WorldWideScience

Sample records for accident research network

  1. SARNET: Severe accident research network of excellence

    51 organizations network in SARNET (Severe Accident Research NETwork of Excellence) their capacities of research in order to resolve the most important remaining uncertainties for enhancing, in regard of Severe Accidents (SA), the safety of existing and future Nuclear Power Plants (NPPs). This project, co-funded by the European Commission (EC), has been defined in order to optimise the use of the available means and to constitute sustainable research groups in the European Union. SARNET tackles the fragmentation that exists between the different R and D national programmes, in defining common research programmes and developing common computer tools and methodologies for safety assessment. SARNET comprises most of the actors involved in SA research in Europe (plus Canada). To reach these objectives, all the organizations networked in SARNET contribute to a so-called Joint Programme of Activities (JPA), which consists in: Implementing an advanced communication tool for accessing all project information, fostering exchange of information, and managing documents; Harmonizing and re-orienting the research programmes; Jointly analysing the experimental results provided by research programmes in order to elaborate a common understanding of relevant phenomena; Developing the ASTEC code (integral computer code used to predict the NPP behaviour during a postulated SA), which capitalizes in terms of physical models the knowledge produced within SARNET; Developing Scientific Databases, in which all the results of research programmes are stored in a common format (DATANET); Developing a common methodology for Probabilistic Safety Assessment (PSA) of NPPs; Developing courses and writing a text book on SA for students and researchers; Promoting personnel mobility between various European organizations. After the first period (2004-2008), co-funded by the EC, the network will progressively evolve toward self-sustainability. The bases for such an evolution, still under discussion

  2. Recent severe accident research synthesis of the major outcomes from the SARNET network

    Highlights: • SARNET network of excellence integration mid-2013 in the NUGENIA Association. • Progress of knowledge on corium behaviour, hydrogen explosion and source term. • Further development of ASTEC integral code to capitalize knowledge. • Ranking of next R&D high priority issues accounting for international research. • Dissemination of knowledge through education courses and ERMSAR conferences. - Abstract: The SARNET network (Severe Accident Research NETwork of excellence), co-funded by the European Commission from 2004 to 2013, has allowed to significantly improve the knowledge on severe accidents and to disseminate it through courses and ERMSAR conferences. The major investigated topics, involving more than 250 researchers from 22 countries, were in- and ex-vessel corium/debris coolability, molten-core–concrete-interaction, steam explosion, hydrogen combustion and mitigation in containment, impact of oxidising conditions on source term, and iodine chemistry. The ranking of the high priority issues was updated to account for the results of recent international research and for the impact of Fukushima nuclear accidents in Japan. In addition, the ASTEC integral code was further developed to capitalize the new knowledge. The network has reached self-sustainability by integration in mid-2013 into the NUGENIA Association. The main activities and outcomes of the network are presented

  3. Recent severe accident research synthesis of the major outcomes from the SARNET network

    Van Dorsselaere, J.-P., E-mail: jean-pierre.van-dorsselaere@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Auvinen, A. [VTT Technical Research Centre, Espoo (Finland); Beraha, D. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), Köln (Germany); Chatelard, P. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Herranz, L.E. [Centro de Investigaciones Energéticas MedioAmbientales y Tecnológicas (CIEMAT), Madrid (Spain); Journeau, C. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Paris (France); Klein-Hessling, W. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), Köln (Germany); Kljenak, I. [Jozef Stefan Institute (JSI), Ljubljana (Slovenia); Miassoedov, A. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Paci, S. [University of Pisa, Pisa (Italy); Zeyen, R. [European Commission Joint Research Centre, Institute for Energy (JRC/IET), Petten (Netherlands)

    2015-09-15

    Highlights: • SARNET network of excellence integration mid-2013 in the NUGENIA Association. • Progress of knowledge on corium behaviour, hydrogen explosion and source term. • Further development of ASTEC integral code to capitalize knowledge. • Ranking of next R&D high priority issues accounting for international research. • Dissemination of knowledge through education courses and ERMSAR conferences. - Abstract: The SARNET network (Severe Accident Research NETwork of excellence), co-funded by the European Commission from 2004 to 2013, has allowed to significantly improve the knowledge on severe accidents and to disseminate it through courses and ERMSAR conferences. The major investigated topics, involving more than 250 researchers from 22 countries, were in- and ex-vessel corium/debris coolability, molten-core–concrete-interaction, steam explosion, hydrogen combustion and mitigation in containment, impact of oxidising conditions on source term, and iodine chemistry. The ranking of the high priority issues was updated to account for the results of recent international research and for the impact of Fukushima nuclear accidents in Japan. In addition, the ASTEC integral code was further developed to capitalize the new knowledge. The network has reached self-sustainability by integration in mid-2013 into the NUGENIA Association. The main activities and outcomes of the network are presented.

  4. Genetic algorithm-based neural network for accidents diagnosis of research reactors on FPGA

    The Nuclear Research Reactors plants are expected to be operated with high levels of reliability, availability and safety. In order to achieve and maintain system stability and assure satisfactory and safe operation, there is increasing demand for automated systems to detect and diagnose such failures. Artificial Neural Networks (ANNs) are one of the most popular solutions because of their parallel structure, high speed, and their ability to give easy solution to complicated problems. The genetic algorithms (GAs) which are search algorithms (optimization techniques), in recent years, have been used to find the optimum construction of a neural network for definite application, as one of the advantages of its usage. Nowadays, Field Programmable Gate Arrays (FPGAs) are being an important implementation method of neural networks due to their high performance and they can easily be made parallel. The VHDL, which stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description Language, have been used to describe the design behaviorally in addition to schematic and other description languages. The description of designs in synthesizable language such as VHDL make them reusable and be implemented in upgradeable systems like the Nuclear Research Reactors plants. In this thesis, the work was carried out through three main parts.In the first part, the Nuclear Research Reactors accident's pattern recognition is tackled within the artificial neural network approach. Such patterns are introduced initially without noise. And, to increase the reliability of such neural network, the noise ratio up to 50% was added for training in order to ensure the recognition of these patterns if it introduced with noise.The second part is concerned with the construction of Artificial Neural Networks (ANNs) using Genetic algorithms (GAs) for the nuclear accidents diagnosis. MATLAB ANNs toolbox and GAs toolbox are employed to optimize an ANN for this purpose. The results obtained show

  5. SARNET. Severe Accident Research Network - key issues in the area of source term

    About fifty European organisations integrate in SARNET (Network of Excellence of the EU 6th Framework Programme) their research capacities in resolve better the most important remaining uncertainties and safety issues concerning existing and future Nuclear Power Plants (NPPs) under hypothetical Severe Accident (SA) conditions. Wishing to maintain a long-lasting cooperation, they conduct three types of activities: integrating activities, spreading of excellence and jointly executed research. This paper summarises the main results obtained by the network after the first year, giving more prominence to those from jointly executed research in the Source Term area. Integrating activities have been performed through different means: the ASTEC integral computer code for severe accident transient modelling, through development of PSA2 methodologies, through the setting of a structure for definition of evolving R and D priorities and through the development of a web-network of data bases that hosts experimental data. Such activities have been facilitated by the development of an Advanced Communication Tool. Concerning spreading of excellence, educational courses covering Severe Accident Analysis Methodology and Level 2 PSA have been set up, to be given in early 2006. A detailed text book on Severe Accident Phenomenology has been designed and agreed amongst SARNET members. A mobility programme for students and young researchers is being developed, some detachments are already completed or in progress, and examples are quoted. Jointly executed research activities concern key issues grouped in the Corium, Containment and Source Term areas. In Source Term, behaviour of the highly radio-toxic ruthenium under oxidising conditions (like air ingress) for HBU and MOX fuel has been investigated. First modelling proposals for ASTEC have been made for oxidation of fuel and of ruthenium. Experiments on transport of highly volatile oxide ruthenium species have been performed. Reactor

  6. The severe accident research program at KIT

    The understanding of the plant behaviour under beyond design basis accidents as well as the interaction of the operators with the plant is the most important prerequisite to develop proper strategies to both control the accident progression and to minimize the radiological risk that may derive from operating nuclear power plants. In view of the Fukushima accident, a review of many issues important to safety e.g. severe accident analysis methodologies and assumptions, emergency operational procedures, severe accident management procedures (SAM), decision lines of the emergency team, etc. is needed to draw conclusions in order to avoid a repetition of Fukushima-like accidents.In addition, situations like the ‘black control room’ need to be reconsidered and a re-evaluation of the necessary instrumentation for hypothetical severe accident situations is urgently needed. If the real plant state during core meltdown accidents is unknown, no effective measures can be initiated by the emergency team in order to assure the integrity of the safety barriers and hence the release of radioactive material to the environment. The work performed in this area is integrated in the European Networks such as SARNET (Severe Accident Research Network) for the severe accidents, and for emergency management in the NERIS-TP. In future all the activities will be included in the NUGENIA platform. A brief overview of the KIT activities together with the experimental test facilities is given

  7. Recent advances in the source term area within the SARNET European severe accident research network

    Herranz, L.E., E-mail: luisen.herranz@ciemat.es [Centro de Investigaciones Energeticas Medio Ambientales y Tecnologica, CIEMAT, Avda. Complutense 40, E-28040 Madrid (Spain); Haste, T. [Institut de Radioprotection et de Sûreté Nucléaire, IRSN, BP 3, F-13115 St Paul lez Durance Cedex (France); Kärkelä, T. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo (Finland)

    2015-07-15

    Highlights: • Main achievements of source term research in SARNET are given. • Emphasis on the radiologically important iodine and ruthenium fission products. • Conclusions on FP release, transport in the RCS and containment behaviour. • Significance of large-scale integral experiments to validate the analyses used. • A thorough list of the most recent references on source term research results. - Abstract: Source Term has been one of the main research areas addressed within the SARNET network during the 7th EC Framework Programme of EURATOM. The entire source term domain was split into three major areas: oxidising impact on source term, iodine chemistry in the reactor coolant system and containment and data and code assessment. The present paper synthesises the main technical outcome stemming from the SARNET FWP7 project in the area of source term and includes an extensive list of references in which deeper insights on specific issues may be found. Besides, based on the analysis of the current state of the art, an outlook of future source term research is outlined, where major changes in research environment are discussed (i.e., the end of the Phébus FP project; the end of the SARNET projects; and the launch of HORIZON 2020). Most probably research projects will be streamlined towards: release and transport under oxidising conditions, containment chemistry, existing and innovative filtered venting systems and others. These will be in addition to a number of projects that have been completed or are ongoing under different national and international frameworks, like VERDON, CHIP and EPICUR started under the International Source Term Programme (ISTP), the OECD/CSNI programmes BIP, BIP2, STEM, THAI and THAI2, and the French national programme MIRE. The experimental PASSAM project under the 7th EC Framework programme, focused on source term mitigation systems, is highlighted as a good example of a project addressing potential enhancement of safety systems

  8. Recent advances in the source term area within the SARNET European severe accident research network

    Highlights: • Main achievements of source term research in SARNET are given. • Emphasis on the radiologically important iodine and ruthenium fission products. • Conclusions on FP release, transport in the RCS and containment behaviour. • Significance of large-scale integral experiments to validate the analyses used. • A thorough list of the most recent references on source term research results. - Abstract: Source Term has been one of the main research areas addressed within the SARNET network during the 7th EC Framework Programme of EURATOM. The entire source term domain was split into three major areas: oxidising impact on source term, iodine chemistry in the reactor coolant system and containment and data and code assessment. The present paper synthesises the main technical outcome stemming from the SARNET FWP7 project in the area of source term and includes an extensive list of references in which deeper insights on specific issues may be found. Besides, based on the analysis of the current state of the art, an outlook of future source term research is outlined, where major changes in research environment are discussed (i.e., the end of the Phébus FP project; the end of the SARNET projects; and the launch of HORIZON 2020). Most probably research projects will be streamlined towards: release and transport under oxidising conditions, containment chemistry, existing and innovative filtered venting systems and others. These will be in addition to a number of projects that have been completed or are ongoing under different national and international frameworks, like VERDON, CHIP and EPICUR started under the International Source Term Programme (ISTP), the OECD/CSNI programmes BIP, BIP2, STEM, THAI and THAI2, and the French national programme MIRE. The experimental PASSAM project under the 7th EC Framework programme, focused on source term mitigation systems, is highlighted as a good example of a project addressing potential enhancement of safety systems

  9. Conclusions on severe accident research priorities

    Highlights: • Estimation of research priorities related to severe accident phenomena. • Consideration of new topics, partly linked to the severe accidents at Fukushima. • Consideration of results of recent projects, e.g. SARNET, ASAMPSA2, OECD projects. - Abstract: The objectives of the SARNET network of excellence are to define and work on common research programs in the field of severe accidents in Gen. II–III nuclear power plants and to further develop common tools and methodologies for safety assessment in this area. In order to ensure that the research conducted on severe accidents is efficient and well-focused, it is necessary to periodically evaluate and rank the priorities of research. This was done at the end of 2008 by the Severe Accident Research Priority (SARP) group at the end of the SARNET project of the 6th Framework Programme of European Commission (FP6). This group has updated this work in the FP7 SARNET2 project by accounting for the recent experimental results, the remaining safety issues as e.g. highlighted by Level 2 PSA national studies and the results of the recent ASAMPSA2 FP7 project. These evaluation activities were conducted in close relation with the work performed under the auspices of international organizations like OECD or IAEA. The Fukushima-Daiichi severe accidents, which occurred while SARNET2 was running, had some effects on the prioritization and definition of new research topics. Although significant progress has been gained and simulation models (e.g. the ASTEC integral code, jointly developed by IRSN and GRS) were improved, leading to an increased confidence in the predictive capabilities for assessing the success potential of countermeasures and/or mitigation measures, most of the selected research topics in 2008 are still of high priority. But the Fukushima-Daiichi accidents underlined that research efforts had to focus still more to improve severe accident management efficiency

  10. Accident scenario diagnostics with neural networks

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  11. Important severe accident research issues after Fukushima accident

    After the Fukushima accident several investigation committees issued reports with lessons learned from the accident in Japan. Among those lessons, several recommendations have been made on severe accident research. Similar to the EURSAFE efforts under EU Program, review of specific severe accident research items was started before Fukushima accident in working group of Atomic Energy Society of Japan (AESJ) in terms of significance of consequences, uncertainties of phenomena and maturity of assessment methodology. Re-investigation has been started since the Fukushima accident. Additional effects of Fukushima accident, such as core degradation behaviors, sea water injection, containment failure/leakage and re-criticality have been covered. The review results are categorized in ten major fields; core degradation behavior, core melt coolability/retention in containment vessel, function of containment vessel, source term, hydrogen behavior, fuel-coolant interaction, molten core concrete interaction, direct containment heating, recriticality and instrumentation in severe accident conditions. Based on these activities and also author's personal view, the present paper describes the perspective of important severe accident research issues after Fukushima accident. Those are specifically investigation of damaged core and components, advanced severe accident analysis capabilities and associated experimental investigations, development of reliable passive cooling system for core/containment, analysis of hydrogen behavior and investigation of hydrogen measures, enhancement of removal function of radioactive materials of containment venting, advanced instrumentation for the diagnosis of severe accident and assessment of advanced containment design which excludes long-term evacuation in any severe accident situations. (author)

  12. SAMSON: Severe Accident Management System Online Network

    SAMSON, Severe Accident Management System Online Network, is a computational tool used in the event of a nuclear power plant accident by accident managers in the Technical Support Centers (TSC) and Emergency Offsite Facilities (EOF). SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. The status points analyzed include radiation levels, flow rates, pressure levels, temperatures and water levels. SAMSON uses an expert system as well as neural networks trained with the back propagation learning algorithm to make predictions. Previous training on data from accident analysis code allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTR), with breaks ranging from one tube to eights tubes, and loss of coolant accidents (LOCA), with breaks ranging from 0.001 square feet in size to breaks 3.0 square feet. SAMSON contains several neural networks for each accident type and break size, and chooses the correct network after accident classification by in expert system. SAMSON also provides information concerning the status of plant sensors and recovery strategies

  13. Accident analysis in research reactors

    With the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. The challenge today is to revisit the safety features of the existing nuclear plants and particularly research reactors in order to verify that the safety requirements are still met and - when necessary - to introduce some amendments not only to meet the new requirements but also to introduce new equipment from recent development of new technologies. The purpose of the present paper is to provide an overview of the accident analysis technology applied to the research reactor, with emphasis given to the capabilities of computational tools. (author)

  14. Severe Accident Research Program plan update

    In August 1989, the staff published NUREG-1365, ''Revised Severe Accident Research Program Plan.'' Since 1989, significant progress has been made in severe accident research to warrant an update to NUREG-1365. The staff has prepared this SARP Plan Update to: (1) Identify those issues that have been closed or are near completion, (2) Describe the progress in our understanding of important severe accident phenomena, (3) Define the long-term research that is directed at improving our understanding of severe accident phenomena and developing improved methods for assessing core melt progression, direct containment heating, and fuel-coolant interactions, and (4) Reflect the growing emphasis in two additional areas--advanced light water reactors, and support for the assessment of criteria for containment performance during severe accidents. The report describes recent major accomplishments in understanding the underlying phenomena that can occur during a severe accident. These include Mark I liner failure, severe accident scaling methodology, source term issues, core-concrete interactions, hydrogen transport and combustion, TMI-2 Vessel Investigation Project, and direct containment heating. The report also describes the major planned activities under the SARP over the next several years. These activities will focus on two phenomenological issues (core melt progression, and fuel-coolant interactions and debris coolability) that have significant uncertainties that impact our understanding and ability to predict severe accident phenomena and their effect on containment performance SARP will also focus on severe accident code development, assessment and validation. As the staff completes the research on severe accident issues that relate to current generation reactors, continued research will focus on efforts to independently evaluate the capability of new advanced light water reactor designs to withstand severe accidents

  15. The network researchers' network

    Henneberg, Stephan C.; Jiang, Zhizhong; Naudé, Peter;

    2009-01-01

    The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987). In thi......The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987......). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...

  16. Investigation of Qom Rural Area Water Network Accident in 2010 and Minimization Approaches of Accident Frequencies

    Hossein Jafari Mansoorian; Ahmad Reza Yari; Mohsen Ansari; Shahram Nazari; Mohamad Saberi Bidgoli; Gharib Majidi

    2016-01-01

    Background & Aims of the Study : Accidents in water networks can lead to increase the uncounted water, costs of repair, maintenance, restoration and enter water contaminants to water network. The aim of this study is to survey the accidents of Qom rural water network and choose the right approaches to reduce the number of accidents. Materials & Methods: In this cross-sectional study, four sector of Qom province (Markazi, Dastjerd, Kahak and Qahan), were assessed over a period of 8 mon...

  17. A method for modeling and analysis of directed weighted accident causation network (DWACN)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Ding, Jing

    2015-11-01

    Using complex network theory to analyze accidents is effective to understand the causes of accidents in complex systems. In this paper, a novel method is proposed to establish directed weighted accident causation network (DWACN) for the Rail Accident Investigation Branch (RAIB) in the UK, which is based on complex network and using event chains of accidents. DWACN is composed of 109 nodes which denote causal factors and 260 directed weighted edges which represent complex interrelationships among factors. The statistical properties of directed weighted complex network are applied to reveal the critical factors, the key event chains and the important classes in DWACN. Analysis results demonstrate that DWACN has characteristics of small-world networks with short average path length and high weighted clustering coefficient, and display the properties of scale-free networks captured by that the cumulative degree distribution follows an exponential function. This modeling and analysis method can assist us to discover the latent rules of accidents and feature of faults propagation to reduce accidents. This paper is further development on the research of accident analysis methods using complex network.

  18. Network conditioning under conflicting goals: Accident causation

    Networks based on the Barto-Sutton architecture (BSA) of neural-like elements have an information-processing structure that is analogous to the cognitive structure of a human. Given a set of explicitly stated rules of conduct, such networks develop a set of skills that is capable of satisfying the rules. In this sense, the network acts as a translator of rules into skill-based behavior. The BSA acquires its skills through casual, correlation-based scheduling. Stated briefly, it first constructs an internal representation, or model, of the rules of conduct, and then uses the model to correct deficiencies in its skill. It learns in a manner that closely resembles classical conditioning, shifting the onset of signals associated with unconditioned stimuli forward in time to coincide with the onset of conditioning stimuli. The low-level positive reinforcement the network receives from enhancing its operational efficiency is immediate and direct. In the absence of countervailing influences, this continuous pressure is sufficient to discount the recollection of past failures and leads to accidents with a predictable regularity

  19. Investigation of Qom Rural Area Water Network Accident in 2010 and Minimization Approaches of Accident Frequencies

    Hossein Jafari Mansoorian

    2016-02-01

    Full Text Available Background & Aims of the Study : Accidents in water networks can lead to increase the uncounted water, costs of repair, maintenance, restoration and enter water contaminants to water network. The aim of this study is to survey the accidents of Qom rural water network and choose the right approaches to reduce the number of accidents. Materials & Methods: In this cross-sectional study, four sector of Qom province (Markazi, Dastjerd, Kahak and Qahan, were assessed over a period of 8 months (July – January 2010. This study was conducted through questionnaire of Ministry of Energy. Results: The total number of accidents was 763. The highest number of accidents in the four sectors was related to Markazi sector with 228 accidents. According to the time of the accident, the highest and lowest number of accident was related to September (19.7% and November (6.8%, respectively. According to the location of the accident on network, the highest and lowest number of accident was related to distribution network (64% and connections (17.5% and transmission pipe (18.34%, respectively. According to the type of the accident, the highest and lowest number of accident was related to breaking (47.8% and gasket failure (1.2%, respectively. Considering with the pipes’ material, the highest and lowest number of accident was related to polyethylene pipes (93% and steel and cast iron pipes (0.5%, 0.5%, respectively. Conclusions: Due to the high break rate of Polyethylene pipes, it is recommended to be placed in priority of leak detection and rehabilitation.   .

