WorldWideScience

Sample records for accident prediction models

  1. Traffic Accident Prediction Model Implementation in Traffic Safety Management

    Wen, Keyao

    2009-01-01

    As one of the highest fatalities causes, traffic accidents and collisions always requires a large amounteffort to be reduced or prevented from occur. Traffic safety management routines therefore always needefficient and effective implementation due to the variations of traffic, especially from trafficengineering point of view apart from driver education.Traffic Accident Prediction Model, considered as one of the handy tool of traffic safety management,has become of well followed with interest...

  2. Accident prediction model for public highway-rail grade crossings.

    Lu, Pan; Tolliver, Denver

    2016-05-01

    Considerable research has focused on roadway accident frequency analysis, but relatively little research has examined safety evaluation at highway-rail grade crossings. Highway-rail grade crossings are critical spatial locations of utmost importance for transportation safety because traffic crashes at highway-rail grade crossings are often catastrophic with serious consequences. The Poisson regression model has been employed to analyze vehicle accident frequency as a good starting point for many years. The most commonly applied variations of Poisson including negative binomial, and zero-inflated Poisson. These models are used to deal with common crash data issues such as over-dispersion (sample variance is larger than the sample mean) and preponderance of zeros (low sample mean and small sample size). On rare occasions traffic crash data have been shown to be under-dispersed (sample variance is smaller than the sample mean) and traditional distributions such as Poisson or negative binomial cannot handle under-dispersion well. The objective of this study is to investigate and compare various alternate highway-rail grade crossing accident frequency models that can handle the under-dispersion issue. The contributions of the paper are two-fold: (1) application of probability models to deal with under-dispersion issues and (2) obtain insights regarding to vehicle crashes at public highway-rail grade crossings. PMID:26922288

  3. Predictive accident modeling approach inrelation to workover systems

    Jermstad, Lene Bøkseth

    2011-01-01

    Hydro carbon releases are the main contributor to the major accident risk on oil and gas platforms, and the Petroleum Safety Authority Norway (PSA) has thus set a target for reducing such releases. Traditionally topside equipment has been the main focus of study in risk analysis, but to obtain the reduction goals it is important to focus on drilling and well intervention as well. This is due to the complexity of the systems, and the lessons learned from several accidents during such operation...

  4. Combined Prediction Model of Death Toll for Road Traffic Accidents Based on Independent and Dependent Variables

    Feng Zhong-xiang

    2014-01-01

    Full Text Available In order to build a combined model which can meet the variation rule of death toll data for road traffic accidents and can reflect the influence of multiple factors on traffic accidents and improve prediction accuracy for accidents, the Verhulst model was built based on the number of death tolls for road traffic accidents in China from 2002 to 2011; and car ownership, population, GDP, highway freight volume, highway passenger transportation volume, and highway mileage were chosen as the factors to build the death toll multivariate linear regression model. Then the two models were combined to be a combined prediction model which has weight coefficient. Shapley value method was applied to calculate the weight coefficient by assessing contributions. Finally, the combined model was used to recalculate the number of death tolls from 2002 to 2011, and the combined model was compared with the Verhulst and multivariate linear regression models. The results showed that the new model could not only characterize the death toll data characteristics but also quantify the degree of influence to the death toll by each influencing factor and had high accuracy as well as strong practicability.

  5. A dynamic food-chain model and program for predicting the radiological consequences of nuclear accident

    A dynamic food-chain model and program, DYFOM-95, for predicting the radiological consequences of nuclear accident has been developed, which is not only suitable to the West food-chain but also to Chinese food chain. The following processes, caused by accident release which will make an impact on radionuclide concentration in the edible parts of vegetable are considered: dry and wet deposition interception and initial retention, translocation, percolation, root uptake and tillage. Activity intake rate of animals, effects of processing and activity intake of human through ingestion pathway are also considered in calculations. The effects of leaf area index LAI of vegetable are considered in dry deposition model. A method for calculating the contribution of rain with different period and different intensity to total wet deposition is established. The program contains 1 main code and 5 sub-codes to calculate dry and wet deposition on surface of vegetable and soil, translocation of nuclides in vegetable, nuclide concentration in the edible parts of vegetable and in animal products and activity intake of human and so on. (24 refs., 9 figs., 11 tabs.)

  6. Application of Gray Markov SCGM1,1c Model to Prediction of Accidents Deaths in Coal Mining

    Lan, Jian-yi; Zhou, Ying

    2014-01-01

    The prediction of mine accident is the basis of aviation safety assessment and decision making. Gray prediction is suitable for such kinds of system objects with few data, short time, and little fluctuation, and Markov chain theory is just suitable for forecasting stochastic fluctuating dynamic process. Analyzing the coal mine accident human error cause, combining the advantages of both Gray prediction and Markov theory, an amended Gray Markov SCGM1,1c model is proposed. The gray SCGM1,1c mod...

  7. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations.

    Lin, Lei; Wang, Qian; Sadek, Adel W

    2016-06-01

    The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean

  8. Debris interactions in reactor vessel lower plena during a severe accident. I. Predictive model

    For pt.II see ibid., p.165-78, 1996. An integral predictive physico-numerical model has been developed to understand and interpret debris interactions in the reactor vessel plenum such as those which took place in the TMI-2 accident. The model represents the extent of debris jet disintegration by a jet-water entrainment model which can result in two types of debris configurations. One is particulated debris which eventually quenches in the water as a result of the entrainment process. The remainder of the debris penetrates to the bottom of the lower plenum and collects as a continuous layer. Each is treated as a separate region and has governing principles for its behavior. The potential for creating gap (contact) resistance and boiling heat removal is considered for heat transfer between the debris bed, the reactor vessel and steel structures and, most importantly, the vessel-to-crust gap water. The proposed in-vessel cooling mechanism due to material creep and water ingression into the expanding gap between the core debris and the vessel wall was found to explain the non-failure of the TMI-2 vessel in the course of the accident. The particulate debris bed is a mixture of metal and oxide, which is distributed as individual spherical particles of sizes determined at the time of entrainment. Energy is received from the continuum bed below by radiation and convection. The continuum debris bed is described by the crust behavior with the heat flux to the crust given by the natural convection correlations relating the Nusselt and Rayleigh numbers for the central region of debris. Using these governing principles, the rate laws for heat and mass transfer are formulated for each type of debris condition in the lower plenum

  9. Survey of accidents in suburban Tehran and the prediction of future events based on a time-series model

    Heidar Teymuri, Ghulam; Bahmani, Rahman; Asghari, Mehdi; Madrese, Elham; Rahmani, Abdolrasoul; Abbasinia, Marzieh; Ahmadnezhad, Iman; Samavati, Mehdi

    2014-01-01

    Background: Car accidents are currently a social issue globally because they result in the deaths of many people. The aim of this study was to examine traffic accidents in suburban Tehran and forecast the number of future accidents using a time-series model. Methods: The sample population of this cross-sectional study was all traffic accidents that caused death and physical injuries in suburban Tehran in 2010 and 2011, as registered by the Tehran Emergency Section. In the present study, Minit...

  10. Explaining and predicting workplace accidents using data-mining techniques

    Rivas, T., E-mail: trivas@uvigo.e [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Paz, M., E-mail: mpaz.minas@gmail.co [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Martin, J.E., E-mail: jmartin@cippinternacional.co [CIPP International, S.L. Parque Tecnologico de Asturias, Parcela 43, Oficina 11, 33428 Llanera (Spain); Matias, J.M., E-mail: jmmatias@uvigo.e [Dpto. Estadistica e Investigacion Operativa, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Garcia, J.F., E-mail: jgarcia@cippinternacional.co [CIPP International, S.L. Parque Tecnologico de Asturias, Parcela 43, Oficina 11, 33428 Llanera (Spain); Taboada, J., E-mail: jtaboada@uvigo.e [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain)

    2011-07-15

    Current research into workplace risk is mainly conducted using conventional descriptive statistics, which, however, fail to properly identify cause-effect relationships and are unable to construct models that could predict accidents. The authors of the present study modelled incidents and accidents in two companies in the mining and construction sectors in order to identify the most important causes of accidents and develop predictive models. Data-mining techniques (decision rules, Bayesian networks, support vector machines and classification trees) were used to model accident and incident data compiled from the mining and construction sectors and obtained in interviews conducted soon after an incident/accident occurred. The results were compared with those for a classical statistical techniques (logistic regression), revealing the superiority of decision rules, classification trees and Bayesian networks in predicting and identifying the factors underlying accidents/incidents.

  11. Explaining and predicting workplace accidents using data-mining techniques

    Current research into workplace risk is mainly conducted using conventional descriptive statistics, which, however, fail to properly identify cause-effect relationships and are unable to construct models that could predict accidents. The authors of the present study modelled incidents and accidents in two companies in the mining and construction sectors in order to identify the most important causes of accidents and develop predictive models. Data-mining techniques (decision rules, Bayesian networks, support vector machines and classification trees) were used to model accident and incident data compiled from the mining and construction sectors and obtained in interviews conducted soon after an incident/accident occurred. The results were compared with those for a classical statistical techniques (logistic regression), revealing the superiority of decision rules, classification trees and Bayesian networks in predicting and identifying the factors underlying accidents/incidents.

  12. A dynamic food-chain model and program for predicting the consequences of nuclear accident

    1998-01-01

    A dynamic food-chain model and program, DYFOM-95, forpredicting the radiological consequences of nuclear accident hasbeen developed, which is not only suitable to the West food-chainbut also to Chinese food chain. The following processes, caused byaccident release which will make an impact on radionuclideconcentration in the edible parts of vegetable are considered: dryand wet deposition interception and initial retention,translocation, percolation, root uptake and tillage. Activityintake rate of animals, effects of processing and activity intakeof human through ingestion pathway are also considered incalculations. The effects of leaf area index LAI of vegetable areconsidered in dry deposition model. A method for calculating thecontribution of rain with different period and different intensityto total wet deposition is established. The program contains 1 maincode and 5 sub-codes to calculate dry and wet deposition on surfaceof vegetable and soil, translocation of nuclides in vegetable,nuclide concentration in the edible parts of vegetable and inanimal products and activity intake of human and so on.

  13. ACCIDENT PREDICTION METHODOLOGY USING CONFLICT ZONE METHOD FOR “TRANSIT TRANSPORT-PEDESTRIAN” CONFLICT SITUATION AND MODELS OF TRAFFIC FLOWS AT CONTROLLED INTERSECTION

    D. V. Kapsky

    2015-01-01

    Full Text Available Accidents are considered as the most significant cost of road traffic. Therefore any measures for road traffic management should be evaluated according to a minimization  criterion of accident losses. In order to develop a method for evaluation of the accident losses it is necessary to prepare a methodology for cost estimate of road accidents of various severity with due account of their consequences and prediction (economic assessment and severity level of their consequences (quantitative risk assessment. The research has been carried with the purpose to devise appropriate models for accident prediction at a decision-making stage while organizing road traffic in respect of  the “transport-pedestrian” conflict. An interaction of pedestrian and transit road traffic flows  is characterized by rather high risk level. In order to reduce number of road accidents  and  severity of their consequences in the observed conflict, it is necessary to evaluate  proposed solutions, in other words to predict accidents at the stage of object designing and  development of measures.The paper presents its observations on specificity of road traffic and pedestrian flow interactions and analysis of spatial conflict point formation and conflict zone creation in the studied conflict between transport facilities and pedestrians at controlled pedestrian crossings which are located in the area of intersections. Methodology has been developed for accident prediction in accordance with the conflict zone method for various traffic modes at intersections. Dependences of the represented road traffic accidents (according to consequence severity on potential danger of conflicts have been determined for various traffic modes and various conditions of conflict interaction.

  14. Contribution of mesoscopic modeling for flows prediction in cracked concrete buildings in condition of severe accident

    This Ph.D. thesis aims at characterising and modeling the mechanical behavior of concrete at the mesoscopic scale. The more general scope of this study is the development of mesoscopic model for concrete; this model is to represent the concrete as a heterogeneous medium, taking into account the difference between aggregate and cement paste respecting the grading curve, the model parameters describe the mechanical and thermal behavior of cement paste and aggregates. We are interested in understanding the concrete behaviour, considered one structure. A program of random granular structure valid in 2D and 3D has been developed. This program is interfaced with the Finite Element code CAST3M in order to compute the numerical simulations. A method for numerical representation of the inclusions of concrete was also developed and validated by projection of the geometry on the shape functions, thus eliminating the problems of meshing that made the representation of all aggregates skeleton almost impossible, particularly in 3D. Firstly, the model is studied in two-dimensional and three-dimensional in order to optimize the geometrical model of the inner structure of concrete in terms of the meshing strategy and the smallest size of the aggregate to be taken into account. The results of the 2D and 3D model are analyzed and compared in the case of uniaxial tension and uniaxial compression. The model used is an isotropic unilateral damage model from Fichant [Fichant et al., 1999]. The model allows to simulate both the macroscopic behavior but also with the local studies of the distribution of crack and crack opening. The model shows interesting results on the transition from diffuse to localized damage and is able to reproduce dilatancy in compression. Finally, the mesoscopic model is applied to three simulations: the calculation of the permeability of cracked concrete; the simulation of the hydration of concrete at early age and finally the scale effect illustrated by bending

  15. Accident Prediction Models for Urban Arterial System%城市干道系统交通事故预测模型研究

    孟祥海; 陈天恩; 盛洪飞; 姜美利

    2007-01-01

    It relies greatly on the accident prediction models to make effective traffic safety countermeasures. Therefore, by taking Harbin urban arterial network composed of 468 arterial links and 163 at-grade intersections as a case, the broad geometry and traffic flow data of the network were collected, as well as 8 510 accident data occurred on the network during 1999 to 2004. Firstly, the characterist ics of the traffic accident data were analyzed, and the results show that theaccident data follow the Negative Binomial distribution. Secondly, links and inter sections were classified according to the cluster analysis method, and then the accident prediction models that can be used to predict the accident frequencies occurred on each kind of links and intersections were established. Thirdly, the quantitative relationship between the accident index of the links during rushh ours and the v/c of them was discussed. Totally, 24 prediction models were calibrated. Finally, the prediction models were applied to a case study on partial road network of Harbin, which was planned for the target year of 2010. There sults show the fact that the accident prediction models are effective.%以哈尔滨市干道路网为研究对象,收集到了该路网上468个路段和163个平面交叉口的道路交通数据,以及1999年至2004年所发生的8510起交通事故数据.分析了事故数据的统计分布特性,应用聚类分析技术确定了路段和交叉口的类别 ,并在此基础上分别建立了事故总体和分事故形态的预测模型.论文探讨了高峰时段的事故次数、事故率与路段v/c之间的定量关系.标定出了24个模型,并形成干道系统事故预测模型库.最后,运用所建立的事故预测模型选取了2010年哈尔滨规划路网的一部分进行实例分析,结果表明了预测模型是有效的.

  16. Predictions of structural integrity of steam generator tubes under normal operating, accident, and severe accident conditions

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation is confirmed by further tests at high temperatures as well as by finite element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation is confirmed by finite element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure is developed and validated by tests under varying temperature and pressure loading expected during severe accidents

  17. Review of models applicable to accident aerosols

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity

  18. ACCIDENT PREDICTION METHODOLOGY USING CONFLICT ZONE METHOD FOR “TRANSIT TRANSPORT-PEDESTRIAN” CONFLICT SITUATION AND MODELS OF TRAFFIC FLOWS AT CONTROLLED INTERSECTION

    D. V. Kapsky; P. A. Pegin

    2015-01-01

    Accidents are considered as the most significant cost of road traffic. Therefore any measures for road traffic management should be evaluated according to a minimization  criterion of accident losses. In order to develop a method for evaluation of the accident losses it is necessary to prepare a methodology for cost estimate of road accidents of various severity with due account of their consequences and prediction (economic assessment) and severity level of their consequences (quantitative r...

  19. Investigation of adolescent accident predictive variables in hilly regions.

    Mohanty, Malaya; Gupta, Ankit

    2016-09-01

    The study aims to determine the significant personal and environmental factors in predicting the adolescent accidents in the hilly regions taking into account two cities Hamirpur and Dharamshala, which lie at an average elevation of 700--1000 metres above the mean sea level (MSL). Detailed comparisons between the results of 2 cities are also studied. The results are analyzed to provide the list of most significant factors responsible for adolescent accidents. Data were collected from different schools and colleges of the city with the help of a questionnaire survey. Around 690 responses from Hamirpur and 460 responses from Dharamshala were taken for study and analysis. Standard deviations (SD) of various factors affecting accidents were calculated and factors with relatively very low SD were discarded and other variables were considered for correlations. Correlation was developed using Kendall's-tau and chi-square tests and factors those were found significant were used for modelling. They were - the victim's age, the character of road, the speed of vehicle, and the use of helmet for Hamirpur and for Dharamshala, the kind of vehicle involved was an added variable found responsible for adolescent accidents. A logistic regression was performed to know the effect of each category present in a variable on the occurrence of accidents. Though the age and the speed of vehicle were considered to be important factors for accident occurrence according to Indian accident data records, even the use of helmet comes out as a major concern. The age group of 15-18 and 18-21 years were found to be more susceptible to accidents than the higher age groups. Due to the presence of hilly area, the character of road becomes a major concern for cause of accidents and the topography of the area makes the kind of vehicle involved as a major variable for determining the severity of accidents. PMID:26077876

  20. Correspondence model of occupational accidents

    Juan C. Conte

    2011-09-01

    Full Text Available We present a new generalized model for the diagnosis and prediction of accidents among the Spanish workforce. Based on observational data of the accident rate in all Spanish companies over eleven years (7,519,732 accidents, we classified them in a new risk-injury contingency table (19×19. Through correspondence analysis, we obtained a structure composed of three axes whose combination identifies three separate risk and injury groups, which we used as a general Spanish pattern. The most likely or frequent relationships between the risk and injuries identified in the pattern facilitated the decision-making process in companies at an early stage of risk assessment. Each risk-injury group has its own characteristics, which are understandable within the phenomenological framework of the accident. The main advantages of this model are its potential application to any other country and the feasibility of contrasting different country results. One limiting factor, however, is the need to set a common classification framework for risks and injuries to enhance comparison, a framework that does not exist today. The model aims to manage work-related accidents automatically at any level.Apresentamos aqui um modelo generalizado para o diagnóstico e predição de acidentes na classe de trabalhadores da Espanha. Baseados em dados sobre a frequência de acidentes em todas as companhias da Espanha em 11 anos (7.519.732 acidentes, nós os classificamos em uma nova tabela de contingência risco-injúria (19×19. Através de uma análise por correspondência obtivemos uma estrutura composta por 3 eixos cuja combinação identifica 3 grupos separados de risco e injúria, que nós usamos como um perfil geral na Espanha. As mais prováveis ou frequentes relações entre risco e injúrias identificadas nesse perfil facilitaram o processo de decisão nas companhias em um estágio inicial de apreciação do risco. Cada grupo de risco-injúria tem suas próprias caracter

  1. Do Cognitive Models Help in Predicting the Severity of Posttraumatic Stress Disorder, Phobia, and Depression after Motor Vehicle Accidents? A Prospective Longitudinal Study

    Ehring, Thomas; Ehlers, Anke; Glucksman, Edward

    2008-01-01

    The study investigated the power of theoretically derived cognitive variables to predict posttraumatic stress disorder (PTSD), travel phobia, and depression following injury in a motor vehicle accident (MVA). MVA survivors (N = 147) were assessed at the emergency department on the day of their accident and 2 weeks, 1 month, 3 months, and 6 months…

  2. Predictions of structural integrity of steam generator tubes under normal operating, accident, an severe accident conditions

    Majumdar, S. [Argonne National Lab., IL (United States)

    1997-02-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmed by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.

  3. Injury risk prediction for traffic accidents in Porto Alegre/RS, Brazil

    Perone, Christian S.

    2015-01-01

    This study describes the experimental application of Machine Learning techniques to build prediction models that can assess the injury risk associated with traffic accidents. This work uses an freely available data set of traffic accident records that took place in the city of Porto Alegre/RS (Brazil) during the year of 2013. This study also provides an analysis of the most important attributes of a traffic accident that could produce an outcome of injury to the people involved in the accident.

  4. Prediction of road accidents: A Bayesian hierarchical approach

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T.;

    2013-01-01

    -lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...... in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis...... of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions...

  5. Do cognitive models help in predicting the severity of posttraumatic stress disorder, phobia and depression after motor vehicle accidents? A prospective longitudinal study

    Ehring, T.; Ehlers, A; Glucksman, E.

    2008-01-01

    The study investigated the power of theoretically derived cognitive variables to predict posttraumatic stress disorder (PTSD), travel phobia, and depression following injury in a motor vehicle accident (MVA). MVA survivors (N = 147) were assessed at the emergency department on the day of their accident and 2 weeks, 1 month, 3 months, and 6 months later. Diagnoses were established with the Structured Clinical Interview for DSM–IV. Predictors included initial symptom severities; variables estab...

  6. Development of a model to predict flow oscillations in low-flow sodium boiling. [Loss-of-Piping Integrity accidents

    Levin, A.E.; Griffith, P.

    1980-04-01

    Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed.

  7. Modeling accident frequency in Denmark for improving road safety

    Lyckegaard, Allan; Hels, Tove; Kaplan, Sigal;

    Traffic accidents result in huge costs to society in terms of death, injury, lost productivity, and property damage. The main objective of the current study is the development of an accident frequency model that predicts the expected number of accidents on a given road segment, provided the...... infrastructure characteristics and the traffic conditions of the road. The model can be used to point out high risk road segments and support road authorities in planning interventions for the improvement of road safety on Danish roads. The number of accidents on a road link was modeled using a count model after...... concerning police recorded accidents, link characteristics of the road network, traffic volumes from the national transport models are merged to estimate the model. Spatial correlation between road sections is taken into account for correcting for unobserved correlation between contiguous locations....

