around 5 : 1, whereas in cold-acclimated fish expression of is reduced almost to zero. This indicates that at low temperature the pool of total tetrameric LDH-A is more homogeneous in terms of alpha/beta-subunit composition. The temperature acclimation pattern of proportional pooling of subunits with different kinetic and thermodynamic properties of the tetrameric enzyme may result in fine-tuning of the properties of skeletal

  3. Heterotrophic respiration does not acclimate to continuous warming in a subtropical forest

    Wu, Chuansheng; Liang, Naishen; Sha, Liqing; Xu, Xingliang; Zhang, Yiping; Lu, Huazheng; Song, Liang; Song, Qinghai; Xie, Youneng

    2016-02-01

    As heterotrophic respiration (RH) has great potential to increase atmospheric CO2 concentrations, it is important to understand warming effects on RH for a better prediction of carbon-climate feedbacks. However, it remains unclear how RH responds to warming in subtropical forests. Here, we carried out trenching alone and trenching with warming treatments to test the climate warming effect on RH in a subtropical forest in southwestern China. During the measurement period, warming increased annual soil temperature by 2.1 °C, and increased annual mean RH by 22.9%. Warming effect on soil temperature (WET) showed very similar pattern with warming effect on RH (WERH), decreasing yearly. Regression analyses suggest that WERH was controlled by WET and also regulated by the soil water content. These results showed that the decrease of WERH was not caused by acclimation to the warmer temperature, but was instead due to decrease of WET. We therefore suggest that global warming will accelerate soil carbon efflux to the atmosphere, regulated by the change in soil water content in subtropical forests.

  4. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation.

    Fantazzini, Paola; Mengoli, Stefano; Pasquini, Luca; Bortolotti, Villiam; Brizi, Leonardo; Mariani, Manuel; Di Giosia, Matteo; Fermani, Simona; Capaccioni, Bruno; Caroselli, Erik; Prada, Fiorella; Zaccanti, Francesco; Levy, Oren; Dubinsky, Zvy; Kaandorp, Jaap A; Konglerd, Pirom; Hammel, Jörg U; Dauphin, Yannicke; Cuif, Jean-Pierre; Weaver, James C; Fabricius, Katharina E; Wagermaier, Wolfgang; Fratzl, Peter; Falini, Giuseppe; Goffredo, Stefano

    2015-01-01

    Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton's structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean. PMID:26183259

  5. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis.

    Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter

    2006-01-01

    The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences. PMID:16415331

  6. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment

    Mayfield, A. B.; Fan, T.-Y.; Chen, C.-S.

    2013-12-01

    Recent work has found that pocilloporid corals from regions characterized by unstable temperatures, such as those exposed to periodic upwelling, display a remarkable degree of phenotypic plasticity. In order to understand whether important reef builders from these upwelling reefs remain physiologically uncompromised at temperatures they will experience in the coming decades as a result of global climate change, a long-term elevated temperature experiment was conducted with Pocillopora damicornis specimens collected from Houbihu, a small embayment within Nanwan Bay, southern Taiwan that is characterized by 8-9 °C temperature changes during upwelling events. Upon nine months of exposure to nearly 30 °C, all colony (mortality and surface area), polyp ( Symbiodinium density and chlorophyll a content), tissue (total thickness), and molecular (gene expression and molecular composition)-level parameters were documented at similar levels between experimental corals and controls incubated at 26.5 °C, suggesting that this species can readily acclimate to elevated temperatures that cause significant degrees of stress, or even bleaching and mortality, in conspecifics of other regions of the Indo-Pacific. However, the gastrodermal tissue layer was relatively thicker in corals of the high temperature treatment sampled after nine months, possibly as an adaptive response to shade Symbiodinium from the higher photosynthetically active radiation levels that they were experiencing at that sampling time. Such shading may have prevented high light and high temperature-induced photoinhibition, and consequent bleaching, in these samples.

  7. Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression

    Hennon, Gwenn M. M.; Ashworth, Justin; Groussman, Ryan D.; Berthiaume, Chris; Morales, Rhonda L.; Baliga, Nitin S.; Orellana, Mónica V.; Armbrust, E. V.

    2015-08-01

    Diatoms are responsible for ~40% of marine primary productivity, fuelling the oceanic carbon cycle and contributing to natural carbon sequestration in the deep ocean. Diatoms rely on energetically expensive carbon concentrating mechanisms (CCMs) to fix carbon efficiently at modern levels of CO2 (refs , , ). How diatoms may respond over the short and long term to rising atmospheric CO2 remains an open question. Here we use nitrate-limited chemostats to show that the model diatom Thalassiosira pseudonana rapidly responds to increasing CO2 by differentially expressing gene clusters that regulate transcription and chromosome folding, and subsequently reduces transcription of photosynthesis and respiration gene clusters under steady-state elevated CO2. These results suggest that exposure to elevated CO2 first causes a shift in regulation, and then a metabolic rearrangement. Genes in one CO2-responsive cluster included CCM and photorespiration genes that share a putative cAMP-responsive cis-regulatory sequence, implying these genes are co-regulated in response to CO2, with cAMP as an intermediate messenger. We verified cAMP-induced downregulation of CCM gene δ-CA3 in nutrient-replete diatom cultures by inhibiting the hydrolysis of cAMP. These results indicate an important role for cAMP in downregulating CCM and photorespiration genes under elevated CO2 and provide insights into mechanisms of diatom acclimation in response to climate change.

  8. Changes in membrane lipids and carotenoids during light acclimation in a marine cyanobacterium Synechococcus sp.

    Olimpio Montero; Alberto Sánchez-Guijo; Luis M Lubián; Gonzalo Martínez-Rodríguez

    2012-09-01

    Time course of carotenoid and membrane lipid variation during high light (HL) acclimation (about 85 mol m−2 s−1), after transfer from low light (LL) (5–10 μmol m−2 s−1), was determined in a marine Synechococcus strain. High-performance liquid chromatography (HPLC) coupled to diode array detector (DAD) or electrospray ionization mass spectrometry (ESI-MS) was used for compound separation and detection. Myxoxanthophyll rose within a time interval of 8 h to 24 h after the onset of exposure to HL. -carotene content started to decrease after 4 h of the onset of exposure to HL. Zeaxanthin content rose with exposure to HL, but it was only significant after 24 h of exposure. Carotenoid changes are in agreement with a coordinated activity of the enzymes of the myxoxanthophyll biosynthetic pathway, with no rate-limiting intermediate steps. Lipid analysis showed all species with a C18:3/C16:0 composition increased their content, the changes of PG(18:3/16:0) and MGDG(18:3/16:0) being primarily significant. Major lipid changes were also found to occur within 24 h. These changes might suggest reduction and reorganization of the thylakoid membrane structure. Hypotheses are also drawn on the role played by lipid molecule shape and their possible effect in membrane fluidity and protein accommodation.

  9. Toward systems biology in brown algae to explore acclimation and adaptation to the shore environment.

    Tonon, Thierry; Eveillard, Damien; Prigent, Sylvain; Bourdon, Jérémie; Potin, Philippe; Boyen, Catherine; Siegel, Anne

    2011-12-01

    Brown algae belong to a phylogenetic lineage distantly related to land plants and animals. They are almost exclusively found in the intertidal zone, a harsh and frequently changing environment where organisms are submitted to marine and terrestrial constraints. In relation with their unique evolutionary history and their habitat, they feature several peculiarities, including at the level of their primary and secondary metabolism. The establishment of Ectocarpus siliculosus as a model organism for brown algae has represented a framework in which several omics techniques have been developed, in particular, to study the response of these organisms to abiotic stresses. With the recent publication of medium to high throughput profiling data, it is now possible to envision integrating observations at the cellular scale to apply systems biology approaches. As a first step, we propose a protocol focusing on integrating heterogeneous knowledge gained on brown algal metabolism. The resulting abstraction of the system will then help understanding how brown algae cope with changes in abiotic parameters within their unique habitat, and to decipher some of the mechanisms underlying their (1) acclimation and (2) adaptation, respectively consequences of (1) the behavior or (2) the topology of the system resulting from the integrative approach. PMID:22136637

  10. Study on Seawater-acclimation Spirulina%海水驯化螺旋藻研究

    关邵晨; 王璇; 李杰; 秦琅; 董仁杰; 朱毅

    2012-01-01

    [Objective] The aim was to seek Spirulina culture methods with seawater. [Method] Spirulina was habituated culture progressively with prepared seawater-acclimation solution, moreover, the morphological changes of Spirulina were observed and its biochemical indicators were measured. [Result]The new algaes was obtained, it has better stability and average length was greater than Spirulina in fresh water, its chlorophyll content was substantially unchanged, and the concentration of phycocyanin increased by 62.8% compared with Spirulina in fresh water. [Conclusion] The method can save resources and cost, which lay the foundation for large scale production and processing of Spirulina.%[目的]探寻螺旋藻的海水培养方法.[方法]用配制的海水驯化培养液对螺旋藻进行逐级驯化培养,观察螺旋藻的形态学变化并测量其生化指标.[结果]得到了平均长度大于淡水螺旋藻且稳定性良好的藻种,其叶绿素含量基本不变,藻蓝蛋白浓度较淡水培养的螺旋藻增加了62.8%.[结论]该方法可节省资源和成本,为螺旋藻的规模化生产和加工奠定了基础.

  11. Role of calcium in acclimation of the cyanobacterium Synechococcus elongatus PCC 7942 to nitrogen starvation.

    Leganés, Francisco; Forchhammer, Karl; Fernández-Piñas, Francisca

    2009-01-01

    A Ca2+ signal is required for the process of heterocyst differentiation in the filamentous diazotrophic cyanobacterium Anabaena sp. PCC 7120. This paper presents evidence that a transient increase in intracellular free Ca2+ is also involved in acclimation to nitrogen starvation in the unicellular non-diazotrophic cyanobacterium Synechococcus elongatus PCC 7942. The Ca2+ transient was triggered in response to nitrogen step-down or the addition of 2-oxoglutarate (2-OG), or its analogues 2,2-difluoropentanedioic acid (DFPA) and 2-methylenepentanedioic acid (2-MPA), to cells growing with combined nitrogen, suggesting that an increase in intracellular 2-OG levels precedes the Ca2+ transient. The signalling protein P(II) and the transcriptional regulator NtcA appear to be needed to trigger the signal. Suppression of the Ca2+ transient by the intracellular Ca2+ chelator N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl

  12. EFFECTS OF 4-CHLOROPHENOL LOADINGS ON ACCLIMATION OF BIOMASS WITH OPTIMIZED FIXED TIME SEQUENCING BATCH REACTOR

    H. Movahedyan, A. Assadi, M. M. Amin

    2008-10-01

    Full Text Available Abstract: Chlorinated phenols in many industrial effluents are usually difficult to be removed by conventional biological treatment processes. Performance of the aerobic sequencing batch reactor treating 4-chlorophenol containing wastewater at different loadings rates from 0.0075 to 1.2 g4CP/L.d was evaluated. The sequencing batch reactor was operated with fill, react, settle and decant phases in the order of 10:370:90:10 min, respectively, for a cycle time of 8 h at 10 days solid retention time and 16 h hydraulic retention time in the stable period. The effects of 4-chlorophenol loadings on the 4-chlorophenol and chemical oxygen demand removal percents, yield coefficient (Y, biomass variation and sludge volume index were investigated. High chemical oxygen demand removal efficiencies (95±3.5% and approximately complete 4-chlorophenol removal (>99% were observed even in the absence of growth substrate. The degradation of 4-chlorophenol led to formation of 5-chloro-2-hydroxymuconic semialdehyde, which was more oxidized, indicating complete disappearance of 4-chlorophenol via meta-cleavage pathway. A compact sludge with excellent settleability (sludge volume index=47±6.1 mL/g developed during entire acclimation period. High removal efficiencies with sequencing batch reactor may be due to enforced short term unsteady state conditions coupled with periodic exposure of the microorganisms to defined process conditions which facilitate the required metabolic pathways for treating xenobiotics containing wastewater.

  13. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide

    Zhu, J.; Zeng, Q.; Xie, Z.; Tang, H.; Zhu, C. (Chinese Academy of Sciences. State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing (China)); Hasegawa, T. (National Institute for Agro-Environmental Sciences. Agro-Meteorology Div., Tsukuba (Japan)); Ziska, L. (Crop Systems and Global Change Lab., Beltsville, MD (United States)); Jia, X. (Chinese Academic of Sciences/Nanjing Botanical Garden Memorial Sun Yat-Sen. Jiangsu Institute of Botany, Nanjing (China))

    2012-07-15

    In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, g{sub s}, g{sub m}, C{sub i}/C{sub a}, C{sub i}/C{sub c}, V{sub cmax}, J{sub max}, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid-anthesis and the late grain-filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid-anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO{sub 2}]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non-structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO{sub 2}] appeared to enhance the rate of N degradation and senescence so that by late-grain fill, photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO{sub 2}] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation. (Author)

  14. Geochronology, mantle source composition and geodynamic constraints on the origin of Neoarchean mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton

    Deng, Hao; Kusky, Timothy; Polat, Ali; Wang, Junpeng; Wang, Lu; Fu, Jianmin; Wang, Zhensheng; Yuan, Ye

    2014-09-01

    Mafic granulitic and amphibolitic boudins dispersed in Archean felsic gneisses are widely distributed in the Central Orogenic Belt (COB) and the Eastern Block of the North China Craton (NCC) and are considered to constitute deformed mafic dike swarms. Previous studies have demonstrated that the mafic dikes in the Zanhuang Complex of the NCC intruded the fabrics of an Archean mélange belt and were boudinaged during younger deformation. Igneous zircons from an undeformed mafic dike yield a 207Pb/206Pb age of 2535 ± 30 Ma, which is interpreted as the crystallization age. In addition, pegmatites cutting across the mafic dikes in the field also yield an igneous zircon 207Pb/206Pb age of 2504 ± 16 Ma, providing strong evidence that the mafic dikes in the NCC intruded during the Neoarchean. Metamorphic zircons from one deformed mafic dike sample yield a metamorphic 207Pb/206Pb age of 2090 ± 83 Ma, and another four samples from deformed mafic dikes have a consistent metamorphic zircon age of ca. 1850 Ma, indicating that the mafic dikes underwent at least two generations of Paleoproterozoic metamorphism of ca. 2.1 Ga and ca. 1.85 Ga. Previously reported trace element systematics of the mafic dikes are consistent with an arc-related lithospheric mantle source region, rather than an ocean island basalt (OIB)-like source region. The new whole rock Nd isotopic composition (ɛNd(t) = + 0.71 to + 3.70) is relatively more evolved compared to that of the depleted mantle at 2.5 Ga, indicating an enriched lithospheric mantle source. Accordingly, the mafic dikes are proposed to have been formed in a subduction-related environment and their enriched mantle source was metasomatized by the melts and fluids derived from the subducted slab. Based on previous studies of the NCC and new geochronological and isotopic data in this contribution, a new comprehensive tectonic model is proposed for the evolution of the NCC between 2.7 Ga and 1.85 Ga: (1) from 2.7 to 2.5 Ga, an oceanic arc

  15. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra

    Kosová, K.; Prášil, I.T.; Vítámvás, P.; Dobrev, Petre; Motyka, Václav; Floková, Kristýna; Novák, Ondřej; Turečková, Veronika; Rolčík, Jakub; Pešek, Bedřich; Trávníčková, Alena; Gaudinová, Alena; Galiba, G.; Janda, T.; Vlasáková, E.; Prášilová, P.; Vaňková, Radomíra

    2012-01-01

    Roč. 169, č. 6 (2012), s. 567-576. ISSN 0176-1617 R&D Projects: GA ČR GA522/09/2058; GA MŠk MEB040713; GA MŠk MEB040924 Grant ostatní: GA ČR(CZ) GPP501/11/P637 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cold stress * Dehydrin * Frost tolerance Subject RIV: ED - Physiology Impact factor: 2.699, year: 2012

  16. MODIS Land Surface Temperature time series reconstruction with Open Source GIS: A new quality of temperature based ecological indicators in complex terrain (Invited)

    Neteler, M.