  20. Severe accident research in the UK

    Severe Accident R and D in the UK builds on more than 25 years experience and for the PWR is firmly committed to international collaboration. The focus for the work has been the support for a comprehensive Level 3 PSA for Sizewell 'B'. The paper outlines the particular contributions that the UK has made to research in direct containment heating, steam explosions, fission product behaviour and code development and assessment. (author)

  1. Nuclear power plant Severe Accident Research Plan

    The Severe Accident Research Plan (SARP) will provide technical information necessary to support regulatory decisions in the severe accident area for existing or planned nuclear power plants, and covers research for the time period of January 1982 through January 1986. SARP will develop generic bases to determine how safe the plants are and where and how their level of safety ought to be improved. The analysis to address these issues will be performed using improved probabilistic risk assessment methodology, as benchmarked to more exact data and analysis. There are thirteen program elements in the plan and the work is phased in two parts, with the first phase being completed in early 1984, at which time an assessment will be made whether or not any major changes will be recommended to the Commission for operating plants to handle severe accidents. Additionally at this time, all of the thirteen program elements in Chapter 5 will be reviewed and assessed in terms of how much additional work is necessary and where major impacts in probabilistic risk assessment might be achieved. Confirmatory research will be carried out in phase II to provide additional assurance on the appropriateness of phase I decisions. Most of this work will be concluded by early 1986

  2. Current severe accident research facilities and projects

    The Working Group on the Analysis and Management of Accidents (GAMA) is mainly composed of technical specialists in the areas of coolant system thermal-hydraulics, in-vessel protection, containment protection, and fission product retention. Its general functions include the exchange of information on national and international activities in these areas, the exchange of detailed technical information, and the discussion of progress achieved in respect of specific technical issues. Severe accident management is one of the important tasks of the group. This document is an update of the 'Current Severe Accident Research Facilities and Projects' list. Facilities and projects are sorted according to the following criteria: In-Vessel Phenomena: Core Degradation and Melt Progression, Molten Core Debris Interaction with the Reactor Pressure Vessel Lower Head and Mechanical Behaviour of Reactor Pressure Vessel Lower Head; In-Vessel and Ex-Vessel Molten Fuel/Coolant Interactions; Ex-Vessel Phenomena: Molten Core Debris/Concrete Interactions, Molten Core/Ceramic Interaction, Melt Release (including DCH), Melt Spreading and Catching Devices Studies, Melt Coolability, Corium Melt properties; Hydrogen Transport and Combustion: Mixing and Distribution, Deflagration, Deflagration-to-Detonation Transition, Passive Recombiner Performance; Mechanical Behaviour of Reactor Pressure Vessel Lower Head; Containment Structural Integrity: Containment Failure Experiment and Analysis, Material Properties and Structural Behaviour, Containment Thermal-Hydraulics, Containment Cooling, Cable Penetration Integrity; Fission Products and Aerosols: Effects of Specific Elements on Iodine Volatility, Release of Low-Volatility Fission Products/Late In-Vessel Fission Product Release, Reactor Materials Release, Aerosol and Iodine Behaviour in Reactor Coolant System and Containment, Retention, Resuspension and Revaporization in Primary Circuit, Aerosol Nucleation and Transport, Source Term, Containment

  3. Perspective on post-Fukushima severe accident research

    After the Fukushima Daiichi accident in March 2011 several investigation committees issued reports with lessons learned from the accident, in which some recommendations on severe accident research are included. The review of specific severe accident research items had already started before Fukushima accident in working group of Atomic Energy Society of Japan (AESJ) in terms of significance of consequences, uncertainties of phenomena and maturity of assessment methodology. Re-investigation started after the Fukushima accident in this working group to cover additional effects of Fukushima accident, such as core degradation behaviors, sea water injection, containment failure/leakage and re-criticality. The review results are categorized in nine major fields; core degradation behavior, core melt coolability/retention in containment vessel, function of containment vessel, source term, hydrogen behavior, fuel-coolant interaction, molten core concrete interaction, recriticality and instrumentation in severe accident conditions. In January 2012, in collaboration with this working group, Research Expert Committee on Evaluation of Severe Accident was established in AESJ in order to investigate severe accident related issues for future LWR development. Based on these activities and also author's personal view, the present paper describes the seven important severe accident research issues after Fukushima accident. They are (1) investigation of damaged core and components, (2) advanced severe accident analysis capabilities and associated experimental investigations, (3) development of reliable passive cooling system for core/containment, (4) analysis of hydrogen behavior and investigation of hydrogen measures, (5) enhancement of removal function of radioactive materials of containment venting, (6) advanced instrumentation for the diagnosis of severe accident and (7) assessment of advanced containment design which exchides long-term evacuation in any severe accident situations

  4. Analysis and research status of severe core damage accidents

    The Severe Core Damage Research and Analysis Task Force was established in Nuclear Safety Research Center, Tokai Research Establishment, JAERI, in May, 1982 to make a quantitative analysis on the issues related with the severe core damage accident and also to survey the present status of the research and provide the required research subjects on the severe core damage accident. This report summarizes the results of the works performed by the Task Force during last one and half years. The main subjects investigated are as follows; (1) Discussion on the purposes and necessities of severe core damage accident research, (2) proposal of phenomenological research subjects required in Japan, (3) analysis of severe core damage accidents and identification of risk dominant accident sequences, (4) investigation of significant physical phenomena in severe core damage accidents, and (5) survey of the research status. (author)

  5. European expert network for the reduction of uncertainties in severe accident safety issues (EURSAFE)

    EURSAFE thematic network was a concerted action in the sixth framework programme of the European Commission. It established a large consensus among the main actors in nuclear safety on the severe accident issues where large uncertainties still subsist. The conclusions were derived from a first-of-kind phenomena identification and ranking tables (PIRT) on all aspects of severe accident also realised in the frame of the project. Starting from a list of all severe accident phenomena containing approximately 1000 entries and established by the twenty partner organisations, 106 phenomena were retained eventually as both important for safety and still lacking sufficient knowledge. Ultimately, 21 research areas for addressing these phenomena regrouped according to their similarities were identified. A networking structure for implementing and executing the necessary research was proposed, which promotes integration and harmonisation of the different national programmes. A severe accident database structure was proposed to ensure preservation of experimental data and enhanced communication for data exchange and use for severe accident codes assessment. The final product, named EURSAFE, is a website network, http://asa2.jrc.it/eursafe, connecting nodes located at partner sites. As the result of an action involving R and D governmental institutions, regulatory bodies, nuclear industry, utilities and universities from six EU Member States (Finland, France, Germany, Spain, Sweden, UK) plus JRC, three European third countries (Czech Republic, Hungary, Switzerland), and USA, EURSAFE represents a significant step towards harmonisation and credibility of the approaches, and resolution of the remaining severe accident issues

  6. Severe Accident Management System On-line Network SAMSON

    SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the back propagation learning algorithms to make predictions. Training on data from an accident analysis code (MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm2) in size to breaks 3.0 square feet in size (2800 cm2). (author)

  7. An overview of selected severe accident research and applications

    Severe accident research is being conducted world wide by industry organizations, utilities, and regulatory agencies. As this research is disseminated, it is being applied by utilities when they perform their Individual Plant Examinations (IPEs) and consider the preparation of Accident Management programs. The research is associated with phenomenological assessments of containment challenges and associated uncertainties, severe accident codes and analysis tools, systematic evaluation processes, and accident management planning. The continued advancement of this research and its applications will significantly contribute to the enhanced safety and operation of nuclear power plants. (author)

  8. Neural network-based expert system for severe accident management

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. A second objective of the program was to develop an interactive graphical user interface which presented the system's information in an easily accessible and straightforward manner to the user. This paper describes the technical and regulatory foundation upon which the expert system is based and provides a background on the development of a new severe accident management tool. This tool provides data to assist in; (1) planning and developing priorities for recovery actions, (2) evaluating recovery action feasibility, (3) identifying recovery action options, and (4) assessing the timing and possible effects of potential recovery strategies. These performance characteristics represent the goals identified for the Severe Accident Management Strategies Online Network (SAMSON) which is currently under development. 4 refs, 1 fig., 1 tab

  9. Taking into account a reactivity accident in research reactors design

    The particular studies realized in France for research reactors design at a Borax accident type are described. The cases of ORPHEE and RHF reactors are particularly developed. The evolution of the studies and the conservatism used are given

  10. Nuclear power plant severe accident research plan. Revision 1

    Subsequent to the Three Mile Island Unit 2 accident, recommendations were made by a number of review committees to consider regulatory changes which would provide better protection of the public from severe accidents. Over the past six years a major research effort has been underway by the NRC to develop an improved understanding of severe accidents and to provide a technical basis to support regulatory decisions. The purpose of this report is to describe current plans for the completion and extension of this research in support of ongoing regulatory actions in this area

  11. Severe accident aerosol research in Finland

    The retention of fission products in the steam generator tubing and in the secondary side is poorly understood at the moment. Most experimental programs have concentrated on the initial stages of deposition. Much less attention has been paid to the situations when deposition-resuspension-revaporisation are important as the deposit layers are getting thicker. The understanding of fission product deposition in realistic steam generator conditions is needed to design efficient accident management procedures. For example if there is large deposition already in the ruptured pipe(s), the accident management procedure is different from the case where most deposition would occur in the secondary side. This is considered very important because steam generator tube rupture sequences are included in the risk dominant sequences. Aerosol deposition has been studied widely in laboratory scale. However, most of the studies have concentrated on situations where the deposit layer is thin and do not significantly affect the process. In severe accident applications the most important deposition studies have been LACE, STORM, TUBA, TRANSAT and AIDA programmes. None of these tests considered steam generator conditions. Thus we can say that there is basic knowledge on aerosol deposition and removal from gas streams in water pools, but it can not be applied directly to steam generator tube rupture cases. At the moment the effectiveness of such accident management procedures as secondary side flooding can not be verified as there is no experimental data and the models in severe accident codes are poor or non-existing. As a results of this work we will get data on deposition in the tubing, in the break location and in the secondary side. Experiments will be performed in horizontal steam generators (VVER reactors). (orig.)

  12. Road Accident Prevention with Instant Emergency Warning Message Dissemination in Vehicular Ad-Hoc Network

    P. Gokulakrishnan; Ganeshkumar, P.

    2015-01-01

    A Road Accident Prevention (RAP) scheme based on Vehicular Backbone Network (VBN) structure is proposed in this paper for Vehicular Ad-hoc Network (VANET). The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident) is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities...

  13. 基于模糊神经网络的交通事故微观预测方法研究%Research on Microcosmic Forecast Methods of Road Accidents Based on Fuzzy Neural Network

    刘金; 邓卫

    2011-01-01

    The microcosmic prediction of road accidents consists of the prediction of highway section and intersection accidents. Based on an overall summary about the existed superior and inferior forecast methods, the improvement direction in the existed prediction methods was discussed, an accident microcosmic prediction method based on fuzzy neural network wasput forward, then the network structure and learning algorithm were analyzed; an instance analysis was carried out with the traffic accident census data of Shihezi. An influence factor of highway section was selected as an import variable, then, the algorithm of fuzzy neural network was realized through Matlab program. Compared with the negative binomial regression model and BP neural network, the advantage of the fuzzy neural network model was examined.%道路交通事故微观预测包括对路段和交叉口事故指标的预测.本文总结现有预测方法的优劣性,探讨现有预测方法的改善方向,提出了基于模糊神经网络的交通事故微观预测方法,分析了网络结构和学习算法。以石河子市交通事故调查数据进行实例分析,选择路段事故影响因素作为输入变量,通过Matlab编程实现模糊神经网络的算法,并与负二项回归模型、BP神经网络模型作出比较,证明了模糊神经网络模型的优越性。

  14. Spreading of Excellence in SARNET Network on Severe Accidents: The Education and Training Programme

    Sandro Paci

    2012-01-01

    Full Text Available The SARNET2 (severe accidents Research NETwork of Excellence project started in April 2009 for 4 years in the 7th Framework Programme (FP7 of the European Commission (EC, following a similar first project in FP6. Forty-seven organisations from 24 countries network their capacities of research in the severe accident (SA field inside SARNET to resolve the most important remaining uncertainties and safety issues on SA in water-cooled nuclear power plants (NPPs. The network includes a large majority of the European actors involved in SA research plus a few non-European relevant ones. The “Education and Training” programme in SARNET is a series of actions foreseen in this network for the “spreading of excellence.” It is focused on raising the competence level of Master and Ph.D. students and young researchers engaged in SA research and on organizing information/training courses for NPP staff or regulatory authorities (but also for researchers interested in SA management procedures.

  15. Progress in LWR severe accident research at the Forschungszentrum Karlsruhe

    The R and D program at the Forschungszentrum Karlsruhe (FZK), performed within Project Nuclear Safety Research (PSF), is centered around phenomena and processes that could possibly endanger containment integrity of a large Pressurized Water Reactor after a severe accident. It includes activities on in-vessel accident progression, in-vessel steam explosion, hydrogen behavior and mitigation, ex-vessel melt behavior. The goal is to describe and quantify the governing mechanisms and to develop verified models and calculational tools which are able to predict maximum possible loads for realistic accident scenarios on full plant scale. (author)

  16. Loss of Coolant Accident Analysis for Israel Research Reactor

    One of the main objectives of reactor safety systems is to keep the reactor core in condition that does not permit any release of radioactivity into the environment. In order to ensure this, the reactor must have sufficient safety margins during all possible operational and accident conditions. This paper focuses on the analysis of loss of coolant accident (LOCA), which is one of the most severe scenarios among other hypothetical events such as reactivity induced accidents, loss of flow accident, etc. The analysis was carried out for the Israel Research Reactor 1 (IRR-1), which is a 5MW swimming pool type research reactor. The IRR-1 core consists of MTR highlyenriched uranium (HEU) fuel type, and is reflected by Graphite elements. During normal operation, the reactor core is cooled by downward forced flow of light water circulated by a primary cooling circuit pump. But during shutdown stage, the reactor core is cooled by upward natural convection flow through a safety flapper valve. There could be several primary causes to initiate a LOCA in research reactors, such as breaks in the piping system, ruptures of the beam tubes, and concrete wall failures of the reactor pool. Although probability of large break accident in research reactors is very low, once the accident occurs, it may cause major core damages, so it must be considered

  17. Revised Severe Accident Research Program plan, FY 1990--1992

    For the past 10 years, since the Three Mile Island accident, the NRC has sponsored an active research program on light-water-reactor severe accidents as part of a multi-faceted approach to reactor safety. This report describes the revised Severe Accident Research Program (SARP) and how the revisions are designed to provide confirmatory information and technical support to the NRC staff in implementing the staff's Integration Plan for Closure of Severe Accident Issues as described in SECY-88-147. The revised SARP addresses both the near-term research directed at providing a technical basis upon which decisions on important containment performance issues can be made and the long-term research needed to confirm and refine our understanding of severe accidents. In developing this plan, the staff recognized that the overall goal is to reduce the uncertainties in the source term sufficiently to enable the staff to make regulatory decisions on severe accident issues. However, the staff also recognized that for some issues it may not be practical to attempt to further reduce uncertainties, and some regulatory decisions or conclusions will have to be made with full awareness of existing uncertainties. 2 figs., 1 tab

  18. Researching Effects of Drivers Features on Traffic Accidents: Kocaeli Model

    UÇKUN, Ceylan Gazi; ÇELİKKOL, Ethem Soner; TEKİN, Vasfı Nadir; ÇELİKKOL, Şimal

    2013-01-01

    In addition to environmental conditions, weather conditions and density, situations related to drivers are more effective on traffic accidents, according to available data. Regarding occurrence of traffic accidents, it is observed that point of view of drivers towards traffic rules and drivers’ compliance with these rules is not parallel. It is important to research the reasons that cause this situation. A normal person’s mental state does not change without any reason at traffic. It is clear...

  19. RESEARCHING EFFECTS OF DRIVERS FEATURES ON TRAFFIC ACCIDENTS: KOCAELİ MODEL

    CEYLAN GAZI UÇKUN; ETHEM SONER ÇELİKKOL; VASFI NADIR TEKİN; ŞIMAL ÇELİKKOL

    2013-01-01

    In addition to environmental conditions, weather conditions and density, situations related to drivers are more effective on traffic accidents, according to available data.Regarding occurrence of traffic accidents, it is observed that point of view of drivers towards traffic rules and drivers’ compliance with these rules is not parallel. It is important to research the reasons that cause this situation. A normal person’s mental state does not change without any reason at traffic. It is clear ...

  20. Using modular neural networks to monitor accident conditions in nuclear power plants

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  1. Pattern Recognition and Classification of Fatal Traffic Accidents in Israel A Neural Network Approach

    Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo

    2011-01-01

    : (1) single-vehicle accidents of young drivers, (2) multiple-vehicle accidents between young drivers, (3) accidents involving motorcyclists or cyclists, (4) accidents where elderly pedestrians crossed in urban areas, and (5) accidents where children and teenagers cross major roads in small urban areas......This article provides a broad picture of fatal traffic accidents in Israel to answer an increasing need of addressing compelling problems, designing preventive measures, and targeting specific population groups with the objective of reducing the number of traffic fatalities. The analysis focuses on...... 1,793 fatal traffic accidents occurred during the period between 2003 and 2006 and applies Kohonen and feed-forward back-propagation neural networks with the objective of extracting from the data typical patterns and relevant factors. Kohonen neural networks reveal five compelling accident patterns...

  2. EHRA research network surveys

    Bongiorni, Maria Grazia; Chen, Jian; Dagres, Nikolaos;

    2015-01-01

    of surveys covering the controversial issues in clinical electrophysiology (EP). With this in mind, an EHRA EP research network has been created, which included EP centres in Europe among which the surveys on 'hot topic' were circulated. This review summarizes the overall experience conducting EP wires over...

  3. Sustainable integration of EU research in severe accident phenomenology and management

    Highlights: → The SARNET network gathers most worldwide actors involved in severe accident research. → It defines common research programmes for resolving the most important pending safety issues. → It optimises the use of the available European resources and constitutes sustainable research groups. → It disseminates the knowledge on severe accidents through education courses. → Knowledge produced is capitalized through physical models in the ASTEC simulation code. - Abstract: In order to optimise the use of the available means and to constitute sustainable research groups in the European Union, the Severe Accident Research NETwork of Excellence (SARNET) has gathered, between 2004 and 2008, 51 organizations representing most of the actors involved in severe accident (SA) research in Europe plus Canada. This project was co-funded by the European Commission (EC) under the 6th Euratom Framework Programme. Its objective was to resolve the most important pending issues for enhancing, in regard of SA, the safety of existing and future nuclear power plants (NPPs). SARNET tackled the fragmentation that existed between the national R and D programmes, in defining common research programmes and developing common computer codes and methodologies for safety assessment. The Joint Programme of Activities consisted in: -Implementing an advanced communication tool for accessing all project information, fostering exchange of information, and managing documents; - Harmonizing and re-orienting the research programmes, and defining new ones; -Analyzing the experimental results provided by research programmes in order to elaborate a common understanding of relevant phenomena; -Developing the ASTEC code (integral computer code used to predict the NPP behaviour during a postulated SA) by capitalizing in terms of physical models the knowledge produced within SARNET; - Developing scientific databases, in which the results of research experimental programmes are stored in a common

  4. Analyzing the causation of a railway accident based on a complex network

    In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the “7.23” China—Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents. (interdisciplinary physics and related areas of science and technology)

  5. Analyzing the causation of a railway accident based on a complex network

    Ma, Xin; Li, Ke-Ping; Luo, Zi-Yan; Zhou, Jin

    2014-02-01

    In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the “7.23” China—Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.

  6. Interactions of severe accident research and regulatory positions (ISARRP)

    Sehgal, B.R. (comp.) [Royal Inst. of Tech., Stockholm (Sweden). Nuclear Power Safety

    2001-12-01

    The work Programme of the ISARRP Project was divided into several work packages. The work was conducted in the form of presentations and discussions, held during several meetings whose character was that of workshops. Short reports were prepared by the partners assigned to each task. Work Package 1: Critical review of the SA phenomenological research. The objective of this work package was to consider the progress made world-wide in research on the resolution of the outstanding phenomenological issues posed by severe accidents. Work Package 2: Relevance of severe accident research to SAMG requirements and implementation. The objective of this work package was to relate the progress made in the resolution of the SA issues to the practical matter of what results are required or have been used for the management of severe accidents. Clearly, the SAMG is the most important avenue employed by the regulatory organizations to assure themselves of the safe (from public perspective) performance of a nuclear plant in a postulated severe accident event. Work Package 3: Relevance of severe accident research to PSA and the risk informed regulatory approach. The objectives of this work package is to relate the results obtained by the severe accident research to the requirements of a PSA and of the new trend of employing the risk informed approach in promulgating regulations. Clearly a PSA identifies vulnerabilities in the knowledge base, however, their importance is decidedly plant specific. Nevertheless the uncertainties in the phenomenology or in resolution of issues lead to uncertainties in the PSA conclusions and in the adoption of the risk informed approach. Work Package 4: Questionnaire and the evaluation of responses to the questions. The purpose of this work package is to solicit the views of the regulatory organizations towards the results of the SA research and the benefits they have derived from it in terms of regulatory actions, or in the confidence they have gained

  7. Interactions of severe accident research and regulatory positions (ISARRP)

    The work Programme of the ISARRP Project was divided into several work packages. The work was conducted in the form of presentations and discussions, held during several meetings whose character was that of workshops. Short reports were prepared by the partners assigned to each task. Work Package 1: Critical review of the SA phenomenological research. The objective of this work package was to consider the progress made world-wide in research on the resolution of the outstanding phenomenological issues posed by severe accidents. Work Package 2: Relevance of severe accident research to SAMG requirements and implementation. The objective of this work package was to relate the progress made in the resolution of the SA issues to the practical matter of what results are required or have been used for the management of severe accidents. Clearly, the SAMG is the most important avenue employed by the regulatory organizations to assure themselves of the safe (from public perspective) performance of a nuclear plant in a postulated severe accident event. Work Package 3: Relevance of severe accident research to PSA and the risk informed regulatory approach. The objectives of this work package is to relate the results obtained by the severe accident research to the requirements of a PSA and of the new trend of employing the risk informed approach in promulgating regulations. Clearly a PSA identifies vulnerabilities in the knowledge base, however, their importance is decidedly plant specific. Nevertheless the uncertainties in the phenomenology or in resolution of issues lead to uncertainties in the PSA conclusions and in the adoption of the risk informed approach. Work Package 4: Questionnaire and the evaluation of responses to the questions. The purpose of this work package is to solicit the views of the regulatory organizations towards the results of the SA research and the benefits they have derived from it in terms of regulatory actions, or in the confidence they have gained

  8. Mapping European research networks

    Besussi, E.

    2006-01-01

    This paper proposes a framework for measuring the performance and mappingthe geography of the European Research Area (ERA) based on the analysis of existingresearch and knowledge networks. The objective is to provide insights into the spatialstructure of the European space from the perspective of the distribution of excellence inresearch. Starting from the debate on European spatial development, key issues such aspolycentricity, the territorial dimension and impact of European policies, the r...

  9. Collaborative research networks work

    Camargo, Anamaria A; Simpson, Andrew J. G.

    2003-01-01

    Brazil was heralded for completion of the first genome sequence of a plant pathogen following the development of a virtual research center — a collaborative network of laboratories throughout the state of São Paulo, drawing on the expertise of a dispersed and diverse scientific community and on investment from both the government and the private sector. Strategies key to the success of this model are discussed here in the context of continuing collaborative scientific endeavors in both develo...

  10. The European Research on Severe Accidents in Generation-II and -III Nuclear Power Plants

    Jean-Pierre Van Dorsselaere

    2012-01-01

    Full Text Available Forty-three organisations from 22 countries network their capacities of research in SARNET (Severe Accident Research NETwork of excellence to resolve the most important remaining uncertainties and safety issues on severe accidents in existing and future water-cooled nuclear power plants (NPP. After a first project in the 6th Framework Programme (FP6 of the European Commission, the SARNET2 project, coordinated by IRSN, started in April 2009 for 4 years in the FP7 frame. After 2,5 years, some main outcomes of joint research (modelling and experiments by the network members on the highest priority issues are presented: in-vessel degraded core coolability, molten-corium-concrete-interaction, containment phenomena (water spray, hydrogen combustion…, source term issues (mainly iodine behaviour. The ASTEC integral computer code, jointly developed by IRSN and GRS to predict the NPP SA behaviour, capitalizes in terms of models the knowledge produced in the network: a few validation results are presented. For dissemination of knowledge, an educational 1-week course was organized for young researchers or students in January 2011, and a two-day course is planned mid-2012 for senior staff. Mobility of young researchers or students between the European partners is being promoted. The ERMSAR conference is becoming the major worldwide conference on SA research.

  11. LWR severe accident source term research in the USA

    Fission product releases to the environment, or source terms, arise as a result of a highly diverse group of phenomena involved in any particular severe accident sequence. Because of the multiplicity of accident sequences that can occur for a given plant as well as the diversity of the, as yet, imperfectly understood severe accident phenomena, it is not surprising that reactor accidents such as, for example, those documented in NUREG-1150 have indicated large uncertainties in source terms which represent a significant contribution to the uncertainty in the absolute value of risk. Because of the difficulty and expense involved in performing prototypic experiments, substantial reliance has been placed on the development and validation of detailed mechanistic computer codes for analyzing severe accident phenomena and the source terms associated with them. This paper discusses the extensive research and other efforts that have taken place over the last decade to address the technical issues which have a bearing on being able to describe quantitatively the source term(s) and its characteristics. It also summarizes our present state of knowledge and points out areas where additional research will add further to our understanding. In this context the paper discusses the information that could be provided by the PHEBUS-FP program and its use to assess severe accident integral evaluation codes such as VICTORIA and CONTAIN. Finally, this paper discusses the United States Nuclear Regulatory Commission 's efforts to revise the licensing source term (TID-14844) and the implications of this revision, especially for siting and design of future power plants. (author)

  12. Rare Diseases Clinical Research Network

    ... RDCRN? Aims of the Rare Diseases Clinical Research Network Contact Us RDCRN Members Login Accessibility Disclaimer The Rare Diseases Clinical Research Network is an initiative of the Office of Rare ...

