WorldWideScience

Sample records for accidental gamma irradiation

  1. Dosimetric properties of textile fibers: application of electron paramagnetic resonance dosimetry to an accidental gamma irradiation

    The dosimetric properties of some twenty textile fibers have been studied in order to develop a method for determining the dose received in the case of an accidental gamma irradiation. Three textile fibers having properties most closely satisfying our needs were selected for detailed investigations: cotton, polypropylene and quartz. Electron Paramagnetic Resonance (EPR) readout techniques were used. In order to eliminate spectral anisotropy problems due to textile fiber inhomogeneities, a system has been developed to rotate samples in the resonant cavity during measurements. The structure, physical and chemical properties of cotton and polypropylene were investigated. A bibliographic study of the combined effects of light, heat and ionizing radiation on textile fibers was carried out. A linear relation exists between the EPR signal and the gamma ray dose received over a certain dose range. A method has been developed for preparing samples so as to reduce background noise not due to irradiation; in this way the detection threshold is lowered and a greater time stability obtained. Unknown doses corresponding to known spectra are determined by linear interpolation using a series of spectra obtained from the same fabric irradiated with known doses

  2. Accidental gamma dose measurement using commercial glasses.

    Narayan, Pradeep; Vaijapurkar, S G; Senwar, K R; Kumar, D; Bhatnagar, P K

    2008-01-01

    Commercial glasses have been investigated for their application in accidental gamma dose measurement using Thermoluminescent (TL) techniques. Some of the glasses have been found to be sensitive enough that they can be used as TL dating material in radiological accident situation for gamma dosimetry with lower detection limit 1 Gy (the dose significant for the onset of deterministic biological effects). The glasses behave linearly in the dose range 1-25 Gy with measurement uncertainty +/- 10%. The errors in accidental dose measurements using TL technique are estimated to be within +/- 25%. These glasses have shown TL fading in the range of 10-20% in 24 h after irradiation under room conditions; thereafter the fading becomes slower and reaches upto 50% in 15 d. TL fading of gamma-irradiated glasses follows exponential decay pattern, therefore dosimetry even after years is possible. These types of glasses can also be used as lethal dose indicator (3-4 Gy) using TL techniques, which can give valuable inputs to the medical professional for better management of radiation victims. The glasses are easy to use and do not require lengthy sample preparation before reading as in case of other building materials. TL measurement on glasses may give immediate estimation of the doses, which can help in medical triage of the radiation-exposed public. PMID:18285317

  3. Gamma irradiation devices

    The main parameters and the preparation procedures of the gamma radiation sources frequently applied for irradiation purposes are discussed. In addition to 60Co and 137Cs sources also the nuclear power plants offer further opportunities: spent fuel elements and products of certain (n,γ) reactions can serve as irradiation sources. Laboratory scale equipments, pilot plant facilities for batch or continuous operation, continuous industrial irradiators and special multipurpose, mobile and panorama type facilities are reviewed including those in Canada, USA, India, the Soviet Union, Hungary, UK, Japan and Australia. For irradiator design the source geometry dependence of the spatial distribution of dose rates can be calculated. (V.N.)

  4. Sterilization by gamma irradiation

    Since 1980 the National Institute of Nuclear Research counts with an Industrial Gamma Irradiator, for the sterilization of raw materials and finished products. Through several means has been promoted the use of this technology as alternative to conventional methods of sterilization as well as steam treatment and ethylene oxide. As a result of the made promotion this irradiator has come to its saturation limit being the sterilization irradiation one of the main services that National Institute of Nuclear Research offers to producer enterprises of disposable materials of medical use also of raw materials for the elaboration of cosmetic products and pharmaceuticals as well as dehydrated foods. It is presented the trend to the sterilization service by irradiation showed by the compilation data in a survey made by potential customers. (Author)

  5. Economics of gamma irradiation processing

    The gamma-ray irradiation business started at the Takasaki Laboratory of Japan Atomic Energy Research Institute. The irradiation facilities were constructed thereafter at various sites. The facilities must accept various types of irradiation, and must be constructed as multi-purpose facilities. The cost of irradiation consists of the cost of gamma sources, construction expense, personnel expense, management expense, and bank interest. Most of the expenses are considered to be fixed expense, and the amount of irradiation treatment decides the original costs of work. The relation between the irradiation dose and the construction expense shows the larger facility is more economical. The increase of amount of treatment reduces the original cost. The utilization efficiency becomes important when the amount of treatment and the source intensity exceed some values. The principal subjects of gamma-ray irradiation business are the sterilization of medical tools and foods for aseptic animals, the improvement of quality of plastic goods, and the irradiation of foods. Among them, the most important subject is the sterilization of medical tools. The cost of gamma irradiation per m3 in still more expensive than that by ethylene oxide gas sterilization. However, the demand of gamma-ray irradiation is increasing. For the improvement of quality of plastic goods, electron irradiation is more favourable than the gamma irradiation. In near future, the economical balance of gamma irradiation can be achieved. (Kato, T.)

  6. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    Chen, Y., E-mail: yingchen29@yahoo.com.cn [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China); Yan, X.K. [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China); Department of Radiation Safety, Beijing Institute of Nuclear and Chemical Safety, 14 Guan-cun, Dongcheng District, Beijing 100077 (China); Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K. [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China)

    2011-09-15

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of {sup 60}Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of {sup 60}Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0{sup -3}D{sup 2}. Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy {gamma}-irradiation from a supra-high dose {sup 60}Co gamma-ray accident.

  7. Gamma irradiators for radiation processing

    Radiation technology is one of the most important fields which the IAEA supports and promotes, and has several programmes that facilitate its use in the developing Member States. In view of this mandate, this Booklet on 'Gamma Irradiators for Radiation Processing' is prepared which describes variety of gamma irradiators that can be used for radiation processing applications. It is intended to present description of general principles of design and operation of the gamma irradiators available currently for industrial use. It aims at providing information to industrial end users to familiarise them with the technology, with the hope that the information contained here would assist them in selecting the most optimum irradiator for their needs. Correct selection affects not only the ease of operation but also yields higher efficiency, and thus improved economy. The Booklet is also intended for promoting radiation processing in general to governments and general public

  8. Gemstone dedicated gamma irradiation development

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to its poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator constructed in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations, were performed. With the definitive optimized irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. This work presents some optimization parameters and the expected performance of the irradiator. (author)

  9. Gemstone dedicated gamma irradiation development

    Omi, Nelson M.; Rela, Paulo R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: nminoru@ipen.br; prela@ipen.br

    2007-07-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to its poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator constructed in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations, were performed. With the definitive optimized irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. This work presents some optimization parameters and the expected performance of the irradiator. (author)

  10. Gamma irradiators: developments in India

    A comprehensive programme for the production of 60Co sources and their applications was initiated at the Bhabha Atomic Research Centre in 1970. Initially a series of research irradiators called Gamma Chambers and Panoramic Batch Irradiators (PANBITs) was fabricated for R and D and pilot scale studies. In 1974 the first commercial scale, gamma sterilization plant ISOMED was commissioned with UNDP assistance. Subsequently two more plants were designed and built indigenously, one at Bangalore and the other at Delhi. A radiation plant for sludge hygienisation was built at Baroda and commissioned in 1992. The current interest in radiation vulcanization of natural rubber latex (NRL) prompted the development and commissioning of a pilot scale NRL, irradiator at Kottayam, Kerala in 1992. A multipurpose irradiator is built recently at Jodhpur, as an upgraded version of the vintage PANBIT. Salient feature of these plants are presented . (author). 6 figs

  11. Gamma irradiation service in Mexico

    In 1980 it was installed in Mexico, on the National Institute of Nuclear Research, an irradiator model J S-6500 of a canadian manufacture. Actually, this is the greatest plant in the Mexican Republic that offers a gamma irradiation process at commercial level to diverse industries. However, seeing that the demand for sterilize those products were not so much as the irradiation capacity it was opted by the incursion in other types of products. During 17 years had been irradiated a great variety of products grouped of the following form: dehydrated foods, disposable products for medical use, cosmetics, medicaments, various. Nowadays the capacity of the irradiator is saturated virtue of it is operated the 24 hours during the 365 days of the year and only its operation is suspended by the preventive and corrective maintenance. However, the fresh food market does not be attended since this irradiator was designed for doses greater than 10 kGy (1.0 Mrad)

  12. Gamma Irradiation of Polyesters Film

    Experimental investigations on the effects of gamma irradiation in air of aromatic polyesters are carried out, in order to evaluate the influence of aromatic density and the role of oxygen on the radiation resistance. The thermoplastic polyesters PolyEthyleneTerephthalate (PET), PolyButylene Terephthalate (PBT), PolyEthyleneNaphthalate (PEN), Poly1,4-cyclohexanedimethylen terephthalate-co-ethyleneterephthalate (PCT-co-ET) are moulded in thin films of 50 micron and irradiated at different absorbed doses, ranging from 0 to 1000 kGy, using a Co-60 gamma source. The structural changes in the polymers are studied by means of several physical-chemical and nuclear techniques. Electron Paramagnetic Resonance analyses are carried out to detect the radicals induced by irradiation and to follow their decay by oxygen permeation. Viscometric measurements show a similar trend for the different irradiated polyesters: in particular, chain scission induced by irradiation depends on the aromatic density contained in the polymer and shows a saturation effect at the highest doses. Positron Annihilation Lifetime Spectroscopy points out a decrease of the ortho-positronium signal caused by the production of oxidized species inhibiting the positronium formation. Finally, the experimental results obtained on the irradiated films are compared with previous studies carried out on the same polyesters moulded in sheets of 1-2 mm of thickness and γ-irradiated at the same adsorbed doses

  13. Gamma-irradiation of tomatoes

    The influence of gamma-ray on tomatoes picked in a pink-red ripening stage, good for consumption, is studied. For that purpose tomatoes of ''Pioneer 2'' variety packed in perforated 500 g plastic bags were irradiated on a gamma device (Cobalt-60) at a dose power of 1900 rad/min with doses 200 or 300 krad. Samples were stored after irradiation at room temperature (20 - 22sup(o)C). Microbiological studies demonstrated that 44 resp. 99.96 per cent of the initial number of microorganisms was destroyed after irradiation with 200 resp. 300 krad. The time required for the number of microorganisms to be restored was accordingly increased. Irradiation delayed tomato ripening by 4 to 6 days, demonstrable by the reduced content of the basic staining substances - carotene and licopine. Immediately after irradiation the ascorbic acid content was reduced by an average of 13 per cent. After 18 days the amount of ascorbic acid in irradiated tomatoes was increased to a higher than the starting level, this is attributed to reductone formation during irradiation. The elevated total sugar content shown to be invert sugar was due to further tomato ripening. (Ch.K.)

  14. Gamma irradiation of fruits

    At a Joint FAO/IAEA/WHO Expert Committee on Food Irradiation (JECFI) meeting held in 1976, recommendations were made to rationalize the unnecessarily elaborate wholesomeness evaluation procedures for irradiated foodstuffs. Irradiation at the commercially recommended doses did not adversely affect the constituents of mangoes, papayas, litchis and strawberries at the edible-ripe stage. These favourable radiation-chemical results justified the development of a theoretical model mango which could be used for extrapolation of wholesomeness data from an individual fruit species to all others within the same diet class. Several mathematical models of varying orders of sophistication were evolved. In all of them, it was assumed that the radiant energy entering the system reacted solely with water. The extent of the reaction of the other components of the model fruit with the primary water radicals was then determined. No matter which mathematical treatment was employed, it was concluded that the only components which would undergo significant modification would be the sugars. In order to extrapolate these data from the mango to other fruits, mathematical models of three fruits containing less sugar than the mango, viz. the strawberry, tomato and lemon, were compiled. With these models, the conclusion was reached that the theoretical degradation spectra of these fruits were qualitatively similar to the degradation pattern of the model mango. Theory was again substantiated by the practical demonstration of the protective effect of the sugars in the tomato and lemon. The decrease in radiation damage was enhanced by the mutual protection of the components of the whole synthetic fruits with ultimate protection being afforded by the biological systems of the real fruits

  15. Food irradiation: Gamma processing facilities

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1997-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  16. Food irradiation: Gamma processing facilities

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  17. Gamma Irradiation does not Cause Carcinogenesis of Irradiated Herbs

    Full text: Microbial contamination of medicinal herbs can be effectively reduced by gamma irradiation. Since irradiation may cause carcinogenicity of the irradiated herbs, the objective of this research is to study the effect of gamma irradiation (10 and 25 kGy) from cobalt-60 on carcinogenicity. The herbs studied were Pueraria candollei Grah., Curcuma longa Linn. Zingiber montanum, Senna alexandrina P. Miller, Eurycoma Longifolia Jack, Gymnostema pentaphylum Makino, Ginkgo biloba, Houttuynia cordata T., Andrographis paniculata, Thunbergia laurifolia L., Garcinia atroviridis G., and Cinnamomum verum J.S.Presl. The results showed that gamma irradiation at the dose of 10 and 25 kGy did not cause carcinogenicity of the irradiated herbs

  18. Radiation safety of gamma and electron irradiation facilities

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  19. Radiation safety and accident experience at gamma irradiation plants

    Gamma irradiation plants for the sterilization of medical products, preservation of food grains and for various other applications employ multikilocurie 60Co sealed sources inside shielded irradiation cells. A number of interlocks are provided between the cell entry door and the source raise mechanisms, in order to prevent the entry of any person to the cell when the source is in the exposed condition. The present paper gives the general safety features and the interlocks employed in these plants along with the safety features of irradiation plants at BARC, namely 106 Ci Isomed plant for the sterilization of medical products, 105 Ci FIPLY plant for research in food preservation and 105 Ci PANBIT plant for industrial research. Over the last two decades five cases of accidental exposure have been reported in literature in which the operator gained entry to the irradiation cell when the source was in the exposed condition. Two of these cases resulted in fatalities while the remaining three cases resulted in hospitalization of the exposed individuals for six to seven weeks. A brief outline of these accidental exposure cases and the causes of the accidents are discussed in this paper. (author). 19 refs

  20. Production of modified starches by gamma irradiation

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch

  1. Clinical and biological observations on seven accidentally irradiated algerian persons

    On may 5th 1978 an Ir 192 source of 15 Curies for gammagraphy set in a pencil-like holder fell from a truck on the road from Algiers to Setif. It was found 2 or 3 days later by two young boys 3 and 7 years old (AEK and RAB). They handled this bright metallic object for some hours. Later their Grandmother (Mrs ARA, 47 years old) took the source away from them, brought it into their house and hid it in the kitchen. The Iridium source remained for 6 weeks in this room where 5 persons were irradiated depending on various conditions of time, posture and dose rate. Two young female patients DJA (22 years old) and FMA (20 years old and pregnant) regularly frequented the working area of the kitchen at a distance of between 0.80 and 1.50 meters from the source which delivered a dose rate in the range of 8 Roentgen/hour at one meter. The exposure was estimated to be 6 to 8 hours daily. Two girls, FAH (17 years old) and NOU (19 years old) usually spent several hours in the kitchen doing their homework. After 4 weeks, the pregnant woman FMA suffered a malaise and decided to leave the house and go to another house. From this time on the two younger girls replaced FMA in the kitchen and were irradiated from 6 to 8 hours daily. Moreover, Mrs ARA, the Grandmother, came frequently into the kitchen and often leaned against the shelf where the source had been hidden and was thus often very close to it. The Algerian authorities looked actively for the missing and finally located it on June 12, 38 days after it had been lost. On June 14th, the seven injured persons were evacuated from Algiers to Paris where they were taken to the Curie Foundation Hospital (Dr. Jammet)

  2. The effects of acute irradiation on a forest biogeocenosis: Experimental data, model and practical applications for accidental cases

    The effects of acute irradiations of a mixed pine and birch forest in spring and autumn with a high power point-type gamma radiation source (1180 TBq 137Cs) have been described. Radiation dose relationships for numerous response reactions of woody and herbaceous plants (growth and development of organs of woody plants, cytogenetical, physiological and biochemical changes in trees, reproductive potential of plants, damage and dying off of the forest as a biogeocenosis on the whole) have been calculated. Post-radiation recovery of the forest was investigated. Changes involving the secondary reactions related to radiation damage and death of the trees are presented. A model for radiation damage of forests has been designed. Examples are given on the usage of this model in the description of radiation effects in forests in the event of accidental releases of radionuclides into environment

  3. Therapeutic approaches of hematopoietic syndrome after serious accidental global irradiation. Ex vivo expansion interest of hematopoietic cells

    Aplasia is one of the main syndrome, appearing after one global accidental irradiation by one ionizing radiation source. The hematopoietic syndrome is characterized by a peripheric blood cell number fall; the cell marrow is reduced too

  4. Tolerance of edible flowers to gamma irradiation

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H., E-mail: ackoike@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil)

    2011-07-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  5. Tolerance of edible flowers to gamma irradiation

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  6. Regulation for the radiological safety in the design and operation of industrial Gamma irradiators in Egypt

    Large gamma irradiators present a high potential irradiation hazard since the amount of radioactivity is of the order of P Bq and a very high dose rate are produced during irradiation. Nevertheless, individuals may accidentally receive a lethal dose within minutes or seconds, due to failure of radiation control and safety systems. The competent authority (NCNSRC) is concerned with the impact of all radiation activities on workers as well as public health and safety. Radiation control of such large irradiation facilities can be achieved by means of strict regulatory procedures during construction, licensing, operation, inspection, maintenance and decommissioning

  7. Resistance of acrylic vessel to gamma irradiation

    Carneiro, Andre Cavalcanti; Menezes, Maria Angela de B.C.; Pereira, Marcio Tadeu; Rocha, Nirlando Antonio; Vilela, Jefferson Jose, E-mail: andreccarneiro@gmail.com, E-mail: menezes@cdtn.br, E-mail: mtp@cdtn.br, E-mail: nar@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Braga, Mario Roberto Martins S.S., E-mail: mariomartins@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2013-07-01

    This paper describes the preliminary studies made in acrylic material in order to verify the effects of radiolysis in acrylic recipients in which the uranium ore standards are conditioned and check if the material is able to keep the {sup 222}Rn inside the vessel. The preliminary results after gamma irradiation of two kinds of recipients indicate no differences between the vessels irradiated and the ones no irradiated, related to color changes and tension resistance. (author)

  8. The influence of gamma irradiation in poultry

    The effect of a single whole - body gamma - irradiation of broiler chickens with a dose of 15.0 Gy on the activities of alaninaminotransferase (ALT) and aspartataminotransferase (AST) in the serum was investigated 1, 3, 5 and 7 days post irradiation. The numbers of erythrocytes and leucocytes and concentrations of haemoglobin in peripheral blood was investigated 1, 2, 4, 7, 9 and 14 days post irradiation. (authors)

  9. Resistance of acrylic vessel to gamma irradiation

    This paper describes the preliminary studies made in acrylic material in order to verify the effects of radiolysis in acrylic recipients in which the uranium ore standards are conditioned and check if the material is able to keep the 222Rn inside the vessel. The preliminary results after gamma irradiation of two kinds of recipients indicate no differences between the vessels irradiated and the ones no irradiated, related to color changes and tension resistance. (author)

  10. Preservation of potatoes by gamma irradiation

    In Algeria, potatoes are a major food item in nutrition habits. Because of lack of cold storage facilities, losses can reach up to 40% of the total output of summer harvest. This paper describes the first experiments on the application of gamma irradiation for the preservation of local varieties of potatoes. Losses are strongly reduced by inhibition sprouting effect of irradiation and reduction of sugars content has no significant influence on the acceptability of irradiated potatoes

  11. Quality of gamma irradiated California Valencia oranges

    The effects of gamma irradiation at 0.30-1.0 kGy (30-100 krad) on sensory qualities, certain biochemical components, and short-term storage life of Valencia oranges were examined. Irradiation at 0.75 kGy maintained food quality during 7°C storage for 7 weeks, while 0.50 kGy irradiation retained food quality at 21 °C. Irradiation at 0.26-0.30 kGy accomplished fruit fly disinfection while preserving market qualities of the oranges

  12. Development of modified starch by gamma irradiation

    The purpose of this study was to develop the production technology of modified starch. Corn starches were gamma irradiated at 0-110 kGy and the effect of irradiation dose levels on the physicochemical properties of corn starches were investigated. Blue value linearly decreased, while alkali number and solubility markedly increased as irradiation dose levels were increased. The optical transmittance increased as applied irradiation dose levels were increased in the temperature range of 65-95 deg. C. Water binding capacity and swelling power showed maximum value at 30 and 10 kGy, respectively and they tended to decrease thereafter. Gelatinization viscosity of the gamma irradiated starch considerably decreased as compared to that of the non-irradiated starch. Irradiation at 110kGy resulted in a marked reduction of peak viscosity and cooling viscosity at 30 deg. C by 100 and 300 times, respectively. The physicochemical properties of corn starch irradiated at 30 kGy were similar to those of commercial acid-modified starch, while those of corn starch irradiated at 100 kGy were similar to those if oxidized starch

  13. Gemstone enhancing dedicated gamma irradiator development

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to it's poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator raised in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations were performed. With the definitive irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. (author)

  14. Analysis of gamma irradiated pepper constituents, 5

    Gamma irradiated peppers (10 krad, 100 krad, 1 Mrad) were analyzed by HPLC. The extraction method and HPLC conditions were same as the first report, that is, the extraction from pepper was performed by Automatic Air Hammer and the extracted samples were separated on a reversed phase C8 column with a concave gradient from 0.1% trifluoro aceticacid (TFA) in water to 75% acetonitrile-0.1% TFA in water for 60 minutes and detected at 210 nm, 280 nm. It is difficult to compare with irradiated and unirradiated pepper constituents by their peak height or area. And the method of multi variant statistically analysis was introduced. The 'peak n area/peak n + 1 area' ratio was calculated by computer. Each peak area was accounted by integrator. The value of these ratio were called 'parameter'. Each chromatogram has 741 parameters calculated with 39 chromatographic peaks. And these parameters were abopted to the multi variant statiscally analysis. Comparison of constituents between irradiated pepper and unirradiated pepper was done by 741 parameters. The correlation of parameters between irradiated and unirradiated was investigated by use of computer. Some parameters of irradiated case were selected as which had no correlation with unirradiated case. That is to say these parameters were thought to be changed with gamma spectrum irradiation. By this method, Coumarin was identified as a changed component with gamma irradiation. (author)

  15. Sewage Water Treatment by Gamma Irradiation

    This study indicates that Gamma irradiation could be the solution for raising the standards of disinfection in waste water of Damascus city up to the international standards, when samples of the inlet of the planet was irradiated with Gamma radiation at dose rate of 3.4 KGy./hr The radiation sensitivity of total micro-organisms, fungi, and pathogenic bacteria was 0.316, 0.318 , 0.306 KGy respectively Also the results showed the absence of Ascaris Lumbricoides ova which permit reusing the recycled waste water in irrigation safely. (authors)

  16. Storage ability of gamma irradiated mango fruits

    Extension of shelf-life have been achieved by many methods. the most modern one is using gamma irradiation as a promising technology for the developing nations. The aim of this investigation is to study the effects of gamma irradiation either alone or in combination with Alar or Benlate on 'Hindi Be Senara' mature green fruits and also to determine the optimum treatment and maximum extension in shelf - life. Mature-green 'Hindi be sinara' mango fruits were taken from trees planted in commercial orchard in 'kerdasa'Giza

  17. UTN's gamma irradiation facility: design and concept

    UTN is building a multipurpose gamma irradiation facility which compromises of research and pilot scale irradiation cells in The Fifth Malaysia Plan. The paper high-lights the basic futures of the facility in terms of its design and selection including layout sketches. Plant performances and limitations are discussed. Plants safety is briefly highlighted in block diagrams. Lastly, a typical specification brief is tabled in appendix for reference purposes. (author)

  18. Inactivation of Bacillus anthracis by Gamma irradiation

    N. Natalia

    2013-09-01

    Full Text Available The use of Bacillus anthracis as a biological weapon heighlightened awareness of the need for validated methods for the inactivation of B. anthracis spores. Ionizing radiation is capable of causing a variety of chemical changes and biological effects on bacteria which can be due both to direct interactions with critical cell components and to indirect actions on bacteria by molecular entities formed as a result of radiolysis of other molecules in the bacterial cell. This study determined the gamma irradiation dose for inactivating B. anthracis spores and its biological effects on the bacterial characteristics. Gamma irradiation was conducted at the IRKA irradiator at the National Nuclear Energy Agency, Jakarta and cobalt-60 was used as the source of ionizing radiation (capacity of ca. 134,044 Kci. Freeze dried culture of B. anthracis in glass ampoules was irradiated using variable doses of 30, 20 and 10 KGy. Viability, biochemical and protease enzyme characteristics of B. anthracis were evaluated before and after irradiation. The ability of B. anthracis to degrade gelatin, haemoglobin and bovine immunoglobulin G was also tested. The results showed that ionizing radiation was able to inactivate or kill 11,05 x 108 cfu B. anthracis by 95.37%, 99.58% and 99.99 at respective doses of 10, 20 and 30 KGy. Bacterial spores appear to be less susceptible to irradiation than the vegetative cells, because of their specific structure. The survive spores irradiated at 30kGy shows some biochemical characteristic changes. The survivors failed to degrade methyl -D-glucopyranoside and arbutine. The ability of B. anthracis protease to degrade gelatin, haemoglobin and bovine immunoglobulin G was not affected by irradiation. These findings showed that a gamma irradiation at 30 KGy effectively inactivates B. anthracis spores without changing the protease activities.