    2009-12-01

    In complex terrain like the Central European Alps, meteorological stations and ground surveys are usually sparsely and/or irregularly distributed and often favor agricultural areas. The application of traditional geospatial interpolation methods in complex terrain remains challenging and difficult to optimize. An alternative data source is remote sensing: high temporal resolution satellite data are continuously gaining interest since these data are intrinsically spatialized: continuous field of observations is obtained with this tool instead of point data. The increasing data availability suggests using these time series as surrogate to certain measures from meteorological stations, especially for temperature and related derivatives. The Terra and Aqua satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS) provide four Earth coverages per day at various resolutions. We analyzed 8 years (2000 to 2008) of daily land surface temperature (LST) data from MODIS in an area located in the Southern European Alps. A method was developed to reconstruct incomplete maps (cloud coverage, invalid pixels) based on image statistics and on a model that includes additional GIS layers. The original LST map resolution of 1000m could be improved to 200m in this process which renders the resulting LST maps applicable at regional scales. We propose the use of these reconstructed daily LST time series as surrogate to meteorological observations especially in the area of epidemiological modeling where data are typically aggregated to decadal indicators. From these daily LST map series, derivable indicators include: 1) temperatures minima, means and maxima for annual/monthly/decadal periods; 2) unusual hot summers;3) the calculation of growing degree days, and 4) spring temperature increase or autumnal temperature decrease. Since more than 8 years of MODIS LST data are available today, even preliminary gradients can be extracted to assess multi-annual temperature trends

  17. Acclimation-induced changes in toxicity and induction of metallothionein-like proteins in the fathead minnow following sublethal exposure to cobalt, silver, and zinc

    Increases in tolerance and resistance to metal toxicity by aquatic organisms have been linked to elevated levels of low-molecular-weight metal-binding proteins (e.g., metallothioneins). Acclimation-induced changes in toxic response and the concentration of metallothionein-like proteins (MTP) were studied in laboratory populations of the fathead minnow, Pimephales promelas, following sublethal exposure to Co, Ag, and Zn. Following 7 and 14 days of sublethal exposure, tolerance and resistance, as measured by acute toxicity values, were altered in a dose dependent fashion. Acute toxicity values returned to control levels after 21 days of continuous exposure. Tolerance and resistance of Co- and Zn-acclimated animals were depressed after a 7-day post-acclimation period in control water. Tolerance and resistance of Ag-acclimated animals were temporarily enhanced after 7 days post-acclimation and returned to control levels after 14 days. Accumulation of Co, Ag, and Zn measured as wholebody residues appeared to be regulated in 4 of 6 exposure regimes with residues reaching stable levels after 7 to 14 days of exposure. MTP was induced by exposure to 1.8 mg Zn/L and 0.01 mg Ag/L, however, no sustained (i.e., post 21 days) tolerance or resistance were observed at these dose levels indicating that these two biological responses may not be directly related

  18. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Kiilerich, P.; Bjornsson, B. Th; Madsen, Steffen S.; McCormick, S.D.; Stefansson, S.O.

    2008-01-01

    The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11??-hydroxysteroid dehydrogenase type-2 (11??-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4 days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11

  19. Changes of brain monoamine levels and physiological indexes during heat acclimation in rats.

    Nakagawa, Hikaru; Matsumura, Takeru; Suzuki, Kota; Ninomiya, Chisa; Ishiwata, Takayuki

    2016-05-01

    Brain monoamines, such as noradrenaline (NA), dopamine (DA), and serotonin (5-HT), regulate many important physiological functions including thermoregulation. The purpose of this study was to clarify changes in NA, DA, and 5-HT levels in several brain regions in response to heat acclimation while also recording body temperature (Tb), heart rate (HR), and locomotor activity (Act). Rats were exposed to a heated environment (32°C) for 3h (3H), 1 day (1D), 7 days, 14 days (14D), 21 days, or 28 days (28D). After heat exposure, each of the following brain regions were immediately extracted and homogenized: the caudate putamen (CPu), preoptic area (PO), dorsomedial hypothalamus (DMH), frontal cortex (FC), and hippocampus (Hip). NA, DA, and 5-HT levels in the extract were measured by high performance liquid chromatography. Although Tb increased immediately after heat exposure, it decreased about 14D later. HR was maintained at a low level throughout heat exposure, and Act tended to increase near the end of heat exposure. After 3H, we observed a marked increase in NA level in the CPu. Although this response vanished after 1D, the level increased again after 28D. DA level in the CPu decreased significantly from 1D to 28D. 5-HT level in the PO and DMH decreased from 1D to 14D. It returned to control levels after 28D with increment of DA level. 5-HT level in the FC decreased at the start of heat exposure, but recovered after 28D; a time point at which DA level also increased. Monoamine levels in the Hip were unchanged after early heat exposure, but both 5-HT and DA levels increased after 28D. These results provide definitive evidence of changes in monoamines in individual brain regions involved in thermoregulation and behavioral, cognitive, and memory function during both acute and chronic heat exposure. PMID:27157329

  20. Process- and controller-adaptations determine the physiological effects of cold acclimation.

    Werner, Jürgen

    2008-09-01

    Experimental results on physiological effects of cold adaptation seem confusing and apparently incompatible with one another. This paper will explain that a substantial part of such a variety of results may be deduced from a common functional concept. A core/shell treatment ("model") of the thermoregulatory system is used with mean body temperature as the controlled variable. Adaptation, as a higher control level, is introduced into the system. Due to persistent stressors, either the (heat transfer) process or the controller properties (parameters) are adjusted (or both). It is convenient to call the one "process adaptation" and the other "controller adaptation". The most commonly demonstrated effect of autonomic cold acclimation is a change in the controller threshold. The analysis shows that this necessarily means a lowering of body temperature because of a lowered metabolic rate. This explains experimental results on both Europeans in the climatic chamber and Australian Aborigines in a natural environment. Exclusive autonomic process adaptation occurs in the form of a better insulation. The analysis explains why the post-adaptive steady-state can only be achieved, if the controller system reduces metabolism and why in spite of this the new state is inevitably characterized by a rise in body temperature. If both process and controller adaptations are simultaneously present, there may be not any change of body temperature at all, e.g., as demonstrated in animal experiments. Whether this kind of adaptation delivers a decrease, an increase or no change of mean body temperature, depends on the proportion of process and controller adaptation. PMID:18026979

  1. Photosynthetic and Respiratory Acclimation to Experimental Warming for Four Species in a Tallgrass Prairie Ecosystem

    Xuhui Zhou; Xiaozhong Liu; Linda L. Wallace; Yiqi Luo

    2007-01-01

    Global temperature has been increased by 0.6 ℃ over the past century and is predicted to increase by 1.4-5.8 ℃ by the end of this century. It is unclear what impacts global warming will have on tallgrass species. In the present study, we examined leaf net photosynthetic rate (Pn) and leaf respiration rate in darkness (Rd) of Aster ericoides (L.)Nesom, Ambrosia psilostachya DC., Hellanthus mollis Lam., and Sorghastrum nutans (L.) Nash In response to experimental warming in a tallgrass prairie ecosystem of the Great Plains, USA, in the autumn (fall) of 2000 and through 2001. Warming has been implemented with infrared heaters since 21 November 1999. The Pn increased significantly in spring, decreased in early fall, and did not change in summer and late fall in the four species under warming compared with control. The Rd of the four species increased significantly until mid-summer and then did not change under warming. Measured temperature-response curves of Pn showed that warming increased the optimum temperature of Pn (Topt) by 2.32 and 4.59 ℃ for H. mollis and S. nutans, respectively, in August, whereas there were no changes in May and September, and A. ericoides and A. psilostachya also showed no changes in any of the 3 months. However, Pn at optimum temperature (Popt) showed downregulation in September and no regulation in May and August for all four species. The temperature-response curves of Rd illustrate that the temperature sensitivity of Rd, Q10, was lower in the warmed plots compared with the control plots, except for A. ericoides in August, whereas there were no changes in May and September for all four species. The results of the present study indicate that photosynthetic and respiratory acclimation varies with species and among seasons, occurring in the mid-growing season and not in the early and late growing seasons.

  2. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment.

    Štroch, Michal; Materová, Zuzana; Vrábl, Daniel; Karlický, Václav; Šigut, Ladislav; Nezval, Jakub; Špunda, Vladimír

    2015-11-01

    We examined the acclimation response of the photosynthetic apparatus of barley (Hordeum vulgare L.) to a combination of UV-A and UV-B radiation (UVAB) and to UV-B radiation alone. Our aim was to evaluate whether UV-A radiation prevents UV-B-induced damage to the photosynthetic apparatus and whether UV-A pre-acclimation is required to mitigate the negative influence of UV-B radiation. Barley plants were grown from seeds under low photosynthetically active radiation (50 μmol m(-2) s(-1)) either in the absence or presence of UV-A radiation (UVA- and UVA+ plants, respectively). After 8 days of development, plants were exposed simultaneously to UV-A and UV-B radiation for the next 6 days. Additionally, UVA- plants were exposed to UV-B radiation alone. The UVA+ plants had a higher CO2 assimilation rate near the light-saturation region (A(N)) and a higher content of both total chlorophylls (Chls) and total carotenoids than the UVA- plants. Chls content, A(N), the potential quantum yield of photosystem II (PSII) photochemistry (F(V)/F(M)), the capacity of light-induced thermal energy dissipation and the efficiency of excitation energy transfer within PSII remained the same or even increased in both UVA+ and UVA- plants after UVAB treatment. On the contrary, exposure of UVA- plants to UV-B radiation itself led to a reduction in all these characteristics. We revealed that the presence of UV-A radiation during UVAB treatment not only mitigated but completely eliminated the negative effect of UV-B radiation on the functioning of the photosynthetic apparatus and that UV-A pre-acclimation was not crucial for development of this UV-A-induced resistance against UV-B irradiation. PMID:26233710

  3. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer.

    Kroner, Yulia; Way, Danielle A

    2016-08-01

    Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark . PMID:26728638

  4. Is warmer better? Decreased oxidative damage in notothenioid fish after long-term acclimation to multiple stressors.

    Enzor, Laura A; Place, Sean P

    2014-09-15

    Antarctic fish of the suborder Notothenioidei have evolved several unique adaptations to deal with subzero temperatures. However, these adaptations may come with physiological trade-offs, such as an increased susceptibility to oxidative damage. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly increase the level of oxidative stress and cellular damage in these endemic fish. Previous single stressor studies of the notothenioids have shown they possess the capacity to acclimate to increased temperatures, but the cellular-level effects remain largely unknown. Additionally, there is little information on the ability of Antarctic fish to respond to ecologically relevant environmental changes where multiple variables change concomitantly. We have examined the potential synergistic effects that increased temperature and Ṗ(CO2) have on the level of protein damage in Trematomus bernacchii, Pagothenia borchgrevinki and Trematomus newnesi, and combined these measurements with changes in total enzymatic activity of catalase (CAT) and superoxide dismutase (SOD) in order to gauge tissue-specific changes in antioxidant capacity. Our findings indicate that total SOD and CAT activity levels displayed only small changes across treatments and tissues. Short-term acclimation to decreased seawater pH and increased temperature resulted in significant increases in oxidative damage. Surprisingly, despite no significant change in antioxidant capacity, cellular damage returned to near-basal levels, and significantly decreased in T. bernacchii, after long-term acclimation. Overall, these data suggest that notothenioid fish currently maintain the antioxidant capacity necessary to offset predicted future ocean conditions, but it remains unclear whether this capacity comes with physiological trade-offs. PMID:25013114

  5. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat

    Wang, Xiao; Cai, Jian; Jian, Dong;

    2011-01-01

    and enhanced cell membrane peroxidation, as exemplified by increased O2-• production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis hightemperature acclimation (HH)showedmuchhigher photosynthetic rates than those without pre......The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis......-anthesis high-temperature acclimation (CH). Leaves ofHHplants exhibited a higher Chl a/b ratio and lower chlorophyll/carotenoid ratio and superoxide anion radical release rate compared with those of the CH plants. In addition, antioxidant enzyme activities in HH plants were significantly higher than in CH...

  6. Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout

    Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.

