WorldWideScience

Sample records for accidents dosimetrie biologique

  1. Radio-analysis. Applications: biological dosimetry; Radioanalyse. Applications: dosage biologique

    Bourrel, F. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Courriere, Ph. [UFR de Pharmacie, 31 - Toulouse (France)

    2003-06-01

    Radioisotopes have revolutionized the medical biology. Radio-immunology remains the reference measurement of the infinitely small in biology. Constant efforts have been performed to improve the simpleness, detectability and fastness of the method thanks to an increasing automation. This paper presents: 1 - the advantages of compounds labelling and the isotopic dilution; 2 - the antigen-antibody system: properties, determination of the affinity constant using the Scatchard method; 3 - radio-immunologic dosimetry: competitive dosimetry (radioimmunoassay), calibration curve and mathematical data processing, application to the free thyroxine dosimetry, immunoradiometric dosimetry (immunoradiometric assay), evaluation of the analytical efficiency of a radioimmunoassay; 4 - detection of the radioactive signal (solid and liquid scintillation). (J.S.)

  2. Nuclear accident dosimetry intercomparison studies.

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry. PMID:2777549

  3. Radiation accidents and dosimetry

    On September 2nd 1982 one of the employees of the gamma-irradiation facility at Institute for Energy Technology, Kjeller, Norway entered the irradiation cell with a 65.7 kCi *sp60*Co- source in unshielded position. The victim received an unknown radiation dose and died after 13 days. Using electron spin resonance spectroscopy, the radiation dose in this accident was subsequently determined based on the production of longlived free radicals in nitroglycerol tablets borne by the operator during the accident. He used nitroglycerol for heart problems and free radical are easily formed and trapped in sugar which is the main component of the tablets. Calibration experiments were carried out and the dose given to the tablets during the accident was determined to 37.2 +- 0.5 Gy. The general use of free radicals for dose determinations is discussed. (Auth.)

  4. 10 CFR 835.1304 - Nuclear accident dosimetry.

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  5. The Why and How of Nuclear Accident Dosimetry

    The objective of an effective nuclear accident dosimetry programme is to ensure that a means is provided for estimating the gamma neutron dose from a nuclear accident. In this connection, the limitation of the film badge is discussed, in addition to certain accident experiences which demonstrate the need for an effective accident dosimetry programme at facilities having a potential for nuclear accidents. Certain basic parameters should be considered in the development of an effective nuclear accident dosimetry programme. These are (a) a method for screening personnel involved in nuclear accidents, (b) a fixed system (primary unit) capable of determining first collision dose within some established degree of accuracy at its point of location, (c) the need for ''secondary units'', and (d) the need for a device worn by personnel which would afford spectrum and flux information to assist in dose extrapolation from the fixed unit to the location of man. The neutron component of the system should permit flux and spectral information in order to arrive at appropriate quality factors in the dose estimation. Accuracies should be established based upon the current state of the art. The gamma -ray component of the system should permit measuring gamma radiation within the biological area of interest, i. e. from 10 to 103r. Consideration for the number, placement and ease of recovery of accident units are indeed an integral part of an effective system of accident dosimetry. These considerations should enable reasonable data collection across the entire fission spectrum. (author)

  6. The use of a portable electronic device in accident dosimetry.

    Beerten, Koen; Vanhavere, Filip

    2008-01-01

    The use of a portable electronic device in accident dosimetry has been investigated. The thermoluminescence properties of a surface-mount alumina-rich ceramic resonator from a USB flash drive were investigated. The following characteristics were verified: the absence of a zero-dose signal, gamma dose response, dose recycling behaviour, fading and optical bleaching. Finally, this component has been successfully used to determine a simulated accident dose (1 d following the irradiation event). It is concluded that it should be possible to perform rapid and reliable accident dose assessments with such components using conventional thermoluminescence dosimetry equipment. PMID:18703583

  7. The use of a portable electronic device in accident dosimetry

    The use of a portable electronic device in accident dosimetry has been investigated. The thermoluminescence properties of a surface-mount alumina-rich ceramic resonator from a USB flash drive were investigated. The following characteristics were verified: the absence of a zero-dose signal, gamma dose response, dose recycling behaviour, fading and optical bleaching. Finally, this component has been successfully used to determine a simulated accident dose (1 d following the irradiation event). It is concluded that it should be possible to perform rapid and reliable accident dose assessments with such components using conventional thermoluminescence dosimetry equipment. (authors)

  8. Dosimetry

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  9. Dosimetry studies for an industrial radiography accident

    On 5 June 1979, an industrial worker who was not involved with radiography found an 192Ir source that had accidently become detached and lost from its shielded camera. He placed the source in the hip pocket of his coveralls and returned to work, keeping the 192Ir source for some time before taking it to the plant manager. The biophysical calculations for the determination of exposure and depth-dose calculations are the basis for this paper

  10. Performance of the CEDS Accident Dosimetry System at the 1995 Los Alamos National Laboratory Nuclear Accident Dosimetry Intercomparison

    In July 1995, LANL hosted an accident dosimetry intercomparison. When all reactors on the Oak Ridge Reservation were idled in 1988, the Health Physics Research Reactor (HPRR), which had been used for 22 previous intercomparisons dating from 1965, was shut down for an indefinite period. The LANL group began characterization of two critical assemblies for dosimetry purposes. As a result, NAD-23 was conceived and 10 DOE facilities accepted invitations to participate in the intercomparison. This report is a summary of the performance of one of the participants, the Centralized External Dosimetry System (CEDS). The CEDS is a cooperative personnel dosimetry arrangement between three DOE sites in Oak Ridge, Tennessee. Many successes and failures are reported herein. Generally, the TL dosimeters performed poorly and always over-reported the delivered dose. The TLD processing procedures contain efforts that would lead to large biases in the reported absorbed dose, and omit several key steps in the TLD reading process. The supralinear behavior of lithium fluoride (LiF) has not been characterized for this particular dosimeter and application (i.e., in high-dose mixed neutron/gamma fields). The use of TLD materials may also be precluded given the limitations of the LiF material itself, the TLD reading system, and the upper dose level to which accident dosimetry systems are required to perform as set forth in DOE regulations. The indium foil results confirm the expected inability of that material to predict the magnitude of the wearer's dose reliably, although it is quite suitable as a quick-sort material. Biological sample (hair) results were above the minimum detectable activity (MDA) for only one of the tests. Several questions as to the best methods for sample handling and processing remain

  11. The principles of radioiodine dosimetry following a nuclear accident

    Based upon the experience of radioiodine dosimetry after the Chernobyl accident main principals of radioiodine measurements and dosimetry in thyroid glands of population in case of a radiation accident are discussed in the report. For the correct dose estimation following the radioiodine measurement in the thyroid one should know the ''history'' of radionuclide intake into the body of a contaminated person. So a measurement of radioiodine thyroid content should be accompanied by asking questions of investigated persons about, their life style and feeding after a nuclear incident. These data coincidently with data of radionuclides dynamic in the air and food (especially in milk products) are used for the development of radioiodine intake model and then for thyroid dose estimation. The influence of stable iodine prophylaxis and other countermeasures on values are discussed in dependence on the time of its using. Some methods of thyroid dose reconstruction used after the Chernobyl accident in Russia for a situation of thyroid radioiodine measurements lacking in a contaminated settlement are presented in the report. (author). 16 refs, 5 figs, 3 tabs

  12. Nuclear accident dosimetry studies at Los Alamos National Laboratory

    Two critical assemblies have been characterized at the Los Alamos Critical Experiments Facility (LACEF) for use in testing nuclear accident dosimeters and related devices. These device, Godiva IV and SHEBA II, have very different characteristics in both operation and emitted neutron energy spectra. The Godiva assembly is a bare metal fast burst device with a hard spectrum. This spectrum can be modified by use of several shields including steel, concrete, and plexiglas. The modified spectra vary in both average neutron energy and in the specific distribution of the neutron energies in the intermediate energy range. This makes for a very favorable test arrangement as the response ratios between different activation foils used in accident dosimeters are significantly altered such as the ratio between gold, copper, and sulfur elements. The SHEBA device is a solution assembly which has both a slow ramp and decay period and a much softer spectrum. The uncertainly introduced in the response of fast decay foils such as indium can therefore be evaluated into the test results. The neutron energy spectrum for each configuration was measured during low power operations with a multisphere system. These measurements were extended to high dose pulsed operation by use of TLDs moderated TLDs, and special activation techniques. The assemblies were used in the testing of several accident dosimetry devices in studies modeled after the Nuclear Accident Dosimetry Studies that were conducted at Oak Ridge National Laboratory for about 25 years using the Health Physics Research Reactor. It is our intention to conduct these studies approximately annually for the evaluation of the nuclear accident dosimeter systems currently in use within the DOE, alternative systems used internationally, and new dosimeter designs being developed or considered for field application. Participation in selected studies will be open to all participants

  13. International intercomparison of criticality accident dosimetry system. SILENE 2002

    Sixty laboratories issued from 29 countries participated in an international intercomparison of criticality accident dosimetry systems, which took place in France in June 2002, at the SILENE reactor and at a pure gamma source. This intercomparison was jointly organised by the Institute for Radiological Protection and Nuclear Safety (IRSN) and the Atomic Energy Commission (CEA) with the help of the Organisation for Economic Co-operation and Development (OECD) and was partly supported by the European Communities. This paper describes the different aspects of this intercomparison. The dosimetric quantities measured and reported by the participants are summarised, analysed and compared to the reference values. (author)

  14. Proceedings of the III international workshop 'Actual problems of dosimetry (15 years after the Chernobyl accident)'

    Materials grouped to three main issues: normative, metrological and technical support of dosimetric and radiometric control; biological dosimetry and markers of radiation effects; monitoring and reconstruction of radiation doses at radiation accidents

  15. Radiation accident dosimetry: TL properties of mobile phone screen glass

    Mobile phones are carried by a large part of the population and previous studies have shown that they may be able to function as individual fortuitous dosimeters in case of radiological accident. This study deals with thermoluminescence (TL) properties of mobile phone screen glass. The presence of a significant background signal which partially overlaps with the radiation-induced signal is a serious issue for dose reconstruction. A mechanical method to reduce this signal using a diamond grinding bit is presented. An over-response at low energy (∼50 keV) is observed for two investigated glasses. The results of a dose recovery test using a single-aliquot regenerative-dose (SAR) procedure are discussed. - Highlights: • Mobile phone screen glass is a promising material for retrospective dosimetry. • The TL non-radiation induced background signal can be significantly reduced by a mechanical method. • A dose recovery test using an SAR procedure was successfully carried out for the investigated glass

  16. Development of a retrospective/fortuitous accident dosimetry service based on OSL of mobile phones

    Work is presented on the development of a retrospective/fortuitous accident dosimetry service using optically stimulated luminescence of resistors found in mobile phones to determine the doses of radiation to members of the public following a radiological accident or terrorist incident. The system is described and discussed in terms of its likely accuracy in a real incident. (authors)

  17. The Hanford Criticality Accident: Dosimetry Techniques, Interpretations and Problems

    The number and integrity of dosimetry techniques used for dose interpretations for the twenty-two personnel involved in the 1962 criticality accident occurring at the Hanford Project were unusually complete. Personnel who received excessive exposures were immediately detected and segregated by monitoring personnel using portable instrumentation for ''quick-sort'' procedures which rely on in vivo measurements of Na24 activation. The close correlation between this rapid method of dose interpretation and subsequent sophisticated laboratory procedures was noted. Primary reliance, however, was placed upon film-badge interpretations, as all persons involved were wearing film badges. An area threshold detector, located within twenty-six feet of the critical vessel, furnished data upon which the neutron spectrum and the gamma to neutron ratios were established. Even with sophisticated and complete dosimetry techniques which were available and which are discussed, including blood and whole-body Na24 activity, excreta and P32 analyses and gold activation, many practical problems became evident. Described are methods or alternatives used to cope with or minimize actual problems including those which could have but did not arise. The ''quick-sort'' in vivo procedures successfully used could have become worthless if interfering external contamination were encountered. Alternatively, blood samples taken at first aid may substitute; however, in the haste of the emergency, anticoagulants may be omitted and subsequent coagulation can produce concern as to the accuracy of the dose interpretations. The film badge can include material of high neutron cross-sections introducing sufficient activity to interfere with film interpretations. The activation of the silver in the film presents a correction factor which can delay and confuse personnel who, under stress, are attempting rapid evaluations. The support provided by fixed detectors still presents the problems that scattering

  18. Eighteenth nuclear accident dosimetry intercomparison study: August 10-14, 1981

    The Eighteenth Nuclear Accident Dosimetry Intercomparison Study was conducted August 10-14, 1981, at the Oak Ridge National Laboratory. Nuclear criticality accidents with three different neutron and gamma ray energy spectra were simulated by operating the Health Physics Research Reactor in the pulse mode. Participants from 13 organizations exposed dosimeters set up as area monitors and mounted on phantoms for personnel monitoring. Analysis of experimental results showed that about 56% of the reported neutron doses measured using foil activation, thermoluminescent, or sodium activation methods and about 53% of the gamma doses measured using thermoluminescent methods met nuclear accident dosimetry guidelines which suggest accuracies of +- 25% for neutron dose and +- 20% for gamma dose. The greatest difficulties in measuring accident doses occurred in radiation fields with large fractions of low energy neutrons and a high gamma component (> 40%). Results of this study indicate that continued accident dosimetry intercomparisons are necessary to test dosimetry systems and training programs are needed to improve the technical competence of evaluating personnel

  19. The program of international intercomparison of accident dosimetry; Le programme d'intercomparaison internationale de dosimetrie d'accident 10-12 juin 2002

    NONE

    2002-06-01

    The French institute of radioprotection and nuclear safety (IRSN) has carried out in June 2002 an international intercomparison program for the testing of the physical and biological accident dosimetry techniques. The intercomparison is jointly organized by the IRSN and the OECD-NEA with the sustain of the European commission and the collaboration of the CEA centre of Valduc (France). About 30 countries have participated to this program. Each country has supplied its own dosimeters and biological samples which have been irradiated using the Silene reactor of CEA-Valduc or a {sup 60}Co source. These experiments allow to test the new dosimetric techniques that have been developed since the previous intercomparison program (1993) and to confirm or improve the performances of older techniques. Aside from the intercomparison exercise, this report makes a status of the known radiological accidents and of the effects of high doses of ionizing radiations on human health (symptoms, therapeutics). It explains the phenomenology of criticality accidents, the prevention means, and the history of such accidents up to the Tokai-Mura one in 1999. Finally, the dosimetry of criticality is presented with its physical and biological techniques. (J.S.)

  20. Nuclear accident dosimetry: Los Alamos measurements at the seventeenth nuclear accident dosimetry intercomparison study at the Oak Ridge National Lab., DOSAR Facility, August 1980

    Teams from various US and foreign organizations participated in the Seventeenth Nuclear Accident Dosimetry Study held at the Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research (DOSAR) facility August 11 to 15, 1980. Criticality dosimeters were simultaneously exposed to pulses of mixed neutron and gamma radiation from the Health Physics Research Reactor (HPRR). This report summarizes the experimental work conducted by the Los Alamos team. In-air and phantom measurements were conducted by the Los Alamos team using area and personnel dosimeters. Combined blood sodium and sulfur fluence measurements of absorbed dose were also made. In addition, indium foils placed on phantoms were evaluated for the purpose of screening personnel for radiation exposure. All measurements were conducted for unshielded, 5-cm steel and 20-cm concrete shielding configurations. All participant dosimeters were exposed at 3 m from the center of the HPRR core

  1. OSL and TL of Resistors of Mobile Phones for Retrospective Accident Dosimetry

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) of ubiquitous materials continue to draw wider attention for individual dosimetry in nuclear and radiation accidents. Use of ubiquitous objects for radiation dosimetry is preferred because the affected persons in such unexpected events are usually not covered by personal dosimetry services and do not carry personal dosimeters. Often accident sites do not have area monitoring system in place. As the main concern of the dosimetry is health effects, a quick distinction of level of exposures of the affected persons for the required medical care becomes important in all accidents involving radiation. Both in large scale nuclear accidents such Fukushima, Chernobyl or Hiroshima and Nagasaki where large population around the accident site get exposed to radiation (evacuation is based on doses) and in smaller but panicky events, such as misuse of radiological exposure device (RED), radiological dispersive device (RDD: 'Dirty Bomb'), improvised nuclear device (IND) and deliberate dispersal of radioactive contaminants, a need for an ubiquitous personal dosimeter is well recognized. As biological dosimetry systems are yet to become viable for measurements of doses with required accuracy and speed, use of physical dosimeters is often explored. Among the various types of physical dosimetry systems, use of TL and OSL by processing common material such as bricks or tiles and measuring the doses cumulated for long periods of time has already become an accepted tool for large scale nuclear accidents such as Hiroshima and Nagasaki or Chernobyl involving higher doses. In the other potential cases of unexpected situations where the doses encountered could be much lower (even to escape the range of remotely installed area monitors), the need to measure even the low doses in shortest possible time becomes important. It is often realized that in such situations, the main problem could become the panic at the work place

  2. EPR response characterization of drugs excipients for applying in accident dosimetry

    Some drugs are widely used by the population and can be employed to dose retrospective. The carbohydrates (saccharides), commonly used as excipients in the pharmaceutical industry, produce a quantity of free radicals after gamma irradiation, making them useful for dosimetry in emergency or accident situations that imply in dose evaluation from the materials found nearly or in contact with victims. In general, EPR signal from pulverized pills of some drugs are very complex due to the variety of components in the formulation. Because of this fact, some pharmaceutical excipients identified in the pill composition were also analysed by EPR spectrometry. On the counter drugs were studied: Cebion glucose, AAS, Aspirina, Conmel, Lacto-Purga and sugar substitutive ZeroCal. The excipients were: lactose, amide, anhydrous glucose and magnesium stearate. In some samples the number of radicals produced increased with the dose, showing a linear response for a dose range of interest and an adequate sensibility for dosimetry in accident cases

  3. Using soils for accident dosimetry: a preliminary study using optically stimulated luminescence from quartz

    Fujita, Hiroki; Jain, Mayank; Murray, Andrew S.

    2011-01-01

    . The objective was to assess the potential of SAROSL dosimetry using soils for retrospective assessment of a radiation accident. Variation in dose with depth was also measured. The SAR data showed good reproducibility and dose recovery, and there was no evidence of fading of the quartz signal based on...... “delayed” dose recovery experiments. The minimum detection limit (MDL) dose was about 0.1Gy. The dose dependence was measured using both the above SAR OSL protocol as well as a SAR thermoluminescence (TL, violet emission) protocol. The background doses were generally in the range of the MDL to several Gy......, and no clear trend in dose depth profile was observed. From these results, we conclude that SAR OSL dosimetry using natural quartz extracted from soil could be used to evaluate the dose of an accident....