  19. Investigations on fiberoptic behaviour during gamma irradiation

    Siehs, J.

    1980-12-01

    The behavior of bulk glasses and fiber optics under gamma irradiation and two types of annealing processes (thermal and optical) were investigated. The samples were irradiated in the thermal column of the TRIGA Mark II reactor. The irradiation induced losses of transmission were measured in a dual beam spectrophotometer. The transmission was measured one hour after reactor shut-down. Thermal annealing was done at 300, 400 and 500 C. Photo bleaching was investigated with a quartz-lamp, an arc-lamp and an UV-laser light.

  20. Mobile gamma-irradiation robot

    A source container with 98 TBq of 137Cs and shielding made from depleted uranium has the total weight of 264 kg, height of 0.370 and diameter 0.272 m is described. The container is joined to accessories allowing movement of the radiation beam. The dose rate at a distance of 0.4 m in the beam axis is 50 Gy/h. Various technical means are available for manipulation and transport. The irradiation process proceeds according to a precalculated program. Safety measures have been taken to secure the possible application of the irradiation plant for the radiopreservation of cultural objects. The licence from health physics authorities has been obtained. The first irradiation process performed is described. (author)

  1. Chicken energia metabolism after single gamma irradiation

    The present study investigated changes in the concentration of cholesterol and glucose in the serum of poultry after single whole-body gamma irradiation with 4,5 Gy dose. In the experiment we used chickens of initial age 21 and 35 days at the beginning of the experiment. (authors)

  2. Microbial decontamination of spices by gamma irradiation

    The effect of gamma irradiation on the microbiological quality of spices was studied. It was found that the dose of 6 KGg decreases the cell count by a factor of 2-3 however complete decontamination is obtained at a dose of 10 KGg

  3. Effects of gamma irradiation on wheat quality

    Effect of gamma irradiation at the doses of 2.5,5.0,7.5,10.0 and 12.5 kGy on two bread wheat samples (Bezostaya and Gerek) with distinct physical and technological properties was investigated in this study.Irradiation at the levels used had no significant effect on the flour yields of both varieties.No apparent changes were observed in ash,protein and wet gluten contents of the irradiated samples and control.However,as the radiation level was increased the falling number and sedimentation values of the irradiated samples showed a steady decrease.Thiamine and riboflavin contents also decreased significantly with irradiation.Farinograph absorption increased with increasing radiation exposure.However, dough development time,stability and valorimeter values decreased as radiation levels increased.Maximum resistance to extension(Rm), resistance at constant deformation (R 5) and area(A) values of extensograms decreased in both varieties as radiation levels increased

  4. Gamma irradiation of peanut (Arachis hypogaea L.)

    This study was conducted to determine some effects of gamma radiation on peanut (Arachis hypogaea L.). The biological parameters used to evaluate these effects were: % emergence of irradiated seeds, % survival of plants, growth rate, chlorophyll mutations, morphological changes and yield potential. Seeds were irradiated with dose levels of 2.5, 5, 10, 15, 20, 25, 30 and 40 KK per hour of gamma radiation from a Co-60 source. In general, % of emergence and survival in the M1 gene ration decreased with increasing doses of gamma radiation. Morphological changes induced by gamma radiation in the M1 generation of peanut were: leaf flecks, thickened leaves, red purple seeds and red colored seed coat. Generally, frequency of these morphological changes increased with increasing doses of gamma radiation. Protein and fat contents were increased by 2.8% to 1.5% respectively, while starch content decreased with 2.6% in the M2. On the basis of the results obtained, gamma radiation is an effective mutagenic agent in inducing various morphological and genetic changes in peanut

  5. Gamma irradiation of natural dyes

    Dyes play an important role in textile industry. Synthetic dyes of various classes are normally used for dyeing fabrics. Recently, considerable attention is focussed on the use of natural dyes all over the world in the context of German ban on some of synthetic azo dye due to their allergenic or carcinogenic potential. However natural dyes and their solution in aqueous medium show microbial contamination on storage. The present study deals with effect of gamma radiation on the microbial load, tinctorial value and dye uptake of natural dyes. (author)

  6. Microbial determination of Cumin by gamma irradiation

    Cumin is one of the valuable export items of Iran, and like most of the agricultural products it is contaminated by microorganisms. Due to importance of this product, the gamma irradiation method, which has applications in microbial decontamination, has been used for the improving its quality and increasing the shelf life-time. For this purpose pak ages of 10 gr of cumin were irradiated by 2,4,6 and 8 KGy from 60Co source. With each dose, four samples were irradiated and results were compared with controlled not irradiated samples. According to the standard limitation of bacteria and molds the total optimum doses are 7.5 and 5 KGy respectively

  7. The Portuguese gamma irradiation facility

    A Gamma Radiation Facility was built up in the National Laboratory of Industrial Technology and Engineering (LNETI), Lisbon, Portugal. This plant (UTR GAMA-Pi) is a Cobalt-60 dry storage continuous facility with a nominal capacity of 1.5 x 1016 Bq. The initial activity is 1.1 x 1016 Bq and the throughput capacity 103 ton/year for product with a bulk density of 0.2 g/cm3 treated with a minimum absorbed dose of 25 kGy. Complementary control devices were installed: ventilation system, closed water refrigeration circuit, internal TV system, detection and extinction fire system and emergency power group. It must be emphasized that the best attention was given to the conception and efficiency of the interlock safety systems. This facility will be utilized mainly for radiosterilization of medical articles and decontamination of wine cork stoppers. (author)

  8. Cytotoxicity of mycotoxins after gamma irradiation

    Calado, Thalita; Verde, S. Cabo; Abrunhosa, Luís; Fernández-Cruz, M.; Venâncio, Armando

    2015-01-01

    Due to the high toxicity of mycotoxins, many methods have been used to reduce or eliminate them from food and feed. Gamma radiation is one technique that has been investigated with some promising results in the degradation of mycotoxins from food commodities. The aims of this study were (i) to clarify the effect of gamma irradiation on aflatoxin B1 (AFB1), aflatoxin B2, aflatoxin G1, aflatoxin G2 and ochratoxin A (OTA); (ii) to evaluate the effect of the presence of water du...

  9. Sensitivity of rice varieties to gamma irradiation

    R.Sasikala and R.Kalaiyarasi

    2010-01-01

    Six promising rice varieties viz., CO 43, CO 47, CO 48, CO 49, ADT 43 and Improved White Ponni were treated withgamma irradiation with doses of 100Gy, 200Gy, 250Gy, 300Gy and 350Gy of gamma rays in order to study effect of gammairradiation in seed germination of rice varieties and study the root and shoot length variation. Treated seeds were sownseparately in germination paper and nursery with the two replications. The germination percentage was decreased aftergamma irradiation. But the decre...

  10. Evaluation of gamma irradiation of teas

    Gerolis, Luanai G.L.; Lameiras, Fernando S.; Menezes, Maria A.B.C.; Leal, Alexandre S., E-mail: luanaigraz@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Krambrock, Klaus, E-mail: klaus@fisica.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica. Lab. de Ressonancia Paramagnetica Eletronica

    2013-07-01

    There is a growing interest in the determination of non-essential traces elements in agroindustrial products. The continuous ingestion and accumulation in the organism of such elements, that may be toxic, can cause hazards to the human health in the long term. Reliable analytical techniques are necessary to monitor such products, including teas. In this work, the neutron activation technique is being employed to determine the trace elements in teas, due to its high sensibility and the possibility to perform a multi-elementary analysis. The gamma irradiation of teas is also being studied, because the shelf life can be extended and no chemical product is added to the teas. There is a concern related to the formation of free radicals in the teas, which is being accessed with electronic paramagnetic resonance. The results of the gamma irradiation up to 20 kGy of Camelia sinensis, Ilex paraguariensis, and Matricaria recutita are presented. (author)

  11. Evaluation of gamma irradiation of teas

    There is a growing interest in the determination of non-essential traces elements in agroindustrial products. The continuous ingestion and accumulation in the organism of such elements, that may be toxic, can cause hazards to the human health in the long term. Reliable analytical techniques are necessary to monitor such products, including teas. In this work, the neutron activation technique is being employed to determine the trace elements in teas, due to its high sensibility and the possibility to perform a multi-elementary analysis. The gamma irradiation of teas is also being studied, because the shelf life can be extended and no chemical product is added to the teas. There is a concern related to the formation of free radicals in the teas, which is being accessed with electronic paramagnetic resonance. The results of the gamma irradiation up to 20 kGy of Camelia sinensis, Ilex paraguariensis, and Matricaria recutita are presented. (author)

  12. Gamma irradiation in a saturated tuff environment

    The influence of gamma irradiation on the reaction of actinide doped SRL 165 and PNL 76-68 glasses in a saturated tuff environment has been studied in a series of tests lasting up to 56 days. The reaction, and subsequent actinide release, of both glasses depends on the dynamic interaction between radiolysis effects which cause the solution pH to become more acidic and glass reaction which drives the pH more basic. The use of large gamma irradiation dose rates to accelerate reactions that would occur in an actual repository radiation field may affect this dynamic balance by unduly influencing the mechanism of the glass-water reaction. Comparisons are made between the present results and data obtained by reacting the same or similar glasses using MCC-1 and NNWSI rock cup procedures. 11 references, 3 figures

  13. Biochemical changes in ginger after gamma irradiation

    Ginger (Zingiber officinate) was irradiated with gamma rays (0.1Kgy, 1.0Kgy). Biochemical changes during storage at room temperature (23-28 degree centigrade), in sand (23-28 degree centigrade) and at cold (8 degree centigrade) temperature were observed. Changes in starch, soluble protein, fixed oil and volatile oil contents showed that treatment of ginger at 0.1Kgy radiation level was most appropriate for storage upto 45 days

  14. ESR identification of gamma-irradiated albendazole

    Çolak, Seyda

    2010-01-01

    The use of ionizing radiation for sterilization of pharmaceuticals is a well-established technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma-irradiated solid albendazole samples is investigated at different temperatures in the dose range of 3-34 kGy by electron spin resonance (ESR) spectroscopy. Irradiation with gamma radiation produced two different radical species in albendazole. They were fairly stable at room temperature but relatively unstable above room temperature, giving rise to an unresolved ESR spectrum consisting of three resonance peaks centered at g=2.0057. Decay activation energies of the contributing radical species were calculated to be 47.8 (±13.5) and 50.5 (±9.7) kJ/mol using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to best describe the experimental dose-response data. Albendazole does not present the characteristics of good dosimetric materials. However, the discrimination of irradiated albendazole from its unirradiated form was possible even 6 months after storage in normal conditions. Based on these findings, it is concluded that albendazole and albendazole-containing drugs can be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  15. Gamma spectrometrical examination of irradiated fuel

    Gamma scanning is the only non-destructive technique for quantitative measuring of fission or activation products in spent fuel. The negligence of local variation of the linear attenuation coefficient of gamma rays in the irradiated fuel remains the main source of systematic error. To eliminate it we combine the (single) emission gamma ray scanning technique with a transmission measurement. Mathematical procedure joined with the experiment is particularly convenient for fuel elements of circular cross-section. In such a manner good results are obtainable even for relatively small number of measuring data. Accomplished routines enable to esteem the finite width of the collimation slit. The experiment has been partially automated. Trial measurements were carried out, and the measured data were successfully processed

  16. Inactivation of RNA viruses by gamma irradiation

    Four kinds of RNA viruses, Bluetongue virus (BT), Bovine Virus Diarrhea-Mucosal Disease virus (BVD·MD), Bovine Respiratory Syncytial virus (RS), Vesicular Stmatitis virus (VS), were subjected to various doses of gamma irradiation to determine the lethal doses. The D10 values, which are the dose necessary to decimally reduce infectivity, ranged from 1.5 to 3.4 kGy under frozen condition at dry-ice temperature, and they increased to 2.6 to 5.0 kGy under frozen condition at dry-ice temperature. Serum neutralzing antibody titer of Infectious Bovine Rhinotracheitis (IBR) was not adversely changed by the exposure to 36 kGy of gamma-rays under frozen condition. Analysis of electrophoresis patterns of the bovine serum also reveales that the serum proteins were not remarkably affected, even when exposed to 36 kGy of gamma radiation under frozen condition. The results suggested that gamma irradiation under frozen condition is an effective means for inactivating both DNA and RNA viruses without adversely affecting serum proteins and neutralizing antibody titer. (author)

  17. Effects of gamma irradiation on deteriorated paper

    Bicchieri, Marina; Monti, Michela; Piantanida, Giovanna; Sodo, Armida

    2016-08-01

    Even though gamma radiation application, also at the minimum dosage required for disinfection, causes depolymerization and degradation of the paper substrate, recently published papers seemed, instead, to suggest that γ-rays application could be envisaged in some conditions for Cultural Heritage original documents and books. In some of the published papers, the possible application of γ-rays was evaluated mainly by using mechanical tests that scarcely reflect the chemical modifications induced in the cellulosic support. In the present article the effect of low dosage γ-irradiation on cellulosic substrates was studied and monitored applying different techniques: colorimetry, spectroscopic measurements, carbonyl content and average viscometric degree of polymerization. Two different papers were investigated, a non-sized, non-filled cotton paper, and a commercial permanent paper. To simulate a real deteriorated document, which could need γ-rays irradiation, some samples were submitted to a hydrolysis treatment. We developed a treatment based on the exposition of paper to hydrochloric acid vapors, avoiding any contact of the samples with water. This method induces a degradation similar to that observed on original documents. The samples were then irradiated with 3 kGy γ-rays at a 5258 Gy/h rate. The aforementioned analyses were performed on the samples just irradiated and after artificial ageing. All tests showed negative effects of gamma irradiation on paper. Non-irradiated paper preserves better its appearance and chemical properties both in the short term and after ageing, while the irradiated samples show appreciable color change and higher oxidation extent. Since the Istituto centrale restauro e conservazione patrimonio archivistico e librario is responsible for the choice of all restoration treatments that could be applied on library and archival materials under the protection of the Italian State (http://www.icpal.beniculturali.it/allegati/DM-7

  18. Sprouting inhibition of rhizomes by gamma irradiation

    Sprouting inhibition by gamma irradiation to prolong the storage life of 4 species of rhizomes, namely curcuma domestica, kaemferia galanga, curcuma xanthoriza and curcuma aeruginosa, has been carried out. Two groups of samples were used, freshly harvested rhizomes and fresh rhizomes which have been stored for about two weeks. The samples were packed in a plastic net bag, each contained about 100 grams of rhizomes. Irradiation was carried out at room temperature at the doses of 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20 and 0.25 kGy. Post irradiation storage was done at room temperature with relative humidity ranging between 85 and 95%. The results showed that irradiation doses of 0.06 to 0.08 kGy was sufficient to inhibit sprouting of freshly harvested rhizomes and prolonged its storage life for 6 weeks, while in the other group sprouting still occured at the dose of 0.25 kGy. Irradiation dose up to 0.25 kGy did not cause significant effect on moisture and volatile oil contents, as well as volatile oil characteristics of the samples. About 50% of weight losses were found either in irradiated or unirradiated samples after being stored for 8 weeks. Odour and texture were evaluated organoleptically while mould growth and insect damage were observed visually. (author)

  19. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with 60Co sources up to 1000 kGy. Various Na-geopolymer with three H2O/Na2O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation

  20. Silicon/HfO2 interface: Effects of gamma irradiation

    Maurya, Savita

    2016-05-01

    Quality of MOS devices is a strong function of substrate and oxide interface. In this work we have studied how gamma photon irradiation affects the interface of a 13 nm thick, atomic layer deposited hafnium dioxide deposited on silicon wafer. CV and GV measurements have been done for pristine and irradiated samples to quantify the effect of gamma photon irradiation. Gamma photon irradiation not only introduces positive charge in the oxide and at the interface of Si/HfO2 interface but also induce phase change of oxide layer. Maximum oxide capacitances are affected by gamma photon irradiation.

  1. Sensitivity of rice varieties to gamma irradiation

    R.Sasikala and R.Kalaiyarasi

    2010-07-01

    Full Text Available Six promising rice varieties viz., CO 43, CO 47, CO 48, CO 49, ADT 43 and Improved White Ponni were treated withgamma irradiation with doses of 100Gy, 200Gy, 250Gy, 300Gy and 350Gy of gamma rays in order to study effect of gammairradiation in seed germination of rice varieties and study the root and shoot length variation. Treated seeds were sownseparately in germination paper and nursery with the two replications. The germination percentage was decreased aftergamma irradiation. But the decrease was neither proportional to the increase in dosage nor definite pattern was found in allthe six rice varieties. At the dose of 350Gy all the six varieties exhibited the low germination percentage especially in thevariety ADT 43 is 33%. The gamma ray dose of 300Gy was causing 42-51% seedling height reductions in CO 43, CO 47,CO 48, CO 49 and ADT43. The seedling height was decreased in decreasing manner with the increase of irradiation dose inthe varieties such as CO 47 and improved white ponni. The root development in seedlings was inhibited higher in the dose of300Gy in all the six varieties. At higher dose of 350Gy root length is very much affected in the varieties viz., CO 43 with76% reduction and 70% reduction in improved white ponni. Plant height and seed fertility percentage were decreased withincrease of gamma radiation dose in linear fashion. Seed fertility decreased with increase of radiation dose was observed inCO 47, ADT 43 and improved white ponni. In ADT 43 seed fertility was reduced approximately 69% at gamma ray dose of350Gy.

  2. Effect of gamma irradiation on Korean traditional multicolored paintwork

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d’Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong. - Highlights: • Effects of gamma irradiation on the Dancheong were evaluated. • We confirmed that optical and structural properties of Dancheong were maintained. • Irradiation can contribute the decontamination for

  3. The use of chromosomic anomalies for the estimation of an accidental acute irradiation dose in man

    The induction of chromosome abnormalities (dicentrics, rings and fragments) in human blood samples subjected to cobalt 60 gamma irradiation was studied for 11 doses varying from 25 to 1800 rads. The chromosome aberrations were counted in lymphocytes after 48 hours of in vitro culture. The results obtained from the observation of 6400 cells made it possible to establish dose-effect relationships for each types of abnormality (dicentrics, dicentrics and rings, and fragments). The dose-effect relationships were used to estimate doses received by 9 workers submitted to relatively homogeneous global acute irradiation and for which an evaluation of the average absorbed dose was possible. There is in general a good agreement between the estimation of the average absorbed dose based on chromosome damage and the physical dosimeter data. The study of the time-dependent evolution of the chromosome abnormalities in the lymphocytes of irradiated subjects shows that dosimetric estimations based on lymphocyte chromosome abnormalities in human blood are valid for several weeks after irradiation

  4. Decontamination of spices by gamma irradiation

    Effect of gamma irradiation (8 kGy) on decontamination of pre packed (in polyethylene) and unpacked spices such as black pepper and chilli, was studied over a storage period of 12 months. Radiation dose of 8.0 kGyu completely decontaminated by the spices. Fungal packaged samples. Water content increased from a range values of 7.6-8.5% to 11.4 to 15.2% the increase was higher in red chilli than black pepper. Colour values significantly changed during storage, however the influence of radiation was not consistent. (author)

  5. Decontamination of spices by gamma irradiation

    Decontamination by gamma irradiation of minor spices such as coriander, fennel, cumin, aniseed, cardamom (large) and ajowan was studied. The bacterial load on these spices ranged from 102 - 105 cfu/g, while the fungal load ranged from 10-103 cfu/g. No microorganisms were detected in samples exposed to radiation and stored up to 12 mo. Though pathogens, such as coliforms, B. cereus and Staphylococci were detected in some samples of spices, their presence was not detected in spices exposed to radiation. A comparison of gas liquid chromatographic profiles indicated no significant change in the quality of volatile oils of these spices. Intra country transportation studies, in collaboration with two national laboratories and a multinational corporation, confirmed our earlier observations regarding retention of quality in several spices following irradiation, transport and storage. Similar results were evident from intercountry collaborative studies with Japan. (author). 10 refs, 6 figs, 10 tabs

  6. Decontamination of spices by gamma irradiation

    Decontamination of spices (onion powder, cardamom, red pepper powder, etc.) used for special types of Bulgarian sausages was investigated. Gamma irradiation (60Co) at doses of 4, 6, 8 and 10 kGy was applied. It was found that the total count of microorganisms in spices was between 1.85.105 and 3.8.107. The largest was the amount of the coliforms and the staphylococci in the onion powder. The cardamom and onion powder were free of coliforms with dose of 4 kGy. The staphylococci were eliminated with doses of 6 kGy. The number of proteolytic microorganisms was decreased but they were isolated from spices irradiated even with 10 kGy. (author)

  7. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS

    Clark, E.