  13. University of Tennessee Comparative Animal Research Laboratory accident in 1971

    On 4 February 1971, a 32-year-old research technologist performing seed irradiated experiments at the University of Tennessee Comparative Animal Research Laboratory was exposed to a Cobalt 60 source of 7700 curies for 40 seconds. Details of the accident, dose estimates from dosimetry studies, and acute biological clinical findings are discussed. Follow-up clinical data on the hematopoietic system, biochemistry, fingers, and blood counts are discussed

  14. Research Needs in the Domain of Severe Accidents

    The objectives of SARNET are to define common research programmes and to develop common computer tools and methodologies for safety assessment. To reach these objectives several elements or work programmes (WP) are established. One of them is the WP 'Severe Accident Research Priorities' (SARP) with the aims to harmonize and to re-orient research programmes, to define new ones, and to close a resolved issue on a common basis. This action will make use notably of (1) the outcome of the EURSAFE action, i.e., the results of the Phenomena Identification and Ranking Tables (PIRT) on severe accidents, (2) the results of the qualification and benchmarking activities on ASTEC, (3) the results of reactor calculations carried out in the other activities, and (4) the outcome of the research performed in the three thematic sub domains of SARNET (corium, containment, source term). The main outcome of EURSAFE was a list of 21 topics which includes precise recommendations for experimental programmes and code developments and forms the basis of the work of the SARP. Also the methodology applied in EURSAFE to consider both risk potential and the severe accident issues where large uncertainties still subsist will be adopted. The analyses of the progress of research and developmental activities will be in close cooperation with the management team and the coordinators of the WPs. These analyses will consider whether (1) any research issue is resolved due to reduction of uncertainties or gain of scientific insights, (2) any new issue has to be added to the list of needed research, (3) any new process or phenomena have to be included in the general PIRT list taking into account the safety relevance and lack of knowledge, and (4) a new accident management programme has to be developed to cope with unresolved problems. Furthermore a strategy plan will be elaborated to ensure a wide consensus with the end users requirements and the objectives of SARNET research activities. (author)

  15. SARNET: Sustainable integration of EU research on severe accident phenomenology and management

    In spite of the accomplishments reached in severe accident research, thanks notably to the EU projects carried out during previous Framework Programmes, a limited number of specific items remain where research activities are still necessary to reduce further uncertainties that are considered of importance for nuclear reactor safety and to consolidate severe accident management plans. Facing and anticipating budget reductions, 52 European R and D organizations, including technical supports of safety authorities, industry, utilities and universities, have decided to join their efforts in a durable way by networking their research activities in the frame of a Network of Excellence proposed as a FP-6 project called SARNET, coordinated by the French Institut de Radioprotection et de Surete Nucleaire. The integral severe accident analysis code ASTEC, developed by IRSN and GRS, will provide the backbone of the integration. Actions are proposed to integrate in ASTEC the current knowledge and all the future knowledge generated within SARNET. In addition, integrating activities will be carried out as the creation of large scientific databases, the elaboration of a research priority index, education and training. (authors)

  16. EC-sponsored research activities on accident management measures

    The European Commission (EC) is currently funding, via the 1994-1998 R and D Framework Programme, a number of activities in the field of Nuclear Fission Safety (NFS), and particularly in several areas related to 'Reactor Safety Severe Accidents'. This programme continues the research activities of the previous Community Reactor Safety Programme which was carried out as a Reinforced Concerted Action (RCA) during the period 1992-1995. The group of multi-partners projects selected for financial support from the EC under Area B.5.1 of the current NFS Programme, 'Supporting Activities / Accident Management Measures' (known as the 'AMM' cluster) are basically aiming at implementing the results of severe accident research into practical Accident Management (AM) strategies. The generic objective is to exchange information and to develop a common European approach regarding aspects such as phenomena related uncertainties, possible adverse effects of operator actions on the progression of the accident, interpretation of measurements, equipment performance, instrument survival and human error under stress. This paper briefly discusses the objectives and achievements of a completed project of the 1992-1995 RCA, known as 'Accident Management Support' ('AMS'), and also presents the current status of an on-going project of the 1994-1998 NFS Programme, 'Algorithm support for accident identification and Critical safety Functions signal validation' ('ASIA'). The objectives of the 'AMS' project were (i) to define, investigate and develop means and methods to provide reliable information and diagnostics, as well as support tools for accident management, and (ii) investigate the different signal validation methodologies with emphasis on the existing instrumentation rather than on new instrumentation needs. The work started with the writing of two state-of-the-art reports (SOARs) in these two areas. In parallel to the compilation of the SOARs, and later in a second phase, specific

  17. Severe accident research at the Transuranium Institute Karlsruhe: A review of past experience and its application to future challenges

    Highlights: • Severe accident research at the Transuranium Institute, Karlsruhe has been reviewed. • Large (Phébus, TMI-2) and smaller tests have improved understanding of core degradation. • Cladding/structural materials interaction and attack of fuel are important in degradation. • Formation and composition of molten fuel pool in the lower bundle was reproducible. • This mechanistic knowledge has greatly assisted severe accident modelling. - Abstract: With the current situation in Japan one should examine previous research into severe accidents and the current state of European severe accident research to assess what are the priorities for research for existing and future nuclear reactors. The European Commission’s SARNET 2 (Severe Accident NETwork of Excellence) programme and its SARP (Severe Accident Research Priorities) assessments have been made and have outlined the future needs as seen from the EU point of view. There is already considerable research that will be very valuable in analysing and guiding the investigation and remediation activities at Fukushima Dai-ichi. This includes investigations into previous major accidents and international severe fuel damage projects. Facilities using analogue materials are able to analyse large-scale behaviour of materials, while smaller-scale testing of irradiated fuel for detailed property measurements are important for mechanistic studies. The final (and very important) aspect is application of this information to formulate codes to model the identified mechanisms and also to have their predictions validated by the data. This paper will take examples from the Transuranium Institute’s (ITU Karlsruhe’s) contribution to projects such as the TMI-2 accident investigation and the Phébus PF bundle and fission product deposit investigations as well as some of the smaller scale testing and modelling support that ITU has performed over the last 20 years. This will show what has been learnt about fuel and

  18. The EPR concept for serious accident management, and accompanying research

    An accident, even if the probability of occurrence is so low that it can practically be excluded, must not require any serious external emergency measures, such as evacuation of human populations outside the immediate neighbourhood of the plant. This demand, which in the meantime has also become part of the German article law, creates a new situation for future light water reactors. In addition to the measures which are to reduce the probability of occurrence of serious accidents, a level is introduced which is designed to control the consequences of serious accidents with postulated core meltdown. The introduction of specific measures and design characteristics is a new challenge which cannot be met by industry alone. It is necessary to resort, to a large extent, to present and future research and development work which has been and will be carried out in this area by large-scale research institutions and universities. As regards the EPR, research and development cooperation in this field has been intensified recently. The CEA research centres and the FZKA signed an agreement on information exchange. (orig./HP)

  19. Analysis of reactivity induced accidents at Pakistan Research Reactor-1

    Analysis of reactivity induced accidents in Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel, has been carried out using standard computer code PARET. The present core comprises of 29 standard and five control fuel elements. Various modes of reactivity insertions have been considered. The events studied include: start-up accident; accidental drop of a fuel element on the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results reveal that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is concluded that the reactor, which is operated safely at a steady-state power level of 10 MW, with coolant flow rate of 950 m3/h, will also be safe against any possible reactivity induced accident and will not result in a fuel failure

  20. Analysis of reactivity induced accidents at Pakistan Research Reactor-1

    Bokhari, I.H. E-mail: ishtiaq@pinstech.org.pk; Israr, M.; Pervez, S

    2002-12-01

    Analysis of reactivity induced accidents in Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel, has been carried out using standard computer code PARET. The present core comprises of 29 standard and five control fuel elements. Various modes of reactivity insertions have been considered. The events studied include: start-up accident; accidental drop of a fuel element on the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results reveal that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is concluded that the reactor, which is operated safely at a steady-state power level of 10 MW, with coolant flow rate of 950 m{sup 3}/h, will also be safe against any possible reactivity induced accident and will not result in a fuel failure.

  1. Overview of severe accident research at the USNRC

    This paper summarizes the U.S. Nuclear Regulatory Commission's (USNRC) severe accident research activities, in particular, progress made in the past year toward the resolution and/or improved understanding of a number of severe accident issues. The direct containment heating (DCH) is nearing resolution for Combustion Engineering and Babcock and Wilcox type pressurized water reactors (PWRs) are well as for ice condensers. Additionally, two lower pressure DCH tests were conducted recently at the Sandia National Laboratories (SNL) under the NRC/IPSN/FzK sponsorship to provide data regarding intentional depressurization as an accident management strategy to mitigate DCH loads. In the area of lower head integrity, the experimental program to investigate boiling heat transfer on downward facing curved surfaces with insulation was completed. Finally, the SNL program investigating the creep rupture behavior of the lower head under the combined thermo-mechanical loading was completed recently. Additional lower head experiments at SNL are being planned as an OECD project. During the past year, the USNRC participated in two programs aimed at extending the data base on hydrogen combustion into more prototypic situations. Testing was performed at the Brookhaven National Laboratory (BNL) to investigate detonation transmission at elevated temperatures. In a cooperative program under the sponsorship of NRC/IPSN/FzK, Russian Research Center (RRC) investigated hydrogen combustion issues at large scale at the RUT facility. The experimental program at the SNL to examine the performance of Passive Autocatalytic Recombiners (PARs) was completed also this year. In the fuel-coolant interaction (FCI) area, the experimental work at the Argonne National Laboratory (ANL) to investigate chemical augmentation of FCI energetics was completed as was the experimental work at the University of Wisconsin (UW) involving one-dimensional propagation experiments (similar to KROTOS). The USNRC is

  2. Sustainable integration of EU research in severe accident phenomenology and management (SARNET2 project)

    In order to optimise the use of the available means and to constitute sustainable research groups in the European Union, the Severe Accident Research NETwork of Excellence (SARNET) has gathered 51 organisations representing most of the actors involved in Severe Accident (SA) research in Europe plus Canada. This project was co-funded by the European Commission (EC) under the 6th Euratom Framework Programme. Its objective was to resolve the most important pending issues for enhancing, in regard of SA, the safety of existing and future Nuclear Power Plants (NPPs). SARNET tackled the fragmentation that existed between the national R and D programmes, in defining common research programmes and developing common computer codes for safety assessment. The Joint Programme of Activities consisted in: (i) Implementing an advanced communication tool for accessing all project information, fostering exchange of information, and managing documents; (ii) Harmonizing and re-orienting the research programmes, and defining new ones; (iii) Analyzing the experimental results provided by research programmes in order to elaborate a common understanding of relevant phenomena; (iv) Developing the ASTEC code (integral computer code used to predict the NPP behaviour during a postulated SA) by integrating the knowledge produced within SARNET; (v) Developing Scientific Databases, in which the results of research experimental programmes are stored in a common format; (vi) Developing a common methodology for Probabilistic Safety Assessment of NPPs; (vii) Developing short courses and writing a text book on Severe Accidents for students and researchers; (viii) Promoting personnel mobility amongst various European organizations. This paper presents the major achievements after four and a half years of operation of the network, in terms of knowledge gained, of improvements of the ASTEC reference code, of dissemination of results and of integration of the research programmes conducted by the various

  3. Implications of the Fukushima Accident on Research Reactor Safety

    Preliminary findings of Fukushima accident show that there is no evidence of major human errors as in previous accidents in the nuclear power industry, namely, Three Mile Island (USA) and Chernobyl (Soviet Union), and that the initiating event, a natural catastrophe of extraordinary magnitude, caused a long term loss of the normal power supply producing the failure of each defence-in depth barriers with the final release of radioactive material to the atmosphere. It is worth noticing that the direct damage caused in Japan by the earthquake and tsunami far exceeded any damage caused by the accident at the nuclear plant. In the light of this event the question whether safety systems of research reactors will cope with this type of scenarios arises. The objective of this works is to present an overview of the current practice commonly used in the safety analysis in research reactors and to assess the capability to mitigate conditions from a beyond-design-basis event like the one occurred at Fukushima power plant. (author)

  4. Information processing system and neural network utilization for accident management support

    Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Faculty of Electrical and Electronic Engineering; Verhoef, J.P. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Ouden, A.C.B. den [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1996-03-01

    Information processing system with data sensor fusion technology together with potential application of neural network is developed. System is designed for operator in the form of Accident Management Support (AMS) with verification and validation (V and V) for cases of severe accident. To this end, primarily noise analysis techniques are used and their merits are merged for exhaustive information extraction in accident cases where the data from sensors may be obscured by drift, modulation so forth or even incomplete. The information from different methodologies are processed in synergetic form (data sensor fusion) by means of statistical distance measures and neural networks with optimal decisions. (orig.).

  5. Information processing system and neural network utilization for accident management support

    Information processing system with data sensor fusion technology together with potential application of neural network is developed. System is designed for operator in the form of Accident Management Support (AMS) with verification and validation (V and V) for cases of severe accident. To this end, primarily noise analysis techniques are used and their merits are merged for exhaustive information extraction in accident cases where the data from sensors may be obscured by drift, modulation so forth or even incomplete. The information from different methodologies are processed in synergetic form (data sensor fusion) by means of statistical distance measures and neural networks with optimal decisions. (orig.)

  6. SARNET: Integrating Severe Accident Research in Europe - Safety Issues in the Source Term Area

    SARNET (Severe Accident Research Network) is a Network of Excellence of the EU 6. Framework Programme that integrates in a sustainable manner the research capabilities of about fifty European organisations to resolve important remaining uncertainties and safety issues concerning existing and future nuclear plant, especially water-cooled reactors, under hypothetical severe accident conditions. It emphasises integrating activities, spreading of excellence (including knowledge transfer) and jointly-executed research. This paper summarises the main results obtained at the middle of the current 4-year term, highlighting those concerning radioactive release to the environment. Integration is pursued through different methods: the ASTEC integral computer code for severe accident modelling, development of PSA level 2 methods, a means for definition, updating and resolution of safety issues, and development of a web database for storing experimental results. These activities are helped by an evolving Advanced Communication Tool, easing communication amongst partners. Concerning spreading of excellence, educational courses covering severe accident analysis methodology and level 2 PSA have been organised for early 2006. A text book on Severe Accident Phenomenology is being written. A mobility programme for students and young researchers has started. Results are disseminated mainly through open conference proceedings, with journal publications planned. The 1. European Review Meeting on Severe Accidents in November 2005 covered SARNET activities during its first 18 months. Jointly executed research activities concern key issues grouped in the Corium, Containment and Source Term areas. In Source Term, behaviour of the highly radio-toxic ruthenium under oxidising conditions, including air ingress, is investigated. Models are proposed for fuel and ruthenium oxidation. Experiments on transport of oxide ruthenium species are performed. Reactor scenario studies assist in defining

  7. Lessons learnt from an international intercomparison of national network systems used to provide early warning of a nuclear accident

    Saez-Vergara, J.C.; Thompson, I.M.G.; Funck, E.; Andersen, C.E.; Neumaier, S.; Bøtter-Jensen, L.

    2003-01-01

    As part of the European Research Council's Fourth Framework Programme, the EURADOS Action Group on Monitoring of External Exposures held an intercomparison of national network systems. This took place during May/June 1999 at the Riso Natural Environmental Radiation Measurement Station in Denmark...... and at the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the Physikalisch-Technische Bundesanstalt (PTB) in Germany. The network systems are used continuously to monitor radiation levels throughout a country in order to give early warning of nuclear accidents having transboundary...... implications. The radiation levels measured are used to estimate the radiation risks to people arising from the accident. Seven European countries participated in the intercomparison with detector systems used in their national network systems as well as with detectors being developed for future use. Since...

  8. Development of Parameter Network for Accident Management Applications

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation

  9. Development of Parameter Network for Accident Management Applications

    Pak, Sukyoung; Ahemd, Rizwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek; Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation.

  10. Power Excursion Accident Analysis of Research Water Reactor

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  11. Advanced sodium fast reactor accident source terms : research needs.

    Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  12. Research of severe accident induced by small LOCA and accident mitigation

    Fangjiashan nuclear power plant is modeled, by using MAAP4 code. Base on this model, the small LOCA accident is calculated, which will cause the worst consequence. The response of the plant and relevant severe accident phenomena are obtained. The phenomena of DCH (direct containment heat) happened during the accident, containment failure and release of the fission production are analyzed. Then, according to the related severe accident management and characteristic of this accident, the strategy of mitigating the accident consequence is studied and calculated. The result indicated that the mitigation action is very efficient. Therefore, a feasible strategy of mitigating the severe accident consequence is provided for the three-loop plant like Fangjiashan in China. (authors)

  13. A study on the use of neural network for severe accident management

    Based on the consensus that the course and consequence of a severe core damage accident can be greatly influenced by the operators' action, there have been extensive efforts to establish severe accident management program. A severe accident management process is essentially a sequence of decision making with a wide variety of available information under the highly uncertain condition, aimed at successful termination of accident progression or consequence minimization. For operators to take correct and timely accident management actions, they should be informed of the accident progression. Some key events, such as onset of core uncovery, core-melt initiation, reactor vessel lower head failure, containment failure, etc., act as landmarks for operators to make decisions in severe accident management process. Thus it is of critical importance to identify the timing at which such events occur in accident management. Unfortunately, it is difficult task partly due to phenomenological complexity and partly due to the lack of instrumentation reliability in severe accident environment, making the traditional procedural or rule-based approach inappropriate to be adopted to this end. Instead a technique, called artificial neural network, has been successfully applied to the similar problem domain out of various disciplines including nuclear industry. This paper presents a study on the application of a special kind of artificial neural network having the capability of recognizing time-varying patterns, called spatiotemporal network (STN), to the event timing prediction which is an important sub function of integrated computer supporting system for severe accident management. As the first trial, concentration was put on the identification of reactor vessel lower head failure which is considered the most critical events discriminating between so called in-vessel and ex-vessel accident management phases. Several sets of seven parameter signals from MAAP-based severe accident

  14. Visualization of Traffic Accidents

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  15. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. PMID:26433361

  16. Accomplishments and challenges of the severe accident research

    This paper describes the progress of the severe accident research since 1980, in terms of the accomplishments made so far and the challenges that remain. Much has been accomplished: many important safety issues have been resolved and consensus is near on some others. However, some of the previously identified safety issues remain as challenges, while some new ones have arisen due to the shift in focus from containment integrity to vessel integrity. New reactor designs have also created some new challenges. In general, the regulatory demands in new reactor designs are much stricter, thereby requiring much greater attention to the safety issues concerned with the containment design of the new large reactors

  17. International research networks in pharmaceuticals

    Cantner, Uwe; Rake, Bastian

    2014-01-01

    Knowledge production and scientific research have become increasingly more collaborative and international, particularly in pharmaceuticals. We analyze this tendency in general and tie formation in international research networks on the country level in particular. Based on a unique dataset...... over time. Using network regression techniques to analyze the network dynamics our results indicate that accumulative advantages based on connectedness and multi-connectivity are positively related to changes in the countries' collaboration intensity whereas various indicators on similarity between...

  18. Research, Boundaries, and Policy in Networked Learning

    de Laat, Maarten

    This book presents cutting-edge, peer reviewed research on networked learning organized by three themes: policy in networked learning, researching networked learning, and boundaries in networked learning. The "policy in networked learning" section explores networked learning in relation to policy...... networks, spaces of algorithmic governance and more. The "boundaries in networked learning" section investigates frameworks of students' digital literacy practices, among other important frameworks in digital learning. Lastly, the "research in networked learning" section delves into new research methods in...

  19. In-depth analysis of accidents : a pilot study and possibilities for further research.

    Oude Egberink, H. Stoop, J. & Poppe, F.

    1988-01-01

    Until recently The Netherlands did not have a tradition in the field of in-depth research of road traffic accidents. Due to the high number and severity of road traffic accidents and in response to a particularly large motorway accident, it was considered to explore the possibility of using the resu

  20. Reactor vessel water level estimation during severe accidents using cascaded fuzzy neural networks

    Kim, Dong Yeong; Yoo, Kwae Hwan; Choi, Geon Pil; Back, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-06-15

    Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.

  1. Advances in operational safety and severe accident research

    A project on reactor safety was carried out as a part of the NKS programme during 1999-2001. The objective of the project was to obtain a shared Nordic view of certain key safety issues related to the operating nuclear power plants in Finland and Sweden. The focus of the project was on selected central aspects of nuclear reactor safety that are of common interest for the Nordic nuclear authorities, utilities and research bodies. The project consisted of three sub-projects. One of them concentrated on the problems related to risk-informed deci- sion making, especially on the uncertainties and incompleteness of probabilistic safety assessments and their impact on the possibilities to use the PSA results in decision making. Another sub-project dealt with questions related to maintenance, such as human and organisational factors in maintenance and maintenance management. The focus of the third sub-project was on severe accidents. This sub-project concentrated on phenomenological studies of hydrogen combustion, formation of organic iodine, and core re-criticality due to molten core coolant interaction in the lower head of reactor vessel. Moreover, the current status of severe accident research and management was reviewed. (au)

  2. Advances in operational safety and severe accident research

    Simola, K. [VTT Automation (Finland)

    2002-02-01

    A project on reactor safety was carried out as a part of the NKS programme during 1999-2001. The objective of the project was to obtain a shared Nordic view of certain key safety issues related to the operating nuclear power plants in Finland and Sweden. The focus of the project was on selected central aspects of nuclear reactor safety that are of common interest for the Nordic nuclear authorities, utilities and research bodies. The project consisted of three sub-projects. One of them concentrated on the problems related to risk-informed deci- sion making, especially on the uncertainties and incompleteness of probabilistic safety assessments and their impact on the possibilities to use the PSA results in decision making. Another sub-project dealt with questions related to maintenance, such as human and organisational factors in maintenance and maintenance management. The focus of the third sub-project was on severe accidents. This sub-project concentrated on phenomenological studies of hydrogen combustion, formation of organic iodine, and core re-criticality due to molten core coolant interaction in the lower head of reactor vessel. Moreover, the current status of severe accident research and management was reviewed. (au)

  3. Severe accident research and management in Nordic Countries - A status report

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  4. Severe accident research and management in Nordic Countries - A status report

    Frid, W. [Swedish Nuclear Power Inspectorate, SKI (Sweden)] (ed.)

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  5. Design research for accident prevention in CANDU reactor

    Study of PHWR Candu Design under severe accident has been done. Severe accident is defined as one in which the fuel is not removed by the coolant in the primary heat transport system. A severe accident could only result if a process system failed and the appropriate protective system was simultaneous unavailable. Severe accidents of the Candu reactor relevant to severe accident are set first by the inherent properties of the design. With the system sufficiently independent, the frequencies of a severe accident could be made acceptable low. This paper discussed that the separately cooled moderator in a Candu provides an effective heat sink in the event of a loss of coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintain the integrity of the fuel channels, therefore terminating this severe accidents short of severe core damage

  6. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  7. Action Research as a Network

    Boulus-Rødje, Nina

    2012-01-01

    This paper explores roles and interventions in IS action research. I draw upon a four-year research project about electronic medical records, conducted in close collaboration with a community partner. Following a self-reflexive stance, I trace the trajectory of the research engagement and the...... different roles I occupied. To better understand the complex nature of collaboration found within action research projects, I propose conceptualizing action research as a network. The network framework directs our attention to the collective production and the conditions through which roles and...... interventions come to exist. Thus, interventions and roles can be seen as network effects?they are enacted and supported by the network. Accordingly, roles and interventions are neither simply static and fixed nor fluid and flexible; rather, these are products of past and present attachments. I demonstrate how...

  8. Development of accident diagnosis and prediction system for research reactor

    A pilot system of early fault detection expert system has been developed. The early fault detection expert system is one of subsystems in the accident diagnosis and prediction system for the research reactor JRR-3 in JAERI. Functions of the pilot system are to detect deviations of process parameters from the steady state in the early stage of the transient and, if possible, to provide procedures to operators to avoid scram actuation. The reactor accident diagnosis system, DISKET, which had been developed in JAERI, was applied for developing the pilot system by extending functions as follows. (1) A frame structure has been introduced to a part of the knowledge base of DISKET in order to infer efficiently. (2) Numerical equation has been introduced to rule representation in order to calculate numerical value for rules. The pilot system was tested against some simulated transients to validate the effectiveness of the extension mentioned above as well as the performance of the system. This report describes development of the pilot system and the results of the test. (author)

  9. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  10. Research investigation report on Fukushima Daiichi nuclear accident

    This report was issued in February 2012 by Rebuild Japan Initiative Foundation's Independent Investigation Commission on the Fukushima Daiichi Nuclear Accident, which consisted of six members from the private sector in independent positions and with no direct interest in the business of promoting nuclear power. Commission aimed to determine the truth behind the accident by clarifying the various problems and reveal systematic problems behind these issues so as to create a new starting point by identifying clear lessons learned. Report composed of four chapters; (1) progression of Fukushima accident and resulting damage (accident management after Fukushima accident, and effects and countermeasure of radioactive materials discharged into the environment), (2) response against Fukushima accident (emergency response of cabinet office against nuclear disaster, risk communication and on-site response against nuclear disaster), (3) analysis of historical and structural factors (technical philosophy of nuclear safety, problems of nuclear safety regulation of Fukushima accident, safety regulatory governance and social background of 'Safety Myth'), (4) Global Context (implication in nuclear security, Japan in nuclear safety regime, U.S.-Japan relations for response against Fukushima accident, lessons learned from Fukushima accident - aiming at creation of resilience). Report could identify causes of Fukushima accident and factors related to resulting damages, show the realities behind failure to prevent the spread of damage, and analyze the overall structural and historical background behind the accidents. (T. Tanaka)

  11. iWitness pollution map: crowdsourcing petrochemical accident research.