    2008-01-01

    We investigated the influence of acclimation on results of in situ bioassays with cutthroat trout in metal-contaminated streams. Cutthroat trout (Oncorhynchus clarki) were held for 21 days (1) in live containers at a reference or "clean" site having dissolved metals near detection limits (0.01 ??g/L cadmium [Cd] and 2.8 ??g/L zinc [Zn]; hardness 32 mg/L as CaCO3) and (2) at a site in a mining-impacted watershed having moderately increased metals (0.07 ??g/L Cd and 38 to 40 ??g/L Zn; hardness 50 mg/L as CaCO3). The 96-hour survival of each treatment group was then tested in situ at five sites from September 5 to 9, 2002, and each group exhibited a range of metal concentrations (0.44 to 39 ??g/L arsenic [As], 0.01 to 2.2 ??g/L Cd, and 0.49 to 856 ??g/L Zn). Survival was 100% at three sites for both treatments. However, a higher percentage of metal-acclimated fish survived at the site with the second highest concentrations of Cd and Zn (0.90 and 238 ??g/L, respectively) compared with fish acclimated at the reference site (100% vs. 55%, respectively). Survival was 65% for acclimated fish and 0% for metal-nai??ve fish at the site with the largest metal concentrations (2.2 ??g/L Cd and 856 ??g/L Zn). Water collected from the site with the largest concentrations of dissolved metals (on October 30, 2002) was used in a laboratory serial dilution to determine 96-hour LC50 values. The 96-hour LC50 estimates of nai??ve fish during the in situ and laboratory experiments were similar (0.60 ??g Cd/L and 226 ??g Zn/L for in situ and 0.64 ??g Cd/L and 201 ??g Zn/L for laboratory serial dilutions). However, mortality of nai??ve cutthroat trout tested under laboratory conditions was more rapid in dilutions of 100%, 75%, and 38% site water than in situ experiments. ?? 2007 Springer Science+Business Media, LLC.

  7. Effect of season, needle age and elevated CO2concentration on photosynthesis and Rubisco acclimation in Picea abies

    Urban, Otmar; Hrstka, M.; Zitová, Martina; Holišová, Petra; Šprtová, Miroslava; Klem, Karel; Calfapietra, Carlo; De Angelis, Paolo; Marek, Michal V.

    2012-01-01

    Roč. 58, SEP 2012 (2012), s. 135-141. ISSN 0981-9428 R&D Projects: GA AV ČR IAA600870701; GA MŽP(CZ) SP/2D1/93/07; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Activation state * Electron transport rate * Norway spruce * Photosynthetic acclimation * Rubisco carboxylation * Rubisco specific activity Subject RIV: EH - Ecology, Behaviour Impact factor: 2.775, year: 2012

  8. The role of acclimation in scaling GPP from the leaf to the canopy for crops in a changing climate

    Bernacchi, C.; Bagley, J. E.; Ort, D. R.; Kumar, P.; Ruiz Vera, U. M.

    2013-12-01

    Multi-faceted challenges from global climate change and increased demands on agriculture for food, fiber and, increasingly fuel is driving a need to understand how major climate change factors, particularly increasing atmospheric concentrations of CO2 and rising temperature, will influence leaf photosynthesis (A) and ecosystem gross primary productivity (GPP). Eight of the ten major crops grown globally utilize the C3 photosynthetic pathway and based on mechanistic understanding of C3 photosynthesis, a synergism exists with rising CO2 and increasing temperature that is predicted to increase A beyond that of an increase in [CO2] alone. However, considerable uncertainty surrounds the acclimation response of photosynthesis to global change and, as a result, the influence of physiological adjustments of photosynthesis is currently not represented in leaf, canopy, ecosystem or general circulation models that are used to predict ecosystem-scale responses to global change scenarios. Here, we incorporate into mechanistic leaf and canopy photosynthesis models the acclimation responses of the two key parameters required for modeling A and GPP, the maximum velocity for carboxylation (Vc,max) and maximum rate of electron transport (Jmax), determined from in-field experimentation for soybean and poplar, which vary in regards to what limits A in elevated CO2. Measurements of Vc,max and Jmax from the Soybean Temperature by Free Air CO2 Enrichment (Soy-T-FACE) experiment and of poplar at the Poplar FACE experiment were used to model the response of net carbon uptake to [CO2] and/or temperature. The modeling was conducted using the mechanistic leaf photosynthesis model (Farquhar, von Caemmerer, & Berry Model) and the latest generation canopy photosynthesis model with an integrated mechanistic representation of physiology and biophysical components, the Multi-Layer Canopy (MLCan) model. While the theory behind the interactions of [CO2] and temperature on photosynthesis are well

  9. Natural Resources Containing Arbutin. Determination of Arbutin in the Leaves of Bergenia crassifolia (L. Fritsch. acclimated in Romania

    Carmen POP

    2009-06-01

    Full Text Available Bergenia crassifolia (L. Fritsch. is cited in literature as being one of the richest in arbutin (15-20%, an important pharmaceutical substance with disinfecting properties (in genitourinary diseases and also depigmentation properties (skin whitening agent. The aim of this study consisted in determination of arbutin content in leaves of Bergenia crassifolia acclimated in Romania. The optimum parameters for the extraction of arbutin and the dynamics of the accumulation of arbutin in Bergenia crassifolia leaves during the four seasons were also studied. The content of arbutin varied between 17.44% and 22.59% dry weight, values which are similar to those found in literature

  10. Program PROTEUS for adding hydrogens to a protein structure and electrostatic field across carotenoids in light harvesting complexes and reaction centers from bacterial sources

    Lipovaca, Samir

    The hydrogen construction method presented in the program PROTEUS treats hydrogens depending on their torsional degrees of freedom. The positions of hydrogens with restricted torsional degrees of freedom are completely determined by the heavy atoms positions in the structure. The hydroxyl and water hydrogens are the only hydrogens that PROTEUS accepts as movable hydrogens (having rotational degrees of freedom). Their positions are determined by the interactions with neighboring atoms. PROTEUS interaction energy corresponds to a view that the hydrogen bond is affected, besides electrostatic effects and steric constraints of neighboring groups, by an inherent energy barrier that opposes free rotation of the hydroxyl hydrogen. For the water hydrogens that barrier is zero. The hydroxyl and water hydrogens are minimized within a short distance using the Threshold Accepting (TA) energy minimization method. PROTEUS can provide reasonable positions of movable hydrogens and a good initial protein structure for further investigations. We applied the program PROTEUS to place hydrogens in several resolved three-dimensional crystal structures of light harvesting complexes (LHCs) and reaction centers (RCs) from bacterial sources. Using program DelPhi we calculated the local electrostatic field across carotenoid generated by the protein's charges. In each structure we identified amino acids responsible for the field. Much of the field is generated by the charged residues. There are different ways that a RC or LHC uses charged residues. A nearby dipole consisting of the charged residues which are ionized in the physiological pH range (like Arg-Asp), is often used. Clusters of charged residues or scattered isolated charged residues around the carotenoid molecule also contribute. The polarizable field is not necessarily along the carotenoid molecule principal axis. For soluble LHCs the contribution of polar residues to the field cannot be neglected. Our calculations indicate an

  11. Long-Term Growth of Soybean at Elevated [CO2] Does not Cause Acclimation of Stomatal Conductance Under Fully Open-air Conditions.

    Leakey, A. D.; Bernacchi, C. J.; Ort, D. R.; Long, S. P.

    2008-12-01

    Accurately predicting plant function and global biogeochemical cycles later this century will be complicated if stomatal conductance (gs) acclimates to growth at elevated [CO2], in the sense of a long-term alteration of the response of gs to [CO2], humidity (h) and/or photosynthetic rate (A). If so, photosynthetic and stomatal models will require parameterization at each growth [CO2] of interest. Photosynthetic acclimation to long-term growth at elevated [CO2] occurs frequently. Acclimation of gs has rarely been examined, even though stomatal density commonly changes with growth [CO2]. Soybean was grown under field conditions at ambient [CO2] (378 μmol mol-1) and elevated [CO2] (552 μmol mol-1) using Free-Air [CO2] Enrichment (FACE). This study tested for stomatal acclimation by parameterizing and validating the widely used Ball et al. model (1987, Progress in Photosynthesis Research, Vol IV, 221-224) with measurements of leaf gas exchange. The dependence of gs on A, h and [CO2] at the leaf surface was unaltered by long-term growth at elevated [CO2]. This suggests that the commonly observed decrease in gs under elevated [CO2] is due entirely to the direct instantaneous effect of [CO2] on gs and that there is no longer-term acclimation of stomatal conductance independent of photosynthetic acclimation. The Ball et al. (1987) model accurately predicted gs for soybean growing under ambient and elevated [CO2] in the field. Model parameters under ambient and elevated [CO2] were indistinguishable, demonstrating that stomatal function under ambient and elevated [CO2] could be modeled without the need for parameterization at each growth [CO2].

  12. Effects of Cold Acclimation on Several Enzyme Activities in Euonymus radicans 'Emorald & Gold' and Its Relation to Semi-lethal Temperature

    Guo Huihong; Gao Shumin; Zhao Fengjun; Li Fenglan

    2004-01-01

    The changes in activities of superoxide dismutase (SOD), peroxidase (POD) and ATPase in the leaves of Euonymus radicans were studied when seedlings were cold-acclimated (at 4 ℃) for 1 week, 2 weeks, 3 weeks and then treated for 1 d under low temperature stress (at -5 ℃). The semi-lethal temperatures of acclimated and unacclimated seedlings were also investigated. The results indicated that the activities of the three enzymes in the leaves of the seedlings treated at 4 ℃ for 1, 2 and 3 weeks were all higher than those of unacclimated seedings (treated at 22 ℃ as controls). The activities of SOD and POD increased continuously with the prolongation of the time of cold acclimation, but stepped up to summits then down to the levels of the controls. The activities of SOD culminated at the first week, and the activities of POD at the second week. When acclimated and unacclimated seedlings were both treated at -5 ℃ for 1 d, the activities of the three enzymes in the leaves of acclimated seedlings were a little lower than those before stress, but higher than those of the controls. Moreover, the decrease rate of enzyme activities was greatly lower than that of the controls. The results showed that cold acclimation could enhance the stability of the three enzymes in the leaves of seedlings under low temperature stress; the semi-lethal temperature was -19.1 ℃ when the seedlings were treated at 4 ℃ for 3 weeks, but it was -5.4 ℃ when the seedlings were treated at 22 ℃. The decline of the semi-lethal temperature caused by the adaptive changes of enzyme activities was one of the foundations of enhancing the cold tolerance.

  13. Effects of temperature and thermal acclimation on locomotor performance of Macrobiotus hufelandi Schultze (Tardigrada: Macrobiotidae)%温度和热驯化对胡氏大生熊虫运动行为的影响

    李晓晨; 王立志

    2005-01-01

    The beneficial acclimation hypothesis (BAH) predicts that animals acclimated to a particular temperature have enhanced performance or fitness at that temperature in comparison with animals acclimated to other temperatures. The BAH has been tested by a variety of empirical examinations, and was rejected by some of them. In order to provide new evidences for the BAH, the effects of acute and acclimation temperature (AT) on locomotor performance of Macrobiotus hufelandi (Tardigrada: Macrobiotidae) were investigated. The tardigrades were collected from Nanwutai, Qinling Mountains which traverse from west to east in central China. The subjects were acclimated to either 2℃ or 22℃ for 2 weeks. The animal was transferred onto a frosted slide and allowed to walk freely at the performance temperature (PT) 2℃ or 22℃. Only one individual was tested per test bout, which lasted from three to five minutes. To avoid occurrence of thermal acclimation effect, the standard adaptation time was limited to 1.5 min. Each subject was tested for once at the same PT, and was tested only at one PT. A total of 25 individuals were tested and measured at the same PT. The locomotor performance of the animals was recorded with a digital video camera mounted on a microscope at 4×10 amplification and replayed on a PC. Every subject was identified. Walking speed (WS) and percentage of time moving (PTM) at both PTs (2℃ or 22℃) were selected as the rate parameters of locomotor performance. The two-way repeated measures ANOVA with a significance level of α= 0.05 and Duncan multiple range test were used to analyze the data. WS of the animals acclimated to and tested at the same temperatures was significantly faster than that for animals acclimated to and tested at the different temperatures, similarly, PTM of the animals acclimated to 22℃ and tested at 22℃ was significantly greater than PTM of animals acclimated to 22℃ and tested at 2℃, which indicated that the animals acclimated

  14. Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems.

    Juhás, Pavol; Farrow, Christopher L; Yang, Xiaohao; Knox, Kevin R; Billinge, Simon J L

    2015-11-01

    A strategy is described for regularizing ill posed structure and nanostructure scattering inverse problems (i.e. structure solution) from complex material structures. This paper describes both the philosophy and strategy of the approach, and a software implementation, DiffPy Complex Modeling Infrastructure (DiffPy-CMI). PMID:26522405

  15. Isolation of intact and pure chloroplasts from leaves of Arabidopsis thaliana plants acclimated to low irradiance for studies on Rubisco regulation

    Magda Grabsztunowicz

    2012-11-01

    Full Text Available A protocol is presented for low-cost and fast isolation of intact and pure chloroplasts from leaves of plants acclimated to low irradiance. The protocol is based on a differential centrifugation of cleared leaf homogenate and omits a centrifugation on Percoll gradient step. The intactness and purity of the chloroplasts isolated from leaves of low irradiance-acclimated plants by using this protocol (confirmed by phase contrast microscopy as well as enzymatic and immunological approaches allows plausible studies on low irradiance-dependent Rubisco regulation.

  16. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation.

    Saroussi, Shai I; Wittkopp, Tyler M; Grossman, Arthur R

    2016-04-01

    When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H(+) gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF The H(+) gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes. PMID:26858365

  17. An enigmatic source of hematitic carbonate beds containing vast amounts of iron oxidizers in a paleozoic metamorphic complex, South Hungary, Geresd-Hills, Ófalu.