    2011-09-22

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer

  8. Toxoplasma gondii gamma irradiation using Co-60

    The use of nuclear power through radiation for the destruction of microorganisms which cause food deterioration, infections and toxicosis, is specifically for peaceful purposes. Toxoplasma gondii is a protozoa responsible for illnesses in humans and animals. One of the most common ways of transmission is through raw or poorly cooked meat. There is little information on the resistance of T. gondii to radiation. The objective of this research is to determine the Minimum Lethal Dose (MLD) of gamma radiation for those microorganisms. Suspensions of T. gondii containing approximately one million taquizoites/ml were irradiated with doses between up 0,01 up to 0,15 kGy (Kilogray) and inoculated to mice. The surviving T. gondii were re-irradiated with 0,01 up to 0,16 kGy. The irradiated protozoa were totally destroyed with a 0,15 kGy dose (MLD). Taquizoites issued from live protozoa of 0,14 kGy also were completely destroyed with dose of 0,15 kGy. No increase in resistance was observed regarding the non irradiated protozoa. (author)

  9. Mechanical performance of gamma irradiated surgical sutures

    Surgical sutures are medical devices made of natural or synthetic polymeric materials that, due to its end-use, have to be sterilized. Historically, the sterilization by heat or using ethylene oxide had presented so numerous drawbacks that today the non-pollutant radiation sterilization has become a well established sterilization process, that brings, environmental, technical, and economical advantages. The amount of irradiation doses required for sterilization of health care products is 25 kGy in most instances to achieve the necessary sterility assurance level. As high energy radiation produces modifications in the molecular structure of organic materials with changes in its mechanical properties, the aim of this work was to evaluate the mechanical behavior of surgical sutures under irradiation. Silk, polyamide and catgut sutures were gamma irradiated up to doses of 50 kGy in an industrial irradiation sterilization plant. Afterwards, these sutures were mechanical tested for tensile strength under knot following the specifications of the NBR13904 draft standard, using the CTRD-INSTRON at IPEN. The mechanical lab results show that sutures made of Silk and Polyamide do not present any change in their mechanical performance up to the dose of 50 kGy. On the other hand, Catgut present mechanical stability up to 30 kGy and afterwards, a slight decrease in its tensile strength was detected. (author)

  10. Effect of gamma irradiation on Korean traditional multicolored paintwork

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  11. EPR investigation of some gamma-irradiated excipients

    Aleksieva, Katerina; Yordanov, Nicola D.

    2012-09-01

    The results of electron paramagnetic resonance (EPR) studies on some excipients: lactose, microcrystalline cellulose (avicel), starch, dioxosilane (aerosil), talc and magnesium stearate before and after gamma-irradiation are reported. Before irradiation, all samples are EPR silent except talc. After gamma-irradiation, they show complex spectra except magnesium stearate, which is EPR silent. Studies show the influence of gamma-irradiation on EPR spectra and stability of gamma-induced radicals. Analysis of the EPR spectrum of gamma-irradiated talc shows that this material is radiation insensitive. Only lactose forms stable-free radicals upon gamma sterilization and can be used for identification of radiation processing for a long time period thereafter.

  12. Degradation of corn starch under the influence of gamma irradiation

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 105 rad to 1 x 106 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.)

  13. Gamma ray irradiation for sludge solubilization and biological nitrogen removal

    This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD5) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal. - Research highlights: → This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewagesludge. → The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. → It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

  14. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( Pstatistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  15. The improvement of corn starch isolation process by gamma irradiation

    Gamma irradiation was applied to non-glutinous and glutinous corns for improving starch isolation process. No significant changes in proximate composition of corn grains were observed by gamma irradiation. Irradiation at 1 and 5 kGy was effective for sterilizing all contaminated microorganisms of non-glutinous and glutinous corns, respectively. The moisture-uptake rate constants were increased in proportional to the steeping temperature and applied irradiation dose level. The irradiation efficacy on water absorption properties was also recognized in the corns stored for six months at room temperature. The combined use of gamma irradiation with sulfur dioxide solution was very effective for reducing steeping time. The starch yield gradually increased as irradiation dose levels increased. At 2 kGy, the sarch yield of non-glutinous and glutinous corns increased by 38% and 27%, respectively. No significant difference in Hunter's color value was observed between the starches isolated from nonirradiated and irradiated corn grains

  16. Gamma-ray spectroscopy on irradiated fuel rods

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  17. Modifications of Viscoelastic Properties of Polysaccharides by Gamma Irradiation

    The aim of this work was to establish the effect of gamma irradiation on the viscoelastic properties of the sodium alginate. Aqueous suspensions of sodium alginate at different concentrations (0.25 - 4%) were irradiated using a 60Co gamma-ray source (10, 25 and 50 kGy). The monitored rheological parameters showed the non-Newtonian behavior of the samples is kept by gamma irradiation. The decrease tendency of the apparent viscosity by irradiation samples and with decrease of the concentration as well has been noticed

  18. Structural Characteristics of Laminarin, Seaweed Polysaccharide, Degraded by Gamma Irradiation

    Choi, Jongil; Kim, Jaehun; Song, Beomseok; Kim, Jaekyung; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, laminarin was degraded by gamma irradiation, and the changes in its structure and antioxidant property were investigated. Gel permeation chromatography data showed that the average molecular weight of the irradiation dose increased. The absorbance at 290 nm from UV spectra was increased depending on the irradiation dose resulting from the formation of carbonyl groups. The anti oxidative activity was increased in the gamma irradiated laminarin depending on the absorbed dose. It was reasoned by the formed carbonyl groups in gamma irradiated laminarin. Therefore, gamma irradiation could be a promising method for preparing low molecular weight laminarin with enhanced biological activities.

  19. Structural Characteristics of Laminarin, Seaweed Polysaccharide, Degraded by Gamma Irradiation

    Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, laminarin was degraded by gamma irradiation, and the changes in its structure and antioxidant property were investigated. Gel permeation chromatography data showed that the average molecular weight of the irradiation dose increased. The absorbance at 290 nm from UV spectra was increased depending on the irradiation dose resulting from the formation of carbonyl groups. The anti oxidative activity was increased in the gamma irradiated laminarin depending on the absorbed dose. It was reasoned by the formed carbonyl groups in gamma irradiated laminarin. Therefore, gamma irradiation could be a promising method for preparing low molecular weight laminarin with enhanced biological activities

  20. Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

    Torun Murat

    2014-03-01

    Full Text Available Aqueous solutions of caffeine were treated with ozone and gamma irradiation. The amounts of remaining caffeine were determined after solid phase extraction as a function of absorbed dose and ozonation time. In addition to this, some important parameters such as inorganic ions, chemical oxygen demand (COD dissolved oxygen and total acidity changes were followed. Caffeine (50 ppm is found to be completely decomposed at 3.0 kGy and 1.2 kGy doses in the absence of H2O2 and in 1.20 mM H2O2 solutions, respectively. In the case of gamma irradiation after ozonation, 50 ppm caffeine was removed at 0.2 kGy when the solution was ozonized for 100 s at a rate of 10 g O3 h-1 in 400 mL 50 ppm paracetamol solution.

  1. Physicochemical Properties of Gamma-Irradiated Corn Starch

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  2. Application of gamma irradiation for inhibition of food allergy

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Jo, Cheorun; Kim, Hee-Yun

    2002-03-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.

  3. Application of gamma irradiation for inhibition of food allergy

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods

  4. Exoelectron emission studies of irradiated catalysts. [Gamma radiation; Alpha beams

    Kuzembaev, K.K.; Sokolskij, D.V.; Burtsev, A.F.; Asubaev, M.K. (AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii); Kortov, V.S.; Kalentiev, V.A. (Sverdlovskij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1983-01-01

    Catalytic and exoemission properties of ..gamma..-irradiated Pd/SiO/sub 2/ and ..cap alpha..-irradiated Fe/Al catalysts have been found to change sympatically. The character of the active centers formed on the catalyst surface under irradiation is discussed. 9 refs.

  5. Research of glycolaldehyde formed during gamma irradiation of maize starch

    During gamma irradiation of maize starch, glycolaldehyde occurs (5.6 μg/g/Mrad, in oxygen). The influence of several parameters has been determined: irradiation conditions (dose, temperature, surrounding gas), stockage temperature and starch characteristics (moisture, impurities). On the other hand, irradiation effects were compared to heat treatment effects. (orig.)

  6. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes

    Potatoes were used to study the metabolic stress effects in irradiated vegetable products. The changes of the contents of specific target compounds (glycoalkaloids, phenolic acids and coumarins) in alcoholic extracts of gamma irradiated potatoes were studied for metabolic irradiation stress. Doses of up to 3 kGy were applied to potatoes of several varieties. (Auth.)

  7. Study of a Case Involving Accidental Irradiation of a Human Being

    A description is given of an accident involving extremely uneven irradiation (ranging from 50 rads to 1.7 Mrads), in which a worker carried a 137Cs source belonging to an industrial gamma radiography unit in his trouser pockets for a total period of 18 hours on 3 and 4 May 1968. Low irradiation of the haematopoietic and gastrointestinal organs inhibited the occurrence of the acute syndrome. The front of the thighs, the inguinoscrotal region, and to a lesser extent the hands, were the areas most affected by lesions. The radiation doses delivered to the affected areas were estimated from biological radiation dosimetry parameters (the extent and chronological order of some of the lesions) and from experimental data on the dose as a function of distance and depth of the tissues, obtained by reconstructing the accident with a phantom and a set of thermoluminescent dosimeters. The paper describes the appearance a few days later of wet radiation dermatitis covering areas which gradually grew until they reached approximately the limit represented by the 1000 rads isodose line. Progression of the radiation dermatitis was complete towards the end of May. At the beginning of June dry epidermal desquamation extending approximately as far as the 500 rads line was observed. With the passage of time there occurred muscular atrophy of both legs and extensive oedema of the inguinoscrotal area. The appearance of extensive femoral haemorrhages in November 1968 and January 1969 made it necessary to amputate first the lower left limb, and then the right. The rate of chromosomal aberrations in the peripheral blood confirms the low doses absorbed by the blood system (about 50 rads). A summary of results of the analyses made is given, together with comments on the prognosis of the patient's development, based on the distribution of the radiation dose received. (author)

  8. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  9. Effect of gamma irradiation on storability of Syrian walnut

    Walnut fruits of Baladi variety were irradiated with 0, 0.5, 1.0, 1.5 and 2.0 kGy of gamma irradiation. The irradiated and unirradiated fruits were stored at room temperature (15 to 18 Centigrade) and at a relative humidity of 50 to 70%. Fungal load, proximate composition, chemical changes and sensory properties of nuts were evaluated immediately after irradiation, 6 and 12 months of storage. The results indicated that gamma irradiation reduced the fungal load. Used doses did not cause any significant change in proximate composition of walnuts. Immediately after irradiation, gamma irradiation increased total acidity and decreased iodine value and the volatile basic nitrogen (VBN). whereas, after 12 months of storage, gamma irradiation decreased total acidity and peroxide value and increased iodine value and (VBN). Immediately after irradiation no significant differences were observed between irradiated and non-irradiated samples in flavor and aroma. Whereas, after 12 months of storage higher doses (1.5 and 2.0 kGy) had a negative effect on sensory characteristics. (author)

  10. Therapeutic approaches of hematopoietic syndrome after serious accidental global irradiation. Ex vivo expansion interest of hematopoietic cells; Approches therapeutiques du syndrome hematopoietique apres irradiation globale accidentelle grave. Interet de l`expansion ex vivo des cellules hematopoietiques

    Thierry, D.

    1994-12-31

    Aplasia is one of the main syndrome, appearing after one global accidental irradiation by one ionizing radiation source. The hematopoietic syndrome is characterized by a peripheric blood cell number fall; the cell marrow is reduced too.

  11. Wastewater treatment using gamma irradiation: Tetouan pilot station, Morocco

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co60 gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  12. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  13. Effects of gamma irradiation on antioxidants of medicinal plants

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased

  14. Degradation of epoxy coatings under gamma irradiation

    Epoxy networks based on Diglycidyl ether of bisphenol A (DGEBA) and cured with Jeffamine® (POPA) or polyamidoamine (PAA) were gamma irradiated at 25 °C in air. Dose rates of 50, 200 or 2000 Gy h−1 for doses up 100 kGy were used. Structural changes were monitored by IR spectrophotometry, DSC and sol–gel analysis. Both networks display some common features: for I≥200 Gy h−1, reaction products grow proportionally to time and the rate is a decreasing function of dose rate. The simplest explanation is that peroxy radicals are the main precursors of these products (in the dose rate domain under study), through a unimolecular rearrangement of which an hypothetical mechanism is proposed. DGEBA–POPA are more reactive then DGEBA–PAA networks (according to IR criteria), that can be attributed to the high reactivity of tertiary CH bands in polyoxypropylene segments. The oxidation of these sites leads to methyl ketones. A simple kinetic model in which methyl ketones result from rearrangements of tertiary peroxyls and from tertiary alkoxyls was proposed. It leads to an expression of the radiochemical yield of methyl ketones (G(MK)) of the form G(MK)=a+bI−1/2 where a and b are parameters depending of elementary rate constants. Experimental G(MK) values are reasonably well fitted by this equation. In DGEBA–PAA networks, a wide variety of oxidation products, among which amides predominate, can be observed. In these networks, chain scissions predominate over crosslinking, whereas a slight predominance of crosslinking was observed, at least for the lowest dose rate, in DGEBA–POPA. - Highlights: ► The effects of irradiation at three distinct dose rates have been studied on two epoxy networks. ► DGEBA–polyamidoamine networks appear more stable than DGEBA–polyoxypropylene diamine ones. ► A simple kinetic model involving methyl ketones is proposed.

  15. Effect of gamma irradiation on storability of strawberry (Fragaria sp)

    Despite the increased production of strawberry in Syria, the storability and marketability of fruits were not well studied. The objectives of this study were to investigate the effect of gamma irradiation on storability of Senga sengana strawberry produced in Syria and the effect of gamma irradiation on fungal sp. i.e. Botrytis; Penicillium; Rhizopus. The fruits were treated with 1 , 2 and 3 KGy of gamma rays. Treated and untreated fruits were stored at 2 to 4 centigrade and 80 to 90 % relative humidity (RH). In order to investigate their marketability, the fruits where held at room temperature (25 to 30 centigrade). Weight loss, microbial decay, and total loss, juice production, pH, total soluble solids of the juice and organoleptic qualities were evaluated throughout the different storage and marketing periods. The results indicate that gamma irradiation decreased the microbial decay and increased the storability and marketability of fruits by 50 and 100% after using 2 and 3 kGy, respectively. D10 were 1.8 and 2.4 for Botrytis and Rhizopus respectively. One day after irradiation total soluble solids and its pH values were increased. Fourteen days later, irradiated fruits produced more juice with higher pH, but total soluble solids were less. Gamma irradiation did not have an effect on aroma and colour of fruits, whereas, 3 kGy of gamma irradiation had an adverse negative effect on taste. (author)

  16. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  17. Glucose metabolism in gamma-irradiated rice seeds

    Gamma-irradiation of 30 kR in rice seeds caused marked inhibition in seedling growth, and prevented the release of reduced sugar during the period of 25 to 76hr after soaking. The C6/C1 ratio following irradiation continued to decrease up to the 76th hour of soaking; the control's ratio tended to increase with comparable soaking time. The percentage recovery of 14C in carbon dioxide from glucose -1-14C was lower in irradiated than in control seeds. These results indicate that gamma-irradiation reduces the participation of the pentose phosphate pathway in glucose catabolism during an early period of germination. (author)

  18. Economics of gamma processing in cobalt-60 irradiation facilities

    Gamma processing by cobalt-60 is well established. However, since irradiation of food is relatively new from the commercial point of view, it is important to assess costs of gamma irradiation in the context of food processing. Five different types of AECL-RCC irradiation equipment are examined in terms of their throughputs, and capital and operating costs. Using these figures, costs of irradiation of nine types of food products are presented. In general, these represent about 2-10% of the wholesale cost of these products

  19. Brain anomalies induced by gamma irradiation in prenatal period

    Gamma irradiation has been utilized in order to produce cortical and callosal abnormalities. We have also checked for the presence of the aberrant longitudinal bundle in the brains of mice born acallosal due to prenatal irradiation is also checked. Pregnant mice were exposed to gamma irradiation from a 60 Co source at 16, 17 and 19 days of gestational age (E 16, E 17 and E 19) with total doses of 2 Gy and 3 Gy. At 60 days postnatal the offspring of irradiated animals were intra cardiac perfused, the brains were removed from the cranio and cut into coronal or para sagittal sections. (author)

  20. Effects of neutron and continuous gamma irradiation of rats

    The effect of single neutron irradiation (2 Gy) alone and combined with continuous gamma irradiation (6 Gy accumulated during 10.5 days) was studied on the survival of rats and on nucleic acids both in the lymphoid organs and testes. After neutron irradiation alone the most profound changes in lymphoid organs and testes were found on the third and within the days 28-60, respectively. Regeneration has been undergone at a relatively fast rate. Continuous irradiation subsequent to neutron irradiation deepened only slightly the extent of the initial changes. The effect of combined irradiation manifested mainly at later times in marked slowing down of regeneration. (author)

  1. Thermal investigations on gamma irradiated honey for medicinal use

    DSC and TGA investigations were carried out on gamma irradiated honey. Honey could be sterilized at 25 kGy radiation dose. DSC studies were carried out from 35 deg C to 450 deg C in air and nitrogen atmosphere on unirradiated and irradiated honey. DSC profiles show broadening and reduction in endothermic enthalpy at 130 deg C in irradiated sample due to partial oxidation of honey during irradiation. TGA profiles recorded in air and nitrogen atmosphere indicate formation of volatile oxidation products during irradiation and heating in air. The phenolic contents in the irradiated honey were found to increase by 40% but pH did not change significantly. (author)

  2. Effect of gamma irradiation on some characteristics of shell eggs and mayonnaise prepared from irradiated eggs

    Shell eggs were irradiated at doses of 0.0, 0,5, 1.0 and 1.5 kGy of gamma irradiation. Immediately after irradiation, microbiological, physical and chemical analyses of eggs and sensory evaluation of mayonnaise prepared from irradiated eggs were done. The results indicated that all doses of gamma irradiation reduced the total counts of mesophilic bacteria and total coli form of yolk eggs. Irradiated eggs with 1.5 kGy maybe suitable microbiologically to prepare safe mayonnaise. There are no significant differences on saturated fatty acids and TBA values between yolk fat extracted from irradiated and that of non-irradiated eggs. Sensory evaluation showed no significant differences between mayonnaise prepared from irradiated and non-irradiated eggs. (Author)

  3. Introduction of gamma irradiation Center in Iran

    Industrial sterilization, and especially radiation sterilization, of single use, disposable medical supplies are contributing significantly to health standards in each country. Today there are in excess of 135 plants around the world using gamma radiation by more than 90 million curies of cobalt-60 to sterilize single use medical products. This process in far superior to other methods of sterilization, some of the advantages of this process include its basic simplicity compared with thermal or chemical methods. In the former process only a single variable of time is controlled while for the latter processes five or six parameters such as time, temperature, pressure, humidity, concentration, type of cover etc. need to be monitored. Compared with the chemical method, irradiation technique is also free from the environmental hazards associated with the exhausting of the, often carcinogenic sterilizing agent. United Nation Development Programs (UNDP) and International Atomic Energy Agency (IAEA) have, through financial and technical support, promoted the introduction of radiation sterilization in several developing countries. This centre is also being established in Iran through UNDP financial and IAEA technical assistance. Although the main task of this centre is to radiosterilize the disposable medical products, but the scope of activities also encompass investigation of processing techniques of various products as well as research and development in the related fields. (Author)

  4. Gamma irradiation versus microbial contamination of Thai medicinal herbs

    Wannipa Phianphak

    2007-03-01

    Full Text Available Seventeen species of herbs established in Thai traditional remedies were microbially decontaminated by gamma-irradiation doses of 7.7 and 8.8 kGy. The herb samples were randomly collected four times from producers in Chiangmai during a 1-year period. These were tested, qualitatively and quantitatively, for total aerobic bacteria, Staphylococcus spp., Salmonella spp., coliform bacteria, and fungi before and after gamma treatment. No microorganisms were found after gamma treatment; and the color, aroma, and texture of the herbs remained normal. The applied dose of gamma irradiation was within the regulatory limits in Thailand (<10 kGy and the main export country (USA< 30 kGy. Gamma irradiation is an effective treatment for microbial decontamination of Thai export herbs.