    Bera, Risha; Hrybyk, Anna

    2013-01-01

    Community members living near any one of Louisiana's 160 chemical plants or refineries have always said that accidents occurring in these petrochemical facilities significantly impact their health and safety. This article reviews the iWitness Pollution Map tool and Rapid Response Team (RRT) approach led by the Louisiana Bucket Brigade, an environmental nonprofit group, and their effectiveness in documenting these health and safety impacts during petrochemical accidents. Analysis of a January 2013 RRT deployment in Chalmette, LA, showed increased documentation of current petrochemical accidents and suggested increased preparedness to report future accidents. The RRT model encourages government response and enforcement agencies to integrate with organized community groups to fully document the impacts during ongoing accidents, lead a more timely response to the accident, and prevent future accidents from occurring. PMID:24135064

  12. Present status of research activities in severe accident evaluation for nuclear power plants

    The basis for securing nuclear safety is to prevent occurrence of accidents and to mitigate propagation of abnormal events or accidents to severe accidents. In practice, a nuclear power plant is designed and constructed so that abnormal events can be detected at the early phase to cope with the events and safety features and facilities are installed to mitigate and reduce the consequences in the case of such accidents. However it is important to prepare preventive measures as well as mitigative measures to cope with severe accidents to further improve the level of safety. Research on the evaluation of severe accidents is needed to develop such measures. Severe accident research is performed in many countries including Japan and a lot of findings have been made. At JAERI, experiments are being conducted to clarify severe accident phenomena and to make quantitative evaluation of safety margin of a nuclear power plant against severe accidents. A lot of findings on the fuel damage process in the early phase of severe accidents have been obtained in the past years. However there are still large uncertainties on the fuel damage process in the late phase of accidents. In the area of accident management, there exists need for experiments and analyses. (author)

  13. Action Research as a Network

    Boulus-Rødje, Nina

    2012-01-01

    This paper explores roles and interventions in IS action research. I draw upon a four-year research project about electronic medical records, conducted in close collaboration with a community partner. Following a self-reflexive stance, I trace the trajectory of the research engagement...... and the different roles I occupied. To better understand the complex nature of collaboration found within action research projects, I propose conceptualizing action research as a network. The network framework directs our attention to the collective production and the conditions through which roles...... this influences the researcher’s agency....

  14. Radiation chemical research after the Fukushima nuclear accident

    On March 11, 2011 we had the Great East Japan Earthquake and induced tsunami, which attacked the Fukushima Daiichi Nuclear Power Station (NPS). Due to the blackout of the NPS and no cooling water, the cores of the unit of -1, -2 and -3 reactors were melt down and hydrogen explosion took place at the unit -1, -3 and -4. In addition, seawater was injected to primary containment vessel, pressure reactor vessel and spent fuel pool. New radiation research projects appeared after the Fukushima Accident. Among the projects, (1) radiolysis of zeolite and management of zeolite waste, (2) effect of seawater injection, and (3) radiation induced dissolution of UO2 are selected and briefly presented. (author)

  15. Safety Approach of BORAX Type Accidents in French Research Reactors

    Most of pool type French research reactors are designed to withstand an explosive BORAX accident, defined as a pressure load on the pool walls. The purpose of this paper is to present the approach implemented at IRSN to analyse this accident by linking safety assessment and supporting studies. Examples of recent work on Jules Horowitz Reactor (JHR) and ORPHEE will be presented. Although all aspects of the accident are addressed, we will focus on the first two frames of the transient: the reactivity insertion and the consequences on the core. The first step of the BORAX analysis is to identify the most penalizing plausible reactivity insertion. This means characterising the sequences of events that can induce a reactivity surge and evaluate the worth of such variation. Neutronic computations are then required to quantify the reactivity increase. To comply with the geometrical specificities of research reactors, IRSN chose to use the homemade Monte Carlo code MORET5. The control rod worth calculations on the JHR were in good agreement with the operator results, whereas in ORPHEE, IRSN demonstrated that the beam channels reactivity worth was largely. In both cases the obtained results allowed an interesting dialogue with the operator and were used in the conclusions of the safety assessment. Following the accidental sequence of events, the second stage analysed by IRSN is the power transient occurring in the core and the consequences on the fuel. IRSN applied on JHR a homemade simplified model based on point kinetics and standard thermal balance equations to compute power evolution taking into account the temperatures of the fuel for feedback reactivity. As heat exchange coefficients between cladding and water for such fast transients are unknown, IRSN took the conservative hypothesis of adiabatic heating of the plates. The comparison the JHR power pulse calculation results against SPERT experimental measurements enabled IRSN to be optimistic about the possibility

  16. Proceedings of the workshop on severe accident research held in Japan (SARJ-98)

    Sugimoto, Jun [ed.

    1999-07-01

    The Workshop on Severe Accident Research held in Japan (SARJ-98) was taken place at Hotel Lungwood on November 4-6, 1998, and attended by 181 participants from 13 countries. The 63 papers, which cover wide areas of severe accident research both in experiments and analyses, such as in-vessel melt retention, fuel-coolant interaction, fission products behavior, structural integrity, containment behavior, computer simulations, and accident management, are indexed individually. (J.P.N.)

  17. Proceedings of the workshop on severe accident research held in Japan (SARJ-97)

    Sugimoto, Jun [ed.

    1998-05-01

    The Workshop on Severe Accident Research held in Japan (SARJ-97) was taken place at Pacifico Yokohama on October 6 - 8, 1997, and attended by 180 participants from 15 countries and one international organizations. The 59 papers, which cover wide areas of severe accident research both in experiments and analysis, such as in-vessel melt retention, fuel-coolant interaction, fission products behavior, structural integrity, containment behavior, computer simulations, and accident management, are indexed individually. (J.P.N.)

  18. Proceedings of the workshop on severe accident research held in Japan (SARJ-97)

    The Workshop on Severe Accident Research held in Japan (SARJ-97) was taken place at Pacifico Yokohama on October 6 - 8, 1997, and attended by 180 participants from 15 countries and one international organizations. The 59 papers, which cover wide areas of severe accident research both in experiments and analysis, such as in-vessel melt retention, fuel-coolant interaction, fission products behavior, structural integrity, containment behavior, computer simulations, and accident management, are indexed individually. (J.P.N.)

  19. Proceedings of the workshop on severe accident research held in Japan (SARJ-98)

    The Workshop on Severe Accident Research held in Japan (SARJ-98) was taken place at Hotel Lungwood on November 4-6, 1998, and attended by 181 participants from 13 countries. The 63 papers, which cover wide areas of severe accident research both in experiments and analyses, such as in-vessel melt retention, fuel-coolant interaction, fission products behavior, structural integrity, containment behavior, computer simulations, and accident management, are indexed individually. (J.P.N.)

  20. A comparison of the consequences of the design basis accident of the Greek Research Reactor with those of a serious realistic accident

    An analysis of the radiological consequences of the design basis and the coolant flow blockage accidents of the Greek Research Reactor is presented. The results indicate that the consequences of the coolant flow blockage accident are practically trivial being 1-2 orders of magnitude lower than the corresponding consequences of the design basis accident. (author)

  1. Research nodes and networks

    Matthiessen, Christian Wichmann; Schwarz, Annette Winkel; Find, Søren

    2011-01-01

    Analysis of the spatial distribution and connectivity of scientific research, using linkages between academic units (institutions and business)to assess the relative weight of the worlds metropolitan regions. The findings support Richard Floridas assertion that the world is "spiky" rather than fl...

  2. Impact of the Three Mile Island accident on research and development programs

    The influence of the Three Mile Island (TMI) accident, on the evolution of the nuclear safety engineering concepts, are analyzed. An overview of the nuclear safety studies performed before and after the accident is presented. Before the TMI accident, the research programs were mainly centered on dimensional problems involving factors, such as explosions and earthquakes. The TMI accident demonstrated that the fusion of the reactor's core could actually hoppen. It was also realized that the safety of nuclear power plants depended on accurate research programs, also extended to factors beyond dimensional analysis

  3. Lessons learnt from an international intercomparison of national network systems used to provide early warning of a nuclear accident

    As part of the European Research Council's Fourth Framework Programme, the EURADOS Action Group on Monitoring of External Exposures held an intercomparison of national network systems. This took place during May/June 1999 at the Riso Natural Environmental Radiation Measurement Station in Denmark and at the Underground Laboratory for Dosimetry and Spectrometry of the Physikalisch-Technische Bundesanstalt in Germany. The network systems are used continuously to monitor radiation levels throughout a country in order to give early warning of nuclear accidents having transboundary implications. The radiation levels measured are used to estimate the radiation risks to people arising from the accident. Seven European countries participated in the intercomparison with detector systems used in their national network systems as well as with detectors being developed for future use. Since different radiation quantities were measured by the systems (namely exposure, air kerma and ambient dose equivalent), the initial analysis of the intercomparison results was made in terms of the quantity air kerma rate. This report completes the analysis of the results and these are given in terms of air kerma rate in order to be consistent with the preliminary report. In addition, in some cases the results are also given in terms of the quantity measured by each national network system. The experience gained from this intercomparison is used to help organise a follow-up intercomparison to be held at the PTB Braunschweig in September 2002 and in which a further seven or eight countries from Europe will participate. (author)

  4. Lessons learnt from an international intercomparison of national network systems used to provide early warning of a nuclear accident

    Saez-Vergara, J.C.; Thompson, I.M.G.; Funck, E.; Andersen, C.E.; Neumaier, S.; Botter-Jensen, L

    2003-07-01

    As part of the European Research Council's Fourth Framework Programme, the EURADOS Action Group on Monitoring of External Exposures held an intercomparison of national network systems. This took place during May/June 1999 at the Riso Natural Environmental Radiation Measurement Station in Denmark and at the Underground Laboratory for Dosimetry and Spectrometry of the Physikalisch-Technische Bundesanstalt in Germany. The network systems are used continuously to monitor radiation levels throughout a country in order to give early warning of nuclear accidents having transboundary implications. The radiation levels measured are used to estimate the radiation risks to people arising from the accident. Seven European countries participated in the intercomparison with detector systems used in their national network systems as well as with detectors being developed for future use. Since different radiation quantities were measured by the systems (namely exposure, air kerma and ambient dose equivalent), the initial analysis of the intercomparison results was made in terms of the quantity air kerma rate. This report completes the analysis of the results and these are given in terms of air kerma rate in order to be consistent with the preliminary report. In addition, in some cases the results are also given in terms of the quantity measured by each national network system. The experience gained from this intercomparison is used to help organise a follow-up intercomparison to be held at the PTB Braunschweig in September 2002 and in which a further seven or eight countries from Europe will participate. (author)

  5. Proceedings of the workshop on severe accident research, Japan (SARJ-99)

    Hashimoto, Kazuichiro [ed.

    2000-11-01

    The Workshop on Severe Accident Research, Japan (SARJ-99) was taken place at Hotel Lungwood on November 8-10, 1999, and attended by 156 participants from 12 countries. A total of 46 papers, which covered wide areas of severe accident research both in experiments and analyses, such as fuel/coolant interaction, accident analysis and modeling, in-vessel phenomena, accident management, fission product behavior, research reactors, ex-vessel phenomena, and structural integrity, were presented. The panel discussion titled 'Link of Severe Accident Research Results to Regulation: Current Status and Future Perspective' was successfully conducted, and the wide variety of opinions and views were exchanged among panelists and experts. (J.P.N.)

  6. Proceedings of the workshop on severe accident research, Japan (SARJ-99)

    The Workshop on Severe Accident Research, Japan (SARJ-99) was taken place at Hotel Lungwood on November 8-10, 1999, and attended by 156 participants from 12 countries. A total of 46 papers, which covered wide areas of severe accident research both in experiments and analyses, such as fuel/coolant interaction, accident analysis and modeling, in-vessel phenomena, accident management, fission product behavior, research reactors, ex-vessel phenomena, and structural integrity, were presented. The panel discussion titled 'Link of Severe Accident Research Results to Regulation: Current Status and Future Perspective' was successfully conducted, and the wide variety of opinions and views were exchanged among panelists and experts. (J.P.N.)

  7. Radiation protection research and studies after the Chernobyl accident

    The effects on the environment of the Chernobyl Power Plant accident, which happened in the reactors unit 4, are analyzed. The aim of the study is to show the main fields of research and development to be considered, in order to improve the knowledge on public or local radiation protection. The following aspects of the problem are discussed: the long range atmospheric transfer, the environment monitoring, the problems related to the food chain transfers, the environment recovery and the estimation of the sanitary effects. The Chernobyl disaster confirms: the priority of special plans of action to protect the surrounding population; that the special plans of action must be followed by after-disaster actions, which take into account methods for the environment recovery; that the conventional systematic approach can not be satisfactorily applied to manage such a critical situation, and a new one must be developed. Moreover, the identification of the most exposed (population) groups, far from the nearby affected area, are to be considered

  8. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  9. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

    Wilhelm, Polina; Jobst, Matthias; Schaefer, Frank; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    In the frame of the nuclear safety research program of the Helmholtz Association HZDR performs fundamental and applied research to assess and to reduce the risks related to the nuclear fuel cycle and the production of electricity in nuclear power plants. One of the research topics focuses on the safety aspects of current and future reactor designs. This includes the development and application of methods for analyses of transients and postulated accidents, covering the whole spectrum from normal operation till severe accident sequences including core degradation. This paper gives an overview of the severe accident research activities at the Reactor Safety Division at the Institute of Resource Ecology.

  10. Network Penetration Testing and Research

    Murphy, Brandon F.

    2013-01-01

    This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised

  11. The primal application research of figure assimilation theory in the nuclear accident consequence forecast

    The deepgoing research of figure assimilation theory promotes many subjects' rapid development. This article outlooks the application of figure assimilation technique in the nuclear accident consequence forecast. The nuclear accident consequence forecast is a complicated system which needs rapidity and precision, so it is quiet difficult. but after the insertion of figure assimilation, it pushes on one step about the question. (authors)

  12. The smart grid research network

    Troi, Anders; Jørgensen, Bo Nørregaard; Larsen, Emil Mahler;

    2013-01-01

    This road map is a result of part-recommendation no. 25 in ‘MAIN REPORT – The Smart Grid Network’s recommendations’, written by the Smart Grid Network for the Danish Ministry of Climate, Energy and Building in October 2011. This part-recommendation states: “Part-recommendation 25 – A road map......-recommendation: Universities, along with relevant electric-industry actors, should establish a working group for the completion of a consolidated road map by the end of 2012.” In its work on this report, the Smart Grid Research Network has focused particularly on part-recommendations 26, 27 and 28 in ‘MAIN REPORT – The Smart...... Grid Network’s recommendations’, which relate to strengthening and marketing the research infrastructure that will position Denmark as the global hub for Smart Grid development; strengthening basic research into the complex relationships in electric systems with large quantities of independent parties...

  13. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  14. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base

  15. An advanced accident-protective network system for the nuclear energy facilities

    As an opportunity of the TMI accident formed on March, 1979, some improvements on accident-protective countermeasure of nuclear energy by government and so on have been intended. Along this planning, the Atomic Energy Safety Technical Center has practised a business on accident-protection of nuclear energy under trust of government and so on. And then, the Center expanded some business, such as intention to spread the SPEEDI (system for prediction of environmental emergency dose information) network for the Center for First-aid Countermeasure in Emergency (called Off-site Center) and so on. Here were described on present status and future development of the business on accident protection at a center of the SPEEDI network system, which was a system rapidly to predict in-air concentration of radioactive materials, exposed dose, and so on at circumferential environment under informations on their emission sources (emitted nuclides, emission, emission time, and so on), meteorological conditions and topographical data if a lot of radioactive materials were or anxious to be emitted from a nuclear power station and so on. (G.K.)

  16. Proceedings of the European Review Meeting on Severe Accident Research - ERMSAR 2005

    The SARNET network has been set up under the aegis of the Framework Programmes (FP) of the European Commission on research. Two projects have been defined, both coordinated by IRSN (France), in the FP6 (2004-08) and FP7 (2009-13), with the following key objectives: Improving knowledge on severe accidents (SA) in order to reduce the uncertainties on the pending issues, thereby enhancing the plant safety, Coordinating research resources and expertise available in Europe, Preserving the research data and disseminating knowledge. The network members commit to contribute to a Joint Programme of Activities that can be broken into several elements: - Implementing an advanced communication tool for fostering exchange of information; - Harmonizing and re-orienting the research programmes, and defining commonly new ones; - Analysing commonly the experimental results provided by research programmes in order to elaborate a common understanding of concerned phenomena; - Developing ASTEC, which capitalizes in terms of models the knowledge produced within SARNET; - Developing Scientific Databases, in which all the results of research programmes are stored; - Developing a common methodology for Probabilistic Safety Assessment (PSA) of NNPs; - Developing educational courses and text (source) books; - Promoting personnel mobility between the various European organisations. SARNET provides an appropriate frame for achieving within a couple of years a sustainable integration of the European research capacities on SA. By capitalizing the acquired knowledge in ASTEC and in Scientific Databases, SARNET produces necessary conditions for preserving the knowledge produced by thousands of men-years and diffusing it to a large number of end-users. By fostering collaborative work on developing and validating ASTEC, SARNET makes this code as the European reference for any kind of water-cooled NPP existing in Europe. By fostering collaborative work in the domain of code development and PSA

  17. Research on the management of the wastes from plant accidents

    The accident in Fukushima Daiichi Nuclear Power Plant released large amount of radio-nuclides and contaminated wide areas within and out of the site. The decontamination, storage, treatment and disposal of generated wastes are now under planning. Though the regulations for radioactive wastes discharged from normal operation and decommissioning of nuclear facilities have been prepared, it is necessary to make amendments of those regulations to deal with wastes from the severe accidents which may have much different features on nuclides contents, or possibility to accompany hazardous chemical materials. Characteristics, treatment and disposal of wastes from accidents were surveyed by literature and the radionuclide migration from the assumed temporally storage yards of the disaster debris was analyzed for consideration of future regulation. (author)

  18. Accidental knowledge: Using accidents and other project failures to inform research in systems engineering

    Sorenson, Diane C.

    Projects experience cost overruns, late deliveries, quality issues, cancellation, and accidents despite the best efforts of the systems engineering community. There is relatively little research on why systems engineering failures in general happen, but a substantial body of work on accident causation. Here, we investigate whether systems failures in general exhibit the same patterns of causation as accidents. We conducted a review of existing accident models to develop a model that could be applied to all types of project failures. Our model helped us to classify where the factors occur during the system development/system operation phases and which entity was involved in each factor. We analyzed 58 failure case studies. The failure cases span non-accidents, accidents, and dual failures. The sources for each subset had varying depth and scope of investigation. We developed a coding method to compare the factors between failure cases that broke each factor down into an "actor-action-object" structure. We further generalized the actions from the "actor-action-object" strings into control flaws so that we could analyze the failure cases at a high level. We analyzed the control flaws, actions, and actors for each failure case and compared the results for accidents and non-accidents. Of our results that we could not attribute to study biases, we found similarities and differences between project failure causation. We also identified which control flaws, actions, and actors were the most prevalent in the different types of project failures. Of all the actions, "failure to consider factor in system development" contributed most to non-accidents, while "failure to consider step in risk management" contributed the most to accidents. Of all the actors, "company management" contributed the most to non-accidents and accidents.

  19. LTAR linkages with other research networks: Capitalizing on network interconnections

    The USDA ARS Research Unit based at the Jornada Experimental Range outside of Las Cruces, NM, is a member of the USDA’s Long Term Agro-ecosystem Research (LTAR) Network, the National Science Foundation’s Long Term Ecological Research (LTER) Network, the National Ecological Observation Network (NEON)...

  20. Research activities on accident sequence precursor study at JAERI

    At JAERI, as part of the research activity on operating experience analysis, we started the Accident Sequence Precursor (ASP) study in 1996. Since then, we have been carrying out the ASP analyses of actual events that have the potential of risk significance, the review of the ASP documents published by the USNRC and development of the event tree models for providing a more realistic ASP analyses. The objectives of the study are to obtain the risk significant trends, to characterize risk insights useful for identifying plant vulnerabilities, to feed the lessons learned from the study back to plant operations, and to establish risk indicators for event assessment. Although the ASP analysis could provide useful information on not only the safety significance of individual events but also management of plant operation and risk-informed regulation, its usefulness has not been fully recognized yet in Japan. In order to demonstrate the usefulness and effectiveness of the ASP analysis, we have been carrying out the following activities. 1- In-depth analyses of specific precursor events. The review of the operating experience, including the ASP documents, revealed that some specific events such as steam generator tube rupture (SGTR) might have risk significance and as well, some specific anomalies observed during the events might have contributed to the plant risk. In order to identify the risk significant anomalies observed during the events and to obtain generic insights useful for enhancing the safety of nuclear power plants, we have been carrying out in-depth analyses of specific precursor events. To date, the ASP analyses were performed for ten actual and one potential SGTR events with use of the consistent ASP models. 2- Sophistication of event tree models for ASP analysis. A comparison of the event trees used in the USNRC's ASP Program and those constructed in the PSA studies identified differences in the accident sequences defined. As well, some anomalies observed

  1. Social networks user: current research

    Agadullina E.R.

    2015-01-01

    The purpose of this article is to review current research studies focusing on the users of Facebook and their behaviors in social networks. This review is organized into two sections: 1) social-demographic characteristics (Age, Gender, Nationality); 2) personality characteristics (Neuroticism, Extraversion, Openness-to-Experience, Agreeableness, Conscientiousness, Narcissism, Self-esteem). The results showed that the information in the personal profile and online behavior are strongly connect...

  2. Social networks user: current research

    Agadullina E.R.

    2015-12-01

    Full Text Available The purpose of this article is to review current research studies focusing on the users of Facebook and their behaviors in social networks. This review is organized into two sections: 1 social-demographic characteristics (Age, Gender, Nationality; 2 personality characteristics (Neuroticism, Extraversion, Openness-to-Experience, Agreeableness, Conscientiousness, Narcissism, Self-esteem. The results showed that the information in the personal profile and online behavior are strongly connected with socio-demographic and personality characteristics

  3. Chernobylsk accident: radioactivity measurement of airborn particulate in the AM/CNR network

    Results are presented of the radioactivity measurements performed on samples of airborne particulates taken at the station of the AM/CNR network after the Chernobylsk accident. In particular for the 16 operating stations are reported tables and trends referred to the beta total measurements performed on two samples per day per station and the activity of some gamma emitting radionuclides deriving from the analysis made on concentrations of filters referred to North-Central and Southrn Italy plus Islands. The presentation of data is preceded by a short description of the AM/CNR network and the sampling system as well as the methodology of total beta measurement and gamma analysis

  4. Severe accident assessment. Results of the reactor safety research project VAHTI

    The report provides a summary of the publicly funded nuclear reactor safety research project Severe Accident Management (VAHTI). The project has been conducted at the Technical Research Centre of Finland (VTT) during the years 1994-96. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The project was divided into five work packages: (1) thermal hydraulic validation of the APROS code, (2) core melt progression within a BWR pressure vessel, (3) failure mode of the BWR pressure vessel, (4) Aerosol behaviour experiments, and (5) development of a computerized severe accident training tool

  5. Impaired verbal communication - research in the post cerebrovascular accident

    Daniel Bruno Resende Chaves; Alice Gabrielle de Souza Costa; Ana Railka de Souza Oliveira; Viviane Martins Silva; Thelma Leite de Araujo; Marcos Venícios de Oliveira Lopes

    2013-01-01

    One of the most common sequelae in people with Cerebrovascular accident, and that affect the quality of life of the patients, is the alteration in communication. The study aimed at investigating the prevalence of the nursing diagnosis Impaired Verbal Communication in patients with stroke in the rehabilitation phase. It is an exploratory cross-sectional study, conducted in two rehabilitation institutions in Fortaleza, CE, Brazil. 40 patients were assessed in the period March-April, 2008. Impai...