  4. On the use of new generation mobile phone (smart phone) for retrospective accident dosimetry

    Lee, J. I.; Chang, I.; Pradhan, A. S.; Kim, J. L.; Kim, B. H.; Chung, K. S.

    2015-11-01

    Optically stimulated luminescence (OSL) characteristics of resistors, inductors and integrated-circuit (IC) chips, extracted from new generation smart phones, were investigated for the purpose of retrospective accident dosimetry. Inductor samples were found to exhibit OSL sensitivity about 5 times and 40 times higher than that of the resistors and the IC chips, respectively. On post-irradiation storage, the resistors exhibited a much higher OSL fading (about 80 % in 36 h as compared to the value 3 min after irradiation) than IC chips (about 20 % after 36 h) and inductors (about 50 % in 36 h). Higher OSL sensitivity, linear dose response (from 8.7 mGy up to 8.9 Gy) and acceptable fading make inductors more attractive for accident dosimetry than widely studied resistors.

  5. Dosimetry of accidents using thermoluminescence of dental restorative porcelains

    The thermoluminescence (TL) properties of dental restorative porcelain were investigated with the aim of using this material as a TL dosemeter to estimate high doses in radiological accidents. The irradiations were carried out with a 60Co gamma source and X rays with effective energies from 29 to 95 KeV. The samples have a limit of detection at about 50R and their reproducibility is better than 15%. Linearity was observed from 50 to 5000R. (Author)

  6. Nineteenth nuclear accident dosimetry intercomparison study, August 9-13, 1982

    The Nineteenth Nuclear Accident Dosimetry Intercomparison Study was held August 9 to 13, 1982, at the Oak Ridge National Laboratory using the Health Physics Research Reactor operated in the pulse mode to simulate nuclear criticality accidents. Participants from eight organizations measured neutron and gamma doses at air stations and on phantoms for three different shielding conditions. Measured results were compared to nuclear industry guidelines for criticality accident dosimeters which suggest accuracies of +-25% for neutron dose and +-20% for gamma dose. Seventy-two percent of the neutron dose measurements using foil activation, sodium activation, hair sulfur activation, and thermoluminescent methods met the guidelines while less than 40% of the gamma dose measurements were within +-20% of reference values. The softest neutron energy spectrum (also lowest neutron/gamma dose ratio) provided the most difficulty in measuring neutron and gamma doses. Results of this study indicate the need for continued intercomparison and testing of nuclear accident dosimetry systems and for training of evaluating personnel. 14 references, 7 figures, 16 tables

  7. Fading corrections to electronic component substrates in retrospective accident dosimetry

    Accurate and rapid assessments of accidentally accrued radiation doses are imperative so that medical authorities may correctly identify exposed individuals and then counsel and triage them appropriately for treatment. Previous investigations have demonstrated very high dose response efficiencies in a wide range of manufactured insulators, including a variety of alumina ceramics, silicon carbides, aluminum nitrides, and others. Many of these serve as circuit and resistor substrates or encapsulants in modern electronic devices and are generally housed in light-tight enclosures; thus, they could in principle serve as accurate and sensitive dosimeters for the general population, should a need for such dosimetry ever arise. The radiation-induced luminescence signal in alumina porcelain resistor substrates has previously been observed to exhibit anomalous fading when a low-temperature preheat is applied. In this study, measurements were carried out using several preheat temperatures in order to determine whether the unstable component of the OSL signal could be eliminated. It was determined that increasing the preheat temperature has a minimal effect on the signal fading rate but results in significantly decreased sensitivity; therefore, a low-temperature preheat (160 oC) may be more appropriate when maximum sensitivity is required.

  8. ESR accident dosimetry using medicine tablets coated with sugar

    Properties of radiation-induced radicals in medicine tablets were investigated using electron spin resonance (ESR). A sharp ESR signal sensitive to gamma ray irradiation was observed in the sugar coating part of the tablets. The signal has anisotropic g values of g1 = 2.0009, g2 = 2.0007 and g3 = 2.0002. The signal grows linearly with dose at least up to about 20 Gy. No fading was observed at room temperature even when exposed to sunlight. The dose to artificially irradiated tablets was estimated using the signal intensity and a previously determined calibration curve. The signal in sugar coated tablets can be utilised for dose measurements. In particular, the wide distribution of sugar coated tablets allows the use of the tablets as accident dosemeters. (author)

  9. Development of New Neutron Detectors for Accident Dosimetry

    New detectors and measuring techniques are proposed to improve the assessment of individual dose received from persons involved in a criticality accident. The aim was to reduce the number of detectors in the conventional detector combinations, to use sensitive activation reactions and to measure the dose of intermediate and fast neutrons directly. The proposed neutron detectors for the dosimeter combination are: (a) Arsenic, to detect slow and intermediate neutrons up to 1 MeV by the 75As(n, y) 76As reaction (half-life of 76As is 26.4 h); (b) Phosphorus, to detect fast neutrons above a threshold of 2 MeV by the 31P (n, γ) 31Si reaction (half-life of 31Si is 2.6 h), and slow neutrons by the 31P(n, γ) 32P reaction (half-life of 32P is 14 d); (d) A polycarbonate detector (Makrofol E) as a nuclear track detector to detect fast neutrons above a threshold of 0.5 MeV by elastic scattering and (n,a) reactions in carbon and oxygen. The S-activity of 76As, 31Si and 32P can be measured directly in As2S3 glass and in phosphate glass by means of the β-induced Cerenkov effect. It uses a liquid scintillation counter set up as for tritium measurements. The calibration of the detectors was performed by calculations of the detector sensitivity for different neutron spectra and by irradiation with different neutron sources at different ctiticality installations. After an accident a first estimation of the neutron dose is obtained by a β-counting of the arsenic phosphate glass, which indicates the surface adsorbed dose or the total neutron fluence directly. It is energy independent over the range of intermediate and fast neutrons. (author)

  10. Biological dosimetry following exposure to neutrons in a criticality accident

    Lindholm, C. (Radiation and Nuclear Safety Authority, STUK (Finland)); Wojcik, A. (Stockholm Univ. (SU), Stockholm (Sweden)); Jaworska, A. (Norwegian Radiation Protection Authority (NRPA) (Norway))

    2011-01-15

    The aim of the BIONCA project was to implement cytogenetic techniques for biodosimetry purposes in the Nordic countries. The previous NKS-funded biodosimetry activities (BIODOS and BIOPEX) concentrated on experiments using gamma-irradiation and on developing the PCC ring assay for biodosimetry. Experiments conducted during the present BIONCA project has broadened the biodosimetry capacity of the Nordic countries to include dose estimation of exposure to neutrons for both PCC ring and dicentric chromosome techniques. In 2009, experiments were conducted for establishing both PCC ring and dicentric dose calibration curves. Neutron irradiation of human whole blood obtained from two volunteers was conducted in the Netherlands at the Petten reactor. Cell cultures and analysis of whole blood exposed to eight doses between 0 and 10 Gy were performed for both techniques. For the dicentric assay, excellent uniformity in dose calibration for data from both SU and STUK was observed. For PCC rings, the SU and STUK curves were not equally congruent, probably due to the less uniform scoring criteria. However, both curves displayed strong linearity throughout the dose range. In 2010, an exercise was conducted to simulate a criticality accident and to test the validity of the established dose calibration curves. For accident simulation, 16 blood samples were irradiated in Norway at the Kjeller reactor and analysed for dose estimation with both assays. The results showed that, despite a different com-position of the radiation beams in Petten and Kjeller, good dose estimates were obtained. The activity has provided good experience on collaboration required in radiation emergency situations where the biodosimetry capacity and resources of one laboratory may be inadequate. In this respect, the project has strengthened the informal network between the Nordic countries: STUK, the Finnish Radiation and Nuclear Safety Authority, NRPA, the Norwegian Radiation Protection Authority and SU

  11. Accident dosimetry using the TL from dental restoration porcelains

    The thermoluminescence (TL) properties of dental restorative porcelain were investigated with the aim of using this material as a TL dosemeter to estimate high doses in radiological accidents. The irradiations were carried out with a 60Co gamma source and X rays with effective energies from 29 to 95 keV. The porcelain glow curve presents three peaks at about 393,463 and 543K. The samples have a limit of detection at about 1.29x10-2 C.kg-1(50 R) and their reproducibility is better than 15%. Linearity was observed from 1.29 x 10-2 to 12.9 C.kg-1(50 to 50,000 R). Over this exposure range, the dental porcelain TL response presents a maximum pre-dose sensitisation factor of 2.33. The porcelain TL sensitivity, normalised to 60Co, has a maximum of 4.8 at 29 keV due to its energy dependence. (author)

  12. Preliminary study of ESR dosimetry for nuclear accidents

    Electron spin resonance (RSE) technique was used to detect the ESR signal feature and the relations between signal intensity and irradiation dose of 0-50 Gy of 60Co γ ray for human bone, fingernail, hair and more than ten kinds of people carried materials such as materials from watch, clothes, plastic ball pen, cigarette and so on. The results showed that both bone and watch glass have a good linear relation between signal intensity and irradiation dose. The linear correlation factor γ is 0.995 for bone and 0.999 for watch glass. At room temperature, signal from human bone has excellent stability while watch glass has a decay of about 20% during 24 hours at 24 degree C. The decay rate of watch glass will fall down at lower temperature. The lower limit of detectable dose for these two materials is below 2 Gy. The results suggest that both human bone and watch glass can be applicable as ESR dosimeter materials for nuclear accidents. Other materials investigated in this work still have some problems to be solved for accidental dosimetric use

  13. Biological dosimetry: benefit of a serial biological profile in major radiation accidents; Dosimetrie biologique: interet de l`analyse d`un bilan biologique multiparametrique lors d`une surexposition accidentelle

    Martin, S.; Denis, J.; Agay, D.; Abadie, B.; Serbat, A.; Fatome, M.

    1995-12-31

    Supposing there is, for each irradiated individual, a specific biological profile, the kinetics and multi-parametric statistical analysis of which allows to sort irradiated. The parameters of this serial biological profile were researched using a primate experimental model. A biological profile bas been defined which allows as soon as the 6. hour and during 72 hours, to point out doses > 4 Gy and/or prognosis. (author). 2 refs.

  14. EPR dosimetry of teeth in past and future accidents. A prospective look at a retrospective method

    Accurate assessments of doses received by individuals exposed to radiation from nuclear accidents and incidents such as those at Hiroshima and Nagasaki, the Nevada test site, Chelyabinsk and Mayak are required for epidemiological studies seeking to establish relationships between radiation dose and health effects. One method of retrospective dosimetry which allows for measurement of cumulative gamma ray doses received by exposed individuals is electron paramagnetic resonance spectroscopy (EPR) of tooth enamel. Tooth enamel stores and retains, indefinitely, information on absorbed radiation dose; and teeth are available in every population as a result of dental extraction for medical reasons including periodontal disease and impacted wisdom teeth. In the case of children, deciduous teeth, which are shed between the ages of 7 and 13, can be a very important dosimetric source if documented collection is implemented shortly following an accident. (author)

  15. Using soils for accident dosimetry. A preliminary study using optically stimulated luminescence from quartz

    Fujita, H. [Japan Atomic Energy Agency, Ibaraki (Japan). Nuclear Fuel Cycle Engineering Labs.; Risoe National Laboratory for Sustainable Energy, Technical Univ. of Denmark, Roskilde (Denmark). Radiation Research Div.; Jain, M. [Risoe National Laboratory for Sustainable Energy, Technical Univ. of Denmark, Roskilde (Denmark). Radiation Research Div.; Murray, A.S. [Aarhus Univ., Risoe DTU, Roskilde (Denmark). Nordic Lab. for Luminescence Dating

    2011-07-01

    The optimum conditions of preheat temperature, stimulation temperature, etc. in the single-aliquot regenerative optically stimulated luminescence (SAR OSL) method were examined specifically for measuring background dose in natural quartz extracted from soils collected around Tokai-mura in Japan. The objective was to assess the potential of SAROSL dosimetry using soils for retrospective assessment of a radiation accident. Variation in dose with depth was also measured. The SAR data showed good reproducibility and dose recovery, and there was no evidence of fading of the quartz signal based on ''delayed'' dose recovery experiments. The minimum detection limit (MDL) dose was about 0.1 Gy. The dose dependence was measured using both the above SAR OSL protocol as well as a SAR thermoluminescence (TL, violet emission) protocol. The background doses were generally in the range of the MDL to several Gy, and no clear trend in dose depth profile was observed. From these results, we conclude that SAR OSL dosimetry using natural quartz extracted from soil could be used to evaluate the dose of an accident. (orig.)

  16. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  17. Personnel Dosimetry for Radiation Accidents. Proceedings of a Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation

    Accidents involving the exposure of persons to high levels of radiation have been few in number and meticulous precautions are taken in an effort to maintain this good record. When, however, such an accident does occur, a timely estimate of the dose received can be of considerable help to the physician in deciding whether a particular person requires medical treatment, and in selecting the most appropriate treatment. Individual dosimetry provides the physical basis for relating the observed effects to those in other accident cases, to other human data, and to data from animal experiments, thus providing an important aid to rational treatment and to the accumulation of a meaningful body of knowledge on the subject. It is most important therefore that, where there is a possibility of receiving high-level exposure, methods of personnel dosimetry should be available that would provide the dosimetric information most useful to the physician. Provision of good personnel dosimetry for accidental high-level exposure is in many cases an essential part of emergency planning because the information provided may influence emergency and rescue operations, and can lead to improved accident preparedness. Accordingly, the International Atomic Energy Agency and the World Health Organization jointly organized the Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation for the discussion of such methods and for a critical review of the procedures adopted in some of the radiation accidents that have already occurred. The meeting was attended by 179 participants from 34 countries and from five other international organizations. The papers presented and the ensuing discussions are published in these Proceedings. It is hoped that the Proceedings will be of help to those concerned with the organization and development of wide-range personnel monitoring systems, and with the interpretation of the results provided

  18. TL (thermoluminescence) accident dosimetry measurements on samples from the town of Pripyat

    In July 1990, several different types of ceramic samples were collected from the town of Pripyat, situated 3 km NW of the Chernobyl Nuclear Power Plant. The samples were distributed among several laboratories for thermoluminescence (TL) measurement to determine the total absorbed gamma dose at different points within a small area in the most polluted region and to assess the shielding given by the walls of buildings to the people inside apartment blocks. This paper discusses the types of samples and their suitability for accident dosimetry, the TL measurements, minimum limits of detection for various types of samples and the strengths and limitations of the method in this type of situation. The implication of the results are discussed. (author)

  19. Thermoluminescence of chip inductors from mobile phones for retrospective and accident dosimetry

    Electronic components in portable electronic devices such as mobile phones and portable media player have previously been shown to be useful tools for retrospective and accident dosimetry. In this study the properties of alumina rich inductors removed from mobile phones are investigated using thermoluminescence (TL). The typical glow curve of this component has two main peaks at 170 and 270 °C. With a suitable measurement protocol sensitivity changes of both peaks could be corrected so that the TL signal shows a linear increase in the investigated dose range from 100 mGy to 5 Gy. All inductors studied showed essentially no signal for zero dose. We investigated the fading of the TL signals and the detection limit of inductors extracted from different mobile phones.

  20. Improvement of dose determination using glass display of mobile phones for accident dosimetry

    Previous studies have demonstrated that mobile phones can be used as suitable emergency dosimeters in case of an accidental radiation overexposure. Glass samples extracted from displays of mobile phones are sensitive to ionizing radiation and can be measured using the thermoluminescence (TL) method. A non-radiation induced background signal (so-called zero dose signal) was observed which overlaps with the radiation induced signal and consequently limits the minimum detectable dose. Investigations of several glasses from different displays showed that it is possible to reduce the zero dose signal up to 90% by etching the glass surface with concentrated hydrofluoric acid. With this approach a reduction of the detection limit of a factor of four, corresponding to approximately 80 mGy, was achieved. Dosimetric properties of etched samples are presented and developed protocols validated by dose recovery tests under realistic conditions. With the improvements in sample preparation the proposed method of dose determination is a competitive alternative to OSL/TL measurements of electronic components and chip cards and provides a useful option for retrospective accident dosimetry. -- Highlights: ► Glass displays from mobile phones have good potential for emergency dosimetry. ► The background signal can be reduced by etching glass samples with hydrofluoric acid. ► The minimum detectable dose can be lowered to approximately 80 mGy

  1. Use of epr-dosimetry of dental enamel for persons exposed to radiation due to the Chernobyl accident

    Technique of epr-dosimetry of dental enamel enabling to measure the accumulated dose equivalents of the external irradiation with the accuracy equal to several sGr limits is studied. The PC code enabling to standardize the spectra processing is elaborated. The code is rather reliable and may be used when elaborating the methodical provision of the activity of the dosimetric services directed to determine the accumulated dose equivalents of the external irradiation using the dental enamel epr-dosimetry technique, in particular, in cases of people affected by the Chernobyl accident

  2. Dosimetry

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source

  3. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    Ward, Dann C.

    2011-09-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  4. Contribution of new cytogenetic techniques in the estimations of old irradiations in retrospective biological dosimetry; Apport des nouvelles techniques de cytogenetiques dans l'estimation des irradiations anciennes en dosimetrie biologique retrospective

    Pouzoulet, F

    2007-10-15

    The objective of this study was to answer three questions: if the translocations are steady: the results have shown that the translocations even if they are not obligatory steady can be used in retrospective dosimetry. Furthermore, it appeared important to consider the complex translocations in view of their relative stability and complementary information they bring ( quality of radiation, received dose). The second question is what contribution of the M-F.I.S.H. in the translocations analysis in comparison with the F.I.S.H.-3: we have shown that the M-F.I.S.H. would allow to raise the whole of doubt due to a partial genome observation. that has for effect to increase the precision of the analysis and that what ever be the received dose. The third question is if there are differences between the chromosomal aberrations generated by x radiation of 50 keV and by gamma radiation from cobalt-60: yes, the low energy photons generate more translocations than the photons coming from cobalt-60. But they generate less dicentrics. this difference comes from the way the energy is deposited that leads to a more important formation of complex and multiple translocations with the low energy photons. this could constitute a problem in the use of low energy photons in radiotherapy. it would seem that the simple translocations rate is not influenced by the photons energy. (N.C.)