  5. Quality comparison between gamma-irradiated or electron beam irradiated pork patties

    This study was conducted to evaluate the microbial safety, hardness and sensory properties of pork patties irradiated with gamma ray or electron beam at the absorbed dose from 5 to 20 kGy. Minced pork was prepared in 24 hours after butchery for manufacturing of pork patties. It was produced by methods of our previous study and then packaged to vacuum condition. Gamma (430 kCi, Co-60) and electron beam (2.5 MeV, electron accelerator) were used for food irradiation, and the absorbed doses used were up to 20 kGy under room temperature. The microbiological and sitological characteristics of the samples were observed during accelerated storage at 30 deg. C for 10 d. The results of the total aerobic bacteria in pork patties during the accelerated storage showed that the sterilization effect of gamma irradiation was superior to that of electron beam irradiation. The hardness and sensory properties such as colour, chewiness, taste, and overall acceptability of pork patties were decreased depending upon irradiation dose. Gamma irradiated samples have lower hardness and sensory scores than those of electron beam irradiated samples. In conclusion, gamma irradiation on pork patties was appeared more effective than E-beam irradiation. However, further studies to reduce the quality deterioration of gamma-irradiated pork patties should be continuously conducted

  6. Pork fat peroxidation by gamma-irradiation

    In this paper, pork fat peroxidation by γ-irradiation and the possible effects of oxygen, UV-irradiation and storage after the γ-irradiation have been investigated. It has been found that the level of peroxides in irradiated pork increases linearly with the increasing absorbed dose. The chemical yield of peroxides formed in the irradiated fat is about 4.2 and independent on the sample temperature or absorbed dose rate, but dependent on storage time of sample before γ-irradiation. The irradiated pork exhibits some unusual features as following: 1) the peroxide content in irradiated pork is higher than that in unirradiated one; 2) the peroxide content in irradiated pork increases gradually on storage and is essentially constant in unirradiated one, which is very useful for the detection of irradiated pork; 3) the further peroxidation in irradiated pork is much more susceptible to UV radiation than that in unirradiated pork

  7. Gamma irradiation influence on physical properties of milk proteins

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling

  8. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  9. Application of gamma-irradiation to cereals and cereals products

    Gamma-irradiation may be used on cereals and cereal products to control insect infestation and microbiological problems. Such problems include mould growth, mycotoxin production, pathogens, spore-forming organisms and total microbial load. Deleterious effects of gamma-irradiation arise only at relatively high dose levels with consequences on germination rate, wheat flour dough properties, and cake and noodle quality. Radiation-induced changes to starch have greater impact on behaviour of cereal products than such changes to other cereal components

  10. Effect of gamma ray irradiation on sodium borate single crystals

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4]·(H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  11. Inactivation of citrus tristeza virus by gamma ray irradiation

    The total exposure of gamma ray and the intensity of gamma ray per hour for the inactivation of citrus tristeza virus (CTV) and also the effect on citrus tissues are described. The budwoods of Morita navel orange infected with a severe seedling-yellow strain of CTV were irradiated with gamma ray from a 60Co source for 20 -- 52 hours. The buds or small tissue pieces of the irradiated budwoods were subsequently grafted onto Mexcan lime. CTV was easily inactivated by the irradiation from 10 to 18 kR for from 20 to 52 hours. The higher the total exposure, the higher the rate of inactivation. The CTV in the budwoods was almost inactivated after the irradiation with 20 kR. When the total exposure to gamma ray on budwoods was the same, CTV was more efficiently inactivated by the irradiation for long period with low intensity of gamma ray per hour than that for short period with high intensity per hour. Gamma ray irradiation was effective to eliminate CTV from citrus tissues. (Mori, K.)

  12. Catalytic properties of testicular hyaluronidase after gamma-irradiation

    The effect of gamma-irradiation on ovine testicular hyaluronidase was studied in aqueous solution. Following irradiation, hyaluronidase is inhibited, and the kinetics of inhibition follow a pattern in which Ksub(m) and Vsub(max) decline as radiation dose is increased. It was indicated that the binding affinity of the residual activity of hyaluronidase with substrate is enhanced and depends upon radiation damage. Effects of various agents such as pH, salts, PCMB and glutathione on irradiated hyaluronidase have been compared with non-irradiated enzyme. The irradiated hyaluronidase was more sensitive to inhibition by CuSO4 than the non-irradiated enzyme. The residual activity after irradiation is less refractory to FeCl3 inhibition and less sensitive to NaCl stimulation compared to non-irradiated hyaluronidase. pH response curves of ovine testicular hyaluronidase show two maxima which become more evident after irradiation. (orig.)

  13. Catalytic properties of testicular hyaluronidase after gamma-irradiation

    Sharma, P.K.; Gupta, G.S.

    1986-08-01

    The effect of gamma-irradiation on ovine testicular hyaluronidase was studied in aqueous solution. Following irradiation, hyaluronidase is inhibited, and the kinetics of inhibition follow a pattern in which Ksub(m) and Vsub(max) decline as radiation dose is increased. It was indicated that the binding affinity of the residual activity of hyaluronidase with substrate is enhanced and depends upon radiation damage. Effects of various agents such as pH, salts, PCMB and glutathione on irradiated hyaluronidase have been compared with non-irradiated enzyme. The irradiated hyaluronidase was more sensitive to inhibition by CuSO/sub 4/ than the non-irradiated enzyme. The residual activity after irradiation is less refractory to FeCl/sub 3/ inhibition and less sensitive to NaCl stimulation compared to non-irradiated hyaluronidase. pH response curves of ovine testicular hyaluronidase show two maxima which become more evident after irradiation.

  14. Gamma-ray irradiation tests of High-Tc SQUID

    Gamma-ray irradiation tests of High-Tc SQUIDs were carried out to examine their workability in nuclear reactor environments. The SQUIDs were made of a HoBa2Cu3O7-x superconductive thin film on SrTiO3 substrates. Some were encapsulated in separate cases of glass-fiber-rein-forced epoxy resin. Gamma-ray irradiation was performed with a Co-60 gamma-ray source. Irradiation dose rates were (8.1 to 12.2) x 103 Gy/h (i.e., (1.0 to 1.5) x 106 R/h), and the maximum absorption dose was about 10.4 MGy. During and after irradiation, noises of SQUIDs were measured with a power spectrum analyzer. Changes in modulation voltage were also investigated. No gamma-ray induced noise was observed during irradiation. The noise level and modulation voltage did not change until a total irradiation dose of about 3 MGy, and after that it decreased slightly. We concluded that the tested high-Tc SQUIDs are very resistant to gamma-ray irradiation, and thus the application of high-Tc SQUIDs in inspection of reactor components seems promising. (author)

  15. Keeping the quality of cows' butter by gamma-irradiation

    This investigation aims to study the use of gamma irradiation for keeping the quality of cows' butter. Fresh butter samples were exposed to gamma irradiation at doses of 0, 2.5 and 5 kGy followed by refrigerated storage and the effects of these treatments on the microbiological aspects and lipid characteristics of butter samples were studied. Moreover, fatty acid profiles and unsaponifiable matter constituents were determined by gas chromatographic analysis, while the stability of butter was determined by rancimat. The results indicated that gamma irradiation at 2.5 kGy dose reduced the counts of total bacteria, lipolytic bacteria, coliforms, molds and yeasts, however, these counts gradually increased during cold storage. Also irradiation at 5 kGy dose greatly reduced the total bacterial count which gradually increased upon storage, while completely eliminated the Other determined microorganisms. Irradiation treatments increased the acid value and peroxide value of butter, while the iodine number was not altered. Moreover, gas chromatographic analysis showed that gamma irradiation slightly increased the total volatile fatty acids, total saturated fatty acids and total hydrocarbons, while slightly decreased the total unsaturated fatty acids and total sterols. In addition, irradiation of butter decreased its stability as determined by rancimat and upon storage of both irradiated and non irradiated butter samples, the acid value gradually increased, while a flexuous changes in the peroxide value were observed. The present study proved that 2.5 and 5 kGy gamma irradiation doses could keep the quality of cows' butter and increased its shelf life at 4 +/- 1degreeC for 8 and 12 weeks as compared to 4 weeks for non irradiated butter (based on the visual appearance of mold growth on the surface of samples) without any effects on its sensory properties

  16. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs

  17. Manual on panoramic gamma irradiators (categories 2 and 4)

    In addition to a basic guide to the principles of production of ionizing radiation and to the methods of radiation protection and dosimetry, this document considers the procedures that should be employed when using panoramic gamma irradiators. Applications for such irradiators are described and radiation protection procedures discussed

  18. Disinfection of sewage sludges by gamma irradiation and alternative methods

    Sewage sludges generally maintain high concentrations of pathogens. For their safe reutilization on agriculturally used areas a disinfection treatment is necessary. Conventional methods for this purpose are e.g. heat-treatment (pasteurization), composting and lime-treatment. A new technique for sludge disinfection is the irradiation treatment by gamma-rays or by accelerated electrons. The first practical plant for gamma-irradiation of sewage sludges has been in operation since 1973 in Geiselbullach, near Munich, Federal Republic of Germany. This paper summarizes the existing and projected plants for the sewage sludge disinfection by irradiation and names the conventional alternative methods with their main advantages and disadvantages. The techniques for irradiation and sludge handling in irradiation plants are described. Broad research work in Geiselbullach with the aim of operational and economic optimization led to a combined treatment of irradiation and oxygenation: the oxiradiation-treatment. The costs for gamma-irradiation and alternative treatments for sewage sludge disinfection are given. Finally the problems with gamma irradiation plants are discussed. (author). 1 ref., 2 figs, 1 tab

  19. A Production Gamma Irradiation Plant for Radiation Investigations

    The paper discusses some results of work to develop typical gamma irradiation plants for biological, medical, radiation chemistry and agricultural studies. The principal demands made on pilot industrial and experimental irradiation plants are given. Various such experimental plants have been developed and are being produced in the USSR, and the technical data of some of them are described in the paper. (author)

  20. Effect of gamma irradiation on Hom Tong banana

    This report contains research on the use of gamma irradiation to retard the ripening and extend the shelf life of bananas. The major concerns were the effects that irradiation would have on the nutritional content, the organoleptic properties and the pigment of the fruit

  1. Gamma Irradiation for the Inhibition of Shrimp (Penaeus aztecus) Allergy

    Food irradiation technology was conducted to reduce shrimp allergy. The experiment was designated in 3 portions as follows; A, the irradiation of raw shrimp; B the irradiation of shrimp and then cooking; and C, cooking the shrimp and then irradiation. Gamma irradiation was done with doses of 1, 3, 5, 7, 10 kGy. A shrimp sarcoplasmic protein solution (SSPS) and a myofibrillar protein solution (SMPS) were prepared from A portion. Cooked shrimp protein solutions were also prepared from B and C portions. The binding abilities of the shrimp allergic patients' IgE and mouse monoclonal Ab 4.9.5 (mAb 4.9.5), produced to the shrimp heat-stable protein, to each sample solution were determined by ELISA. Binding abilities of patients' IgE and mAb 4.9.5 to irradiated shrimp fractions were dose-dependently reduced. The cooking treatment after irradiation was more effective than the irradiation treatment after cooking in the reduction of the binding abilities of IgE and IgG. SDS-PAGE was performed to compare irradiated shrimp proteins with non-irradiated shrimp proteins. SDS-PAGE showed that no bands were changed by gamma irradiation. The results indicated that food irradiation with an adequate dose can be reduce allergenicity of shrimp

  2. Modelling a gamma irradiation process using the Monte Carlo method

    Soares, Gabriela A.; Pereira, Marcio T., E-mail: gas@cdtn.br, E-mail: mtp@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    In gamma irradiation service it is of great importance the evaluation of absorbed dose in order to guarantee the service quality. When physical structure and human resources are not available for performing dosimetry in each product irradiated, the appliance of mathematic models may be a solution. Through this, the prediction of the delivered dose in a specific product, irradiated in a specific position and during a certain period of time becomes possible, if validated with dosimetry tests. At the gamma irradiation facility of CDTN, equipped with a Cobalt-60 source, the Monte Carlo method was applied to perform simulations of products irradiations and the results were compared with Fricke dosimeters irradiated under the same conditions of the simulations. The first obtained results showed applicability of this method, with a linear relation between simulation and experimental results. (author)

  3. Radiation protection in category III large gamma irradiators

    This article discusses the advantages of category III large gamma irradiator compared to the others, with emphasis on aspects of radiological protection, in the industrial sector. This category is a kind of irradiators almost unknown to the regulators authorities and the industrial community, despite its simple construction and greater radiation safety intrinsic to the model, able to maintain an efficiency of productivity comparable to those of category IV. Worldwide, there are installed more than 200 category IV irradiators and there is none of a category III irradiator in operation. In a category III gamma irradiator, the source remains fixed in the bottom of the tank, always shielded by water, negating the exposition risk. Taking into account the benefits in relation to radiation safety, the category III large irradiators are highly recommended for industrial, commercial purposes or scientific research. (author)

  4. Gamma-irradiation of wet corn. Microbiological aspects

    In the course of a survey of several years work on microbiological decontamination and control of wet corn by gamma-irradiation the following factors are studied: inhibiting and selective effect of gamma-irradiation (100 to 500krads) on the microflora of grains; evolution of residual microflora of irradiated wet grains (moisture content about 35%), during storage experiments under ventilated or airtight conditions. Two important points emerge from those studies. The microflora which develops on irradiated sample is much less varied than that of the control sample. The microbial population of an irradiated sample rises up in a few days on a level with the initial one of the control, then goes on increasing while remaining, as a rule, slightly inferior to that of the control placed under the same conditions. This greatly lowers the practical interest of irradiation, which can only be used together with another treatment able to inhibit the quick growth of the residual microflora

  5. Gamma-ray irradiation of a boreal forest ecosystem

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  6. Effects of gamma irradiation on raw materials and perfumes

    In order to enlight the strange problem of apparent perfume stability observed in manufactured talc powders sterilized by gamma rays, investigations were made on samples of odorant substances (raw materials, essential oils, or elaborated mixtures). As a rule, no immediate adulteration of olfactive caracteristics resulted at once from gamma irradiation. In several cases, a stabilizing effect appeared immediately and remained effective after long storage in various conditions (of temperature, or light, or oxygen exposure). This unexpected effect seems to be in accordance with previous experiments on gamma or electron irradiations of mixtures of organic molecules, reported in litterature: a mutual inhibition was observed to take place

  7. Lattice Raman scattering in gamma-irradiated tryptophan crystals

    The character of change in lattice Raman spectra of aromatic aminoacid crystals-D-tryptophan - under the effect of gamma radiation has been traced. The choice of aromatic aminoacid as object for investigation is related to assumed high sensitivity of tryptophan crystal structure to the effect of short-wave irradiation due to the presence of a great number of protons in it, which interect intensively with gamma quanta. Considerable change in lattice Raman spectrum of D-tryptophan crystals under the effect of small doses of gamma irradiation has been revealed

  8. Studies on safety and efficiency of gamma-irradiated ginseng

    Gamma irradiation was applied to the biological quality improvement and preservation of white ginseng which has problems in a hygienic quality and storage stability. The current phosphine treatment showed no influence on microorganisms contaminated even though it was very useful for disinfestation of the sample, while 5 kGy irradiation effectively controlled the biological quality of the stored sample, with minimal effects on the quality parameters of white ginseng. Thus, it is concluded that gamma irradiation at a range of 5 kGy can be an alternative method of chemical fumigants provided air-tight packaging excluding recontamination is used for the stored product. (Author)

  9. Neutron and gamma irradiation damage to organic materials.

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  10. Post harvest changes gamma-irradiated banana Prata

    The effect of the gamma-irradiation was evaluated at 0.25 and 0.50 kGy, on the development of peel coloration, CO2 and ethylene evolution, conversion of starch to sugars, pulp-to-peel ratio, pectic solubilization and activities of enzymes of the cell wall, pectin methylesterase (PME), and polygalacturonase (PG), during maturation of 'Prata' bananas. The gamma-irradiation did not affect the normal colour development of the fruits. An increase in the ethylene peak and a decrease in the CO2 peak was observed. The gamma-irradiation did not affect the degradation of starch, while a delay in soluble sugar accumulation was noted on the 6 and 7 colour grades. The fruits subjected to 0.25 kGy had the highest increase in the pulp-to-peel relation, beginning with colour grade 5, due to a possible stress effect of that dose. An increase of pectin solubilization was observed. Higher PME activities were exhibited by irradiated fruits, although the gamma-irradiation suppressed the PG activity throughout the maturation period. The gamma-irradiation did not extend the post-harvest life of 'Prata' bananas. (author)

  11. The Financial Analysis of Gamma Irradiation Technology

    The present study discusses the guideline from the economics point of view of the commercial operation optimized for the Egyptian second irradiation facility. This study included four sections about the financial analysis, the analysis of future demand, future supply of commercial application of irradiation and the irradiation price system

  12. Effect of radiation on solid paracetamol: ESR identification and dosimetric features of gamma-irradiated paracetamol

    Polat, M.; Korkmaz, M.

    2006-01-01

    In the present work, electron spin resonance (ESR) identification of gamma-irradiated paracetamol and its potential use as a normal and/or accidental dosimetric material were investigated in the dose range of 2.5-25 kGy. Both unirradiated paracetamol and mechanically ground vermidon samples exhibited a weak single resonance line at g = 2.0049 +/- 0.0006 and had Delta H-pp = 0.6 +/- 0.02 mT. Gamma irradiation produced an increase in signal intensity with a small hyperfine splitting in both paracetamol and vermidon and many weak resonance lines on both sides of a central line in the case of vermidon. Dose-response curves associated with central line of paracetamol and vermidon were found to follow polynomial and linear function, respectively. Simulation calculations based on the room temperature ESR intensity data of the paracetamol sample irradiated at 10 kGy were performed to determine the structure and spectral parameters of the radiation-induced radical species involved in the formation of the experimental ESR spectrum of paracetamol.

  13. Study and simulation of irradiated zirconium alloys fracture under type RIA accidental loading conditions

    The thesis aims to study and simulate the mechanical behavior under Reactivity Initiated Accident loading conditions, of the Zircaloy 4 fuel claddings, irradiated or not. It also aims to characterize and simulate the behavior and the fracture under RIA loading conditions of hydrided Zircaloy 4 non irradiated. This study proposes an experimental approach and a simulation. (A.L.B.)

  14. Effect of gamma irradiation on ethylene-octene copolymers

    Two ethylene-octene copolymers (POE) were irradiated with 60Co gamma radiation and influence of irradiation atmosphere, absorbed dose and heat treatment of samples on the crosslinking were studied. Thermal properties and crystalline morphology of non-irradiated and irradiated POE were determined by using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXS), respectively. The Charlesby-Pinner equation was used to describe the relationship between absorbed dose and sol fraction. The gel fraction of irradiated POE was lower and decreased with the increase of octene content when irradiated in oxygen, compared to irradiation in nitrogen atmosphere. The gel fraction increased significantly with the increasing of absorbed dose for the two copolymers. Heat treatment of samples prohibited the crosslinking of irradiated POE. The DSC results indicated that a subtle change of thermal properties of POE was observed before and after gamma irradiation at low dose. No change was found from the WAXS spectra of non-irradiated and irradiated POE. For heat-treating samples, the Charlesby-Pinner equation can not fit perfectly with the relationship between the sol fraction and absorbed dose, but it fits well with the crosslinking reaction of POE pellets

  15. Effects of gamma-irradiation on meat proteins

    The proteins extracted from beef, pork and chicken meats were irradiated with up to 100 kGy at room temperature. The extracted proteins were evaluated on their in vitro digestibility by incubating successively with pepsin and pancreatin conjugate. Amino acid compositions and SDS-PAGE pattern were also analyzedin for these proteins. Gamma irradiation within the applied dose range (up to 100 kGy) produced negligible in in vitro digestibility and amino acid composition. Analysis of gamma-irradiated proteins by SDS-PAGE revealed radiolysis of ovalbumin to proteins or peptides with lower molecular weight. On the other hand, the proteins directly extracted from irradiated meats containing moisture were also evaluated for their in vitro digestibility, amino acid compositions and SDS-PAGE pattern. However, the results obtained from this experiment were similar to those of irradiated proteins after extraction from the meats

  16. Change of microflora of two starch samples by gamma irradiation

    Starch is the basic component of a larger number of manufactured foods. The disinfection of such a powder by 60Co is studied here. Gamma irradiation of two starch samples with different degrees of contamination allows the assumption that, in most cases, good radio-pasteurization can be achieved with 300 krad. The radio-pasteurization doses (varying from 300 to 600 krad) are a function of the initial contamination. Irradiation effects are spectacular with moulds. Activation of spores of some Clostridium species leads us to recommend an irradiation level higher than 200 krad. The most resistant organisms to gamma irradiation are the aerobic and anaerobic sporulated bacteria. The thermophilic forms are the most important. Spores of Bacillus, chiefly Bacillus licheniformis and Bacillus brevis, are the most frequent bacteria. Storage of irradiated starch at room temperature has little effect upon the number of revivable survivors. (orig.)

  17. Synthesis of polysaccharide chemical gels by gamma-irradiation

    Recently many biodegradable hydrogel systems have been developed in the area of controlled drug delivery. In previous studies, the authors prepared biodegradable hydrogels by crosslinking natural polymers, such as albumin and dextran, using gamma-irradiation. Natural polymers were functionalized by introducing double bonds through reaction with glycidyl acrylate. The functionalized polymers were then crosslinked to form chemical gels by exposure to gamma-irradiation. In this study, they examined the ability of various polysaccharides to form chemical gels by gamma-irradiation. Dextran, alginic acid, hyaluronic acid, benzyl esters of hyaluronic acid, and gellan were functionalized. The effects of the polymer concentration and the gamma-irradiation dose on the hydrogel formation were examined. All the polysaccharides used formed chemical gels, although the extent of gel formation was different. For alginic acid, hyaluronic acid, and benzyl ester of hyaluronic acid at 25% of esterification degree, the chemical gels were formed at lower polymer concentration and at lower gamma-irradiation dose, if the solution was acidified to pH 3. The ability to form chemical gels with various natural polymers would be useful in the development of controlled drug delivery systems

  18. Effect of gamma irradiation on drugs

    Several drugs (ceftazidime, vancomycin, glucagon, erythromycin and dobutamine) were studied in order to determine their radiostability. The methods used to measure the degradation of the drug were the potency and the colour change after irradiation. Electron spin resonance (ESR) is currently being used to detect irradiated foodstuffs and may be a promising technique to detect irradiated drugs. Trapped radicals in cefazolin sodium were studied and quantified by ESR for this purpose. It is proposed that the trapped radicals play an important role in the formation of the final radiolytic compounds. The potency of ceftazidime was not significantly modified after an irradiation of 25 kGy, whereas the potency of erythromycin and dobutamine decreased slightly. Glucagon was revealed to be radiosensitive with a significant decrease in its potency after irradiation. The visible spectra of glucagon and dobutamine did not change significantly after irradiation. The absorbance of erythromycin and vancomycin increased after irradiation. According to European Pharmacopoeia standards, the colour change of ceftazidime is unacceptable. The ESR spectra reveal that the trapped radicals in cefazolin sodium are characteristic of an irradiation. The radical concentration is dependent on the irradiation dose and decays over time. Radical concentration in cefazolin sodium was reduced by 99% after 100 days of storage. These radicals are responsible for about 13% of the measured final radiolytic product. Ionic reactions could also lead to final radiolytic products. (author)

  19. Termite feeding preference to four wood species after gamma irradiation

    The effect of gamma irradiation at 100 kGy and at lower levels on termite resistance was examined in the laboratory by no-choice and choice feeding termite tests (Coptotermes formosanus Shiraki) using four wood species: sapwood of Cryptomeria japonica D. Don, and heartwoods of Pseudotsuga menziesii (Mirbel) Franco, Larix kaempferi (Lambert) Carriere, and Chamaecyparis obtusa Endl. The wood consumption rates in C. japonica and P. menziesii specimens were likely to increase with increases in gamma-irradiation levels, whereas little effect of gamma irradiation was seen in L. kaempferi and C. obtusa. Similar results were obtained in the two-choice test. The current results indicated that in the two-choice test with C. formosanus, 100-kGy-irradiated C. japonica and P. menziesii, which are not rich in antitermite substances, were eaten more than other wood samples with or without gamma irradiation. However, only C. japonica showed significant difference in termite feeding activity. The mass loss in 100-kGy-irradiated C. japonica was significantly higher in the multichoice test

  20. Agriculture Applications for Some Gamma Irradiated Bacterial Strains

    GAMMA Radiation has many peaceful applications in different fields including agriculture. In this study, gamma radiation is used to enhance the activity of eight microbial strains, Azotobacter chroococcum, Azotobacter vinelandii, Bacillus megaterium ATCC 19213, Bacillus subtilis ATCC 6051T, Bacillus subtilis ATCC 6633, Cellulomonas fimi ATCC 484, Micrococcus luteus ATCC 9341 and Pseudomonas fluorescens subsp. Cellulosa that are used intensively in agricultural practices in Egypt. Nitrogen fixing activity of A. chroococcum and A. vinelandii was decreased with increasing gamma irradiation doses. Irradiation doses equals 1 and 1.5 kGy enhanced phosphatase activity of B. megaterium ATCC 19213 and B. subtilis ATCC 6633 by nearly three and two folds respectively. HPLC analysis showed qualitative and quantitative changes in organic acid profile of phosphate-solubilising bacteria after irradiation. Gamma radiation has a significant positive effect on cellulolytic activity of Cellulomonas fimi ATCC 484, Pseudomonas fluorescens subsp. Cellulosa, Bacillus subtilis ATCC 6051T and Micrococcus luteus ATCC 9341 in bench scale experiment. By applying cellulose decomposer mixture to common compost used in Lower Egypt, there is a slight difference between compost treated with irradiated mixture and un-irradiated one. A field experiment was conducted to estimate the effect of irradiated phosphate-solubilising bacteria on planted maize.