  8. Do cognitive models help in predicting the severity of posttraumatic stress disorder, phobia and depression after motor vehicle accidents? A prospective longitudinal study

    T. Ehring; A. Ehlers; E. Glucksman

    2008-01-01

    The study investigated the power of theoretically derived cognitive variables to predict posttraumatic stress disorder (PTSD), travel phobia, and depression following injury in a motor vehicle accident (MVA). MVA survivors (N 147) were assessed at the emergency department on the day of their acciden

  9. FASTGRASS: A mechanistic model for the prediction of Xe, I, Cs, Te, Ba, and Sr release from nuclear fuel under normal and severe-accident conditions

    The primary physical/chemical models that form the basis of the FASTGRASS mechanistic computer model for calculating fission-product release from nuclear fuel are described. Calculated results are compared with test data and the major mechanisms affecting the transport of fission products during steady-state and accident conditions are identified

  10. Models and criteria for prediction of Deflagration-to-Detonation Transition (DDT) in hydrogen-air-steam systems under severe accident conditions. Final report

    The European Commission in Brussels supported a joint project on Deflagration-to-Detonation Transition (DDT) studies for hydrogen safety within the framework programme on nuclear fission safety. The project was initiated by the Forschungszentrum Juelich based on the results of a pilot project. The following main project was coordinated by the Freie Universitaet Berlin involving seven european partners. The partners came from universities, research centers and industry, as follows: FU-Berlin, RWTH-Aachen, CNRS-Marseille, IPSN-Saclay, FZ-Juelich, FZ-Karlsruhe, and NNC-Knutsford, which worked closely together. The working period was two years (1997-1998). The aim of the project was to develop models and criteria for prediction of deflagration-to-detonation transition (DDT) in hydrogen-air-steam systems under severe accident conditions. The results obtained are documented in this final report, which was finished in 1999. The report consists of seven chapters, concerning: - Introduction - Experimental Investigations - Modelling and Numerics - Validation - Mitigation - Further Deliverables - Summary and Conclusion. The final report presents special experimental, theoretical, and computational aspects of the complex DDT phenomena for hydrogen safety studies, and it should be a solid basis for end user applications and further developments. (orig.)

  11. The use of Grey System Theory in predicting the road traffic accident in Fars province in Iran

    Ali Mohammadi

    2011-10-01

    Full Text Available Traffic accidents have become a more and more important factor that restrict the development of economy and threaten the safety of human beings. Considering the complexity and uncertainty of the influencing factors on traffic accidents, traffic accident forecasting can be regarded as a grey system with unknown and known information, so be analyzed by grey system theory. Grey models require only a limited amount of data to estimate the behavior of unknown systems. In this paper, first, the original predicted values of road traffic accidents are separately obtained by the GM (1,1 model, the Verhulst model and the DGM(2,1 model. The results of these models on predicting road traffic accident show that the forecasting accuracy of the GM(1,1 is higher than the Verhulst model and the DGM(2,1 model. Then, the GM(1,1 model is applied to predict road traffic accident in Fars province.

  12. Modeling accidents for prioritizing prevention

    The Workgroup Occupational Risk Model (WORM) project in the Netherlands is developing a comprehensive set of scenarios to cover the full range of occupational accidents. The objective is to support companies in their risk analysis and prioritization of prevention. This paper describes how the modeling has developed through projects in the chemical industry, to this one in general industry and how this is planned to develop further in the future to model risk prevention in air transport. The core modeling technique is based on the bowtie, with addition of more explicit modeling of the barriers needed for risk control, the tasks needed to ensure provision, use, monitoring and maintenance of the barriers, and the management resources and tasks required to ensure that these barrier life cycle tasks are carried out effectively. The modeling is moving from a static notion of barriers which can fail, to seeing risk control dynamically as (fallible) means for staying within a safe envelope. The paper shows how concepts develop slowly over a series of projects as a core team works continuously together. It concludes with some results of the WORM project and some indications of how the modeling is raising fundamental questions about the conceptualization of system safety, which need future resolution

  13. An exploration of the utility of mathematical modeling predicting fatigue from sleep/wake history and circadian phase applied in accident analysis and prevention: the crash of Comair Flight 5191.

    Pruchnicki, Shawn A; Wu, Lora J; Belenky, Gregory

    2011-05-01

    On 27 August 2006 at 0606 eastern daylight time (EDT) at Bluegrass Airport in Lexington, KY (LEX), the flight crew of Comair Flight 5191 inadvertently attempted to take off from a general aviation runway too short for their aircraft. The aircraft crashed killing 49 of the 50 people on board. To better understand this accident and to aid in preventing similar accidents, we applied mathematical modeling predicting fatigue-related degradation in performance for the Air Traffic Controller on-duty at the time of the crash. To provide the necessary input to the model, we attempted to estimate circadian phase and sleep/wake histories for the Captain, First Officer, and Air Traffic Controller. We were able to estimate with confidence the circadian phase for each. We were able to estimate with confidence the sleep/wake history for the Air Traffic Controller, but unable to do this for the Captain and First Officer. Using the sleep/wake history estimates for the Air Traffic Controller as input, the mathematical modeling predicted moderate fatigue-related performance degradation at the time of the crash. This prediction was supported by the presence of what appeared to be fatigue-related behaviors in the Air Traffic Controller during the 30 min prior to and in the minutes after the crash. Our modeling results do not definitively establish fatigue in the Air Traffic Controller as a cause of the accident, rather they suggest that had he been less fatigued he might have detected Comair Flight 5191's lining up on the wrong runway. We were not able to perform a similar analysis for the Captain and First Officer because we were not able to estimate with confidence their sleep/wake histories. Our estimates of sleep/wake history and circadian rhythm phase for the Air Traffic Controller might generalize to other air traffic controllers and to flight crew operating in the early morning hours at LEX. Relative to other times of day, the modeling results suggest an elevated risk of fatigue

  14. China's coal mine accident statistics analysis and one million tons mortality prediction

    Qiao Tong

    2016-03-01

    Full Text Available In order to study the general rule of coal mine accidents in China in recent years, the data of coal mine accident in 2011-2015 is analyzed. The mathematical statistics method is used to analyze the occurrence year, type, season and area of the accident. The results of analysis shows that the coal mine accident has been reduced year by year, and the frequency of gas explosion is the highest. The frequency and the number of deaths in the second quarter of the year are the highest; Guizhou province, Hunan province, Yunnan province and Heilongjiang province are the accident prone provinces. GM (1, 1 dynamic prediction model is used to model and forecast the future million tons mortality in China. The forecast results show that the coal mine's million tons mortality rate of China showed a decreasing trend. The forecast results are scientific and reliable, and it is of great significance to the safety management of coal mine.

  15. The observed and predicted health effects of the Chernobyl accident

    Due to poor design, operator error and the absence of an established Safety Culture, the worst accident in the history of nuclear power involving the Unit 4 RMBK reactor occurred at Chernobyl in the Ukraine in the early morning of 26 April 1986. This accident led to the contamination of large tracts of forest and agricultural land (in the former Soviet Union) and the evacuation of a large number of people. Thirty-one people died at the time of the accident or shortly afterwards, and 203 people were treated for the Acute Radiation Syndrome. From about 1990 a significant increase in the number of childhood thyroid cancers has been noted in Belarus and Ukraine. Because of the social, political and economic situation in the Soviet Union soon after the accident, the anxiety and stress induced in the general population has been enhanced to the point where it may well be the single most important indirect health effect of the accident. Contamination outside the former Soviet Union was largely confined to Europe, where it was extremely patchy and variable. Contamination in the rest of the Northern Hemisphere was insignificant. The health effects in the General Population in the Contaminated Regions in the former USSR and Europe, are predicted to be low and not discernible. However, there may be subgroups within, for example, the Liquidators, which if they can be identified and followed, may show adverse health effects. Health effects in the rest of the Northern Hemisphere will be inconsequential. (author) 38 refs., 1 tab., 1 fig

  16. Validation and verification of accident consequence assessment models

    Homma, T.; Togawa, O. [Japan Atomic Energy Research Inst., Tokyo (Japan); Takahashi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Arkhipov, A.N. [Chernobyl Science and Technology Centre for International Research (Ukraine)

    2001-03-01

    An accident consequence assessment code, OSCAAR, primarily designed by Japan Atomic Energy Research Institute (JAERI) for use in probabilistic safety assessment (PSA) of nuclear reactors in Japan, was applied to use for siting, emergency planning, and development of design criteria, and in the comparative risk studies of different energy systems. After verifying the code system through the international code comparison organized by CEC and OECD/NEA, the validation and improvements of the individual models and the verification of the whole OSCAAR code system were made. The cooperative research between Chernobyl Science and Technology Center for International Research (CHESCIR) and JAERI provided a valuable opportunity to test the performance of the accident consequence assessment models by comparing the model predictions with data obtained in the Chernobyl accidents. The predictive capabilities of OSCAAR were demonstrated using the accident source term and meteorological data for estimating the early exposure to the public occurred during and shortly after plume passage. The calculations indicated that ground-shine dose and inhalation dose, particularly from large nonvolatile particulates were the main contributors in the early stage of the accident. (S. Ohno)

  17. Risk horoscopes: Predicting the number and type of serious occupational accidents in The Netherlands for sectors and jobs

    The risk of a serious occupational accident per hour exposure was calculated in a project to develop an occupational risk model in the Netherlands (WebORCA). To obtain risk rates, the numbers of victims of serious occupational accidents investigated by the Dutch Labour inspectorate 1998–Feb 2004 were divided by the number of hours exposure for each of 64 different types of hazards, such as contact with moving parts of machines and falls from various types of height. The exposures to the occupational accident hazards were calculated from a survey of a panel of 30,000 from the Dutch working population. Sixty risk rates were then used to predict serious accidents for activity sectors and jobs in the Netherlands where exposures to the hazards for sectors or jobs could be estimated from the survey. Such predictions have been called “horoscopes” because the idea is to provide a quick look-up of predicted accidents for a particular sector or job. Predictions compared favourably with actual data. It is concluded that predictive data can help provide information about accidents in cases where there is a lack of data, such as for smaller sub groups of the working population. - Highlights: • Dutch occupational accident risk rates and yearly exposures for 60 hazards are given. • Risks rates are based on the 1% most serious accidents 1998–Feb 2004. • Risk rates are used to predict serious accident risks in jobs and sectors. • Predictions (“risk horoscopes”) give a good match with actual accidents. • Risk horoscopes can help worker groups identify most important accident risks

  18. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  19. Thyroid cancer in children and adolescents of Belarus irradiated as a result of Chernobyl accident: status and prediction

    Thyroid cancer incidence in the human population of Belarus irradiated in childhood for the period passed after the Chernobyl accident is analysed and potential perspectives for development of disease incidence in exposed population during life span. Thyroid cancer cases in children and adolescents of Belarus irradiated due to the Chernobyl accident are predicted using the additive model with modified parameters. Predicted values are shown to be in good agreement with the actual data on thyroid cancer cases in children aged 0-6

  20. Prediction of Reactor Vessel Water Level Using Fuzzy Neural Networks in Severe Accidents due to LOCA

    When the initial events that may lead to the severe accident such as Loss Of Coolant Accident (LOCA) and Steam Generator Tube Rupture (SGTR) occurs at a nuclear power plant, it is most important to check the status of the plant conditions by observing the safety-related parameters such as neutron flux, pressurizer pressure, steam generator pressure and water level. In this paper, we propose a method of predicting the water level of coolant in the reactor vessel that directly affect the important events such as the exposure of the reactor core and the damage of reactor vessel by using a Fuzzy Neural Network (FNN) method. In addition, the data for verifying a proposed model was obtained by simulating the severe accident scenarios for the OPR1000 nuclear power plant using the MAAP4 code. In this paper, a prediction model was developed for predicting the reactor vessel water level using the FNN method. The proposed FNN model was verified based on the simulation data of OPR1000 by using MAAP4 code. As a result of simulation, we could see that the performance of the proposed FNN model is quite satisfactory but some large errors are observed occasionally. If the proposed FNN model is optimized by using a variety of data, it is possible to predict the reactor vessel water level exactly

  1. Modeling secondary accidents identified by traffic shock waves.

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. PMID:26687540

  2. 基于改进模糊数量化理论的事故微观预测模型%Micro Prediction Model of Traffic Accident Based on Improved Fuzzy Quantitative Theory

    秦利燕; 秦玉权; 邵春福

    2012-01-01

    针对道路交通事故发生的随机性及影响事故发生的因素很多,而且影响因素中既有定量因素又有定性因素的情况.首先分析了道路交通事故事故4项指标和事故率,确定事故率作为微观预测目标;然后从人-车-路组成的系统观点出发对事故因素分析,选取驾驶员的驾龄、车道数、平曲线半径、纵坡度、路面情况、路口路段类型、道路宽度和交通流量等变量作为主要影响因素,其中前7项作为定性影响因素,交通流量作为定量影响因素,各定性因素下分为若干类目;最后在数量化理论的基础之上建立了改进的模糊道路交通事故微观预测模型.该模型以某国道466.678~559.792 km段作为算例进行计算,计算结果表明:三枝交叉口对事故影响最大,针对该路段提出具体的道路整改意见.%The random feature of traffic accidents with multiple influencing factors includes qualitative and quantitative ones. The accident rate was selected as the microscopic prediction objective after analyzing 4 traffic accident indexes and accident rates. Then several factors, including driving years, number of lanes, radius of horizontal curve, longitudinal grade, road surface status, types of intersection and road section, width of road surface and traffic volume were selected as major influencing factors for analyzing the influencing factors from a systematic perspective with the combination of human, vehicle and road. Among these factors, traffic volume was quantative factor, and the other were qualitative factors which were divided into several categories respectively. An improved fuzzy microscopic model for predicting traffic accidents was established based on quantitative theory. To verify the model, the data of road accidents and a 466. 678 -559. 792 km section on certain national highway was taken for example calculation. The calculation result indicates that three-way intersection has the greatest

  3. Accident evolution and barrier function and accident evolution management modeling of nuclear power plant incidents

    Every analysis of an accident or an incident is founded on a more or less explicit model of what an accident is. On a general level, the current approach models an incident or accident in a nuclear power plant as a failure to maintain a stable state with all variables within their ranges of stability. There are two main sets of subsystems in continuous interaction making up the analyzed system, namely the human-organizational and the technical subsystems. Several different but related approaches can be chosen to model an accident. However, two important difficulties accompany such modeling: the high level of system complexity and the very infrequent occurrence of accidents. The current approach acknowledges these problems and focuses on modeling reported incidents/accidents or scenarios selected in probabilistic risk assessment analyses to be of critical importance for the safety of a plant

  4. Safety Performance Improvement for Nuclear Power Plants Using THOMAS and Accident Prediction Function

    The environments of nuclear industry are changed by incoming of digital technology. Until now, the nuclear power plant was adhering to analogue system in the large part of system. However the reliability of digital technology is increased, the adopting of digital technology is accelerated in the nuclear industry. It is not exception of the part of monitoring system. Digital based thermal hydraulics online monitoring advisory system of nuclear power plant, as called THOMAS, which is can be developed economically compared with existing monitoring system is used for the decision making tool in the accident condition. We selected the Ulchin 3 and 4 units which is the type of Korea Standard Nuclear Power Plant(KSNP) as reference plant. For nuclear power plants, EOPs (Emergency Operating Procedures) help operators to diagnose and analyze accidents. But it is very difficult that operators diagnose and analyze similar accidents with EOPs in a given short time. There are also possibilities to follow wrong procedures due to complex and extensive procedures. Therefore, it is important to develop a methodology for diagnosing accidents in a short time and reduction of human errors that made by complex signals and indicators. THOMAS has a function of decision making using influence diagram logic. The influence diagram logic is based on total probability and Bayesian theory. And also the accident modeling is based on emergency operating procedure(EOP). The final goal of this system is, in the accident situation, to present the success path to the operator for the recovery of system. In this paper, at first, we will deal briefly with total system of THOMAS. And then 3D visualized window and accident prediction function will be introduced in detail

  5. Development of accident diagnosis and prediction system for research reactor

    A pilot system of early fault detection expert system has been developed. The early fault detection expert system is one of subsystems in the accident diagnosis and prediction system for the research reactor JRR-3 in JAERI. Functions of the pilot system are to detect deviations of process parameters from the steady state in the early stage of the transient and, if possible, to provide procedures to operators to avoid scram actuation. The reactor accident diagnosis system, DISKET, which had been developed in JAERI, was applied for developing the pilot system by extending functions as follows. (1) A frame structure has been introduced to a part of the knowledge base of DISKET in order to infer efficiently. (2) Numerical equation has been introduced to rule representation in order to calculate numerical value for rules. The pilot system was tested against some simulated transients to validate the effectiveness of the extension mentioned above as well as the performance of the system. This report describes development of the pilot system and the results of the test. (author)

  6. The accident evolution and barrier model applied to incident analysis in the processing industries

    This study presents a model for how accidents develop and how the accident evolution can be arrested. The model describes the interaction between the technical and human-organizational systems which may lead to an accident. The framework provided by the model may be used in predictive safety analyses as well as in post-hoc incident analyses. To illustrate this, the model is applied on an incident reported by the nuclear industry of Sweden. In general, application of the model will indicate where safety can be improved and raises questions about issues such as the cost, feasibility and effectiveness of different ways of increasing safety. (author). 15 refs, 2 figs

  7. MELCOR modeling of Fukushima unit 2 accident

    A MELCOR model of the Fukushima Daiichi unit 2 accident was created in order to get a better understanding of the event and to improve severe accident modeling methods. The measured pressure and water level could be reproduced relatively well with the calculation. This required adjusting the RCIC system flow rates and containment leak area so that a good match to the measurements is achieved. Modeling of gradual flooding of the torus room with water that originated from the tsunami was necessary for a satisfactory reproduction of the measured containment pressure. The reactor lower head did not fail in this calculation, and all the fuel remained in the RPV. 13 % of the fuel was relocated from the core area, and all the fuel rods lost their integrity, releasing at least some volatile radionuclides. According to the calculation, about 90 % of noble gas inventory and about 0.08 % of cesium inventory was released to the environment. The release started 78 h after the earthquake, and a second release peak came at 90 h. Uncertainties in the calculation are very large because there is scarce public data available about the Fukushima power plant and because it is not yet possible to inspect the status of the reactor and the containment. Uncertainty in the calculated cesium release is larger than factor of ten.

  8. MELCOR modeling of Fukushima unit 2 accident

    Sevon, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2014-12-15

    A MELCOR model of the Fukushima Daiichi unit 2 accident was created in order to get a better understanding of the event and to improve severe accident modeling methods. The measured pressure and water level could be reproduced relatively well with the calculation. This required adjusting the RCIC system flow rates and containment leak area so that a good match to the measurements is achieved. Modeling of gradual flooding of the torus room with water that originated from the tsunami was necessary for a satisfactory reproduction of the measured containment pressure. The reactor lower head did not fail in this calculation, and all the fuel remained in the RPV. 13 % of the fuel was relocated from the core area, and all the fuel rods lost their integrity, releasing at least some volatile radionuclides. According to the calculation, about 90 % of noble gas inventory and about 0.08 % of cesium inventory was released to the environment. The release started 78 h after the earthquake, and a second release peak came at 90 h. Uncertainties in the calculation are very large because there is scarce public data available about the Fukushima power plant and because it is not yet possible to inspect the status of the reactor and the containment. Uncertainty in the calculated cesium release is larger than factor of ten.

  9. Study of the Severity of Accidents in Tehran Using Statistical Modeling and Data Mining Techniques

    Hesamaldin Razi

    2013-01-01

    Full Text Available AbstractBackgrounds and Aims: The Tehran province was subject to the second highest incidence of fatalities due to traffic accidents in 1390. Most studies in this field examine rural traffic accidents, but this study is based on the use of logit models and artificial neural networks to evaluate the factors that affect the severity of accidents within the city of Tehran.Materials and Methods: Among the various types of crashes, head-on collisions are specified as the most serious type, which is investigated in this study with the use of Tehran’s accident data. In the modeling process, the severity of the accident is the dependent variable and defined as a binary covariate, which are non-injury accidents and injury accidents. The independent variables are parameters such as the characteristics of the driver, time of the accident, traffic and environmental characteristics. In addition to the prediction accuracy comparison of the two models, the elasticity of the logit model is compared with a sensitivity analysis of the neural network.Results: The results show that the proposed model provides a good estimate of an accident's severity. The explanatory variables that have been determined to be significant in the final models are the driver’s gender, age and education, along with negligence of the traffic rules, inappropriate acceleration, deviation to the left, type of vehicle, pavement conditions, time of the crash and street width.Conclusion: An artificial neural network model can be useful as a statistical model in the analysis of factors that affect the severity of accidents. According to the results, human errors and illiteracy of drivers increase the severity of crashes, and therefore, educating drivers is the main strategy that will reduce accident severity in Iran. Special attention should be given to a driver’s age group, with particular care taken when they are very young.

  10. HTR fuel: prediction of fission product release in accidents

    The basic fuel unit of the HTR is the coated particle of about 1 mm diameter. An oxidic fuel kernel is surrounded by a low density buffer layer and a silicon carbide coating sandwiched between high density pyrocarbon coatings. The total release of fission products during accidents is determined not only by the transient-induced and the irradiation-induced failure of the coatings, but also by the levels of manufacturing defects and the level of heavy metal contamination in the fuel matrix material. Modern coated fuel particles are designed so that the fission gas pressure-induced stress in the SiC coating remains small relative to the strength of the SiC even under full design burnup conditions. Therefore the pressure vessel failure of the particles is insignificant both in normal operations and in accidents. Silicon carbide thermal decomposition becomes the dominant failure mode as temperatures exceed 2000 deg. C. Interaction of fission products with silicon carbide leading to SiC corrosion is the dominant failure mechanism below 2000 deg. C. Laboratory simulations of HTR transients have usually measured the release of Cs 137 and Kr 85 as indicators of the coating failure. Once the silicon carbide fails by corrosion or decomposition, Cs 137 is released and is taken as the direct indicator of SiC failure in fuel performance modeling studies. In the case of Kr, an additional delay beyond the Cs release is found due to the time required for Kr to diffuse through the remaining outer pyrocarbon coating. The delay between the SiC failure and gas release is analyzed to yield data on the diffusion coefficient of Kr in pyrocarbon. The present data suggest that, in terms of expected values, the fission product release during a modular reactor system transient to 1600 deg. C is dominated by the manufacturing defects and heavy metal contamination rather than irradiation-induced or transient-induced coating failure. (author)

  11. Optimal predictive model selection

    Barbieri, Maria Maddalena; Berger, James O.

    2004-01-01

    Often the goal of model selection is to choose a model for future prediction, and it is natural to measure the accuracy of a future prediction by squared error loss. Under the Bayesian approach, it is commonly perceived that the optimal predictive model is the model with highest posterior probability, but this is not necessarily the case. In this paper we show that, for selection among normal linear models, the optimal predictive model is often the median probability model, which is defined a...