  5. Photon energy dependence and angular response of glass display used in mobile phones for accident dosimetry

    Previous studies have shown that glass displays extracted from mobile phones are suitable as emergency dosimeters in case of an accidental radiation overexposure using the thermoluminescence (TL) method. So far these studies have focused only on recovering the absorbed dose to the material. However, dose in air or dose to the victim carrying the device might be significantly different. Therefore the aim of this work was to investigate photon energy dependence and angular response of glass display used in modern mobile phones. An over-response of about a factor of five is observed for low photon energies compared to the response to Cs-137 (662 keV) which is in reasonable agreement with calculated values mass energy-absorption coefficients of glass and air. Little variation in the energy dependence can be seen for glass displays coming from three different mobile phone models. The angular response for display glass is flat with regard to air kerma within the incident angle of ±60°, independent of the irradiation setup used (with a water phantom or with air kerma reference conditions). For incident angles of 90° the shielding effect of the mobile phones becomes important. With the dosimetric characterization of the photon energy and angular dependencies the absorbed dose in a glass display can be transferred to a reference air kerma dose and provides a useful option for retrospective accident dosimetry. - Highlights: • Determination of the photon energy dependence and angular response for display glass used as an accident dosimeter. • Over-response of about a factor of five for low photon energies. • Flat angular response within incident angles between ±60°

  6. A micro-gap, air-filled ionisation chamber as a detector for criticality accident dosimetry

    A micro-gap air-filled ionisation chamber was designed for criticality dosimetry. The special feature of the chamber is its very small gap between electrodes of only 0.3 mm. This prevents ion recombination at high dose rates and minimises the influence of gas on secondary particles spectrum. The electrodes are made of polypropylene because of higher content of hydrogen in this material, when compared with soft tissue. The difference between neutron and gamma sensitivity in such chamber becomes practically negligible. The chamber's envelope contains two specially connected capacitors, one for polarising the electrodes and the other for collecting the ionisation charge. Air-filled ionisation chamber with very small gap is a simple dosemeter, which fulfills the most desired properties of criticality accident dosemeters. Short ion collection time is achieved by combination of small gap and relatively high polarising voltage. For the same reason, parasitic recombination of ions in the chamber is negligibly small even at high dose rates. The difference between neutron and gamma sensitivity is small for tissue-equivalent chamber and is expected to become practically negligible when the chamber electrodes are made of polypropylene. Additional capacitor provides a broad measuring range from ∼0.1 Gy up to ∼25 Gy; however, leakage of electrical charge from polarising capacitor has to be observed and taken into account. Periodical re-charging of the device is necessary. Obviously, final test of the device in conditions simulating criticality accident is needed and will be performed as soon as available. (authors)

  7. An EPR dosimetry method for rapid scanning of children following a radiation accident using deciduous teeth

    Electron paramagnetic resonance dosimetry may be applied to whole deciduous teeth of children. This makes it feasible to make direct measurement of absorbed gamma ray dose in the days and weeks following a nuclear accident, particularly if used in conjunction with a public awareness program. The technique reported here requires little sample preparation and has resulted in precision of approximately 30 mGy (1 σ) for a deciduous incisor. Under conditions for rapid screening procedures, the methodology is estimated to provide 0.5 Gy accuracy. The largest error in the process is the determination of an appropriate background native signal for subtraction from the whole tooth spectrum. The native signal is superimposed on the radiation-induced signal, and the subtraction requires knowledge of a sample's relative content of enamel and dentin along with their relative native signal intensities. Using a composite background standard, an equivalent absorbed dose of 70 ± 38 mGy (1 σ) was determined. The lower detection limit of the technique was achieved by the elimination of anisotropic effects through rotation of the sample during measurement, together with subtraction of the standard native background signal and empty tube background spectra from the sample spectra

  8. Thermoluminescence of glass display from mobile phones for retrospective and accident dosimetry

    This paper deals with the thermoluminescence (TL) study of glass displays from mobile phones with the aim to use them as emergency dosimeters after an accident involving ionizing radiation. Dosimetric properties are analysed in order to examine and to critically evaluate the usability. Tests are carried out regarding the characterization of the radiation induced TL signal and the zero dose signal (intrinsic background) on a variety of display samples. Investigations on the thermal and optical stability of TL signals are carried out. The detection limit is mainly determined by the variability of the zero dose signal and lies in the range of 300–400 mGy. A linear relationship between the measured TL signal and the applied dose is observed for doses between 10 mGy and 20 Gy. A measurement protocol for the detection of absorbed radiation dose is developed, considering the experimental dosimetric properties. A reconstruction of the absorbed dose is possible using glass samples from mobile phones, if the signal loss due to storage and optical bleaching of the TL signal is adequately corrected for. This was confirmed by realistic tests. - Highlights: • Glass displays of mobile phones have potential for retrospective dosimetry. • Signal fading can be corrected with an universally fading curve. • Irradiation trials on intact mobile phones demonstrated a reasonable agreement between given and measured dose

  9. Iodine-129 in soils from Northern Ukraine and the retrospective dosimetry of the iodine-131 exposure after the Chernobyl accident

    Forty-eight soil profiles down to a depth of 40 cm were taken in Russia and Ukraine in 1995 and 1997, respectively, in order to investigate the feasibility of retrospective dosimetry of the 131I exposure after the Chernobyl accident via the long-lived 129I. The sampling sites covered areas almost not affected by fallout from the Chernobyl accident such as Moscow/Russia and the Zhitomir district in Ukraine as well as the highly contaminated Korosten and Narodici districts in Ukraine. 129I was analyzed by radiochemical neutron activation analysis (RNAA) and accelerator mass spectrometry (AMS). 127I was measured for some profiles by RNAA or ion chromatography (IC). The results for 127I demonstrated large differences in the capabilities of the soils to store iodine over long time spans. The depth profiles of 129I and of 137Cs showed large differences in the migration behavior between the two nuclides but also for each nuclide among the different sampling sites. Though it cannot be quantified how much 129I and 137Cs was lost out of the soil columns into deeper depths, the inventories in the columns were taken as proxies for the total inventories. For 129I, these inventories were at least three orders of magnitude higher than a pre-nuclear value of 0.084±0.017 mBq m-2 derived from a soil profile taken in 1939 in Lutovinovo/Russia. From the samples from Moscow and Zhitomir, a pre-Chernobyl 129I inventory of (44±24) mBq m-2 was determined, limiting the feasibility of 129I retrospective dosimetry to areas where the 129I inventories exceed 100 mBq m-2. Higher average 129I inventories in the Korosten and Narodici districts of 130 and 848 mBq m-2, respectively, allowed determination of the 129I fallout due to the Chernobyl accident. Based on the total 129I inventories and on literature data for the atomic ratio of 129I/131I=13.6±2.8 for the Chernobyl emissions and on aggregated dose coefficients for 131I, the thyroid exposure due to 131I after the Chernobyl accident was

  10. ESR Dosimetry

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  11. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation

  12. Application of Radiothermoluminescence to Area Dosimetry in the Event of a Nuclear Accident Covering a Wide Area

    Although numerous systems have been studied and developed for providing γ-ray dosimetry at nuclear facilities in the event of an accident, very few of them are really satisfactory as regards their physical characteristics or the practical conditions under which they are applied. Most of them are not completely insensitive to neutrons and the response has to be corrected if the dose is to be evaluated with accuracy. This presupposes, inter alia, that the incident neutron spectrum is known, since the corrections that have to be made vary with the neutron energy. In most cases the systems require fairly large financial investment and some of them have to be regularly renewed (photographic dosimeters). We considered the possibility of using thermoluminescent materials to make an inexpensive dosimeter possessing low neutron sensitivity. Our choice fell on corundum, which is manufactured industrially and is available on the market at low cost. We analysed the radiothermoluminescent characteristics of the corundum selected by us and compared them to those of commercial lithium fluoride. We determined the practical conditions under which this material can be used. We advocate its use both for area dosimetry at nuclear facilities where there is potential risk of strong irradiation and for problems involving civil defence. (author)

  13. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  14. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR); Dosimetrie d'accident en champ mixte (neutrons, photons) utilisant la spectrometrie par resonance paramagnetique electronique (RPE)

    Herve, M.L

    2006-03-15

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  15. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR)

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  16. Risk communication practice after the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station accident. Awareness of Fukushima residents in internal dosimetry

    This paper describes an analysis result of the opinion surveys that was carried out in internal dosimetry using whole body counters (WBC) in Japan Atomic Energy Agency (JAEA) Tokai Research and Development Center. At the request of Fukushima prefecture, JAEA has conducted the internal dosimetry for residents of Fukushima prefecture since July 2011. As of March 2013, JAEA screened approximately 22,000 residents. JAEA staffs do not only explained the examination results of WBC to the residents in private booths, but also provided necessary advice for them. We carried out the opinion surveys before the internal dosimetry and after personal dialogue. The purpose of these surveys was grasp of the views of residents on the nuclear accidents before the internal dosimetry and investigation of attitude change of the examinee after the personal dialogue. The survey before the internal dosimetry showed that residents' anxiety about radioactive exposure, hereditary influence on next generation, damage for primary industries by harmful rumor, and so on. In the survey after the personal dialogue, more than 90% examinee express reduction of uneasiness for the radiation damage by the dialogue with JAEA staffs. This analysis result elucidates validity of the direct dialogue with professional stuffs on the decrease of anxiety about radioactive problem. (author)

  17. On the use of OSL of wire-bond chip card modules for retrospective and accident dosimetry

    The potential of optically stimulated luminescence of wire-bond chip card modules, used in health insurance, ID, cash and credit cards for retrospective and accident dosimetry is investigated. Chip card modules obtained directly from the producer, using a widely spread UV-cured epoxy product for encapsulation, are used as basis for the study. The radiation sensitivity is due to silica grains added to the epoxy for controlling the thixotropic properties. Luminescence properties are complex due to the presumed thermo-optical release of electrons from the epoxy and transfer into the silica. Best results and highest sensitivity are obtained by using no or only low preheat treatments. A high degree of fading of the OSL signal during storage at room temperature is observed, which is tentatively explained by the superposition of thermal decay of shallow OSL traps and athermal (anomalous) decay of deeper OSL traps. The dose response of the OSL signal shows exponentially saturating behaviour, with saturation doses of 77 Gy or 9.6 Gy, depending on pretreatment. Dose recovery tests show that given doses can be recovered within a deviation of ±14%, if measured signals are corrected for fading. The minimum detectable dose is estimated at ∼3 mGy, ∼10 mGy and ∼20 mGy for readouts immediately, 1 day and 10 days after exposure, respectively.

  18. On the use of OSL of wire-bond chip card modules for retrospective and accident dosimetry

    Woda, Clemens [Helmholtz Zentrum Muenchen - German Research Centre for Environmental Health, Institute of Radiation Protection, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)], E-mail: clemens.woda@helmholtz-muenchen.de; Spoettl, Thomas [Infineon Technologies AG, Wernerwerkstrasse 1, D-93049 Regensburg (Germany)

    2009-05-15

    The potential of optically stimulated luminescence of wire-bond chip card modules, used in health insurance, ID, cash and credit cards for retrospective and accident dosimetry is investigated. Chip card modules obtained directly from the producer, using a widely spread UV-cured epoxy product for encapsulation, are used as basis for the study. The radiation sensitivity is due to silica grains added to the epoxy for controlling the thixotropic properties. Luminescence properties are complex due to the presumed thermo-optical release of electrons from the epoxy and transfer into the silica. Best results and highest sensitivity are obtained by using no or only low preheat treatments. A high degree of fading of the OSL signal during storage at room temperature is observed, which is tentatively explained by the superposition of thermal decay of shallow OSL traps and athermal (anomalous) decay of deeper OSL traps. The dose response of the OSL signal shows exponentially saturating behaviour, with saturation doses of 77 Gy or 9.6 Gy, depending on pretreatment. Dose recovery tests show that given doses can be recovered within a deviation of {+-}14%, if measured signals are corrected for fading. The minimum detectable dose is estimated at {approx}3 mGy, {approx}10 mGy and {approx}20 mGy for readouts immediately, 1 day and 10 days after exposure, respectively.

  19. Planned Procedures for Fast Determination of Radiation Levels and Personnel Dosimetry in Connection with Radiological Accidents

    AB Atomenergi, Sweden, has an emergency organization which starts to function as soon as an alarm indicates that an extraordinary situation with considerable radiation hazards has occurred. This organization is operating from a headquarters where equipment is stored and different types of internal and external communications are available. As to determination of exposures, it is desirable both to obtain rough preliminary values for external and internal exposure rates as soon as possible and to get fairly accurate values for the exposure of each individual involved in the accident within reasonable time. Dose reconnaissance patrols make rapid surveys of the site to get a general estimate of the risks. These patrols start out immediately after the alarm equipped with portable instruments and go by car along fixed routes on the site. Practical tests have shown that results from these patrols reach the headquarters within 10 to 15 minutes after the alarm and make it possible to get a good picture of radiation levels inside and outside different buildings. The portable equipment includes air sampling equipment with very short sampling time working on the principle of the air ejector. Individual external doses are evaluated on the basis of film exposures, criticality dosimeter activation and analyses of hair and blood activity. Internal contamination is determined by whole-body counting and radiometric analyses of excreta. In order to determine the radiation fields created by an accident a number of fixed control points are equipped with different types of dosimeters which also are evaluated as soon as possible after the hypothetical accident. (author)

  20. Electron spin resonance dosimetry of teeth of Goiania radiation accident victims

    Electron spin resonance (ESR) spectroscopy is used to assess absorbed doses of six teeth belonging to victims of the highly irradiated group of Goiania accident. The influence of the broad background signal at g=2.0040 as well as of the unstable fraction of CO-2 radicals was taken into account in dose estimates. Three victims teeth showed absorbed doses comparable to those estimated by chromosomal analysis. For the other three teeth, the doses were higher by a factor of 1.3, 1.8 and 2.2

  1. LLNL Results from CALIBAN-PROSPERO Nuclear Accident Dosimetry Experiments in September 2014

    Lobaugh, M. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hickman, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, C. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wysong, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Merritt, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Topper, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-21

    Lawrence Livermore National Laboratory (LLNL) uses thin neutron activation foils, sulfur, and threshold energy shielding to determine neutron component doses and the total dose from neutrons in the event of a nuclear criticality accident. The dosimeter also uses a DOELAP accredited Panasonic UD-810 (Panasonic Industrial Devices Sales Company of America, 2 Riverfront Plaza, Newark, NJ 07102, U.S.A.) thermoluminescent dosimetery system (TLD) for determining the gamma component of the total dose. LLNL has participated in three international intercomparisons of nuclear accident dosimeters. In October 2009, LLNL participated in an exercise at the French Commissariat à l’énergie atomique et aux énergies alternatives (Alternative Energies and Atomic Energy Commission- CEA) Research Center at Valduc utilizing the SILENE reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison at CEA Valduc, this time with exposures at the CALIBAN reactor (Hickman et al. 2011). This paper discusses LLNL’s results of a third intercomparison hosted by the French Institut de Radioprotection et de Sûreté Nucléaire (Institute for Radiation Protection and Nuclear Safety- IRSN) with exposures at two CEA Valduc reactors (CALIBAN and PROSPERO) in September 2014. Comparison results between the three participating facilities is presented elsewhere (Chevallier 2015; Duluc 2015).

  2. The new approach of the radiological emergency response team at the Brazilian National Nuclear Energy Commission's Institute of Radiation Protection and Dosimetry after the Goiania accident

    The evaluation of the emergency actions taken during the Goiania accident caused a complete revision of the Brazilian Nuclear Energy Commission's Institute of Radiation Protection and Dosimetry Emergency Response Team. The changes were in both the scope of the emergency responsibilities and in the organization of the emergency team. This new organization permits an emergency response to accidents in nuclear installations such as nuclear reactors or fuel cycle facilities, or accidents involving radiation sources in hospitals, industry, etc. The organization takes into account all the emergency phases, with emphasis on a quick response in the initial phase. Of a total emergency team of one hundred and four people, there are twenty-six members on call twenty-four hours a day. (author). 1 fig

  3. Subsidies to cytogenetic dosimetry technique generated from analysis of results of Goiania radiological accident

    Following the Goiania radiation accident, which occurred in September of 1987, peripheral lymphocytes from 129 exposed or potentially exposed individuals were analyzed for the frequency of unstable chromosomal aberrations (dicentrics and centric rings) to estimate absorbed radiation dose. During the emergency period, the doses were assessed to help immediate medical treatment. After this initial estimation, doses were reassessed using in vitro calibration curves produced after the accident, more suitable for the conditions prevailing in Goiania. Dose estimates for 24 subjects exceeded 0,5 Gy. Among those, 15 individuals exceeded 1,0 Gy and 5 exceeded 3,0 Gy. None of the estimates exceeded 6,0 Gy. Four of the subjects died. During the emergency period, a cytogenetic follow-up of 14 of the exposed patients was started, aiming to observe the mean lifetime of lymphocytes containing dicentric and ring aberrations. The results suggest that for the highly exposed individuals the disappearance rate of unstable aberrations follows a two- term exponential function. Up to 470 days after the exposure, there is a rapid fall in the aberration frequency. After 470 days, the disappearance rate is very slow, almost constant. The estimated average half-time of elimination of dicentrics and rings among the highly exposed group (> 1 Gy) was 140 days for the initial period after the exposure (up to 470 days). This value is significantly shorter than the usually accepted value of 3 years reported in the literature. Mean disappearance functions of unstable chromosome aberrations were inferred, to be applied in accident situations in which there is a blood sampling delay. Statistical analysis of possible correlations between the individual half-times and biological parameters, such as sex, age, leukopenia level shown during the critical period, absorbed dose (initial frequency of chromosomal aberrations) and the administration of the bone marrow stimulating factor (rHuGM-CSF) was

  4. Optically stimulated luminescence of electronic components for forensic, retrospective, and accident dosimetry

    This study investigated the optically stimulated luminescence (OSL) response of electronic components found within portable electronic devices such as cell phones and pagers, portable computers, music and video players, global positioning system receivers, cameras, and digital watches. The analysis of components extracted from these ubiquitous devices was proposed for applications ranging from rapid accident dose reconstruction to the tracking and attribution of gamma-emitting radiological materials. Surface-mount resistors with alumina porcelain substrates consistently produced OSL following irradiation, with minimum detectable doses on the order of 10 mGy for a typical sample. Since the resistor ceramics were found to exhibit anomalous fading, dose reconstruction procedures were developed to correct for this using laboratory measurements of fading rates carried out over approximately 3 months. Two trials were conducted in which cellular phones were affixed to an anthropomorphic phantom and irradiated using gamma-ray sources; ultimately, analysis of the devices used in these trials succeeded in reconstructing doses in the range of 0.1-0.6Gy

  5. Dosimetry of criticality accidents using activations of the blood and hair

    The radiation dose received by a person in a criticality accident can be determined with reasonable accuracy from the activity induced in the blood or in the hair. However, both of these methods require a knowledge of the neutron spectra and the exposure conditions. In this report we have compiled results from numerous criticality studies to serve as a guide for neutron dose evaluations based on blood and hair activation. A technique is described in which a combination of these blood and hair activations can be used to determine the neutron dose. This evaluation technique is independent of the person's orientation, shielding provided by walls, equipment, etc. (except for massive shielding by metals), and the neutron leakage spectra. The technique will improve the accuracy of the dose determination, especially if there is little information available on the exposure conditions. This estimate is normally accurate to within +-20 to 30%. This paper also discusses the gamma-to-neutron ratio and its use in establishing the gamma dose (if no gamma exposure data is available) or the neutron dose (if the gamma exposure is known). The use of a G-M instrument at the abdomen is discussed and curves are given to convert the G-M readings to neutron dose. A simplified counting procedure for hair activation is recommended. (author)

  6. La Chimie Biologique Industrielle à Gembloux Agro-Bio Tech

    Berchem, Thomas; Istasse, Thibaut; Schmetz, Quentin; Jacquet, Nicolas; Richel, Aurore

    2016-01-01

    Présentation du laboratoire de Chimie Biologique Industrielle et illustration de nos principales activités; point sur les recherches de trois jeunes doctorants. Leur travail consiste en la valorisation de matrices biologiques (déchets agricoles, industriels et forestiers,...) pour produire une gamme de nouveaux produits, biocarburants ou molécules chimiques.