  6. Criticality accident studies and research performed in the Valduc criticality laboratory, France

    In 1967, the IPSN (Institut de Protection et de Surete Nucleaire - Nuclear Protection and Safety Institute) started studies and research in France on criticality accidents, with the objective of improving knowledge and modelling of accidents in order to limit consequences to the public, the environment and installations. The criticality accident is accompanied by an intense emission of neutronic and gamma radiation and releases of radioactive products in the form of gas and aerosols, generating irradiation and contamination risks. The main objectives of the studies carried out, particularly using the CRAC installation and the SILENE reactor at Valduc (France), were to model the physics of criticality accidents, to estimate the risks of irradiation and radioactive releases, to elaborate an accident detection system and to provide information for intervention plans. This document summarizes the state of knowledge in the various fields mentioned above. The results of experiments carried out in the Valduc criticality laboratory are used internationally as reference data for the qualification of calculation codes and the assessment of the consequences of a criticality accident. The SILENE installation, that reproduces the various conditions encountered during a criticality accident, is also a unique international research tool for studies and training on those matters. (author)

  7. Modeling management of research and education networks

    Galagan, D.V.

    2004-01-01

    Computer networks and their services have become an essential part of research and education. Nowadays every modern R&E institution must have a computer network and provide network services to its students and staff. In addition to its internal computer network, every R&E institution must have a connection with the computer networks of other institutions, and the Internet. Such connectivity is no longer a luxury, but a necessity. This is where the computer networks among the R&E organizations...

  8. Road Accident Prevention with Instant Emergency Warning Message Dissemination in Vehicular Ad-Hoc Network.

    P Gokulakrishnan

    Full Text Available A Road Accident Prevention (RAP scheme based on Vehicular Backbone Network (VBN structure is proposed in this paper for Vehicular Ad-hoc Network (VANET. The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i the Road Side Unit (RSU constructs a Prediction Report (PR based on the status of the vehicles and traffic in the highway roads, (ii the RSU generates an Emergency Warning Message (EWM based on an abnormal PR, (iii the RSU forms a VBN structure and (iv the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF and travels in High Risk Zone (HRZ. These vehicles might reside either within the RSU's coverage area or outside RSU's coverage area (reached using VBN structure. The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads.

  9. Road Accident Prevention with Instant Emergency Warning Message Dissemination in Vehicular Ad-Hoc Network.

    Gokulakrishnan, P; Ganeshkumar, P

    2015-01-01

    A Road Accident Prevention (RAP) scheme based on Vehicular Backbone Network (VBN) structure is proposed in this paper for Vehicular Ad-hoc Network (VANET). The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident) is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i) the Road Side Unit (RSU) constructs a Prediction Report (PR) based on the status of the vehicles and traffic in the highway roads, (ii) the RSU generates an Emergency Warning Message (EWM) based on an abnormal PR, (iii) the RSU forms a VBN structure and (iv) the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF) and travels in High Risk Zone (HRZ). These vehicles might reside either within the RSU's coverage area or outside RSU's coverage area (reached using VBN structure). The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs) by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads. PMID:26636576

  10. Using Social Network Research in HRM

    Kaše, Robert; King, Zella; Minbaeva, Dana

    2013-01-01

    The article features a conversation between Rob Cross and Martin Kilduff about organizational network analysis in research and practice. It demonstrates the value of using social network perspectives in HRM. Drawing on the discussion about managing personal networks; managing the networks of others......; the impact of social networking sites on perceptions of relationships; and ethical issues in organizational network analysis, we propose specific suggestions to bring social network perspectives closer to HRM researchers and practitioners and rebalance our attention to people and to their...

  11. Modeling management of research and education networks

    Galagan, D.V.

    2004-01-01

    Computer networks and their services have become an essential part of research and education. Nowadays every modern R&E institution must have a computer network and provide network services to its students and staff. In addition to its internal computer network, every R&E institution must have a con

  12. Importance of prototypic-corium experiments for severe accident research

    In case of a severe accident in a nuclear reactor, very complex physical and chemical phenomena would occur. Parallel to the development of mechanistic and scenario codes, experiments are needed to determine key phenomena and coupling, develop and qualify specific models, validate codes. Experiments with prototypic corium are performed to check the results obtained with corium-simulant materials and identify possible differences. In this context CEA has undertaken a large program on severe accidents with prototypic corium. In this paper, we discuss some specificities of the prototypic corium: 1) Spreading: experiments with simulant mixtures and prototypic corium performed in the VULCANO facility showed a behaviour involving gas formation during melt spreading. 2) Corium pool: the presence of miscibility gap in the U-Zr-O ternary system for liquid phases and the high density of uranium oxides affect solidification paths, stratification and/or macro-segregation. 3) Corium concrete interaction: the possible reactions between uranium oxide and concrete oxides are specific in terms of thermodynamics and kinetics. For instance, the limited solubility of uranium in zircon can lead to the formation of the solid solution called ''chernobylite'' (Ux,Zr1-x)SiO4 which is important for the long term behaviour (fission product release, handling,..) of solidified corium. 4) Fuel Coolant Interaction: experiments in the KROTOS facility have shown important differences of behaviour between molten alumina and molten 80%wt UO2 + 20%wt ZrO2, the latter inducing less violent explosions than the former

  13. Accidents - Chernobyl accident

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  14. Heroin assisted treatment and research networks

    Houborg, Esben; Munksgaard, Rasmus

    2015-01-01

    Purpose – The purpose of this paper is to map research communities related to heroin-assisted treatment (HAT) and the scientific network they are part of to determine their structure and content. Design/methodology/approach – Co-authorship as the basis for conducting social network analysis with....... In total, 11 research communities were constructed with different scientific content. HAT research communities are closely connected to medical, psychiatric, and epidemiological research and very loosely connected to social research. Originality/value – The first mapping of the collaborative network...... HAT researchers using social network methodology...

  15. Local computer network for nuclear research

    The logical and physical level description of the local area network for nuclear research is presented. The network architecture of the measurement center for U-240 cyclotron was considered. 3 refs., 1 tab., 3 figs

  16. Prediction of Reactor Vessel Water Level Using Fuzzy Neural Networks in Severe Accidents due to LOCA

    When the initial events that may lead to the severe accident such as Loss Of Coolant Accident (LOCA) and Steam Generator Tube Rupture (SGTR) occurs at a nuclear power plant, it is most important to check the status of the plant conditions by observing the safety-related parameters such as neutron flux, pressurizer pressure, steam generator pressure and water level. In this paper, we propose a method of predicting the water level of coolant in the reactor vessel that directly affect the important events such as the exposure of the reactor core and the damage of reactor vessel by using a Fuzzy Neural Network (FNN) method. In addition, the data for verifying a proposed model was obtained by simulating the severe accident scenarios for the OPR1000 nuclear power plant using the MAAP4 code. In this paper, a prediction model was developed for predicting the reactor vessel water level using the FNN method. The proposed FNN model was verified based on the simulation data of OPR1000 by using MAAP4 code. As a result of simulation, we could see that the performance of the proposed FNN model is quite satisfactory but some large errors are observed occasionally. If the proposed FNN model is optimized by using a variety of data, it is possible to predict the reactor vessel water level exactly

  17. An international intercomparison of national network systems used to provide early warning of a nuclear accident having transboundary implications

    Thompson, I.M.G.; Andersen, C.E.; Bøtter-Jensen, L.; Funck, E.; Neumaier, S.; Saez-Vergara, J.C.

    Since the Chernobyl accident many countries now operate large national networks of radiation detectors that continuously monitor radiation levels in order to give early warning of nuclear accidents having transboundary implications. The networks are used to provide data to assist in determining the...... these detectors are used. During an accident the data produced by such systems will be exchanged between countries within the European Communities, (EC) and as required by the IAEA's Early Warning Convention between the rest of the world and Europe. It is therefore important to ensure that such data...... laboratory for dosimetry and spectrometry (UDO) in Germany. The main aim of the intercomparison was to help ensure that results reported by different countries during a nuclear accident will be consistent and comparable. It is important that during an emergency the measurements of the plume doses or...

  18. Development of ultrasonic high temperature system for severe accidents research

    The aims of this study are to find a gap formation between corium melt and the reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at suggesting development of a new high temperature measuring system using an ultrasonic method which overcomes the limitations of the present thermocouple method used for severe accident experiments. Also, this report describes the design and manufacturing method of the ultrasonic system. At that time, the sensor element is fabricated to a reflective element using 1mm diameter and 50 mm and 80 mm long tungsten alloy wires. This temperature measuring system is intended to measure up to 2800 deg C

  19. Research trends of nuclear energy technology by citation network analysis

    Considering a new way of being energy system, what is required is the decision making with balances of human security, environmental safeguards, energy security, proliferation risk, economic risks and etc. After FUKUSHIMA, there are needs to provide the information for transvaluation of what nuclear energy technology is. Therefore this study focuses on nuclear energy technology. In this paper, we analyze the information about the structure and history of past and the present research papers, which aim to clarify the characteristics of research trends and issues. Our results showed overview of the structure of R and D of nuclear energy technology by citation network analysis. We found that the impacts of Chernobyl accident to basic research papers are limited and research trends seem to be influenced by national R and D budget for nuclear power but not by national fund for basic science research. (author)

  20. Research on the model of home networking

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  1. New public commons and network of nuclear site regions for the post-Fukushima accident re-vitalization

    Due to the Fukushima NPP accidents on 11 March 2011, we have deadly lost the regional ties among local people, electricity consumers, and people involved in the nuclear research, development and businesses. Now we need the method to reconstruct the ties and further the activation of locals in accordance to the concept of 'New Public Commons'. And it is the most important key to recover the people's confidence for the nuclear business and promote the new siting and replacement of nuclear power stations. More than forty years have past since the earliest stage of invitation of nuclear power stations to regional areas in Japan. For this period, the efforts for the development of regional industries and the improvement of regional life obtained a level of results. However, now a new turn is required in the regional development, as the perception of wealthy has been gradually changed. The primary objective of this study is to make a network among regional areas where nuclear power stations and related facilities are located. It should further the understanding for nuclear energy, stimulate the 'emergence' through the cooperative works among regional areas. As a result, such efforts will enhance the Social Responsibility of conducts related to the nuclear energy. i.e., Nuclear SR (NSR). The basic frame of the NSR should be re-estimated in the reflection of 3.11 Fukushima NPP accidents. (author)

  2. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  3. Research progress on assessment of reactor vessel integrity under severe accident conditions

    As a representative method of reactor vessel integrity (RVI) under severe accident conditions, In-vessel retention of molten core debris (IVR) is an important severe accident management strategy employed in the AP1000 generation-3 Pressurized Water Reactor. In this paper, research progress on the test and theoretical analysis based on RVI is reviewed. Test facilities and techniques, as well as the modeling are summarized. In addition, tools for numerical simulation for RVI are evaluated. Finally, based on the applications in thermal hydraulic technology for the generation-3 Pressurized Water Reactor in China, the potential research direction of thermal-hydraulics under RVI conditions are discussed. (authors)

  4. Serendipity is no accident, even in plasma research

    After chasing and pushing electrons and ions for four decades, one becomes quite convinced of the role of serendipity in invention and discovery in plasmas. Dictionaries have several definitions, roughly the knack or aptitude for making or stumbling upon interesting or desirable discoveries in a casual manner or by accident. Shapiro says Serendipity is the art of finding something valuable when you are looking for something else. The author presents some experiences that tend to fit this definition. The list is chronologic, starting about 1948. The areas include: Nyquist diagrams for stability of velocity distributions 1948; orthogonal electron streams; plane-wave growth along one resistive-medium, resistive-wall amplifiers, rippled walls 1951; general admittance wall amplifiers 1953; Bessel bi-radial functions 1953; ring-bar vs. cross-wound helices for traveling-wave tubes 1953; virtual cathode oscillations; limiting currents; 6L6 effect explained 1959; thermionic converter and Q-machine instabilities; e-triggers 1960; rf ponderomotive force; plasma sheath modification; focussed electron beam 1959, 1964; forbidden region microwave filter 1964; and cloud-in-cell weighting, to reduce noise 1964, 1966

  5. The productivity of primary care research networks.

    Griffiths, F; Wild, A; Harvey, J; Fenton, E

    2000-11-01

    Primary care research networks are being publicly funded in the United Kingdom to promote a culture of research and development in primary care. This paper discusses the organisational form of these networks and how their productivity can be evaluated, drawing on evidence from management science. An evaluation of a research network has to take account of the complexity of the organisation, the influence of its local context, and its stage of development. Output measures, such as number of research papers, and process measures, such as number of research meetings, may contribute to an evaluation. However, as networking relies on the development of informal, trust-based relationships, the quality of interactions within a network is of paramount importance for its success. Networks can audit and reflect on their success in promoting such relationships and a more formal qualitative evaluation by an independent observer can document their success to those responsible for funding. PMID:11141879

  6. Overview of LWR severe accident research activities at the Karlsruhe Institute of Technology

    The research activities in the light water reactor (LWR) severe accidents domain at Karlsruhe Institute of Technology (KIT) are concentrated on the in- and ex-vessel core melt behavior. The overall objective is to investigate the core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity and to the containment, corium concrete interaction and corium coolability in the reactor cavity, and hydrogen behaviour in reactor systems. The results of the experiments contribute to a better understanding of the core melt sequences and thus improve safety of existing and, in the long-term, of future reactors by severe accident mitigation measures and by safety installations where required. This overview paper describes the experimental facilities used at KIT for severe accident research and gives an overview of the main directions and objectives of the R&D work. (author)

  7. Channel blockage accident analysis for research reactors with MTR- type fuel elements

    It is the purpose of this study to investigate the feasibility of removing the residual decay heat from core of TR-2 ,which is a pool-type research reactor, after a channel blockage accident event and to identify the principal factors involved in cooling process. To analyze this accident scenery, THEAP-I computer code, which is a single phase transient 3-D structure/1-D flow thermal hydraulics code developed with the aim to contribute mainly to the safety analysis of the open pool research reactors, was modified and used. All of the analysis results figured out the fact that the core melting was inevitable in case of an uninterrupted operation (continuous operation) preceding a channel blockage accident of the TR-2 Reactor. Such a result will even be met if the blockage occurs only in a single fuel element. The results of analysis are expressed in terms of temperature field distribution as a function of time

  8. Lessons learnt from an international intercomparison of national network systems used to provide early warning of a nuclear accident

    Saez-Vergara, J.C.; Thompson, I.M.G.; Funck, E.;

    2003-01-01

    and at the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the Physikalisch-Technische Bundesanstalt (PTB) in Germany. The network systems are used continuously to monitor radiation levels throughout a country in order to give early warning of nuclear accidents having transboundary...... implications. The radiation levels measured are used to estimate the radiation risks to people arising from the accident. Seven European countries participated in the intercomparison with detector systems used in their national network systems as well as with detectors being developed for future use. Since...

  9. Quality assurance in military medical research and medical radiation accident management.

    Hotz, Mark E; Meineke, Viktor

    2012-08-01

    The provision of quality radiation-related medical diagnostic and therapeutic treatments cannot occur without the presence of robust quality assurance and standardization programs. Medical laboratory services are essential in patient treatment and must be able to meet the needs of all patients and the clinical personnel responsible for the medical care of these patients. Clinical personnel involved in patient care must embody the quality assurance process in daily work to ensure program sustainability. In conformance with the German Federal Government's concept for modern departmental research, the international standard ISO 9001, one of the relevant standards of the International Organization for Standardization (ISO), is applied in quality assurance in military medical research. By its holistic approach, this internationally accepted standard provides an excellent basis for establishing a modern quality management system in line with international standards. Furthermore, this standard can serve as a sound basis for the further development of an already established quality management system when additional standards shall apply, as for instance in reference laboratories or medical laboratories. Besides quality assurance, a military medical facility must manage additional risk events in the context of early recognition/detection of health risks of military personnel on deployment in order to be able to take appropriate preventive and protective measures; for instance, with medical radiation accident management. The international standard ISO 31000:2009 can serve as a guideline for establishing risk management. Clear organizational structures and defined work processes are required when individual laboratory units seek accreditation according to specific laboratory standards. Furthermore, international efforts to develop health laboratory standards must be reinforced that support sustainable quality assurance, as in the exchange and comparison of test results within

  10. Comprehensive Oncologic Emergencies Research Network (CONCERN)

    The Comprehensive Oncologic Emergencies Research Network (CONCERN) was established in March 2015 with the goal to accelerate knowledge generation, synthesis and translation of oncologic emergency medicine research through multi-center collaborations.

  11. An artificial neural network approach to reconstruct the source term of a nuclear accident

    This work makes use of one of the main features of artificial neural networks, which is their ability to 'learn' from sets of known input and output data. Indeed, a trained artificial neural network can be used to make predictions on the input data when the output is known, and this feedback process enables one to reconstruct the source term from field observations. With this aim, an artificial neural networks has been trained, using the projections of a segmented plume atmospheric dispersion model at fixed points, simulating a set of gamma detectors located outside the perimeter of a nuclear facility. The resulting set of artificial neural networks was used to determine the release fraction and rate for each of the noble gases, iodines and particulate fission products that could originate from a nuclear accident. Model projections were made using a large data set consisting of effective release height, release fraction of noble gases, iodines and particulate fission products, atmospheric stability, wind speed and wind direction. The model computed nuclide-specific gamma dose rates. The locations of the detectors were chosen taking into account both building shine and wake effects, and varied in distance between 800 and 1200 m from the reactor.The inputs to the artificial neural networks consisted of the measurements from the detector array, atmospheric stability, wind speed and wind direction; the outputs comprised a set of release fractions and heights. Once trained, the artificial neural networks was used to reconstruct the source term from the detector responses for data sets not used in training. The preliminary results are encouraging and show that the noble gases and particulate fission product release fractions are well determined

  12. Research Networks Map | Division of Cancer Prevention

    The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.  Five Major Programs' sites are shown on this map. | The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.

  13. Research activities about the radiological consequences of the Chernobyl NPS accident and social activities to assist the sufferers by the accident

    The 12th anniversary is coming soon of the accident at the Chernobyl nuclear power station in the former USSR on April 26, 1986. Many issues are, however, still unresolved about the radiological impacts on the environment and people due to the Chernobyl accident. This report contains the results of an international collaborative project about the radiological consequences of the Chernobyl accident, carried out from November 1995 to October 1997 under the research grant of the Toyota foundation. Collaborative works were promoted along with the following 5 sub-themes: 1) General description of research activities in Russia, Belarus and Ukraine concerning the radiological consequences of the accident. 2) Investigation of the current situation of epidemiological studies about Chernobyl in each affected country. 3) Investigation of acute radiation syndrome among inhabitants evacuated soon after the accident from the 30 km zone around the Chernobyl NPS. 4) Overview of social activities to assist the sufferers by the accident in each affected country. 5) Preparation of special reports of interesting studies being carried out in each affected country. The 27 papers are indexed individually. (J.P.N.)

  14. Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks

    Santosh, T.V. [Health, Safety and Environment Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)], E-mail: santutv@barc.gov.in; Srivastava, A.; Sanyasi Rao, V.V.S.; Ghosh, A.K.; Kushwaha, H.S. [Health, Safety and Environment Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2009-03-15

    This paper presents the work carried out towards developing a diagnostic system for the identification of accident scenarios in 220 MWe Indian PHWRs. The objective of this study is to develop a methodology based on artificial neural networks (ANNs), which assists in identifying a transient quickly and suggests the operator to initiate the corrective actions during abnormal operations of the reactor. An operator support system, known as symptom-based diagnostic system (SBDS), has been developed using ANN that diagnoses the transients based on reactor process parameters, and continuously displays the status of the reactor. As a pilot study, the large break loss of coolant accident (LOCA) with and without the emergency core cooling system (ECCS) in reactor headers has been considered. Several break scenarios of large break LOCA have been analyzed. The time-dependent transient data have been generated using the RELAP5 thermal hydraulic code assuming an equilibrium core, which conforms to a realistic estimation. The diagnostic results obtained from the ANN study are satisfactory. These results have been incorporated in the SBDS software for operator assistance. A few important outputs of the SBDS have been discussed in this paper.

  15. Managing Errors to Reduce Accidents in High Consequence Networked Information Systems

    Ganter, J.H.

    1999-02-01

    Computers have always helped to amplify and propagate errors made by people. The emergence of Networked Information Systems (NISs), which allow people and systems to quickly interact worldwide, has made understanding and minimizing human error more critical. This paper applies concepts from system safety to analyze how hazards (from hackers to power disruptions) penetrate NIS defenses (e.g., firewalls and operating systems) to cause accidents. Such events usually result from both active, easily identified failures and more subtle latent conditions that have resided in the system for long periods. Both active failures and latent conditions result from human errors. We classify these into several types (slips, lapses, mistakes, etc.) and provide NIS examples of how they occur. Next we examine error minimization throughout the NIS lifecycle, from design through operation to reengineering. At each stage, steps can be taken to minimize the occurrence and effects of human errors. These include defensive design philosophies, architectural patterns to guide developers, and collaborative design that incorporates operational experiences and surprises into design efforts. We conclude by looking at three aspects of NISs that will cause continuing challenges in error and accident management: immaturity of the industry, limited risk perception, and resource tradeoffs.

  16. Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks

    This paper presents the work carried out towards developing a diagnostic system for the identification of accident scenarios in 220 MWe Indian PHWRs. The objective of this study is to develop a methodology based on artificial neural networks (ANNs), which assists in identifying a transient quickly and suggests the operator to initiate the corrective actions during abnormal operations of the reactor. An operator support system, known as symptom-based diagnostic system (SBDS), has been developed using ANN that diagnoses the transients based on reactor process parameters, and continuously displays the status of the reactor. As a pilot study, the large break loss of coolant accident (LOCA) with and without the emergency core cooling system (ECCS) in reactor headers has been considered. Several break scenarios of large break LOCA have been analyzed. The time-dependent transient data have been generated using the RELAP5 thermal hydraulic code assuming an equilibrium core, which conforms to a realistic estimation. The diagnostic results obtained from the ANN study are satisfactory. These results have been incorporated in the SBDS software for operator assistance. A few important outputs of the SBDS have been discussed in this paper

  17. Collaborative knowledge in catchment research networks

    Macleod, Christopher Kit

    2015-04-01

    There is a need to improve the production, sharing and use of collaborative knowledge of catchment systems through networks of researchers, policy makers and practitioners. This requires greater levels of systems based integrative research. In parallel to the growing realization that greater levels of collaborative knowledge in scientific research networks are required, a digital revolution has been taking place. This has been driven primarily by the emergence of distributed networks of computers and standards-based interoperability. The objective of this paper is to present the status and research needs for greater levels of systems based integrative research for the production, sharing and use of collaborative knowledge in catchment research networks. To enable increased levels of integrative research depends on development and application of digital technologies to improve collection, use and sharing of data and devise new knowledge infrastructures. This paper focuses on the requirements for catchment observatories that integrate existing and novel physical, social and digital networks of knowledge infrastructures. To support this focus, I present three leading international examples of collaborative networks of catchment researchers and their development of catchment observatories. In particular, the digital infrastructures they have developed to support collaborative knowledge in catchment research networks. These examples are from North America (NSF funded CUAHSI HIS) and from Europe (UK NERC funded EVOp and the German Helmholtz Association Centers funded TERENO/TEODOOR). These exemplars all supported advancing collaborative knowledge in catchment research networks through the development of catchment observatories. I will conclude by discussing the future research directions required for greater levels of production, sharing and use of collaborative knowledge in catchment research networks based on catchment systems science.