  12. 广西道路交通事故BP人工神经网络预测模型的建立及效果评价%Establishment and Efficacy Evaluation of BP Neural Network Model for Prediction of Road Traffic Accidents in Guangxi

    刘勇; 杨莉; 彭振仁; 黄开勇

    2013-01-01

    目的 构建广西道路交通事故BP人工神经网络预测模型,为研究广西道路交通事故提供新方法.方法 在分析道路交通事故与人、车、路等因素关系的基础上,选取人口数、客运周转量、民用车辆拥有量和公里里程数作为输入变量,交通事故发生数作为输出变量,应用BP人工神经网络技术,对2010年广西道路交通发生数进行预测.结果 2010年广西交通事故预测数为4 562次,实际发现4 351次,预测值与实际值误差为4.85%,建立的模型拟合效果较好.结论 BP人工神经网络模型适用于广西交通事故数的预测,为交通部门进行交通事故预测研究提供新方法.%Objective To construct the prediction model of road traffic accidents in Guangxi by BP neural network, and to provide a new method for studying road traffic accidents. Methods Based on the analysis of the relation between road traffic accidents and factors,including human,vehicle and road,the predicting model of road traffic accidents, which used population,passenger turnover,number of civilian vehicles and Km mileage as the input neurons and the road traffic accidents as the output neuron, was established by BP neural network to predict the road traffic accidents of Guangxi in 2010. Results The predicted value and actual one in 2010 for the road traffic accidents were 4 562 and 4 351,respectively, and the percentage of error was 4. 85%. The fitting of the model established was more effective. Conclusion The predicting model established by BP neural network is suited for predicting road traffic accidents in Guangxi, and it has provided a new method for traffic department.

  13. Prediction of widespread radionuclide contamination at reactor accidents

    JAERI has developed a real-time prediction system, SPEEDI (System for Prediction of Environmental Emergency Dose Information). The system has recently been extended to WSPEEDI (the worldwide version of SPEEDI) by enlarging the application scope using a supercomputer with a network for worldwide meteorological data as included in the wind field model and the dispersion model. This new system can trace the movement of radionuclides over a large area up to the hemisphere. Participating in the international cooperative work, called ATMES (Atmospheric Transport Model Evaluation Study) and ETEX (European Tracer Experiment) projects in which nontoxic artificial tracer gas was released and the concentration monitored at 168 stations located over 2000 km region, JAERI joined in predicting the evolution of concentration distribution as a function of time. The results with WSPEEDI were compared and some future modification of the system is described. (S. Ohno)

  14. Predicting material release during a nuclear reactor accident

    KONINGS Rudy; Wiss, Thierry; BENES ONDREJ

    2014-01-01

    The accident in the Fukushima Daiichi nuclear power plant that happened four years ago this month, has once more drawn the attention of a broad public to the environmental impact of the release of fission products from nuclear power reactors in the event of an accident in which the reactor core is damaged. So far three such accidents have occurred in the history of civil nuclear power production. In this commentary we will review the state-of-the-art of the knowlegde of the physical and chemi...

  15. The prediction of the LWR plant accident based on the measured plant data

    In case of accident affecting a nuclear reactor, it is essential to anticipate the possible development of the situation to efficiently succeed in emergency response actions, i.e. firstly to be early warned, to get sufficient information on the plant: and as far as possible. The ASTRID (Assessment of Source Term for Emergency Response based on Installation Data) project consists in developing a methodology: of expertise to; structure the work of technical teams and to facilitate cross competence communications among EP players and a qualified computer tool that could be commonly used by the European countries to reliably predict source term in case of an accident in a light water reactor, using the information available on the plant. In many accident conditions the team of analysts may be located far away from the plant experiencing the accident and their decision making is based on the on-line plant data transmitted into the crisis centre in an interval of 30 - 600 seconds. The plant condition has to be diagnosed based on this information, In the ASTRID project the plant status diagnostics has been studied for the European reactor types including BWR, PWR and VVER plants. The directly measured plant data may be used for estimations of the break size from the primary system and its locations. The break size prediction may be based on the pressurizer level, reactor vessel level, primary pressure and steam generator level in the case of the steam generator tube rupture. In the ASTRID project the break predictions concept was developed and its validity for different plant types and is presented in the paper, when the plant data has been created with the plant specific thermohydraulic simulation model. The tracking simulator attempts to follow the plant behavior on-line based on the measured plant data for the main process parameters and most important boundary conditions. When the plant state tracking fails, the plant may be experiencing an accident, and the tracking

  16. 事故预测GM(1,1)模型的Excel求解%Application of Excel to Solve the G(1,1) Model of Accident Prediction

    李杰

    2013-01-01

    GM(1,1)在事故预测上得到了广泛的运用,而GM(1,1)复杂繁琐的计算对于一线的安全管理人员来说使用起来具有一定的难度.而对于一线安全管理人员来讲,EXCEL进行数据管理和分析相对熟悉.为此,使用EXCEL求解GM(1,1)在一线安全管理人员当中成为可能.该文通过实例对GM(1,1)问题进行了求解,并对计算结果进行了验证,说明使用EX?CEL能够精确的求解GM(1,1,)模型.%GM (1,1) has been widely used in the accident prediction, complicated calculation of GM (1,1) for ordinary security management was very difficult for general safety in terms of the management staff, while excel data management and analysis is relatively familiar. To do this, Use the EXCEL that was possible to solving GM (1,1) in ordinary security management officers. This article gave an example of GM (1, 1) problem and solved, and the results was verified. Results show that EXCEL could accu?rately solve the GM (1,1) model.

  17. Principles of medical-hygienic prediction of the after-effects of radiation accident

    Basing on the experience in rendering medical aid to the injured persons after radiation accidents during years 1950-1993, the recommendations are given in respect of the procedure of preparation of the medical prognosis of the after-effects of radiation accident with the help of IAEA scale of severity radiation accident. It is pointed out that the prediction of hygienic after-effects of the radiation accident depends on a number of factors, the applied methods of weighing-out the benefit and harm of the introduced hygienic measures and remains to be the subject of further studies. 9 refs.; 3 tabs

  18. Grey-Markov Model for Road Accidents Forecasting

    李相勇; 严余松; 蒋葛夫

    2003-01-01

    In order to improve the forecasting precision of road accidents, by introducing Markov chains forecasting method, a grey-Markov model for forecasting road accidents is established based on grey forecasting method. The model combines the advantages of both grey forecasting method and Markov chains forecasting method, overcomes the influence of random fluctuation data on forecasting precision and widens the application scope of the grey forecasting. An application example is conducted to evaluate the grey-Markov model, which shows that the precision of the grey-Markov model is better than that of grey model in forecasting road accidents.

  19. A web-based nuclear accident illumination system based on multilevel flow model - for risk communication and nuclear safety culture

    This paper introduces a new method to illuminate the nuclear accident by Multilevel Flow Model, and based on the method, a web-based nuclear accident illumination system is proposed to represent the current nuclear accident in nuclear power plant of Japan in an understandable way. The MFM is a means-end and part-whole modeling method to describe the structure and the intention of a plant process. The relationship between the MFM functions enables accident prediction for a plant process. Thus, a web-based accident illumination system based by MFM can describe the nuclear accident in the nuclear power plant clearly and be accessed by public to make the public get to know and understand the nuclear power and nuclear risk. The public can build their own confidence of the nuclear power by their understanding of the nuclear accident with this system and this is helpful to build a harmonious development environment for nuclear power. (author)

  20. Visualizing Risk Prediction Models

    Vanya Van Belle; Ben Van Calster

    2015-01-01

    Objective Risk prediction models can assist clinicians in making decisions. To boost the uptake of these models in clinical practice, it is important that end-users understand how the model works and can efficiently communicate its results. We introduce novel methods for interpretable model visualization. Methods The proposed visualization techniques are applied to two prediction models from the Framingham Heart Study for the prediction of intermittent claudication and stroke after atrial fib...

  1. Core/concrete interaction model for full scope simulation of severe accidents

    Nuclear plant training simulators have only recently begun to model severe loss-of-coolant accidents in which molten core material can relocate to the bottom of the reactor vessel, fail the vessel, and migrate to the containment. For those accident sequences in which core debris )corium) can accumulate in direct contact with concrete in the containment, the potential for concrete erosion and its phenomenological consequences must be assessed in order that operator training for severe accidents can be attempted. The core/concrete interaction model presented in this paper was developed for the Westinghouse full scope simulator. It allows for extension of transient simulation to conditions beyond vessel failure, and is intended for real-time operator training for severe accidents on a full scope simulator. The model predictions compare favorably with more detailed MAAP calculations

  2. Road Accident Trends in Africa and Europe

    Jørgensen, N O

    1997-01-01

    The paper decribes trends and suggests prediction models for accident risks in African and European countries......The paper decribes trends and suggests prediction models for accident risks in African and European countries...

  3. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented

  4. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated

    Highlights: • A modified ensemble Kalmen filter data assimilation method is proposed. • The method can consider four main uncertain parameters in the puff model. • The prediction of radioactive material atmospheric dispersion is improved. • The source release rate and plume rise height are successfully reconstructed. • It can shorten the time lag in the response of ensemble Kalmen filter. - Abstract: Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere

  5. Predictive modeling of complications.

    Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P

    2016-09-01

    Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions. PMID:27286683

  6. Zephyr - the prediction models

    Nielsen, Torben Skov; Madsen, Henrik; Nielsen, Henrik Aalborg;

    2001-01-01

    utilities as partners and users. The new models are evaluated for five wind farms in Denmark as well as one wind farm in Spain. It is shown that the predictions based on conditional parametric models are superior to the predictions obatined by state-of-the-art parametric models....

  7. Mathematical models for steam generator accident simulation

    In this contribution, the numerical methods used in the DeBeNe-LMFBR development for the analysis of the hydrodynamic and mechanical consequences of steam generator accidents are presented. At first the definition of the source term, i.e. the water leak rate which has to be assumed in the design basis accident as well as the thermochemistry of the sodium/water-reaction is discussed. Then the computer-codes presently used to describe the hydrodynamic and mechanical consequences of steam generator accidents on the basis of the above mentioned source term are presented. These comprise the code-system SAPHYR and the code PTANER and PISCES. Furthermore, developments which are planned or already under way for future use, such as the BEREPOT-code, are presented. (author)

  8. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  9. Applying Functional Modeling for Accident Management of Nucler Power Plant

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigates applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  10. Model based detection and reconstruction of road traffic accidents

    Hiemer, Marcus

    2005-01-01

    This thesis describes the detection and reconstruction of traffic accidents with event data recorders. The underlying idea is to describe the vehicle motion and dynamics up to the stability limit by means of linear and non-linear vehicle models. These models are used to categorize the driving behavior and to freeze the recorded data in a memory if an accident occurs. Based on these data, among others the vehicle trajectory is reconstructed with fuzzy data fusion. The side slip angle whi...

  11. Simplified evaluation models for total fission number in a criticality accident

    For handling of nuclear fuel during reprocessing or for design of spent-fuel storage and transportation, one needs to know the scale of maximum credible criticality accidents, i.e., the total fission number so as to know the radiological exposure of working personnel as well as the risk to the public in the event of an accident. Some simplified evaluation models for conservatively predicting the number of total fissions during an accident are derived theoretically using the one-point adiabatic reactivity balance model for the homogeneous and thermogenesis systems, respectively, which are frequently seen in nuclear fuel facilities. These simplified evaluation models are subsequently validated with the transient experiment data and actual accident data published to date from the world nuclear community. Some conventionally used simplified evaluation models of this kind are quoted and compared with the results to show the convenience of the current models, having almost no restrictions in the application for any kind of nuclear fuel, material composition, geometry, and dimension, and thus, ensuring adequate margins for predicting the total fission number at the time of a criticality accident

  12. Simplified evaluation models for total fission number in a criticality accident

    Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Ibaraki (Japan). Dept. of Fuel Cycle Safety Research

    1995-01-01

    For handling of nuclear fuel during reprocessing or for design of spent-fuel storage and transportation, one needs to know the scale of maximum credible criticality accidents, i.e., the total fission number so as to know the radiological exposure of working personnel as well as the risk to the public in the event of an accident. Some simplified evaluation models for conservatively predicting the number of total fissions during an accident are derived theoretically using the one-point adiabatic reactivity balance model for the homogeneous and thermogenesis systems, respectively, which are frequently seen in nuclear fuel facilities. These simplified evaluation models are subsequently validated with the transient experiment data and actual accident data published to date from the world nuclear community. Some conventionally used simplified evaluation models of this kind are quoted and compared with the results to show the convenience of the current models, having almost no restrictions in the application for any kind of nuclear fuel, material composition, geometry, and dimension, and thus, ensuring adequate margins for predicting the total fission number at the time of a criticality accident.

  13. Traffic Accident, System Model and Cluster Analysis in GIS

    Veronika Vlčková

    2015-07-01

    Full Text Available One of the many often frequented topics as normal journalism, so the professional public, is the problem of traffic accidents. This article illustrates the orientation of considerations to a less known context of accidents, with the help of constructive systems theory and its methods, cluster analysis and geoinformation engineering. Traffic accident is reframing the space-time, and therefore it can be to study with tools of technology of geographic information systems. The application of system approach enabling the formulation of the system model, grabbed by tools of geoinformation engineering and multicriterial and cluster analysis.

  14. Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstance of NPPs

    Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

  15. Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstance of NPPs

    Park, Soon Ho; Kim, Dae Seop; Kim, Jae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2014-06-15

    Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

  16. Sensitivity analysis in severe accidents semi-mechanistic modeling

    A sensitivity analysis to determine the most influent phenomena in the core melt progression to be considered in a semi-mechanistic modeling have been performed in the present work. The semi-mechanistic program MARCH3 and the TMI-2 plant parameters were used in the TMI-2 severe accident. The sensitivity analysis was performed with the comparison of the results obtained by the program with the plant data recorded during the accident. The results enabled us to verify that although many phenomena are present in the accident, the modelling of the most important ones was enough to reproduce, at least in a qualitative way, the accident progression. This fact reflects the importance of the sensitivity analysis to select the most influent phenomena in a core melting process. (author). 48 refs., 28 figs., 6 tabs

  17. Pilot study of dynamic Bayesian networks approach for fault diagnostics and accident progression prediction in HTR-PM

    Zhao, Yunfei; Tong, Jiejuan; Zhang, Liguo, E-mail: lgzhang@tsinghua.edu.cn; Zhang, Qin

    2015-09-15

    Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM.

  18. Pilot study of dynamic Bayesian networks approach for fault diagnostics and accident progression prediction in HTR-PM

    Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM

  19. Prediction of temperature and fission product release from HTR fuel under accident conditions

    Modern, small High-Temperature Reactors (HTRs) are designed such that maximum accident fuel temperatures remain below 1600degC without active control mechanisms. It has been demonstrated that HTR fuel remains intact and retains all fission products under these maximum accident conditions at least as well as under normal operating conditions. The accident temperature limit has been achieved by a core design with small thermal power and low power density. In the case of a loss-of-coolant accident (LOCA), the decay heat is removed from the core by passive means. The passive core temperature limitation has been demonstrated with a series of LOCA simulation tests with the AVR pebble-bed HTR in Julich, Germany. Here, the maximum core temperatures were measured to be 1080degC in agreement with predictions and, being used for code validation, in agreement with post-test calculations. (J.P.N.)

  20. Accident progression modelling: containment event trees

    Containment Event Trees (CETs) are used to represent the various potential accident progressions following core melt. The EVNTRE code has a sophisticated Monte-Carlo capability. In this paper the small CET approach uses Decompositions Event Trees (DETs) to analyse the issues behind the CET headers and large CET approach (EVNTRE/NUREG-1150) are presented. The equipment survivability impact in CET, source term assignment via grouping of sequences into categories or by use of parametric code, sensitivity studies versus full Monte-Carlo simulation for study of the impact of uncertainties are also discussed

  1. Usefulness of high resolution coastal models for operational oil spill forecast: the "Full City" accident

    G. Broström

    2011-11-01

    Full Text Available Oil spill modeling is considered to be an important part of a decision support system (DeSS for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution, the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas.

  2. FIRAC, Nuclear Power Plant Fire Accident Model

    1 - Description of program or function: FIRAC predicts fire-induced flows, thermal and material transport, and radioactive and non- radioactive source terms in a ventilation system. It is designed to predict the radioactive and nonradioactive source terms that lead to gas dynamic, material transport, and heat transfer transients. FIRAC's capabilities are directed toward nuclear fuel cycle facilities and the primary release pathway - the ventilation system. However, it is applicable to other facilities and can be used to model other airflow pathways within a structure. The basic material transport capability of FIRAC includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, and gas dynamics are also simulated. A ventilation system model includes elements such as filters, dampers, ducts, and blowers connected at nodal points to form networks. A zone-type compartment fire model is incorporated to simulate fire-induced transients within a facility. 2 - Method of solution: FIRAC solves one-dimensional, lumped-parameter, compressible flow equations by an implicit numerical scheme. The lumped-parameter method is the basic formulation that describes the gas dynamics system. No spatial distribution of parameters is considered in this approach, but an effect of spatial distribution can be approximated by noding. Network theory, using the lumped-parameter method, includes a number of system elements, called branches, joined at certain points, called nodes. Ventilation system components that exhibit flow resistance and inertia, such as dampers, ducts, valves, and filters, and those that exhibit flow potential, such as blowers, are located within the branches of the system. The connection points of branches are nodes for components that have finite volumes, such as rooms, gloveboxes, and plenums, and for boundaries where the volume is practically infinite. All internal nodes, therefore

  3. An approach to accidents modeling based on compounds road environments.

    Fernandes, Ana; Neves, Jose

    2013-04-01

    The most common approach to study the influence of certain road features on accidents has been the consideration of uniform road segments characterized by a unique feature. However, when an accident is related to the road infrastructure, its cause is usually not a single characteristic but rather a complex combination of several characteristics. The main objective of this paper is to describe a methodology developed in order to consider the road as a complete environment by using compound road environments, overcoming the limitations inherented in considering only uniform road segments. The methodology consists of: dividing a sample of roads into segments; grouping them into quite homogeneous road environments using cluster analysis; and identifying the influence of skid resistance and texture depth on road accidents in each environment by using generalized linear models. The application of this methodology is demonstrated for eight roads. Based on real data from accidents and road characteristics, three compound road environments were established where the pavement surface properties significantly influence the occurrence of accidents. Results have showed clearly that road environments where braking maneuvers are more common or those with small radii of curvature and high speeds require higher skid resistance and texture depth as an important contribution to the accident prevention. PMID:23376544

  4. STRATEGY PATTERNS PREDICTION MODEL

    Aram Baruch Gonzalez Perez; Jorge Adolfo Ramirez Uresti

    2014-01-01

    Multi-agent systems are broadly known for being able to simulate real-life situations which require the interaction and cooperation of individuals. Opponent modeling can be used along with multi-agent systems to model complex situations such as competitions like soccer games. In this study, a model for predicting opponent moves based on their target is presented. The model is composed by an offline step (learning phase) and an online one (execution phase). The offline step gets and analyses p...

  5. A NEW HAZARD EVALUATION PROCEDURE FOR PREDICTING RISK FACTORS OF OCCUPATIONAL ACCIDENTS

    Hüseyin CEYLAN

    2013-05-01

    Full Text Available With annual average of 73,937 occupational accidents and 1,152 deaths, Turkey still faces an important problem. The country exercises one of the lowest performances in job safety among the European Union countries. Developments in technology increased the importance of safety management in industry. These improvements also resulted in a requirement of more investment and assignment on human in work systems. This situation increases the importance of forecasting the possible accidents that workers can face and preventing the accidents by taking necessary precautions. In this study a prognostic model has been developed to forecast the occupational accidents in coming periods at the departments of the facilities in hazardous work systems. The validity of the proposed model has been proved by implementing it into practice in hazardous work systems in the manufacturing industry.

  6. A MELCOR model of Fukushima Daiichi Unit 3 accident

    Highlights: • A MELCOR model of the Fukushima Unit 3 accident was developed. • The MELCOR input file is published as electronic supplementary data with this paper. • Reactor pressure vessel lower head failed about 53 h after the earthquake. • 70% of fuel was discharged from reactor to containment. • 0.95% of cesium inventory was released to the environment. - Abstract: A MELCOR model of the Fukushima Daiichi Unit 3 accident was developed. The model is based on publicly available information, and the MELCOR input file is published as electronic supplementary data with this paper. According to the calculation, the reactor pressure vessel lower head failed about 53 h after the earthquake. At the end of the calculation, 30% of the fuel was still inside the reactor and 70% had been discharged to the containment. Almost all of the radioactive noble gases and 0.95% of the cesium inventory were released to the environment during the accident

  7. A MELCOR model of Fukushima Daiichi Unit 3 accident

    Sevón, Tuomo, E-mail: tuomo.sevon@vtt.fi

    2015-04-01

    Highlights: • A MELCOR model of the Fukushima Unit 3 accident was developed. • The MELCOR input file is published as electronic supplementary data with this paper. • Reactor pressure vessel lower head failed about 53 h after the earthquake. • 70% of fuel was discharged from reactor to containment. • 0.95% of cesium inventory was released to the environment. - Abstract: A MELCOR model of the Fukushima Daiichi Unit 3 accident was developed. The model is based on publicly available information, and the MELCOR input file is published as electronic supplementary data with this paper. According to the calculation, the reactor pressure vessel lower head failed about 53 h after the earthquake. At the end of the calculation, 30% of the fuel was still inside the reactor and 70% had been discharged to the containment. Almost all of the radioactive noble gases and 0.95% of the cesium inventory were released to the environment during the accident.

  8. A drug cost model for injuries due to road traffic accidents.

    Riewpaiboon A

    2008-03-01

    Full Text Available Objective: This study aimed to develop a drug cost model for injuries due to road traffic accidents for patients receiving treatment at a regional hospital in Thailand. Methods: The study was designed as a retrospective, descriptive analysis. The cases were all from road traffic accidents receiving treatment at a public regional hospital in the fiscal year 2004. Results: Three thousand seven hundred and twenty-three road accident patients were included in the study. The mean drug cost per case was USD18.20 (SD=73.49, median=2.36. The fitted drug cost model had an adjusted R2 of 0.449. The positive significant predictor variables of drug costs were prolonged length of stay, age over 30 years old, male, Universal Health Coverage Scheme, time of accident during 18:00-24:00 o’clock, and motorcycle comparing to bus. To forecast the drug budget for 2006, there were two approaches identified, the mean drug cost and the predicted average drug cost. The predicted average drug cost was calculated based on the forecasted values of statistically significant (p<0.05 predictor variables included in the fitted model; predicted total drug cost was USD44,334. Alternatively, based on the mean cost, predicted total drug cost in 2006 was USD63,408. This was 43% higher than the figure based on the predicted cost approach.Conclusions: The planned budget of drug cost based on the mean cost and predicted average cost were meaningfully different. The application of a predicted average cost model could result in a more accurate budget planning than that of a mean statistic approach.

  9. Application of GIS in prediction and assessment system of off-site accident consequence for NPP

    The assessment and prediction software system of off-site accident consequence for Guangdong Nuclear Power Plant (GNARD2.0) is a GIS-based software system. The spatial analysis of radioactive materials and doses with geographic information is available in this system. The structure and functions of the GNARD system and the method of applying ArcView GIS are presented

  10. Consequences in Norway after a hypothetical accident at Sellafield - Predicted impacts on the environment.

    Thoerring, H.; Liland, A.