  7. Qualité des produits biologiques d’origine animale

    Kouba, Marilyne

    2002-01-01

    L’appellation biologique pour un produit garantit un mode de production selon la réglementation spécifique à l’agriculture biologique. Il existe en effet un Règlement Européen pour les Productions Animales Biologiques, appelé REPAB, dont l’application dans le droit français (en date du 24 août 2000) a fait l’objet de contraintes supplémentaires : c’est le CC REPAB F. Il existe une forte demande en produits biologiques dans les pays industrialisés. Il est par conséquent important de considérer...

  8. Guerre Biologique: mythe et réalité

    2002-01-01

    Olivier Lepick, docteur en histoire et politique internationales, est chercheur associé à la Fondation pour la recherche stratégique. Il est l'Auteur du livre Les armes biologiques P.U.F, avril 2001

  9. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    Alexander, George A. [U.S. Department of Health and Human Services, Office of Preparedness and Emergency Operations, 200 Independence Avenue, SW, Room 403B-1, Washington, DC 20201 (United States); Swartz, Harold M. [Dept. of Radiology and Physiology Dept., Dartmouth Medical School, HB 7785, Vail 702, Rubin 601, Hanover, NH 03755 (United States); Amundson, Sally A. [Center for Radiological Research, Columbia University Medical Center, 630 W. 168th Street, VC11-215, New York, NY 10032 (United States); Blakely, William F. [Armed Forces Radiobiology Research Inst., 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: blakely@afrri.usuhs.mil; Buddemeier, Brooke [Science and Technology, U.S. Department of Homeland Security, Washington, DC 20528 (United States); Gallez, Bernard [Biomedical Magnetic Resonance Unit and Lab. of Medicinal Chemistry and Radiopharmacy, Univ. Catholique de Louvain, Brussels (Belgium); Dainiak, Nicholas [Dept. of Medicine, Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610 (United States); Goans, Ronald E. [MJW Corporation, 1422 Eagle Bend Drive, Clinton, TN 37716-4029 (United States); Hayes, Robert B. [Remote Sensing Lab., MS RSL-47, P.O. Box 98421, Las Vegas, NV 89193 (United States); Lowry, Patrick C. [Radiation Emergency Assistance Center/Training Site (REAC/TS), Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 (United States); Noska, Michael A. [Food and Drug Administration, FDA/CDRH, 1350 Piccard Drive, HFZ-240, Rockville, MD 20850 (United States); Okunieff, Paul [Dept. of Radiation Oncology (Box 647), Univ. of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 (United States); Salner, Andrew L. [Helen and Harry Gray Cancer Center, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102 (United States); Schauer, David A. [National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095 (United States)] (and others)

    2007-07-15

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  10. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  11. Modern methods of personnel dosimetry

    The physical properties of radiation detectors for personnel dosimetry are described and compared. The suitability of different types of dosimeters for operational and central monitoring of normal occupational exposure, for accident and catastrophe dosimetry and for background and space-flight dosimetry is discussed. The difficulties in interpreting the dosimeter reading with respect to the dose in individual body organs are discussed briefly. 430 literature citations (up to Spring 1966) are given

  12. Retrospective Dosimetry and Clinical Follow-up Programme of Chernobyl Accident Clean-up Workers in Latvia

    Full text: About 6500 Latvian inhabitants were recruited for clean-up works at Chernobyl Nuclear Power Plant during 1986-1991. Absorbed doses for them are usually unknown, because only less then half of the clean-up workers cohort had officially documented external exposure. Clinical investigations show high morbidity rate of clean-up workers compared with general population. The results of Electronic Spin Resonance (ESR) dose reconstruction (doses absorbed in the tooth enamel) for the clean-up workers were always higher as documented of exposure doses of physical measurements. In many cases more than half of total absorbed dose is due to 90Sr accumulated in teeth. Most of the clean-up workers have poli-symptomatic sicknesses that exhibit tendency to progress, and their morbidity exceeds that observed in general population. ESR dosimetry programs and clinical follow-up improved existing knowledge in the field of radiation medicine. These data will help to develop and apply the proper treatment and rehabilitation procedures for clean-up workers. (author)

  13. Alpha alumina exoemissive and thermoluminescent properties. Application to the dosimetry of ionizing radiations in case of accident

    This work consists of two parts. In the first part, a phenomenon of phototransfer in Thermostimulated Exoelectronic Emission (T.S.E.E.) is pointed out. Study of intrinsic T.S.E.E. of alpha alumina exposed to ultraviolet (U.V.) excitation of energy superior to 4 eV shows three T.S.E.E. peaks situated at 240, 325, 5350C (heating rate of 20C.s-1). The phototransfer phenomenon is then characterized notably by the lowering of the U.V. excitation threshold to 3.5 eV and the increasing of T.S.E.E. response for U.V. energies between 3.5 and 6 eV. Discussion and interpretation of the results obtained are based on the perfect analogy with the phototransfer of Thermoluminescence (T.L.) observed on a similar type of alpha alumina. The second part describes the application of alpha alumina dosimetric properties to accidental irradiation dosimetry and cartography. The material is bound to a textile support to be used for clothes manufacturing for irradiation risking workers. T.S.E.E. and T.L. properties of the selected fabric have been studied. - T.S.E.E. response to a beta irradiation of strontium 90 covers the region [0.01 - 10 Gy], with a dispersion of ± 20%, a non significant thermic fading beyond 72 hours after irradiation and a very important optical fading; - the region in T.L. extends from 0.25 to 10 Gy with X irradiation (45 kV) and from 0.5 to 10 Gy with gamma irradiation of cobalt 60 and caesium 137; the dispersion is ± 20%, the thermic fading is weak and the optical fading is negligible in artificial light or does not vary any more after 5 days of sunlight exposition

  14. Proceedings of the international workshop 'Actual problems of dosimetry'

    Materials grouped to six main issues: dosimetry and radiometry equipment, dosimetry of the medical irradiation, standard and metrology support of dosimetric and radiometric control, biological dosimetry and markers of radiation effects, monitoring and reconstruction of radiation doses at radiation accidents and dosimetry of unionizing radiations

  15. Thermoluminescence Dosimetry Applied to Radiation Protection

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range......, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with particular emphasis on current problems in routine personnel monitoring. Finally, the present state...

  16. Internal dosimetry for continuous chronic intake of caesium-137 in cedar pollen after the Fukushima Daiichi nuclear power plant accident

    Internal exposures of members of the public were assessed for chronic intake of caesium-137 in cedar pollen after the Fukushima Daiichi nuclear power plant accident. Committed effective doses were evaluated using the DSYS-chronic code, which was developed at the Japan Atomic Energy Agency (JAEA). The Activity Median Aerodynamic Diameter (AMAD) and particle density for cedar pollen were assumed to be 32 μm and 0.7 g·cm-3, respectively. The observation period was from early February to the end of May, 2012. It was found that the committed effective doses for adults in Fukushima, Ibaraki, and Tokyo were 1.6-1.8×10-3 μSv, 4.5×10-4 μSv, and 3.0×10-4 μSv, respectively. Hence, it can be stated that internal doses from chronic intake of caesium-137 in cedar pollen were insignificant in 2012. In addition, retention and excretion functions for caesium-137 in the whole body were found to be dependent on the times of intake and the fractional activity related to chronic intake. (author)

  17. Radioiodine dosimetry and prediction of consequences of thyroid exposure of the Russian population following the Chernobyl accident

    In the early period after the Chernobyl accident, analysis of patterns of 131I exposure of the human thyroid showed that contaminated milk was the basic source of 131I intake among the inhabitants of Russia. The equipment and techniques used for measurement of the 131I content in the thyroids of these individuals are described in this work. A model of the 131I intake, taking into account protective actions, and a method of thyroid dose calculation are discussed. The mean thyroid dose and frequency distributions of the thyroid doses to inhabitants of towns and villages of the Bryansk, Tula and Orel regions of Russia are presented. The mean dose to the thyroids of children living in the villages was 2 to 5 times higher than the dose to adult thyroids; for children living in the towns, the mean dose was 1.5 to 12 times higher. The mean thyroid mass in adult inhabitants of the Bryansk region was 27 g, which exceeded the value for a standard man (20 g) and was taken into account in the dosimetric calculations. The technique for reconstructing the mean and individual thyroid doses was based on the correlation between thyroid dose and several parameters: Surface 137Cs activity in soil, dose rate in air in May of 1986, 131I content in local milk, milk consumption rate, and 134Cs + 137Cs content in the body. The collective thyroid dose to inhabitants of the most contaminated regions of Russia is estimated and a thyroid cancer rate prognosis is derived. The need for intensified medical care for the critical group - children of preschool age during 1986 - is based on a significant increase in the number of projected thyroid cancers and adenomas. 32 refs., 10 figs., 15 tabs

  18. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  19. Radiation dosimetry

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  20. Dosimetry Service

    2004-01-01

    We wish to remind the people who are invited to the dosimetry service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8.30 to 11.00 and 14.00 to 16.00. http://service-rp-dosimetry.web.cern.ch/service-rp-dosimetry/

  1. Methods and procedures for internal radiation dosimetry at ORNL

    Procedures, methods, materials, records, and reports used for accomplishing the personnel, internal radiation monitoring program at Oak Ridge National Laboratory are described for the purpose of documenting what is done now for future reference. This document does not include procedures for nuclear accident dosimetry except insofar as routine techniques may apply also to nuclear accident dosimetry capability

  2. Dosimetry Service

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  3. Agriculture biologique et génie génétique

    Nowack Heimgartner, Karin; Bickel, Regula; Wyss, Eric

    2003-01-01

    Ce dossier explique pourquoi l'agriculture biologique renonce aux organismes génétiquement modifiés (OGM). Il décrit dans quelles circonstances les produits biologiques peuvent être contaminés par des OGM et les mesures à prendre pour éviter de tels incidents. Ces conseils sont complétés par une analyse de la situation actuelle. Un glossaire définit les principaux termes utilisés.

  4. Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  5. Dosimetry Service

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  6. Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  7. Arboriculture biologique : 11 années d'expérimentation en vergers de pêchers et pommiers

    Simon, Sylvaine; BUSSI, Claude; Girard, Thierry; Corroyer, Nathalie; Institut National de la Recherche Agronomique UE 0695 Unité Expérimentale Recherches Intégrées - Gotheron; Agribiodrôme; Groupe de Recherche en Agriculture Biologique

    2006-01-01

    Un programme de recherche a été conduit en arboriculture biologique pendant 11 ans (1994-2004) à l'unité expérimentale INRA (Institut National de la Recherche Agronomique) de Gotheron dans le Sud-Est de la France, en partenariat avec Agribiodrôme (F-26150 Die), association de développement de l'Agriculture Biologique (AB) en Drôme et le GRAB (Groupe de Recherche en Agriculture Biologique, F-84911 Avignon). Les objectifs étaient : (i) acquérir des références en arboriculture biologique ; (ii) ...

  8. Electron paramagnetic resonance technique for radiation dosimetry: emerging trends for laboratory and accidental dosimetry

    The applications of Electron Paramagnetic Resonance (EPR) for radiation dosimetry are briefly reviewed. In particular, EPR-alanine dosimetry and accidental dosimetry using EPR signals from human tooth enamel have been discussed. The alanine dosimetry was found to be useful from low doses such as 1 Gy to high doses such as 100 kGy. The signals from tooth enamel are found to be invaluable in assessing the absorbed dose of people exposed to radiation accidents and also survivors of atomic bomb explosions. New emerging trends using EPR signals from bones exposed to radiation have also been briefly reviewed. (author)

  9. Retrospective reconstruction of emergency dose exposed to the population of belarus affected by the Chernobyl accident by the method of tooth enamel epr dosimetry

    An approach to the retrospective reconstruction of emergency doses for EPR of tooth enamel was developed, which allows to take into account the contribution to the dose load of side electromagnetic radiation (background radiation, medical X-rays, ultraviolet light) and the mechanical effect of dental borers on enamel during dental treatment. It was found that the highest emergency doses of radiation were received by the liquidators in 1986 accident involvement, then in a descending order by the citizens of areas with soil contamination of 137Cs 15-40, 5-15 and 1-5 Ci/km2 (authors)

  10. Dosimetry Service

    Dosimetry Service

    2004-01-01

    We wish to remind the people who are invited to the dosimetry service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8:30 to 11:00 and 14:00 to 16:00. For all other services we are at your disposition from 8:30 to 12:00 and 14:00 to 17:00. Do not forget to read your dosimeter. A regular read-out is indispensable in order to ensure a periodic monitoring of personal dose. This read-out should be done during the first week of every month. Thank you for your cooperation. The personnel of the Dosimetry Service wish you a Merry Christmas and a Happy New Year. Dosimetry Service Tel. 767 21 55 http://cern.ch/rp-dosimetry

  11. Dosimetry methods

    McLaughlin, W.L.; Miller, A.; Kovacs, A.; Mehta, K. K.

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  12. Dosimetry Service

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once every month. A regular read-out is indispensable to ensure periodic monitoring of your personal dose. You must read your dosimeter even if you have not visited the controlled areas. Film badges are no longer valid at CERN and holders of film badges are no longer allowed to enter the controlled radiation areas or work with a source. Dosimetry Service Tel. 72155 http://cern.ch/rp-dosimetry

  13. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  14. Report on external occupational dosimetry in Canada

    In light of the new recommendations of the ICRP in Report 60 on dose quantities and dose limits, this working group was set up to examine the implications for external dosimetry in Canada. The operational quantities proposed by the ICRU are discussed in detail with regard to their applicability in Canada. The current occupational dosimetry services available in Canada are described as well as the several performance intercomparisons that have been carried out within the country as well as internationally. Recommendations are given with respect to standards for dosimetry, including accuracy and precision. More practical advice is given on the choice of dosimeter to use for external dosimetry, frequency of monitoring, and who should be monitored. Specific advice is given on the monitoring of pregnant workers and problem of non-uniform irradiation. Accident and emergency dosimetry are dealt with briefly. Suggestions are given regarding record keeping both for employers and for the national dose registry. 48 refs., 6 tabs., 1 fig

  15. Retrospective dosimetry of Iodine-131 exposures using Iodine-129 and Caesium-137 inventories in soils--A critical evaluation of the consequences of the Chernobyl accident in parts of Northern Ukraine.

    Michel, R; Daraoui, A; Gorny, M; Jakob, D; Sachse, R; Romantschuk, L D; Alfimov, V; Synal, H-A

    2015-12-01

    The radiation exposure of thyroid glands due to (131)I as a consequence of the Chernobyl accident was investigated retrospectively based on (129)I and (137)Cs inventories in soils in Northern Ukraine. To this end, soil samples from 60 settlements were investigated for (129)I, (127)I, and (137)Cs by AMS, ICP-MS and gamma-spectrometry, respectively. Sampling was performed between 2004 und 2007. In those parts of Northern Ukraine investigated here the (129)I and (137)Cs inventories are well correlated, the variability of the individual (129)I/(137)Cs ratios being, however, high. Both the (129)I and (137)Cs inventories in the individual 5 samples for each settlement allowed estimating the uncertainties of the inventories due to the variability of the radionuclide deposition and consequently of the retrospective dosimetry. Thyroid equivalent doses were calculated from the (129)I and the (137)Cs inventories using aggregated dose coefficients for 5-year old and 10-year-old children as well as for adults. The highest thyroid equivalent doses (calculated from (129)I inventories) were calculated for Wladimirowka with 30 Gy for 5-years-old children and 7 Gy for adults. In 35 settlements of contamination zone II the geometric mean of the thyroid equivalent doses was 2.0 Gy for 5-years-old children with a geometric standard deviation (GSD) of 3.0. For adults the geometric mean was 0.47 Gy also with a GSD of 3.0. In more than 25 settlements of contamination zone III the geometric means were 0.82 Gy for 5-years old children with a GSD of 1.8 and 0.21 Gy for adults (GSD 1.8). For 45 settlements, the results of the retrospective dosimetry could be compared with thyroid equivalent doses calculated using time-integrated (131)I activities of thyroids which were measured in 1986. Thus, a critical evaluation of the results was possible which demonstrated the general feasibility of the method, but also the associated uncertainties and limitations. PMID:26254721

  16. Proceedings of the V. international symposium 'Actual problems of dosimetry'

    The main topics of the workshop were: monitoring and reconstruction of radiation doses at radiation accidents, biological dosimetry and markers of radiation effects as well as normative, metrological and technical aspects of dosimetric and radiometric monitoring

  17. Proceedings of the IV International Symposium 'Actual Problems of Dosimetry'

    The main topic of the workshop were: monitoring and reconstruction of radiation doses at radiation accidents, biological dosimetry and markers of radiation effects as well as normative, metrological and technical aspects of dosimetric and radiometric monitoring

  18. Four decades of thermoluminescence dosimetry research in India

    Last four decades have witnessed tremendous progress in the field of thermo-luminescence dosimetry. During this period development of new and sensitive TL phosphors was reported. Application of these phosphors was exploited in different fields, such as personnel and environmental monitoring, accident and retrospective dosimetry, high dose dosimetry, archaeological and geological dating. Commensurate with these developments, progress in TL instrumentation also took place. This paper reviews some of these developments in the last four decades in India. (author)

  19. Optically stimulated luminescence in retrospective dosimetry

    Bøtter-Jensen, L.; Murray, A.S.

    2002-01-01

    Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes of this progr......Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes...