    Jáger, Viktor; Dabi, Gergely; Menyhárt, Adrienn

    2013-04-01

    Near the village of Ófalu, in the Geresd Hills, South Hungary, within the "Mecsekalja tectonic belt", low and intermediate grade paleozoic metamorphic complex (phyllite, gneiss) contains vein-like hematitic carbonate beds, up to 30 cm in thickness. The carbonate mineral is calcite. These hematitic carbonate beds cross-cut the foliation of the phyllite, and show no signs of any metamorphic alteration. In the studied section the red carbonate beds are associated with a vein system filled with multiple generations of vein carbonates(Dabi et al., 2011). The red carbonate beds contain a vaste number of twisted stalks of the iron oxidizing taxon of Gallionella. Rarely in some siliceous parts, Leptothrix-like microbial fossils can be found and these beds also contain numerous unidentifiable, hematitic foraminifers. According to ICP-AES measurements, the hematitic carbonate beds contains 8 % Fe, 0.86 % Mn and 0.12 % Ba. XRD and Raman measurements proved that the iron phase is hematite. The SEM observations revealed that the bacterial microfossils and foraminifers are built up of micron-submicron sized pseudohexagonal platy hematite. The bacterial microfossils of the Gallionella iron oxidizer are very well preserved and reaches about 80 µm length and about 2-3 µm width. The above observations raise the following issues: 1. how did these non metamorphic hematitic-carbonatic beds get inside into the metamorphic complex?, 2. what is the age of the formation of these beds?, and 3. what was the source of the iron? If we consider that the hematitic beds contain foraminifers and iron oxidizing bacteria, and no signs of metamorphic alteration nor foliations can be observed in these beds, the only answer for the first question is that the formations are fractures filled with lime-mud, i.e. neptunian dykes, which penetrated into the cracks of the phyllite. The presence of foraminifers and the geotectonic situation of the unit imply marine origin. Considering that these beds are

  18. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves.

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-02-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298

  19. Acclimation of croton and hibiscus seedlings in response to the application of indobultiric acid and humic acid for rooting

    Lílian Estrela Borges Baldotto

    2015-06-01

    Full Text Available The vegetative propagation of ornamental plants can be accelerated by applying plant growth regulators. Amongst them, the use of auxins, plant hormones with physiological effects on cell elongation and rooting have stood out. Alternatively, the application of humic acids, bioactive fraction of soil organic matter, also results in increases in rooting cuttings of ornamental plants. The objective of this work was to study the growth characteristics and the nutritional contents of croton and hibiscus plants during acclimation of seedlings in response to different concentrations of indolebutyric acid (IBA and humic acid (HA applied to cuttings for rooting. The experiment was conducted in greenhouse, and the apical stem cuttings were treated with solutions with concentrations of 0, 250, 500, 1000 and 2000 mg L-1of IBA and 0, 10, 20, 30 and 40 mg L-1 of C from HA. At 45 days of rooting in carbonized rice husk, they were individually transferred to plastic bags of 2.0 dm3 containing a mixture of soil: sand: manure (2: 1: 1 as substrate. At 90 days of acclimation, the plants were collected for measurement of growth and nutritional variables. The results showed that the application of the IBA stimulates the absorption of nutrients and growth of croton cuttings and transplanted hibiscus, contributing to formation of vigorous seedlings. A similar response occurred with the application of HA in hibiscus cuttings

  20. The DnaJ-Like Zinc Finger Domain Protein PSA2 Affects Light Acclimation and Chloroplast Development in Arabidopsis thaliana.

    Wang, Yan-Wen; Chen, Si-Ming; Wang, Wei-Jie; Huang, Xing-Qi; Zhou, Chang-Fang; Zhuang, Zhong; Lu, Shan

    2016-01-01

    The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin, and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development. PMID:27047527

  1. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO₂.

    Sreeharsha, Rachapudi Venkata; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra

    2015-02-01

    In the present study, we investigated the likely consequences of future atmospheric CO2 concentrations [CO2] on growth, physiology and reproductive phenology of Pigeonpea. A short duration Pigeonpea cultivar (ICPL 15011) was grown without N fertilizer from emergence to final harvest in CO2 enriched atmosphere (open top chambers; 550μmolmol(-1)) for two seasons. CO2 enrichment improved both net photosynthetic rates (Asat) and foliar carbohydrate content by 36 and 43%, respectively, which further reflected in dry biomass after harvest, showing an increment of 29% over the control plants. Greater carboxylation rates of Rubisco (Vcmax) and photosynthetic electron transport rates (Jmax) in elevated CO2 grown plants measured during different growth periods, clearly demonstrated lack of photosynthetic acclimation. Further, chlorophyll a fluorescence measurements as indicated by Fv/Fm and ΔF/Fm' ratios justified enhanced photosystem II efficiency. Mass and number of root nodules were significantly high in elevated CO2 grown plants showing 58% increase in nodule mass ratio (NMR) which directly correlated with Pn. Growth under high CO2 showed significant ontogenic changes including delayed flowering. In conclusion, our data demonstrate that the lack of photosynthetic acclimation and increased carbohydrate-nitrogen reserves modulate the vegetative and reproductive growth patterns in Pigeonpea grown under elevated CO2. PMID:25575994

  2. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off

    Hall, Edward K.; Singer, Gabriel A.; Kainz, Martin J.; Lennon, Jay T.

    2010-01-01

    1. Shifts in bacterial community composition along temporal and spatial temperature gradients occur in a wide range of habitats and have potentially important implications for ecosystem functioning. However, it is often challenging to empirically link an adaptation or acclimation that defines environmental niche or biogeography with a quantifiable phenotype, especially in micro-organisms. 2. Here we evaluate a possible mechanistic explanation for shifts in bacterioplankton community composition in response to temperature by testing a previously hypothesized membrane mediated trade-off between resource acquisition and respiratory costs. 3. We isolated two strains of Flavobacterium sp. at two temperatures (cold isolate and warm isolate) from the epilimnion of a small temperate lake in North Central Minnesota. 4. Compared with the cold isolate the warm isolate had higher growth rate, higher carrying capacity, lower lag time and lower respiration at the high temperature and lower phosphorus uptake at the low temperature. We also observed significant differences in membrane lipid composition between isolates and between environments that were consistent with adjustments necessary to maintain membrane fluidity at different temperatures. 5. Our results suggest that temperature acclimation in planktonic bacteria is, in part, a resource-dependent membrane-facilitated phenomenon. This study provides an explicit example of how a quantifiable phenotype can be linked through physiology to competitive ability and environmental niche.

  3. Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa

    Olsson Björn

    2005-09-01

    Full Text Available Abstract Background Oat is an important crop in North America and northern Europe. In Scandinavia, yields are limited by the fact that oat cannot be used as a winter crop. In order to develop such a crop, more knowledge about mechanisms of cold tolerance in oat is required. Results From an oat cDNA library 9792 single-pass EST sequences were obtained. The library was prepared from pooled RNA samples isolated from leaves of four-week old Avena sativa (oat plants incubated at +4°C for 4, 8, 16 and 32 hours. Exclusion of sequences shorter than 100 bp resulted in 8508 high-quality ESTs with a mean length of 710.7 bp. Clustering and assembly identified a set of 2800 different transcripts denoted the Avena sativa cold induced UniGene set (AsCIUniGene set. Taking advantage of various tools and databases, putative functions were assigned to 1620 (58% of these genes. Of the remaining 1180 unclassified sequences, 427 appeared to be oat-specific since they lacked any significant sequence similarity (Blast E values > 10-10 to any sequence available in the public databases. Of the 2800 UniGene sequences, 398 displayed significant homology (BlastX E values ≤ 10-10 to genes previously reported to be involved in cold stress related processes. 107 novel oat transcription factors were also identified, out of which 51 were similar to genes previously shown to be cold induced. The CBF transcription factors have a major role in regulating cold acclimation. Four oat CBF sequences were found, belonging to the monocot cluster of DREB family ERF/AP2 domain proteins. Finally in the total EST sequence data (5.3 Mbp approximately 400 potential SSRs were found, a frequency similar to what has previously been identified in Arabidopsis ESTs. Conclusion The AsCIUniGene set will now be used to fabricate an oat biochip, to perform various expression studies with different oat cultivars incubated at varying temperatures, to generate molecular markers and provide tools for

  4. Assessment of Barotrauma Resulting from Rapid Decompression of Depth Acclimated Juvenile Chinook Salmon Bearing Radio Telemetry Transmitters

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; McKinstry, Craig A.; Theriault, Marie-Helene

    2007-09-06

    A multifactor study was conducted by Battelle for the US Army Corps of Engineers to assess the significance of the presence of a radio telemetry transmitter on the effects of rapid decompression from simulated hydro turbine passage on depth acclimated juvenile run-of-the-river Chinook salmon. Study factors were: (1) juvenile chinook salmon age;, subyearling or yearling, (2) radio transmitter present or absent, (3) three transmitter implantation factors: gastric, surgical, and no transmitter, and (4) four acclimation depth factors: 1, 10, 20, and 40 foot submergence equivalent absolute pressure, for a total of 48 unique treatments. Exposed fish were examined for changes in behavior, presence or absence of barotrauma injuries, and immediate or delayed mortality. Logistic models were used to test hypotheses that addressed study objectives. The presence of a radio transmitter was found to significantly increase the risk of barotrauma injury and mortality at exposure to rapid decompression. Gastric implantation was found to present a higher risk than surgical implantation. Fish were exposed within 48 hours of transmitter implantation so surgical incisions were not completely healed. The difference in results obtained for gastric and surgical implantation methods may be the result of study design and the results may have been different if tested fish had completely healed surgical wounds. However, the test did simulate the typical surgical-release time frame for in-river telemetry studies of fish survival so the results are probably representative for fish passing through a turbine shortly following release into the river. The finding of a significant difference in response to rapid decompression between fish bearing radio transmitters and those not implies a bias may exist in estimates of turbine passage survival obtained using radio telemetry. However, the rapid decompression (simulated turbine passage) conditions used for the study represented near worst case exposure

  5. Development of radioactive ion beam production systems for Tokai Radioactive Ion Acceleration Complex--High temperature ion source for short-lived isotopes

    We have developed a new ion source system in the isotope separator on-line at Japan Atomic Energy Agency, for separation of short-lived isotopes produced by proton-induced fission of 238U. The ion source system is a forced electron beam induced arc discharge version E type ion source with a target container. We successfully operated this system at 2000 deg. C as a result of reductions in volume of the ion source and the target container, introduction of heating method by electron bombardment, and improvement to the heat shield. This new ion source system was tested using 238U of 640 mg/cm2 with a proton primary beam of 30 MeV, 350 nA. Release times were measured for Kr, In, and Xe. The values of release times are 2.6 s for Kr, 1.8 s for In, and 4.6 s for Xe. In this work, the ion source system enabled us to mass-separate short-lived isotopes such as 93Kr(T1/2=1.286 s), 129In(T1/2=0.61 s), and 141Xe(T1/2=1.73 s) with intensity of 103 ions/s.

  6. The effect of acclimation temperature on the fusion kinetics of lipid vesicles derived from endoplasmic reticulum membranes of rainbow trout (Oncorhynchus mykiss) liver.

    Miranda, Estuardo J; Hazel, Jeffrey R

    2002-02-01

    Membrane fusion is an obligatory step in many vital cellular processes. The well-established enrichment of bilayer-destabilizing lipids in membranes of poikilotherms subjected to growth at low temperatures leads to the prediction that such membranes will possess a greater propensity to undergo fusion. This hypothesis was explicitly tested in the present study by determining the kinetics of fusion between small unilamellar vesicles (SUVs) prepared from endoplasmic reticulum (ER) membranes of thermally-acclimated (to 5 and 20 degrees C) rainbow trout (Oncorhynchus mykiss) liver and bovine brain phosphatidylserine (BBPS). At temperatures above 10 degrees C, ER vesicles from 5 degrees C-acclimated trout, fused more rapidly and to a greater extent with BBPS vesicles (by average factors of 1.25- and 1.45-fold, respectively) than ER vesicles of 20 degrees C-acclimated trout. At temperatures >35 degrees C, apparent fusion rates declined while the extent of fusion increased in both acclimation groups. Fusion kinetics were found to be well correlated with and limited by the physical properties and phase state of the BBPS vesicles. These results indicate that dynamic attributes of biological membranes, such as the propensity to undergo fusion, are of potential regulatory significance and are partially conserved when growth or environmental temperature changes. PMID:11818217

  7. Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation

    Kukuczka, Bernadeta; Magneschi, Leonardo; Petroutsos, Dimitris;

    2014-01-01

    double mutant in the green alga Chlamydomonas reinhardtii lacking both PGRL1 and LHCSR3 expression. Phenotypic comparative analyses of this double mutant, together with the single knockout strains and with the P. patens pgrl1, demonstrated that PGRL1 is crucial for acclimation to high light and anoxia in...

  8. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME.

    Bato Korac

    2008-02-01

    Full Text Available The aim of the present study was to explore the effect of nitric oxide on leptin immunoexpression and innervation in interscapular brown adipose tissue (IBAT of room- and cold- acclimated rats. Animals acclimated both to room-temperature (22 +/- 1 degrees C and cold (4 +/- 1 degrees C were treated with L-arginine, a substrate for nitric oxide synthases (NOSs, or N?-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOSs, for 45 days. Leptin expression and localization in brown adipocytes was studied by immunohistochemistry, and innervation stained by the Bodian method. Strong leptin immunopositivity was observed in brown adipocytes cytoplasm of all room-acclimated groups, but nuclear leptin positivity was found only in L-NAME treated rats. In cold-acclimated control and L-NAME treated rats leptin immunopositivity was absent, while L-arginine treatment reversed the cold-induced suppression of leptin expression. Comparing to control, L-arginine, and even more L-NAME, at 22 +/- 1 degrees C induced greater innervation. In conclusion, L-arginine treatment changes leptin expression pattern on cold in rat IBAT.

  9. An integrated SOM-based multivariate approach for spatio-temporal patterns identification and source apportionment of pollution in complex river network

    In this study, three classification techniques (self-organizing maps, hierarchical cluster analysis and discriminant analysis) were applied to identify spatial water pollution levels, temporal water quality response delay phenomena (WQRDP), source pollution types (point, urban non-point, or agricultural non-point). Two models (principal components analysis (PCA), and positive matrix factorization (PMF)) were used to do the further quantitative source apportionment studying. The 27 inflow rivers in spatial were divided into three pollution levels (A, high; B, medium; C, low). The primary pollution pattern in spatial Clusters A, B, and C were point, urban non-point and agricultural non-point separately, in consideration of simultaneous land use types. Source apportionment results identified five typical factors in spatial Cluster A and six typical factors in spatial Cluster B and C as responsible for the data structure, explaining 80%–90% of the total variance of the dataset. - Highlights: ► The nutrients pollution level in spatial Clusters A, B, and C were high, medium and low respectively. ► The WQRDP mainly caused by rivers internal pollution and surface detention. ► The non-point source pollution was a primary factor in the entire study watershed. ► Organic wastewater is the primary sources of pollution. ► NO3− pollution was prominent in spatial Cluster C. - Spatio-temporal combinational analysis provides a powerful mean to identify source pollution types and the non-point source pollution was a primary factor in the study watershed.