    2010-12-15

    This report deals with the environmental consequences in Norway after a hypothetical accident at Sellafield. The investigation is limited to the terrestrial environment, and focus on animals grazing natural pastures, plus wild berries and fungi. Only 137Cs is considered. The predicted consequences are severe, in particular for mutton and goat milk production. (Author)

  11. Consequences in Norway after a hypothetical accident at Sellafield - Predicted impacts on the environment

    This report deals with the environmental consequences in Norway after a hypothetical accident at Sellafield. The investigation is limited to the terrestrial environment, and focus on animals grazing natural pastures, plus wild berries and fungi. Only 137Cs is considered. The predicted consequences are severe - in particular for mutton and goat milk production. (Author)

  12. Modelling and analysis of severe accidents for VVER-1000 reactors

    Tusheva, Polina

    2012-03-09

    effectiveness of the procedures strongly depends on the ability of the passive safety systems to inject as much water as possible into the reactor coolant system. The results on the early in-vessel phase have shown potentially delayed RPV failure by depressurization of the primary side, as slowing the core damage gives more time and different possibilities for operator interventions to recover systems and to mitigate or terminate the accident. The ANSYS model for the description of the molten pool behaviour in the RPV lower plenum has been extended by a model considering a stratified molten pool configuration. Two different pool configurations were analysed: homogeneous and segregated. The possible failure modes of the RPV and the time to failure were investigated to assess the possible loadings on the containment. The main treated issues are: the temperature field within the corium pool and the RPV and the structure-mechanical behaviour of the vessel wall. The results of the ASTEC calculations of the melt pool configuration were applied as initial conditions for the ANSYS simulations, allowing a more detailed and more accurate modelling of the thermal and mechanical behaviour of the core melt and the RPV wall. Moreover, for the late in-vessel phase, retention of the corium in the RPV was investigated presuming external cooling of the vessel wall as mitigative severe accident management measure. The study was based on the finite element computer code ANSYS. The highest thermomechanical loads are observed in the transition zone between the elliptical and the vertical vessel wall for homogeneous pool and in the vertical part of the vessel wall, which is in contact with the molten metal in case of sub-oxidized pool. Assuming external flooding will retain the corium within the RPV. Without flooding, the vessel wall will fail, as the necessary temperature for a balanced heat release from the external surface via radiation is near to or above the melting point of the steel.

  13. Modelling and analysis of severe accidents for VVER-1000 reactors

    effectiveness of the procedures strongly depends on the ability of the passive safety systems to inject as much water as possible into the reactor coolant system. The results on the early in-vessel phase have shown potentially delayed RPV failure by depressurization of the primary side, as slowing the core damage gives more time and different possibilities for operator interventions to recover systems and to mitigate or terminate the accident. The ANSYS model for the description of the molten pool behaviour in the RPV lower plenum has been extended by a model considering a stratified molten pool configuration. Two different pool configurations were analysed: homogeneous and segregated. The possible failure modes of the RPV and the time to failure were investigated to assess the possible loadings on the containment. The main treated issues are: the temperature field within the corium pool and the RPV and the structure-mechanical behaviour of the vessel wall. The results of the ASTEC calculations of the melt pool configuration were applied as initial conditions for the ANSYS simulations, allowing a more detailed and more accurate modelling of the thermal and mechanical behaviour of the core melt and the RPV wall. Moreover, for the late in-vessel phase, retention of the corium in the RPV was investigated presuming external cooling of the vessel wall as mitigative severe accident management measure. The study was based on the finite element computer code ANSYS. The highest thermomechanical loads are observed in the transition zone between the elliptical and the vertical vessel wall for homogeneous pool and in the vertical part of the vessel wall, which is in contact with the molten metal in case of sub-oxidized pool. Assuming external flooding will retain the corium within the RPV. Without flooding, the vessel wall will fail, as the necessary temperature for a balanced heat release from the external surface via radiation is near to or above the melting point of the steel.

  14. Predictive models in urology.

    Cestari, Andrea

    2013-01-01

    Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology. PMID:23423686

  15. STRATEGY PATTERNS PREDICTION MODEL

    Aram Baruch Gonzalez Perez

    2014-01-01

    Full Text Available Multi-agent systems are broadly known for being able to simulate real-life situations which require the interaction and cooperation of individuals. Opponent modeling can be used along with multi-agent systems to model complex situations such as competitions like soccer games. In this study, a model for predicting opponent moves based on their target is presented. The model is composed by an offline step (learning phase and an online one (execution phase. The offline step gets and analyses previous experiences while the online step uses the data generated by offline analysis to predict opponent moves. This model is illustrated by an experiment with the RoboCup 2D Soccer Simulator. The proposed model was tested using 22 games to create the knowledge base and getting an accuracy rate over 80%.

  16. Modeling alternative clad behavior for accident tolerant systems

    The US Department of Energy Fuel Cycle Research and Development program has a key goal of helping develop accident tolerant fuels (ATF) through investigating fuel and clad forms. In the current work thermochemical modeling and experiment are being used to assess fuel and clad alternatives. Cladding alternatives that have promise to improve fuel performance under accident conditions include the FeCrAl family of alloys and SiC-based composites. These are high strength and radiation resistant alloys and ceramics that have increased resistance to oxidation as compared to zirconium alloys. Accident modeling codes have indicated substantially increased time to failure and resulting effects. In the current work the thermochemical behavior of these materials are being assessed and the work reported here. (author)

  17. Consequences in Norway after a hypothetical accident at Sellafield - Predicted impacts on the environment

    This report describes the possible environmental consequences for Norway due to a hypothetical accident at the Sellafield complex in the UK. The scenario considered involves an explosion and fire at the B215 facility resulting in a 1 % release of the total HAL (Highly Active liquor) inventory of radioactive waste with a subsequent air transport and deposition in Norway. Air transport modelling is based on real meteorological data from October 2008 with wind direction towards Norway and heavy precipitation. This weather is considered to be quite representative as typical seasonal weather. Based on this weather scenario, the estimated fallout in Norway will be ∼ 17 P Bq of caesium-137 which is 7 times higher than the fallout from the Chernobyl accident. The modelled radioactive contamination is linked with data on transfer to the food chain and statistics on production and hunting to assess the consequences for foodstuffs. The investigation has been limited to the terrestrial environment, focussing on wild berries, fungi, and animals grazing unimproved pastures (i.e. various types of game, reindeer, sheep and goats). The predicted consequences are severe - especially in connection to sheep and goat production. Up to 80 % of the lambs in Norway could be exceeding the food intervention levels for radiocaesium the first years after the fallout, with 30-40 % likely to be above for many years. There will, consequently, be a need for extensive countermeasures in large areas for years or even decades involving several hundred thousand animals each year. Large consequences are also expected for reindeer husbandry - the first year in particular due to the time of fallout which is just prior to winter slaughter. The consequences will be most sever for reindeer herding in middle and southern parts of Norway, but problems may reach as far north as Finnmark where we find the majority of Norwegian reindeer production. The consequences for game will mostly depend on the regional

  18. Prediction model Perla

    Prediction model Perla presents one of a tool for an evaluation of a stream ecological status. It enables a comparing with a standard. The standard is formed by a dataset of sites from all area of the Czech Republic. The sites were influenced by a human activity as few as possible. 8 variables were used for prediction (distance from source, elevation, stream width and depth, slope, substrate roughness, longitude and latitude. All of them were statistically important for benthic communities. Results do not response ecoregions, but rather stream size (type). B (EQItaxonu), EQISi, EQIASPT a EQIH appears applicable for assessment using the prediction model and for natural and human stress differentiating. Limiting values of the indices for good ecological status are suggested. On the contrary, using of EQIEPT a EQIekoprof indices would be possible only with difficulties. (authors)

  19. Reactor accident calculation models in use in the Nordic countries

    The report relates to a subproject under a Nordic project called ''Large reactor accidents - consequences and mitigating actions''. In the first part of the report short descriptions of the various models are given. A systematic list by subject is then given. In the main body of the report chapter and subchapter headings are by subject. (Auth.)

  20. Thermal-hydraulic modeling of reactivity accidents in MTR reactors

    Khater Hany; Abu-El-Maty Talal; El-Morshdy El-Din Salah

    2006-01-01

    This paper describes the development of a dynamic model for the thermal-hydraulic analysis of MTR research reactors during a reactivity insertion accident. The model is formulated for coupling reactor kinetics with feedback reactivity and reactor core thermal-hydraulics. To represent the reactor core, two types of channels are considered, average and hot channels. The developed computer program is compiled and executed on a personal computer, using the FORTRAN language. The model is validated...

  1. Model verification of the debris coolability analysis module in the severe accident analysis code 'SAMPSON'

    The debris coolability analysis module in the severe accident analysis code 'SAMPSON' has been enhanced to predict more mechanistically the safety margin of present reactor pressure vessels in a severe accident. The module calculates debris spreading and cooling through melting and solidification in combination with the temperature distribution of the vessel wall and it evaluates the wall failure. Debris cooling after spreading is solved on the basis of natural convection analysis with melting and solidification on three-dimensional Cartesian co-ordinates. The calculated results for the cooling model are compared with the results from a three-dimensional natural convection experiment. The comparisons show the module capability for predictions of the debris temperature in the cooling process. Furthermore, it is seen that the prediction capability in the thermal load of the vessel wall is improved, since the penetration nozzles melting is modeled and combined with the cooling model. The module provides a good tool for the prediction of the reactor safety margin in a severe accident through the three-dimensional analysis of debris cooling. (author)

  2. BRAIN INJURY BIOMECHANICS IN REAL WORLD VEHICLE ACCIDENT USING MATHEMATICAL MODELS

    YANG Jikuang; XU Wei; OTTE Dietmar

    2008-01-01

    This paper aims at investigating brain injury mechanisms and predicting head injuries in real world accidents. For this purpose, a 3D human head finite element model (HBM-head) was developed based on head-brain anatomy. The HBM head model was validated with two experimental tests. Then the head finite element(FE) model and a multi-body system (MBS) model were used to carry out reconstructions of real world vehicle-pedestrian accidents and brain injuries. The MBS models were used for calculating the head impact conditions in vehicle impacts. The HBM-head model was used for calculating the injury related physical parameters, such as intracranial pressure, stress, and strain. The calculated intracranial pressure and strain distribution were correlated with the injury outcomes observed from accidents. It is shown that this model can predict the intracranial biomechanical response and calculate the injury related physical parameters. The head FE model has good biofidelity and will be a valuable tool for the study of injury mechanisms and the tolerance level of the brain.

  3. Accident sequence precursor analysis level 2/3 model development

    Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Galyean, W.J.; Brownson, D.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1997-02-01

    The US Nuclear Regulatory Commission`s Accident Sequence Precursor (ASP) program currently uses simple Level 1 models to assess the conditional core damage probability for operational events occurring in commercial nuclear power plants (NPP). Since not all accident sequences leading to core damage will result in the same radiological consequences, it is necessary to develop simple Level 2/3 models that can be used to analyze the response of the NPP containment structure in the context of a core damage accident, estimate the magnitude of the resulting radioactive releases to the environment, and calculate the consequences associated with these releases. The simple Level 2/3 model development work was initiated in 1995, and several prototype models have been completed. Once developed, these simple Level 2/3 models are linked to the simple Level 1 models to provide risk perspectives for operational events. This paper describes the methods implemented for the development of these simple Level 2/3 ASP models, and the linkage process to the existing Level 1 models.

  4. Advanced accident sequence precursor analysis level 2 models

    Galyean, W.J.; Brownson, D.A.; Rempe, J.L. [and others

    1996-03-01

    The U.S. Nuclear Regulatory Commission Accident Sequence Precursor program pursues the ultimate objective of performing risk significant evaluations on operational events (precursors) occurring in commercial nuclear power plants. To achieve this objective, the Office of Nuclear Regulatory Research is supporting the development of simple probabilistic risk assessment models for all commercial nuclear power plants (NPP) in the U.S. Presently, only simple Level 1 plant models have been developed which estimate core damage frequencies. In order to provide a true risk perspective, the consequences associated with postulated core damage accidents also need to be considered. With the objective of performing risk evaluations in an integrated and consistent manner, a linked event tree approach which propagates the front end results to back end was developed. This approach utilizes simple plant models that analyze the response of the NPP containment structure in the context of a core damage accident, estimate the magnitude and timing of a radioactive release to the environment, and calculate the consequences for a given release. Detailed models and results from previous studies, such as the NUREG-1150 study, are used to quantify these simple models. These simple models are then linked to the existing Level 1 models, and are evaluated using the SAPHIRE code. To demonstrate the approach, prototypic models have been developed for a boiling water reactor, Peach Bottom, and a pressurized water reactor, Zion.

  5. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  6. Investigation of Key Factors for Accident Severity at Railroad Grade Crossings by Using a Logit Model

    Hu, Shou-Ren; Li, Chin-Shang; Lee, Chi-Kang

    2010-01-01

    Although several studies have used logit or probit models and their variants to fit data of accident severity on roadway segments, few have investigated accident severity at a railroad grade crossing (RGC). Compared to accident risk analysis in terms of accident frequency and severity of a highway system, investigation of the factors contributing to traffic accidents at an RGC may be more complicated because of additional highway–railway interactions. Because the proportional odds assumption ...

  7. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  8. Development and application of random walk model of atmospheric diffusion in emergency response of nuclear accidents

    Plume concentration prediction is one of the main contents of radioactive consequence assessment for early emergency to nuclear accidents. This paper describes random characteristics of atmospheric diffusion itself, introduces random walk model of atmospheric diffusion (Random Walk), and compare with Lagrangian puff model (RIMPUFF) in the nuclear emergency decision support system (RODOS) developed by European Community for verification. The results show the concentrations calculated by the two models are quite close except that plume area calculated by Random Walk is a little smaller than that by RIMPUFF. The random walk model for atmospheric diffusion can simulate the atmospheric diffusion in case of nuclear accidents and provide more actual information for early emergency and consequence assessment as one atmospheric diffusion module of the nuclear emergency decision support system. (authors)

  9. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided

  10. PSA modeling of long-term accident sequences

    In the traditional Level 1 PSA, the long term of the accident sequences is usually taken into account in a simplified manner. For example, some of the mitigations which are needed at long term are taken into account in the PSA, but the analysis and the associated failures probabilities quantification are estimated based on generic assessments. In the context of the extension of PSA scope to include the external hazards, in France, both operator (EDF) and IRSN work for the improvement of methods to better take into account in the PSA the long term of accident sequences induced by initiators which affect the whole site containing several nuclear installations (reactors, fuel pools, ...). This is an essential prerequisite for the development of external hazards PSA. It has to be noted that in the French PSA, even before Fukushima, this type of accident sequences was already taken into account, many insight being used, as complementary information, to enhance the safety level of the plants. The recent French and international operating experience is an opportunity for tuning the actual PSA methods for long term accident sequences modeling. The paper presents the main results of the ongoing efforts in this area. (author)

  11. Prediction of failure of highly irradiated Zircaloy clad tubes under reactivity initiated accidents

    This paper deals with failure of irradiated Zircaloy tubes under the heat-up stage of a reactivity initiated accident (RIA). More precisely, by use of a model for plastic strain localization and necking failure, we theoretically analyse the effects of local surface defects on clad ductility and survivability under RIA. The results show that even very shallow surface defects, e.g. arising from a non-uniform or partially spilled oxide layer, have a strong limiting effect on clad ductility. Moreover, in presence of surface defects, the ability of the clad tube to expand radially without necking failure is found to be extremely sensitive to the stress biaxiality ratio σzz/σθθ, which is here assumed to be in the range from 0 to 1. The results of our analysis are compared with clad ductility data available in literature, and their consequences for clad failure prediction under RIA are discussed. In particular, the results raise serious concerns regarding the applicability of failure criteria, which are based on clad strain energy density. These criteria do not capture the observed sensitivity to stress biaxiality on clad failure propensity. (author)

  12. Modelling the oil spill track from Prestige-Nassau accident

    Montero, P.; Leitao, P.; Penabad, E.; Balseiro, C. F.; Carracedo, P.; Braunschweig, F.; Fernandes, R.; Gomez, B.; Perez-Munuzuri, V.; Neves, R.

    2003-04-01

    On November 13th 2002, the tank ship Prestige-Nassau sent a SOS signal. The hull of the ship was damaged producing an oil spill in front of the Galician coast (NW Spain). The damaged ship took north direction spilling more fuel and affecting the western Galician coast. After this, it changed its track to south. At this first stage of the accident, the ship spilt around 10000 Tm in 19th at the Galician Bank, at 133 NM of Galician coast. From the very beginning, a monitoring and forecasting of the first slick was developed. Afterwards, since southwesternly winds are frequent in wintertime, the slick from the initial spill started to move towards the Galician coast. This drift movement was followed by overflights. With the aim of forecasting the place and arriving date to the coast, some simulations with two different models were developed. The first one was a very simple drift model forced with the surface winds generated by ARPS operational model (1) at MeteoGalicia (regional weather forecast service). The second one was a more complex hydrodynamic model, MOHID2000 (2,3), developed by MARETEC GROUP (Instituto Superior Técnico de Lisboa) in collaboration with GFNL (Grupo de Física Non Lineal, Universidade de Santiago de Compostela). On November 28th, some tarballs appeared at south of main slick. This observations could be explained taking into account the below surface water movement following Ekman dynamic. Some new simulations with the aim of understanding better the physic underlying these observations were performed. Agreed between observations and simulations was achieved. We performed simulations with and without slope current previously calculated by other authors, showing that this current can only introduce subtle differences in the slick's arriving point to the coast and introducing wind as the primary forcing. (1) A two-dimensional particle tracking model for pollution dispersion in A Coruña and Vigo Rias (NW Spain). M. Gómez-Gesteira, P. Montero, R

  13. A model national emergency plan for radiological accidents

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request

  14. A model national emergency response plan for radiological accidents

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a results, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request. 2 tabs

  15. WHEN MODEL MEETS REALITY – A REVIEW OF SPAR LEVEL 2 MODEL AGAINST FUKUSHIMA ACCIDENT

    Zhegang Ma

    2013-09-01

    The Standardized Plant Analysis Risk (SPAR) models are a set of probabilistic risk assessment (PRA) models used by the Nuclear Regulatory Commission (NRC) to evaluate the risk of operations at U.S. nuclear power plants and provide inputs to risk informed regulatory process. A small number of SPAR Level 2 models have been developed mostly for feasibility study purpose. They extend the Level 1 models to include containment systems, group plant damage states, and model containment phenomenology and accident progression in containment event trees. A severe earthquake and tsunami hit the eastern coast of Japan in March 2011 and caused significant damages on the reactors in Fukushima Daiichi site. Station blackout (SBO), core damage, containment damage, hydrogen explosion, and intensive radioactivity release, which have been previous analyzed and assumed as postulated accident progression in PRA models, now occurred with various degrees in the multi-units Fukushima Daiichi site. This paper reviews and compares a typical BWR SPAR Level 2 model with the “real” accident progressions and sequences occurred in Fukushima Daiichi Units 1, 2, and 3. It shows that the SPAR Level 2 model is a robust PRA model that could very reasonably describe the accident progression for a real and complicated nuclear accident in the world. On the other hand, the comparison shows that the SPAR model could be enhanced by incorporating some accident characteristics for better representation of severe accident progression.

  16. Severe accident development modeling and evaluation for CANDU

    Negut, Gheorghe [National Agency for Radioactive Waste, 1, Campului Str., 115400 Mioveni (Romania)], E-mail: gheorghe.negut@andrad.ro; Catana, Alexandru [Institute for Nuclear Research Pitesti, 1, Campului Str., Mioveni P.O. Box 78, 0300 Pitesti (Romania); Prisecaru, Ilie; Dupleac, Daniel [Politehnica University Bucharest, 313, Splaiul Independentei, Sect. 6, 060042 Bucharest (Romania)

    2009-09-15

    Romania as UE member got new challenges for its nuclear industry. Romania operates since 1996 a CANDU nuclear power reactor and since 2007 the second CANDU unit. In EU are operated mainly PWR reactors, so, ours have to meet UE standards. Safety analysis guidelines require to model nuclear reactors severe accidents. Starting from previous studies, a CANDU degraded core thermal hydraulic model was developed. The initiating event is a LOCA, with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperature inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the decay heat is transferred to the moderator. Due to the lack of cooling, the moderator, eventually, begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) uncover, then disintegrate and fall down to the calandria vessel bottom. All the quantity of calandria moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which surrounds the calandria vessel. The thermal hydraulics phenomena described above are modeled, analyzed and compared with the existing data.

  17. Accident consequence assessments with different atmospheric dispersion models

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.)

  18. Concept and validation studies of the real-time reactor-accident consequences assessment model ECOSYS

    The Chernobyl accident has demonstrated the urgent need for computer programs for real-time assessment of potential radiological consequences of major reactor accidents and for timely recommendations of useful and cost-efficient counter measures. During the past decade the dynamic radioecological program ECOSYS has been developed for nuclear accident consequence assessment with high resolution in space, time and exposure pathways. The Chernobyl reactor accident leading to relatively high contamination of Southern Germany provided excellent conditions for realistic validation studies of concept, sub-models and parameters of ECOSYS. To this purpose more than 7000 low level and in-situ gamma spectroscopy measurements were performed to study experimentally the behaviour of radionuclides in foodchains and in the urban environment and to compare the results to theoretical predictions of ECOSYS. The results show good agreement in the contamination levels of important food stuffs and in external exposure dose rates from a given surface contamination. Improvements were necessary in the assumptions regarding the food consumption habits which changed considerably - and in the functions describing the weathering off from urban and plant surfaces. The results of this validation study and the concept of the improved computerised model, which has subsequently been converted into a real-time code, are discussed in detail

  19. Effect of Candu Fuel Bundle Modeling on Sever Accident Analysis

    Dupleac, D.; Prisecaru, I. [Power Plant Engineering Faculty, Politehnica University, 313 Splaiul Independentei, 060042, sect. 6, Bucharest (Romania); Mladin, M. [Institute for Nuclear Research, Pitesti-Mioveni, 115400 (Romania)

    2009-06-15

    In a Candu 6 nuclear power reactor fuel bundles are located in horizontal Zircaloy pressure tubes through which the heavy-water coolant flows. Each pressure tube is surrounded by a concentric calandria tube. Outside the calandria tubes is the heavy-water moderator contained in the calandria itself. The moderator is maintained at a temperature of 70 deg. C by a separate cooling circuit. The moderator surrounding the calandria tubes provides a potential heat sink following a loss of core heat removal. The calandria vessel is in turn contained within a shield tank (or reactor vault), which provides biological shielding during normal operation and maintenance. It is a large concrete tank filled with ordinary water. During normal operation, about 0.4% of the core's thermal output is deposited in the shield tank and end shields, through heat transfer from the calandria structure and fission heating. In a severe accident scenario, the shield tank could provide an external calandria vessel cooling which can be maintained until the shield tank water level drops below the debris level. The Candu system design has specific features which are important to severe accidents progression and requires selective consideration of models, methods and techniques of severe accident evaluation. Moreover, it should be noted that the mechanistic models for severe accident in Candu system are largely less well validated and as the result the level of uncertainty remains high in many instances. Unlike the light water reactors, for which are several developed computer codes to analyze severe accidents, for Candu severe accidents analysis two codes were developed: MAAP4-Candu and ISAAC. However, both codes started by using MAAP4/PWR as reference code and implemented Candu 6 specific models. Thus, these two codes had many common features. Recently, a joint project involving Romanian nuclear organizations and coordinated by Politehnica University of Bucharest has been started. The purpose

  20. Candidate Prediction Models and Methods

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik;

    2005-01-01

    This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines the...