  20. 134Cs and 137Cs whole-body measurements and internal dosimetry of the population living in areas contaminated by radioactivity after the Chernobyl accident

    Six western districts of the Bryansk region, Russia, were heavily contaminated with radioactive fallout after the Chernobyl NPP accident. Annually, between 1991 and 1994, inhabitants of four settlements were studied. Whole-body 134+137Cs contents were measured in about 500 inhabitants. No correlation between Cs whole-body content and Cs soil contamination was found; Cs accumulation in a body depends greatly on natural factors such as type of soil, on social factors such as food habits including consumption of forest products, and on countermeasures to reduce internal exposure. During 1991-1994 average whole-body content of 134+137Cs in adult inhabitants was about 3-60 kBq, corresponding to an effective dose of 0.1-2.4 mSv.y-1. Cs whole-body content increases equally for girls and boys up to adult age. Cs content in adults does not depend significantly on age and is usually 1.2-2 times higher in men than in women. The average annual internal effective dose varies with age significantly less than 134+137Cs whole-body content. In children (0-5 years) the mean absorbed dose is usually 1.2-1.5 times less than in adults. (author)

  1. Lutte biologique augmentative : modélisation mathématique et recommandations

    Nundloll, Sapna

    2010-01-01

    Les travaux présentés dans cette thèse portent sur des problématiques de modélisation mathématique de lutte biologique augmentative et des recommandations pratiques qui en sont dérivées. La lutte biologique est une méthode de phytoprotection visant à combattre les ravageurs des cultures à l'aide de leurs ennemis naturels ; son développement est crucial en vue de diminuer l'utilisation de pesticides dont les conséquences néfastes sont reconnues, notamment sur la santé des agriculteurs et des c...

  2. Dosimetry standards

    The following leaflets are contained in this folder concerning the National Physical Laboratory's measurement services available in relation to dosimetry standards: Primary standards of X-ray exposure and X-ray irradiation facilities, X-ray dosimetry at therapy levels, Protection-level X-ray calibrations, Therapy-level gamma-ray facility, Fricke dosemeter reference service, Low-dose-rate gamma-ray facility, Penetrameter and kV meter calibration, Measurement services for radiation processing, Dichromate dosemeter reference service, Electron linear accelerator. (U.K.)

  3. Dosimetry Service

    2005-01-01

    The Dosimetry Service will be closed every afternoon the week of 21st to 25th February 2005. The opening hours will be from 8.30 am to 12.00 midday. Don't forget to read your dosimeter, as regular read-outs are indispensable to ensure periodic monitoring of personal doses. Thank you for you cooperation.

  4. Methods and procedures for external radiation dosimetry at ORNL

    Procedures, methods, materials, records, and reports used for accomplishing the personnel, external radiation monitoring program at Oak Ridge National Laboratory are described for the purpose of documenting what is done now for future reference. This document provides a description of the methods and procedures for external radiation metering, monitoring, dosimetry, and records which are in effect at ORNL July 1, 1981. This document does not include procedures for nuclear accident dosimetry except insofar as routine techniques may apply also to nuclear accident dosimetry capability

  5. Accident consequence assessment code development

    This paper describes the new computer code system, OSCAAR developed for off-site consequence assessment of a potential nuclear accident. OSCAAR consists of several modules which have modeling capabilities in atmospheric transport, foodchain transport, dosimetry, emergency response and radiological health effects. The major modules of the consequence assessment code are described, highlighting the validation and verification of the models. (author)

  6. Dosimetry on the radiological risks prevention in radiotherapy

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  7. Hot-particle dosimetry recommendations and associated problems

    Hot-particle issues have been in current focus since the Three Mile Island Unit 2 (TMI-2) accident dosimetry highlighted the basic problems. The 1979 Report to the President's Commission on the Accident at TMI discussed beta dosimetry problems in the health physics sections. Both the U.S. Nuclear Regulatory Commission's (NRC's) Rogovin Report on TMI as well as the health physics blue ribbon committee report discussed beta dosimetry problems. Participants in a U.S. Department of Energy/Environmental Measurements Laboratory (DOE-EML) Beta Dosimetry Workshop recommended an International Beta Dosimetry Symposium, which was held in 1983, sponsored by DOE, NRC, and the Health Physics Society. The conclusions drawn from this symposium are discussed. History and present status of related regulations are presented

  8. Optically stimulated luminescence in retrospective dosimetry

    Bøtter-Jensen, L.; Murray, A.S.

    Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes of this...

  9. Optically stimulated luminescence techniques in retrospective dosimetry

    Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...

  10. Neutron personnel dosimetry

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  11. Biological dosimetry - Dose estimation method using biomakers

    The individual radiation dose estimation is an important step in the radiation risk assessment. In case of radiation incident or radiation accident, sometime, physical dosimetry method can not be used for calculating the individual radiation dose, the other complement method such as biological dosimetry is very necessary. This method is based on the quantitative specific biomarkers induced by ionizing radiation, such as dicentric chromosomes, translocations, micronuclei... in human peripheral blood lymphocytes. The basis of the biological dosimetry method is the close relationship between the biomarkers and absorbed dose or dose rate; the effects of in vitro and in vivo are similar, so it is able to generate the calibration dose-effect curve in vitro for in vivo assessment. Possibilities and perspectives for performing biological dosimetry method in radiation protection area are presented in this report. (author)

  12. Emerging technological bases for retrospective dosimetry.

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel. PMID:9368303

  13. Dosimetry Service

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter every month at least once and preferably during the first week. A regular read-out is indispensable in order to ensure a periodic monitoring of the personal dose. You should read your dosimeter even if you have not visited the controlled areas. If you still have the old dosimeter (film badge), please send it immediately for evaluation to us (Bdg 24 E-011). After January 2005 there will be no developing process for the old film system. Information for Contractors: Please remember also to bring the form ‘Confirm Reception of a CERN Dosimeter' signed with ‘Feuille d'enregistrement du CERN'. Without these forms the dosimeter cannot be assigned. Thank you for your cooperation. Dosimetry Service Tel 767 2155 http://cern.ch/rp-dosimetry

  14. Hematological dosimetry

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues

  15. Dosimetry Service

    2004-01-01

    We wish to remind the people who are invited to the Dosimetry Service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8.30 to 11.00 and 14.00 to 16.00. Do not forget to read your dosimeter. The reading should be done during the first week of every month. Thank you for your cooperation.

  16. Radiation dosimetry.

    Cameron, J.

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  17. The Vinca dosimetry experiment

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States

  18. Accidents - Chernobyl accident

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  19. A second simulated criticality accident dosimetry experiment

    Adams, N

    1973-01-01

    This experiment was undertaken to facilitate training in criticality dose assessment by UKAEA and BNFL establishments with potential criticality hazards. Personal dosemeters, coins, samples of hair, etc. supplied by the seven participating establishments were attached to a man-phantom filled with a solution of sodium nitrate (simulating 'body-sodium'), and exposed to a burst of radiation from the AWRE pulsed reactor VIPER. The neutron and photon doses were each several hundred rads. Participants made two sets of dose assessments. The first, made solely from the evidence of their routine dosemeters the activation of body-sodium and standard monitoring data, simulated the initial dose assessment that would be made before the circumstances of a real incident were established. The second was made when the position and orientation of the phantom relative to the reactor and the shielding (20 cm of copper) between the reactor core and the phantom were disclosed. Neutron and photon dose assessments for comparison wit...

  20. Nuclear Accident Dosimetry at Argonne National Laboratory

    This report summarizes current planning at Argonne National Laboratory with respect to dose determination following a criticality incident. The discussion relates chiefly to two types of commercially obtained dosimeter packages, and includes the results of independent calibrations performed at the Laboratory. The primary dosimeter system incorporates threshold detectors developed at Oak Ridge National Laboratory for neutron spectrum measurement. Fission foil decay calibration curves have been determined experimentally for scintillation counting equipment routinely used at Argonne. This equipment also has been calibrated for determination of sodium-24 activity in blood. Dosimeter units of the type designed at Savannah River Laboratory are deployed as secondary stations. Data from the neutron activation components of these units will be used to make corrections to, the neutron spectrum for intermediate as well as thermal energies. The epicadmium copper foil activation, for a given fluence of intermediate energy neutrons, has been shown relatively insensitive to neutron spectrum variations within the region, and a meaningful average of copper cross-section has been determined. Counter calibration factors determined at Argonne are presented for the copper, indium, and sulphur components. The total neutron fluence is computed using the corrected spectrum in conjunction with a capture probability function and the blood sodium result. One or more specifications of neutron dose then may be calculated by applying the spectral information to the appropriate conversion function. The gamma portion of the primary dosimeter package contains fluorescent rods and a thermoluminescent dosimeter in addition to a two-phase chemical dosimeter. The gamma dosimeter in the secondary package is a polyacrylamide solution which is degraded by exposure to gamma radiation. The absorbed dose is derived from a measured change insolution viscosity. Difficulties in evaluation, placement, and storage stability are discussed. Plans have been formulated to determine phosphorus-32 in biological materials in order to obtain a fast- neutron dose, to analyse environmental materials for neutron activation products, and to determine the total number of fissions. Administrative control of dose determination will be facilitated with a manual which lists dosimeter locations and handling and counting procedures as well as formulae for dose calculations. (author)

  1. Topics in radiation dosimetry radiation dosimetry

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  2. ESR dosimetry: achievements and challenges

    Full text: Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR) and more recently as Electron Magnetic Resonance (Emr), is a spectroscopy technique able to detect unpaired electrons such as those created by the interaction ionizing radiation with matter. When the unpaired electrons created by ionizing radiation are stable over some reasonable time, ESR can be used to measure the radiation dose deposited in the material under study. In principle, any insulating material that satisfies this requisite can be used as a dosimeter. ESR has been used in retrospective dosimetry in case of radiological accidents using natural constituents of human body such as teeth, bones and nails as well as fortuitous materials as sugar, sweeteners and plastics. When using teeth the typical detected dose is 0.5 Gy for, for X-Band spectrometers (9 GHz) and even lower doses if higher frequency spectrometers are used. Clinical dosimetry is another area of potential use of this dosimetric modality. In this application the amino acid alanine has been proposed and being used. Alanine dosimeters are very easy to prepare and require no complicated treatments for use. Alanine/ESR dosimetry satisfies many of the required properties for clinical applications such as water equivalent composition, independence of response for the energy range used in therapy and high precision. Other organic materials such as ammonium tartrate are being investigated to increase the sensitivity of ESR for clinical applications. Finally, industrial applications can also benefit from this dosimetry. The challenges to expand applications, the number of users and research groups of ESR dosimetry will be discussed. (Author)

  3. ESR dosimetry: achievements and challenges

    Baffa, O., E-mail: baffa@usp.br [Universidade de Sao Paulo, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR) and more recently as Electron Magnetic Resonance (Emr), is a spectroscopy technique able to detect unpaired electrons such as those created by the interaction ionizing radiation with matter. When the unpaired electrons created by ionizing radiation are stable over some reasonable time, ESR can be used to measure the radiation dose deposited in the material under study. In principle, any insulating material that satisfies this requisite can be used as a dosimeter. ESR has been used in retrospective dosimetry in case of radiological accidents using natural constituents of human body such as teeth, bones and nails as well as fortuitous materials as sugar, sweeteners and plastics. When using teeth the typical detected dose is 0.5 Gy for, for X-Band spectrometers (9 GHz) and even lower doses if higher frequency spectrometers are used. Clinical dosimetry is another area of potential use of this dosimetric modality. In this application the amino acid alanine has been proposed and being used. Alanine dosimeters are very easy to prepare and require no complicated treatments for use. Alanine/ESR dosimetry satisfies many of the required properties for clinical applications such as water equivalent composition, independence of response for the energy range used in therapy and high precision. Other organic materials such as ammonium tartrate are being investigated to increase the sensitivity of ESR for clinical applications. Finally, industrial applications can also benefit from this dosimetry. The challenges to expand applications, the number of users and research groups of ESR dosimetry will be discussed. (Author)

  4. ESR dosimetry using eggshells and tooth enamel for accidental dosimetry

    The CO2- signal of eggshells showed a good dose linearity and was appropriate in the wide dose range from 1 to 10 kGy, while ESR signal of CO2- in sea and fresh water shells were saturated at a dose od below 10 kGy. The minimum detectable dose and G-value of CO2- in eggshells were estimated 0.3 Gy and 0.28, respectively. The lifetime of CO2- in eggshells could not be determined exactly because of overlapping organic signals, however it is still sufficiently long for practical use as ESR dosimeter materials. Various bird's or reptile's eggshells would be available as natural retrospective ESR dosimeter materials after nuclear accidents. Eggshells will be useful for the food irradiation dosimetry in the dose range of about a few kGy. Tooth enamel is one of the most useful dosimeter materials in public at a accident because of its high sensitivity. ESR dosimetry will replace TLD in near future if the cost of an ESR reader is further reduced . (author)

  5. EPR dosimetry - present and future

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as co-ordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as biomarkers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (ASTM), and the International Organisation of Standards (ISO) as well as those of the International Commission on Radiation Units and Measurements (ICRU) considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (author)

  6. EPR Dosimetry - Present and Future

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  7. Dosimetry studies in Zaborie village

    Takada, J. E-mail: jtakada@ipc.hiroshima-u.ac.jp; Hoshi, M.; Endo, S.; Stepanenko, V.F.; Kondrashov, A.E.; Petin, D.; Skvortsov, V.; Ivannikov, A.; Tikounov, D.; Gavrilin, Y.; Snykov, V.P

    2000-05-15

    Dosimetry studies in Zaborie, a territory in Russia highly contaminated by the Chernobyl accident, were carried out in July, 1997. Studies on dosimetry for people are important not only for epidemiology but also for recovery of local social activity. The local contamination of the soil was measured to be 1.5-6.3 MBq/m{sup 2} of Cs-137 with 0.7-4 {mu}Sv/h of dose rate. A case study for a villager presently 40 years old indicates estimations of 72 and 269 mSv as the expected internal and external doses during 50 years starting in 1997 based on data of a whole-body measurement of Cs-137 and environmental dose rates. Mean values of accumulated external and internal doses for the period from the year 1986 till 1996 are also estimated to be 130 mSv and 16 mSv for Zaborie. The estimation of the 1986-1996 accumulated dose on the basis of large scale ESR teeth enamel dosimetry provides for this village, the value of 180 mSv. For a short term visitor from Japan to this area, external and internal dose are estimated to be 0.13 mSv/9d (during visit in 1997) and 0.024 mSv/50y (during 50 years starting from 1997), respectively.

  8. EPR Dosimetry - Present and Future

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  9. Bayesian Methods for Radiation Detection and Dosimetry

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  10. Local overexposure: the role of physical dosimetry

    The role of physical dosimetry in cases of local overexposure is limited. However, if dosimetry, which is usually of no use for diagnosis, is combined with clinical and biological data, it can be useful for therapy and prognosis. This paper, based on cases treated at the Hopital Curie, proposes a method which may be used. It consists of: determination of isodose curves at the surface (skin) by an experimental reconstruction of the accident or by calculation; comparison of these isodoses with the skin pathology: area of erythema (3-8 Gy), area of dry desquamation (> 5 Gy), area of exudative desquamation (12-20 Gy) and area of necrosis (> 25 Gy); calibration of the depth-dose curves after this comparison and the determination of the dose to essential organs or tissues. Examples illustrating this approach are given for accidents involving X rays and 192Ir and 60Co sources. (author)

  11. HSE performance tests for dosimetry services

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. (author)

  12. EPR TOOTH DOSIMETRY OF SNTS AREA INHABITANTS

    Sholom, Sergey; Desrosiers, Marc; Bouville, André; Luckyanov, Nicholas; Chumak, Vadim; Simon, Steven L.

    2007-01-01

    The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed “accident doses”...

  13. Developments in optically stimulated luminescence techniques for dating and retrospective dosimetry

    Bøtter-Jensen, L.; Murray, A.S.

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear......-precision single-aliquot measurement protocols. These offer exciting possibilities in dating and accident dosimetry, and are already leading to new demands on measurement techniques and facilities....

  14. Breast dosimetry

    The estimation of the absorbed dose to the breast is an important part of the quality control of the mammographic examination. Knowledge of breast dose is essential for the design and performance assessment of mammographic imaging systems. This review gives a historical introduction to the measurement of breast dose. The mean glandular dose (MGD) is introduced as an appropriate measure of breast dose. MGD can be estimated from measurements of the incident air kerma at the surface of the breast and the application of an appropriate conversion factor. Methods of calculating and measuring this conversion factor are described and the results discussed. The incident air kerma itself may be measured for patients or for a test phantom simulating the breast. In each case the dose may be determined using TLD measurements, or known exposure parameters and measurements of tube output. The methodology appropriate to each case is considered and the results from sample surveys of breast dose are presented. Finally the various national protocols for breast dosimetry are compared

  15. Epinard en agriculture biologique : essai variétal sous tunnel froid : compte-rendu d'essai 2005

    Mazollier, Catherine; Taulet, Annick; Lambion, Jérôme; Védie, Hélène

    2006-01-01

    En maraîchage biologique, la culture de l’épinard d’hiver sous abris impose notamment le choix de variétés adaptées, tolérantes au mildiou (Peronospora farinosa) et disponibles en semences biologiques ou non traitées. En 2003-2004, le GRAB avait testé des variétés en culture d’hiver sous abris pour une récolte unique de fin janvier. Ce nouvel essai a pour objectif de tester des variétés disponibles en semences biologiques ou non traitées, pour un calendrier de production différent : plantatio...

  16. Tomate en agriculture biologique : essai variétal sous tunnel froid : compte-rendu d'essai 2005

    Mazollier, Catherine; Picaut, Luc

    2006-01-01

    La production de tomate biologique tient une place importante sous abri froid en Provence. Le choix variétal est limité aux variétés disponibles en semences biologiques ou non traitées. En circuit long, la filière impose des caractéristiques similaires à celles du marché conventionnel : bonne fermeté, forme et coloration régulières, absence de défaut visuel; le choix variétal s'oriente donc vers des variétés "classiques", de type mid-life : Brenda et Paola (semences biologiques), Pétula (...

  17. Relation entre l’agressivité des souches de B. cinerea et l’efficacité de la protection biologique conférée par deux agents de lutte biologique

    Comby, Morgane

    2011-01-01

    Les méthodes de lutte actuelles contre l’agent responsable de la pourriture grise, Botrytis cinerea, ne suffisent pas à garantir une protection totale contre ce champignon pathogène, capable de développer des résistances à de nombreux fongicides. Dans ce contexte, la protection biologique semble prometteuse mais la durabilité de cette méthode de lutte a été très peu étudiée. La perte d’efficacité des agents de lutte biologique pourrait résulter de la préexistence d’isolats moins sensibles de ...