  10. Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech.

    Lenz, Armando; Hoch, Günter; Vitasse, Yann

    2016-04-01

    Low temperature extremes drive species distribution at a global scale. Here, we assessed the acclimation potential of freezing resistance in European beech (Fagus sylvaticaL.) during winter. We specifically asked (i) how do beech populations growing in contrasting climates differ in their maximum freezing resistance, (ii) do differences result from genetic differentiation or phenotypic plasticity to preceding temperatures and (iii) is beech at risk of freezing damage in winter across its distribution range. We investigated the genetic and environmental components of freezing resistance in buds of adult beech trees from three different populations along a natural large temperature gradient in north-western Switzerland, including the site holding the cold temperature record in Switzerland. Freezing resistance of leaf primordia in buds varied significantly among populations, with LT50values (lethal temperature for 50% of samples) ranging from -25 to -40 °C, correlating with midwinter temperatures of the site of origin. Cambial meristems and the pith of shoots showed high freezing resistance in all three populations, with only a trend to lower freezing resistance at the warmer site. After hardening samples at -6 °C for 5 days, freezing resistance of leaf primordia increased in all provenances by up to 4.5 K. After additional hardening at -15 °C for 3 days, all leaf primordia were freezing resistant to -40 °C. We demonstrate that freezing resistance ofF. sylvaticahas a high ability to acclimate to temperature changes in winter, whereas the genetic differentiation of freezing resistance among populations seems negligible over this small geographic scale but large climatic gradient. In contrast to the assumption made in most of the species distribution models, we suggest that absolute minimum temperature in winter is unlikely to shape the cold range limit of beech. We conclude that the rapid acclimation of freezing resistance to winter temperatures allows

  11. Functional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri

    Shit F Chew

    2014-04-01

    Full Text Available The giant mudskipper, Periophthalmodon schlosseri, is an amphibious fish that builds burrows in the mudflats. It can actively excrete ammonia through its gills, and tolerate high environmental ammonia. This study aimed to examine the effects of seawater (salinity 30; SW acclimation and/or environmental ammonia exposure on the kinetic properties of Na+/K+-ATPase (Nka from, and mRNA expression and protein abundance of nka/Nka α–subunit isoforms in, the gills of P. schlosseri pre-acclimated to slightly brackish water (salinity 3; SBW. Our results revealed that the Nka from the gills of P. schlosseri pre-acclimated to SBW for 2 wk had substantially higher affinity to (or lower Km for K+ than NH4+, and its affinity to NH4+ decreased significantly after 6-d exposure to 75 mmol l-1 NH4Cl in SBW. Hence, Nka transported K+ selectively to maintain intracellular K+ homeostasis, instead of transporting NH4+ from the blood into ionocytes during active NH4+ excretion as previously suggested. Two nkaα isoforms, nkaα1 and nkaα3, were cloned and sequenced from the gills of P. schlosseri. Their deduced amino acid sequences had K+ binding sites identical to that of Nkaα1c from Anabas testudineus, indicating that they could effectively differentiate K+ from NH4+. Six days of exposure to 75 mmol l-1 NH4Cl in SBW, or to SW with or without 50 mmol l-1 NH4Cl led to significant increases in Nka activities in the gills of P. schlosseri. However, a significant increase in the comprehensive Nkaα protein abundance was observed only in the gills of fish exposed to 50 mmol l-1 NH4Cl in SW. Hence, post-translational modification could be an important activity modulator of branchial Nka in P. schlosseri. The fast modulation of Nka activity and concurrent expressions of two branchial nkaα isoforms could in part contribute to the ability of P. schlosseri to survive abrupt transfer between SBW and SW or abrupt exposure to ammonia.

  12. GENETIC ADAPTATION AND ACCLIMATION OF PHYTOPLANKTON ALONG A STRESS GRADIENT IN THE EXTREME WATERS OF THE AGRIO RIVER-CAVIAHUE LAKE (ARGENTINA)(1).

    López-Rodas, Victoria; Rouco, Mónica; Sánchez-Fortún, Sebastián; Flores-Moya, Antonio; Costas, Eduardo

    2011-10-01

    We tested if different adaptation strategies were linked to a stress gradient in phytoplankton cells. For this purpose, we studied the adaptation and acclimation of Dictyosphaerium chlorelloides (Naumann) Komárek et Perman (Chlorophyta) and Microcystis aeruginosa (Kütz.) Kütz. (Cyanobacteria) to different water samples (from extremely acid, metal-rich water to moderate stressful conditions) of the Agrio River-Caviahue Lake system (Neuquén, Argentina). Both experimental strains were isolated from pristine, slightly alkaline waters. To distinguish between physiological acclimation and genetic adaptation (an adaptive evolution event), a modified Luria-Delbrück fluctuation analysis was carried out with both species by using as selective agent sample waters from different points along the stress gradient. M. aeruginosa did not acclimate to any of the waters tested from different points along the stress gradient nor did D. chlorelloides to the two most acidic and metal-rich waters. However, D. chlorelloides proliferated by rapid genetic adaptation, as the consequence of a single mutation (5.4 × 10(-7) resistant mutants per cell per division) at one locus, in less extreme water and also by acclimation in the least extreme water. It is hypothesized that the stress gradient resulted in different strategies of adaptation in phytoplankton cells from nonextreme waters. Thus, very extreme conditions were lethal for both organisms, but as stressful conditions decreased, adaptation of D. chlorelloides cells was possible by the selection of resistant mutants, and in less extreme conditions, by acclimation. PMID:27020184

  13. Are sun- and shade-type anatomy required for the acclimation of Neoregelia cruenta?

    FERNANDA REINERT

    2013-06-01

    Full Text Available Sun and shade plants are often discriminated by a number of sun- and shade-type anatomies. Nonetheless, we propose that among tank-bromeliads, changes in rosette architecture satisfy the requirements for coping with contrasting light levels. The tank-bromeliad Neoregelia cruenta naturally colonises sub-habitats ranging from full exposure to direct sunlight, to shaded environments in sand ridge plains. We quantified anatomical and morphological traits of leaves and rosettes of N. cruenta grown under sun and shade conditions. Cells with undulated lateral walls within the water parenchyma are for the first time described for the family. Under high light, leaf blades were wider, shorter, and yellowish. The rosette diameter of sun plants was less than half that of shade plants. Sun leaves overlapped with neighbouring leaves for most of their length, forming a cylindrical rosette where water accumulates. Shade leaves only overlapped in the centre of the rosette. Most anatomical traits were similar under both growth conditions. Stomata were absent from the base of sun leaves, which is probably explained by limited gas exchange at the base of the tight sun-type rosette. Data suggest that the ability of N. cruenta to acclimate to sun and shade is better explained by changes in rosette architecture than by leaf anatomy.Plantas de sol e sombra são frequentemente distinguíveis por diversos aspectos anatômicos. Não obstante, propomos que entre bromélias-tanque, mudanças na arquitetura da roseta satisfazem os requerimentos que permitem habitar extremos de luminosidade. A bromélia-tanque, Neoregelia cruenta naturalmente coloniza microhabitats que variam da exposição direta ao sol, a ambientes sombreados sob o dossel da vegetação de restinga. Quantifi camos aspectos anatômicos e morfológicos das folhas e rosetas de N. cruenta crescida sob sol e sombra. Células com paredes onduladas no parênquima aquífero são pela primeira vez descritas na fam

  14. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones

    Heiderscheidt, J. L.; Siegrist, R. L.; Illangasekare, T. H.

    2008-11-01

    In situ chemical oxidation is a technology that has been applied to speed up remediation of a contaminant source zone by inducing increased mass transfer from DNAPL sources into the aqueous phase for subsequent destruction. The DNAPL source zone can consist of one or more individual sources that may be present as an interconnected pool of high saturation, as a region of disconnected ganglia at residual saturation, or as combinations of these two morphologies. Potassium permanganate (KMnO 4) is a commonly employed oxidant that has been shown to rapidly destroy DNAPL compounds like PCE and TCE following second-order kinetics in an aqueous system. During the oxidation of a target DNAPL compound, or naturally occurring reduced species in the subsurface, manganese oxide (MnO 2) solids are produced. Research has shown that these manganese oxide solids may result in permeability reductions in the porous media thus reducing the ability for oxidant to be transported to individual DNAPL sources. It can also occur at the DNAPL-water interface, decreasing contact of the oxidant with the DNAPL. Additionally, MnO 2 formation at the DNAPL-water interface, and/or flow-bypassing as a result of permeability reductions around the source, may alter the mass transfer from the DNAPL into the aqueous phase, potentially diminishing the magnitude of any DNAPL mass depletion rate increase induced by oxidation. An experiment was performed in a two-dimensional (2D) sand-filled tank that included several discrete DNAPL source zones. Spatial and temporal monitoring of aqueous PCE, chloride, and permanganate concentrations was used to relate changes in mass depletion of, and mass flux, from DNAPL residual and pool source zones to chemical oxidation performance and MnO 2 formation. During the experiment, permeability changes were monitored throughout the 2D tank and these were related to MnO 2 deposition as measured through post-oxidation soil coring. Under the conditions of this experiment, Mn

  15. Identification of complex septic odorants in Huangpu River source water by combining the data from gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography using retention indices.

    Guo, Qingyuan; Yu, Jianwei; Yang, Kai; Wen, Xiaodong; Zhang, Haifeng; Yu, Zhiyong; Li, Hongyan; Zhang, Dong; Yang, Min

    2016-06-15

    Identification of the trace odorants causing the septic odors in source waters with complex matrixes has long been a big challenge. The Huangpu (HP) River, an important source water for Shanghai, has long been suffering from septic and musty odors, although major odorants have not been identified. In this study, combining the data from gas chromatography-olfactometry with mass spectrometry (GC-O/MS) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) using retention indices (RIs) was used for the identification of odorants in HP source water. Olfactometry peaks detected in water extracts by GC-O/MS were combined with the chromatography peaks detected by GC×GC-TOFMS based on the RIs determined using the retention times (RTs) of alkanes C7-C30. A total of thirteen olfactometry peaks were obtained though GC-O/MS analysis, and potential odorants corresponding to each of the olfactometry peaks were screened based on the odor characteristics and match similarity using GC×GC-TOFMS. Finally, fourteen odorants (one odorant was detected in GC×GC-TOFMS without an olfactometry peak), including three septic odorants (bis(2-chloroisopropyl) ether, diethyl disulfide and dimethyl disulfide) and two musty ones (geosmin and 2-MIB), were confirmed by using authentic standards. The septic and musty odorants in six source water samples taken over a period of six months were quantified. Bis(2-chloroisopropyl) ether, with an odor activity value (OAV) of 1.84-3.2, was found to be a major septic odorant in HP source water, followed by diethyl disulfide (OAV 1.56-1.96) and dimethyl disulfide (OAV 0.37-2.42), while geosmin (OAV 4.37-11.44) was the major musty odorant, followed by 2-MIB (OAV 1.13-1.89). This is the first comprehensive study focusing on the identification of odorants in a complex source water. The integrated approach used in this study could be applied for the identification of odorants in other complex source waters

  16. Improved Automotive NO (x) Aftertreatment System: Metal Ammine Complexes as NH3 Source for SCR Using Fe-Containing Zeolite Catalysts

    Johannessen, Tue; Schmidt, Henning; Frey, Anne Mette;

    2009-01-01

    Ammonia storage is a challenge in the selective catalytic reduction of NO (x) in vehicles. We propose a new system, based on metal ammines as the ammonia source. In combination with iron containing zeolites as the SCR catalyst it should be possible to obtain a low temperature system for NO (x...

  17. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N.

    Marine J Briand

    Full Text Available A wide investigation was conducted into the main organic matter (OM sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef, different associated ecosystems (mangroves and seagrass beds and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM were sampled. Isotopic signatures (C and N of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰ and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰. Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰ whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰. The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is

  18. Differentiation among Multiple Sources of Anthropogenic Nitrate in a Complex Groundwater System using Dual Isotope Systematics: A case study from Mortandad Canyon, New Mexico

    Larson, T. E.; Perkins, G.; Longmire, P.; Heikoop, J. M.; Fessenden, J. E.; Rearick, M.; Fabyrka-Martin, J.; Chrystal, A. E.; Dale, M.; Simmons, A. M.

    2009-12-01

    The groundwater system beneath Los Alamos National Laboratory has been affected by multiple sources of anthropogenic nitrate contamination. Average NO3-N concentrations of up to 18.2±1.7 mg/L have been found in wells in the perched intermediate aquifer beneath one of the more affected sites within Mortandad Canyon. Sources of nitrate potentially reaching the alluvial and intermediate aquifers include: (1) sewage effluent, (2) neutralized nitric acid, (3) neutralized 15N-depleted nitric acid (treated waste from an experiment enriching nitric acid in 15N), and (4) natural background nitrate. Each of these sources is unique in δ18O and δ15N space. Using nitrate stable isotope ratios, a mixing model for the three anthropogenic sources of nitrate was established, after applying a linear subtraction of the background component. The spatial and temporal variability in nitrate contaminant sources through Mortandad Canyon is clearly shown in ternary plots. While microbial denitrification has been shown to change groundwater nitrate stable isotope ratios in other settings, the redox potential, relatively high dissolved oxygen content, increasing nitrate concentrations over time, and lack of observed NO2 in these wells suggest minimal changes to the stable isotope ratios have occurred. Temporal trends indicate that the earliest form of anthropogenic nitrate in this watershed was neutralized nitric acid. Alluvial wells preserve a trend of decreasing nitrate concentrations and mixing models show decreasing contributions of 15N-depleted nitric acid. Nearby intermediate wells show increasing nitrate concentrations and mixing models indicate a larger component derived from 15N-depleted nitric acid. These data indicate that the pulse of neutralized 15N-depleted nitric acid that was released into Mortandad Canyon between 1986 and 1989 has infiltrated through the alluvial aquifer and is currently affecting two intermediate wells. This hypothesis is consistent with previous

  19. Simultaneous biotreatment of Polycyclic Aromatic Hydrocarbons and dyes in a one-step bioreaction by an acclimated Pseudomonas strain.