  1. Dynamic modelling of radionuclide uptake by marine biota: application to the Fukushima nuclear power plant accident.

    Vives i Batlle, Jordi

    2016-01-01

    The dynamic model D-DAT was developed to study the dynamics of radionuclide uptake and turnover in biota and sediments in the immediate aftermath of the Fukushima accident. This dynamics is determined by the interplay between the residence time of radionuclides in seawater/sediments and the biological half-lives of elimination by the biota. The model calculates time-variable activity concentration of (131)I, (134)Cs, (137)Cs and (90)Sr in seabed sediment, fish, crustaceans, molluscs and macroalgae from surrounding activity concentrations in seawater, with which to derive internal and external dose rates. A central element of the model is the inclusion of dynamic transfer of radionuclides to/from sediments by factorising the depletion of radionuclides adsorbed onto suspended particulates, molecular diffusion, pore water mixing and bioturbation, represented by a simple set of differential equations coupled with the biological uptake/turnover processes. In this way, the model is capable of reproducing activity concentration in sediment more realistically. The model was used to assess the radiological impact of the Fukushima accident on marine biota in the acute phase of the accident. Sediment and biota activity concentrations are within the wide range of actual monitoring data. Activity concentrations in marine biota are thus shown to be better calculated by a dynamic model than with the simpler equilibrium approach based on concentration factors, which tends to overestimate for the acute accident period. Modelled dose rates from external exposure from sediment are also significantly below equilibrium predictions. The model calculations confirm previous studies showing that radioactivity levels in marine biota have been generally below the levels necessary to cause a measurable effect on populations. The model was used in mass-balance mode to calculate total integrated releases of 103, 30 and 3 PBq for (131)I, (137)Cs and (90)Sr, reasonably in line with previous

  2. Development of two-dimensional hot pool model and analysis of the ULOHS accident in KALIMER design

    In the new version of HP2D program, the variation model of the hot pool sodium level is added so that the temperature and velocity profiles can be predicted more accurately than old version. To verify and validate the developed new version model, comparison of the MONJU experimental data with the predicted one is performed and analyzed. And also the ULOHS(Unprotected Loss of Heat Sink) accident in the KALIMER design is performed and analyzed

  3. Melanoma risk prediction models

    Nikolić Jelena

    2014-01-01

    Full Text Available Background/Aim. The lack of effective therapy for advanced stages of melanoma emphasizes the importance of preventive measures and screenings of population at risk. Identifying individuals at high risk should allow targeted screenings and follow-up involving those who would benefit most. The aim of this study was to identify most significant factors for melanoma prediction in our population and to create prognostic models for identification and differentiation of individuals at risk. Methods. This case-control study included 697 participants (341 patients and 356 controls that underwent extensive interview and skin examination in order to check risk factors for melanoma. Pairwise univariate statistical comparison was used for the coarse selection of the most significant risk factors. These factors were fed into logistic regression (LR and alternating decision trees (ADT prognostic models that were assessed for their usefulness in identification of patients at risk to develop melanoma. Validation of the LR model was done by Hosmer and Lemeshow test, whereas the ADT was validated by 10-fold cross-validation. The achieved sensitivity, specificity, accuracy and AUC for both models were calculated. The melanoma risk score (MRS based on the outcome of the LR model was presented. Results. The LR model showed that the following risk factors were associated with melanoma: sunbeds (OR = 4.018; 95% CI 1.724- 9.366 for those that sometimes used sunbeds, solar damage of the skin (OR = 8.274; 95% CI 2.661-25.730 for those with severe solar damage, hair color (OR = 3.222; 95% CI 1.984-5.231 for light brown/blond hair, the number of common naevi (over 100 naevi had OR = 3.57; 95% CI 1.427-8.931, the number of dysplastic naevi (from 1 to 10 dysplastic naevi OR was 2.672; 95% CI 1.572-4.540; for more than 10 naevi OR was 6.487; 95%; CI 1.993-21.119, Fitzpatricks phototype and the presence of congenital naevi. Red hair, phototype I and large congenital naevi were

  4. Source term modelling in case of nuclear accidents

    The relative isotopic composition of the nuclides released during a nuclear accidents depends strongly on the implied mechanisms in the failure of fuel elements, safety barriers and accident dynamics. Also, the released fraction depends on the volatility degree and the temperature attaint in the reactor core and the fuel elements during the accident, respectively. At regime operation temperature, when the fuel sheaths are failed the noble gases (Xe and Kr isotopes), the extremely volatile and volatile fission products (I isotopes and Cs, Te and Ru, respectively) are released into the reactor primary circuit. As the temperature increases, other isotopes are released too. Two tables are given presenting a classification of the isotopes in groups of boiling and melting point temperatures, respectively. From the radiologic point of view, evaluation of the impact of the contaminant radioactive release requires consideration of several factors, namely: - activity, half-life, chemical form, biological hazard, geometrical size of the radioactive aerosols, etc. The activity of each isotope at the reactor stack or at the external walls of the reactor building is called source term. The isotopic and combined activity in a point of the environment located at a given distance from the source is evaluated by means of dispersion models starting from the source term. An expression of the activity of a given isotope in terms of its reactor core inventory and the parameters of the safety barriers is presented

  5. Markov Model of Severe Accident Progression and Management

    Bari, R.A.; Cheng, L.; Cuadra,A.; Ginsberg,T.; Lehner,J.; Martinez-Guridi,G.; Mubayi,V.; Pratt,W.T.; Yue, M.

    2012-06-25

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  6. Markov Model of Severe Accident Progression and Management

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  7. Knowledge-based modeling of operator response for severe-accident analysis

    Studies of severe accidents in light water reactors have shown that operator response can play a crucial role in the predicted outcomes of dominant accident scenarios. Although computer codes such as MAAP are available to predict the thermal-hydraulic response, substantial knowledge about plant practices and procedures is needed to make reasonable assumptions about operator response. Based on the thermal-hydraulic state of the plant, symptom-oriented procedures provide general guidance to the operators, who then take one of several possible actions. The paper pictures this process as a feedback loop that relies heavily on the judgment of the individual safety analyst. The ability to more explicitly model the procedural guidance and operator response can help close this analytical loop and improve the overall integration and consistency of severe accident analysis. An object-oriented model for operator response characteristics and symptom-oriented procedures was developed using the NEXPERT OBJECT expert system shell. This prototype system reads MAAP transient output files and determines the instructions and operator response characteristics that are implied by the observable plant variables. A limited set of boiling water reactor (BWR6) emergency operating procedures (EOPs) was formulated as a rule set, and pattern-matching techniques were used to generate message queues for display and reports

  8. Thermal-hydraulic modeling of reactivity accidents in MTR reactors

    Khater Hany

    2006-01-01

    Full Text Available This paper describes the development of a dynamic model for the thermal-hydraulic analysis of MTR research reactors during a reactivity insertion accident. The model is formulated for coupling reactor kinetics with feedback reactivity and reactor core thermal-hydraulics. To represent the reactor core, two types of channels are considered, average and hot channels. The developed computer program is compiled and executed on a personal computer, using the FORTRAN language. The model is validated by safety-related benchmark calculations for MTR-TYPE reactors of IAEA 10 MW generic reactor for both slow and fast reactivity insertion transients. A good agreement is shown between the present model and the benchmark calculations. Then, the model is used for simulating the uncontrolled withdrawal of a control rod of an ETRR-2 reactor in transient with over power scram trip. The model results for ETRR-2 are analyzed and discussed.

  9. Health effects models for nuclear power plant accident consequence analysis

    This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other''. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk

  10. Advanced accident sequence precursor analysis level 1 models

    Sattison, M.B.; Thatcher, T.A.; Knudsen, J.K.; Schroeder, J.A.; Siu, N.O. [Idaho National Engineering Lab., Idaho National Lab., Idaho Falls, ID (United States)

    1996-03-01

    INEL has been involved in the development of plant-specific Accident Sequence Precursor (ASP) models for the past two years. These models were developed for use with the SAPHIRE suite of PRA computer codes. They contained event tree/linked fault tree Level 1 risk models for the following initiating events: general transient, loss-of-offsite-power, steam generator tube rupture, small loss-of-coolant-accident, and anticipated transient without scram. Early in 1995 the ASP models were revised based on review comments from the NRC and an independent peer review. These models were released as Revision 1. The Office of Nuclear Regulatory Research has sponsored several projects at the INEL this fiscal year to further enhance the capabilities of the ASP models. Revision 2 models incorporates more detailed plant information into the models concerning plant response to station blackout conditions, information on battery life, and other unique features gleaned from an Office of Nuclear Reactor Regulation quick review of the Individual Plant Examination submittals. These models are currently being delivered to the NRC as they are completed. A related project is a feasibility study and model development of low power/shutdown (LP/SD) and external event extensions to the ASP models. This project will establish criteria for selection of LP/SD and external initiator operational events for analysis within the ASP program. Prototype models for each pertinent initiating event (loss of shutdown cooling, loss of inventory control, fire, flood, seismic, etc.) will be developed. A third project concerns development of enhancements to SAPHIRE. In relation to the ASP program, a new SAPHIRE module, GEM, was developed as a specific user interface for performing ASP evaluations. This module greatly simplifies the analysis process for determining the conditional core damage probability for a given combination of initiating events and equipment failures or degradations.

  11. Critical analysis of accident scenario and consequences modelling applied to light-water reactor power plants for accident categories beyond the design basis accident (DBA)

    A critical analysis and sensitivity study of the modelling of accident scenarios and environmental consequences are presented, for light-water reactor accident categories beyond the standard design-basis-accident category. The first chapter, on ''source term'' deals with the release of fission products from a damaged core inventory and their migration within the primary circuit and the reactor containment. Particular attention is given to the influence of engineering safeguards intervention and of the chemical forms of the released fission products. The second chapter deals with their release to the atmosphere, transport and wet or dry deposition, outlining relevant partial effects and confronting short-duration or prolonged releases. The third chapter presents a variability analysis, for environmental contamination levels, for two extreme hypothetical scenarios, evidencing the importance of plume rise. A numerical plume rise model is outlined

  12. Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants

    This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs

  13. Accident sequence modeling: human actions, system response, intelligent decision support

    In Probabilistic Safety Assessment (PSA) of large technological systems, accident sequence modeling represents the synthesis of expert judgement, system modeling, and operational evidence. This book contains the papers that were presented at a two-day Seminar that was held in Munich in August 1987. The aim of this Seminar was to provide a forum for in-depth discussion in a workshop atmosphere of the key elements in the modeling process, such as operator actions and system response, and to assess the possibilities of using such models to design operator decision support systems in the form of expert systems or interactive man computer structures. While this evaluation of the state of the art was done in the context of nuclear power reactor safety, most of the models and ideas advanced by the participants have wide applicability and can be used in safety assessments and reliability enhancement programs for other fields, for example the chemical process and aerospace industries. (author)

  14. A MELCOR model of Fukushima Daiichi Unit 1 accident

    Highlights: • A MELCOR model of Fukushima Unit 1 accident was developed. • The MELCOR input file is published as Electronic Supplementary data with this paper. • Molten fuel was discharged to containment from broken reactor pressure vessel. • Almost all radioactive noble gases and about 0.05% of cesium inventory were released to the environment. • Calculated release rates from Units 1, 2, and 3 were compared with measured radiation dose rate. - Abstract: A MELCOR model of Fukushima Daiichi Unit 1 accident was developed. The model is based on publicly available information, and the MELCOR input file is published as Electronic Supplementary data with this paper. In order to reproduce the measured containment pressure, it was necessary to model a leak from the reactor coolant system. Recirculation pump seal leak, starting 5 h after the earthquake, was assumed in this study. The reactor pressure vessel lower head was calculated to fail, and all fuel was discharged to the containment. Almost all of the radioactive noble gases and about 0.05% of the cesium inventory were released to the environment, according to this calculation. Calculated release rates from Units 1, 2, and 3 were compared with measured radiation dose rate in the plant area

  15. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences

  16. Markov Model of Accident Progression at Fukushima Daiichi

    Cuadra A.; Bari R.; Cheng, L-Y; Ginsberg, T.; Lehner, J.; Martinez-Guridi, G.; Mubayi, V.; Pratt, T.; Yue, M.

    2012-11-11

    On March 11, 2011, a magnitude 9.0 earthquake followed by a tsunami caused loss of offsite power and disabled the emergency diesel generators, leading to a prolonged station blackout at the Fukushima Daiichi site. After successful reactor trip for all operating reactors, the inability to remove decay heat over an extended period led to boil-off of the water inventory and fuel uncovery in Units 1-3. A significant amount of metal-water reaction occurred, as evidenced by the quantities of hydrogen generated that led to hydrogen explosions in the auxiliary buildings of the Units 1 & 3, and in the de-fuelled Unit 4. Although it was assumed that extensive fuel damage, including fuel melting, slumping, and relocation was likely to have occurred in the core of the affected reactors, the status of the fuel, vessel, and drywell was uncertain. To understand the possible evolution of the accident conditions at Fukushima Daiichi, a Markov model of the likely state of one of the reactors was constructed and executed under different assumptions regarding system performance and reliability. The Markov approach was selected for several reasons: It is a probabilistic model that provides flexibility in scenario construction and incorporates time dependence of different model states. It also readily allows for sensitivity and uncertainty analyses of different failure and repair rates of cooling systems. While the analysis was motivated by a need to gain insight on the course of events for the damaged units at Fukushima Daiichi, the work reported here provides a more general analytical basis for studying and evaluating severe accident evolution over extended periods of time. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accidents.

  17. Health effects models for nuclear power plant accident consequence analysis

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model

  18. Health effects models for off-site radiological consequence analysis of nuclear reactor accidents

    A first version of models has been developed for predicting the number of occurrences of health effects induced by radiation exposure in nuclear reactor accidents. The models are based on the health effects models developed originally by Harvard University (NUREG/CR-4214). These models are revised on the basis of the new information on risk estimates by the reassessment of the radiation dosimetry in Hiroshima and Nagasaki. The models deal with the following effects: (1) early effects models for bone marrow, lungs, gastrointestinal tract, central nervous system, thyroid, skin and reproductive organs, using the Weibull function, (2) late somatic effects models including leukemia and cancers of breast, lungs, thyroid, gastrointestinal tract and so forth, on the basis of the information derived from epidemiological studies on the atomic bomb survivors of Hiroshima and Nagasaki, (3) models for late and developmental effects due to exposure in utero. (author)

  19. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 1. Accident scenario based on thermodynamic model

    An accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 1 is analyzed from the data open to the public. Two thermodynamic modes are introduced i.e. a phase equilibrium process model in the reactor pressure vessel (RPV) and an adiabatic model in the pressure containment vessel (PVC). Almost the measured data and observed evidences are explained by the scenario that the isolation condenser was working and a crack at RPV opened at the initial stage of the accident, which is different from TEPCO and the government reports. (author)

  20. The accident consequence model of the German safety study

    The accident consequence model essentially describes a) the diffusion in the atmosphere and deposition on the soil of radioactive material released from the reactor into the atmosphere; b) the irradiation exposure and health consequences of persons affected. It is used to calculate c) the number of persons suffering from acute or late damage, taking into account possible counteractions such as relocation or evacuation, and d) the total risk to the population from the various types of accident. The model, the underlying parameters and assumptions are described. The bone marrow dose distribution is shown for the case of late overpressure containment failure, which is discussed in the paper of Heuser/Kotthoff, combined with four typical weather conditions. The probability distribution functions for acute mortality, late incidence of cancer and genetic damage are evaluated, assuming a characteristic population distribution. The aim of these calculations is first the presentation of some results of the consequence model as an example, in second the identification of problems, which need possibly in a second phase of study to be evaluated in more detail. (orig.)

  1. Risk forecasting and evaluating model of Environmental pollution accident

    ZENG Wei-hua; CHENG Sheng-tong

    2005-01-01

    Environmental risk (ER) fact ore come from ER source and they are controlled by the primary control mechanism (PCM) of environmental risk, due to the self failures or the effects of external environment risk trigger mechanism, the PCM could not work regularly any more, then, the ER factore will release environmental space, and an ER field is formed up. The forming of ER field does not mean that any environmental pollution accident(EPA) will break out; only the ER receptore are exposed in the ER field and damaged seriously,the potential ER really turns into an actual EPA. Researching on the general laws of evolving from environmental risk to EPA, this paper bring forwards a relevant concept model of risk forecasting and evaluating of EPA. This model provides some scientific methods for risk evaluation, prevention and emergency response of EPA. This model not only enriches and develops the theory system of environment safety and emergency response, but also acts as an instruction for public safety, enterprise' s safety management and emergency response of the accident.

  2. Global atmospheric dispersion modelling after the Fukushima accident

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  3. Uncertainty and sensitivity analysis of food pathway results with the MACCS Reactor Accident Consequence Model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the food pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 87 imprecisely-known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, milk growing season dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, area dependent cost, crop disposal cost, milk disposal cost, condemnation area, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: fraction of cesium deposition on grain fields that is retained on plant surfaces and transferred directly to grain, maximum allowable ground concentrations of Cs-137 and Sr-90 for production of crops, ground concentrations of Cs-134, Cs-137 and I-131 at which the disposal of milk will be initiated due to accidents that occur during the growing season, ground concentrations of Cs-134, I-131 and Sr-90 at which the disposal of crops will be initiated due to accidents that occur during the growing season, rate of depletion of Cs-137 and Sr-90 from the root zone, transfer of Sr-90 from soil to legumes, transfer of Cs-137 from soil to pasture, transfer of cesium from animal feed to meat, and the transfer of cesium, iodine and strontium from animal feed to milk

  4. Uncertainty and sensitivity analysis of food pathway results with the MACCS Reactor Accident Consequence Model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D.; Rollstin, J.A. [GRAM, Inc., Albuquerque, NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the food pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 87 imprecisely-known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, milk growing season dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, area dependent cost, crop disposal cost, milk disposal cost, condemnation area, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: fraction of cesium deposition on grain fields that is retained on plant surfaces and transferred directly to grain, maximum allowable ground concentrations of Cs-137 and Sr-90 for production of crops, ground concentrations of Cs-134, Cs-137 and I-131 at which the disposal of milk will be initiated due to accidents that occur during the growing season, ground concentrations of Cs-134, I-131 and Sr-90 at which the disposal of crops will be initiated due to accidents that occur during the growing season, rate of depletion of Cs-137 and Sr-90 from the root zone, transfer of Sr-90 from soil to legumes, transfer of Cs-137 from soil to pasture, transfer of cesium from animal feed to meat, and the transfer of cesium, iodine and strontium from animal feed to milk.

  5. Specific features of cesium chemistry and physics affecting reactor accident source term predictions

    In the process of assessing remaining uncertainties in predicting the source term of severe reactor accidents, a special investigation is devoted in this report to the case of cesium. The cesium isotopes, especially Cs137 and Cs134, are among those nuclides which could have a major impact on the environment in the event of a release. The processes for release from fuel and retention in the reactor coolant system and the containment are presented. Releases to the atmosphere are also discussed. The intention is to identify and discuss those specific features of cesium chemistry and physics that strongly affect source term predictions. The report has been prepared on contract from the Swedish Nuclear Power Inspectorate as a contribution to the cooperative work within international experts groups of OECD/NEA

  6. Severe accident source term characteristics for selected Peach Bottom sequences predicted by the MELCOR Code

    Carbajo, J.J. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    The purpose of this report is to compare in-containment source terms developed for NUREG-1159, which used the Source Term Code Package (STCP), with those generated by MELCOR to identify significant differences. For this comparison, two short-term depressurized station blackout sequences (with a dry cavity and with a flooded cavity) and a Loss-of-Coolant Accident (LOCA) concurrent with complete loss of the Emergency Core Cooling System (ECCS) were analyzed for the Peach Bottom Atomic Power Station (a BWR-4 with a Mark I containment). The results indicate that for the sequences analyzed, the two codes predict similar total in-containment release fractions for each of the element groups. However, the MELCOR/CORBH Package predicts significantly longer times for vessel failure and reduced energy of the released material for the station blackout sequences (when compared to the STCP results). MELCOR also calculated smaller releases into the environment than STCP for the station blackout sequences.

  7. Severe accident source term characteristics for selected Peach Bottom sequences predicted by the MELCOR Code

    The purpose of this report is to compare in-containment source terms developed for NUREG-1159, which used the Source Term Code Package (STCP), with those generated by MELCOR to identify significant differences. For this comparison, two short-term depressurized station blackout sequences (with a dry cavity and with a flooded cavity) and a Loss-of-Coolant Accident (LOCA) concurrent with complete loss of the Emergency Core Cooling System (ECCS) were analyzed for the Peach Bottom Atomic Power Station (a BWR-4 with a Mark I containment). The results indicate that for the sequences analyzed, the two codes predict similar total in-containment release fractions for each of the element groups. However, the MELCOR/CORBH Package predicts significantly longer times for vessel failure and reduced energy of the released material for the station blackout sequences (when compared to the STCP results). MELCOR also calculated smaller releases into the environment than STCP for the station blackout sequences

  8. ATMOSPHERIC MODELING IN SUPPORT OF A ROADWAY ACCIDENT

    Buckley, R.; Hunter, C.

    2010-10-21

    The United States Forest Service-Savannah River (USFS) routinely performs prescribed fires at the Savannah River Site (SRS), a Department of Energy (DOE) facility located in southwest South Carolina. This facility covers {approx}800 square kilometers and is mainly wooded except for scattered industrial areas containing facilities used in managing nuclear materials for national defense and waste processing. Prescribed fires of forest undergrowth are necessary to reduce the risk of inadvertent wild fires which have the potential to destroy large areas and threaten nuclear facility operations. This paper discusses meteorological observations and numerical model simulations from a period in early 2002 of an incident involving an early-morning multicar accident caused by poor visibility along a major roadway on the northern border of the SRS. At the time of the accident, it was not clear if the limited visibility was due solely to fog or whether smoke from a prescribed burn conducted the previous day just to the northwest of the crash site had contributed to the visibility. Through use of available meteorological information and detailed modeling, it was determined that the primary reason for the low visibility on this night was fog induced by meteorological conditions.