  18. Neutron dosimetry - A review

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  19. Reconstructive dosimetry for cutaneous radiation syndrome

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Da Silva, F.C.A., E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Valverde, N.J. [Fundacao Eletronuclear de Assistencia Medica, Rio de Janeiro, RJ (Brazil)

    2015-10-15

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. (author)

  20. Effet des pratiques biologiques et conventionnelles sur les communautés d’insectes auxiliaires dans les paysages agricoles

    Puech, Camille; Baudry, Jacques; Aviron, Stéphanie

    2013-01-01

    La sécurité alimentaire ainsi que la conservation de la biodiversité font partie des principaux enjeux de l’agriculture moderne. En raison de ses pratiques alternatives, l’Agriculture Biologique (AB) constitue un mode de production prometteur pour répondre à ces problématiques. En particulier, le contrôle biologique des ravageurs par leurs ennemis naturels semble être une alternative possible aux insecticides utilisés en Agriculture Conventionnelle (AC). L’objectif de cette étude est de décri...

  1. Neutron dosimetry

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq 241 Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s-1 and 0,5 μSv s-1. A calibrated 50 nSv s-1 thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the 241 Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold 241 Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,α) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kVpp cm-1, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46± 0,09) 104 tracks cm-2 mSv-1 for thermal neutrons, (9±3) 102 tracks cm-2 mSV-1 for intermediate neutrons and (26±4) tracks cm-2 mSv-1 for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990's ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is sufficiently sensitive to thermal and intermediate neutrons but fast neutron monitoring ar radiological protection level

  2. Etude des déterminants de conversion à l'agriculture biologique et production de références économiques

    Sainte-Beuve, Jasmin

    2010-01-01

    Parmi les agricultures alternatives, l’agriculture biologique s’est imposée depuis peu comme une modèle crédible. L’Etat a fixé en 2007 lors du Grenelle de l’environnement des objectifs ambitieux en terme de surface converties à l’agriculture biologique. Pourtant, l’évolution actuelle des surfaces ne semble pas suffisante pour atteindre ces objectifs. La question des déterminants à la conversion à l’agriculture biologique et des leviers susceptibles de favoriser les conversions se pose donc e...

  3. Radiation-induced damage analysed by luminescence methods in retrospective dosimetry and emergency response

    The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.

  4. Review of retrospective dosimetry techniques for external ionising radiation exposures

    The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements. (authors)

  5. Proceedings of the third conference on radiation protection and dosimetry

    Swaja, R.E.; Sims, C.S.; Casson, W.H. [eds.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  6. Proceedings of the third conference on radiation protection and dosimetry

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database

  7. Silicon diode dosimetry

    The theory of silicon dosimetry is briefly reviewed with respect to operation of these diodes without reverse bias in the short-circuit current mode. The problems of temperature dependence, radiation damage, and the dependence on photon energy are discussed. Various applications of the diodes to practical radiation dosimetry are then described with a view toward pointing out the pitfalls as well as the advantages of using these diodes for dosimetry. (author)

  8. Silicon diode dosimetry

    Dixon, R.L.; Ekstrand, K.E. (Wake Forest Univ., Winston-Salem, NC (USA). Bowman Gray School of Medicine)

    1982-11-01

    The theory of silicon dosimetry is briefly reviewed with respect to operation of these diodes without reverse bias in the short-circuit current mode. The problems of temperature dependence, radiation damage, and the dependence on photon energy are discussed. Various applications of the diodes to practical radiation dosimetry are then described with a view toward pointing out the pitfalls as well as the advantages of using these diodes for dosimetry.

  9. Development of radiation biological dosimetry

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay

  10. Development of radiation biological dosimetry

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay.

  11. Internal sources dosimetry

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  12. Advances in biomedical dosimetry

    The symposium was organized in order to focus on the problems, developments and areas of further research in the life sciences. Forty-nine papers were presented dealing with instrumentation, techniques, experimental and theoretical studies. They included neutron sources and mixed-field dosimetry; developments (e.g. thermocurrent dosimetry) in dosimetry; physical aspects of radiation therapy, and treatment planning; international, national and regional radiation metrology programmes; diagnostic medical x-ray sources, imaging systems and patient doses; high-energy electron and γ-ray dosimetry; and doses determination for ingested or administered radionuclides

  13. Measurement assurance in dosimetry

    The uses of radiation in medicine and industry are today wide in scope and diversity and there is a need for reliable dosimetry in most applications. In particular, high accuracy in dosimetry is required in the therapeutic use of radiation. Consequently, calibration procedures for radiotherapy generally meet also the accuracy requirements for applications in other fields, such as diagnostic radiology, radiation protection and industrial radiation processing. The emphasis at this symposium was therefore mainly or radiotherapy dosimetry, but the meeting also included one session devoted to dosimetry in diagnostic radiology. Refs, fig and tabs

  14. Dosimetry of ionizing radiation

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  15. Thermoluminescence, optically stimulated luminescence and radiophotoluminescence dosimetry: an overall perspective

    Radiation dosimetric methods are used for the estimation of dose absorbed by radiation in a detector material. These methods are required for estimation of absorbed dose in various applications of radiation, such as personnel and environmental dosimetry, retrospective/accident dosimetry and medical applications of radiation. The use of thermoluminescence (TL) as a method for radiation dosimetry of ionizing radiation has been established for many decades and has found many useful applications in various fields, such as personnel and environmental monitoring, medical dosimetry, archaeological and geological dating, space dosimetry. Several high sensitivity TL phosphor materials and thermoluminescent dosimeters (TLDs) are now commercially available in different physical forms. There are many commercial TLD systems which are being used for various dosimetric applications and even presently, TL is a major player in the field of radiation dosimetry, particularly in personnel dosimetry. In the last two decades an alternative technique, optically stimulated luminescence (OSL), has been developed, as the optical nature of the readout process does not involve problems of blackbody radiation and thermal quenching. Due to this and some other advantages OSL is also being used for various applications in radiation dosimetry, such as personnel and environmental dosimetry, retrospective/accident dosimetry and medical dosimetry. The development of Al2O3:C TL/OSL phosphor by Akselrod et al. and later investigation of its suitability for personnel dosimetry using pulsed OSL (POSL) technique of stimulation by Akselrod and McKeever, resulted in the development of a personnel dosimetry system based on Al2O3:C OSL phosphor. Therefore, thrust of modern luminescence dosimetry development is more towards OSL. The main advantages of the small size optic fiber based OSL dosimeter over the currently available radiation detectors, such as TLD, used in clinical applications, are the capabilities

  16. Nuclear accidents

    On 27 May 1986 the Norwegian government appointed an inter-ministerial committee of senior officials to prepare a report on experiences in connection with the Chernobyl accident. The present second part of the committee's report describes proposals for measures to prevent and deal with similar accidents in the future. The committee's evaluations and proposals are grouped into four main sections: Safety and risk at nuclear power plants; the Norwegian contingency organization for dealing with nuclear accidents; compensation issues; and international cooperation

  17. Radiation accidents

    Radiation accidents may be viewed as unusual exposure event which provide possible high exposure to a few people and, in the case of nuclear plants events, low exposure to large population. A number of radiation accidents have occurred over the past 50 years, involving radiation machines, radioactive materials and uncontrolled nuclear reactors. These accidents have resulted in number of people have been exposed to a range of internal and external radiation doses and those involving radioactive materials have involved multiple routs of exposure. Some of the more important accidents involving significant radiation doses or releases of radioactive materials, including any known health effects involves in it. An analysis of the common characteristics of accidents is useful resolving overarching issues, as has been done following nuclear power, industrial radiography and medical accidents. Success in avoiding accidents and responding when they do occur requires planning in order to have adequately trained and prepared health physics organization; well defined and developed instrument program; close cooperation among radiation protection experts, local and state authorities. Focus is given to the successful avoidance of accidents and response in the events they do occur. Palomares, spain in late 1960, Goiania, Brazil in 1987, Thule, Greenland in 1968, Rocky flats, Colorado in 1957 and 1969, Three mile island, Pennsylvania in 1979, Chernobyl Ukraine in april 1986, Kyshtym, former Soviet Union in 1957, Windscale, UK in Oct. 1957 Tomsk, Russian Federation in 1993, and many others are the important examples of major radiation accidents. (author)

  18. Dosimetry service removal

    Safety Commission

    2010-01-01

    Dear personal dosimeter user, Please note that the Dosimetry service has moved in building 55, the service is now located in the main floor: 55-R-004. Main floor instead of second floor. On your right hand when accessing in the building. Thank you Dosimetry Service

  19. Radiation therapy dosimetry system

    New therapeutic treatments generally aim to increase therapeutic efficacy while minimizing toxicity. Many aspects of radiation dosimetry have been studied and developed particularly in the field of external radiation. The success of radiotherapy relies on monitoring the dose of radiation to which the tumor and the adjacent tissues are exposed. Radiotherapy techniques have evolved through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments or radiosurgery and robotic radiation therapy. These advances push the frontiers in our effort to provide better patient care by improving the precision of the absorbed dose delivered. This paper presents state-of-the art radiation therapy dosimetry techniques as well as the value of integral dosimetry (INDOS), which shows promise in the fulfillment of radiation therapy dosimetry requirements. - highlights: • Pre-treatment delivery and phantom dosimetry in brachytherapy treatments were analyzed. • Dose distribution in the head and neck was estimated by physical and mathematical dosimetry. • Electron beam flattening was acquired by means of mathematical, physical and “in vivo” dosimetry. • Integral dosimetry (INDOS) has been suggested as a routine dosimetric method in all radiation therapy treatments

  20. Dosimetry in process control

    Measurement of absorbed dose and dose distribution in irradiated medical products relies on the use of quality dosimetry systems, trained personnel and a thorough understanding of the energy deposition process. The interrelationship of these factors will be discussed with emphasis on the current and future practices of process control dosimetry. (author)

  1. Usage of JENDL dosimetry file for material dosimetry in JOYO

    A cross section set with covariance error matrix for neutron spectrum unfolding has been newly prepared from JENDL-3 dosimetry file and was applied to the dosimetry test in the MK-II core (the irradiation core) of Experimental Fast Reactor 'JOYO'. The dosimetry results by the new cross section set were compared with the previous ones by ENDF/B-V dosimetry file to evaluate the applicability and accuracy for the fast reactor dosimetry. In this work, it has been concluded that more improvement can be expected for the JOYO dosimetry test by employing JENDL-3 dosimetry file. (author)

  2. Projets et découplages dans l'agriculture biologique en France et en Allemagne

    Pernin, M Jean-Louis

    2006-01-01

    Cette communication a pour objectif de rendre compte des dynamiques méso-socio-économiques dans l’agriculture biologique en France et en Allemagne depuis leur création. Nous utilisons le concept de projet en tant qu’action collective régulée et finalisée en vue a) de découper le réel méso-socio-économique en concepts de formes organisationnelles, b) de produire un schéma interprétatif des dynamiques de ces formes. Les trois dimensions d’un projet sont les piliers de cette approche théorique. ...

  3. Biodiversité et lutte biologique : le cas de la cochenille du manioc en Afrique

    FABRES, Gérard; Nénon, J.P.

    1997-01-01

    Au début des années 1970, l'ensemble de la zone de culture du manioc en Afrique, a été envahie par deux ravageurs en provenance du nouveau monde. L'un d'entre eux, la cochenille du manioc (#Phenacoccus manihoti$ Matile-Ferrero,#Homoptera$, #Pseudococcidae$), a fait l'objet d'une intense activité de recherche et une vaste opération de lutte biologique a été lancée. Vingt ans après les premiers travaux, l'idée prévaut que le problème est entièrement résolu grâce à l'introduction d'une seule esp...

  4. Qualité chimique et biologique du bassin de la Semois (partie Belge)

    Leclercq, L.; ROSILLON F.; VANDER BORGHT P.; LONCIN A.; EL MOSSAOUI M.

    1996-01-01

    Les eaux du bassin de la Semois belge ont été étudiées, en 25 stations, sous différents aspects complémentaires : chimie, diatomées et invertébrés benthiques. Les méthodes utilisées sont l'indice de pollution organique (IPO, LECLERCQ et VANDEVENNE, 1987), un indice diatomique (ID, LECLERCQ, non publié) et l'indice biologique global normalisé (IBGN, AFNOR, 1992). Grâce aux analyses chimiques et diatomiques, nous décrivons différents types d'eaux naturelles, à minéralisation croissante, et diff...

  5. Lutte biologique contre la fusariose vasculaire de la tomate. Resultats en serre de production

    COUTEAUDIER, Yvonne; Letard, M. (collab.); Alabouvette, Claude; Louvet, J.

    1985-01-01

    Les connaissances acquises au cours de l’étude de la résistance des sols de Châteaurenard ont permis d’élaborer en conditions expérimentales 2 méthodes de lutte biologique contre les fusarioses vasculaires. Après avoir obtenu de bons résultats en conditions expérimentales, l’efficacité de ces procédés a été testée dans une serre dont le sol est très infesté par Fusarium oxysporum f. sp. lycopersici. La première méthode consiste à mélanger à un sol préalablement traité à la chaleur une ter...

  6. Realites et perspectives de la lutte biologique contre les maladies des plantes

    Ponchet, J

    1982-01-01

    Le concept de lutte biologique diffère selon que l’on est phytopathologiste ou entomologiste. Dans ce dernier cas, il se limite à l’exploitation des relations d’exclusion entre organismes, dont la prospection en phytopathologie est restée limitée. La lutte contre les maladies d’origine tellurique utilisant les mécanismes de la résistance naturelle des sols a fait de réels progrès. Que l’antagonisme soit apporté par un peu de terre ou par l’incorporation d’agents très actifs comme les Tric...

  7. Lutte biologique contre le papillon palmivore (Paysandisia archon) à l'aide de parasitoïdes oophages

    Cabrol, Bastien; Colombel, Etty; Buradino, Maurane; GAGLIO, Jean Claude; Martin, Jean Claude,; Tabone, Elisabeth

    2014-01-01

    Originaire d’Argentine, le papillon palmivore Paysandisia archon (Burmeister) poursuit sa progression en région méditerranéenne en entrainant des dégâts considérables sur les palmiers et des pertes économiques importantes. Il est donc urgent de trouver une solution biologique pour contrôler ce ravageur, en respectant l’environnement et la santé humaine. Les trichogrammes, dont l’efficacité a déjà été prouvée en lutte biologique sur différentes cultures, ont été testés au laboratoire et sur le...

  8. Accident Statistics

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  9. Internal dose assessment in radiation accidents

    Although numerous models have been developed for occupational and medical internal dosimetry, they may not be applicable to an accident situation. Published dose coefficients relate effective dose to intake, but if acute deterministic effects are possible, effective dose is not a useful parameter. Consequently, dose rates to the organs of interest need to be computed from first principles. Standard bioassay methods may be used to assess body contents, but, again, the standard models for bioassay interpretation may not be applicable because of the circumstances of the accident and the prompt initiation of decorporation therapy. Examples of modifications to the standard methodologies include adjustment of biological half-times under therapy, such as in the Goiania accident, and the same effect, complicated by continued input from contaminated wounds, in the Hanford 241Am accident. (author)

  10. Third IAEA nuclear accident intercomparison experiment

    The purpose of this report is to present the results of the International Atomic Energy Agency intercomparison experiments held at the 'Boris Kidric' Institute, Vinca, in May 1973. The experiments are parts of a multilaboratory intercomparison programme sponsored by the IAEA for the evaluation of nuclear accident dosimetry systems and eventually recommendation of dosimetry systems that will provide adequate informations in the event of a criticality accident. The previous two studies were held at the Valduc Centre near Dijon (France) in June 1970 and at the ORNL in Oak Ridge (USA), in May 1971. Parts of the intercomparison studies were coordination meetings. The topics and conclusions of the Third coordination meeting are given in the Chairman's Report of F.F. Haywood. This paper will deal, therefore, only with data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation. (author)

  11. Improvement of dosimetry for I-131 therapy of lung metastases with special regard to children with thyroid cancer from Belarus following the Chernobyl accident. Final report 1997-1999

    The main problem in treating disseminated pulmonary metastases in children with papillary thyroid cancer is to find a balance between an insufficient dose for the ablation of metastatic tissue and unnecessary high radiation exposure to the lungs and the bone marrow. This can hardly be achieved without quantitative dosimetry for the more or less inhomogeneously distributed 1-131 in high dosed radioiodine therapy. The major goal of this project is to improve the concept for treating patients with lung metastases induced by thyroid carcinoma. Almost all of the patients with lung metastases are treated in more than one therapy course. After each course the knowledge of the doses to the tumor tissue, the lung, and the bone marrow is of crucial importance for a well funded decision about further treatment. In the cases of either the tumor doses being inefficient for ablation or substantial impairment of residuing pulmonary metastases or the cumulated doses to lung and bone marrow exceeds empirically defined ''critical'' limits the fractionated radioiodine treatment has to be stopped to avoid side effects such as lung fibrosis or leukemia in patients with papillary thyroid cancer. The decision which has to be taken must consider that prognosis with respect to mortality and quality of life even in the case of persisting lung metastases may be better than after the induction of progressive pulmonary fibrosis. Up to now, patients are treated more or less empirically until complete remission is achieved and no tumor uptake is visible in post-therapeutic scans with a gamma camera or the cumulative activity of 1-131 taken up by the lungs exceeds 3 GBq (80 mCi) according to recommendations given by Benua and Leaper in 1962. This project combines empirical approaches with theoretical research at cellular level to optimize the dose to the tumor cells with protection of healthy lung tissue. (orig.)

  12. The micronucleus assay in radiation accidents

    The cytokinesis-block micronucleus assay in peripheral blood lymphocytes is a standardised and validated technique for bio dosimetry. Automated scoring of micronuclei allows large scale applications as in population triage in case of radiation accidents or malevolent use of radioactive sources. The dose detection limit (95% confidence) of the micronucleus assay for individual dose assessment is restricted to 0.2 Gy but can be decreased to 0.1 Gy by scoring centromeres in micronuclei using fluorescence in situ hybridization (FISH). In the past the micronucleus assay was applied for a number of large scale bio monitoring studies of nuclear power plant workers and hospital workers. Baseline micronucleus frequencies depend strongly on age and gender. The assay was also already used for bio dosimetry of radiation accidents. In a multiple endpoint bio dosimetry study for dose assessment of a worker exposed accidentally in 2003 to X-rays, a good agreement was obtained between dose estimates resulting from the micronucleus assay, the scoring of dicentrics and translocations. Automated scoring of micronuclei in combination with centromere signals, allowing systematic bio dosimetry of exposed populations, remains a challenge for the future.