    Álvarez, María S; Rodríguez, Ana; Sanromán, Ma Ángeles; Deive, Francisco J

    2015-12-01

    A Pseudomonas stutzeri strain acclimated to the presence of neoteric contaminants has been proposed for simultaneously remediating an effluent polluted with Polycyclic Aromatic Hydrocarbons and a diazo dye. The pollutants chemical nature imposed a strict control of both the medium composition and the operating conditions. pH, temperature and agitation rates of 7.0, 37.5 and 146 rpm, respectively, led to optimum levels of contaminant removal (higher than 60%) after RSM optimization. The validity of these conditions was checked at flask and bioreactor scale and the kinetics of the biotreatment was elucidated. The simulation of this one-step process applied at larger scale for the remediation of a 200,000 m(3)/year-effluent from a leather factory was compared with a conventional two-steps option. Great reductions in treatment times and in investment and manufacturing costs were concluded, proving the promising potential of the proposed process. PMID:26386421

  20. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues.

    Hansen, Ida R; Jansson, Kim M; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 °C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) and muscle did not react to these cues. Changes in tissue expression were not directly paralleled by alterations in plasma levels. Both these intact animal studies and brown adipocyte cell culture studies indicated that the gene expression regulation was not congruent with a sympathetic/adrenergic control. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of chemerin. PMID:25224322

  1. Effect of acclimation to outdoor condition on the sexual performance of mass-produced Medflies (Diptera: Tephritidae)

    Application of the sterile insect technique (SIT) as part of integrated area-wide programs to control the Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) require that the released males attract wild females and transfer sterile sperm. However, knowledge about male sexual performance after they are released is scarce. We conducted a study to evaluate male sexual performance in field cage tests, according to standard quality control procedures. Mass-reared 5-d-old sterile males from the genetic sexing strain VIENNA 7mix2000 were acclimated for 0, 1, and 3 d to outdoor conditions before competing with wild males for wild females. Although the proportion of mating (PM) in the test was satisfactory, the resulting relative sterility index (RSI) data showed no significant differences among the treatments. The data indicate that pre-conditioning males to outdoor conditions in Madeira did not confer an advantage in field cage sexual performance. (author)

  2. Differential Regulatory Mechanisms of CBF Regulon Between Nipponbare (Japonica) and 93-11 (Indica) During Cold Acclimation

    PAN Xiao-wu; LI Yong-chao; LI Xiao-xiang; LIU Wen-qiang; MING Jun; LU Ting-ting; TAN Jiang

    2013-01-01

    Nine CBF/DREB1 homologous genes in rice were obtained by BLAST search in the NCBI database,which share conserved amino acid sequences with DREB1 protein in Arabidopsis.Three CBF genes organized in tandem,named OsCBF1,OsCBF2 and OsCBF3,showed a transient induction in the process of cold acclimation,much stronger in indica rice 93-11 compared with japonica rice Nipponbare.The candidate downstream genes OsLIP5 and OsLIP9 were induced in 93-11 but not in Nipponbare.The differential expression of CBF regulon might be caused by polymorphisms within promoter sequences between these two rice varieties.These results could be useful for utilization of CBF/DREB1 genes and illustration of differences in chilling tolerance between indica and japonica rice varieties.

  3. Photosynthetic acclimation of Symbiodinium in hospite depends on vertical position in the tissue of the scleractinian coral Montastrea curta

    Mads eLichtenberg

    2016-02-01

    Full Text Available Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ~71% and ~33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters.

  4. Acclimation of tree function and structure to climate change and implications to forest carbon and nutrient balances

    Hari, P.; Nissinen, A.; Berninger, F. [Helsinki Univ. (Finland). Dept. of Forest Ecology] [and others

    1996-12-31

    Before large-scale anthropogenetic emissions the environmental factors have been rather stable for thousands of years, varying yearly, seasonally and daily in rather regular manners around some mean values. In this century the emissions of CO{sub 2}, sulphur and nitrogen from society to atmosphere are changing both atmospheric and soil environment at rates not experienced before. The fluxes to soil affect the contents of plant available nutrients and solubility of toxic compounds in the forest soil. Additionally, the chemical state of soil environment is coupled to tree growth, litter production and nutrient uptake as well as to the activity of biological organisms in soil, which decompose litter and release nutrients from it. Trees have developed effective regulation systems to cope with the environment during the evolution. The resulting acclimations improve the functioning of the trees if the environmental factors remain within their range of variation during the evolution. Outside the range the results of the regulation are unpredictable. The acclimative changes caused by the action of the regulation system may considerably change the response of trees to present environmental change. The analysis of the effects of present environmental change on forests requires simultaneous treatment of the atmosphere, forest soils and trees. Each of these components is dominated by its own features. The analyze of material and energy fluxes connect them to each other. The aim of this research is to analyse changes in the forest soils and reactions of trees to changes in the atmosphere and forest soils under a common theoretical framework, enabling combination of the obtained results into a holistic analysis of the response of forests to the present environmental change

  5. Greater impact of extreme drought on photosynthesis of grasslands exposed to a warmer climate in spite of acclimation.

    Zavalloni, Costanza; Gielen, Birgit; De Boeck, Hans J; Lemmens, Catherine M H M; Ceulemans, Reinhart; Nijs, Ivan

    2009-05-01

    In view of the projected increase in the frequency of extreme events during this century, we investigated the impact of a drought extreme on leaf ecophysiological parameters and carbon isotope composition (delta(13)C) of grassland communities with species richness (S) of one, three or nine species. The communities, grown for 3 years at either ambient air temperatures (ambient T(air)) or ambient T(air) + 3 degrees C (elevated T(air)), were additionally subjected to an imposed drought by withholding water for 24 days. During the previous 3 years equal precipitation was applied in both temperature treatments, thus communities at elevated T(air) had experienced more frequent, mild droughts. However, it was unknown whether this resulted in a higher resistance for facing extreme droughts. At similar soil matric potentials stomatal conductance (g(s)) and transpiration (Tr) were higher at elevated than ambient T(air), indicating acclimation to lower soil water content. Despite the stomatal acclimation observed, plants in elevated T(air) showed a lower resistance to the drought extreme as indicated by their lower photosynthetic rate (A(max)), g(s) and Tr during the entire duration of the drought extreme. Lower values for A(max), Tr and g(s) were also recorded in species at S = 3 as compared with species at S = 1 for both temperature treatments, but no further differences with S = 9 suggesting that stress was not alleviated at higher S-levels. The discrimination of (13)C was poorly correlated with measurements of instantaneous leaf water-use efficiency (A(max)/Tr) and, with this time scale and sampling method, it was not possible to detect any potential change in plant water-use efficiency using leaf delta(13)C. PMID:19374719

  6. Differential expression of Na+, K(+)-ATPase α-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus.

    Urbina, Mauricio A; Schulte, Patricia M; Bystriansky, Jason S; Glover, Chris N

    2013-04-01

    Inanga (Galaxias maculatus) is an amphidromous fish with a well-known capacity to withstand a wide range of environmental salinities. To investigate the molecular mechanisms facilitating acclimation of inanga to seawater, several isoforms of the Na(+), K(+)-ATPase ion transporter were identified. This included three α-1 (a, b and c), an α-2 and two α-3 (a and b) isoforms. Phylogenetic analysis showed that the inanga α-1a and α-1b formed a clade with the α-1a and α-1b isoforms of rainbow trout, while another clade contained the α-1c isoforms of these species. The expression of all the α-1 isoforms was modulated after seawater exposure (28‰). In gills, the expression of the α-1a isoform was progressively down-regulated after seawater exposure, while the expression of the α-1b isoform was up-regulated. The α-1c isoform behaved similarly to the α-1a, although changes were less dramatic. Physiological indicators of salinity acclimation matched the time frame of the changes observed at the molecular level. A 24-h osmotic shock period was highlighted by small increases in plasma osmolality, plasma Na(+) and a decrease in muscle tissue water content. Thereafter, these values returned close to their pre-exposure (freshwater) values. Na(+), K(+)-ATPase activity showed a decreasing trend over the first 72 h following seawater exposure, but activity increased after 240 h. Our results indicate that inanga is an excellent osmoregulator, an ability that is conferred by the rapid activation of physiological and molecular responses to salinity change. PMID:23142926

  7. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures.

    Suckling, Coleen C; Clark, Melody S; Richard, Joelle; Morley, Simon A; Thorne, Michael A S; Harper, Elizabeth M; Peck, Lloyd S

    2015-05-01

    This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions. PMID:25491898

  8. The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish.

    Wysocki, Lidia Eva; Montey, Karen; Popper, Arthur N

    2009-10-01

    Being ectothermic, fish body temperature generally depends on ambient water temperature. Thus, ambient temperature might affect various sensory systems, including hearing, as a result of metabolic and physiological processes. However, the maintenance of sensory functions in a changing environment may be crucial for an animal's survival. Many fish species rely on hearing for acoustic orientation and communication. In order to investigate the influence of temperature on the auditory system, channel catfish Ictalurus punctatus was chosen as a model for a eurytherm species and the tropical catfish Pimelodus pictus as a model for a stenotherm fish. Hearing sensitivity was measured with animals acclimated or unacclimated to different water temperatures. Ambient water temperature significantly influenced hearing thresholds and the shape of auditory evoked potentials, especially at higher frequencies in I. punctatus. Hearing sensitivity of I. punctatus was lowest at 10 degrees C and increased by up to 36 dB between 10 degrees C and 26 degrees C. Significant differences were also revealed between acclimated and unacclimated animals after an increase in water temperature but not a decrease. By contrast, differences in hearing thresholds were smaller in P. pictus, even if a similar temperature difference (8 degrees C) was considered. However, P. pictus showed a similar trend as I. punctatus in exhibiting higher hearing sensitivity at the highest tested temperature, especially at the highest frequency tested. The results therefore suggest that the functional temperature dependence of sensory systems may differ depending upon whether a species is physiologically adapted to tolerate a wide or narrow temperature range. PMID:19749101

  9. Rapid acclimation of juvenile corals to CO2 -mediated acidification by upregulation of heat shock protein and Bcl-2 genes.

    Moya, A; Huisman, L; Forêt, S; Gattuso, J-P; Hayward, D C; Ball, E E; Miller, D J

    2015-01-01

    Corals play a key role in ocean ecosystems and carbonate balance, but their molecular response to ocean acidification remains unclear. The only previous whole-transcriptome study (Moya et al. Molecular Ecology, 2012; 21, 2440) documented extensive disruption of gene expression, particularly of genes encoding skeletal organic matrix proteins, in juvenile corals (Acropora millepora) after short-term (3 d) exposure to elevated pCO2 . In this study, whole-transcriptome analysis was used to compare the effects of such 'acute' (3 d) exposure to elevated pCO2 with a longer ('prolonged'; 9 d) period of exposure beginning immediately post-fertilization. Far fewer genes were differentially expressed under the 9-d treatment, and although the transcriptome data implied wholesale disruption of metabolism and calcification genes in the acute treatment experiment, expression of most genes was at control levels after prolonged treatment. There was little overlap between the genes responding to the acute and prolonged treatments, but heat shock proteins (HSPs) and heat shock factors (HSFs) were over-represented amongst the genes responding to both treatments. Amongst these was an HSP70 gene previously shown to be involved in acclimation to thermal stress in a field population of another acroporid coral. The most obvious feature of the molecular response in the 9-d treatment experiment was the upregulation of five distinct Bcl-2 family members, the majority predicted to be anti-apoptotic. This suggests that an important component of the longer term response to elevated CO2 is suppression of apoptosis. It therefore appears that juvenile A. millepora have the capacity to rapidly acclimate to elevated pCO2 , a process mediated by upregulation of specific HSPs and a suite of Bcl-2 family members. PMID:25444080

  10. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis.

    María José Iglesias

    Full Text Available One of the most striking aspects of plant plasticity is the modulation of development in response to environmental changes. Plant growth and development largely depend on the phytohormone auxin that exerts its function through a partially redundant family of F-box receptors, the TIR1-AFBs. We have previously reported that the Arabidopsis double mutant tir1 afb2 is more tolerant to salt stress than wild-type plants and we hypothesized that down-regulation of auxin signaling might be part of Arabidopsis acclimation to salinity. In this work, we show that NaCl-mediated salt stress induces miR393 expression by enhancing the transcription of AtMIR393A and leads to a concomitant reduction in the levels of the TIR1 and AFB2 receptors. Consequently, NaCl triggers stabilization of Aux/IAA repressors leading to down-regulation of auxin signaling. Further, we report that miR393 is likely involved in repression of lateral root (LR initiation, emergence and elongation during salinity, since the mir393ab mutant shows reduced inhibition of emergent and mature LR number and length upon NaCl-treatment. Additionally, mir393ab mutant plants have increased levels of reactive oxygen species (ROS in LRs, and reduced ascorbate peroxidase (APX enzymatic activity compared with wild-type plants during salinity. Thus, miR393 regulation of the TIR1 and AFB2 receptors could be a critical checkpoint between auxin signaling and specfic redox-associated components in order to coordinate tissue and time-specific growth responses and tolerance during acclimation to salinity in Arabidopsis.

  11. Discovery of a Plains Caldera Complex and Extinct Lava Lake in Arabia Terra, Mars: Implications for the Discovery of Additional Highland Volcanic Source Regions

    Bleacher, Jacob; Michalski, Joseph

    2012-01-01

    Several irregularly shaped topographic depressions occur near the dichotomy boundary in northern Arabia Terra, Mars. The geomorphology of these features suggests that they formed by collapse, opposed to meteor impact. At least one depression (approx.55 by 85 km) displays geologic features indicating a complex, multi-stage collapse history. Features within and around the collapse structure indicate volcanic processes. The complex occurs within Hesperian ridged plains of likely volcanic origin and displays no crater rim or evidence for ejecta. Instead the depression consists of a series of circumferential graben and down-dropped blocks which also display upper surfaces similar to ridged plain lavas. Large blocks within the depression are tilted towards the crater center, and display graben that appear to have originally been linked with circumferential graben outside of the complex related to earlier collapse events. A nearly 700 m high mound exists along a graben within the complex that might be a vent. The deepest depression displays two sets of nearly continuous terraces, which we interpret as high-stands of a drained lava lake. These features appear similar to the black ledge described during the Kilauea Iki eruption in 1959. A lacustrine origin for the terraces seems unlikely because of the paucity of channels found in or around the depression that could be linked to aqueous surface processes. In addition, there is no obvious evidence for lacustrine sediments within the basin. Together with the presence of significant faulting that is indicative of collapse we conclude that this crater complex represents a large caldera formed in the Late Noachian to Early Hesperian. Other linear and irregular depressions in the region also might be linked to ancient volcanism. If that hypothesis is correct, it suggests that northern Arabia Terra could contain a large, previously unrecognized highland igneous province. Evacuation of magma via explosive and effusive activity

  12. Handling complex source structures in global EM induction studies: from C-responses to new arrays of transfer functions

    Puethe, Christoph; Kuvshinov, Alexey; Olsen, Nils

    2015-01-01

    The C-response is a conventional transfer function in global electromagnetic induction research and is traditionally determined from observations of magnetic variations in the vertical and horizontal components. Its interpretation relies on the assumption that the source of the variations is well...... quantities of the new transfer functions, especially at high latitudes. This increases the usability of observatory magnetic data for the recovery of global 3-D mantle conductivity structure....