  1. Tolerance, quality and storability of gamma-irradiated Egyptian rice

    The effect of gamma irradiation on some organoleptic and physico-chemical properties and the storability of Egyptian rice was investigated. Radiation up to 50krad was chosen as an adequate dose causing non-significant changes in eating and cooking qualities. The effect of irradiation on degradation of starch and protein molecules is demonstrated on the basis of studies on the viscosity and solubility of rice paste. Irradiation at relatively low dose levels up to 50krad did not affect the chemical and nutritional qualities of rice regarding amino acids and B vitamins. It was also found that irradiation maintains better storability of rice under ambient temperature. (author)

  2. Ex vivo expansion of haematopoietic cells in the treatment of accidental irradiation-induced aplasia. Feasibility Studies

    haematopoietic cells for the treatment of accidental irradiation-induced aplasia. (author)

  3. Kraft cooking of gamma irradiated wood, (2)

    Pre-irradiation of wood in alkaline aqueous ethanol increases kraft pulp yield by up to 1.2%, as already reported. In order to clarify the mechanism of the pulp yield gain, the behaviors of lignin and carbohydrates during pre-irradiation and cooking were investigated. The results are summarized as follows: 1) γ-Irradiation of guaiacylethane in alkaline aqueous ethanol produced 5-(1-hydroxyethyl)-guaicylethane, which is formed by radical coupling between α-hydroxyethyl radical from ethanol and guaiacylethane radical having an unpaired electron at C-5. 5,5'-Dehydrodiguaiacylethane, which may be a predominant product produced by γ-irradiation in the absence of ethanol, was also detected. 2) The yield of vanillin obtained by nitrobenzene oxidation of MWL decreased with an increase of γ-ray dosage. The presence of ethanol during γ-irradiation lessened the extent of this decrease and also the degradation of cellobiose. 3) Gel filtration of the products obtained by γ-irradiation of MWL and cellobiose in the presence of 14C-ethanol showed the possible combination between ethanol and MWL or cellobiose. 4) Molecular weight distributions of kraft lignin obtained from pre-irradiated beech chips were compared with those obtained from unirradiated chips. This result shows that γ-irradiation in the presence of ethanol decreases the ability of lignin to condense during kraft cooking. (author)

  4. Effect of gamma-irradiation on ripening papaya pectin

    Papaya (Carica papaya, L., var. Sunset) at three initial ripeness stages were irradiated with 0.25, 0.50, 0.75, 1.0, or 1.5 kGy gamma-irradiation and pectin changes during ripening determined. A significant linear relationship was found between irradiation dose and firmness immediately after irradiation. Irradiation had no effect on fruit skin or flesh color of papaya fruit irradiated at the 5 to 30% yellow stage and allowed to ripen. Papaya irradiated when 5 to 30% yellow showed no significant changes in pectin methylesterase activity when ripe. Immediately after irradiation, the pectin in 10 to 30% yellow papaya showed depolymerization and demethoxylation, though no effect on pectin methylesterase activity was detected. There was an increase in water soluble pectin (WSP), while chelator soluble (CSP) and alkali soluble pectin (ASP) decreased, with a significant decline in the methanol content of the ASP fraction. After the 25 to 30% yellow ripeness stage, fruit irradiated at 0.50 to 1.0 kGy had less pectic depolymerization, and had a firmer texture than nonirradiated when ripe. A lower level of WSP and higher levels of CSP and ASP were found in ripe fruit that had been irradiated at 0.5 to 1.0 kGy when 25 to 30% yellow skin with a significant quadratic relationship between irradiation dose and the three pectin fractions. The firmness of these irradiated fruit were retained for two days longer than the nonirradiated control. (author)

  5. Thermoluminescence properties of irradiated commercial color pencils for accidental retrospective dosimetry

    Color pencils are widely used mostly in kindergartens, in schools and could be found in all houses with families having young children. Their wide spread use in modern times as well as their chemical composition, consisting mostly of Si and Al, constitute two strong motivations towards exploiting their use as accidental retrospective thermoluminescent dosimeters. The present manuscript reports on the study of colored pencils manufactured by a commercial brand in China which is very common throughout Turkey. The preliminary results discussed in the present work illustrated encouraging characteristics, such as the presence of a trapping level giving rise to natural TL in a temperature range that is sufficiently high. Specific thermoluminescence features of this peak, such as glow peak shape and analysis, anomalous fading, thermal quenching, reproducibility, linearity and recovery ability to low attributed doses were studied. The results suggest that the color pencils could be effectively used in the framework of retrospective thermoluminescent dosimetry with extreme caution, based on multiple aliquot protocols. - Highlights: • Thermoluminescence of the inner part of commercial colored pencils was studied. • The presence of a trapping level giving rise to natural TL at 260 °C was yielded. • Deco analysis, anomalous fading, thermal quenching, reproducibility, linearity and recovery ability of this peak were studied

  6. The effect of gamma irradiation on some corn pests

    This work is a study on the effects of gamma irradiation upon reproduction and mating competitiveness of the sugar cane stem borer Seasmia Cretica and the cotton leaf worm Spodoptera Littoralis. Six doses of gamma radiation, 10, 15, 20,30 and 35 krad were used for S. cretica, while three doses 20 , 35 and 50 krad were used for S. littoralis. These studies continued throughout two year 1981- 1983

  7. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    Clark, E.

    2013-09-13

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 �C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  8. Effects of aeration on gamma irradiation of sewage sludge

    In this paper the effect of aeration on gamma irradiation of sewage sludge was investigated to examine the potential solubilization of solids in sewage sludge to ultimately reduce the solids volume for disposal. Results showed that aeration increased the effectiveness of gamma radiation. The efficiency of sludge solubilization with aeration was increased by around 25% compared to that without aeration at an irradiation dose of 2.5-9 kGy. The soluble protein, polysaccharide and humic (like) substance concentrations were higher under aerated conditions. With aeration the overall reaction appears to be oxidative as evidenced by the higher nitrate and nitrite ion concentrations in solution.

  9. Gamma-irradiation sterilization of lipases for cheese making

    The possibility of sterilizing the enzyme compounds of lipases from Oospora fragrans strains by gamma irradiation was studied. The enzyme compounds were exposed to gamma irradiation at the doses from 0.1 to 0.8 Mrad with the discreteness of 0.1 Mrad and at the dose of 2.0 Mrad. After the radiation treatment the lipases were investigated for bacterial invasion by the cultivation method and for the lipolytic activity by the titrometrical method. It is shown that the sterilization effect is achieved without losses of lipase activity and the radiation dose necessary for sterilization depends on initial invasion levels in the enzyme compounds

  10. Effects of aeration on gamma irradiation of sewage sludge

    Chu, Libing; Wang, Jianlong; Wang, Bo

    2010-08-01

    In this paper the effect of aeration on gamma irradiation of sewage sludge was investigated to examine the potential solubilization of solids in sewage sludge to ultimately reduce the solids volume for disposal. Results showed that aeration increased the effectiveness of gamma radiation. The efficiency of sludge solubilization with aeration was increased by around 25% compared to that without aeration at an irradiation dose of 2.5-9 kGy. The soluble protein, polysaccharide and humic (like) substance concentrations were higher under aerated conditions. With aeration the overall reaction appears to be oxidative as evidenced by the higher nitrate and nitrite ion concentrations in solution.

  11. Performance evaluation of gamma irradiated SiR-EPDM blends

    Deepalaxmi, R., E-mail: deepalaxmivaithi@gmail.com; Rajini, V.

    2014-07-01

    Highlights: • The effects of gamma irradiation on SiR-EPDM blend are examined. • Cross-linking reaction is dominant in blends C, D and E, due to higher EPDM content. • The tensile strength and hardness of blend E is improved by gamma irradiation. • The blend C and EPDM rich blends (D, E) are found to have superior performance. • Among C, D and E, suitable blend can be selected for a particular NPP application. - Abstract: Cable insulation materials (CIM) should perform their safety functions throughout their installed life in nuclear power plants (NPP). The CIM will be exposed to gamma irradiation at the installed locations. In order to forecast long-term performance of CIM, the short time accelerated testing was carried out. Due to its good mechanical strength, ethylene propylene diene monomer (EPDM) is widely used as CIM. Silicone rubber (SiR) is used in high temperature environments, due to its good di-electric properties/hydrophobicity. The blending of these two polymers may result in the improvement in their specific properties. This paper analyses the effects of gamma irradiation on the five different compositions (90-10; 70-30; 50-50; 30-70; 10-90) of SiR-EPDM blends. The blends were exposed to four different doses (25 Mrad, 100 Mrad, 200 Mrad and 250 Mrad) of gamma irradiation. The electrical and mechanical parameters like volume resistivity (VRY), surface resistivity (SRY), tensile strength (TS), elongation at break (EB), hardness (H) of the virgin and gamma irradiated blends were determined as per ASTM/IEC standards. The nature of degradation was investigated using Fourier transform infrared spectroscopy (FTIR). The simultaneous occurrence of cross-linking and chain scission is found to be the mechanism for ageing in SiR-EPDM blends. The electrical parameters such as volume resistivity and surface resistivity of all the blends are found to improve for all doses of gamma irradiation. To validate the influence of cross-linking reaction of the Si

  12. Effects of low-dose. gamma. -irradiation on grapefruit products

    Moshonas, M.G.; Shaw, P.E.

    Products obtained from Florida grapefruit irradiated with low-dosage ..gamma..-rays as a possible treatment for infestation by larvae of the Caribbean fruit fly were evaluated to determine effects on flavor and composition. Seven tests were run in which twenty-two lots of fruit were exposed to 7.5, 15, 30, 60 or 90 krd of ..gamma..-irradiation covering the 1981-1982 and early 1982-1983 harvesting season. There were few significant adverse flavor effects on products from irradiated fruit with the exception of the first test run on early-season fruit. In some cases, particularly at the lower doses of radiation, there was a significant improvement of flavor in grapefruit sections. There were no marked differences in vitamin C, sugar or acid levels in juice nor on essential peel oil composition of volatile constituents from irradiated fruit when compared with those from untreated fruit. 18 references, 2 tables.

  13. Processing and utilization of gamma irradiated oil seeds

    To provide safe and nutritious food in adequate quantity to the rapidly expanding population is a challenging task for many countries in the world. One way of bridging this gap is by conserving what is produced by preventing or reducing post harvest losses. Oil seeds are second major agricultural crops next to food grains. The present investigation deals with the effect of low dose gamma irradiation on the storage life of oil seeds. Seeds chosen for the present study were ground nut, sesame and cottonseed. In view of the above the proposed study focuses on the effect of low dose gamma irradiation on the processing parameters of the oil extracted from irradiated as well as non irradiated oil seeds. Also the oil obtained was analysed for the various chemical and physical characteristics including the chemical composition (fatty acid composition) of the oil

  14. Gamma irradiation induced variation in carrots (Daucus Carota L.)

    Carrot tissue cultures, germinating seed, and dry seed were exposed to gamma radiation. Irradiation accelerated germination of carrot seed in the M1 generation at low doses (0.5 and 1 krad), whereas higher doses delayed germination. A high negative correlation was observed between dose and survival of plants after seed irradiation. Plant size and root weight were 20% to 35% greater than control plants after seeds, but not tissue culture, were exposed to low doses of gamma irradiation. Higher doses reduced M1 plant size by > 50% in germinating seed and tissue culture treatments but less for the dry seed treatment. Seed production decreased while phenotypic variation of M1 plants increased with increasing gamma ray dosage. Root weight and total dissolved solids were highly variable in M2 families. Less variation was observed in total carotene content and none was seen in sugar type [reducing vs. non reducing sugars]. Induced variation in root color and rot shape was also observed. Irradiation of germinating seed and tissue cultures yielded more M2 variation than irradiation of dry seed. Putative point mutations were not observed. Unirradiated carrot tissue cultures did not yield significant M2 somaclonal variation. Average root weight of M2 plants increased with increasing gamma ray dosage, especially for the dry seed treatment (Author)

  15. Gamma irradiation-induced variation in carrots (Daucus carota L.)

    Carrot tissue cultures, germinating seed, and dry seed were exposed to gamma radiation. Irradiation accelerated germination of carrot seed in the M1 generation at low doses (0.5 and 1 krad), whereas higher doses delayed germination. A high negative correlation was observed between dose and survival of plants after seed irradiation. Plant size and root weight were 20% to 35% greater than control plants after seeds, but not tissue cultures, were exposed to low doses of gamma irradiation. Higher doses reduced M1 plant size by 50% in germinating seed and tissue culture treatments but less for the dry seed treatment. Seed production decreased while phenotypic variation of M1 plants increased with increasing gamma ray dosage. Root weight and total dissolved solids were highly variable in M2 families. Less variation was observed in total carotene content and none was seen in sugar type (reducing vs. non reducing sugars). Induced variation in root color and root shape was also observed. Irradiation of germinating seed and tissue cultures yielded more M2 variation than irradiation of dry seed. Putative point mutations were not observed. Unirradiated carrot tissue cultures did not yield significant M2 somaclonal variation. Average root weight of M2 plants increased with increasing gamma ray dosage, especially for the dry seed treatment

  16. Lipid profile of gamma irradiated nutmeg - a detailed investigation

    Effect of gamma irradiation on the lipid profile of nutmeg (Myristica fragranes) irradiated to doses of 2.5, 5.0,7.5 and 10kGy was examined using chromatographic techniques such as TLC and GLC. A dose dependent decrease in triacylglycerol content and a concomitant increase in free fatty acid upon irradiation characterized TLC profile of the total lipid. Interestingly, free fatty acids are almost absent in the non-irradiated samples. Fatty acid composition of triacylglycerol, the major lipid class was found to be made of myristic (90%), palmitic (6%), lauric (3%), petroselinic (0.13%) and stearic acid (0.5%) as determined by GC/MS. The relative composition of the free fatty acids liberated during irradiation was also similar. This suggests a breakdown of acylglycerols during irradiation resulting in release of free fatty acids. The impact of these changes on the flavor of the spice is discussed. (author)

  17. Quality comparison between gamma-irradiated and E-beam irradiated pork patties

    This study compared the effects of gamma and electron beam (e-beam) irradiation on the quality of pork patties. Pork patties (diameter: 100 mm, thickness: 10 mm) were vacuum-packaged and irradiated by gamma ray (60Co with a 490 kCi source) and e-beam (2.5 MeV) at five, ten, 15, and 20 kGy at room temperature. During accelerated storage at 30 deg C for 10 d, determination of total bacterial populations, hardness, and sensory evaluation was conducted at appropriate sampling intervals. The results of total bacterial populations showed that the gamma-irradiated (GR) samples had lower (P < 0.05) total bacterial counts than e-beam-irradiated (EB) samples during storage at 30 deg C for 10 d, regardless of irradiation dose. The hardness and sensory properties such as colour, chewiness, taste, and overall acceptability of pork patties were decreased depending upon irradiation dose. GR samples had lower hardness and sensory scores than those of EB samples. In conclusion, gamma irradiation on pork patties should be useful in decreasing bacterial populations when compared with e-beam irradiation. However, further studies should be conducted to reduce the quality deterioration of GR pork patties. (author)

  18. Effects of gamma irradiation on solid and lyophilised phospholipids

    Stensrud, G.; Redford, K.; Smistad, G.; Karlsen, J.

    1999-11-01

    The effects of gamma irradiation (25 kGy) as a sterilisation method for phospholipids (distearoylphosphatidylcholine and distearoylphosphatidylglycerol) were investigated. 31P-NMR revealed minor chemical degradation of the phospholipids but lower dynamic viscosity and pseudoplasticity, lower turbidity, higher diffusion constant, smaller size, more negative zeta potential and changes in the phase transition behaviour of the subsequently produced liposomes were observed. The observed changes could to some extent be explained by the irradiation-induced degradation products (distearoylphosphatidic acid, fatty acids, lysophospholipids).

  19. Responses of gamma irradiated mice to {alpha}-tocopherol

    Eliosoff, N.M.; Dubner, D.; Gisone, P. [Comision Nacional de Energia Atomica, Gerencia de Seguridad Radiologica y Nuclear, Buenos Aires (Argentina)

    1992-07-01

    CB57 female mice whole body gamma irradiated were orally administered with acetato DL-{alpha}-tocopherol. It was observed a higher survival in {alpha}-tocopherol treated groups up to 14th and 10th days with doses of 8.5 and 10 Gy respectively and a greater bone marrow cellularity at day 10 in {alpha}-tocopherol treated group irradiated with 10 Gy. (author)

  20. Apoptosis and necrosis in testes irradiated with gamma rays

    The present study focused on sub-microscopical investigation of apoptotic and necrotic cells in the testes of dogs subjected to single local irradiation with gamma rays at three different doses, 1.5 Gy, 3 Gy and 4 Gy, on days 1, 15, 30, 45, 120 and 150 after irradiation. On day 1 after irradiation, no necrotic cells were observed in the testicular tissue. The first cells in which apoptosis was observed on days 15 and 30 after irradiation with the lower dose were spermatogonia, spermatocytes and round spermatids. These cells showed morphological changes typical of apoptosis. Their depletion was observed on day 45 after irradiation and they were found in the lumen of seminiferous tubuli. Some dead cells were eliminated from seminiferous tubuli by phagocytosis by means of Sertoli cells. After irradiation with higher doses of gamma rays some cells of seminiferous epithelium showed morphological signs of apoptosis while other manifested necrosis. Sertoli cells and Leydig cells were considerably resistant to radiation. However, after irradiation with the highest dose of 4 Gy sporadic cells showed signs of apoptosis. On day 120 after irradiation the testes contained no necrotic cells and by day 150 spermiogenesis was recovered. (authors)

  1. Preservation of crab meat by gamma irradiation

    Fresh crab meat from swimming crab (Portunus pelagicus, Linn.) was irradiated at doses of 0.075, 0.15 and 0.25 Mrad and held at 30C. The storage life of non-irradiated crab meat was approximately 7 days compared with 14 days for crab meat irradiated at 0.075 Mrad and 28 days for samples receiving 0.15 or 0.25 Mrad treatment. Total aerobic count, trimethylamine nitrogen, total volatile basic nitrogen, and ammonia contents were used as objective indices of freshness in comparison with sensory evaluation of the crab meat. All objective indices correlated well with the sensory judgement of the samples. The crab meat used in the study was heavily contaminated with microorganisms. Irradiation at 0.15 and 0.25 Mrad reduced approximately 2 log cycles in the total count. Acinetobacter (Achromobacter) was predominated in irradiated crab meat, especially after prolonged storage. High coagulase positive staphylococci count was detected in only non-irradiated crab meat

  2. Biosolubilization gamma irradiate ion result coal by mould trichoderma sp

    Biosolubilization of coal is process of converting solid coal to liquid fuel/chemicals by mean of microorganism. The aim of this research was to study the effect of gamma rays irradiation with varian doses of irradiation into solubilization of subbituminous coal by Trichoderma sp. The dosage used was 5, 10, and 20 kGy and unirradiated coal as control. The method was submerged culture in MSS+ medium and incubated at room temperature and agitated at 150 rpm for 21th days. The parameters observed were colonization, pH and biosolubilization product based on absorbance value at λ250nm and λ450nm and GC/MS analysis for the best treatment. The results showed that coal biosolubilization could be increased by gamma irradiation. The mould could growth well in medium containing irradiated coal and the medium of pH was decreased after incubation. The biosolubilization was increased but the irradiation dosage of coal didn't affect significantly. The best dose was 20 kGy with product biosolubilization similar to gasoline and solar. Based on the result, the pre-treatment of gamma irradiation on coal has potency to increased biosolubilization. (author)

  3. Microbiological and chemical characteristics of gamma irradiated roasted Veal Meat

    This investigation aims 10 study the possibility of using gamma irradiation at doses of 1,3 and 5 KGy for microbial decontamination of roasted veal meat (kebab). The samples were purchased from local market and examined for the counts of Staphylococcus aureus, Bacillus cereus, presence of Salmonella spp and the counts of total bacterial, molds and yeasts and Enterobacteriaceae. The results illustrated that all samples were positive for Staphylococcus aureus, Bacillus cereus, while Salmonella spp was detected in only 3 samples. Therefore, these product samples were gamma irradiated at doses of 0,1,3 and 5 kGy, then stored at cold storage (4±1 degree C). The effects of these treatments on the microbiological, chemical and sensory characteristics were studied post treatment and during cold storage. Irradiation at 1 kGy reduced the counts of total bacterial, molds and yeasts, Enterobacteriaceae, Staphylococcus aureus and Bacillus cereus as well as eliminating Salmonella spp. On the other hand, irradiation at 3 and 5 kGy doses completely eliminated the present Enterobacteriaceae, S. aureus, B, cereus and Salmonella spp. Irradiation of samples increased their amounts of thiobarbituric acid reactive substances (TBARS) but it did not affect the sensory characteristics of samples and it had no effects on their total volatile nitrogen (TVN) contents, while storage increased the TBARS and TVN for irradiated and non-irradiated samples. Gamma irradiation treatments had no effects on the sensory characteristics for appearance, odor and taste of all kebab samples and extended their time of sensory preference. However, doses of 1, 3 and 5 kGy reduced the counts of total bacteria and extended of the refrigerated shelf-life of samples to 11, 23 and 29 days, respectively, compared to 5 days for non-irradiated controls

  4. Gamma irradiation treatment of cereal grains for chick diets

    Wheat (W), triticale (T), hulled barley (HB), hull-less barley (HLB), hulled oats (HO), and hull-less oats (HLO) were gamma irradiated (60Co) at 0, 3, 6 and 9 Mrad to study the effect of irradiation on the nutritional value of cereal grains for chicks. A significant curvilinear relationship between radiation dose and 3-wk body weight of chicks fed irradiated cereals was noted for T, HB, HLB, HO and HLO. Chicks fed W or T showed no effect or lower body weight, respectively, while body weights of chicks fed barley or oat samples were higher with irradiation. The improvement tended to be maximal at the 6 Mrad level. Irradiation significantly improved the gain-to-feed ratio for chicks fed either HO or HLO. Apparent fat retention and tibia ash were higher in chicks fed irradiated HLO than in those fed untreated HLO. In a second experiment chick body weight, apparent amino acid and fat retention, tibia ash, and gain-to-feed ratios were lower in chicks fed autoclaved (121 degrees C for 20 min) barley than in those fed untreated barley. Irradiation (6 Mrad) subsequent to autoclaving barley samples eliminated these effects. Irradiation appears to benefit cereals containing soluble or mucilagenous fiber types as typified by beta-glucan of barley and oats. These fibers appear prone to irradiation-induced depolymerization, as suggested by increased beta-glucan solubility and reduced extract viscosity for irradiated barley and oat samples

  5. Immobilization of cobalt in collapsed non-irradiated and {gamma}-irradiated X zeolites

    Lima, Enrique [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D.F. (Mexico) and Universidad Autonoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, 09340 Mexico D.F. (Mexico)]. E-mail: lima@xanum.uam.mx; Bosch, Pedro [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Bulbulian, Silvia [Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Delegacion Miguel Hidalgo, 11801 Mexico D.F. (Mexico)

    2007-02-15

    Cobalt exchanged X zeolites were gamma irradiated and heated until the zeolite structure collapsed. Heating destroys the zeolite network as found by X-ray-diffraction and {sup 29}Si, {sup 27}Al MAS NMR spectroscopy. Gamma irradiation treatment diminished the collapsing temperature of zeolite. Cobalt leaching from crystalline and amorphized zeolites was verified by ion exchange with NaCl solution. Results show that cobalt is not released from the amorphous materials. Furthermore adsorption of xenon and {sup 129}Xe NMR spectroscopy reveal that cobalt ions are heterogeneously distributed in the non irradiated amorphous materials. Gamma irradiation causes the mobility of cobalt in the amorphous materials resulting then in a more homogeneous distribution. Cobalt is, thus, retained safely in the amorphous materials.