  13. Dosimetry on the radiological risks prevention in radiotherapy; La dosimetria en la prevencion de riesgos radiologicos en radioterapia

    Fornet R, O. M.; Perez G, F., E-mail: nuclear2@citmahlg.holguin.inf.cu [Delegacion Territorial del CITMA, Peralta 16 esq. P. Feria, Rpto. Peralta, 80400 Holguin (Cuba)

    2014-08-15

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  14. INFORMATION: INDIVIDUAL DOSIMETRY SERVICE

    2004-01-01

    We inform you that the Individual Dosimetry Service will be exceptionally closed on April 13 and 14 (Tuesday and Wednesday). Only the very urgent cases will be handled during the days mentioned above.

  15. Dosimetry for radiation processing

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors...... international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference...

  16. Individual Dosimetry Service

    2004-01-01

    Individual Dosimetry Service will be closed on Thursday 9 September (Jeûne genevois) and on Friday 10 September. We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period SEPTEMBER-OCTOBER 2004 are available from their usual dispatchers. Please have your films changed before the 13 SEPTEMBER 2004. The color of the dosimeter valid in SEPTEMBER-OCTOBER 2004 is RED.

  17. News on personal dosimetry

    What is going on in personal monitoring? The DIS-1 dosimeter (Rados/Mirion Technologies), on the market since 2000, is being introduced in the 4th dosimetry service in Switzerland. In Germany, dosimetry services are looking for alternatives to the film dosimeter. They have recently taken the decision for two technical solutions. IEC has published a standard which shall regulate technical requirements for dosimeters world-wide. (orig.)

  18. Dosimetry and Calibration Section

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  19. Factors influencing EPR dosimetry in fingernails

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors)

  20. Bayesian Methods for Radiation Detection and Dosimetry

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model

  1. Usability of VTL from natural quartz grains for retrospective dosimetry.

    Fujita, Hiroki; Hashimoto, Tetsuo

    2007-01-01

    To develop retrospective dosimetry of unexpected radiation accident, basic studies on violet thermoluminescence (VTL) phenomena were conducted using natural quartz grains. All VTL glowcurves of as-received samples did not exhibit peaks VTL peaks in the temperature region VTL measurements from natural quartz. The mean lives of VTL were evaluated by the various heating rates method and the range of values was found to be between some days and ten thousands of years depending on each peak. Especially, the mean life of VTL peak at 200 degrees C was years order. Furthermore, the lower detection limit was calculated to be tens of mGy from the response curve. This value was lower than that of other methods such as ESR dosimetry. From these results, we conclude that VTL dosimetry can be preferred for accidental evaluation. PMID:16936290

  2. Dosimetry of x-ray beams: The measure of the problem

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs

  3. Criticality dosimetry using a sulfur disk and a priori neutron spectral knowledge

    This paper proposes the design of a new approach to criticality accident dosimetry, which uses a priori knowledge of the neutron spectra for criticality accident conditions, and depends upon accurate detector spectral response characterization and environmental modeling. The sulfur disk was selected as a potential neutron detector, for neutrons of higher energies. Several sulfur disks were exposed to a critical Godiva experiment, the spectral response function determined using Monte Carlo methods, and the activity determined using knowledge of the known criticality spectrum. The new method, possibly with two or more different detectors to measure other energy ranges, holds promise as a practical approach to neutron criticality dosimetry

  4. Diagnostic et perspectives de développement de la filière fruits et légumes biologiques des Pays de la Loire

    Morel-Thareau, Bertille; Le Guen, Roger; Schieb-Bienfait, Nathalie; Lambert, Annie; Euzen, Rebecca

    2003-01-01

    Sur les 1700 producteurs de fruits et légumes en Pays de la Loire, 150 (seulement) sont concernés par la production de fruits et de légumes biologiques, dispersés sur les cinq départements. La production de fruits et légumes biologiques est donc une production de niche dont l’importance sur le plan national est faible (6ème région productrice de légumes biologiques). La filière se caractérise par la présence de nombreux acteurs, souvent indépendants, voire isolés. Ce secteur est structuré en ...

  5. Diagnostic et perspectives de développement de la filière céréales biologiques des Pays de la Loire

    Thareau, Bertille; Le Guen, Roger; Lambert, Annie; Schieb-Bienfait, Nathalie

    2004-01-01

    Plus encore qu’en conventionnel, la production de céréales est très dispersée dans le paysage agrobiologique régional. Ce sont avant tout les éleveurs bovins, nombreux en Pays de la Loire, qui produisent des céréales et oléoprotéagineux biologiques. Les exploitants spécialisés en grandes cultures ne produisent que 20% des céréales biologiques régionales (source RGA 2001). Ainsi, notre enquête auprès des producteurs de céréales biologiques concerne des agriculteurs aux parcours et aux exploita...

  6. Secondary standard dosimetry laboratory (SSDL)

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  7. Topics in radiation dosimetry radiation dosimetry, v.1

    Attix, Frank H

    2013-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  8. Qualité chimique et biologique du bassin de la Semois (partie Belge

    LECLERCQ L.

    1996-04-01

    Full Text Available Les eaux du bassin de la Semois belge ont été étudiées, en 25 stations, sous différents aspects complémentaires : chimie, diatomées et invertébrés benthiques. Les méthodes utilisées sont l'indice de pollution organique (IPO, LECLERCQ et VANDEVENNE, 1987, un indice diatomique (ID, LECLERCQ, non publié et l'indice biologique global normalisé (IBGN, AFNOR, 1992. Grâce aux analyses chimiques et diatomiques, nous décrivons différents types d'eaux naturelles, à minéralisation croissante, et différents niveaux de pollution et d'eutrophication. Nous présentons une carte d e qualité détaillée, à l'usage des gestionnaires. Les diatomées apparaissent comme les bioindicateurs les plus fiables pour ces paramètres. Les invertébrés sont moins intéressants à utiliser. Ils sont pratiquement insensibles au type de minéralisation de l'eau (tout au moins au niveau de la famille, qui est le seul niveau d'identification possible en routine, mais ces organismes peuvent être plus sensibles au facteur substrat qu'à la pollution organique, conduisant alors à des estimations erronées.

  9. Secondary standards dosimetry laboratories

    The Secondary Standards Dosimetry Laboratory (SSDL) is part of an international network of dosimetry laboratories established by the IAEA and WHO. The network services maintain the consistency and accuracy of the therapeutic dose by exercising a national and international intercomparison program as well as providing calibration services to the end users, mainly radiotherapy departments in hospitals. The SSDL's are designated by national laboratories (such as Primary Standards Dosimetry Laboratories, PSDL's) to provide national and international absorbed dose traceability for users in that country. The advantage of the SSDL is that the absorbed dose measurements are consistent among the stakeholder countries.The Physics and Safety divisions have recently re-established an SSDL at ANSTO. The SSDL utilises a collimated cobalt-60 source of activity 170 TBq and dose rate of SmGy/sec at 1 metre (within ±2%), and provides a service to calibrate therapy level thimble ionisation chambers and electrometers

  10. Dosimetry of neutron irradiations

    Biological dosimetry of neutron irradiation appears to be of great difficulty due to the multiparametric aspect of the relative biological effectiveness and the heterogeneity of the neutron dose distribution. Dosimetry by sodium 24 activation which can be performed by means of portable radiameters appears to be very useful for early triage within the 3 h following neutron irradiation, whereas hematological dosimetry by slope and level analysis of the lymphocyte drop cannot be used in this case. Chromosomic aberration analysis allows to evaluate the neutron dose heterogeneity by the frequency measurement of acentric fragments not originating from the formation of dicentrics or rings. Finally, recent experimental data on large primate models (baboons) have shown that some plasma hemostasia factors appear to be reliable biological indicators and noticeable markers of the prognosis of neutron irradiation

  11. Interstitial brachytherapy dosimetry update

    In March 2004, the American Association of Physicists in Medicine (AAPM) published an update to the AAPM Task Group No. 43 Report (TG-43) which was initially published in 1995. This update was pursued primarily due to the marked increase in permanent implantation of low-energy photon-emitting brachytherapy sources in the United States over the past decade, and clinical rationale for the need of accurate dosimetry in the implementation of interstitial brachytherapy. Additionally, there were substantial improvements in the brachytherapy dosimetry formalism, accuracy of related parameters and methods for determining these parameters. With salient background, these improvements are discussed in the context of radiation dosimetry. As an example, the impact of this update on the administered dose is assessed for the model 200 103Pd brachytherapy source. (authors)

  12. Computational methods in several fields of radiation dosimetry

    Full text: Radiation dosimetry has to cope with a wide spectrum of applications and requirements in time and size. The ubiquitous presence of various radiation fields or radionuclides in the human home, working, urban or agricultural environment can lead to various dosimetric tasks starting from radioecology, retrospective and predictive dosimetry, personal dosimetry, up to measurements of radionuclide concentrations in environmental and food product and, finally in persons and their excreta. In all these fields measurements and computational models for the interpretation or understanding of observations are employed explicitly or implicitly. In this lecture some examples of own computational models will be given from the various dosimetric fields, including a) Radioecology (e.g. with the code systems based on ECOSYS, which was developed far before the Chernobyl reactor accident, and tested thoroughly afterwards), b) Internal dosimetry (improved metabolism models based on our own data), c) External dosimetry (with the new ICRU-ICRP-Voxelphantom developed by our lab), d) Radiation therapy (with GEANT IV as applied to mixed reactor radiation incident on individualized voxel phantoms), e) Some aspects of nanodosimetric track structure computations (not dealt with in the other presentation of this author). Finally, some general remarks will be made on the high explicit or implicit importance of computational models in radiation protection and other research field dealing with large systems, as well as on good scientific practices which should generally be followed when developing and applying such computational models

  13. ADAPTATION ET VALIDATION D’UN INDICE POISSON (FBI) POUR L’ÉVALUATION DE LA QUALITÉ BIOLOGIQUE DES COURS D’EAU FRANÇAIS.

    Oberdorff, T.; Pont, D.; Hugueny, B.; BELLIARD J.; BERREBI R.; PORCHER J. P.

    2002-01-01

    La récente Directive Cadre sur l’Eau (DCE) demande aux états membres de la communauté européenne la préservation et la restauration de l’état écologique des écosystèmes aquatiques au travers de leurs composantes chimiques et biologiques. Satisfaire cette demande nécessite de disposer d’indicateurs biologiques capables d’apporter une information pertinente sur l’état de santé de ces écosystèmes. Ces indicateurs doivent être scientifiquement valides, efficaces, rapides à mettre en œuvre et appl...

  14. Nuclear medicine radiation dosimetry

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  15. Status of radiation processing dosimetry

    Miller, A.

    Several milestones have marked the field of radiation processing dosimetry since IMRP 7. Among them are the IAEA symposium on High Dose Dosimetry for Radiation Processing and the international Workshops on Dosimetry for Radiation Processing organized by the ASTM. Several standards have been or are...... being published by the ASTM in this field, both on dosimetry procedures and on the proper use of specific dosimeter systems. Several individuals are involved in this international cooperation which contribute significantly to the broader understanding of the role of dosimetry in radiation processing....... The importance of dosimetry is emphasized in the standards on radiation sterilization which are currently drafted by the European standards organization CEN and by the international standards organization ISO. In both standards, dosimetry plays key roles in characterization of the facility, in...

  16. Tchernobyl accident

    First, R.M.B.K type reactors are described. Then, safety problems are dealt with reactor control, behavior during transients, normal loss of power and behavior of the reactor in case of leak. A possible scenario of the accident of Tchernobyl is proposed: events before the explosion, possible initiators, possible scenario and events subsequent to the core meltdown (corium-concrete interaction, interaction with the groundwater table). An estimation of the source term is proposed first from the installation characteristics and the supposed scenario of the accident, and from the measurements in Europe; radiological consequences are also estimated. Radioactivity measurements (Europe, Scandinavia, Western Europe, France) are given in tables (meteorological maps and fallouts in Europe). Finally, a description of the site is given

  17. Accident: Reminder

    2003-01-01

    There is no left turn to Point 1 from the customs, direction CERN. A terrible accident happened last week on the Route de Meyrin just outside Entrance B because traffic regulations were not respected. You are reminded that when travelling from the customs, direction CERN, turning left to Point 1 is forbidden. Access to Point 1 from the customs is only via entering CERN, going down to the roundabout and coming back up to the traffic lights at Entrance B

  18. Conduite de productions animales dans des couverts complexes. Production de volailles biologiques en parcours prairiaux et arborés

    2014-01-01

    L’accès à un parcours extérieur est une obligation réglementaire dans le cadre de l’élevage avicole biologique. Il est possible de valoriser son utilisation par les animaux car il peut rendre des services aux animaux. Les parcours peuvent agir à différents niveaux : santé, alimentation, performance zootechnique, environnement, comportement. Le dispositif AlterAvi a permis d’étudier les services rendus par les parcours. Ainsi, des aménagements comme l’implantation d’arbres ont permis d’augment...

  19. Composition corporelle et caractéristiques biologiques des muscles chez les bovins en croissance et à l'engrais

    Micol, Didier; Robelin, Jacques; Geay, Y.

    1993-01-01

    Cet article présente de façon synthétique les connaissances acquises par différentes équipes de recherches sur les lois biologiques de variations de la composition corporelle des bovins et les effets des facteurs zootechniques qui permettent de la modifier (génotype, sexe, stade d’abattage, niveau d’alimentation, nature de la ration et facteurs de croissance). Les caractéristiques du tissu musculaire, déterminantes pour la qualité de la viande, et leurs variations sous l’influence des mêmes f...

  20. Limitation des populations de ravageurs de l’olivier par le recours à la lutte biologique par conservation

    Warlop, Francois

    2006-01-01

    L’olivier est une culture relativement rustique, mais qui peut être fortement attaquée par la mouche Bactrocera oleae (Gmelin), son principal ravageur. Les parasitoïdes de cette mouche sont connus, mais leur impact sur les populations de Diptères demeure faible, faute d’aménagement adéquat du paysage et suite à une intensification abusive des pratiques culturales. Le programme d’installation de bandes florales mené par le Groupe de recherches en agriculture biologique qui a débuté en 2004 vis...

  1. Une exploration des liens entre dynamiques identitaires et développement territorial. Le cas des agriculteurs biologiques

    Van Dam, Denise

    2010-01-01

    Cet article propose une analyse des liens entre la dynamique identitaire et l’engagement dans un projet de développement territorial, chez les agriculteurs biologiques. Adoptant une posture constructiviste, nous posons comme hypothèse que la dynamique identitaire, entendue comme une configuration particulière entre tensions identitaires et histoire de vie, influence le type de projet initié par l’agriculteur. Nous abordons le développement territorial dans sa double dimension de coordination ...

  2. Verger de kiwi (Actinidia) conduit en Agriculture Biologique : résoudre le problème de la fertilisation

    Romet, Lionel

    2006-01-01

    Compte-tenu des besoins de la plante, la fertilisation est le problème majeur de la production de kiwi en Agriculture Biologique. Pour avoir de l’azote assimilable par le kiwi après son débourrement il est possible de fertiliser avec du guano d’oiseaux. La date de l'apport apparaît comme primordiale. Le tourteau de ricin qu 'il soit sous forme de bouchon ou en semoule ne convient pas pour des épandages hivernaux, car sa minéralisation est beaucoup plus lente et est partielle sur une année....

  3. Ion-kill dosimetry

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  4. Individual Dosimetry Service

    2004-01-01

    We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period MAY-JUNE 2004 are available from their usual dispatchers. Please have your films changed before the 11th MAY 2004. The color of the dosimeter valid in MAY-JUNE 2004 is YELLOW.

  5. Individual dosimetry service

    2004-01-01

    We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period MARCH/APRIL 2004 are available from their usual dispatchers. Please have your films changed before the 11th MARCH 2004. The color of the dosimeter valid in MARCH/APRIL 2004 is BLUE.

  6. Individual dosimetry service

    2004-01-01

    We inform all staff and users under regular dosimetry control that the dosimeters for the monitoring period JULY-AUGUST 2004 are available from their usual dispatchers. Please have your films changed before the 15 JULY 2004. The color of the dosimeter valid in July-August 2004 is PINK.

  7. Dosimetry and Calibration Section

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  8. Ion storage dosimetry

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  9. High frequency electromagnetic dosimetry

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  10. Dosimetry in diagnostic radiology

    Dosimetry is an area of increasing importance in diagnostic radiology. There is a realisation amongst health professionals that the radiation dose received by patients from modern X-ray examinations and procedures can be at a level of significance for the induction of cancer across a population, and in some unfortunate instances, in the acute damage to particular body organs such as skin and eyes. The formulation and measurement procedures for diagnostic radiology dosimetry have recently been standardised through an international code of practice which describes the methodologies necessary to address the diverging imaging modalities used in diagnostic radiology. Common to all dosimetry methodologies is the measurement of the air kerma from the X-ray device under defined conditions. To ensure the accuracy of the dosimetric determination, such measurements need to be made with appropriate instrumentation that has a calibration that is traceable to a standards laboratory. Dosimetric methods are used in radiology departments for a variety of purposes including the determination of patient dose levels to allow examinations to be optimized and to assist in decisions on the justification of examination choices. Patient dosimetry is important for special cases such as for X-ray examinations of children and pregnant patients. It is also a key component of the quality control of X-ray equipment and procedures.

  11. Dosimetry of pion beams

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  12. The ARN critical dosimetry system

    Accident Dosimetry Systems at Silene Reactor in 2002, showing a good performance. (author)

  13. Immediate medical consequences of nuclear accidents: lessons from Chernobyl

    The immediate medical response to the nuclear accident at the Chernobyl nuclear power station involved containment of the radioactivity and evacuation of the nearby population. The next step consisted of assessment of the radiation dose received by individuals, based on biological dosimetry, and treatment of those exposed. Medical care involved treatment of skin burns; measures to support bone marrow failure, gastrointestinal tract injury, and other organ damage (i.e., infection prophylaxis and transfusions) for those with lower radiation dose exposure; and bone marrow transplantation for those exposed to a high dose of radiation. At Chernobyl, two victims died immediately and 29 died of radiation or thermal injuries in the next three months. The remaining victims of the accident are currently well. A nuclear accident anywhere is a nuclear accident everywhere. Prevention and cooperation in response to these accidents are essential goals

  14. Transportation accidents

    Predicting the possible consequences of transportation accidents provides a severe challenge to an analyst who must make a judgment of the likely consequences of a release event at an unpredictable time and place. Since it is impractical to try to obtain detailed knowledge of the meteorology and terrain for every potential accident location on a route or to obtain accurate descriptions of population distributions or sensitive property to be protected (data which are more likely to be more readily available when one deals with fixed-site problems), he is constrained to make conservative assumptions in response to a demanding public audience. These conservative assumptions are frequently offset by very small source terms (relative to a fixed site) created when a transport vehicle is involved in an accident. For radioactive materials, which are the principal interest of the authors, only the most elementary models have been used for assessing the consequences of release of these materials in the transportation setting. Risk analysis and environmental impact statements frequently have used the Pasquill-Gifford/gaussian techniques for releases of short duration, which are both simple and easy to apply and require a minimum amount of detailed information. However, after deciding to use such a model, the problem of selecting what specific parameters to use in specific transportation situations still presents itself. Additional complications arise because source terms are not well characterized, release rates can be variable over short and long time periods, and mechanisms by which source aerosols become entrained in air are not always obvious. Some approaches that have been used to address these problems will be reviewed with emphasis on guidelines to avoid the Worst-Case Scenario Syndrome

  15. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry

    Bøtter-Jensen, Lars; Thomsen, Kristina Jørkov; Jain, Mayank

    2010-01-01

    This review describes 40 years of experience gained at Risø National Laboratory in the development of facilities for irradiation, thermal/optical stimulation and luminescence signal detection. These facilities have mainly been used in luminescence dating and nuclear accident dosimetry. We focus...