  13. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source.

    Vital-Jacome, Miguel; Buitrón, Germán; Moreno-Andrade, Ivan; Garcia-Rea, Victor; Thalasso, Frederic

    2016-08-01

    In this study, a microrespirometric method was used, i.e., pulse respirometry in microreactors, to characterize mass transfer and biodegradation kinetics in aerobic granules. The experimental model was an aerobic granular sludge in a sequencing batch reactor (SBR) degrading synthetic wastewater containing 4-chlorophenol as the sole carbon source. After 15 days of acclimation, the SBR process degraded 4-chlorophenol at a removal rate of up to 0.9kg CODm(-3)d(-1), and the degradation kinetics were well described by the Haldane model. The microrespirometric method consisted of injecting pulses of 4-chlorophenol into the 24 wells of a microreactor system containing the SBR samples. From the respirograms obtained, the following five kinetic parameters were successfully determined during reactor operation: (i) Maximum specific oxygen uptake rate, (ii) substrate affinity constant, (iii) substrate inhibition constant, (iv) maximum specific growth rate, and (v) cell growth yield. Microrespirometry tests using granules and disaggregated granules allowed for the determination of apparent and intrinsic parameters, which in turn enabled the determination of the effectiveness factor of the granular sludge. It was concluded that this new high-throughput method has the potential to elucidate the complex biological and physicochemical processes of aerobic granular biosystems. PMID:27054670

  14. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Jia Li; Armstrong, Cheryl L.H.; Campbell, Wayne W.

    2016-01-01

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER)...

  15. Exploitation of the complexation reaction of ortho-dihydroxylated anthocyanins with aluminum(III) for their quantitative spectrophotometric determination in edible sources.

    Bernal, Freddy A; Orduz-Diaz, Luisa L; Coy-Barrera, Ericsson

    2015-10-15

    Anthocyanins are natural pigments known for their color and antioxidant activity. These properties allow their use in various fields, including food and pharmaceutical ones. Quantitative determination of anthocyanins had been performed by non-specific methods that limit the accuracy and reliability of the results. Therefore, a novel, simple spectrophotometric method for the anthocyanins quantification based on a formation of blue-colored complexes by the known reaction between catechol- and pyrogallol-containing anthocyanins and aluminum(III) is presented. The method demonstrated to be reproducible, repetitive (RSDlaw was also evident in a range of concentrations (2-16 μg/mL for cyanidin 3-O-glucoside). Good recoveries (98.8-103.3%) were calculated using anthocyanin-rich plant samples. The described method revealed direct correlation to pH differential method results for several common anthocyanin-containing fruits indicating its great analytical potential. The presented method was successfully validated. PMID:25952844

  16. Synthesis of Co9S8 and CoS nanocrystallites using Co(II) thiosemicarbazone complexes as single-source precursors

    Amol S Pawar; Shivram S Garje

    2015-12-01

    Cubic Co9S8 and hexagonal CoS nanocrystallites were prepared by pyrolysis and solvothermal decomposition methods using Co(LH)2Cl2 and CoL2 (where LH = thiosemicarbazones of furfuraldehyde, cinnamaldehyde and 4-fluoro-acetophenone) as single-source precursors. These nanocrystallites were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), selected area electron diffraction, UV–Vis, PL and Raman spectroscopic techniques. From TEM images, the average grain size of asprepared cobalt sulphide nanocrystallites was found to be 7–10 nm. Depending on experimental conditions, various morphologies such as spherical, pyramidal, hollow spheres, etc. are observed in the TEM images.

  17. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  18. From ecophysiology to phenomics: some implications of photoprotection and shade-sun acclimation in situ for dynamics of thylakoids in vitro.

    Matsubara, Shizue; Förster, Britta; Waterman, Melinda; Robinson, Sharon A; Pogson, Barry J; Gunning, Brian; Osmond, Barry

    2012-12-19

    Half a century of research into the physiology and biochemistry of sun-shade acclimation in diverse plants has provided reality checks for contemporary understanding of thylakoid membrane dynamics. This paper reviews recent insights into photosynthetic efficiency and photoprotection from studies of two xanthophyll cycles in old shade leaves from the inner canopy of the tropical trees Inga sapindoides and Persea americana (avocado). It then presents new physiological data from avocado on the time frames of the slow coordinated photosynthetic development of sink leaves in sunlight and on the slow renovation of photosynthetic properties in old leaves during sun to shade and shade to sun acclimation. In so doing, it grapples with issues in vivo that seem relevant to our increasingly sophisticated understanding of ΔpH-dependent, xanthophyll-pigment-stabilized non-photochemical quenching in the antenna of PSII in thylakoid membranes in vitro. PMID:23148277

  19. Characterization and properties of intracellular proteins after cold acclimation of the ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686.

    Koda, N; Aoki, M; Kawahara, H; Yamade, K; Obata, H

    2000-11-01

    The ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686 (INA(+)) responds to a decrease in temperature by the induction of proteins. The pattern of protein bands from strain IFO12686 following a shift in temperature from 30 to 12 degrees C could be divided into four major groups: (1) increasing protein bands, (2) decreasing protein bands, (3) increasing--decreasing protein bands, and (4) almost constant protein bands. We identified a cryoprotective function in the increasing protein band found in strain IFO12686. The increasing protein bands that followed a reduction in temperature were considered to have an important role in cold acclimation or adaptation. We showed that these proteins possessed cryoprotective activity when tested against the freeze-labile enzyme lactate dehydrogenase. The strain IFO12686 had greater cryotolerance than Pa. agglomerans IAM1595 (INA(-)), and the degree of cryotolerance was increased by cold acclimation. PMID:11161552

  20. Controlling Mercury Release from Source Zones to Surface Water: Initial Results of Pilot Tests at the Y-12 National Security Complex

    Southworth, George R [ORNL; Brooks, Scott C [ORNL; Peterson, Mark J [ORNL; Bogle, Mary Anna [ORNL; Miller, Carrie L [ORNL; Liang, Liyuan [ORNL; Elliott, Mike [Y-12 National Security Complex

    2009-01-01

    This report presents initial results obtained during year 2008 and satisfies a deliverable listed in the work breakdown structure (WBS) element OR081301. Broad objectives of the multi-year project are: (1) evaluation of remediation technologies for waterborne mercury, (2) development of treatment methods for soil mercury, and (3) source identification, characterization and analyses to improve mass balance on mercury estimates. This report presents the results of pilot tests, conducted in summer and fall 2008, which focused on remediation of waterborne mercury. The goal of this task is to develop strategies and treatment technologies that reduce the concentration and loading of waterborne mercury discharges to the UEFPC, thus minimizing mercury uptake by fish. The two specific studies are: (1) reducing flow augmentation in UEFPC to lessen mercury mobilization from contaminated stream sediments, and (2) treatment of contaminated source waters with a chemical reductant to convert dissolved mercury to a volatile form that can be removed by air stripping or natural evasion. Diversion of 50% of the flow currently added to UEFPC by the flow management system appeared to reduce mercury inputs from a localized, highly contaminated streambed by 0.6-1.5 grams per day (g/d). A reduction of 0.6 g/d represents {approx} 7-10% decrease in mercury input to UEFPC. Mercury concentrations within UEFPC did not rise proportionately with the loss of dilution, in part because of the reduction in input from the streambed source and in part because of reduced flow from the Y-12 NSC storm drain system. A longer-term test that includes seasonal variability will be the next step to validate these initial field observations of the flow diversion experiment. Preliminary laboratory experiments show that a large fraction ({approx} 90%) of the mercury can be chemically reduced to Hg(0) by addition of low concentrations of tin, Sn(II). Conversion of mercury to volatile Hg(0) in UEFPC was also

  1. MORSE, Multigroup Neutron Transport and Gamma Transport for Complex Geometry Shields by Monte-Carlo. MORSE-E, Program MORSE with Uniform Source for Various Geometry

    1 - Nature of physical problem solved: The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. It has been designed as a tool for solving most shielding problems. Through the use of multigroup cross sections, the solution of neutron, gamma-ray, or coupled neutron-gamma-ray problems may be obtained in either the forward or adjoint mode. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry, as well as specialized one-dimensional geometry descriptions, may be used with an albedo option available at any material surface. Isotropic or anisotropic scattering up to a P16 expansion of the angular distribution is allowed. MORSE-E1 - This is a new analysis package written by ESIS at Ispra. It can be used with the O5R geometry or with the combinatorial geometry as with any other geometry compatible with MORSE. It contains a flexible set of subprograms tailored to solve a variety of shielding problems. It provides uniform source distributions of several geometrical shapes, and calculates particle fluxes and reaction rates integrated over the volumes defined by the user. Currents of particles through surfaces may be calculated. MORSE-H has been developed from MORSE-CG (CCC-0203) and MORSE-E. The special features of this version are: 1) Track-length (volume integrated flux) or next event (point flux) estimates; 2) multiple source region specification; 3) flexible source direction options; 4) restartable in all classes of problems; 5) eigenvalue (keff) solution obtainable even if keff is significantly different from unity. 2 - Method of solution: Monte Carlo methods are used to solve the forward and the adjoint transport equations. Quantities of interest are then obtained by summing the contributions over all collisions, and frequently over most of phase space. Standard multigroup cross sections such as those used in discrete ordinates codes may be used as input; either ANISN, DTF-4 or DOT cross

  2. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern.

    Anne Jungandreas

    Full Text Available Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL to blue light (BL and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning.

  3. The Acclimation of Phaeodactylum tricornutum to Blue and Red Light Does Not Influence the Photosynthetic Light Reaction but Strongly Disturbs the Carbon Allocation Pattern

    Jungandreas, Anne; Schellenberger Costa, Benjamin; Jakob, Torsten; von Bergen, Martin; Baumann, Sven; Wilhelm, Christian

    2014-01-01

    Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL) to blue light (BL) and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning. PMID:25111046

  4. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis.

    Stefan Timm

    Full Text Available BACKGROUND: Photorespiratory carbon metabolism was long considered as an essentially closed and nonregulated pathway with little interaction to other metabolic routes except nitrogen metabolism and respiration. Most mutants of this pathway cannot survive in ambient air and require CO(2-enriched air for normal growth. Several studies indicate that this CO(2 requirement is very different for individual mutants, suggesting a higher plasticity and more interaction of photorespiratory metabolism as generally thought. To understand this better, we examined a variety of high- and low-level parameters at 1% CO(2 and their alteration during acclimation of wild-type plants and selected photorespiratory mutants to ambient air. METHODOLOGY AND PRINCIPAL FINDINGS: The wild type and four photorespiratory mutants of Arabidopsis thaliana (Arabidopsis were grown to a defined stadium at 1% CO(2 and then transferred to normal air (0.038% CO(2. All other conditions remained unchanged. This approach allowed unbiased side-by-side monitoring of acclimation processes on several levels. For all lines, diel (24 h leaf growth, photosynthetic gas exchange, and PSII fluorescence were monitored. Metabolite profiling was performed for the wild type and two mutants. During acclimation, considerable variation between the individual genotypes was detected in many of the examined parameters, which correlated with the position of the impaired reaction in the photorespiratory pathway. CONCLUSIONS: Photorespiratory carbon metabolism does not operate as a fully closed pathway. Acclimation from high to low CO(2 was typically steady and consistent for a number of features over several days, but we also found unexpected short-term events, such as an intermittent very massive rise of glycine levels after transition of one particular mutant to ambient air. We conclude that photorespiration is possibly exposed to redox regulation beyond known substrate-level effects. Additionally, our data

  5. Na+/K+-ATPase α1 mRNA expression in the gill and rectal gland of the Atlantic stingray, Dasyatis sabina, following acclimation to increased salinity

    Evans, Andrew N.; Lambert, Faith N

    2015-01-01

    Background The salt-secreting rectal gland plays a major role in elasmobranch osmoregulation, facilitating ion balance in hyperosmotic environments in a manner analogous to the teleost gill. Several studies have examined the central role of the sodium pump Na+/K+-ATPase in osmoregulatory tissues of euryhaline elasmobranch species, including regulation of Na+/K+-ATPase activity and abundance in response to salinity acclimation. However, while the transcriptional regulation of Na+/K+-ATPase in ...

  6. Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media

    B Zeinali-Rafsanjani

    2015-01-01

    Full Text Available To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL, percentage depth doses (PDDs and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam.

  7. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane Complex as a Pt Source for Pt/SnO2 Catalyst

    Agnieszka Martyla

    2014-01-01

    Full Text Available This paper presents new preparation method of Pt/SnO2, an important catalytic system. Besides of its application as a heterogenic industrial catalyst, it is also used as a catalyst in electrochemical processes, especially in fuel cells. Platinum is commonly used as an anode catalyst in low temperature fuel cells, fuelled with alcohols of low molecular weight such as methanol. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was used as a precursor of metallic phase. The aim of the research was to obtain a highly active in electrochemical system Pt/SnO2 catalyst with low metal load. Considering small size of Pt crystallites, it should result in high activity of Pt/SnO2 system. The presented method of SnO2 synthesis allows for obtaining support consisting of nanoparticles. The effect of the thermal treatment on activity of Pt/SnO2 gel was demonstrated. The system properties were investigated using TEM, FTIR (ATR, and XRD techniques to describe its thermal structural evolution. The results showed two electrocatalytical activity peaks for drying at a temperature of 430 K and above 650 K.

  8. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.