  18. An international intercomparison of national network systems used to provide early warning of a nuclear accident having transboundary implications

    Thompson, I.M.G.; Andersen, C.E.; Bøtter-Jensen, L.;

    2000-01-01

    Since the Chernobyl accident many countries now operate large national networks of radiation detectors that continuously monitor radiation levels in order to give early warning of nuclear accidents having transboundary implications. The networks are used to provide data to assist in determining the...... action that should be implemented in that country. However, each country has its own unique system of detection. These are based either on Geiger-Muller counters, high pressure ionisation chambers, scintillation detectors, proportional counters, passive detectors or spectrometry systems; or mixtures of...... these detectors are used. During an accident the data produced by such systems will be exchanged between countries within the European Communities, (EC) and as required by the IAEA's Early Warning Convention between the rest of the world and Europe. It is therefore important to ensure that such data...

  19. Overlay networking:applications and research challenges

    LU Jun-xiu; SHAN Xiu-ming; REN Yong

    2004-01-01

    Overlay networking is one of the perspective solutions to today's Intemet challenges. At basic service level, overlay networks can serve as a supplement and enhancement of existing services, such as routing and addressing. At high application level, overlay networks can be used for applications, which are difficult to deploy in existing IP architecture with some specific reasons, e.g., they need high-level information, which is hard to obtain by underlying layers. To address the heterogeneity of today's Internet, overlay networks provide ways to service availability and desirable performance while retaining scalability. In contrast to changing the existing network layer, overlay networks allow bootstrapping, which is most important in the development of Internet infrastructure. Various applications of overlay networking are clarified in this paper. Research challenges including routing and searching in overlay networking are also identified.

  20. Applications of autoassociative neural networks for signal validation in accident management

    The OECD Halden Reactor Project has been working for several years with computer based systems for determination on plant status including early fault detection and signal validation. The method here presented explores the possibility to use a neural network approach to validate important process signals during normal and abnormal plant conditions. In BWR plants, signal validation has two important applications: reliable thermal limits calculation and reliable inputs to other computerized systems that support the operator during accident scenarious. This work shows how a properly trained autoassociative neural network can promptly detect faulty process signal measurements and produce a best estimate of the actual process value. Noise has been artificially added to the input to evaluate the network ability to respond in a very low signal to noise ratio environment. Training and test datasets have been simulated by the real time transient simulator code APROS. Future development addresses the validation of the model through the use of real data from the plant. (author). 5 refs, 17 figs

  1. Research progress and recommendations on reactor pressure vessel integrity under hypothetical core melt down accident

    Background: It is very important to ensure the integrity of the reactor pressure vessel under core melt down accident. The high-temperature creep failure is the main failure mode of the reactor pressure vessel under core melt down accident. Purpose: This paper is to present an overview of research status and progress on high-temperature creep behavior of reactor pressure vessel considering the hypothetical core melt down scenario. Methods: Emphasis is placed on accomplished achievements in creep tests, scale model experiments and numerical simulation, and the domestic newly research productions on high-temperature creep behavior of reactor pressure vessel structure integrity. Conclusions: This paper also discusses the limitations of existing researches and indicates future research directions, such as multi-axis tensile tests, analysis of three-dimensional coupling temperature field, scaled model tests, and so on. (authors)

  2. The role of fission product in whole core accidents - research in the USA

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the programme that there exists a theoretical possibility of a core compaction leading to significant energy release. Early analysis of this problem employed a number of conservative assumptions in attempting to bound the energy release. As reactors have grown in size, the suitability of such bounding calculations has diminished, and research into hypothetical accident analysis has emphasized a more mechanistic approach. In the USA, much effort has been directed towards modeling and computer code development aimed at following the course of an accident from its initiation to its ultimate conclusion with a stable, permanently subcritical, coolable core geometry, along with considerations of post-accident heat removal and radiological consequence assessment. Throughout this effort, the potential role of fission products has been recognized and account taken of the effects of fission products in determining accident progression. It is important to recognize that reactor safety is a very diverse topic, requiring consideration of a number of factors. While the major questions of public risk appear to be related to the hypothetical core disruptive accident (HCDA), it is necessary that the probability of having such an accident be extremely low In order that acceptable public risk be demonstrated. Such a demonstration requires sound engineering design and Implementation, with high standards of reliability, inspectability, maintainability, and operation, along with the requisite quality control and assurance. Tile current approach, typified by that taken by the

  3. Consideration of BORAX-type reactivity accidents applied to research reactors

    Most of the research reactors discussed in this document are pool-type reactors in which the reactor vessel and some of the reactor coolant systems are located in a pool of water. These reactors generally use fuel in plate assemblies formed by a compact layer of uranium (or U3Si2) and aluminium particles, sandwiched between two thin layers of aluminium serving as cladding. The fuel melting process begins at 660 deg. C when the aluminium melts, while the uranium (or U3Si2) particles may remain solid. The accident that occurred in the American SL-1 reactor in 1961, together with tests carried out in the United States as of 1954 in the BORAX-1 reactor and then, in 1962, in the SPERT-1 reactor, showed that a sudden substantial addition of reactivity in this type of reactor could lead to explosive mechanisms caused by degradation, or even fast meltdown, of part of the reactor core. This is what is known as a 'BORAX-type' accident. The aim of this document is first to briefly recall the circumstances of the SL-1 reactor accident, the lessons learned, how this operational feedback has been factored into the design of various research reactors around the world and, second, to describe the approach taken by France with regard to this type of accident and how, led by IRSN, this approach has evolved in the last decade. (authors)

  4. Targeting molecular networks for drug research

    José Pedro Pinto

    2014-06-01

    Full Text Available The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects, as well as listing pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.

  5. Research on the Content Networking Sensor

    Shuyan Wu

    2013-07-01

    Full Text Available In the content networking fiber optic signal system, optical signal processing in order not to be effected by sound, and change the warning, is proposed based on content networking of optical fiber sensing technology research, by analyzing on the content networking application, content networking of wireless sensor network technology and filtering LMS adaptive algorithm , we can find the problems about the things networking of optical fiber system of adaptive signal processing , and finally show that the physical networking sensor optical fiber technology through contacting ourselves with outside surrounding to improve their performance in signal processing, adjusting their parameters, which can realize the strain along the space distribution and time varying and continuous measurement, and it is senior to the transducer incomparable

  6. Using Network Science to Support Design Research

    Parraguez Ruiz, Pedro; Maier, Anja

    2016-01-01

    A network-based perspective on designing permits research on the complexity of product, process, and people interactions. Strengthened by the latest advances in information technologies and accessibility of data, a network-based perspective and use of appropriate network analysis metrics, theorie...... of archival data, including design activity logs and work-related email exchanges from a recently completed large-scale engineering systems project of designing and developing a renewable power plant....

  7. The Cancer Prevention and Control Research Network

    Jeffrey R. Harris, MD, MPH, MBA

    2005-01-01

    Full Text Available The Cancer Prevention and Control Research Network is a national network recently established to focus on developing new interventions and disseminating and translating proven interventions into practice to reduce cancer burden and disparities, especially among minority and medically underserved populations. Jointly funded by the Centers for Disease Control and Prevention and the National Cancer Institute, the Cancer Prevention and Control Research Network consists of sites administered through Prevention Research Centers funded by the Centers for Disease Control and Prevention. The five sites are located in Kentucky, Massachusetts, South Carolina, Texas, Washington State, and West Virginia. The Cancer Prevention and Control Research Network’s intervention areas include primary prevention of cancer through healthy eating, physical activity, sun avoidance, tobacco control, and early detection of cancer through screening. The Cancer Prevention and Control Research Network uses the methods of community-based participatory research and seeks to build on the cancer-relevant systematic reviews of the Guide to Community Preventive Services. Initial foci for the Cancer Prevention and Control Research Network’s research work groups include projects to increase screening for breast, cervical, and colorectal cancers; to promote informed decision making for prostate cancer screening; and to validate educational materials developed for low-literacy populations.

  8. Pilot study of dynamic Bayesian networks approach for fault diagnostics and accident progression prediction in HTR-PM

    Zhao, Yunfei; Tong, Jiejuan; Zhang, Liguo, E-mail: lgzhang@tsinghua.edu.cn; Zhang, Qin

    2015-09-15

    Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM.

  9. Pilot study of dynamic Bayesian networks approach for fault diagnostics and accident progression prediction in HTR-PM

    Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM

  10. Research Networks, Mentorship and Sustainability Knowledge

    Kafle, A.; Mukhopadhyay, P.; Nepal, M.; Shyamsundar, P.

    2015-12-01

    In South Asia, a majority of institutions are ill-equipped to undertake research on multi-disciplinary environmental problems, though these problems are increasing at a fast rate and connected to the region's poverty and growth objectives. In this context, the South Asian Network for Development and Environmental Economics (SANDEE) tries to fill a research, training and knowledge gap by building skills in the area of Environment and Development Economics. In this paper, the authors argue that research networks contribute to the growth of sustainability knowledge through (a) knowledge creation, (b) knowledge transfer and (c) knowledge deepening. The paper tries to show the relationship between capacity building, mentorship and research scholarship. It demonstrates that researchers, by associating with the network and its multiple training and mentoring processes, are able to build skills, change curricula and deliver useful knowledge products. The paper discusses the need for interdisciplinary research and the challenges of bridging the gap between research outputs and policy reforms.

  11. Stakeholder involvement in the management of rural areas following a nuclear accident: the farming network

    The importance of the participation of stakeholders in the formulation of strategies for maintaining agricultural production and food safety following a nuclear accident, has been successfully demonstrated by the Agriculture and Food Countermeasures Working Group (AFCWG). This group was set up in the UK by the National Radiological Protection Board (NRPB) and the then Ministry of Agriculture, Fisheries and Food in 1997 (Nisbet and Mondon, 2001). Before this time stakeholder organisations had not collectively considered the implications of contamination of the foodchain in the event of an accidental release of radioactivity. With funding from the European Commission (EC) the UK approach to stakeholder engagement is being taken forward on a European basis during the period 2000-2004 through a project given the acronym FARMING (Food and Agriculture Restoration Management Involving Networked Groups). The overall objective of this project is to create a network of stakeholder working groups in 5 member states (UK, Belgium, Finland, France and Greece) to assist in the development of robust and practicable strategies for restoring and managing contaminated agricultural land and food products in a sustainable way. The initial intention was to involve at least 50 individual stakeholders

  12. Sarnet lecture notes on nuclear reactor severe accident phenomenology

    The 'Severe Accident Phenomenology Short Course' is part of the Excellence Spreading activities of the European Severe Accident Research NETwork of Excellence SARNET (project of the EURATOM 6. Framework programme). It was held at Cadarache, 9-13 January 2006. The course was divided in 14 lectures covering all aspects of severe accident phenomena that occur during a scenario. It also included lectures on PSA-2, Safety Assessment and design measures in new LWR plants for severe accident mitigation (SAM). This book presents the lecture notes of the Severe Accident Phenomenology Short Course and condenses the essential knowledge on severe accident phenomenology in 2008. (authors)

  13. Network for Translational Research - Cancer Imaging Program

    Cooperative agreement (U54) awards to establish Specialized Research Resource Centers that will participate as members of a network of inter-disciplinary, inter-institutional research teams for the purpose of supporting translational research in optical imaging and/or spectroscopy in vivo, with an emphasis on multiple modalities.

  14. Analysis of loss of flow accident at Pakistan research reactor-1

    Bokhari, I.H. [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)]. E-mail: ishtiaq@pinstech.org.pk; Mahmood, T. [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2005-12-15

    The main objective of the reactor safety is to keep the reactor core in a condition, which does not permit any release of radioactivity into the environment. In order to ensure this, the reactor must have sufficient safety margins during all possible operational conditions (normal as well as accidental). To accomplish this, a study has been carried out, for the analysis of loss of flow accident (LOFA), which is one of the probable scenarios among other possible events such as reactivity-induced-accidents, loss of coolant accident, etc. The study has been carried out for Pakistan research reactor, PARR-1, which was initially converted from HEU to LEU fuel. It is a swimming pool type reactor using MTR type fuel. Presently, a new core is proposed to be assembled containing LEU and some of the used (less burnt) HEU fuel elements. The accident is assumed when the reactor is running at a steady-state power level of 9.8 MW. Computer code PARET and standard correlations were employed to compute various parameters. Results predict nucleate boiling in the core but the temperatures would remain far below the fuel clad melting point.

  15. Analysis of loss of flow accident at Pakistan research reactor-1

    The main objective of the reactor safety is to keep the reactor core in a condition, which does not permit any release of radioactivity into the environment. In order to ensure this, the reactor must have sufficient safety margins during all possible operational conditions (normal as well as accidental). To accomplish this, a study has been carried out, for the analysis of loss of flow accident (LOFA), which is one of the probable scenarios among other possible events such as reactivity-induced-accidents, loss of coolant accident, etc. The study has been carried out for Pakistan research reactor, PARR-1, which was initially converted from HEU to LEU fuel. It is a swimming pool type reactor using MTR type fuel. Presently, a new core is proposed to be assembled containing LEU and some of the used (less burnt) HEU fuel elements. The accident is assumed when the reactor is running at a steady-state power level of 9.8 MW. Computer code PARET and standard correlations were employed to compute various parameters. Results predict nucleate boiling in the core but the temperatures would remain far below the fuel clad melting point

  16. Regulatory Research of the PWR Severe Accident. Information Needs and Instrumentation for Hydrogen Control and Management

    The current research is concerned with generation of basic engineering data needed in the process of developing hydrogen control guidelines as part of accident management strategies for domestic nuclear power plants and formulating pertinent regulatory requirements. Major focus is placed on identification of information needs and instrumentation methods for hydrogen control and management in the primary system and in the containment, development of decision-making trees for hydrogen management and their quantification, the instrument availability under severe accident conditions, critical review of relevant hydrogen generation model and phenomena In relation to hydrogen behavior, we analyzed the severe accident related hydrogen generation in the UCN 3·4 PWR with modified hydrogen generation model. On the basis of the hydrogen mixing experiment and related GASFLOW calculation, the necessity of 3-dimensional analysis of the hydrogen mixing was investigated. We examined the hydrogen control models related to the PAR(Passive Autocatalytic Recombiner) and performed MAAP4 calculation in relation to the decision tree to estimate the capability and the role of the PAR during a severe accident

  17. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H2/air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author)

  18. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    Kim, Heui Dong; Cho, Sung Won; Park, Jong Hwa; Hong, Sung Wan; Yoo, Dong Han; Hwang, Moon Kyoo; Noh, Kee Man; Song, Yong Man [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H{sub 2}/air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author).

  19. Regulatory Research of the PWR Severe Accident. Information Needs and Instrumentation for Hydrogen Control and Management

    Park, Gun Chul; Suh, Kune Y.; Lee, Jin Yong; Lee, Seung Dong [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2001-03-15

    The current research is concerned with generation of basic engineering data needed in the process of developing hydrogen control guidelines as part of accident management strategies for domestic nuclear power plants and formulating pertinent regulatory requirements. Major focus is placed on identification of information needs and instrumentation methods for hydrogen control and management in the primary system and in the containment, development of decision-making trees for hydrogen management and their quantification, the instrument availability under severe accident conditions, critical review of relevant hydrogen generation model and phenomena In relation to hydrogen behavior, we analyzed the severe accident related hydrogen generation in the UCN 3{center_dot}4 PWR with modified hydrogen generation model. On the basis of the hydrogen mixing experiment and related GASFLOW calculation, the necessity of 3-dimensional analysis of the hydrogen mixing was investigated. We examined the hydrogen control models related to the PAR(Passive Autocatalytic Recombiner) and performed MAAP4 calculation in relation to the decision tree to estimate the capability and the role of the PAR during a severe accident.

  20. The radiation risks of the accident spectrum of the Greek research reactor

    The Greek Research Reactor is a 5MW swimming pool type reactor located within Athens area, a large population center of 3081000 inhabitants. The consequence analysis of the reactor focuses on the risks stemming from reactivity, coolant flow blockage, and loss of coolant accidents. Individual doses are estimated to a distance of 20km from the reactor site. Collective exposure and latent health effects for the inhabitants of the region are also calculated. (author)

  1. An assessment of the radiological consequences of accidents in research reactors

    This work analyses the radiological consequences of accidents in two types of research reactors: a 5 MWt open pool reactor and a 50 MWt PWR reactor. Two siting cases have been considered: the reactor located near to a large population center and sited in a rural area. The influence of several factors such as source term, meteorological conditions and population distribution have been considered in the present analysis. (author)

  2. Environmental impact of Pakistan Research Reactor-2 following a hypothetical radiological release accident

    The environmental impact of Pakistan Research Reactor-2 (PARR-2) following a hypothetical accident is presented. It is shown that with 100% core meltdown and multiple failures, PARR-2 does not pose any catastrophic consequences. Conservative estimates show that radiation levels in the Low Population Zone (LPZ) adjacent to the PARR-2 building, which in this case is the PINSTECH building, remains below the established limits. (author)

  3. EC Research Contribution to Decision-making Processes Relevant to Severe Accident Management

    As a result of the two well-known civil nuclear accidents and of the consequent increase in safety requirements, the need to properly assess severe accident (SA) scenarios for present and future nuclear power plants (going beyond the traditional three-level defence-in-depth strategy) became evident. In this line, various research activities were launched and are performed within the Euratom Framework Programmes, in particular the completed Fourth one (F P-4, 1994-1998) and the present Fifth one (FP-5, 1998-2002). The initial orientation of the EC research activities was mainly focused on improving the understanding of the phenomena and mechanisms involved in such accidents, in order to contribute to prevent possible final radioactivity releases. A consensus on how to model those SA phenomena in accident safety analyses by means of specific tools (SA codes developed, verified and validated through experimental results provided) is reasonably advanced. Currently, the EC research activities related to severe accidents are balanced between a twofold approach aimed at assessing the risks related with severe accident scenarios and to support the development of severe accident management (SAM) strategies, together with the optimisation of backfitting measures for existing reactors or specific designs for future nuclear power plants. This new orientation is confronting difficulties, inherent to the phenomenological character of several research activities, which make a direct application of the results into SAM measures premature in some cases. In this regard, this paper presents a series of ten selected FP-5 projects with emphasis placed on the applicability of research results towards SAM strategies to be used by decision-makers amongst utilities, the nuclear industry in particular designers, and regulators. The majority of them also contain -further to the SAM approach- supporting elements focused on risk assessment. The revised programme of the key action 'Nuclear

  4. Creatiing a Collaborative Research Network for Scientists

    Gunn, W.

    2012-12-01

    This abstract proposes a discussion of how professional science communication and scientific cooperation can become more efficient through the use of modern social network technology, using the example of Mendeley. Mendeley is a research workflow and collaboration tool which crowdsources real-time research trend information and semantic annotations of research papers in a central data store, thereby creating a "social research network" that is emergent from the research data added to the platform. We describe how Mendeley's model can overcome barriers for collaboration by turning research papers into social objects, making academic data publicly available via an open API, and promoting more efficient collaboration. Central to the success of Mendeley has been the creation of a tool that works for the researcher without the requirement of being part of an explicit social network. Mendeley automatically extracts metadata from research papers, and allows a researcher to annotate, tag and organize their research collection. The tool integrates with the paper writing workflow and provides advanced collaboration options, thus significantly improving researchers' productivity. By anonymously aggregating usage data, Mendeley enables the emergence of social metrics and real-time usage stats on top of the articles' abstract metadata. In this way a social network of collaborators, and people genuinely interested in content, emerges. By building this research network around the article as the social object, a social layer of direct relevance to academia emerges. As science, particularly Earth sciences with their large shared resources, become more and more global, the management and coordination of research is more and more dependent on technology to support these distributed collaborations.

  5. APRI-7 Accident Phenomena of Risk Importance. A progress report on research in the field of severe accidents in 2009-2011

    Knowledge of the phenomena that may occur during severe accidents in a nuclear power plant is an important prerequisite for being able to predict the plant behavior, in order to formulate procedures and instructions for incident handling, for contingency planning, and to get good quality at the accident analysis and risk studies. Since the early 80's nuclear power companies and authorities in Sweden has collaborated in research on severe reactor accidents. Cooperation in the beginning was mostly linked to strengthening the protection against environmental impacts after a severe reactor accident, in particular to develop systems for filtered depressurization of the reactor containment. Since the early 90's the cooperation has partially changed and shifted to the phenomenological questions of risk dominance. During the years 2009-2011, cooperation continued in the research-program APRI-7. The aim was to show whether the solutions adopted in the Swedish strategy for accident management provides reasonable protection for the environment. This was done by gaining detailed knowledge of both important phenomena in the hearth melting behavior, and the amount of radioactivity that can be discharged to the surroundings during a severe accident. To achieve this aim, the research program has included a follow-up of international research in severe accidents and evaluation of results, and continued to support research at KTH and Chalmers Univ. of severe accidents. The follow-up of international research has promoted the exchange of knowledge and experience and has provided access to a wealth of information about various phenomena relevant to the events at severe accidents. This was important to obtain a good basis for assessment of abatement measures in the Swedish nuclear reactors. Continuing support to the Royal Inst. of Technology has provided increased knowledge about the ability to cool the molten core of the reactor vessel and the processes associated with cooling the

  6. Biological and Environmental Research Network Requirements

    Balaji, V. [Princeton Univ., NJ (United States). Earth Science Grid Federation (ESGF); Boden, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowley, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dart, Eli [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Dattoria, Vince [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Desai, Narayan [Argonne National Lab. (ANL), Argonne, IL (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foster, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Goldstone, Robin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gregurick, Susan [U.S. Dept. of Energy, Washington, DC (United States). Biological Systems Science Division; Houghton, John [U.S. Dept. of Energy, Washington, DC (United States). Biological and Environmental Research (BER) Program; Izaurralde, Cesar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnston, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Joseph, Renu [U.S. Dept. of Energy, Washington, DC (United States). Climate and Environmental Sciences Division; Kleese-van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Monga, Inder [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Pritchard, Matt [British Atmospheric Data Centre (BADC), Oxon (United Kingdom); Rotman, Lauren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Strand, Gary [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Stuart, Cory [Argonne National Lab. (ANL), Argonne, IL (United States); Tatusova, Tatiana [National Inst. of Health (NIH), Bethesda, MD (United States); Tierney, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Thomas, Brian [Univ. of California, Berkeley, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zurawski, Jason [Internet2, Washington, DC (United States)

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  7. Interventionist Research as a Network

    Boulus-Rødje, Nina

    In the past three decades, we have been witnessing a development in social studies which has been described by STS scholars as the ?participatory turn.? This refers to a move toward various types of interventionist and action-oriented research. This turn to participation and action emerged as a...... evolving expectations, etc. In this paper, I draw upon a three and a half year long interventionist research project about the implementation of electronic medical records, conducted in close collaboration with the community partner, a non-profit clinic in Canada. Following a self-reflexive and critical...... funds increasingly are going to such types of research....

  8. Action research in inter-organisational networks

    Goduscheit, René Chester; Rasmussen, Erik Stavnsager; Jørgensen, Jacob Høj;

    2007-01-01

    Traditionally, the literature on action research has been aimed at intra-organisational issues. These studies have distinguished between two researcher roles: The problem-solver and the observer. This article addresses the distinct challenges of action research in inter-organisational projects....... In addition to the problem-solver and observer roles, the researcher in an inter-organisational setting can serve as a legitimiser of the project and manage to involve partners that in an ordinary business-to-business setting would not have participated. Based on an action research project in a Danish inter......-organisational network, this article discusses potential pitfalls in the legitimiser role. Lack of clarity in defining the researcher role and project ownership in relation to the funding organisation and the rest of the network can jeopardise the project and potentially the credibility of the researchers. The article...

  9. Criticality accident in uranium fuel processing plant. Questionnaires from Research Committee of Nuclear Safety

    The Research Committee of Nuclear Safety carried out a research on criticality accident at the JCO plant according to statement of president of the Japan Atomic Energy Society on October 8, 1999, of which results are planned to be summarized by the constitutions shown as follows, for a report on the 'Questionnaires of criticality accident in the Uranium Fuel Processing Plant of the JCO, Inc.': general criticality safety, fuel cycle and the JCO, Inc.; elucidation on progress and fact of accident; cause analysis and problem picking-up; proposals on improvement; and duty of the Society. Among them, on last two items, because of a conclusion to be required for members of the Society at discussions of the Committee, some questionnaires were send to more than 1800 of them on April 5, 2000 with name of chairman of the Committee. As results of the questionnaires contained proposals and opinions on a great numbers of fields, some key-words like words were found on a shape of repeating in most questionnaires. As they were thought to be very important nuclei in these two items, they were further largely classified to use for summarizing proposals and opinions on the questionnaires. This questionnaire had a big characteristic on the duty of the Society in comparison with those in the other organizations. (G.K.)