  6. Studies on apple preservation by 60 -gamma irradiation

    Studies on '60'Co-gamma irradiation of Golden Delicious apple have been carried out. The results showed that the optimum irradiation dosage for stored apple was ranged from 0.3-0.5 k Gy, with this dosage, the contents of vitamin c and titratalbe acidity in these apples had no significant change compared with unirradiated apples. The respiratory rate and the amount of ethylene release were decreased after irradiation. The mortality of the verticillate pathogenic fungi was 97% at the dose of 0.5 k Gy

  7. Gamma irradiation study on barbituric acid and its phosphorus trimer

    Phosphorus tri barbiturate was synthesized from barbituric acid and structure was substantiated on the basis of microanalytical and spectroscopic techniques. The reactant and product were irradiated by gamma-rays and the ultraviolet measurements taken before and after irradiation were discussed. The effect of dose rate on UV absorption was found to be insignificant. The PH values were also measured before and after irradiation and the variation was correlated with the UV shifts at various concentrations of the aqueous solution of the compound. The results suggested, that the possible radiolysis decomposition site in the product is the carbon-phosphorus bond. The thermal analysis results were also studied

  8. The effect of gamma irradiation on bacteria in stored rice

    The effect of gamma irradiation on bacteria was studied for reducing the total microbial numbers that contaminating raw product under storage. Different storage packages of rice samples were irradiated at various levels of dosage. The results of bacterial isolation, total bacterial count and the isolation of bacterial food pathogenus were discussed. It was observed that the presence of bacteria colonies was suppressed by the presence of yeast and moulds eventhough the number of them decreased as the irradiation dosage levels were increased. (A.J.)

  9. Dosimetry computer module of the gamma irradiator of ININ

    This work present the technical specifications for the upgrade of the dosimetry module of the computer system of the gamma irradiator of the Instituto Nacional de Investigaciones Nucleares (ININ) whose result allows the integration and consultation of information in industrial dosimetry subject under an outline client-server. (Author)

  10. Conservation of garlic bulbs (Allium sativum L. ) by gamma irradiation

    Fernandez, J.; Arranz, T.

    1979-01-01

    The effect of different doses of gamma radiation (from 5 to 30 krad) on the conservation of garlic bulbs during a 12 months period is studied. Irradiations were made at three different times and the best results were obtained with the treatment given during the two months following harvest. During this period, 5 krad are enough to inhibit garlic bulbs sprouting.

  11. Thermal decomposition of ammonium perchlorate during gamma-ray irradiation

    To assess radiation damage effects in propellants, pyrotechnics, and similar materials, thermal decomposition measurements were made on ammonium perchlorate powders and crystals during gamma-ray irradiation. Gas evolution studies were made on single crystals and powders of ammonium perchlorate, both at room temperature and at 2270C. The results are discussed. (U.S.)

  12. Gamma irradiation for food preservation and sterilization of medical supplies

    A new technology in food preservation by using gamma irradiation was introduced and its advantages over a number of conventional processes were discussed. The new technique is also applicable in the sterilization of medical supplies. It is relatively simple and does not require very highly skilled manpower

  13. Conservation of garlic bulbs (allium sativum L.) by gamma irradiation

    The effect of different doses of gamma radiation (from 5 to 30 krad) on the conservation of garlic bulbs during a 12 months period is studied. Irradiations were made at three different times and the best results were obtained with the treatment given during the two months following harvest. During this period, 5krad are enough to inhibit garlic bulbs sprouting. (author)

  14. Gamma irradiation effects on dexamethasone and triamcinolone acetonide

    The effects of cobalt-60 gamma rays on dexamethasone and triamcinolone acetonide were examined by physico-chemical determination. Irradiation dose used were 0, 20 and 49 kGy while storage time were 0 and 6 months at about 30 ± 2oC. The results showed that irradiation up to a dose of 40 kGy and 6 months storage time do not give any change on the UV spectra, DSC thermograms, and infrared spectra of the powder and also do not give any significant effect on acid value, pH and viscosity of the eye ointments (p<0.05). There were significant changes in iodine value after irradiation and storage treatment. The HPLC chromatograms of triamcinolone acetonide powder and eye ointment showed that some degradation caused by irradiation have taken place but there was no change on the HPLC chromatogram of dexamethasone after irradiation. (author). 24 refs

  15. A simple and efficient gamma irradiator for RVNRL

    This work describes a new design of a gamma irradiator for RVNRL which obeys a reliable operation and an efficient economical equation. Our irradiator is of a nobel design according to present requirements of latex industries and to the state of the art of radiation technology. The irradiator is of a wet storage type, where the radioactive sources are fixed in the reactor vessel, permanently submerged in deionized water. Preformulated latex is pumped from a deposited vessel into the reactor vessel and it is recirculated during the irradiation cycle avoiding turbulences and dose inhomogeneities. The irradiation time per one ton batch with a Co-60 charge of 3.5E15 Bq (100 kCi) is of approximately 4 hours

  16. Thermoluminescence response of gamma-irradiated sesame with mineral dust

    Rodriguez L, Y. [CSIC, Instituto de Estructura de la Materia, Calle Serrano 121, 28006 Madrid (Spain); Correcher, V. [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Garcia G, J. [CSIC, Museo Nacional de Ciencias Naturales, Calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Cruz Z, E., E-mail: y.r.l@csic.es [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2011-10-15

    The thermoluminescence (Tl) emission of minerals isolated from Mexican and Indian sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction and environmental scanning microscope, the adhered dust in both samples is mainly composed by different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good Tl intensity, (ii) high stability of the Tl signal during the storage of the material (i.e. low fading) and (iii) are thermally and chemically stable. Blind tests performed under laboratory conditions, but simulating industrial preservation processes (similar temperature and moisture, and presence of white light), allows to distinguish between 1 KGy gamma-irradiated and non-irradiated samples even 11000 hours (15 months) after the irradiation proceeding. (Author)

  17. Thermoluminescence response of gamma-irradiated sesame with mineral dust

    The thermoluminescence (Tl) emission of minerals isolated from Mexican and Indian sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction and environmental scanning microscope, the adhered dust in both samples is mainly composed by different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good Tl intensity, (ii) high stability of the Tl signal during the storage of the material (i.e. low fading) and (iii) are thermally and chemically stable. Blind tests performed under laboratory conditions, but simulating industrial preservation processes (similar temperature and moisture, and presence of white light), allows to distinguish between 1 KGy gamma-irradiated and non-irradiated samples even 11000 hours (15 months) after the irradiation proceeding. (Author)

  18. Gamma irradiation for insect deinfestation damages native Australian cut flowers

    Gamma irradiation doses above 0.05 kGy for Geraldton wax, 0.1 kGy for banksia and 1.0 kGy for kangaroo paw caused significant (P <0.05) reductions in flower and foliage vase lives. Doses of greater than 2 kGy and up to 10 kGy were required for immediate 100% kill of the bioassay insects (adult flour beetle, Mediterranean fruit fly adults and larvae, and spotted moth larvae). Pretreating Geraldton wax shoots by cooling them or pulsing them with sugar lessened the detrimental effect of irradiation (0.1 kGy) on vase life. Pretreatment with silver thiosulphate had no positive effect. Irradiation of Geraldton wax shoots in an inert atmosphere (nitrogen) exacerbated irradiation, induced reduction in vase life and increased flower abscission. None of the postharvest treatments tested were sufficiently ameliorative for irradiation to be considered a viable deinfestation treatment for Geraldton wax. (author)

  19. Sucrose synthesis in gamma irradiated sweet potato

    Effect of α-irradiation carbohydrate metabolism was examined to elucidate mechanism of sucrose accumulation in sweet potato (SP). Enzymes examined were: β-amylase, phosphorylase, phosphoglucomutase, phosphoglucose isomerase, sucrose phosphate synthetase and sucrose synthetase. Irradiated SP (Red Jewell) sucrose was synthesized to yield 10.7% after 4 d PI. Activities of sugar synthesizing enzymes in irradiated SP were enhanced to different degrees using 100-200 Krad and 3 d PI at 240C. Phosphorylase and phosphoglucomutases specific activities reached 2.4 and 1.8 folds, respectively compared to control SP. β-amylase, phosphoglucose isomerase, sucrose synthetase and sucrose phosphate synthetase were also affected to yield 1.2, 1.3, 1.3 and 1.2 folds, respectively compared to controls. It is believed that amylase hydrolyzed starch to glucose which is converted to fructose by phosphoglucose isomerase. Sucrose is then formed by sucrose phosphate synthetase and/or sucrose synthetase leading to its accumulation. The irradiated SP was used for alcohol fermentation leading to 500 gal. of 200 proof ethanol/acre (from 500-600 bushels tuber/acre)

  20. Using gamma irradiation to improve sterile turf and forage bermudagrasses

    The widely-used Tif-series of turf bermudagrasses - Tifgreen, Tifway, and Tifdwarf - are vegetatively propagated sterile triploids that cannot be improved by conventional breeding methods. Dormant stolons, washed free of soil and cut into one-or two-node sections were treated with varying dosages of EMS (ethyl methane sulfonate) and gamma irradiation ranging from 7 to 12 kR. EMS failed to produce noticeable variants but gamma irradiation from a Cobalt 60 source created 158 mutants. These mutants differed in many characters such as leaf size, hairiness, stem diameter, internode length, basic plant color, herbicide tolerance, spreading rate, and nematode resistance. Attempts to improve the winterhardiness of tetraploid sterile Coastcross-1 forage bermudagrass by exposing over 1,400,000 sprigs (vegetative stems) to 7 kR of gamma rays gave chlorophyll deficient mutants but progress in increasing winterhardiness has not been established. (author)

  1. EPR structure of the gamma irradiated alanine spectrum

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of γ-irradiated powder DL- and L-alanine. (Author)

  2. Effect of neutron and gamma irradiation on magnetic bubble memories

    Many years of research preceeded the introduction of magnetic bubble memories (M.B.M.) into the memory components market. They are used as bulk storage memories principally for their non volatile characteristics under irradiation. A physical and technological description of MBM is given in the first part of the text together with the results of work on their vulnerability when subjected to irradiation. Permanent damage caused by neutrons and gamma radiation on thin magnetic layers is then studied. A theoretical analysis on the stability of bubbles based on the results of pulsed laser experiments is given. The stability of the information stored in a commercially available MBM subjected to neutron and gamma irradiation (MBM - TIB 203 of 92 kBits, Texas) is described in the last part of the text. The vulnerability thresholds determined for the MBM are too high for them to be used in a radioactive environment with an improved electronic control system

  3. Stability of Grafted Polymer Nanoscale Films toward Gamma Irradiation.

    Borodinov, Nikolay; Giammarco, James; Patel, Neil; Agarwal, Anuradha; O'Donnell, Katie R; Kucera, Courtney J; Jacobsohn, Luiz G; Luzinov, Igor

    2015-09-01

    The present article focuses on the influence of gamma irradiation on nanoscale polymer grafted films and explores avenues for improvements in their stability toward the ionizing radiation. In terms of applications, we concentrate on enrichment polymer layers (EPLs), which are polymer thin films employed in sensor devices for the detection of chemical and biological substances. Specifically, we have studied the influence of gamma irradiation on nanoscale poly(glycidyl methacrylate) (PGMA) grafted EPL films. First, it was determined that a significant level of cross-linking was caused by irradiation in pure PGMA films. The cross-linking is accompanied by the formation of conjugated ester, carbon double bonds, hydroxyl groups, ketone carbonyls, and the elimination of epoxy groups as determined by FTIR. Polystyrene, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, dimethylphenylsilanol, BaF2, and gold nanoparticles were incorporated into the films and were found to mitigate different aspects of the radiation damage. PMID:26259102

  4. Evaluation of average molecular weight of gamma-irradiated polytetrafluoroethylene

    Statistical treatment of the decrease in the number-average molecular weight of gamma-irradiated polytetrafluoroethylene (PTFE) sample was carried out by considering the random degradation of main chains, difference in the susceptibility to radiation damage between the crystalline and amorphous regions, and the evolution of low molecular weight gases. A specimen which consists of n chains was considered. The fracture density P was treated as the probability of fracture of main chains occurring per bond. The number of chain fractions was given. The monomer unit of the number-average molecule after evolution during gamma-irradiation was deduced. The fracture of main chains caused by radiation is dominant in the amorphous region. The dependence of amorphous fraction on radiation dose can be expressed. The calculated number-average molecular weight of irradiated PTFE was compared with the experimental results obtained from the viscoelastic method. (J.P.N.)

  5. Mutagenicity studies on alcohol extracts from gamma-irradiated potatoes

    The alcohol extracts freshly prepared from gamma-irradiated potatoes were examined for their mutagenic activity in bacterial and mammalian cell systems. Negative results were obtained from all following test systems: Mutation assays with Salmonella typhimurium His- strains such as TA 100, TA 98, TA 1535, TA 1537, and streptomycin-dependent mutant (SM sup(d)) strain, TA 100 - 10, inductests with Escherichia coli strains, K 12 GY 5027 and K 12 C600, chromosomal aberration tests with Chinese hamster cells in culture, as well as micronucleus tests in mice. In addition, no difference in the mutagenic activities was found between extracts prepared from the irradiated and the unirradiated potatoes, suggesting that no mutagenic substance was produced in potatoes following gamma-irradiation. (author)

  6. Gamma Irradiation Induces DNA Double-Strand Breaks in Fibroblasts: A Model Study for the Development of Biodosimetry

    Accidental exposure to ionizing radiation can immediately induce double-strand breaks (DSBs) of DNAs which later pose detrimental damage on organisms including genetic instability and cell death. The aim of this study is to simulate such incident by exposing a cell model to gamma radiation and the resulting DNA DSBs were immunofluorescently labeled and quantified to establish a dose response relationship. Human dermal fibroblasts were grown into monolayers before irradiated by gamma rays from a Co-60 source at doses 0, 0.2, 1, 2 and 4 Gy and a dose rate of 0.21 Gy/min. DNA DSBs, which appeared as foci inside the cells' nuclei, were evaluated by flow cytometry and confocal microscopy. Data showed that the foci intensity increased linearly in relation to the increase in irradiation dose within 1 h post exposure. These findings can be further developed to serve as a personal biodosimetry to assess the immediate extent and potential health risks of accidental exposure to ionizing radiation in individuals.

  7. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  8. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580185 (Korea, Republic of); Soo Chun, Byeong; Hyun Ahn, Dong [Department of Food Science and Biotechnology, Pukyong National University, Busan 608737 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, Jinju International University, Jinju 660759 (Korea, Republic of); Kim, Duk-Jin [Division of Food Engineering and Nutrition, Daegu University, Daegu 712714 (Korea, Republic of); Kim, Gwang Hoon [Department of Biology, Kongju National University, Chungnam 314701 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  9. The resistance of salmonella typhirium on gamma irradiation

    This research intended to investigate the registance of S. typhimurium on the gamma irradiation, temperature and pH in the cell suspension of 10 exp. 8 and homogenants sludge medium. The resistance of bacteria S. typhimurium in cells suspension of 10 exp. 8 was irradiated with gamma ray (60-Co) at the doses of 0; 0.15; 0.30; and 0.45 kGy. The dose rate was 1.00 kGy/h, in the gamma cell 220 irradiator and then the suspension was plated on the media, which have pH from 6, 7, and 8. Then incubated at temperature of 30, 37 and 42 Celcius centigrade for 2 x 24 hours. The resistance of bacteria S. typhimorium in 10% sludge homogenate in TGY broth was iradiated with gamma ray at doses of 0; 0.5; 1.0; 1.5; 2.0; and 2.5 kGy with dose rate of 0.95 kGy/h. After irradiation the bacteria was incubated for 24 hours at room temperature (28 +/- 2) Celcius centigrade then innoculate on SS, Mac Conkey, and XLD media. After 2 x 24 hours grows on petri dishes, the growth of colonies were observed and total bacterial counts per ml was calculated. The results showed irradiation and pH media gave significant decrease in the total bacterial count. Irradiation doses of 0.45 kGy reduced the total number of bacterial counts by 5 log cycles with the pH variation from 6 - 8 while the results in the sludge homogenete showed that the media give no significant effect on the ground capabilities of S. typhimorium. (author). 7 refs, 4 figs, 4 tabs

  10. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    Jona, Roberto; Fronda, Anna

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 30°C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers.

  11. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 300C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers. (author)

  12. Effect of gamma irradiation on wear characteristics of UHMWPE for joint prostheses

    Ultra-high molecular weight polyethylene (UHMWPE) is widely used as a rubbing material for clinical applications in total prostheses. Generally, total joint prostheses are sterilized by gamma irradiation. Gamma ray ordinarily does not change the properties of ceramic and metal material, but it is well known that UHMWPE has high sensitivities to gamma irradiation. Gamma irradiation causes crosslinking of UHMWPE, which changes its property from original one. This work shows that gamma irradiation has remarkable effects on the reduction of UHMWPE wear. Gamma irradiation is very useful for reduction of UHMWPE wear. In this experiment, medium gamma irradiation is enough to reduce UHMWPE wear. However, gamma irradiation causes reduction in tensile strength and elongation of UHMWPE. Therefore, we found that optimum point of dose to prevent reduction of mechanical properties and reduce wear. Additionally, we also indicate the wear reduction mechanism of crosslinked UHMWPE. (author)

  13. On enzyme kinetic parameters modification of gamma irradiation

    To elucidate the molecular mechanisms of gamma-ray action on biomolecules there were investigated the modifications in activity and other kinetic parameters for some enzymes irradiated in pure dry state at relative high doses. There were considered bacterial and fungal α-amylases, glucoamylase and Mucor sp. protease irradiated by a 60 Co gamma-ray source in the dose range 1.0-30.0 kGy, at different dose-rates between 0.5-2.0 kGy/h, at room temperature. Considering the enzyme inactivation in this dose range, the dose-effect relationships have an expected form and depend on the irradiation conditions but not significantly on the dose rate. The catalytic properties of enzymes were modified by irradiation. By usual methods it is evidenced a direct correlation between the enzymatic activities, Michaelis-Menten constant, Km, reaction velocities, v, and the irradiation dose. These experimental findings can support a self-consistent theoretical approach on biophysical radiation action on biological active molecules like enzymes. At the same time, some enzyme behaviour to irradiation could be considered like a good biological indicator of radiation response. (Author) 4 Figs., 19 Refs

  14. Thermoluminescence of Simulated Interstellar Matter after Gamma-ray Irradiation

    Koike, K; Koike, C; Okada, M; Chihara, H

    2002-01-01

    Interstellar matter is known to be strongly irradiated by radiation and several types of cosmic ray particles. Simulated interstellar matter, such as forsterite $\\rm Mg_{2}SiO_{4}$, enstatite $\\rm MgSiO_{3}$ and magnesite $\\rm MgCO_{3}$ has been irradiated with the $\\rm ^{60}Co$ gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is $10^{17}n_f{\\rm /cm^{2}}$). After irradiation, samples are stored in liquid nitrogen for several months to allow the decay of induced radioactivity. We measured the luminescence spectra of the gamma ray irradiated samples during warming to 370K using a spectrophotometer. For the forsterite and magnesite, the spectra exhibit a rather intense peak at about 645 -- 655 nm and 660 nm respectively, whereas luminescence scarcely appeared in olivine sample. The spectra of forsterite is very similar to the ERE of the Red Rectangle.