    Hasunuma, Tomohisa; Sakamoto, Takatoshi; Kondo, Akihiko

    2016-01-01

    Improving the production of ethanol from xylose is an important goal in metabolic engineering of Saccharomyces cerevisiae. Furthermore, S. cerevisiae must produce ethanol in the presence of weak acids (formate and acetate) generated during pre-treatment of lignocellulosic biomass. In this study, weak acid-containing xylose fermentation was significantly improved using cells that were acclimated to the weak acids during pre-cultivation. Transcriptome analyses showed that levels of transcripts for transcriptional/translational machinery-related genes (RTC3 and ANB1) were enhanced by formate and acetate acclimation. Recombinant yeast strains overexpressing RTC3 and ANB1 demonstrated improved ethanol production from xylose in the presence of the weak acids, along with improved tolerance to the acids. Novel metabolic engineering strategy based on the combination of short-term acclimation and system-wide analysis was developed, which can develop stress-tolerant strains in a short period of time, although conventional evolutionary engineering approach has required long periods of time to isolate inhibitor-adapted strains. PMID:26521247

  9. A better energy allocation of absorbed light in photosystem II and less photooxidative damage contribute to acclimation of Arabidopsis thaliana young leaves to water deficit.

    Sperdouli, Ilektra; Moustakas, Michael

    2014-05-01

    Water deficit stress promotes excitation pressure and photooxidative damage due to an imbalance between light capture and energy use. Young leaves (YL) of Arabidopsis thaliana plants acclimate better to the onset of water deficit (OnsWD) than do mature leaves (ML). To obtain a better understanding of this differential response, we evaluated whether YL and ML of A. thaliana exposed to the OnsWD, mild water deficit (MiWD) and moderate water deficit (MoWD), show differences in their photosynthetic performance, and whether photosynthetic acclimation correlates with leaf developmental stage. Water deficit (WD) resulted in greater photooxidative damage in ML compared to YL, but the latter could not be protected under the OnsWD or MiWD, but only under MoWD. YL of A. thaliana with signs of photosynthetic acclimation under MoWD retained higher maximum quantum yield (Fv/Fm) and decreased reactive oxygen species (ROS) formation. YL under MoWD, show a reduced excitation pressure and a better balance between light capture and photochemical energy use, which contributed to their photoprotection, but only under low light intensity (LL, 130μmolphotonsm(-2)s(-1)) and not under high light (HL, 1200μmolphotonsm(-2)s(-1)). In conclusion, leaf developmental stage was correlated with photo-oxidative damage and a differential allocation of absorbed light energy in photosystem II (PSII) of Arabidopsis leaves under WD. PMID:24709149

  10. Dataset of protein changes induced by cold acclimation in red clover (Trifolium pratense L.) populations recurrently selected for improved freezing tolerance.

    Bipfubusa, Marie; Rocher, Solen; Bertrand, Annick; Castonguay, Yves; Renaut, Jenny

    2016-09-01

    The data provide an overview of proteomic changes in red clover (Trifolium pratense L.) in response to cold acclimation and recurrent selection for superior freezing tolerance. Proteins were extracted from crowns of two red clover cultivars grown under non-acclimated or cold-acclimated conditions, and plants obtained from the initial genetic background (TF0) and from populations obtained after three (TF3) and four cycles (TF4) of recurrent selection for superior freezing tolerance. Proteins were analyzed using a two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled to mass spectroscopy (MS and MS/MS). Differentially regulated proteins were subsequently identified using MALDI TOF/TOF analysis. The data are related to a recently published research article describing proteome composition changes associated with freezing tolerance in red clover, "A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.)" (Bertrand et al., 2016 [1]). They are available in the ProteomeXchange Consortium database via the PRIDE partner repository under the dataset identifier PRIDE: PXD003689. PMID:27408927

  11. The effects of gender, acclimation state, the opportunity to adjust clothing and physical disability on requirements for thermal comfort

    Parsons, K.C. [Human Thermal Environments Laboratory, Department of Human Sciences, Loughborough University, Loughborough (United Kingdom)

    2002-07-01

    A programme of laboratory studies into thermal comfort requirements is presented. Two studies used groups of 16 subjects over a range of conditions (warm to cool) to investigate the effects of gender over 3 hours exposures in simulated living room/office environments. It was found that for identical levels of clothing and activity, there were only small differences in the thermal comfort responses of male and female subjects for neutral and slightly warm conditions. For cool conditions, female subjects tended to be cooler than males. An experiment to investigate the effects of heat acclimation on thermal comfort requirements involved six male subjects providing thermal comfort responses in neutral and slightly warm environments over 2 days. They then carried out an acclimatization program over 4 days, for 2 hours per day, exercising in a hot (45 {sup o}C, 40% relative humidity) environment. Thermal comfort responses were then recorded in two sessions over 2 days in identical conditions to the pre-acclimation session. It was found that changes in thermal comfort responses were small and likely to be of little practical significance. An investigation into the behaviour of people to maintain thermal comfort by adjusting their clothing was conducted using eight male and eight female subjects. Seated subjects reduced or increased their clothing level by using a wardrobe of clothing that was familiar to them. It was found that subjects can adjust their clothing to maintain thermal comfort, but within limits. Upper limits (clothing off) will be determined by modesty and acceptability. Lower limits (clothing on) will be determined by clothing design and acceptability. A low air temperature limit of 18 {sup o}C in freely available clothing may provide a working hypothesis. A laboratory study of thermal comfort requirements for people with physical disabilities compared responses with those of people without physical disabilities. It was found that there are few group

  12. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  13. A Diffuse X-Ray Source, AX J1843.8-0352 Association with the Radio Complex G28.6-0.1 and Identification of a New Supernova Remnant

    Bamba, A; Koyama, K; Yamauchi, S; Bamba, Aya; Ueno, Masaru; Koyama, Katsuji; Yamauchi, Shigeo

    2001-01-01

    ASCA discovered an extended source in the Scutum constellation. The X-ray morphology is an elliptical shape elongated from north to south with a mean diameter of about 10'. The image center is located at RA = 18h43m53s, DEC = 03D52'55'' (hereafter, AX J1843.8-0352). The north and south rims of AX J1843.8-0352 are associated with non-thermal radio sources C and F of the G28.6-0.1 complex (Helfand et al. 1989). The X-ray spectrum was fitted with a model of either a thin thermal plasma in non-equilibrium ionization of a temperature 5.4 keV or a power-law of photon index 2.1. The absorption column is (2.4-4.0)E22 /cm2, which probably places this source in the Scutum arm. With a reasonable distance assumption of about 7 kpc, we estimate the mean diameter and X-ray luminosity to be ~20 pc and ~3E34 erg/s, respectively. Although a Sedov solution for a thin thermal plasma model gives parameters of a young shell-like SNR, no strong emission lines are found with the metal abundances being ~solar. Thus, a more likely sc...

  14. Geochemistry and technology of basaltic glass artefacts from an embedded source and two high-altitude base camps in the Mauna Kea Adze Quarry Complex, Hawai'i

    Located at the base of an escarpment at ∼3720 m elevation, in the Mauna Kea Adze Quarry Complex, Hawai'i Island, is a small outcrop of basaltic glass that was utilised by adze makers for at least several hundred years as a source of toolstone for the manufacture of small, expedient flake tools. A test excavation of this previously unknown source/quarry was undertaken in 1976 to obtain a sample of artefacts to compare with what appeared to be lithologically identical basaltic glass cores and flakes from excavations at two nearby rockshelters used by adze makers as base camps. Comprehensive geochemical analyses of a small sample of flakes from the source and base camps confirm that all but one of the rockshelter artefacts are local basaltic glass and that the manufacture and use of basaltic glass tools was therefore an activity embedded in the adze quarry 'industry'. The one anomalous sample, which was selected for analysis because of its unusually vitreous appearance, is a trachytic glass flake sourced to Pu'u Wa'awa'a, a volcanic cone located ∼40 km west of the Mauna Kea Adze Quarry and source of the best quality and most used volcanic glass on Hawai'i Island. The provenance of the Pu'u Wa'awa'a flake suggests that it was an offering or gift and not part of some down-the-line exchange network, as often assumed in the case of volcanic glass artefacts found in coastal habitation sites. Although there is no conclusive evidence that any of the Mauna Kea basaltic glass was exported, it is a possibilty that needs to be considered in future studies of volcanic glass distribution patterns, which appear to have been far more complicated than previously thought. To characterise sources/quarries and to provide robust matches of artefacts to sources, we advocate using comprehensive geochemical techniques and reporting the data in full - not just mid-Z elements and select oxide values. (author).

  15. Future climate projection under IPCC A1B scenario in the source region of Yellow River with complex topography using RegCM3

    Hui, Pinhong; Tang, Jianping; Wang, Shuyu; Wu, Jian; Kang, Yue

    2014-10-01

    Located on the Tibetan Plateau, the source region of Yellow River has experienced remarkable climate change over past a few decades, which affects the regional ecosystem, agricultural development, and water availability. In this paper, high-resolution RegCM3 driven by ECHAM5 is applied to generate both control climate for 1980-2000 and regional climate projections for the 21st century (2010-2098) under the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario. For control climate, RegCM3 can well reproduce the spatial patterns of precipitation and surface air temperature with more detailed representation of fine scale topography. Wet and cold biases are produced in the simulation, but overall improvement by RegCM3 is evident compared to the driving global climate model (GCM) of ECHAM5. In the future projection, the model demonstrates significant warming over the whole analysis domain. Precipitation on the other hand shows mixed signals of reduction and increase over simulation domain, while the areas of precipitation reduction extend with increasing integration time and finally cover most parts of the domain at the end of 21st century. As projection time increases, high altitude region will experience more precipitation reduction in summer and less reduction or even increase in winter. The winter warming at the high elevation area gets more evident than that at the low elevation area, which may be due to the snow feedback. Analyzing the change of probability distributions of surface climate, it can be concluded that the frequency of heavy precipitation in winter tends to increase with time indicating more extreme precipitation events in the future. The spectrum of temperature probability density functions (PDFs) moves toward higher end.

  16. Complex rupture source of the 12 January 2010 Léogâne, Haiti earthquake derived from geologic, geodetic, and seismologic observations

    Briggs, R. W.; Hayes, G. P.; Sladen, A.; Fielding, E. J.; Prentice, C. S.; Hudnut, K. W.; Mann, P.; Taylor, F. W.; Crone, A. J.; Gold, R. D.; Ito, T.; Simons, M.; Jean, P.

    2010-12-01

    by standard paleoseismic studies. This suggests that prehistoric earthquake records in transpressive tectonic environments, such as the San Andreas fault through the Transverse Ranges of California, may be missing similarly complex earthquakes.

  17. Complex variables I essentials

    Solomon, Alan D

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Complex Variables I includes functions of a complex variable, elementary complex functions, integrals of complex functions in the complex plane, sequences and series, and poles and r

  18. Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses.

    Cherkasov, Anton S; Biswas, Pradip K; Ridings, Daisy M; Ringwood, Amy H; Sokolova, Inna M

    2006-04-01

    In order to understand the role of metabolic regulation in environmental stress tolerance, a comprehensive analysis of demand-side effects (i.e. changes in energy demands for basal maintenance) and supply-side effects (i.e. metabolic capacity to provide ATP to cover the energy demand) of environmental stressors is required. We have studied the effects of temperature (12, 20 and 28 degrees C) and exposure to a trace metal, cadmium (50 microg l(-1)), on the cellular energy budget of a model marine poikilotherm, Crassostrea virginica (eastern oysters), using oxygen demand for ATP turnover, protein synthesis, mitochondrial proton leak and non-mitochondrial respiration in isolated gill and hepatopancreas cells as demand-side endpoints and mitochondrial oxidation capacity, abundance and fractional volume as supply-side endpoints. Cadmium exposure and high acclimation temperatures resulted in a strong increase of oxygen demand in gill and hepatopancreas cells of oysters. Cd-induced increases in cellular energy demand were significant at 12 and 20 degrees C but not at 28 degrees C, possibly indicating a metabolic capacity limitation at the highest temperature. Elevated cellular demand in cells from Cd-exposed oysters was associated with a 2-6-fold increase in protein synthesis and, at cold acclimation temperatures, with a 1.5-fold elevated mitochondrial proton leak. Cellular aerobic capacity, as indicated by mitochondrial oxidation capacity, abundance and volume, did not increase in parallel to compensate for the elevated energy demand. Mitochondrial oxidation capacity was reduced in 28 degrees C-acclimated oysters, and mitochondrial abundance decreased in Cd-exposed oysters, with a stronger decrease (by 20-24%) in warm-acclimated oysters compared with cold-acclimated ones (by 8-13%). These data provide a mechanistic basis for synergism between temperature and cadmium stress on metabolism of marine poikilotherms. Exposure to combined temperature and cadmium stress may

  19. Expression of key ion transporters in the gill and esophageal-gastrointestinal tract of euryhaline Mozambique tilapia Oreochromis mossambicus acclimated to fresh water, seawater and hypersaline water.

    Zhengjun Li

    Full Text Available The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na(+ and Cl(- in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt, seawater (30 ppt and hypersaline (70 ppt environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus and stomach displayed significant up-regulation of nka-α1 and nka-α3, but not nkcc isoforms and cftr, in hypersaline-acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique tilapia; its ability to survive in

  20. Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately.

    Gerganova, Milena; Popova, Antoaneta V; Stanoeva, Daniela; Velitchkova, Maya

    2016-07-01

    The influence of two factors - high temperature and high light intensity, acting separately or simultaneously on the pigment composition, fluorescent characteristics, membrane integrity and synthesis of protective substances was investigated in tomato plants (Solanum lycopersicum cv. M 82). Moderate elevated temperatures (38/29 °C) were applied under optimum or high light intensity for 2 and 6 days and after that the plants are allowed to recover for 5 days at optimum conditions. Parameters of chlorophyll fluorescence were used to evaluate the alterations of photosystem I and photosystem II activity and malondialdehyde content was determined as a measure of stress-induced peroxidation of membrane lipids. The response of treated plants to high light and elevated temperature was estimated by analyzing the accumulation of anthocyanins. Both stress factors exhibit different impact on studied parameters - high light intensity influences considerably quantum yield of photosystem II and photochemical quenching that is compensated to some extent when applied at elevated temperature. High temperature reduces strongly non-photochemical quenching. Data obtained show that after two days under particular conditions, the plants tend to acclimate, but this is achieved after longer treatment - 6 days. During the recovery period the activity of photosystem I and the quantum yield of photosystem II recover almost completely, while the values of non-photochemical quenching although slightly higher, did not reach the levels at the beginning of treatment. PMID:27038602