  9. a Simplified Methodology for the Prediction of the Small Break Loss-Of Accident.

    Ward, Leonard William

    1988-12-01

    This thesis describes a complete methodology which has allowed for the development of a faster than real time computer program designed to simulate a small break loss -of-coolant accident in the primary system of a pressurized water reactor. By developing an understanding of the major phenomenon governing the small break LOCA fluid response, the system model representation can be greatly simplified leading to a very fast executing transient system blowdown code. Because of the fast execution times, the CULSETS code, or Columbia University Loss-of-Coolant Accident and System Excursion Transient Simulator code, is ideal for performing parametric studies of Emergency Core Cooling system or assessing the consequences of the many operator actions performed to place the system in a long term cooling mode following a small break LOCA. While the methodology was designed with specific application to the small break loss-of-coolant accident, it can also be used to simulate loss-of-feedwater, steam line breaks, and steam generator tube rupture events. The code is easily adaptable to a personal computer and could also be modified to provide the primary and secondary system responses to supply the required inputs to a simulator for a pressurized water reactor.

  10. A Comparative analysis for control rod drop accident in RETRAN DNB and CETOP DNB Model

    In Korea, the nuclear industries such as fuel manufacturer, the architect engineer and the utility, have been using the methodologies and codes of vendors, such as Westinghouse(WH), Combustion Engineering, for the safety analyses of nuclear power plants. Consequently the industries have kept up the many organizations to operate the methodologies and to maintain the codes for each vendor. It may occur difficulty to improve the safety analyses efficiency and technology related. So, the necessity another of methodologies and code systems applicable to Non- LOCA, beyond design basis accident and performance analyses for all types of pressurized water reactor(PWR) has been raised. Due to the above reason, the Korea Electric Power Research Institute(KEPRI) had decided to develop the new safety analysis code system for Korea Standard Nuclear Power Plants in Korea. As the first requirement, the best-estimate codes were required for applicable wider application area and realistic behavior prediction of power plants with various and sophisticated functions. After the investigation for few candidates, RETRAN-3D has been chosen as a system analysis code. As a part of the feasibility estimation for the methodology and code system, CRD(Control Rod Drop) accident which an event of Non-LOCA accidents for Uljin units 3 and 4 and Yonggwang 1 and 2 was selected to verify the feasibility of the methodology using the RETRAN-3D. In this paper, RETRAN DNB Model and CETOP DNB Model were analyzed by using comparative method

  11. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing-season dose, crop long-term dose, water ingestion dose, milk growing-season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meet, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of I-131 at which disposal of crops will be initiated due to accidents that occur during the growing season. Reducing the uncertainty in the preceding variables was found to substantially reduce the uncertainty in the

  12. Predictive Modelling Techniques in Radioactive Waste Management

    This paper presents the 'state-of-art' computational modelling techniques AMEC Nuclear has used in radioactive waste management projects. These techniques have been employed to conduct option studies and assessments of radioactive waste packages to justify compliance with the UK and IAEA regulations. An important aspect of a safety case for any packaging is its performance under accident conditions. One of the key principles underlying regulations for performance under normal and accident conditions is that activity release should be low and predictable. This paper addresses the challenge faced by designers and manufacturers to predict behaviour of waste of waste packages has usually been demonstrated by test. Carrying out a full-scale drop test or a fire test of a prototype package with a representative simulant wasteform is time consuming, costly, and can lead to variability in the results. The post-test measurements of release are not straightforward and may be difficult to interpret. Furthermore, these tests are unique for a particular design and cannot be easily applied to other designs. Therefore, predictive modelling based on computational techniques like the finite element analysis (FEA) can be of great benefit. Through examples, the paper examples, the paper explains how assessments of radioactive waste packaging under fire and impact hazards have been conducted to calculate release of radioactive nuclides. The examples include computational modeling to assess free drop and transportation loads on a packaging designed to transportation loads on a packaging designed transport a 50 Te steel pot containing radioactive silicate slag. Methodology used to estimate release fractions from a 500 litre drum following a standard fire assessment is also presented

  13. Aspects of uncertainty analysis in accident consequence modeling

    Mathematical models are frequently used to determine probable dose to man from an accidental release of radionuclides by a nuclear facility. With increased emphasis on the accuracy of these models, the incorporation of uncertainty analysis has become one of the most crucial and sensitive components in evaluating the significance of model predictions. In the present paper, we address three aspects of uncertainty in models used to assess the radiological impact to humans: uncertainties resulting from the natural variability in human biological parameters; the propagation of parameter variability by mathematical models; and comparison of model predictions to observational data

  14. Complex accident scenarios modelled and analysed by Stochastic Petri Nets

    This paper is focused on the usage of Petri nets for an effective modelling and simulation of complicated accident scenarios, where an order of events can vary and some events may occur anywhere in an event chain. These cases are hardly manageable by traditional methods as event trees – e.g. one pivotal event must be often inserted several times into one branch of the tree. Our approach is based on Stochastic Petri Nets with Predicates and Assertions and on an idea, which comes from the area of Programmable Logic Controllers: an accidental scenario is described as a net of interconnected blocks, which represent parts of the scenario. So the scenario is firstly divided into parts, which are then modelled by Petri nets. Every block can be easily interconnected with other blocks by input/output variables to create complex ones. In the presented approach, every event or a part of a scenario is modelled only once, independently on a number of its occurrences in the scenario. The final model is much more transparent then the corresponding event tree. The method is shown in two case studies, where the advanced one contains a dynamic behavior. - Highlights: • Event & Fault trees have problems with scenarios where an order of events can vary. • Paper presents a method for modelling and analysis of dynamic accident scenarios. • The presented method is based on Petri nets. • The proposed method solves mentioned problems of traditional approaches. • The method is shown in two case studies: simple and advanced (with dynamic behavior)

  15. Health effects model for nuclear power plant accident consequence analysis. Part I. Introduction, integration, and summary. Part II. Scientific basis for health effects models

    Evans, J.S.; Moeller, D.W.; Cooper, D.W.

    1985-07-01

    Analysis of the radiological health effects of nuclear power plant accidents requires models for predicting early health effects, cancers and benign thyroid nodules, and genetic effects. Since the publication of the Reactor Safety Study, additional information on radiological health effects has become available. This report summarizes the efforts of a program designed to provide revised health effects models for nuclear power plant accident consequence modeling. The new models for early effects address four causes of mortality and nine categories of morbidity. The models for early effects are based upon two parameter Weibull functions. They permit evaluation of the influence of dose protraction and address the issue of variation in radiosensitivity among the population. The piecewise-linear dose-response models used in the Reactor Safety Study to predict cancers and thyroid nodules have been replaced by linear and linear-quadratic models. The new models reflect the most recently reported results of the follow-up of the survivors of the bombings of Hiroshima and Nagasaki and permit analysis of both morbidity and mortality. The new models for genetic effects allow prediction of genetic risks in each of the first five generations after an accident and include information on the relative severity of various classes of genetic effects. The uncertainty in modeloling radiological health risks is addressed by providing central, upper, and lower estimates of risks. An approach is outlined for summarizing the health consequences of nuclear power plant accidents. 298 refs., 9 figs., 49 tabs.

  16. Health effects model for nuclear power plant accident consequence analysis. Part I. Introduction, integration, and summary. Part II. Scientific basis for health effects models

    Analysis of the radiological health effects of nuclear power plant accidents requires models for predicting early health effects, cancers and benign thyroid nodules, and genetic effects. Since the publication of the Reactor Safety Study, additional information on radiological health effects has become available. This report summarizes the efforts of a program designed to provide revised health effects models for nuclear power plant accident consequence modeling. The new models for early effects address four causes of mortality and nine categories of morbidity. The models for early effects are based upon two parameter Weibull functions. They permit evaluation of the influence of dose protraction and address the issue of variation in radiosensitivity among the population. The piecewise-linear dose-response models used in the Reactor Safety Study to predict cancers and thyroid nodules have been replaced by linear and linear-quadratic models. The new models reflect the most recently reported results of the follow-up of the survivors of the bombings of Hiroshima and Nagasaki and permit analysis of both morbidity and mortality. The new models for genetic effects allow prediction of genetic risks in each of the first five generations after an accident and include information on the relative severity of various classes of genetic effects. The uncertainty in modeloling radiological health risks is addressed by providing central, upper, and lower estimates of risks. An approach is outlined for summarizing the health consequences of nuclear power plant accidents. 298 refs., 9 figs., 49 tabs

  17. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 2. Accident scenario based on thermodynamic model

    An accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 2 is analyzed from the data open to the public. Phase equilibrium process model was introduced that the vapor and water are at saturation point in the vessels. Proposed accident scenario agrees very well with the data of the plant parameters obtained just after the accident. The estimation describes that the rupture time of the reactor pressure vessel (RPV) was at 22:50 14/3/2011. The estimation shows that the rupture time of the pressure containment vessel (RCP) was at 7:40 15/3/2011. These estimations are different from the ones by TEPCO, however; many measured evidences show good accordance with the present scenario. (author)

  18. Prediction of fission product and aerosol behaviour during a postulated severe accident in a LWR

    Lack of appropriate energy removal causes fuel elements in a reactor core to overheat and may eventually cause core to degrade. Fission products will be emitted from a degraded reactor core. Aerosols are generated when the vapours of various fuel and structural materials reach a cold environment and nucleate. In addition to the fission products release and aerosol generation taking place in the reactor vessel, some more fission products release and aerosol generation will occur when the molten core debris leaves the pressure vessel bottom head and comes in contact with the pedestal concrete floor. Fission products, if they are released to environment from the containment boundary, exert a great danger to public health. A source term is defined as the quantity, timing, and characteristics of the release of radionuclide material to the environment following a postulated severe accident. At PSI a considerable effort hase been spent in investigating and establishing a source term assessment methodology in order to predict the source term for a given Light Water Reactor (LWR) accident scenario. This report introduces the computer programs and the methods associated with the release of the fission products, generation of the aerosols and behaviour of the aerosols in LWR compartments used for a source term assessment analysis at PSI. (author) 4 figs., 5 tabs., 28 refs

  19. Uncertainty and sensitivity analysis of early exposure results with the MACCS Reactor Accident Consequence Model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D. [GRAM, Inc., Albuquerque, NM (United States); McKay, M.D. [Los Alamos National Lab., NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the early health effects associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 34 imprecisely known input variables on the following reactor accident consequences are studied: number of early fatalities, number of cases of prodromal vomiting, population dose within 10 mi of the reactor, population dose within 1000 mi of the reactor, individual early fatality probability within 1 mi of the reactor, and maximum early fatality distance. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: scaling factor for horizontal dispersion, dry deposition velocity, inhalation protection factor for nonevacuees, groundshine shielding factor for nonevacuees, early fatality hazard function alpha value for bone marrow exposure, and scaling factor for vertical dispersion.

  20. Uncertainty and sensitivity analysis of early exposure results with the MACCS Reactor Accident Consequence Model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the early health effects associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 34 imprecisely known input variables on the following reactor accident consequences are studied: number of early fatalities, number of cases of prodromal vomiting, population dose within 10 mi of the reactor, population dose within 1000 mi of the reactor, individual early fatality probability within 1 mi of the reactor, and maximum early fatality distance. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: scaling factor for horizontal dispersion, dry deposition velocity, inhalation protection factor for nonevacuees, groundshine shielding factor for nonevacuees, early fatality hazard function alpha value for bone marrow exposure, and scaling factor for vertical dispersion

  1. Development of a parametric containment event tree model for a severe BWR accident

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  2. Development of a parametric containment event tree model for a severe BWR accident

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.)

  3. Modeling and forecasting of accidents at nuclear industrial plants

    The papers on methodology of risk analysis are briefly reviewed. An analysis is performed for relationships between natural and technology-associated accidents. The program of works intended to create a standardization-methodical base of risk analysis at nuclear industrial plants is reported. A number of shortcomings is noted to exist in evaluating nuclear plant safety with the help of commonly used probabilistic criteria of safety. An algorithm of ecological-mathematical monitoring of potentially dangerous objects is suggested. It is pointed out that when developing mathematical models of potentially dangerous object operation not only technological processes, the stochasticity of heat- and mass transfer processes, environmental parameters should be taken into account but social and economical aspects as well

  4. RAPTA-5 code: Modelling behaviour of WWER-type fuel rods in design basis accidents verification calculations

    RAPTA-5 code used for licensing calculations to validate the compliance with the requirements for WWER fuel safety in design basis accidents. The characteristic results are given of design modelling experiments simulating thermomechanical and corrosion behaviour of WWER and PWR fuel rods in LOCA. The results corroborate the adequate predictability of both individual design models and the code as a whole. (author). 14 refs, 12 figs

  5. Modelling and analysis of severe accidents for VVER-1000 reactors

    Tusheva, Polina

    2013-01-01

    Accident conditions involving significant core degradation are termed severe accidents /IAEA: NS-G-2.15/. Despite the low probability of occurrence of such events, the investigation of severe accident scenarios is an important part of the nuclear safety research. Considering a hypothetical core melt down scenario in a VVER-1000 light water reactor, the early in-vessel phase focusing on the thermal-hydraulic phenomena, and the late in-vessel phase focusing on the melt relocation into the re...

  6. Modeling of in-vessel fission product release including fuel morphology effects for severe accident analyses

    A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs

  7. Prediction models in complex terrain

    Marti, I.; Nielsen, Torben Skov; Madsen, Henrik; Navarro, J.; Barquero, C.G.

    2001-01-01

    The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence the...... performance of HIRLAM in particular with respect to wind predictions. To estimate the performance of the model two spatial resolutions (0,5 Deg. and 0.2 Deg.) and different sets of HIRLAM variables were used to predict wind speed and energy production. The predictions of energy production for the wind farms...... are calculated using on-line measurements of power production as well as HIRLAM predictions as input thus taking advantage of the auto-correlation, which is present in the power production for shorter pediction horizons. Statistical models are used to discribe the relationship between observed energy...

  8. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season

  9. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D.; Rollstin, J.A. [Gram, Inc., Albuquerque, NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season.

  10. Development and application of traffic accident density estimation models using kernel density estimation

    Seiji Hashimoto; Syuji Yoshiki; Ryoko Saeki; Yasuhiro Mimura; Ryosuke Ando; Shutaro Nanba

    2016-01-01

    Traffic accident frequency has been decreasing in Japan in recent years. Nevertheless, many accidents still occur on residential roads. Area-wide traffic calming measures including Zone 30, which discourages traffic by setting a speed limit of 30 km/h in residential areas, have been implemented. However, no objective implementation method has been established. Development of a model for traffic accident density estimation explained by GIS data can enable the determination of dangerous areas o...

  11. Fuel models and results from the TRAC-PF1/MIMAS TMI-2 accident calculation

    A brief description of several fuel models used in the TRAC-PF1/MIMAS analysis of the TMI-2 accident is presented, and some of the significant fuel-rod behavior results from this analysis are given. Peak fuel-rod temperatures, oxidation heat production, and embrittlement and failure behavior calculated for the TMI-2 accident are discussed. Other aspects of fuel behavior, such as cladding ballooning and fuel-cladding eutectic formation, were found not to significantly affect the accident progression

  12. Confidence scores for prediction models

    Gerds, Thomas Alexander; van de Wiel, MA

    2011-01-01

    distinguish rival prediction models with similar prediction performances. Furthermore, on the subject level a confidence score may provide useful supplementary information for new patients who want to base a medical decision on predicted risk. The ideas are illustrated and discussed using data from cancer...... modelling strategy is applied to different training sets. For each modelling strategy we estimate a confidence score based on the same repeated bootstraps. A new decomposition of the expected Brier score is obtained, as well as the estimates of population average confidence scores. The latter can be used to...

  13. Modelling, controlling, predicting blackouts

    Wang, Chengwei; Baptista, Murilo S

    2016-01-01

    The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids, and another one for smart grids. The control strategie...

  14. Statistical modelling of the frequency and severity of road accidents

    Janstrup, Kira Hyldekær

    reporting traffic accidents. The second questionnaire was administered to stakeholders in the transportation field and was made to detect strengths, threats and opportunities for reporting traffic accidents within the police. This Ph.D. study contributes significantly to the literature about under......Under-reporting of traffic accidents is a well-discussed subject in traffic safety and it is well-known that the degree of under-reporting of traffic accidents is quite high in many countries. Nevertheless, very little literature has been made to investigate what causes the high degree of under......-reporting. The problem of under-reporting is not unique for traffic accidents as severe under-reporting is a challenge in many other fields of incident reporting. In other incidents fields with intended or unintended harm, research has investigated the behavioural reasons for why people choose to report an...

  15. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents

    This is the third in a series of five papers describing the IDAC (Information, Decision, and Action in Crew context) model for human reliability analysis. An example application of this modeling technique is also discussed in this series. The model is developed to probabilistically predict the responses of the nuclear power plant control room operating crew in accident conditions. The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper discusses the modeling components and their process rules. An operator's problem-solving process is divided into three types: information pre-processing (I), diagnosis and decision-making (D), and action execution (A). Explicit and context-dependent behavior rules for each type of operator are developed in the form of tables, and logical or mathematical relations. These regulate the process and activities of each of the three types of response. The behavior rules are developed for three generic types of operator: Decision Maker, Action Taker, and Consultant. This paper also provides a simple approach to calculating normalized probabilities of alternative behaviors given a context

  16. Melanoma Risk Prediction Models

    Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  17. Hybrid Model for Early Onset Prediction of Driver Fatigue with Observable Cues

    Mingheng Zhang; Gang Longhui; Zhe Wang; Xiaoming Xu; Baozhen Yao; Liping Zhou

    2014-01-01

    This paper presents a hybrid model for early onset prediction of driver fatigue, which is the major reason of severe traffic accidents. The proposed method divides the prediction problem into three stages, that is, SVM-based model for predicting the early onset driver fatigue state, GA-based model for optimizing the parameters in the SVM, and PCA-based model for reducing the dimensionality of the complex features datasets. The model and algorithm are illustrated with driving experiment data a...

  18. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs

  19. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    Heames, T.J. (Science Applications International Corp., Albuquerque, NM (USA)); Williams, D.A.; Johns, N.A.; Chown, N.M. (UKAEA Atomic Energy Establishment, Winfrith (UK)); Bixler, N.E.; Grimley, A.J. (Sandia National Labs., Albuquerque, NM (USA)); Wheatley, C.J. (UKAEA Safety and Reliability Directorate, Culcheth (UK))

    1990-10-01

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs.

  20. Predictive Models and Computational Embryology

    EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...

  1. Modeling of pipe break accident in a district heating system using RELAP5 computer code

    Reliability of a district heat supply system is a very important factor. However, accidents are inevitable and they occur due to various reasons, therefore it is necessary to have possibility to evaluate the consequences of possible accidents. This paper demonstrated the capabilities of developed district heating network model (for RELAP5 code) to analyze dynamic processes taking place in the network. A pipe break in a water supply line accident scenario in Kaunas city (Lithuania) heating network is presented in this paper. The results of this case study were used to demonstrate a possibility of the break location identification by pressure decrease propagation in the network. -- Highlights: ► Nuclear reactor accident analysis code RELAP5 was applied for accident analysis in a district heating network. ► Pipe break accident scenario in Kaunas city (Lithuania) district heating network has been analyzed. ► An innovative method of pipe break location identification by pressure-time data is proposed.

  2. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The analytical model used for the program is described. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc. 11 references. (U.S.)

  3. Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment

    Within the framework of the generation IV Sodium Fast Reactors, the safety in case of severe accidents is assessed. From this statement, CEA has developed a new physical tool to model the accident initiated by the Total Instantaneous Blockage (TIB) of a sub-assembly. This TIB simulator depends on many uncertain input parameters. This paper aims at proposing a global methodology combining several advanced statistical techniques in order to perform a global sensitivity analysis of this TIB simulator. The objective is to identify the most influential uncertain inputs for the various TIB outputs involved in the safety analysis. The proposed statistical methodology combining several advanced statistical techniques enables to take into account the constraints on the TIB simulator outputs (positivity constraints) and to deal simultaneously with various outputs. To do this, a space-filling design is used and the corresponding TIB model simulations are performed. Based on this learning sample, an efficient constrained Gaussian process metamodel is fitted on each TIB model outputs. Then, using the metamodels, classical sensitivity analyses are made for each TIB output. Multivariate global sensitivity analyses based on aggregated indices are also performed, providing additional valuable information. Main conclusions on the influence of each uncertain input are derived. - Highlights: • Physical-statistical tool for Sodium Fast Reactors TIB accident. • 27 uncertain parameters (core state, lack of physical knowledge) are highlighted. • Constrained Gaussian process efficiently predicts TIB outputs (safety criteria). • Multivariate sensitivity analyses reveal that three inputs are mainly influential. • The type of corium propagation (thermal or hydrodynamic) is the most influential

  4. Atmospheric modeling of radioactive material dispersion and health risk in Fukushima Daiichi nuclear power plants accident

    Highlights: ► The radioactive concentrations are treated as dynamical values. ► A possible nuclear accident is simulated for the prediction of atmospheric contaminations. ► The dangerous situations caused by radioisotope release could be announced to the public. ► In the future studies, some other variables are can be considered. - Abstract: The radioactive material dispersion is investigated in terms of the radioactive concentrations. The risk of the radioactive hazard material is important with respect to the public health. The prevailing westerlies region is modeled for the dynamical consequences, whereby the Fukushima nuclear disaster in Japan is modeled. The multiplications effects of the wind values and plume concentrations are obtained. Monte Carlo calculations are performed for wind speed and direction. In Seoul and Pusan, Korea, the Cs-137 has the highest value among the chemical radioactive materials Cs-137, I-131, and Sr-90. The time for highest concentration is shown to be around 48th hour in Seoul and 12th hour in Pusan. Cesium has the highest value in both cities, and iodine has the lowest value in both cities. The wind is assumed to determine the direction of movement. Therefore, the real values are believed to be lower than the calculated results. This modeling could be used for other industrial accident cases in chemical plants

  5. WASA-BOSS. ATHLET-CD model for severe accident analysis for a generic KONVOI reactor

    Tusheva, Polina; Schaefer, Frank; Kozmenkov, Yaroslav; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Reactor Safety Div.; Hollands, Thorsten [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Trometer, Ailine; Buck, Michael [Stuttgart Univ. (Germany). Dept. of Reactor Safety, Systems and Environment

    2015-07-15

    Within the scope of the ongoing joint research project WASA-BOSS (Weiterentwicklung und Anwendung von Severe Accident Codes - Bewertung und Optimierung von Stoerfallmassnahmen) an ATHLET-CD model for investigation of severe accident scenarios has been developed. The model represents a generic pressurized water reactor (PWR) of type KONVOI. It has been applied for analyzing selected hypothetical core degradation scenarios, considering application of countermeasures and accident management measures, during the early phase of an accident, as well as the late in-vessel phase, when the core degradation process has already begun. Possible accident management measures for loss of coolant (LOCA) and station blackout (SBO) scenarios are discussed. This paper focuses on the ATHLET-CD model development and results from selected simulations for a SBO scenario without and with application of countermeasures.