  16. Retrospective dosimetry: Dose evaluation using unheated and heated quartz from a radioactive waste storage building

    Jain, M.; Bøtter-Jensen, L.; Murray, A.S.; Jungner, H.

    In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites and...

  17. Dosimetry for food irradiation

    A Manual of Food Irradiation Dosimetry was published in 1977 under the auspices of the IAEA as Technical Reports Series No. 178. It was the first monograph of its kind and served as a reference in the field of radiation processing and in the development of standards. While the essential information about radiation dosimetry in this publication has not become obsolete, other publications on radiation dosimetry have become available which have provided useful information for incorporation in this updated version. There is already a Codex General Standard for Irradiated Foods and an associated Code of Practice for Operation of Irradiation Facilities used for Treatment of Food, issued in 1984 by the Codex Alimentarius Commission of the FAO/WHO Food Standard Programme. The Codex Standard contains provisions on irradiation facilities and process control which include, among other requirements, that control of the processes within facilities shall include the keeping of adequate records including quantitative dosimetry. Appendix A of the Standard provides an explanation of process control and dosimetric requirements in compliance with the Codex Standard. By 1999, over 40 countries had implemented national regulations or issued specific approval for certain irradiated food items/classes of food based on the principles of the Codex Standard and its Code of Practice. Food irradiation is thus expanding, as over 30 countries are now actually applying this process for the treatment of one or more food products for commercial purposes. Irradiated foods are being marketed at retail level in several countries. With the increasing recognition and application of irradiation as a sanitary and phytosanitary treatment of food based on the provisions of the Agreement on the Application of Sanitary and Phytosanitary Measures of the World Trade Organization, international trade in irradiated food is expected to expand during the next decade. It is therefore essential that proper dosimetry

  18. Guidance on approval of dosimetry services under the ionising radiations regulations 1985

    Regulation 15 of the Ionising Radiations Regulations 1985 gives the Health and Safety Executive the power to approve suitable dosimetry services for the purpose of Regulations 13 (dose assessment), 14 (accident dosimetry) and 27 (contingency plans). Part 3 of notes for guidance for dosimetry services wishing to apply to the HSE for approval is presented. This describes those aspects which are relevant to co-ordination of inputs from contributing approved dosimetry services (ADS's) and record keeping of assessed doses. It sets out the functions of the co-ordinating ADS's, gives guidance on interpretation of dose quantities, specifies the minimum content of dose records and describes suitable types of dose record storage. Finally the basis on which HSE will assess a service for approval is outlined. (U.K.)

  19. The dosimetry of ionizing radiation

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  20. Neutron beam measurement dosimetry

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  1. Neutron beam measurement dosimetry

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  2. Ambiguities in thermoluminescence dosimetry

    On one hand, thermoluminescence dosimetry is one of most reliable, rugged and economical system of passive dosimetry but on the other hand there are several ambiguities, which need attention. The PTTL is a complex phenomenon and it is difficult to identify the source for the transfer of the charge carrier to repopulate the traps related to the glow peaks. For the photon energy dependence it is difficult to explain the change in the response for 662 keV gamma rays of 137Cs as compared to the response for 1.25 MeV gamma rays of 60Co. The increase in the response of a TLD with increasing heating rate poses another ambiguity and so is the case with the observations of the supra linearity of different glow peaks. To over come the ambiguities, efforts have to continue to enhance the understanding and to harmonize the protocol for reliable experimental data

  3. Accidental neutron dosimetry with human hair

    Human hair contains sulfur, which can be activated by fast neutrons. The 32S(n,p)32P reaction with a threshold of 2.5 MeV was used for fast neutron dose estimation. It is a very important parameter for individual dose reconstruction with regards to the heterogeneity of the neutron transfer to the human body. Samples of human hair were irradiated in a radial channel of a training reactor VR-1. 32P activity in hair was measured both, directly by means of a proportional counter, and as ash dispersed in a liquid scintillator. Based on neutron spectrum estimation, a relationship between the neutron dose and induced activity was derived. The experiment verified the practical feasibility of this dosimetry method in cases of criticality accidents or malevolent acts with nuclear materials. - Highlights: • Human hair contains sulfur. • Reaction 32S(n,p)32P can be used for dosimetry of fast neutrons. • Relation between 32P activity and neutron dose can be derived for a specific neutron spectrum

  4. Sixth symposium on neutron dosimetry

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  5. Personal radon daughter dosimetry

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  6. Personnel radiation dosimetry

    The book contains the 21 technical papers presented at the Technical Committee Meeting to Elaborate Procedures and Data for the Intercomparison of Personnel Dosimeters organizaed by the IAEA on 22-26 April 1985. A separate abstract was prepared for each of these papers. A list of areas in which additional research and development work is needed and recommendations for an IAEA-sponsored intercomparison program on personnel dosimetry is also included

  7. Utilisation of OSL from table salt in retrospective dosimetry

    Common salt (NaCl) has previously been suggested for use in dose estimation in accident dosimetry. In this study, we investigated the optically stimulated luminescence (OSL) and violet thermoluminescence (VTL) characteristics of 'Aji-Shio' (Ajinomoto), a Japanese commercial salt. A comparison of OSL and TL signals allowed identification of common source traps. The initial OSL signal contained a dominant thermally unstable component, which necessitated prior heat treatment. Based on these luminescence characteristics, a single-aliquot regenerative-dose (SAR) OSL protocol was modified and tested. The protocol worked very well for six types of salt, but not for four other types of salt. A minimum detection limit of ∼15 mGy was estimated using the OSL protocol; this is lower than the value obtained from other forms of OSL retrospective dosimetry and lower than that obtained using electron spin resonance (ESR) dosimetry. It was concluded that the OSL from Japanese commercial salt could be used successfully to derive precise estimates of accident dose. (author)

  8. Usability of VTL from natural quartz grains for retrospective dosimetry

    To develop retrospective dosimetry of unexpected radiation accident, basic studies on violet thermoluminescence (VTL) phenomena were conducted using natural quartz grains. All VTL glow curves of as-received samples did not exhibit peaks <250 deg. C, although for artificially irradiated quartz samples there were VTL peaks in the temperature region <250 deg. C. Therefore, accident doses could be estimated without the interference of naturally accumulated doses by VTL measurements from natural quartz. The mean lives of VTL were evaluated by the various heating rates method and the range of values was found to be between some days and ten thousands of years depending on each peak. Especially, the mean life of VTL peak at 200 deg. C was years order. Furthermore, the lower detection limit was calculated to be tens of mGy from the response curve. This value was lower than that of other methods such as ESR dosimetry. From these results, we conclude that VTL dosimetry can be preferred for accidental evaluation. (authors)

  9. Dosimetry: an ARDENT topic

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  10. Advances in biomedical dosimetry

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  11. Compendium on neutron spectra in criticality accident dosimetry

    Graphical and tabulated neutron spectra are presented: from selected critical assemblies; from critical solutions; of fission neutrons through shielding; of H2O-moderated fission neutrons through shielding; of D2O-moderated fission neutrons through shielding; of fission neutrons reflected from various materials; from the D(T,4He)n reaction (''14 MeV'' neutrons) through shielding and of ''14 MeV'' neutrons reflected from various materials

  12. The Chernobyl accident: EPR dosimetry on dental enamel of children

    The radiation dose on tooth enamel of children living close to Chernobyl has been evaluated by EPR. The sample preparation was reduced to a minimum of mechanical steps to remove a piece of enamel. A standard X-ray tube at low energy was used for additive irradiation. The filtration effect of facial soft tissue was taken into account. The radiation dose for a group of teeth slightly exceeds the annual dose, whereas for another group the dose very much exceeds the annual dose. Since the higher dose is found in teeth whose enamel have much lower EPR sensitivity to the radiation, it can be suggested that for these teeth the native signal could alter the evaluation of the smaller radiation signal

  13. Problems of dosimetric evaluation of radiation accident situations with external irradiation in neutron and gamma field

    The problems are discussed of the dosimetric evaluation of radiation accident situations in a mixed gamma and neutron field. The methods and means of accident dosimetry should allow evaluation basically in three stages: (1) within 6 hours following an accident to classify persons according to radiation exposure; (2) to obtain data on the maximum absorbed dose with accuracy better than +-50% within 48 hours; (3) to establish depth dose values with accuracy better than +-20 to 25% within 3 to 6 days. Recommendations are shown related to safeguarding dosimetric systems for radiation accident situations in nuclear facilities. (B.S.)

  14. Alternative statistical methods for cytogenetic radiation biological dosimetry

    Fornalski, Krzysztof Wojciech

    2014-01-01

    The paper presents alternative statistical methods for biological dosimetry, such as the Bayesian and Monte Carlo method. The classical Gaussian and robust Bayesian fit algorithms for the linear, linear-quadratic as well as saturated and critical calibration curves are described. The Bayesian model selection algorithm for those curves is also presented. In addition, five methods of dose estimation for a mixed neutron and gamma irradiation field were described: two classical methods, two Bayesian methods and one Monte Carlo method. Bayesian methods were also enhanced and generalized for situations with many types of mixed radiation. All algorithms were presented in easy-to-use form, which can be applied to any computational programming language. The presented algorithm is universal, although it was originally dedicated to cytogenetic biological dosimetry of victims of a nuclear reactor accident.

  15. Characterization of a nuclear accident dosimeter

    The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12--16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia National Laboratories (SNL) personal nuclear accident dosimeter (PNAD). Two separate critical assemblies, SHEBA and Godiva, were used to generate seven separate neutron spectra for use in dose comparisons. SNL's PNAD measured absorbed doses that were within +16 to +26% of the reference doses. In addition, a preliminary investigation was undertaken to determine the feasibility of using the data obtained from an irradiated PNAD to correct for body orientation. This portion of the experiment was performed with a TRIGA reactor at the Nuclear Science Center at Texas A and M University

  16. Criticality Accident

    At a meeting of electric utility presidents in October, 1999, the Federation Power Companies (FEPCO) officially decided to establish a Japanese version of WANO, following the JCO criticality accident. The Japanese WANO is expected to be launched by the end of the year: initially, with some 30 private sector companies concerned with nuclear fuel. It is said that the private sector had to make efforts to ensure that safety was the most important value in management policy throughout the industry, and that comprehensive inspections would be implemented. In anything related to nuclear energy, sufficient safety checks are required even for the most seemingly trivial matters. Therefore, the All-Japan Council of Local Governments with Atomic Power Stations has already proposed to the Japanese government that it should enact the special law for nuclear emergency, providing that the unified responsibility for nuclear disaster prevention should be shifted to the national government, since the nuclear disaster was quite special from the viewpoint of its safety regulation and technical aspects. (G.K.)

  17. Relocation of Dosimetry Service

    2007-01-01

    The Dosimetry Service is moving from Building 24 to Building 55 and will therefore be closed on Friday, March 30. From Monday, April 2 onwards you will find us in building 55/1-001. Please note that during that day we might still have some problems with the internet connections and cannot fully guarantee normal service procedures. The service's opening hours and telephone number will not change as a result of the move 8.30 - 12.00, afternoons closed Tel. 72155

  18. Spanish National Dosimetry Bank

    The National Dosimetry Bank (BDN) was designed to be a useful instrument for the protection of exposed workers. On the basis of individual doses, in conjunction with the type of facility where they were received and the type of work involved, it is possible to monitor and control the individual conditions of an exposed worker. In addition to this primary objective, the BDN's structure and utilities are such that it can be used for applications such as determining the suitability of the working conditions in various areas of ionizing radiation applications, evaluating exposure trends and the most affected areas, and supplying statistical data that can be used for legal studies

  19. Fast neutron dosimetry

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  20. Dosimetry in Radiology

    The steady growth in the use of ionizing radiation in diagnostic imaging requires to maintain a proper management of patient’s dose. Dosimetry in Radiology is a difficult topic to address, but vital for proper estimation of the dose the patient is receiving. The awareness that every day is perceived in our country on these issues is the appropriate response to this problem. This article describes the main dosimetric units used and easily exemplifies doses in radiology through internationally known reference values. (authors)

  1. Individual dosimetry and calibration

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  2. Persistence on airline accidents.

    L. A. GIL-ALANA; Barros, C.P. (Carlos P.); J.R. Faria

    2009-01-01

    This paper analyses airline accidents data from 1927-2006. The fractional integration methodology is adopted. It is shown that airline accidents are persistent and (fractionally) cointegrated with airline traffic. Thus, there exists an equilibrium relation between air accidents and airline traffic, with the effect of the shocks to that relationship disappearing in the long run. Policy implications are derived for countering accidents events.

  3. Persistence in Airline Accidents

    Carlos Pestana Barros; João Ricardo Faria; Luis A. Gil-Alana

    2008-01-01

    This paper analyses airline accident data from 1927-2006, through fractional integration. It is shown that airline accidents are persistent and (fractionally) cointegrated with airline traffic. There exists a negative relation between air accidents and airline traffic, with the effect of the shocks to that relationship disappearing in the long run. Policy implications are derived for countering accident events.

  4. Production de références pour optimiser la fertilisation organique en riziculture biologique camarguaise (France)

    Mouret, Jean-Claude; Hammond, Roy; Bayot, Mathieu; Fabre, Denis; Thomas, C

    2009-01-01

    La vitesse de minéralisation d’un engrais organique commercial a été évaluée durant trois années dans une rizière biologique en Camargue (France). L’effet de différentes doses d’engrais apportées à différentes périodes a été testé. En conditions inondées, l’engrais organique minéralise rapidement. Sur la base de ce résultat, nous montrons qu’une adaptation des pratiques de fertilisation organique, inspirée de celles appliquées pour des engrais minéraux, permet une meilleure valorisation des e...

  5. Elevage de la Crevette Bleue en Nouvelle-Calédonie. Litopenaeus Stylirostris. Bases biologiques et zootechnie

    Della Patrona, Luc; Brun, Pierre

    2009-01-01

    L’ouvrage « Elevage de la Crevette Bleue en Nouvelle-Calédonie – Bases biologiques et zootechnie » est sans aucun doute le document de référence dont la crevetticulture de Nouvelle-Calédonie avait besoin. L’élaboration de cette synthèse des connaissances a été initiée lors du déroulement du projet de recherche Ifremer DESANS (DEfi SANté Stylirostris) construit sur la période 2003-2006 et a été finalisée sous le projet DEDUCTION (DEveloppement DUrable de la Crevetticulture, Traitement de l’Inf...

  6. Radiation protection experience in Yugoslavia from the Vinca accident to nowadays

    This Paper is the expression of the author opinion about development of radiation protection in Yugoslavia from its beginning forty years ago, which might affect its status in the foreseeable future at the first decades of the 21st century. It focuses on key events in this field starting from the Vinca Accident, which happened in the October 1958, to nowadays. Shortly reviewed some of key events are: Vinca Accident; Foundation of the Radiation Protection Laboratory in the Vinca Institute; International Vinca Dosimetry Experiment; First National Symposium and foundation of the Yugoslav Radiation Protection Association; International Intercomparison Experiment on Nuclear Accident Dosimetry and, International Summer Schools and Symposium on Radiation Protection organized in Yugoslavia. Finally, some specific experimental data obtained during and after Chernobyl Accident up to nowadays in radiation protection action in Yugoslavia are presented also. (author)

  7. Severe accident phenomena

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  8. Radiation dosimetry in Cyprus

    Cyprus is a small island in the eastern part of the mediterranean sea with a population of 700,000. A small Physics Department in the Nicosia General Hospital is responsible for all matters related to ionising radiation. The main applications of ionising radiation are in medicine, some applications of radioisotopes in agriculture and hydrology research and very few applications in industry with sealed radiation sources. The same problems in radiation dosimetry are encountered as in any other countries but on a smaller scale. These have to be solved locally, because of the island's geographic isolation. All the infrastructure including Secondary Standard Dosemeters, field instruments and calibration sources is needed in order to achieve this, but the financial resources available are very limited. For this reason improvisation is often necessary. The Co-60 and other X-ray units intended for radiotherapy or other clinical use, are used as radiation sources for dosimetry and calibration of the instruments. Simple, locally made phantoms are designed in order to decrease costs whenever possible. (author). 7 refs, 1 fig

  9. Dosimetry of industrial sources

    The gamma rays are produced during the disintegration of the atomic nuclei, its high energy allows them to cross thick materials. The capacity to attenuate a photons beam allows to determine the density, in line, of industrial interest materials as the mining. By means of two active dosemeters and a TLDs group (passive dosimetry) the dose rates of two sources of Cs-137 used for determining in line the density of mining materials were determined. With the dosemeters the dose levels in diverse points inside the grave that it harbors the sources and by means of calculations the isodoses curves were determined. In the phase of calculations was supposed that both sources were punctual and the isodose curves were calculated for two situations: naked sources and in their Pb packings. The dosimetry was carried out around two sources of 137Cs. The measured values allowed to develop a calculation procedure to obtain the isodoses curves in the grave where the sources are installed. (Author)

  10. Internal Dosimetry. Chapter 18

    The Committee on Medical Internal Radiation Dose (MIRD) is a committee within the Society of Nuclear Medicine. The MIRD Committee was formed in 1965 with the mission to standardize internal dosimetry calculations, improve the published emission data for radionuclides and enhance the data on pharmacokinetics for radiopharmaceuticals [18.1]. A unified approach to internal dosimetry was published by the MIRD Committee in 1968, MIRD Pamphlet No. 1 [18.2], which was updated several times thereafter. Currently, the most well known version is the MIRD Primer from 1991 [18.3]. The latest publication on the formalism was published in 2009 in MIRD Pamphlet No. 21 [18.4], which provides a notation meant to bridge the differences in the formalism used by the MIRD Committee and the International Commission on Radiological Protection (ICRP) [18.5]. The formalism presented in MIRD Pamphlet No. 21 [18.4] will be used here, although some references to the quantities and parameters used in the MIRD primer [18.3] will be made. All symbols, quantities and units are presented