  15. New developments in design of gamma irradiation plants

    Symec Engineers (I) Pvt. Ltd is an ISO 9001:2008 certified company which is among the leading manufacturers of gamma irradiation plants in India and abroad. The company's long history of achievements begins from the building of India's first indigenous irradiation plant in 1990 to the successful commissioning of India's first and only batch irradiation plant in 2005, to the completion of India's largest irradiation plant of 5 million curies capacity in 2012. Symec has recently added two more feathers in its cap by commissioning a 3 Mci multi-purpose facility in Biyagama, Sri Lanka and another 100Kci batch type blood irradiation facility in Addis Ababa, Ethiopia for the IAEA. In all Symec has successfully completed 10 gamma irradiation plants in India and abroad, and is involved in three more projects in this sector. Based on the years of experience in the international and domestic market, Symec has evolved several interesting design features and developments in its plants. Some of these features are described below. (author)

  16. Experimental qualification of a code for optimizing gamma irradiation facilities

    Dose computation codes are a prerequisite for the design of gamma irradiation facilities. Code quality is a basic factor in the achievement of sound economic and technical performance by the facility. This paper covers the validation of a code by reference dosimetry experiments. Developed by the ''Societe Generale pour les Techniques Nouvelles'' (SGN), supplier of irradiation facilities and member of the CEA Group, the code is currently used by that company. Experimental data were obtained under conditions representative of those prevailing in the gamma irradiation of foodstuffs. Irradiation was performed in POSEIDON, a Cobalt 60 cell of ORIS-I. Several Cobalt 60 rods of known activity are arranged in a planar array typical of industrial irradiation facilities. Pallet density is uniform, ranging from 0 (air) to 0.6. Reference dosimetry measurements were performed by the ''Laboratoire de Metrologie des Rayonnements Ionisants (LMRI) of the Bureau National de Metrologie'' (BNM). The procedure is based on the positioning of more than 300 ESR/alanine dosemeters throughout the various target volumes used. The reference quality was the absorbed dose in water. The code was validated by a comparison of experimental and computed data. It has proved to be an effective tool for the design of facilities meeting the specific requirements applicable to foodstuff irradiation, which are frequently found difficult to meet. (author)

  17. Experimental qualification of a code for optimizing gamma irradiation facilities

    Mosse, D. C.; Leizier, J. J. M.; Keraron, Y.; Lallemant, T. F.; Perdriau, P. D. M.

    Dose computation codes are a prerequisite for the design of gamma irradiation facilities. Code quality is a basic factor in the achievement of sound economic and technical performance by the facility. This paper covers the validation of a code by reference dosimetry experiments. Developed by the "Société Générale pour les Techniques Nouvelles" (SGN), a supplier of irradiation facilities and member of the CEA Group, the code is currently used by that company. (ERHART, KERARON, 1986) Experimental data were obtained under conditions representative of those prevailing in the gamma irradiation of foodstuffs. Irradiation was performed in POSEIDON, a Cobalt 60 cell of ORIS-I. Several Cobalt 60 rods of known activity are arranged in a planar array typical of industrial irradiation facilities. Pallet density is uniform, ranging from 0 (air) to 0.6. Reference dosimetry measurements were performed by the "Laboratoire de Métrologie des Rayonnements Ionisants" (LMRI) of the "Bureau National de Métrologie" (BNM). The procedure is based on the positioning of more than 300 ESR/alanine dosemeters throughout the various target volumes used. The reference quantity was the absorbed dose in water. The code was validated by a comparison of experimental and computed data. It has proved to be an effective tool for the design of facilities meeting the specific requirements applicable to foodstuff irradiation, which are frequently found difficult to meet.

  18. Protein denaturation of banana prawns (Penaeus marquensis) after gamma irradiation

    The aim of this investigation was to determine the irradiation dose limit for maintaining shrimps freshness, based on the existence of protein denaturation of shrimps caused by gamma irradiation at radurization dose range. Protein denaturatio was studied using tryptic digestibility, solubility, and Ca ATPas actomyosin activity as the criterions. Electrophoretic studies were done to detect structural changes in protein that probably occured after irradiation at the applied doses. It was proved that tryptic digestibility, solubility, and Ca ATPase actomyosin activity of control and samples irradiated at 3, 4, and 5 kGy were significantly different (P<0.01) which indicated the existence of protein denaturation. Protein patterns of samples irradiated at 4 and 5 kGy were also distinctly different with those of the control. The 7th. band was broken into two bands. It could be concluded that for maintaining the freshness of shrimps, gamma irradiation dose used should not exceed 3 kGy. (authors). 8 refs, 1 fig 4 tabs

  19. Isolation of Enterobacter cowanii in tomatoes after gamma irradiation

    The tomato is one of the most consumed fruit in the world. Bacteria of the family Enterobacteriaceae are responsible for large outbreaks of gastroenteritis. Irradiation is a physical method which reduces waste by eliminating spoilage organisms in foods. The objective of this study was to identify and determine the resistance profile of micro-organisms of the family Enterobacteriaceae from irradiated tomatoes. Were used three batches each containing 80 tomatoes, and divided in control and irradiated. The samples were individually properly identified as the irradiation dose applied. The material was subjected to irradiation with gamma rays, for irradiating with a cobalt-60 source, using doses: 1.0, 1.5 and 2 kGy (6,060 kGy/h). For microbiological analysis tomatoes were cut out, and removing the shells to obtain samples weighing 25g. Each sample was transferred to an Erlenmeyer containing sterilized water, stirring the assembly mechanically. Aliquots of the wash waters were sown in differential and selective media. After reisolation, the colonies were subjected to Gram staining then performed biochemical tests for identification. The antibiotic susceptibility tests were performed according to CLSI (Clinical Laboratory Standard Institute). It was isolated three strains of Enterobacter cowanii in tomato samples irradiated with a dose of 1.0 kGy, without isolating the other doses. As for the resistance profile, the strains were resistant to Ampicillin identified. Gamma irradiation at a dose of 1.5 and 2 kGy was effective in tomatoes as well as the micro-organism isolated after irradiation showed no profile of multidrug resistance. (author)

  20. Genetic Changes in Stevia rebaudiana after Gamma Irradiation

    In vitro propagated plantlets of Stevia rebaudiana Bertoni J.were irradiated with doses 0, 5, 10 and 20 Gy. Irradiated plantlets exhibited changes in electrophoretic profile of proteins, there were some new bands induced with molecular weight of 100, 45, 32, and 30 kDa. In some treatments and some other bands disappeared such as the 205 and 100 kDa bands form plantlets treated with 10 Gy. Isoenzyme were also examined, esterase isozyme, isopolyphenol oxidase, alkaline phosphatase, catalse, acid phosphatase and peroxidase isozyme also altered by treatments. RAPD analysis was performed to determine the effect of gamma-irradiation on DNA changes. Polymorphisms between regenerates from non-irradiated and irradiated plantlets were found. The scope of variation spectrum by gamma-irradiation was larger than that by tissue culture. All the primers used produced polymorphic bands. Six primers generated 129.0 RAPD markers, among which 49.0 (37.98%) were polymorphic, with a mean of 8.17 pol morphisms per primer. The results showed that gamma-irradiation induced changes in plantlets that can be detected by molecular and biochemical markers. Stevia rebaudiana Bertoni. Stevia is a member of the Compositae family and native to the valley of the Rio Monday in the highlands of Paraguay, where it has been used by aboriginal people as a sweetener for centuries. It is one of 154 members of the genus Stevia and one of only two that produce sweet steviol glycosides. Stevioside has a sweetening potency of 200-300 times that of sucrose and it is stable to heat (Soejarto et a/., 1982 and 1983 and Lewis, 1992). The leaves were used either to sweeten mate or as a general sweetening agent. Currently Stevia production is centred in China and there is a major market in Japan (Kinghorn and Soejarto 1985)

  1. Gamma irradiation service in Mexico; Servicio de Irradiacion Gamma en Mexico

    Liceaga C, G.; Martinez A, L.; Mendez T, D.; Ortiz A, G.; Olvera G, R. [Departamento del Irradiador Gamma. Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Col. Escandon, 11801 Mexico D.F. (Mexico)

    1997-12-31

    In 1980 it was installed in Mexico, on the National Institute of Nuclear Research, an irradiator model J S-6500 of a canadian manufacture. Actually, this is the greatest plant in the Mexican Republic that offers a gamma irradiation process at commercial level to diverse industries. However, seeing that the demand for sterilize those products were not so much as the irradiation capacity it was opted by the incursion in other types of products. During 17 years had been irradiated a great variety of products grouped of the following form: dehydrated foods, disposable products for medical use, cosmetics, medicaments, various. Nowadays the capacity of the irradiator is saturated virtue of it is operated the 24 hours during the 365 days of the year and only its operation is suspended by the preventive and corrective maintenance. However, the fresh food market does not be attended since this irradiator was designed for doses greater than 10 kGy (1.0 Mrad)

  2. Effect of gamma irradiation on antinutritional factors in broad bean

    The effect of gamma irradiation on the level of antinutritional factors (trypsin inhibitor (TI), phytic acid and oligosaccharides) of broad bean was investigated. The seeds were subjected to gamma irradiation at 0, 2.5, 5, 7.5 and 10 kGy, respectively using cobalt-60 gamma radiation with a dose rate 2.37 kGy/h. TI activity was reduced by 4.5%, 6.7%, 8.5% and 9.2% at 2.5, 5, 7.5 and 10 kGy, respectively. Meanwhile, irradiation at 10.2, 12.3, 15.4 and 18.2 kGy reduced the phytic acid content. The flatulence causing oligosaccharides were decreased as the radiation dose increased. The chemical composition (protein, oil, ash and total carbohydrates) of the tested seeds was determined. Gamma radiation seems to be a good procedure to improve the quality of broad bean from the nutritional point of view

  3. Effect of gamma irradiation on antinutritional factors in broad bean

    Al-Kaisey, Mahdi T.; Alwan, Abdul-Kader H.; Mohammad, Manal H.; Saeed, Amjed H.

    2003-06-01

    The effect of gamma irradiation on the level of antinutritional factors (trypsin inhibitor (TI), phytic acid and oligosaccharides) of broad bean was investigated. The seeds were subjected to gamma irradiation at 0, 2.5, 5, 7.5 and 10 kGy, respectively using cobalt-60 gamma radiation with a dose rate 2.37 kGy/h. TI activity was reduced by 4.5%, 6.7%, 8.5% and 9.2% at 2.5, 5, 7.5 and 10 kGy, respectively. Meanwhile, irradiation at 10.2, 12.3, 15.4 and 18.2 kGy reduced the phytic acid content. The flatulence causing oligosaccharides were decreased as the radiation dose increased. The chemical composition (protein, oil, ash and total carbohydrates) of the tested seeds was determined. Gamma radiation seems to be a good procedure to improve the quality of broad bean from the nutritional point of view.

  4. Cell death induced by gamma irradiation of developing skeletal muscle

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  5. Radioprotective Effect Of Green Tea Extract On GAMMA Irradiated Mice

    This study aimed to evaluate the possible radioprotective role of green tea extract (GTE) in mice exposed to gamma radiation. Eighty male mice were divided into four groups; group (A) was considered the control, group (B) received 1.5% GTE for 14 days, group (C) exposed to 4 Gy gamma radiation and group (D) received GTE and exposed to 4 Gy gamma radiation. Blood and liver tissue were collected from these groups 24 hours, 3 days and 5 days post-irradiation to measure the levels of hepatic malondialdehyde (MDA) and superoxide dismutase (SOD), serum aminotransferases (ALT and AST), Hb concentration, RBCs, WBCs and platelets counts, in addition to ultra-structure examination of the liver. The results revealed that GTE supplementation prior to irradiation significantly decreased hepatic MDA, increased hepatic antioxidant enzyme (SOD) and decreased serum ALT and AST compared to irradiated mice. Also, supplementation of mice with GTE led to regeneration and protection of hepatocytes and the levels of the hematological parameters were significantly increased in the GTE pre-treated group as compared to irradiated animals. It could be conclude that the GTE may be a good agent to attenuate radiation-induced damage to the liver and hematopoietic system.

  6. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-01

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  7. Continuous induction of unscheduled DNA synthesis by gamma irradiation

    The induction of DNA-synthesis in non-S-phase cells is a very sensitive measure of a preceding damage of the DNA. Usually, in an in vivo -in vitro test (treatment of an animal, incorporation of H3-thymidine in a cell suspension) the damaging of DNA takes place hours to days before the evaluation. In this case, the time course of the UDS-induction after a single dose of 1 Gy gamma irradiation should be observed for a long time (21 months). C57 black mice served as test animals. In an age of about 80 days they were irradiated and the induction of unscheduled DNA synthesis was measured at ten points of time during the whole life-span of the animals. Although the repair in this gamma radiation damage in DNA is a very quick process - with centrifugation in alkaline sucrose you find a half time of some minutes - an induction of unscheduled DNA synthesis could be seen at the irradiated animals until the end of their life (640 days). The reason for this could be permanent disorders in cellular regulation caused by the gamma irradiation. 4 figs. (Author)

  8. Investigation of thermoluminescence characteristics of gamma irradiated phlogopite mica

    The present paper investigates the thermoluminescence (TL) characteristics of phlogopite mica irradiated with gamma rays in the dose ranges from 5 kGy to 40 kGy. It has been found that at all gamma doses, TL glow curve of phlogopite mica shows a simple glow curve structure with one broad peak around 400 K temperature. There is no shift in peak temperature with increase in gamma dose which clearly indicates that TL glow peaks are of first order kinetics. The TL intensity increases linearly up to 30 kGy and then shows saturation up to 40 kGy which have been explained using TIM and UNIM model. The effect of different heating rates on the TL intensity, TL glow peak temperature and total glow curve area for 10 kGy irradiated phlogopite mica has also been studied. Theoretical analysis of TL glow curves of gamma irradiated phlogopite mica has been done by glow curve deconvolution procedure using computerized Glow Fit software and the trapping parameters of isolated TL glow peaks have also been determined. The simple glow curve structure and the linear TL response to a wide range of gamma doses of phlogopite mica confirm its suitability as an effective thermoluminescent material and explore its potential for tremendous applications in radiation dosimetry. - Highlights: ► The present paper reports the thermoluminescence characteristics of phlogopite mica. ► This investigation focuses on the TL response of phlogopite mica to gamma rays. ► Different kinetic parameters have also been studied for the better understanding of the TL phenomenon

  9. Effect of Gamma Irradiation on Natural and Synthetic Latexes

    As compared with bulk rubber, rubber particles in latexes vulcanized by irradiation possess specific properties. The properties of synthetic latex particles (SKS-30A and SKN-40) vulcanized by gamma irradiation, and of the films obtained from them, differ in properties they acquire by other vulcanization techniques. Changes in the properties of latex (pH-value, surface tension, viscosity, etc.) as a colloidal system under irradiation depend to a considerable extent upon the chemical nature of the rubber and on its derivation. Yields differ according to whether the vulcanization is carried out by particle or by bulk irradiation. Ageing processes for such latexes and the films obtained from them differ from ageing processes for non-vulcanized or sulphur-vulcanized latexes. The radiation vulcanized products have increased stability. The properties of the vulcanized rubber in the latex are confirmed by data indicating high resolution nuclear magnetic resonance spectra. (author)

  10. Aversive conditioning in prenatally gamma-irradiated rats

    To examine how intrauterine exposure to gamma rays would exert on four kinds of aversive conditioning, rat fetuses were irradiated with 0.27, 0.48, or 1.46 Gy at Day 15 post conception. When ordinary avoidance conditioning was given to the groups with 0.27 and 0.48 Gy, there was no significant difference between the irradiated groups and the control group in the rate of positive avoidance response. Nor was this different in the irradiated groups and the control group, when the rate of baseline response was examined in avoidance conditioning. In positive avoidance conditioning to two kinds of anticipatory electric stimuli, the acquisition of avoidance was significantly inferior in all irradiated groups to that in the control group. When giving succesive discrimination learning, the group with 1.46 Gy tended to have higher rate of positive avoidance response and remarkably lower rate of passive avoidance response than the control group. (Namekawa, K.)

  11. The decontamination effects of gamma irradiation on the edible gelatin

    The decontamination effects of gamma irradiation on the edible gelatin were studied. The results indicated that the bacterium and mold in the gelatin decreased significantly with the dose of 5 kGy treatment. However, the content of crude protein, microelement, amino acid in the gelatin remained unchanged under the irradiation of 4 and 8 kGy. The viscosity of the gelatin decreased with the increase of the irradiation dose, but the gelatin with a dose of 5 kGy treatment still accorded with the standard of the second-order class. These results suggested that the optimum irradiation dose for edible gelatin for the purpose of decontamination was in the range 3-5 kGy. (author)

  12. Characterization of Gamma-Irradiated Egyptian Wheat Flour

    Physical, rheological and baking properties of bread Shamy, prepared from gamma-irradiated Egyptian wheat flour up to 25 KGy as one of common types of bread in Egypt, were studied and the acceptability of bread was evaluated by sensory tests. All amylo-, farino-, and extensograph characteristics and also sample ph showed significant decrease as irradiation dose increased. Such results could be explained in terms of loss of unique elastic and cohesive properties of wheat gluten and starch damage upon increment of radiation dose. The improvement in properties of bread, baked from flour irradiated up to 7.5 KGy, could be explained on the basis of a simulation in gas production during dough fermentation due to increase in starch degradation products. However, bread, prepared from wheat samples irradiated above 7.5 KGy, exhibited significantly lower values of acceptance because of physico-chemical changes in both starch and gluten

  13. Low temperature gamma-ray irradiation effects on polymer materials

    The gamma radiation induced degradation of glass fiber reinforced plastic (GFRP) and polymethylmethacrylate (PMMA) at 77K was examined by flexural test and gas analysis after irradiation and compared by the irradiation at room temperature. The decrease in flexural strength at break was much less at 77K than at RT. The evolution of CH4, CO and CO2 was also depressed at 77K. The temperature dependence of the degradation closely relates to the local molecular motion of matrix resin during irradiation. Polytetrafluoroethylene (PTFE) was also studied by irradiation at RT, 77K and 4K in terms of tensile elongation and molecular weight. The degradation was much less at 77K and 4K than at RT, and the same between 77K and 4K. (author)

  14. Shrubs of the Field Irradiator - Gamma area in eastern Manitoba

    Detailed descriptions and line drawings are given of over 100 shrub taxa (including semi-woody shrubs and vines) which are common in Manitoba; most of them are found within the Field Irradiator - Gamma (FIG) area or its immediate surroundings. Ecological and morphological notes are included along with a few general remarks on the effects of exposure to long-term gamma radiation. Keys are given for certain genera, small family groups or other critical species groups. This document is intended to facilitate identification of shrubs for experimental purposes in the FIG projects, and it should also be useful to those who are generally interested in the shrubs of Manitoba. (auth)

  15. Color centers aggregation kinetics in lithium fluoride after gamma irradiation

    Lithium fluoride crystals are irradiated at various doses by gamma rays at 77 K. The time evolution of photoluminescence signals from aggregated F2+, F2, F3+ and F3 color centers, and of the absorption intensity of primary F centers are measured at various annealing temperatures. The lifetimes of anionic vacancies υa and F2+ centers, the characteristic times of concentration growth of F2, F3+ and F3 centers, and also the activation energies of diffusion of vacancies and F2+ centers together with various processes of aggregation are determined. It is found that lifetime decreases for vacancies while increases for F2+ centers by increasing the irradiation dose. It is also shown that, after irradiation during annealing, vacancies are formed as a result of the reaction F2++H→υa+Fl−, where Fl− is a fluorine ion in a lattice site and H is a fluorine interstitial atom. Then these vacancies participate in color centers aggregation kinetics. The presence of F− centers in the irradiated crystal is established, and the processes which lead to the formation of F2, F3+ and F3 centers after irradiation, are unveiled. -- Highlights: • Experimental investigation of color centers in LiF crystals after gamma irradiation. • Study of formation kinetics for F, F2, F3 and F3+ centers after irradiation at 77 K. • Lifetimes of anionic vacancies and F2+ centers at few irradiation doses. • Aggregation rates of F2, F3 and F3+ centers and their reciprocal influence. • Estimates of activation energies for color center diffusion

  16. Gamma greenhouse for chronic irradiation in plant mutation breeding

    The gamma greenhouse makes use of chronic irradiation from a 137Cs source (double encapsulated 800 Ci caesium-137 pencil) producing a low dose rate, which is considered to be more effective in recovering and producing useful mutants in comparison to acute irradiation. The irradiation facility comprises an open topped irradiation area 30 m in diameter, protected by a partial concrete wall with entry maze and site topography. For safety, the facility is protected by a sophisticated interlock system, which only allows the source to be exposed when all the prerequisite safety conditions are met, and automatically returns the source to the safe storage position if any safety device is compromised. The main irradiation area is further protected by a 300 m diameter exclusion zone that is also protected by the safety interlock circuit. The facility can accommodate a wide range of plant materials such as seeds, seedlings in pots, cuttings, callus, somatic embryos and suspension cell cultures. Plant samples will be exposed to low dose gamma radiation over long periods of time (hours, weeks, months), depending on their nature and sensitivity. There was evidence whereby exposure of tissue culture materials to continuous low dose gamma irradiation resulting in considerably elevated somaclonal variation frequency without negative effects on culture response. It is not surprising that in vitro culture generating somaclonal variation together with in vitro mutagenesis inducing mutation lead to a higher variation frequency due to possible addition of mutagenic effect by in vitro mutagenesis to somaclonal variability arising from in vitro culture as well as the interaction between them. (Author)

  17. Gamma-ray Irradiation Induces Useful Morphological Variation in Bermudagrass

    Songul SEVER MUTLU

    2015-12-01

    Full Text Available Bermudagrass, Cynodon dactylon (L. Pers. is a widely used warm-season turfgrass species in warmer regions of the world. Gammairradiation has been used to generate useful variations in turfgrass breeding for various morphological traits. The objective of the present study was to measure and determine variations in morphology and turfgrass characteristics of a native drought resistant bermudagrass germplasm irradiated with 70, 90 or 110 Gy using a 60Co source. The stolons containing a single node were irradiated and immediately planted for regeneration in a greenhouse at the Akdeniz University, Antalya, Turkey. Selected mutants regenerated from the irradiated stolons were clonally propagated and transplanted into plastic pots for further observations of turfgrass characteristics.  Survival rates of stolons exposed to 70, 90 and 110 Gy were 76%, 43% and 17% respectively, 6 weeks after treatment. Dosages of 85 and 57 Gy were determined as LD50 and LD20 for the cuttings, respectively. The linear reduction of survival rate with increasing gamma-rays was highly correlated (r2=0.99. A total of four mutant lines (0.3 % of the irradiated plants showed a distinct dwarfed growth habit. Three of these lines were originated from 70 Gy and one from 110 Gy. These mutant lines exhibited more dwarf growth habit, higher shoot density, finer leaf texture than parental genotype. Mutant lines developed in this study can be used for the development of improved bermudagrass cultivars for landscaping and sports turf.