  10. Presentation of the RESSAC research program (REhabilitation of Soils and Surfaces after an ACcident)

    If, despite all the precautions taken in nuclear power plants, a severe accident were to occur in France involving extensive release of radioactive materials to the environment, existing emergency plans would be implemented enabling urgent decisions to be made with regard to the immediate protection of the population: confinement indoors, evacuation, distribution of stable iodine, etc. But, at a later stage, mean and long term actions would have to be carried out to decontaminate the polluted areas and limit subsequent contamination of the food chain, with a view to enabling the populations concerned to return to normal life. These actions would concern, in decreasing order of priority and using the WHO and IAEA definitions, the near field, closest to the accident site, and the far field, subjected to the direct impact of fallout. They should be aimed at reducing external exposure due to deposition and internal exposure by inhalation of radioactive products re-suspended in the atmosphere and by ingestion of products for human consumption. In the context of IPSN research and development programs on severe accidents, the RESSAC program was defined in 1985 for the purpose of studying methods and means of rehabilitating the near field and controlling problems related to the far field. Elaboration of the program is presently proceeding at the Nuclear Research Center of Cadarache, focussed on the following main topics: assessment of what happens to the radionuclides deposited on the soil and vegetation, determination of priorities and how to intervene, management of the waste produced. (author). 4 refs

  11. An assessment of the consequences of a research reactor credible accident release

    An analysis of the consequences of a serious credible accident, a coolant flow blockage accident (CFBA) of the Greek research reactor (GRR) is presented. GRR, a 5 MW swimming pool type reactor, is located within Athens the largest population centre of Greece concentrating 32% of its population. To estimate the source term 31 isotopes are taken into consideration and conservative figures of fission product release are adopted. To estimate the CFBA consequences a CRAC2 consequence model version is used. Doses and individual cancer risk from exposure to the passing radioactive cloud are estimated up to a distance of 20km from the reactor site. Collective exposure and latent health effects due to initial exposure and chronic exposure from inhalation of resuspended radionuclides and exposure to groundshine from contaminated ground are estimated for the total Athens area of 3081000 inhabitants. The results of the analysis suggest that the CFBA consequences are not significant. 10 refs., 9 figs., 2 tabs. (Author)

  12. European Union research in safety of LWRs with emphasis on accident management measures

    On April 26th 1994 the European Union (EU) adopted via a Council Decision a multiannual programme for community activities in the field of nuclear research and training for the period 1994 to 1998. This programme continued the EU research activities of the 1992-1995 Reactor Safety Programme which was carried out as a Reinforced Concerted Action (RCA), and which covered mainly research activities in the area of severe accident phenomena, both for the existing and next-generation light water reactors. The 1994-1998 Framework programme includes activities regarding Research and Technological Development (R and TD), such as demonstration projects, international cooperation, dissemination and optimization of results, as well as training, in a wide range of scientific fields, including nuclear fission safety and controlled thermonuclear fusion. The 1994-1998 specific programme for nuclear fission safety has five main activity areas: (i) Exploring Innovative Approaches, (ii) Reactor Safety, (iii) Radioactive Waste Management, Disposal, and Decommissioning, (iv) Radiological Impact on Man and Environment, and (v) Mastering Events of the past. The specific topics included in this work programme were chosen in consultation with the EU Joint Research Centres (JRC), and with experts in the different fields taking into account the needs of the end users of the Community research, i.e. vendors, utilities and licensing and regulators authorities. This paper briefly discusses the objectives and achievements of the 1992-1995 RCA and also describes the projects being (or to be) implemented as part of the 1994-1995 programme in the areas of Reactor Safety/Severe Accidents, particularly those related to Accident Management (AM) Measures. In addition to this, some relevant projects related to AM which have been funded via independent PHARE/TACIS assistance programmes will also be mentioned

  13. Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents

    Lida Barba

    2014-01-01

    Full Text Available Two smoothing strategies combined with autoregressive integrated moving average (ARIMA and autoregressive neural networks (ANNs models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD. In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%.

  14. Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents.

    Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia

    2014-01-01

    Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%. PMID:25243200

  15. A program package connected with a communication network for accident statistics of NPP, TPP, HPP and the power lines

    The package is designed for registration and analysis of accidents according to users' needs. A possibility is also provided for easy data transfer and access to data on implemented decisions. Special programmes are developed for NPP, TPP, HPP, electricity supply branch, regional distribution management and the National Electric Company. The system is open for local network connection and file exchange between the workstations. The dialogue features are user-friendly. The emergency situations are classified according to the requirements of the enacted in Bulgaria 'Regulations for Investigation, Classification and Recording of Accidents in Electric and Thermal Stations and Networks, 1993'. The unified data input provides a possibility for insertion of additional texts (remarks), correcting and updating. Data security tools are also envisaged. (author)

  16. Advanced Scientific Computing Research Network Requirements

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  17. A plan to cope with accidents at the research establishment of the Australian Science and Technology Organization, Lucas Heights, NSW

    This plan details command, coordination and support responses of Commonwealth and NSW Government in the event of an accident with off-site consequences at the Lucas Heights Research Laboratories. 7 tabs., map

  18. New public commons and network of nuclear site regions for the post-Fukushima accident re-vitalization

    Due to the Fukushima Daiichi NPP accidents on March 11 2011, the landscape of the community of nuclear energy R and D and usage has been changing in various aspects here in Japan. With such recognition, the networking of nuclear site regions as well as consumer cities is proposed for obtaining novel-sense societal confidence, on the basis of on-going practice of atom-sports such as international MaxiMarathon and domestoic Tour de Atom. (author)

  19. Consideration of BORAX-type reactivity accidents applied to research reactors; Prise en compte des accidents de type 'BORAX' pour les reacteurs de recherche

    Couturier, Jean; Meignen, Renaud; Bourgois, Thierry; Biaut, Guillaume; Mireau, Jean-Pierre [Direction de la surete des reacteurs, Institut de Radioprotection et de Surete Nucleaire - IRSN, 31, avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Natta, Marc [Direction de la strategie, du developpement et des partenariats, Institut de Radioprotection et de Surete Nucleaire - IRSN, 31, avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France)

    2011-08-08

    Most of the research reactors discussed in this document are pool-type reactors in which the reactor vessel and some of the reactor coolant systems are located in a pool of water. These reactors generally use fuel in plate assemblies formed by a compact layer of uranium (or U{sub 3}Si{sub 2}) and aluminium particles, sandwiched between two thin layers of aluminium serving as cladding. The fuel melting process begins at 660 deg. C when the aluminium melts, while the uranium (or U{sub 3}Si{sub 2}) particles may remain solid. The accident that occurred in the American SL-1 reactor in 1961, together with tests carried out in the United States as of 1954 in the BORAX-1 reactor and then, in 1962, in the SPERT-1 reactor, showed that a sudden substantial addition of reactivity in this type of reactor could lead to explosive mechanisms caused by degradation, or even fast meltdown, of part of the reactor core. This is what is known as a 'BORAX-type' accident. The aim of this document is first to briefly recall the circumstances of the SL-1 reactor accident, the lessons learned, how this operational feedback has been factored into the design of various research reactors around the world and, second, to describe the approach taken by France with regard to this type of accident and how, led by IRSN, this approach has evolved in the last decade. (authors)

  20. Post-accident heat removal research: A state of the art review

    For a realistic assessment of the consequence of extremely unlikely reactor accidents resulting in core degradation or core meltdown key questions are how to remove the decay heat from the reactor system and how to retain the radioactive core debris within the containment. Usually, this complex of questions is referred to as Post-Accident Heat Removal (PAHR). In this article the research work on PAHR performed by various institutions during the last decade has been reviewed. The main results have been summarized under the chapter headings ''Accident Scenarios,'' - ''Core Debris Accommodation Concepts,'' and ''PAHR Topics.'' Particular emphasis has been placed on the presentation of the following problems: characteristics and coolability of solid core debris in the vector vessel, heat removal from molten pools of core material, and core-melt interaction with structural materials. Some unresolved or insufficiently answered questions relating to special ''PAHR Topics'' have been mentioned or discussed at the end of the particular Chapter. Problem areas of major uncertainty have been identified and listed at the end of the review article. They include the following subjects: formation of debris beds and bed characteristics, post dryout behaviour of particle beds, long-term availability and proper location of heat sinks, creep rupture of structures under high thermal loads. (orig.)

  1. Co-ordinated research programme on reference studies on probabilistic modelling of accident sequences

    The co-ordinated research programme (CRP) on probabilistic modelling of accident sequences was established in order to ensure that International Atomic Energy Agency (IAEA) Member States not previously involved in international benchmark exercises obtain adequate practice in applying the available PSA techniques and benefit from the extensive international experience. A supportive peer review group was formed to provide guidance and transfer the insights derived from similar European projects. Seventeen countries participate in this programme which will be completed during 1991. Three working groups have been organized around different reactor types, namely WWER-440 PWRs (with a subgroup analysing AST-500, a district heating plant), Framatome PWRs and CANDU. Each participant in a group studied the same initiating event for a reference plant. For detailed analysis one particular accident sequence has been selected by each team. The logic models (event trees and fault trees) were developed and accident sequences were quantified. Sensitivity analyses are presently in progress. The paper presents some preliminary results and insights. The experiences gained from this CRP are considered as extremely useful for the national PSA programmes in several IAEA Member States. (author). 8 refs, 2 figs, 1 tab

  2. Source term evaluation for the upgraded LEU Pakistan Research Reactor-1 under severe accidents

    Research highlights: → Evaluation of source term was done for an upgraded LEU based PARR-I system with a Matlab based computer program having ORIGEN2 code as subroutine for core inventory calculations. → Various accident scenarios, with instantaneous release of radioactivity to containment, have been considered including the startup, fuel loading, and loss-of-coolant accidents. → The source term and containment retention factor values show a rapid increase followed by an approach towards saturation values as the exhaust rates are increased. → The isotope-dependency of the containment retention factor indicates strong sensitivity for 85Kr, 137Xe, 138Xe and 138Cs towards exhaust rate values. - Abstract: Evaluation of source term has been carried out for the upgraded LEU PARR-I system taken as a typical material test reactor (MTR). The modeling and simulation of release of radioactivity has been carried out by developing a Matlab based computer program which uses the ORIGEN2 code for core inventory calculations. For post 180 full-power days continuous operation, various accident scenarios, with instantaneous release of radioactivity to containment, have been considered including the startup, fuel loading, and loss-of-coolant accidents. For noble gases, iodine and for aerosols, the release rate studies have been carried out for the normal, emergency and for the isolation states of containment. The values of source term as well as that of containment retention factor show rapid increase followed by an approach towards saturation values as the exhaust rate values are increased. The isotope-dependency of the containment retention factor has been studied and the results indicate strong sensitivity for 85Kr, 137Xe, 138Xe and 138Cs towards exhaust rate values.

  3. Source term evaluation for the upgraded LEU Pakistan Research Reactor-1 under severe accidents

    Ullah, Sana [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Awan, Saeed Ehsan [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Mirza, Nasir M., E-mail: nasirmm@yahoo.co [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Mirza, Sikander M. [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan)

    2010-11-15

    Research highlights: {yields} Evaluation of source term was done for an upgraded LEU based PARR-I system with a Matlab based computer program having ORIGEN2 code as subroutine for core inventory calculations. {yields} Various accident scenarios, with instantaneous release of radioactivity to containment, have been considered including the startup, fuel loading, and loss-of-coolant accidents. {yields} The source term and containment retention factor values show a rapid increase followed by an approach towards saturation values as the exhaust rates are increased. {yields} The isotope-dependency of the containment retention factor indicates strong sensitivity for {sup 85}Kr, {sup 137}Xe, {sup 138}Xe and {sup 138}Cs towards exhaust rate values. - Abstract: Evaluation of source term has been carried out for the upgraded LEU PARR-I system taken as a typical material test reactor (MTR). The modeling and simulation of release of radioactivity has been carried out by developing a Matlab based computer program which uses the ORIGEN2 code for core inventory calculations. For post 180 full-power days continuous operation, various accident scenarios, with instantaneous release of radioactivity to containment, have been considered including the startup, fuel loading, and loss-of-coolant accidents. For noble gases, iodine and for aerosols, the release rate studies have been carried out for the normal, emergency and for the isolation states of containment. The values of source term as well as that of containment retention factor show rapid increase followed by an approach towards saturation values as the exhaust rate values are increased. The isotope-dependency of the containment retention factor has been studied and the results indicate strong sensitivity for {sup 85}Kr, {sup 137}Xe, {sup 138}Xe and {sup 138}Cs towards exhaust rate values.

  4. Creating a national home visiting research network.

    Duggan, Anne; Minkovitz, Cynthia S; Chaffin, Mark; Korfmacher, Jon; Brooks-Gunn, Jeanne; Crowne, Sarah; Filene, Jill; Gonsalves, Kay; Landsverk, John; Harwood, Robin

    2013-11-01

    Home visiting can play a key role in the early childhood system of services. For home visiting to achieve its potential, decision-makers must make informed choices regarding adoption, adaptation, coordination, scale-up, and sustainment. We need a coordinated, focused, and theory-based home visiting research infrastructure to inform such decisions. The transdisciplinary Home Visiting Research Network (HVRN) was established in July 2012 with funding from the Health Resources and Services Administration. Its goal is to promote the translation of research findings into policy and practice. Its objectives are to (1) develop a national home visiting research agenda, (2) advance the use of innovative research methods; and (3) provide a research environment that is supportive of the professional development of emerging researchers interested in home visiting. A Management Team designs and directs activities to achieve these objectives through Work Teams. A Steering Committee of national leaders representing stakeholder groups oversees progress. HVRN's Coordinating Center supports the Work Teams and HVRN's Home visiting Applied Research Collaborative, a practice-based research network of home visiting programs. This article describes HVRN's rationale, approach, and anticipated products. We use home visiting-primary care coordination as an illustration, noting potential roles for pediatric practices and pediatric researchers and research educators in HVRN activities. HVRN creates the infrastructure for a rigorous program of research to inform policy and practice on home visiting as part of the system of services to improve family functioning, parenting, and child outcomes. PMID:24187127

  5. Research on Context Aware Network Security Model

    XiaoHui Guo

    2013-08-01

    Full Text Available According to high development of internet and mobile internet technologies, more and more services and applications are researched and are becoming more and more important in people’s life. At the same time, there are still many risks that virus attack from internet. Network security is facing more challenges than before, such as attack method becoming more diversify, attack times are increasing rapidly, and attack behavior are becoming a system to damage network security. What’s more, application data is more changeable that before, which makes it more difficult to judge which behavior is attack and response to the attack. Current network security system can’t prevent a system level attack, what’s more, can’t response to the attack quickly and effectively. Therefore, this paper designed a new context aware network security model to prevent various attack effectively, present the context declaim algorithm to judge network attack, and then designed a data share mechanism to share attack information with peer machine, which can decrease the response time deeply. Finally, this paper designed a set experiment to validate the quality and performance of context based network security model, the result shows this model can prevent network attack effectively and more memory saving in changeable application.

  6. Comprehensive Research on Speed and Traffic Accidents%车速与交通事故综合研究

    黎毅

    2012-01-01

    With increasing concerns of people for traffic safety issues, safety techniques and relevant researches on road traffic developed quickly. This paper analyzes influences of speed on traffic accident rate and severity of accidents and establishes correlativity between speed and traffic accident rate and severity of accidents. Research finds that the more the speed deviates, the higher the accident rate; and the more the speed changes before and after collision accidents, the severer the accidents. Therefore the speed remarkably influences traffic safety.%随着人们对交通安全问题日益关注,道路交通安全技术和相关研究也得以快速发展.分析车速对交通事故率及事故严重程度的影响,建立车速与交通事故率和事故严重程度2者之间的相关关系.研究发现,车速偏差越大,事故率越高;事故冲撞前后车速变化越大,事故越严重.由此可知,车速对交通安全有显著影响.

  7. Research on Evolutionary Mechanism of Agile Supply Chain Network via Complex Network Theory

    Nai-Ru Xu; Jia-Bao Liu; De-Xun Li; Jun Wang

    2016-01-01

    The paper establishes the evolutionary mechanism model of agile supply chain network by means of complex network theory which can be used to describe the growth process of the agile supply chain network and analyze the complexity of the agile supply chain network. After introducing the process and the suitability of taking complex network theory into supply chain network research, the paper applies complex network theory into the agile supply chain network research, analyzes the complexity of...

  8. Effects on the surrounding population of postulated major accidents at the AAEC Research Establishment

    The consequences of accidents in specific facilities at the Research Establishment are examined in terms of possible exposure of persons living around Lucas Heights to release airborne radioactive and toxic materials. In the case of radioactive materials, both individual and population doses are estimated, the latter over a range of meteorological conditions. Using currently available data on the risk of development of adverse effects in irradiated populations further estimates are made of the possible number of cases of such effects in the local population. 43 refs., 14 tabs., 3 figs

  9. Research of severe accidents results of water-cooled power reactors on COTELS project

    In the Institute of Atomic Energy there have been created experimental facilities for researches of the results of some stages of severe accidents. In the scope of Kazakhstan - Japan project COTELS, at the facilities there were conducted 4 groups of experiments on the study of the core materials (corium) melt interaction with construction materials, water and concrete. There are described experimental facilities and main outcomes of conducted experiments. The important result of these experiments is confirmation of conditions at which the suppression of steam explosion and MCCI process ceasing are possible. (author)

  10. The Prevention Research Centers Healthy Aging Research Network

    The Healthy Aging Research Network Writing Group

    2005-12-01

    Full Text Available BackgroundThe Prevention Research Centers Healthy Aging Research Network (PRC–HAN, funded by the Centers for Disease Control and Prevention’s (CDC’s Healthy Aging program, was created in 2001 to help develop partnerships and create a research agenda that promotes healthy aging. The nine universities that participate in the network use their expertise in aging research to collaborate with their communities and other partners to develop and implement health promotion interventions for older adults at the individual, organizational, environmental, and policy levels.ContextThe population of older adults in the United States is growing rapidly; approximately 20% of Americans will be aged 65 years or older by 2030. The health and economic impact of an aging society compel the CDC and the public health community to place increased emphasis on preventing unnecessary disease, disability, and injury among older Americans.MethodsThe PRC–HAN has a broad research agenda that addresses health-promoting skills and behaviors, disease and syndrome topics, and knowledge domains. The network chose physical activity for older adults as its initial focus for research and has initiated two networkwide projects: a comprehensive, multisite survey that collected information on the capacity, content, and accessibility of physical activity programs for older adults and a peer-reviewed publication that describes the role of public health in promoting physical activity among older adults. In addition to participating in the core research area, each network member works independently with its community committee on PRC–HAN activities.ConsequencesAs a result, the network is 1 expanding prevention research for older adults and their communities; 2 promoting the translation and dissemination of findings to key stakeholders; 3 strengthening PRC–HAN capacity through partnerships and expanded funding; and 4 stimulating the adoption of policies and programs by engaging

  11. Presentation of the ressac research program (rehabilitation of soils and surfaces after an accident)

    If, despite all the precautions taken in nuclear power plants, a severe accident was to occur in France involving extensive release of radioactive materials to the environment, existing emergency plans would be implemented enabling urgent decisions to be made with regard to the immediate protection of the population: confinement indoors, evacuation, distribution of stable iodine, etc. But, at a later stage, mean and long term actions would have to be carried out to decontaminate the polluted areas and limit subsequent contamination of the food chain, with a view to enabling the populations concerned to return to normal life. These actions would concern, in decreasing order of priority and using the WHO and IAEA definitions, the near field, closest to the accident site, and the far field, subjected to the direct impact of fallout. They should be aimed at reducing external exposure due to deposition and internal exposure by inhalation of radioactive products re-suspended in the atmosphere and by ingestion of products for human consumption. In the context of IPSN (Institute of Protection and Nuclear Safety) research and development programs on severe accidents, the RESSAC program was defined in 1985 for the purpose of studying methods and means of rehabilitating the near field and controlling problems related to the far field. Elaboration of the program is presently proceeding at the Nuclear Research Center of CADARACHE, focussed on the following main topics: assessment of what happens to the radionuclides deposited on the soil and vegetation, determination of priorities and how to intervene, management of the waste produced

  12. Differential Network Analysis in Human Cancer Research

    Gill, Ryan; Datta, Somnath; Datta, Susmita

    2016-01-01

    A complex disease like cancer is hardly caused by one gene or one protein singly. It is usually caused by the perturbation of the network formed by several genes or proteins. In the last decade several research teams have attempted to construct interaction maps of genes and proteins either experimentally or reverse engineer interaction maps using computational techniques. These networks were usually created under a certain condition such as an environmental condition, a particular disease, or a specific tissue type. Lately, however, there has been greater emphasis on finding the differential structure of the existing network topology under a novel condition or disease status to elucidate the perturbation in a biological system. In this review/tutorial article we briefly mention some of the research done in this area; we mainly illustrate the computational/statistical methods developed by our team in recent years for differential network analysis using publicly available gene expression data collected from a well known cancer study. This data includes a group of patients with acute lymphoblastic leukemia and a group with acute myeloid leukemia. In particular, we describe the statistical tests to detect the change in the network topology based on connectivity scores which measure the association or interaction between pairs of genes. The tests under various scores are applied to this data set to perform a differential network analysis on gene expression for human leukemia. We believe that, in the future, differential network analysis will be a standard way to view the changes in gene expression and protein expression data globally and these types of tests could be useful in analyzing the complex differential signatures. PMID:23530503

  13. Conceptualizing and Advancing Research Networking Systems

    SCHLEYER, TITUS; BUTLER, BRIAN S.; SONG, MEI; SPALLEK, HEIKO

    2013-01-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers’ need for comprehensive information and potential collaborators’ desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user’s primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309

  14. Campfire-2000: Comprehensive Accident Management Program Featuring Innovative Research and Engineering for the Year 2000 and Beyond

    The CAMPFIRE-2000 accident management program is being developed at the Korea Atomic Energy Research Institute symphonizing the proven state-of-the-art technologies and newly proposed innovative research and engineering. The ultimate goal of the program is to resolve the plant-specific accident management issues utilizing a coherent, consistent, pragmatic, methodical approach. The program focuses on the preventive measures to maintain reactor core geometry and the mitigative measures to secure containment integrity, should a severe accident take place in a nuclear power plant. CAMPFIRE-2000 consists of strategy assessment methods, guidance and procedures, instrumentation and information, calculational aids and tools, human and organization factors, handbook of accident management, and technical expert system. In particular, the one most immediate issue involves the simulation of the rather rapid cooling of the core debris and the reactor vessel lower head of be Three Mile Island Unit 2 nuclear plant as has recently been identified from post-accident metallurgical testing of the sample specimens. As a top-notch companion experiment for CAMPFIRE-2000, a large-scale, real-material, high pressure system test SONATA-IV is proposed as a multi-lateral, multi-disciplinary project calling for international collaboration to investigate the potentially inherent, naturally-occurring in-vessel cooling mechanism from the very relevant severe accident management perspective

  15. The researches of I.P.S.N. in criticality from the risk prevention to the accident study

    The researches made by I.P.S.N. in the field of prevention of the criticality risk turn on: the development and the qualification of calculation tools; the expertise in technical help of the I.P.S.N. units in charge of safety evaluations of facilities and transport of fissile matter; studies of criticality to the demand of operators and facilities managers; researches in order to extend the knowledge in matter of criticality. The second part of this report concerns the study of criticality accidents themselves. The objectives of these studies is to bring elements and knowledge relative to the criticality excursions and their consequences on the personnel and environment. The knowledge of these accidents is necessary to deepen the evaluation of the installations safety, to optimize the detection and to prepare an intervention. A table gives the criticality accidents from 1945 to 1999 in the world with, the date, the exposure, the total number of fission, the accident historic, the characteristics of the fissile matter and a summary of the accident. The last part relates the Tokai MURA criticality accident. (N.C.)