  6. WASA-BOSS. ATHLET-CD model for severe accident analysis for a generic KONVOI reactor

    Within the scope of the ongoing joint research project WASA-BOSS (Weiterentwicklung und Anwendung von Severe Accident Codes - Bewertung und Optimierung von Stoerfallmassnahmen) an ATHLET-CD model for investigation of severe accident scenarios has been developed. The model represents a generic pressurized water reactor (PWR) of type KONVOI. It has been applied for analyzing selected hypothetical core degradation scenarios, considering application of countermeasures and accident management measures, during the early phase of an accident, as well as the late in-vessel phase, when the core degradation process has already begun. Possible accident management measures for loss of coolant (LOCA) and station blackout (SBO) scenarios are discussed. This paper focuses on the ATHLET-CD model development and results from selected simulations for a SBO scenario without and with application of countermeasures.

  7. China's coal mine accident statistics analysis and one million tons mortality prediction

    Qiao Tong

    2016-01-01

    In order to study the general rule of coal mine accidents in China in recent years, the data of coal mine accident in 2011-2015 is analyzed. The mathematical statistics method is used to analyze the occurrence year, type, season and area of the accident. The results of analysis shows that the coal mine accident has been reduced year by year, and the frequency of gas explosion is the highest. The frequency and the number of deaths in the second quarter of the year are the highest; Guizhou p...

  8. Development and application of a random walk model of atmospheric diffusion in the emergency response of nuclear accidents

    CHI Bing; LI Hong; FANG Dong

    2007-01-01

    Plume concentration prediction is one of the main contents of radioactive consequence assessment for early emergency response to nuclear accidents. Random characteristics of atmospheric diffusion itself was described, a random walk model of atmospheric diffusion (Random Walk) was introduced and compared with the Lagrangian puff model (RIMPUFF) in the nuclear emergency decision support system (RODOS) developed by the European Community for verification. The results show the concentrations calculated by the two models are quite close except that the plume area calculated by Random Walk is a little smaller than that by RIMPUFF. The random walk model for atmospheric diffusion can simulate the atmospheric diffusion in case of nuclear accidents, and provide more actual information for early emergency and consequence assessment as one of the atmospheric diffusion module of the nuclear emergency decision support system.

  9. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  10. Evaluating the reliability of predictions made using environmental transfer models

    The development and application of mathematical models for predicting the consequences of releases of radionuclides into the environment from normal operations in the nuclear fuel cycle and in hypothetical accident conditions has increased dramatically in the last two decades. This Safety Practice publication has been prepared to provide guidance on the available methods for evaluating the reliability of environmental transfer model predictions. It provides a practical introduction of the subject and a particular emphasis has been given to worked examples in the text. It is intended to supplement existing IAEA publications on environmental assessment methodology. 60 refs, 17 figs, 12 tabs

  11. Prediction of the onset of flow instability in the ETRR-2 research reactor under loss of flow accident

    In the present work, prediction of the onset of flow instability (OFI) in Egypt's second research reactor (ETRR-2) under loss of flow accident (LOFA) conditions due to loss of off-site power has been performed based on the model developed in previous work. Calculations are performed for LOFA with Scram due to low flow signal at 90% of the nominal flow where the time length that covers this transient is 4.8 seconds. Both, the best-estimate and conservative calculations are performed under the specified operating conditions and geometrical data of ETRR-2 for both, exponential and ramp pressure gradient change. The OFI locus is predicted and plotted against the flow velocity, exit coolant temperature and bubble detachment parameter for several heat fluxes. The results are analyzed and assessed in order to obtain the safety margins for OFI phenomenon that measure how far the operating conditions are from the OFI locus. It is found that, the safety margins for OFI phenomenon in the best-estimate calculation are 2.62 and 2.35 for steady state and LOFA transient respectively, while its values in the conservative calculation are 1.68 and 1.47, respectively. (orig.)

  12. Researching Effects of Drivers Features on Traffic Accidents: Kocaeli Model

    UÇKUN, Ceylan Gazi; ÇELİKKOL, Ethem Soner; TEKİN, Vasfı Nadir; ÇELİKKOL, Şimal

    2013-01-01

    In addition to environmental conditions, weather conditions and density, situations related to drivers are more effective on traffic accidents, according to available data. Regarding occurrence of traffic accidents, it is observed that point of view of drivers towards traffic rules and drivers’ compliance with these rules is not parallel. It is important to research the reasons that cause this situation. A normal person’s mental state does not change without any reason at traffic. It is clear...

  13. RESEARCHING EFFECTS OF DRIVERS FEATURES ON TRAFFIC ACCIDENTS: KOCAELİ MODEL

    CEYLAN GAZI UÇKUN; ETHEM SONER ÇELİKKOL; VASFI NADIR TEKİN; ŞIMAL ÇELİKKOL

    2013-01-01

    In addition to environmental conditions, weather conditions and density, situations related to drivers are more effective on traffic accidents, according to available data.Regarding occurrence of traffic accidents, it is observed that point of view of drivers towards traffic rules and drivers’ compliance with these rules is not parallel. It is important to research the reasons that cause this situation. A normal person’s mental state does not change without any reason at traffic. It is clear ...

  14. Predictive Modelling of Cellular Load

    Carolan, Emmett; McLoone, Seamus; Farrell, Ronan

    2015-01-01

    This work examines the temporal dynamics of cellular load in four Irish regions. Large scale underutilisation of network resources is identified both at the regional level and at the level of individual cells. Cellular load is modeled and prediction intervals are generated. These prediction intervals are used to put an upper bound on usage in a particular cell at a particular time. Opportunities for improvements in network utilization by incorporating these upper bounds on usage are identifie...

  15. A contrail cirrus prediction model

    U. Schumann

    2012-05-01

    Full Text Available A new model to simulate and predict the properties of a large ensemble of contrails as a function of given air traffic and meteorology is described. The model is designed for approximate prediction of contrail cirrus cover and analysis of contrail climate impact, e.g. within aviation system optimization processes. The model simulates the full contrail life-cycle. Contrail segments form between waypoints of individual aircraft tracks in sufficiently cold and humid air masses. The initial contrail properties depend on the aircraft. The advection and evolution of the contrails is followed with a Lagrangian Gaussian plume model. Mixing and bulk cloud processes are treated quasi analytically or with an effective numerical scheme. Contrails disappear when the bulk ice content is sublimating or precipitating. The model has been implemented in a "Contrail Cirrus Prediction Tool" (CoCiP. This paper describes the model assumptions, the equations for individual contrails, and the analysis-method for contrail-cirrus cover derived from the optical depth of the ensemble of contrails and background cirrus. The model has been applied for a case study and compared to the results of other models and in-situ contrail measurements. The simple model reproduces a considerable part of observed contrail properties. Mid-aged contrails provide the largest contributions to the product of optical depth and contrail width, important for climate impact.

  16. A contrail cirrus prediction model

    U. Schumann

    2011-11-01

    Full Text Available A new model to simulate and predict the properties of a large ensemble of contrails as a function of given air traffic and meteorology is described. The model is designed for approximate prediction of contrail cirrus cover and analysis of contrail climate impact, e.g. within aviation system optimization processes. The model simulates the full contrail life-cycle. Contrail segments form between waypoints of individual aircraft tracks in sufficiently cold and humid air masses. The initial contrail properties depend on the aircraft. The advection and evolution of the contrails is followed with a Lagrangian Gaussian plume model. Mixing and bulk cloud processes are treated quasi analytically or with an effective numerical scheme. Contrails disappear when the bulk ice content is sublimating or precipitating. The model has been implemented in a "Contrail Cirrus Prediction Tool" (CoCiP. This paper describes the model assumptions, the equations for individual contrails, and the analysis-method for contrail-cirrus cover derived from the optical depth of the ensemble of contrails and background cirrus. The model has been applied for a case study and compared to the results of other models and in-situ contrail measurements. The simple model reproduces a considerable part of observed contrail properties. Mid-aged contrails provide the largest contributions to the product of optical depth and contrail width, important for climate impact.

  17. Modelling of the hydrogen production during the reflooding phase in case of severe accident in a nuclear power plant reactor

    In 1979, the Three Mile Island (TMI) accident accelerated research activities in the field of severe accidents, i.e. accidents leading to a significant core degradation. Among the different computer codes developed in this scope, one of them is a scenario code, called Modular Accident Analysis Program (MAAP). It has been developed in the US and has been used by Electricite de France since 1991 to carry out safety analyses. In this thesis, only severe accidents that lead the core of a Pressurized Water Reactor to be partially or totally uncovered are considered. To avoid that such accidents get worse and lead to a radioactivity release into the environment, procedures imply massive water injections to flood the core. Different comparative studies showed that current computer codes, including the MAAP code, could not model correctly this phenomenon and, in particular, could not predict with accuracy the generation of hydrogen observed in experiments. In a certain range of concentrations, hydrogen and oxygen could recombine in an explosive manner. To prevent this risk in France, it has been decided to build passive auto-catalytic recombiners in the reactor containment building. Their design is strongly dependant on the hydrogen generation kinetics that is estimated with such computer codes. This thesis aims at gathering the state-of-the-art knowledge from a literature review, analysing current models in the MAAP4 code, developing new models and validating them against data from the TMI accident and from the QUENCH experiments (carried out in Forschungszentrum Karlsruhe, Germany). The main results of this research led us to change the oxidation correlations that apply at high temperature in the MAAP4 code and to add two new models. The first one is a simplified two-phase flow thermal-hydraulics model that improves the calculation of the cladding temperature axial profile; the second model takes into consideration the increase of the surface likely to get oxidized after

  18. Fuel thermal/mechanical behaviour under loss of coolant accident conditions as predicted by the FACTAR code

    FACTAR (Fuel And Channel Temperature And Response) is a computer code developed to simulate the transient thennal and mechanical behaviour of 37-element or 28-element fuel bundles within a single CANDU fuel channel for moderate (ie., sheath temperatures less than the melting point of Zircaloy) loss-of-coolant accident (LOCA) conditions including transition and large break LOCAs with emergency coolant injection assumed available. FACTAR's predictions of fuel temperature and sheath failure times are used for subsequent assessment of fission product releases and fuel string expansion. In this paper, model capabilities and calculated quantities of the code are summarised. The results from overly severe test cases are presented in order to clearly demonstrate the effect on calculated fuel channel behaviour of a mechanistic assessment of fuel-to-sheath heat transfer, and the impact of using a diffusion-limited model for Zircaloy/steam reaction (i.e., FROM) as opposed to a reaction rate correlation, coupled with the assumption of unlimited steam supply. (author)

  19. Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident

    Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.

    2012-04-01

    Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.

  20. CFD modeling of debris melting phenomena during late phase Candu 6 severe accident

    The objective of this paper was to study the phase change of the debris formed on the Candu 6 calandria bottom in a postulated accident sequence. The molten pool and crust formation were studied employing the Ansys-Fluent code. The 3D model using Large Eddy Simulation (LES) predicts the conjugate, radiative and convective heat transfer inside and from the corium pool. LES simulations require a very fine grid to capture the crust formation and the free convection flow. This aspect (fine mesh requirement) correlated with the long transient has imposed the use of a slice from the 3D calandria geometry in order not to exceed the computing resources. The preliminary results include heat transfer coefficients, temperature profiles and heat fluxes through calandria wall. From the safety point of view it is very important to maintain a heat flux through the wall below the CHF assuring the integrity of the calandria vessel. This can be achieved by proper cooling of the tank water which contains the vessel. Also, transient duration can be estimated being important in developing guidelines for severe accidents management. The debris physical structure and material properties have large uncertainties in the temperature range of interest. Thus, further sensitivity studies should be carried out in order to better understand the influence of these parameters on this complex phenomenon. (authors)

  1. A method for modeling and analysis of directed weighted accident causation network (DWACN)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Ding, Jing

    2015-11-01

    Using complex network theory to analyze accidents is effective to understand the causes of accidents in complex systems. In this paper, a novel method is proposed to establish directed weighted accident causation network (DWACN) for the Rail Accident Investigation Branch (RAIB) in the UK, which is based on complex network and using event chains of accidents. DWACN is composed of 109 nodes which denote causal factors and 260 directed weighted edges which represent complex interrelationships among factors. The statistical properties of directed weighted complex network are applied to reveal the critical factors, the key event chains and the important classes in DWACN. Analysis results demonstrate that DWACN has characteristics of small-world networks with short average path length and high weighted clustering coefficient, and display the properties of scale-free networks captured by that the cumulative degree distribution follows an exponential function. This modeling and analysis method can assist us to discover the latent rules of accidents and feature of faults propagation to reduce accidents. This paper is further development on the research of accident analysis methods using complex network.

  2. A new modelling approach for containment event tree construction -Accident progression stage event tree method

    The Accident Progression Stage Event Tree (APSET) method presented here is a new modelling approach for construction of comprehensive and concise containment event trees to describe physical processes inside containment and accident mitigation actions, yet provide enough detail to analyze important factors for containment responses to severe accidents. In this approach, the accident progression is generally divided into four accident stages, i.e., Pre-stage for Core-melt, Core-melt Progression Stage, Debris Exit Stage, and Long-term Progression Stage, to reflect the timing of containment failure. Physical phenomena which challenge the containment integrity and accident mitigation actions are chronologically represented in event trees for each stage. Event trees for two successive stages are cross-linked by interface parameter. The interface parameter is defined as a set of plant conditions that have a significant influence on physical processes in the subsequent stage. By quantifying the containment event trees constructed with the APSET method, the respective conditional probabilities of the containment failure modes and the accident termination can be calculated stage by stage for each core melt accident sequence. The quantification results provide the characteristics of each core melt sequence on containment responses such as a dominant containment failure mode, its timing, and the effectiveness of mitigation actions. The usefulness of the APSET method was demonstrated through its application to a containment event tree analysis for BWR with MARK-II containment. (author). 11 refs., 2 tabs., 4 figs

  3. Predicting Abraham model solvent coefficients

    Bradley, Jean-Claude; Abraham, Michael H; Acree, William E; Lang, Andrew SID

    2015-01-01

    Background The Abraham general solvation model can be used in a broad set of scenarios involving partitioning and solubility, yet is limited to a set of solvents with measured Abraham coefficients. Here we extend the range of applicability of Abraham’s model by creating open models that can be used to predict the solvent coefficients for all organic solvents. Results We created open random forest models for the solvent coefficients e, s, a, b, and v that had out-of-bag R2 values of 0.31, 0.77...

  4. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Calmon, P.; Gonze, M.-A.; Mourlon, Ch.

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  5. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  6. Preconditioned Continuation Model Predictive Control

    Knyazev, Andrew; Fujii, Yuta; Malyshev, Alexander,

    2015-01-01

    Model predictive control (MPC) anticipates future events to take appropriate control actions. Nonlinear MPC (NMPC) describes systems with nonlinear models and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward difference approximation $Ax=b$ of the Continuation NMPC (CNMPC) equations on every time step. The coefficient matrix $A$ of the linear system is often ill-conditioned, resulting in poor GMRES conv...

  7. Formation of decontamination cost calculation model for severe accident consequence assessment

    In previous studies, the authors developed an index “cost per severe accident” to perform a severe accident consequence assessment that can cover various kinds of accident consequences, namely health effects, economic, social and environmental impacts. Though decontamination cost was identified as a major component, it was taken into account using simple and conservative assumptions, which make it difficult to have further discussions. The decontamination cost calculation model was therefore reconsidered. 99 parameters were selected to take into account all decontamination-related issues, and the decontamination cost calculation model was formed. The distributions of all parameters were determined. A sensitivity analysis using the Morris method was performed in order to identify important parameters that have large influence on the cost per severe accident and large extent of interactions with other parameters. We identified 25 important parameters, and fixed most negligible parameters to the median of their distributions to form a simplified decontamination cost calculation model. Calculations of cost per severe accident with the full model (all parameters distributed), and with the simplified model were performed and compared. The differences of the cost per severe accident and its components were not significant, which ensure the validity of the simplified model. The simplified model is used to perform a full scope calculation of the cost per severe accident and compared with the previous study. The decontamination cost increased its importance significantly. (author)

  8. The grey interrelation analysis and trend prediction on the safety accident in Kailun Coal Mine

    Yang, Z.; Ding, Y.; Zhao, C. [Kailun (Group) Limited Liability Corporation, Tangshan (China)

    2003-02-01

    The man-machine-environment systems in Kailuan Coal Mines is taken as the object of study to make the grey interrelation analysis for coal mine accidents and related factors by integrating the Grey System Theory with actual coal mine production. It also forecasts the accident development trend in coalmine in accordance with the accident statistics of coalmine by means of the grey forecast method. The injury rate per 1000 persons in Jinggezhuang Coal Mine in 2001 and 2002 was forecast and the results were 8.1043 and 7.7033 respectively. The process and the result in the analysis and forecast indicate that the method is simple and easy to use, and the result is reliable. The method and result of the study provide the theoretical reference for the quantitative study in coalmine accidents, as well as the basis for decision-making on safety management of coal enterprise. 3 refs., 4 tabs.

  9. Coping and health status predicts PTSD 12 months after a serious motor vehicle accident

    Pires, Tânia Sofia Fernandes; Maia, Ângela

    2011-01-01

    Background: Maladjusted coping strategies after motor vehicle accidents (MVA) can contribute to the development of psychological symptoms, as PTSD. Methods: Measures of Acute Stress Disorder, PTSD scale, Coping, Social Support and physical health were used to evaluate 101MVA victims with serious injuries 5 days, 4 and 12 months after the accident Findings: 67% of the participants had ASD (T1), 58% had PTSD at T2 and 47% had PTSD at T3. Victims that report more general coping strategies...

  10. TIRE MODELS USED IN VEHICLE DYNAMIC APPLICATIONS AND THEIR USING IN VEHICLE ACCIDENT SIMULATIONS

    Osman ELDOĞAN

    1995-01-01

    Full Text Available Wheel model is very important in vehicle modelling, it is because the contact between vehicle and road is achieved by wheel. Vehicle models can be dynamic models which are used in vehicle design, they can also be models used in accident simulations. Because of the importance of subject, many studies including theoretical, experimental and mixed type have been carried out. In this study, information is given about development of wheel modelling and research studies and also use of these modellings in traffic accident simulations.

  11. Base irradiation simulation and its effect on fuel behavior prediction by TRANSURANUS code: Application to reactivity initiated accident condition

    Lisovyy, Oleksandr, E-mail: o.lisovyy@dimnp.unipi.it [GRNSPG-UNIPI, Via Livornese 1291, Pisa 56122 (Italy); Cherubini, Marco, E-mail: m.cherubini@ing.unipi.it [NINE, Via Livornese 1291, Pisa 56122 (Italy); Lazzerini, Davide, E-mail: d.lazzerini@ing.unipi.it [GRNSPG-UNIPI, Via Livornese 1291, Pisa 56122 (Italy); D’Auria, Francesco, E-mail: f.dauria@ing.unipi.it [GRNSPG-UNIPI, Via Livornese 1291, Pisa 56122 (Italy)

    2015-03-15

    Highlights: • Selection of parameters for analysis. • Base irradiation simulation of rods fabricated by ENUSA. • Boundary condition implementation using restart options. • RIA simulation of CABRI test CIP3-1. • Sensitivity analysis performance. - Abstract: The purpose of the present paper is to investigate the impact of the base irradiation simulation for predicting fuel behavior under Reactivity Initiated Accident (RIA) conditions. A RIA is a scenario challenging the fuel integrity and consequently, devoted experimental campaigns and related code simulations have been extensively performed. In all experiments in which irradiated fuel is tested, the experiment is preceded by in reactor period, i.e. the base irradiation. In the present paper the considered RIA experiment is CIP3-1 performed in CABRI reactor (part of the OECD/NEA WGFS benchmark); a discussion about the relevance of the base irradiation simulation is presented. Such a work is conducted by sensitivities calculation in which a single parameter, among a preselected set, is changed. The range of variation of such parameters is either supplied within the selected RIA test specification or is taken from typical values available in the open literature. All mentioned calculations have been performed developing a specific model in TRANSURANUS code.

  12. Base irradiation simulation and its effect on fuel behavior prediction by TRANSURANUS code: Application to reactivity initiated accident condition

    Highlights: • Selection of parameters for analysis. • Base irradiation simulation of rods fabricated by ENUSA. • Boundary condition implementation using restart options. • RIA simulation of CABRI test CIP3-1. • Sensitivity analysis performance. - Abstract: The purpose of the present paper is to investigate the impact of the base irradiation simulation for predicting fuel behavior under Reactivity Initiated Accident (RIA) conditions. A RIA is a scenario challenging the fuel integrity and consequently, devoted experimental campaigns and related code simulations have been extensively performed. In all experiments in which irradiated fuel is tested, the experiment is preceded by in reactor period, i.e. the base irradiation. In the present paper the considered RIA experiment is CIP3-1 performed in CABRI reactor (part of the OECD/NEA WGFS benchmark); a discussion about the relevance of the base irradiation simulation is presented. Such a work is conducted by sensitivities calculation in which a single parameter, among a preselected set, is changed. The range of variation of such parameters is either supplied within the selected RIA test specification or is taken from typical values available in the open literature. All mentioned calculations have been performed developing a specific model in TRANSURANUS code

  13. Speed Spatial Distribution Models for Traffic Accident Section of Freeway Based on Computer Simulation

    Decai Li; Jiangwei Chu; Wenhui Zhang; Xiaojuan Wang; Guosheng Zhang

    2015-01-01

    Simulation models for accident section on freeway are built in microscopic traffic flow simulation environment. In these models involving 2⁃lane, 3⁃lane and 4⁃lane freeway, one detector is set every 10 m to measure section running speed. According to the simulation results, speed spatial distribution curves for traffic accident section on freeway are drawn which help to determine dangerous sections on upstream of accident section. Furthermore, the speed spatial distribution models are obtained for every speed distribution curve. The results provide theoretical basis for determination on temporal and spatial influence ranges of traffic accident and offer reference to formulation of speed limit scheme and other management measures.