  18. EPR study on tomatoes before and after gamma-irradiation

    The results from the EPR studies on fresh, air-dried and lyophilized tomato samples before and after gamma-irradiation are reported. Before irradiation fresh and air-dried tomatoes exhibit one singlet EPR line characterized with common g-factor of 2.0048±0.0005, whereas freeze-dried tomato does not show any EPR spectrum. After irradiation, a typical 'cellulose-like' triplet EPR spectrum appears in all samples, attributed to cellulose free radicals, generated by gamma-irradiation. It consists of intense central line with g=2.0048±0.0005 and two weak satellite lines separated ca. 3 mT left and right of it. In air-dried and lyophilized tomatoes the 'cellulose-like' EPR spectrum is superimposed by an additional partly resolved carbohydrate spectrum. Fading measurements of the radiation-induced EPR signals indicate that the intensity of the EPR spectra of air-dried and freeze-dried tomato are reduced to about 50% after 50 days, whereas those of fresh irradiated tomatoes kept at 4 oC fade completely in 15 days. The reported results unambiguously show that the presence of two satellite lines in the EPR 'cellulose-like' spectra of tomato samples can be used for identification of radiation processing.

  19. X-ray versus gamma irradiation effects on polymers

    Croonenborghs, B. [Sterigenics EMEAA, Remylaan 4c box 4, 3018 Leuven (Belgium); Smith, M.A. [Sterigenics International, 10811 Withers Cove Park Drive, Charlotte, NC 28278 (United States); Strain, P. [Sterigenics EMEAA, Remylaan 4c box 4, 3018 Leuven (Belgium)], E-mail: pstrain@eu.sterigenics.com

    2007-11-15

    Today, the most common methods used for medical device sterilisation are by gaseous ethylene oxide and by electron beam or gamma irradiation. With X-ray sterilisation about to enter the market, its material compatibility needs to be assessed at doses typically encountered during a sterilisation process. This paper reports on a study that compares the effects of exposing different types of plastics that are commonly used in medical devices to {sup 60}Co or to 5 MeV X-rays. The dose rate for both irradiation modalities was of the same order of magnitude. Under these conditions, both types of radiation are found to have similar effects on polymer properties.

  20. X-ray versus gamma irradiation effects on polymers

    Croonenborghs, B.; Smith, M. A.; Strain, P.

    2007-11-01

    Today, the most common methods used for medical device sterilisation are by gaseous ethylene oxide and by electron beam or gamma irradiation. With X-ray sterilisation about to enter the market, its material compatibility needs to be assessed at doses typically encountered during a sterilisation process. This paper reports on a study that compares the effects of exposing different types of plastics that are commonly used in medical devices to 60Co or to 5 MeV X-rays. The dose rate for both irradiation modalities was of the same order of magnitude. Under these conditions, both types of radiation are found to have similar effects on polymer properties.

  1. Cadmium leaching from thermal treated and gamma irradiated Mexican aluminosilicates

    Thermal and radiation effects on the leaching of cadmium from two cadmium exchanged zeolitic tuffs and one clay were determined. The cadmium exchanged aluminosilicates were heated at different temperatures (500, 700, 900 and 1100 oC), and the materials were then treated with NaCl (1 M and 5 M) and HNO3 (0.001 M and 1 M) solutions to determine the leaching behaviour of cadmium from the materials. The stability of cadmium in the materials increased as the heating temperature was increased. Cadmium leaching from gamma irradiated and heated materials at 1100 oC was higher than leaching from non-irradiated samples

  2. Physiological response of wheat, maize and cotton to gamma irradiation

    Grains of wheat triticum aestivum vulgare cv. Giza 155, maize Zea mays cv. double hybrid strain 17 S and cotton seeds Gossypium barbadence cv. Giza 67 were irradiated with successive doses of gamma rays from 0 to 64 Krad. Irradiating wheat grains with 1 Krad, maize grains with 0.5 Krad and cotton seeds with 4 Krad stimulated their germination and enhanced the growth of seedlings and their chlorophyll content. Also, these doses activated Alpha- and Beta-Amylase in the seeds. Higher doses had suppression effects. Peroxidase value in the seedlings of the three species was accelerated progressively in concomitant with the increase in the dosage

  3. Dosimetry in air in the product 1 gamma irradiator

    In this paper are presented the results of the dosimetry in air in the product-1 gamma irradiator of the Research Institute of the Food Industry. The dose was measured with the Fricke system. This dosemeter was used for the determination of the dose distribution in the irradiator container. It was obtained the minimum, maximum and overall average value of the dose. The calibration functions of the plant well time, evaluated using linear regression analysis, present very good adjustment for these parameters when it was chosen four different settings for the well time. The dose uniformity ratio is 1.3. 11 refs

  4. Bacterial use of biofilms cross-linked by gamma irradiation

    Gamma-irradiation was used to produce sterile free-standing biodegradable caseinate films. The effect of irradiation doses (i.e. number of cross-links) on the bacterial use of these films using a strain of Pseudomonas aeruginosa was investigated. Results showed that the main difference in overall utilisation for both films (4 or 64 kGy) was observed in terms of period of utilisation which was delayed 8 days for the film containing the highest number of cross-links (64 kGy)

  5. Effect of gamma irradiation on fungi in stored rice

    The objective of this study is to examine the effect of different doses of gamma irradiation on fungi infecting rice stored in various packaging materials. The agar plate test method was used. It was observed that the percentage of fungi did not appear to decrease with the increase of irradiation up to 2 kGy and also no indication of any significant reduction in percentage of fungi isolated with increasing time of storage at all levels of radiation treatment. The majority of the fungi isolated were Aspergillus and Penicillium species. (A.J.)

  6. The ripening of gamma irradiated fruits of jujube

    Mature green jujube fruits of cv. Zaytoni were subjected to gamma radiation doses of 0, 10, 30 and 50 krad. The irradiated and unirradiated fruits were then kept at 20°C and 85–90% r.h., and changes in weight loss, total soluble solids, titratable acidity and ascorbic acid content were determined. Fruits subjected to 30 krad were firmer and greener than unirradiated control fruits after six days of storage, and this treatment delayed ripening by three days. There was no significant loss in the nutritive value of the fruit due to irradiation

  7. Effect of gamma irradiation on mortality of tribolium castaneum (HERBST)

    An investigation was made to assess the susceptibility of larvae and adults of Tribolium castaneum to gamma irradiation. The larvae were more susceptible to irradiation than the adults. A dose of 0.05 kGy killed all the larvae but higher dose of 0.15 kGy was required to kill all the adults. Therefore, a dose of 0.15 kGy was found to be the effective dose to kill both the larvae and the adults of T. castaneum. (author)

  8. Inactivation of Salmonellae in Frozen Catfish by Gamma Irradiation

    The effect of gamma irradiation on salmonellae viability in frozen catfish was investigated using fresh cut of catfish artificially contaminated with stationary phase cells of salmonellae, frozen at-18 οC and irradiated with does ranging from 0.0 to 2.4 kGy. The D10 values for ten serovars of salmonellae ranged from 0.47 to 0.77 kGy. Salmonella Enteritidis was the most resistant serovars found in frozen catfish. Dosage at 2.5 kGy would be sufficient to kill 103.2 Salmonella Enteritidis that may occasionally present in frozen catfish

  9. X-ray versus gamma irradiation effects on polymers

    Today, the most common methods used for medical device sterilisation are by gaseous ethylene oxide and by electron beam or gamma irradiation. With X-ray sterilisation about to enter the market, its material compatibility needs to be assessed at doses typically encountered during a sterilisation process. This paper reports on a study that compares the effects of exposing different types of plastics that are commonly used in medical devices to 60Co or to 5 MeV X-rays. The dose rate for both irradiation modalities was of the same order of magnitude. Under these conditions, both types of radiation are found to have similar effects on polymer properties

  10. Conversion of lignocellulosic waste by gamma irradiation and fungal fermentation

    Effects of microbial elimination (initially contaminated bacteria and fungi) were confirmed at wide range of irradiation doses (15-30 kGy) with gamma rays of Co-60 for substrates with sawdusts, sugar cane baggasse, rice straw, oil palm fibre and others. Some changes of main components of basic polysaccharides and nitrogen sources in substrates under irradiation and fermentations have been examined to confirm effective conversions and assimilations of inorganic nitrogen into protein, particularly using N-15 tracer techniques. Biomass obtained by fungal fermentations would be used for animal feed and spent compots were useful for biofertilizer production. (author)

  11. Reduction of nitrogen oxides by gamma-irradiated hemoproteins. Pt. 1. Nitrite reducing activity of gamma-irradiated hemoproteins

    In nature, nitrite reductases located in microorganisms as well as in plants convert nitrite (NO2-) into ammonium ion (NH4+). It is rather difficult to isolate nitrite reductase because of very low content in microorganisms and plants. Bovine blood hemoglobin (Hb), horse cardiac muscle myoglobin (Mb) and horse cardiac muscle cytochrome c (Cyt c) in 50μM aqueous solution were treated by gamma-irradiation at doses of 10-30 kGy in the presence of air. The present study shows that NO2- is connected into NH4+ by gamma-irradiated hemoprotein in the presence of sodium hydrosulfite as a reducing agent and methyl viologen as an electron carrier. The concentration of NO2- and NH4+ after reaction were determined by using diazo-reaction and ninhydrin reaction, respectively, after separation by HPLC. NO2- remained and NH4+ formed by 10 kGy irradiated Cyt c, Hb and Mb at pH4 at 60 min were, 0% and 46%, 17% and 31%, 31% and 24%, respectively. Formation of hydroxylamine by reaction of NO2- was not recognized in this reaction. The process of conversion of NO2- to NH4+ is a net 6 electrons, 8-proton reaction. These results suggest that gamma-irradiated Hb, Mb and Cyt c can be used as a substituent of nitrite reductase. (J.P.N.)

  12. Qualities of Patin Fishball Irradiated by Gamma Rays (60Co)

    An experiment on patin fishball quality using gamma irradiation (60Co) has been conducted. Samples were irradiated at 0, 1, 3 and 5 kGy and stored in refrigerator at temperature 10 oC for sixty days. Samples were analysed every fifteen days, except content of fat and protein that analysed only at the beginning and the end of storage. The purpose of this experiment is to know the quality changes of patin fishball irradiated during storage, by measuring of chemical (content of fat, protein, water, TVB value, pH value) and microbiology (TPC aerobic and anaerobic bacteria) changes. The results showed that irradiation did not affect macro nutrient contents (content of fat, protein and water) of patin fishball during storage but irradiation can affect TVB and pH values. Irradiation at 1 kGy can reduce one logarithmic cycle of total aerobic and anaerobic bacteria. The storage life of irradiated patin fishball treated at 1, 3 and 5 kGy could be extended up to 15, 30 and 60 days, respectively. Control samples the storage life could be extended less than 15 days. (author)

  13. Degradation of poly(carbonate urethane) by gamma irradiation

    Özdemir, T.; Usanmaz, A.

    2007-06-01

    Poly(carbonate urethane) (PCU), is a valuable commercial engineering polymer. In order to understand the possible use of PCU in radioactive waste management as a solidifying agent or as a disposal container, radiation stability of the PCU is studied by Co-60 gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h. The total dose of irradiation was up to 6.24 MGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with rate and total dose of irradiation. Ultimate tensile strength and toughness first increased and then decreased with the irradiation dose. Half value dose (HVD) for elongation was 4010 kGy and for tensile strength 6010 kGy at the dose rate of 1540 Gy/h. The non-irradiated PCU transparent color changed to yellow and then brown with increased irradiation dose. The FTIR spectral analysis showed a random scission of polymer with irradiation. From the experimental observation, it was shown that PCU can be used for embedding radioactive waste for about 300 years.

  14. The effect of gamma irradiation on Nematospiroides dubius

    Mice were infected with gamma irradiated larvae of Nematospiroides dubius and autopsied 5 weeks later for worm counts. It was found that male worms were more susceptible to irradiation than female worms. In both instances, however the survival curve on a semi logarithmic plot was characterised by a shoulder at low doses and an exponential component at the higher levels of exposure. No male worms were recovered from mice infected with larvae given more than 12 krad but some female worms were capable of surviving 20 krad. The fecundity of female worms was reduced by 61% at 4 krad and totally ablated at 8 krad. Further experiments demonstrated that the survival of irradiated N. dubius in vivo was related to the extent of the damage caused at the time of irradiation and was not dependent on additional host parameters. Thus neither the number of irradiated worms inoculated nor the sex of the host radically altered the sex ratio or proportion of the worms lost as a result of irradiating the larvae. Furthermore, treatment with cortisone or sublethal irradiation of the host did not increase the proportion of surviving worms. It was therefore, concluded that a host immune response was not involved. (author)

  15. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation. - Highlights: • The EPR analysis of juices, nectars and syrups proves that the sample has been irradiated. • Two sample preparation procedures were used. • The stability of the radiation induced EPR signals was studied over 2 months. • Application of European standards can be extended for irradiated juices and syrups

  16. Effect of gamma irradiation on milled rice quality

    Gamma irradiation as a technique for preserving cereal grains and other foodstuff is now gaining prominence. It has been proven to reduce post-harvest losses from insect infestation and microbial action. To validate its effects on storage, physicochemical, cooking, and sensory qualities of milled rice, this study was then conducted. Batches of milled rice stored in three different packaging materials (polypropylene sack, polythylene bag, and polypropylene sack lined with polyethylene bag) were irradiated with 0, 0.5, and 1.0 kilogray of Co60. Treated samples were stored at room temperature and their grain qualities were evaluated monthly for a period of nine months. Irradiation decreased grain whiteness, gel consistency, water uptake ratio during cooking, and sensory ratings. It increased iodine blue value and percent soluble solids. The magnitude of change was influenced by the dose of irradiation. The effect was more apparent with 1.0 kGy. dose. Differences in sensory quality between irradiated and non-irradiated samples became less evident with time. Irradiated rice stored in a polypropylene sack lined with a polyethylene bag was more organoleptically acceptable than those packed in polypropylene sacks and polyethylene bags. (Author)

  17. A commercial gamma-ray irradiation plant in Japan

    In 1973, a commercial gamma-ray irradiation plant was constructed in Takasaki, about 100 km north of Tokyo. The plant has been used for both production of irradiated commercial products and irradiation services. The irradiation services are being made available for sterilization of both medical appliances such as disposable medical syringes, catheters, surgical sutures, and sterilization of feed stuffs for animals. Treatment of plastic materials and colouring of both crystals and glass wares are also undertaken. This facility can accommodate 600 kCi of 60Co and has a monthly treating capacity of 12,000 packages ( a standard carton of 340 mm x 400 mm x 500 mm) at an irradiation dose of 1 Mrad/hr. A receiving port for packages is on the second floor and the outlet of the irradiated packages on the first floor, with three lines of connecting loop conveyors between them, and the irradiation compartment in the center section. The space arrangement of the facility is well designed and gravity can be utilized for the transportation of the packages. Polymer impregnated coral is put on the market for ornamental building material on an order contract basis. (author)

  18. Genetic repairing through storage of gamma irradiated seeds in inbred maize (Zea mays L.)

    Kumar, Girjesh; Rai, Prashant Kumar

    2009-01-01

    Gamma irradiation can induce beneficial as well as deleterious impacts on chromosome behavior in crop plants. The cytogenetic changes occurring due to the storage of inbred seeds after gamma irradiation in the somatic and gametic cells of Zea mays L. were investigated in this study. A wide spectrum of chromosomal anomalies was encountered in somatic and gametic cells of maize that are gamma irradiated, stored (aged), and treated with a combination of both of these treatments. Gamma rays and a...

  19. Physical properties of gamma irradiated poly (vinyl alcohol) hydrogel preparations

    Complete text of publication follows. Poly (vinyl alcohol) films from 15% w/w aqueous solutions and a thickness of 0.2 mm were selected for this study. The films were first humidified and then acetalized and/or gamma irradiated. Then, their physical properties were tested. Tensile strength of the hydrogel films reached its maximum value in samples irradiated with a 80 kGy dose but in the case of previously acetalized films the dose necessary for maximum tensile strength was only 40 kGy. In each case tests of stability in boiling water and autoclave heating to 121 deg C were done. The combination of processes of acetalization with formaldehyde and gamma radiation produced an elastic hydrogel with good tackiness and excellent mechanical and thermal strength, with an important reduction of the absorbed radiation dose

  20. Gamma-irradiation of malic acid in aqueous solutions

    Negron-Mendoza, A.; Graff, R.L.; Ponnamperuma, C.

    1980-12-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  1. Induced mutations in mungbean by gamma irradiation

    Uthong-1 is the recommended mungbean variety in Thailand. A study in the greenhouse showed that lethal dose 50 of gamma rays at 28 days for Uthong-1 was about 70 krad. In field experiments the selection method of plant progeny rows was used until the M4 generation. Forty mutant lines showed early maturity and 32 mutants showed high yield. In the M6 generation, seven early maturing and five high yielding mutant lines were selected for preliminary yield trials. The results of these trials showed the mutant line Hy-3-60-8 had the highest yield in the dry and late rainy seasons. Its seed size was also bigger than that of the control by about 5%. The results of subsequent standard yield trials showed that Hy-3-60-8 could do well in the early rainy season and E-3-60-37 was suitable for the dry season. Mutant lines E-3-60-34, E-3-60-30 and E-3-60-37 were superior in seed size to the control in every season. (author). 1 ref, 4 figs, 7 tabs

  2. Increased sensitivity to gamma irradiation in bacteria lacking protein HU.

    Boubrik, F; Rouviere-Yaniv, J.

    1995-01-01

    The heterodimeric HU protein, isolated from Escherichia coli, is associated with the bacterial nucleoid and shares some properties with both histones and HMG proteins. It is the prototype of small bacterial DNA binding proteins with a pleiotropic role in the cell. HU participates in several biological processes like cell division, initiation of DNA replication, transposition, and other biochemical functions. We show here that bacteria lacking HU are extremely sensitive to gamma irradiation. E...

  3. Investigations on starch from gamma irradiated rye and wheat

    Wheat and rye and the flours derived from them were gamma irradiated with 50, 500 and 5000 krad. Changes in the amount and the chemical structure of starch were detected. A degradation of starch could be seen at the highest radiation dose in all samples. Flour is more sensitive to radiation then the respective corn. The lower radiation doses gave effects which were near or below the detection limit of the used methods. 76 refs., 16 figs., 29 tabs

  4. Mutation induction in oil palm cultures using gamma irradiation

    Induced mutations have played an important role in the improvement of wide range of food crops, ornamental plants and oil crops such as sesame and sunflower. Based on these successes an attempt was made to employ the mutagenesis techniques to broaden the genetic variation in breeding materials of oil palm. Traits of interest are high yield, dwarfness and disease resistance. Embryogenic callus initiated from several high yielding clones were exposed to gamma irradiation for optimum dose determination. (Author)

  5. Effect of gamma irradiation on stability of sheep tall fat

    The main objective of this investigation was to find out the effect of gamma irradiation on the physicochemical and storage characteristics of sheep tail fat results of irradiatied samples showed a signi ficaut (P0.01)increase in peroxide value, free fatty acids, carbonyl compounds (saturated and unsaturated), viscosity, and a significant decrease (P0.01)in melting point, smoking point, specific gravity and refractive index and no Iodine value

  6. Resistance of some common fungi to gamma irradiation.

    Saleh, Y G; Mayo, M S; Ahearn, D G

    1988-01-01

    Ten species of fungi representing the genera Alternaria, Aspergillus, Caldosporium, Curvularia, Fusarium, and Penicillium were examined for their relative resistance to gamma irradiation from a 137Cs source. Inactivation doses for dematiaceous fungi in agar medium ranged from 0.6 to greater than 1.7 megarads, whereas those for moniliaceous fungi were less than 0.3 megarad. D10 values (the dose required to reduce the inoculum by 1 log) for Curvularia geniculata (greater than 0.29 megarad) exce...

  7. Effect of gamma irradiation on some plant oils

    The aim of this work was to study the possibility of using different sage doses of γ -rays (up to 1000 K. rad) for destroying or minimizing trypsin inhibitors for soybean seeds and detect their effect on the main constituents of seeds. Attention was focussed on changes occured in physiochemical properties, fatty acids composition and unsaponifiable matter components of soybean oil due to both gamma irradiation and storage treatments. In addition, the changes in the main constituents of soybean meals were also studied

  8. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator

    The Radiation Technology Center from IPEN-CNEN/SP, Brazil, developed a revolutionary design and national technology, a small-sized continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of a continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotating door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m2 of floor area, the irradiator design is a product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 PBq. The performed qualification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process qualification. The initial load of the multipurpose irradiator was 3.4 PBq with 13 cobalt-60 sources model C-188, supplied by MDS Nordion - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The polymethylmetacrylate (PMMA) dosimeter system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning with dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial gamma irradiators available on the market. (authors)

  9. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator

    The Radiation Technology Center from Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Brazil, developed with a revolutionary design and national technology, a small size continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotate door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m2 of floor area, the irradiator design is product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 P Bq (1 MCi). The performed quantification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process quantification. The initial load of the multipurpose irradiator was 3.4 P Bq (92.1 k Ci) with 13 cobalt-60 sources model C-188, supplied by MDS Nordion Ion Technologies - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The poly-methylmethacrylate (PMMA) dosimeters system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning to dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial gamma

  10. Effects of gamma irradiation on durum wheats and spaghetti quality

    The efficient control of insects in cereal grains has long been the main objective of processors who are always looking for safer and more economical methods. Gamma irradiation is a physical technique of food preservation that seems to have a potential to protect grains from insect infestation and microbial contamination during storage. It has been reported that gamma irradiation doses in the range of 0.2-1.0 kGy are effective in controlling insect infestation in cereals (IAEA 1991). Increasing the dose to 5 kGy totally kills the spores of many fungi surviving the lower doses (Murray 1990). Besides its protective role from insects and microorganisms, gamma irradiation also has important effects on various quality criteria of cereal grains. Experiments have been performed to study the effects of gamma irradiation on various aspects of wheat quality such as milling characteristics, dough properties, and baking quality (Lai et al 1959, Lee 1959, Fifield et al 1967, Rao et al 1975, Paredes-Lopez and Covarrubias-Alvarez 1984, MacArthur and D'Appolonia 1983, Ng et al 1989). It was reported that amylograph peak viscosity and falling number values of the flour decreased significantly as radiation levels increased (MacArthur and D'Appolonia 1983, Ng et al 1989). Rao et al (1975) showed that as radiation dose increased, amylograph peak height and dough stability decreased. At 10 kGy, loaf volume and crumb grain were impaired. Paredes-Lopez and Covarrubias-Alvarez (1984) found that the overall bread quality of wheat was greatly reduced at medium doses of radiation (1-10 kGy). At doses >5 kGy, irrespective of the baking formula used, loaf volume and baking quality deteriorated (Lai et al 1959). Irradiation of grain has also caused problems in noodle quality. Japanese noodles (udon) show increased cooking losses and inferior scores in sensory analysis when the bread wheats have been irradiated in the range of 0.2-1.0 kGy (Shibata et al 1974, Urbain 1986). However, no detailed