  16. Radiation protection survey of research and development activities initiated after the Chernobyl accident. Review report

    The compilation of research and development activities in the various fields of radiation protection in OECD Member countries which have been undertaken or planned specifically to address open questions arising from the Chernobyl reactor accident experience shows a potential for international cooperative arrangements and/or coordination between national programmes. Both the preliminary review of the answers, which only cover a part of the relevant activities in OECD Member countries, and a computerized literature search indicate that the multidisciplinarity of the research area under consideration will call for special efforts to efficiently implement new models and new quantitative findings from the different fields of activity to provide an improved basis for emergency management and risk assessment. Further improvements could also be achieved by efforts to initiate new activities to close gaps in the programmes under way, to enhance international cooperation, and to coordinate the evaluation of the results. This preliminary review of the answers of 17 Member countries to the questionnaire on research and development activities initiated after the Chernobyl accident is not sufficient as a basis for a balanced decision on those research areas most in need for international cooperation and coordination. It may however serve as a guide for the exploration of the potential for international cooperative arrangements and/or coordination between national programmes by the CRPPH. Even at this preliminary stage, several specific activities are proposed to the NEA/OECD by Member countries. Whole body counting and the intercomparison of national data bases on the behaviour of radionuclides in the environment did attract most calls for international cooperation sponsored by the NEA

  17. Research on Promising Cladding Materials for Accident Tolerant Fuels at KIT

    Research on nuclear materials has a long tradition at the Karlsruhe Institute of Technology (KIT) and its precursors, the Research Centre Karlsruhe and Nuclear Research Centre Karlsruhe. Examples of the common research fields are the study of material processes occurring during loss of coolant and severe accidents and the development of materials for GEN- IV reactors. These experiences have inspirited the application of the existing knowledge to develop and test candidate materials for so called accident tolerant fuel (ATF) claddings. Silicon carbide, alumina-forming modified layers and ternary carbides coatings (e.g. MAX-phases) on zirconium alloys are some of the considered solutions for this novel cladding systems which should be able to sustain very high temperature, beyond designs basis. At KIT different solutions are nowadays under investigation. An approach called GESA method, consists of Al-containing layers deposition followed by intense pulsed electron beam processing. This method can be used to manufacture alumina-forming modified layers. Moreover, different deposition methods are currently under evaluation for ternary carbides coatings (V-, Zr-Based). Other major topics of these studies are the investigation of the high temperature oxidation and quench behaviour of silicon carbide (SiC) as monolith and composite cladding tubes. Despite the studies already performed on these materials, assessments are still required concerning the joining feasibility and the behaviour in case of severe accident scenarios (beyond design basis conditions). Hence, steam oxidation studies along with quench tests at temperature between 1600°C and 2000°C have been performed. This work is aimed at implementing bundle experiments in the QUENCH facility, already available at KIT. The joining of SiC based components for assembling complex structures is a scientific and engineering challenge since conventional welding processes cannot be applied due to their non-wetting nature

  18. Clustering, cooperation, and research in social networks

    Vega-Redondo, F.; Slanina, František; Marsili, M.

    2005-01-01

    Roč. 3, 2-3 (2005), s. 628-638. ISSN 1542-4766 R&D Projects: GA MŠk(CZ) 1P04OCP10.001 Grant ostatní: MEC(ES) SEJ2004-02170; EU(XE) HPRN-CT-2002-00319 Institutional research plan: CEZ:AV0Z10100520 Keywords : sociophysics * random graphs * networks Subject RIV: BE - Theoretical Physics

  19. The practice research network: benefits and limitations

    EL-GUEBALY, NADY; Atkinson, Mark J

    2004-01-01

    The 5-year experience of the Canadian Psychiatric Association's practice research network (PRN) in providing a window on physician practices in typical clinical settings is reviewed. The strenghts of the PRN reside in the active participation of clinicians in self-monitoring as well as in the instrument adaptability and flexibility in addressing current issues of national relevance, including identification of educational needs. The PRN limitations are in the fact that the r...

  20. Assessment Of Source Term And Radiological Consequences For Design Basis Accident And Beyond Design Basis Accident Of The Dalat Nuclear Research Reactor

    The paper presents results of the assessment of source terms and radiological consequences for the Design Basis Accident (DBA) and Beyond Design Basis Accident (BDBA) of the Dalat Nuclear Research Reactor. The dropping of one fuel assembly during fuel handling operation leading to the failure of fuel cladding and the release of fission products into the environment was selected as a DBA for the analysis. For the BDBA, the introduction of a step positive reactivity due to the falling of a heavy block from the rotating bridge crane in the reactor hall onto a part of the platform where are disposed the control rod drives is postulated. The result of the radiological consequence analyses shows that doses to members of the public are below annual dose limit for both DBA and BDBA events. However, doses from exposure to operating staff and experimenters working inside the reactor hall are predicted to be very high in case of BDBA and therefore the protective actions should be taken when the accident occurs. (author)

  1. Severe accident phenomena

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  2. Research and development with regard to severe accidents in pressurised water reactors: Summary and outlook

    This document reviews the current state of research on severe accidents in France and other countries. It aims to provide an objective vision, and one that's as exhaustive as possible, for this innovative field of research. It will help in identifying R and D requirements and categorising them hierarchically. Obviously, the resulting prioritisation must be completed by a rigorous examination of needs in terms of safety analyses for various risks and physical phenomena, especially in relation to Level 2 Probabilistic Safety Assessments. PSA-2 should be sufficiently advanced so as not to obscure physical phenomena that, if not properly understood, might result in substantial uncertainty. It should be noted that neither the safety analyses nor PSA-2 are presented in this document. This report describes the physical phenomena liable to occur during a severe accident, in the reactor vessel and the containment. It presents accident sequences and methods for limiting impact. The corresponding scenarios are detailed in Chapter 2. Chapter 3 deals with in-vessel accident progression, examining core degradation (3.1), corium behaviour in the lower head (3.2), vessel rupture (3.3) and high-pressure core meltdown (3.4). Chapter 4 focuses on phenomena liable to induce early containment failure, namely direct containment heating (4.1), hydrogen risk (4.2) and steam explosions (4.3). The phenomenon that could lead to a late containment failure, namely molten core-concrete interaction, is discussed in Chapter 5. Chapter 6 focuses on problems related to in-vessel and ex-vessel corium retention and cooling, namely in-vessel retention by flooding the primary circuit or the reactor pit (6.1), cooling of the corium under water during the corium-concrete interaction (6.2), corium spreading (6.3) and ex-vessel core catchers (6.4). Chapter 7 relates to the release and transport of fission products (FP), addressing the themes of in-vessel FP release (7.1) and ex-vessel FP release (7.3), FP

  3. Regulatory research of the PWR severe accident information needs and instrumentation availability for hydrogen control and management

    Park, Jae-Hong; Park, Gun-Chul; Suh, Kune Y.; Kang, Yun-Moon; Lee, Un-Jang; Oh, Se-Chul; Lee, Jin-Yong [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-03-15

    During the current research period, we have set forth the methodology for identification of a severe accident, developed a framework for hydrogen management decision trees, and analyzed the literature on hydrogen management and experimental data for hydrogen bum. Specifically, we have summarized me results for information needs in a severe accident obtained in the U.S. and other countries, and applied the methodology to the reference plant YGN 3 and 4 as part of severe accident management. We have also examined the existing instruments in terms of their availability and survivability during a severe accident, and identified additionally needed information needs and instruments. We have identified dominant accident sequences for me reference plant YGN 3 and 4 to construct decision trees, and extracted available data from the IPE study of the plant. Based upon the data we have performed preliminary study on the decision tree and decision node. Last, we have examined various mechanisms for hydrogen generation and reIevant experimental data to predict me amount of hydrogen generation and governing factors in me process. We have also reviewed the hydrogen generation related models in the severe accident analysis.

  4. Regulatory research of the PWR severe accident information needs and instrumentation availability for hydrogen control and management

    During the current research period, we have set forth the methodology for identification of a severe accident, developed a framework for hydrogen management decision trees, and analyzed the literature on hydrogen management and experimental data for hydrogen bum. Specifically, we have summarized me results for information needs in a severe accident obtained in the U.S. and other countries, and applied the methodology to the reference plant YGN 3 and 4 as part of severe accident management. We have also examined the existing instruments in terms of their availability and survivability during a severe accident, and identified additionally needed information needs and instruments. We have identified dominant accident sequences for me reference plant YGN 3 and 4 to construct decision trees, and extracted available data from the IPE study of the plant. Based upon the data we have performed preliminary study on the decision tree and decision node. Last, we have examined various mechanisms for hydrogen generation and reIevant experimental data to predict me amount of hydrogen generation and governing factors in me process. We have also reviewed the hydrogen generation related models in the severe accident analysis

  5. New Visions for Large Scale Networks: Research and Applications

    Networking and Information Technology Research and Development, Executive Office of the President — This paper documents the findings of the March 12-14, 2001 Workshop on New Visions for Large-Scale Networks: Research and Applications. The workshops objectives...

  6. ESnet and Internet2 to launch next gen research network

    2006-01-01

    "The Department of Energy's (DOE) Energy Sciences Network (ESnet) and Internet2 will deploy a high capacity nationwide network that will greatly enhance the capabilities of researchers across the country who participate in the DOE's scientific research efforts." (1 page)

  7. Computer code for the analyses of reactivity initiated accident of heavy water moderated and cooled research reactor 'EUREKA-2D'

    Codes, such as EUREKA and EUREKA-2 have been developed to analyze the reactivity initiated accident for light water reactor. These codes could not be applied directly for the analyses of heavy water moderated and cooled research reactor which are different from light water reactor not only on operation condition but also on reactor kinetic constants. EUREKA-2D which is modified EUREKA-2 is a code for the analyses of reactivity initiated accident of heavy water research reactors. Following items are modified: 1) reactor kinetic constants. 2) thermodynamic properties of coolant. 3) heat transfer equations. The feature of EUREKA-2D and an example of analysis are described in this report. (author)

  8. Atmospheric dispersion modeling and radiological safety analysis for a hypothetical accident of Ghana Research Reactor-1 (GHARR-1)

    Highlights: • An atmospheric dispersion model for a hypothetical accident of Ghana Research Reactor-1 (GHARR-1) was developed. • Radiological safety analysis after the postulated accident was also carried out. • The MCNPX and HotSpot codes were used to achieve the objectives of our study. • All the values of effective dose obtained following the accident were far below the regulatory limits. - Abstract: Atmospheric dispersion modeling and radiological safety analysis were performed for a postulated accident scenario of the generic Low-Enriched Uranium (LEU) Ghana Research Reactor-1 (GHARR-1) core. The source term was generated from an inventory of peak radioisotope activities released by using the isotope generation code MCNPX. The health physics code, HotSpot, was used to perform the atmospheric transport modeling which was then applied to calculate the total effective dose and how it would be distributed to human organs as a function of distance downwind. All accident scenarios were selected from the GHARR-1 Safety Analysis Report (SAR), assuming that the activities were released to the atmosphere after a design basis accident. The adopted methodology was the use of predominant site-specific meteorological data and dispersion modeling theories to analyze the incident of a hypothetical release to the environment of some selected radionuclides from the site and evaluate to what extent such a release may have radiological effects on the public. The results indicate that all the values of Effective dose obtained, with the maximum of 2.62 × 10−2 mSv at 110 m from the reactor, were far below the regulatory limits, making the use of the reactor safe, even in the event of severe accident scenario

  9. A RESEARCH ON WORKING CONDITIONS AND OCCUPATIONAL ACCIDENTS AT THE FOREST HARVESTING ACTIVITIES

    MENEMENCİOĞLU, Kayhan

    2009-01-01

    This study was condcuted to have some information about the occupational accident ratio and some habits of forest harvesting workers, and the reasons of the accidents. The data obtained from a total of 250 forest workers responded to a self-administered questionnaire working at the harvesting practises at Directorates of Forest Enterprises Adana, Oltu, Ilgaz, Pazar and Sındırgı were discussed. According to findings; 47 % of forestry workers had at least an occupational accident and the cause...

  10. Research on problems in nuclear accident emergency rescue for nuclear power submarine

    This paper presents a description of nuclearpowered submarine accident types and an analysis of accident emergency rescue characteristics, including a special number of problems associated with emergencyrescue, such as emergency situation and emergency planning zone, technical rescue resources and task, protection against compound radiation inside and outside port plume zone, on-sea nuclear rescue equipment and technical assurance capacity, and other problesms related to in-accident nuclear submarine disposal. (authors)

  11. Neural network of Gaussian radial basis functions applied to the problem of identification of nuclear accidents in a PWR nuclear power plant

    Highlights: • It is presented a new method based on Artificial Neural Network (ANN) developed to deal with accident identification in PWR nuclear power plants. • Obtained results have shown the efficiency of the referred technique. • Results obtained with this method are as good as or even better to similar optimization tools available in the literature. - Abstract: The task of monitoring a nuclear power plant consists on determining, continuously and in real time, the state of the plant’s systems in such a way to give indications of abnormalities to the operators and enable them to recognize anomalies in system behavior. The monitoring is based on readings of a large number of meters and alarm indicators which are located in the main control room of the facility. On the occurrence of a transient or of an accident on the nuclear power plant, even the most experienced operators can be confronted with conflicting indications due to the interactions between the various components of the plant systems; since a disturbance of a system can cause disturbances on another plant system, thus the operator may not be able to distinguish what is cause and what is the effect. This cognitive overload, to which operators are submitted, causes a difficulty in understanding clearly the indication of an abnormality in its initial phase of development and in taking the appropriate and immediate corrective actions to face the system failure. With this in mind, computerized monitoring systems based on artificial intelligence that could help the operators to detect and diagnose these failures have been devised and have been the subject of research. Among the techniques that can be used in such development, radial basis functions (RBFs) neural networks play an important role due to the fact that they are able to provide good approximations to functions of a finite number of real variables. This paper aims to present an application of a neural network of Gaussian radial basis

  12. Research on 6R Military Logistics Network

    Jie, Wan; Wen, Wang

    The building of military logistics network is an important issue for the construction of new forces. This paper has thrown out a concept model of 6R military logistics network model based on JIT. Then we conceive of axis spoke y logistics centers network, flexible 6R organizational network, lean 6R military information network based grid. And then the strategy and proposal for the construction of the three sub networks of 6Rmilitary logistics network are given.

  13. Explaining and predicting workplace accidents using data-mining techniques

    Rivas, T., E-mail: trivas@uvigo.e [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Paz, M., E-mail: mpaz.minas@gmail.co [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Martin, J.E., E-mail: jmartin@cippinternacional.co [CIPP International, S.L. Parque Tecnologico de Asturias, Parcela 43, Oficina 11, 33428 Llanera (Spain); Matias, J.M., E-mail: jmmatias@uvigo.e [Dpto. Estadistica e Investigacion Operativa, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Garcia, J.F., E-mail: jgarcia@cippinternacional.co [CIPP International, S.L. Parque Tecnologico de Asturias, Parcela 43, Oficina 11, 33428 Llanera (Spain); Taboada, J., E-mail: jtaboada@uvigo.e [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain)

    2011-07-15

    Current research into workplace risk is mainly conducted using conventional descriptive statistics, which, however, fail to properly identify cause-effect relationships and are unable to construct models that could predict accidents. The authors of the present study modelled incidents and accidents in two companies in the mining and construction sectors in order to identify the most important causes of accidents and develop predictive models. Data-mining techniques (decision rules, Bayesian networks, support vector machines and classification trees) were used to model accident and incident data compiled from the mining and construction sectors and obtained in interviews conducted soon after an incident/accident occurred. The results were compared with those for a classical statistical techniques (logistic regression), revealing the superiority of decision rules, classification trees and Bayesian networks in predicting and identifying the factors underlying accidents/incidents.

  14. Explaining and predicting workplace accidents using data-mining techniques

    Current research into workplace risk is mainly conducted using conventional descriptive statistics, which, however, fail to properly identify cause-effect relationships and are unable to construct models that could predict accidents. The authors of the present study modelled incidents and accidents in two companies in the mining and construction sectors in order to identify the most important causes of accidents and develop predictive models. Data-mining techniques (decision rules, Bayesian networks, support vector machines and classification trees) were used to model accident and incident data compiled from the mining and construction sectors and obtained in interviews conducted soon after an incident/accident occurred. The results were compared with those for a classical statistical techniques (logistic regression), revealing the superiority of decision rules, classification trees and Bayesian networks in predicting and identifying the factors underlying accidents/incidents.

  15. An overview of the severe accident research activities within the LACOMERA platform at the Forschungszentrum Karlsruhe

    The LACOMERA project at the Forschungszentrum Karlsruhe, Germany, is a 4 year action within the 5th Framework Programme of the EU which started in September 2002. Overall objective of the project is to offer research institutions from the EU member countries and associated states access to four large-scale experimental facilities QUENCH, LIVE, DISCO, and COMET. These facilities can be used to investigate core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity, and finally corium concrete interaction and corium coolability in the reactor cavity. The paper summarises the main results obtained in the following experiments performed up to now. QUENCH-L1: Impact of air ingression on core degradation. The test provides unique data for the investigation of air ingress phenomenology in conditions as representative of a spent fuel pool accident as possible; QUENCH-L2: Boil-off of a flooded bundle. The test is of a generic interest for all reactor types, provided a link between the severe accident and design basis areas, and would deliver oxidation and thermal hydraulic data at high temperatures. DISCO-L1: Thermal hydraulic behaviour of the corium melt dispersion neglecting the chemical effects such as hydrogen generation and combustion. COMET-L1: Long-term 2D concrete ablation in a siliceous concrete cavity at intermediate decay heat power level with a top flooding phase after a phase of dry concrete erosion. COMET-L2: Investigation of long-term melt-concrete interaction of metallic corium in a cylindrical siliceous concrete cavity under dry conditions with decay heat simulation of intermediate power during the first test phase, and subsequently at reduced power during the second test phase. (author)

  16. Research on LTE Network Coverage Planning

    Jun Gu; Ren Sheng

    2011-01-01

    When deploying an LTE network, coverage planning is critical to reduce construction costs and ensure network quality. This paper considers actual network planning requirements and combines theory with simulation analysis to study LTE wireless access link and network characteristics. A theory for LTE cellular coverage planning and application methods is proposed that lays the basic foundation for LTE cellular networks.

  17. Research study on typical feature of the media coverage on nuclear accidents in the national newspapers in Japan

    This study focuses on survey of the characteristics of the media coverage on three well-known nuclear accidents. From a quantitative standpoint of the media reporting, it was revealed that the amount of the articles in the surveyed national newspapers tend to increase soon after accidents happen. Plus, as a qualitative research the author interviewed three leader writers, who suggested that the Japanese nuclear industry should prepare to distribute information more timely and sufficiently. They also answered the PR staff needs to contact journalists regularly in order to recognize their awareness and earn their trust. (author)

  18. Safety Re-evaluation of Kyoto University Research Reactor by reflecting the Accident of Fukushima Daiichi Nuclear Power Plant

    Nakajima, K.; Yamamoto, T. [Kyoto Univ., Kyoto (Japan)

    2013-07-01

    Kyoto University Research Reactor (KUR) is a light-water moderated tank-type reactor operated at rated thermal power of 5MW. After the accident of Fukushima Daiichi nuclear power plant, we have settled a 40-ton water tank near the reactor room, and prepared a mobile fire pump and a mobile power generator as additional safety measures for beyond design basis accidents (BDBAs). We also have conducted the safety re-evaluation of KUR, and confirmed that the integrity of KUR fuels could be kept against the BDBA with the use of the additional safety measures when the several restrictions were imposed on the reactor operation.

  19. An assessment of the consequences of the Greek Research Reactor's design basis accident: sensitivity to the meteorological record

    The sensitivity of the Greek Research Reactor's design basis accident consequences to the meteorological record, as far as Athens population is concerned, is assessed in this report. Meteorological data of six years of the National Observatory of Athens are analyzed and utilized in the accident consequence calculation model by using weather categories. The results of the present analysis indicate that the meteorological record does not have a significant impact on predicted consequences, which in turn indicates that the utilization of a substitute meteorological record from a nearby meteorological station instead of the reactor's site record could be acceptable for performing consequence analyses. (author)

  20. French regulatory requirements concerning severe accidents in PWRs and associated research programme

    This report gives a global view of the French reactor safety approach; aspects in relation with severe accidents are pointed out: safety goals regarding population, and safety goals regarding plant design. Ultimate or U procedures involving physical phenomena of severe accidents are then described. R. and D. programs have been defined with regard to the priorities resulting from this approach

  1. Video-recorded accidents conflicts and road user behaviour: A step forward in traffic safety research

    Horst, A.R.A. van der

    2013-01-01

    TNO conducted long-term video observations to collect data on the pre-crash phase of real accidents (what exactly happened just before the collision?). The video recordings of collisions were used to evaluate and validate the safety value of in-depth accident analyses, road scene analyses, and behav

  2. The WWER fuel element safety research under the design and heavy accident imitation on the 'PARAMETR' stand

    Analysis of fuel element behavior in the course of the design and heavy accidents is the component of reactor facility safety prevention. Many tasks of fuel element behavior research may be solved with the help of thermophysical stands. One of such stands implemented in 1991 was thermophysical stand 'PARAMETER'.Several experiments on model assemblies chiefly imitating both heavy accident and design basic accident have already been conducted in 'PARAMETER' stand. There were obtained data about fuel claddings seal failure and deformation condition. In particular it was defined that seal failure of all fuel claddings occurs on stage of fuel element warming, in temperature range (770-900) degree celsius and almost does not depend on inner pressure level

  3. Privacy Issues of a National Research and Education Network.

    Katz, James E.; Graveman, Richard F.

    1991-01-01

    Discussion of the right to privacy of communications focuses on privacy expectations within a National Research and Education Network (NREN). Highlights include privacy needs in scientific and education communications; academic and research networks; network security and privacy concerns; protection strategies; and consequences of privacy…

  4. Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstance of NPPs

    Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

  5. Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstance of NPPs

    Park, Soon Ho; Kim, Dae Seop; Kim, Jae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2014-06-15

    Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

  6. Reduction of Accident Rate in Heat Supply Networks by the Analysis of Pipe Rupture Statistical Data

    Adomas Ūselis

    2011-04-01

    Full Text Available Due to the lack of reliable methods to determine the conditions of the pipes buried-in-the-ground, the analysis of the crack history was performed in order to offer an alternative method for planning the pipe condition inspections and the system refurbishment. The results of analysis have shown that the oldest pipes of big diameter, mounted in a non-inspectable channels, loam, silt loam or sandy loam soil fall under the category of pipes with the highest accident rate.Article in Lithuanian

  7. Reduction of Accident Rate in Heat Supply Networks by the Analysis of Pipe Rupture Statistical Data

    Adomas Ūselis; Artur Rogoža

    2011-01-01

    Due to the lack of reliable methods to determine the conditions of the pipes buried-in-the-ground, the analysis of the crack history was performed in order to offer an alternative method for planning the pipe condition inspections and the system refurbishment. The results of analysis have shown that the oldest pipes of big diameter, mounted in a non-inspectable channels, loam, silt loam or sandy loam soil fall under the category of pipes with the highest accident rate.Article in Lithuanian

  8. Research of Innovation Diffusion on Industrial Networks

    Yongtai Chen; Shouwei Li

    2014-01-01

    The real value of innovation consists in its diffusion on industrial network. The factors which affect the diffusion of innovation on industrial network are the topology of industrial network and rules of diffusion. Industrial network is a complex network which has scale-free and small-world characters; its structure has some affection on threshold, length of path, enterprise’s status, and information share of innovation diffusion. Based on the cost and attitude to risk of technical innovatio...

  9. Connecting the Dots: Understanding the Flow of Research Knowledge within a Research Brokering Network

    Rodway, Joelle

    2015-01-01

    Networks are frequently cited as an important knowledge mobilization strategy; however, there is little empirical research that considers how they connect research and practice. Taking a social network perspective, I explore how central office personnel find, understand and share research knowledge within a research brokering network. This mixed…

  10. Mining and Visualizing Research Networks using the Artefact-Actor-Network Approach

    Reinhardt, Wolfgang; Wilke, Adrian; Moi, Matthias; Drachsler, Hendrik; Sloep, Peter

    2012-01-01

    Reinhardt, W., Wilke, A., Moi, M., Drachsler, H., & Sloep, P. B. (2012). Mining and Visualizing Research Networks using the Artefact-Actor-Network Approach. In A. Abraham (Ed.), Computational Social Networks. Mining and Visualization (pp. 233-268). Springer. Also available at http://www.springer.com/computer/communication+networks/book/978-1-4471-4053-5