  14. Radioecological zoning of territory and model of territory for monitoring of agrosphere after heavy accident at the NPP

    To improve the effectiveness of responses to severe accident in the field of population and agricultural production before the accident, proposed to prevent collect and analyze cartographic, statistical, environmental and others. The information needed to predict and assess the radiological situation. The methodology of radio-ecological zoning of the territory contaminated with radioactive fallout, using GIS technology, which was based on landscape-basin principle. A model of the territory, taxonomic units which are elements of the landscape or objects of agricultural land use. The river pond is a primary objective of the existing structural unit of the territory. The main characteristics are the type of soil, the type of terrain and the type of underlying surface. The application model provides the coordination of spatial and temporal distribution of characteristics, coupled models of atmospheric diffusion and migration of radionuclides on the chain ''soil - plants - animals - Products - man'' and dosimetric models to determine countermeasures that may be necessary after the accident. To forecast the radiation environment on the track used by the accidental release of the authors developed a model of atmospheric transport of radionuclides, aeral and root of plant contamination

  15. Failure prediction model: Model napovedovanja odpovedi:

    Čelan, Štefan; Težak, Oto; Žižek, Adolf

    2002-01-01

    Preventative maintenance is vital for delicate technical products. Electronic components or the whole system must be changed, and thus need a good model that will indicate failure accurately. In this paper a stochastic stress-strength quantitative model is presented, folowing the five original hypothesis. Proposed new model of failure prediction could be used by the system maintenance. Failure risk could be instantaneosly calculated. The given theory considers the influences of stress on the ...

  16. Application of Westinghouse NEXUS/ANC9 cross-section model for PWR accident analyses

    NEXUS/ANC9 is the latest licensed PWR core design code system developed by Westinghouse. This system has demonstrated capabilities of modeling advanced core designs with improved accuracy in core reactivity and power distribution predictions. NEXUS/ANC9 system is being rolled out to replace the current APA system (ALPHA/PHOENIX-P/ANC) for routine core calculations. In addition to the standard core design calculations, investigations are underway to explore the possibility to expand the NEXUS/ANC9 application for safety analysis, especially at accident conditions. The main focus of the investigation is the evaluation of the NEXUS/ANC9 cross-section representation model conditions like high void and significant change of core pressure. Comparisons of the predicted parameters among ANC9, PARAGON lattice code and MCNP calculations are presented. The results show that NEXUS/ANC9 is able to model the cross-section behavior and accurately reproduce lattice code results at all simulated conditions. (author)

  17. Modeling of DECL accident in the reactor containment by the CONTAIN 2.0 code

    Abbasi, Molood; Rahgoshay, Mohhamad [Islamic Azad Univ., Teheran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch

    2013-11-15

    In this paper, a specific type of the Loss of Coolant Accident (LOCA), the DECL (Double Ended Cold Leg) break, that means totally Guillotine type of break in the cold leg pipe, has been modeled. The accident is simulated with the CONTAIN 2.0 code. In the event of a LOCA accident, coolant mass and energy are released to the containment through the break. This causes an increase of pressure and temperature in the containment. The modeling is performed in the VVER-1000 reactor containment. The analysis includes average pressure in the containment and temperature distribution in sample cells in the long-time. The results are compared with the existing reports on studies that used the ANGAR code. Results show that the CONTAIN 2.0 code is an adaptable tool for the analysis of nuclear events such as DECL accident. (orig.)

  18. Modeling of DECL accident in the reactor containment by the CONTAIN 2.0 code

    In this paper, a specific type of the Loss of Coolant Accident (LOCA), the DECL (Double Ended Cold Leg) break, that means totally Guillotine type of break in the cold leg pipe, has been modeled. The accident is simulated with the CONTAIN 2.0 code. In the event of a LOCA accident, coolant mass and energy are released to the containment through the break. This causes an increase of pressure and temperature in the containment. The modeling is performed in the VVER-1000 reactor containment. The analysis includes average pressure in the containment and temperature distribution in sample cells in the long-time. The results are compared with the existing reports on studies that used the ANGAR code. Results show that the CONTAIN 2.0 code is an adaptable tool for the analysis of nuclear events such as DECL accident. (orig.)

  19. Modelling of severe accident behaviour using the code ATHLET-CD

    Thermal-hydraulic and core degradation phenomena play a decisive role for the course of severe accidents in light water reactors. Therefore, the simulation of such accidents with computer codes requires comprehensive and detailed modelling of these processes. The code ATHLET-CD is being developed for realistic simulation of accidents with core degradation and for evaluation of accident management measures. It makes use of the detailed and validated models of the thermal-hydraulic code ATHLET in an efficient coupling with models for core degradation and fission product behaviour. The capabilities of the coupled code are demonstrated by means of the calculation of the TMI-2 accident. The first three phases of the accident were successfully simulated in a reasonable computing time. The calculated system pressure and pressurizer level after pump trip, during the pump restart, and until core slump are in acceptable agreement with the measured data. The calculated hydrogen generation before the pump restart is in accordance with the deduced value. Contrary to estimates based on the system behaviour, no significant hydrogen generation was calculated during the quench phase. Further model improvements regarding the quenching of degraded core material, fracture and relocation of solid fuel rods, as well as the simulation of debris bed behaviour are necessary for better simulation. (authors)

  20. A model for the analysis of loss of decay heat removal accident in MTR pool type research reactors

    During a loss of coolant accident leading to total emptying of the reactor pool, the decay heat could be removed through air natural convection. However, under partial pool emptying the core is partially submerged and the coolant circulation inside the fuel element could no more be possible. In such conditions, a core overheat take place, and the heat is essentially diffused from the core to its periphery by combined thermal radiation and conduction. In order to predict fuel element temperature evolution under such conditions a mathematical model is performed. The model is based on a three dimensional geometry and takes into account a variety of core configurations including fuel elements (standard and control), reflector elements and grid plates. The homogeneous flow model is used and the time and space dependent non-linear partial differential fluid conservation equations are solved using a semi-implicit finite difference method. Preliminary tests of the developed model were made by considering a series of hypothetical accidents. In the current framework a loss of decay heat removal accidents in the IAEA benchmark open pool MTR-type research reactor is considered. It is shown that in the case of a low core immersion height no water boiling is observed and the fuel surface temperature rise remains below the melting point of the aluminium cladding. (author)

  1. Development of simplified 1D and 2D models for studying a PWR lower head failure under severe accident conditions

    , a graph representing the time to failure as a function of the pressure level and the heat flux intensity has been determined; such information will be used in our probabilistic safety assessment and severe accident management analyses. Another motivation for the development of simplified models in IRSN is to obtain a simplified but well-predicting code that can then be integrated into integral severe accident computer codes. (authors)

  2. Processing Expert Judgements in Accident Consequence Modelling (invited paper)

    In performing uncertainty analysis a distribution on the code input parameters is required. The construction of the distribution on the code input parameters for the joint CEC/USNRC Accident Consequence Code Uncertainty Analysis using Expert Judgement is discussed. An example from the food chain module is used to illustrate the construction. Different mathematical techniques have been developed to transform the expert judgements into the required format. Finally, the effect of taking account of correlations in performing uncertainty analysis is investigated. (author)

  3. Modeling and measuring the effects of imprecision in accident management

    This paper presents two approaches for evaluating the uncertainties inherent in accident management strategies. Current PRA methodology uses expert opinion in the assessment of rare event probabilities. The problem is that these probabilities may be difficult to estimate even though reasonable engineering judgement is applied. This occurs because expert opinion under incomplete knowledge and limited data is inherently imprecise. In this case, the concept of uncertainty about a probability value is both intuitively appealing and potentially useful. This analysis considers accident management as a decision problem (i.e. 'applying a strategy' vs. 'do nothing') and uses an influence diagram. Then, the analysis applies two approaches to evaluating imprecise node probabilities in the influence diagram: 'a fuzzy probability' and 'an interval-valued subjective probability'. For the propagation of subjective probabilities, the analysis uses a Monte-Carlo simulation approach. In case of fuzzy probabilities, fuzzy logic is applied to propagate them. We believe that these approaches can allow us to better understand uncertainties associated with severe accident management strategies, because they provide additional information regarding the implications of using imprecise input data

  4. A space-time multivariate Bayesian model to analyse road traffic accidents by severity

    Boulieri, A; Liverani, S; Hoogh, K. de; Blangiardo, M.

    2016-01-01

    The paper investigates the dependences between levels of severity of road traffic accidents, accounting at the same time for spatial and temporal correlations. The study analyses road traffic accidents data at ward level in England over the period 2005–2013. We include in our model multivariate spatially structured and unstructured effects to capture the dependences between severities, within a Bayesian hierarchical formulation. We also include a temporal component to capture the time effects...

  5. Transportation accidents

    Predicting the possible consequences of transportation accidents provides a severe challenge to an analyst who must make a judgment of the likely consequences of a release event at an unpredictable time and place. Since it is impractical to try to obtain detailed knowledge of the meteorology and terrain for every potential accident location on a route or to obtain accurate descriptions of population distributions or sensitive property to be protected (data which are more likely to be more readily available when one deals with fixed-site problems), he is constrained to make conservative assumptions in response to a demanding public audience. These conservative assumptions are frequently offset by very small source terms (relative to a fixed site) created when a transport vehicle is involved in an accident. For radioactive materials, which are the principal interest of the authors, only the most elementary models have been used for assessing the consequences of release of these materials in the transportation setting. Risk analysis and environmental impact statements frequently have used the Pasquill-Gifford/gaussian techniques for releases of short duration, which are both simple and easy to apply and require a minimum amount of detailed information. However, after deciding to use such a model, the problem of selecting what specific parameters to use in specific transportation situations still presents itself. Additional complications arise because source terms are not well characterized, release rates can be variable over short and long time periods, and mechanisms by which source aerosols become entrained in air are not always obvious. Some approaches that have been used to address these problems will be reviewed with emphasis on guidelines to avoid the Worst-Case Scenario Syndrome

  6. Radiation effects on the population of Belarus after the Chernobyl accident and the prediction of stochastic effects

    Evaluation of conditions of exposure during the post-accident period makes it possible to identify two periods in the radiation exposure of Belarus's population. As a result of our investigations we obtained data about doses for four different categories in the exposed population: people who lived in the contaminated territories without evacuation and relocation; evacuated people; cleanup workers (''liquidators''); and people who were exposed in childhood, especially for thyroid exposure. The total doses for these categories in different time periods were analyzed. Evaluation of doses received by the Belarusian population due to the Chernobyl accident shows no evidence of doses, that could lead to the deterministic consequences of radiation exposure. For all exposed groups we made predictions about different types of stochastic consequences of exposure. 10 refs, 2 tabs

  7. Restructuring of an Event Tree for a Loss of Coolant Accident in a PSA model

    Lim, Ho-Gon; Han, Sang-Hoon; Park, Jin-Hee; Jang, Seong-Chul [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Conventional risk model using PSA (probabilistic Safety Assessment) for a NPP considers two types of accident initiators for internal events, LOCA (Loss of Coolant Accident) and transient event such as Loss of electric power, Loss of cooling, and so on. Traditionally, a LOCA is divided into three initiating event (IE) categories depending on the break size, small, medium, and large LOCA. In each IE group, safety functions or systems modeled in the accident sequences are considered to be applicable regardless of the break size. However, since the safety system or functions are not designed based on a break size, there exist lots of mismatch between safety system/function and an IE, which may make the risk model conservative or in some case optimistic. Present paper proposes new methodology for accident sequence analysis for LOCA. We suggest an integrated single ET construction for LOCA by incorporating a safety system/function and its applicable break spectrum into the ET. Integrated accident sequence analysis in terms of ET for LOCA was proposed in the present paper. Safety function/system can be properly assigned if its applicable range is given by break set point. Also, using simple Boolean algebra with the subset of the break spectrum, final accident sequences are expressed properly in terms of the Boolean multiplication, the occurrence frequency and the success/failure of safety system. The accident sequence results show that the accident sequence is described more detailed compared with the conventional results. Unfortunately, the quantitative results in terms of MCS (minimal Cut-Set) was not given because system fault tree was not constructed for this analysis and the break set points for all 7 point were not given as a specified numerical quantity. Further study may be needed to fix the break set point and to develop system fault tree.

  8. Restructuring of an Event Tree for a Loss of Coolant Accident in a PSA model

    Conventional risk model using PSA (probabilistic Safety Assessment) for a NPP considers two types of accident initiators for internal events, LOCA (Loss of Coolant Accident) and transient event such as Loss of electric power, Loss of cooling, and so on. Traditionally, a LOCA is divided into three initiating event (IE) categories depending on the break size, small, medium, and large LOCA. In each IE group, safety functions or systems modeled in the accident sequences are considered to be applicable regardless of the break size. However, since the safety system or functions are not designed based on a break size, there exist lots of mismatch between safety system/function and an IE, which may make the risk model conservative or in some case optimistic. Present paper proposes new methodology for accident sequence analysis for LOCA. We suggest an integrated single ET construction for LOCA by incorporating a safety system/function and its applicable break spectrum into the ET. Integrated accident sequence analysis in terms of ET for LOCA was proposed in the present paper. Safety function/system can be properly assigned if its applicable range is given by break set point. Also, using simple Boolean algebra with the subset of the break spectrum, final accident sequences are expressed properly in terms of the Boolean multiplication, the occurrence frequency and the success/failure of safety system. The accident sequence results show that the accident sequence is described more detailed compared with the conventional results. Unfortunately, the quantitative results in terms of MCS (minimal Cut-Set) was not given because system fault tree was not constructed for this analysis and the break set points for all 7 point were not given as a specified numerical quantity. Further study may be needed to fix the break set point and to develop system fault tree

  9. Hybrid Model for Early Onset Prediction of Driver Fatigue with Observable Cues

    Mingheng Zhang

    2014-01-01

    Full Text Available This paper presents a hybrid model for early onset prediction of driver fatigue, which is the major reason of severe traffic accidents. The proposed method divides the prediction problem into three stages, that is, SVM-based model for predicting the early onset driver fatigue state, GA-based model for optimizing the parameters in the SVM, and PCA-based model for reducing the dimensionality of the complex features datasets. The model and algorithm are illustrated with driving experiment data and comparison results also show that the hybrid method can generally provide a better performance for driver fatigue state prediction.

  10. Monitoring severe accidents using AI techniques

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  11. Analysis of uncertainties caused by the atmospheric dispersion model in accident consequence assessments with UFOMOD

    Various techniques available for uncertainty analysis of large computer models are applied, described and selected as most appropriate for analyzing the uncertainty in the predictions of accident consequence assessments. The investigation refers to the atmospheric dispersion and deposition submodel (straight-line Gaussian plume model) of UFOMOD, whose most important input variables and parameters are linked with probability distributions derived from expert judgement. Uncertainty bands show how much variability exists, sensitivity measures determine what causes this variability in consequences. Results are presented as confidence bounds of complementary cumulative frequency distributions (CCFDs) of activity concentrations, organ doses and health effects, partially as a function of distance from the site. In addition the ranked influence of the uncertain parameters on the different consequence types is shown. For the estimation of confidence bounds it was sufficient to choose a model parameter sample size of n (n=59) equal to 1.5 times the number of uncertain model parameters. Different samples or an increase of sample size did not change the 5%-95% - confidence bands. To get statistically stable results of the sensitivity analysis, larger sample sizes are needed (n=100, 200). Random or Latin-hypercube sampling schemes as tools for uncertainty and sensitivity analyses led to comparable results. (orig.)

  12. A dynamical model predicting the transport of I-131 through the deposition pasture cow milk pathway

    A dynamical model predicting the transport of I-131 through the atmospherical deposition-pasture-cow-milk pathway has been developed and validated using data collected in a specific site (a little farm in Anguillara - Rome) during the Chernobyl accident. The main factor affecting the uncertainty of the results of the model are discussed

  13. Severe accident modeling and offsite dose consequence evaluations for nuclear power plant emergency planning

    We have investigated the roles of Firewater Addition System and Passive Flooder in ABWR severe accidents, such as LOCA and SBO. The results are apparent that Firewater System is vital in the highly unlikely situation where all AC are lost. Also in this paper, we present EPZDose, an effective and faster-than-real time code for offsite dose consequences predictions and evaluations. Illustrations with the release from our severe accident scenario show friendly and informative user's interface for supporting decision makings in nuclear emergency situations. (author)

  14. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  15. Pin-by-pin modeling of fuel cycle and reactivity initiated accidents in LWR

    This study deals with validation results for pin-by-pin methods to model fuel cycle and reactivity initiated accidents (RIAs) in LWR. Both methods are based on a heterogeneous pin-by-pin reactor model, realized in the BARS code. Validation results are presented for separate steps of WWER fuel cycle modeling. Features and advantages of a pin-by-pin approach for modeling of LWR RIA shown on the basis of calculations of control rod ejection accidents (REAs) in South Ukrainian NPP Unit 1 WWER-1000 and Three Mile Island Unit 1 (TMI-1) PWR at the end of cycles. Calculations were performed using the coupled RELAP-BARS code. Effects of pin-by-pin power and burnup distribution on estimation of the accident consequences are considered. (Authors)

  16. Cold leg condensation model for analyzing loss-of-coolant accident in PWR

    Liao, Jun, E-mail: liaoj@westinghouse.com; Frepoli, Cesare; Ohkawa, Katsuhiro

    2015-04-15

    Highlights: • Direct contact cold leg condensation model for full spectrum LOCA evaluation model. • The cold leg condensation model addresses both large break LOCA and small break LOCA. • The model is assessed against both large break and small break LOCA experiments. • Scalability of the cold leg condensation model to full scale PWR is discussed. - Abstract: Direct contact condensation in the cold leg of pressurized water reactor is an important phenomenon during a postulated loss-of-coolant accident. The amount of condensation in the cold legs impacts the thermal hydraulic behavior of the reactor coolant system and eventually the integration of reactor nuclear core. A cold leg condensation model was developed for the WCOBRA/TRAC-TF2 safety analysis code. The model correlated the COSI test data and addressed the scaling issues with respect to geometry, pressure, and steam and water flow rates expected during a typical PWR LOCA. The correlation was found to be in good agreement with separate effects and integral effects experimental data and implemented in the WCOBRA/TRAC-TF2 safety analysis code. The cold leg condensation model was assessed against various small break and large break LOCA separate effects tests such as COSI experiments, ROSA experiments and UPTF experiments. Those experiments cover a wide range of cold leg dimensions, system pressures, mass flow rates, and fluid properties. All the predicted condensation results match reasonably well with the experimental data. Scalability discussions on the diameter, flow area, length, superficial velocity, Reynolds number of both cold leg and SI line, and Froude number of SI line in the Westinghouse COSI test facility were provided. The distortion of the SI jet Reynolds number is moderate. The scaling analysis together with the validation matrix covering a wide range of cold leg diameter, SI flow rate and SI Reynolds number support the scalability of the developed cold leg condensation model to the full

  17. Model Development of Light Water Reactor Fuel Analysis Code RANNS for Reactivity-initiated Accident Conditions

    A light water reactor fuel analysis code RANNS has been developed to analyze thermal and mechanical behaviors of a single fuel rod in mainly Reactivity-Initiated Accident (RIA) conditions, based on the light water reactor fuel analysis code FEMAXI-7, which has been developed for normal operation conditions and anticipated transient conditions. The recent model development for the RANNS code has been focused on improving predictability of stress, strain, and temperature inside a fuel rod during pellet cladding mechanical interaction (PCMI), which is one of the most important behaviors of high-burnup fuels under RIA conditions. This report provides descriptions of the models developed and/or validated recently via experimental analyses using the RANNS code on the RIA-simulating experiments conducted in the Nuclear Safety Research Reactor (NSRR): models for mechanical behaviors as relocation of fuel pellets, pellet yielding, pellet-cladding mechanical bonding, and PCMI failure limit of fuel cladding, and thermal behaviors as pellet-cladding gap conductance and heat transfer from fuel rod surface to coolant water. (author)

  18. Modelling and analysis of the behavior of LWRs at severe core accidents

    With respect to the assessment of the consequences of severe accidents in light water reactors from the initiation of the accident up to the thermal failure of the reactor pressure vessel (RPV), a modular program system has been developed. Experimental results will be considered with respect to the modeling of the fuel rod behavior, e.g. deformation of the fuel rod, metal water reaction and the melting of the fuel rods. The fuel and core models allow to estimate the coolability of fuel rods and core as well as the consequences of core meltdown accidents at various pressure levels. After partial failure of the lower core retention structure, the core material will drop into the lower plenum and heat up the RPV. This strong interaction between the thermal behavior of the remaining core and the partially dropped core material has been modeled because of an accident sequence analysis. The analyses described here show, that not the entire core will fail, but a partial drop of core material into the lower plenum is likely to occur. With respect to the validation of the program system, comparison calculations with the fuel rod behavior and melt models SSYST and EXMEL will be performed. Moreover, the program system will be applied to the bundle behavior in meltdown experiments, the TMI-2 core behavior and the course of a core meltdown accident in risk studies. (orig.)

  19. Guide-lines for an early evaluation of a nuclear accident, calculated with the computer model park

    For a nuclear accident where large areas are contaminated, it is necessary to predict the exposure of the population as early as possible in order to plan appropriate countermeasures. The radioecological computer model PARK (Program System for the Assessment and Mitigation of Radiological Consequences) is part of the German decision support system IMIS (Integrated Measurement- and Information System for the Surveillance of Environmental Radioactivity) for a fast assessment of contaminations and doses. In this paper PARK is used to investigate the dose relevance of the exposure pathways, of ingested radionuclides, and of foodstuffs in relation to the date of the event. (author)

  20. A cladding failure model for fuel rods subjected to operational and accident transients

    Concerns about high burnup effects on cladding integrity during operational and accident transients have been invoked by licensing authorities in the United States of America, Europe and Japan as potentially limiting for burnup extension. Transient experiments recently conducted in France and Japan to simulate reactivity initiation accidents (RIAs) in light water reactors have shown that high burnup fuel rods can fail at enthalpy levels well below the current licensing limits. Analytical research conducted by EPRI during the last few years, in support of the RIA tests evaluation, has led to the development of a cladding failure model for reactor transients, including RIA and power oscillation events in boiling water reactors known as ATWS (anticipated transient without scram). The model is incorporated in EPRI's fuel behavior code FALCON, which is the modern version of the FREY code that was presented in previous IAEA fuel behavior meeting. The most distinguishing feature of the model is that it computes the mechanical energy locally at material points in the cladding as function of time during the transient event, from which the failure location and failure time are predicted. The database for the model consists of stress-strain data obtained from mechanical property tests for cladding tubes as function of fast fluence, temperature, hydrogen concentration and material type. From this data, the material's capacity, or resistance to failure, is formulated as the total (elastic+plastic) mechanical energy per unit volume that can be absorbed by the cladding before it can fail, and is termed the critical strain energy density (CSED). The FALCON code calculates the strain energy density (SED) that a transient event can deliver to the cladding through PCMI and internal pressure loading, which is then compared to the CSED for failure determination. Clearly, the complete stress and strain states enter into the calculation of the SED, and therefore, all three true

  1. Prediction of mass fraction of agglomerated debris in a LWR severe accident

    Ex-vessel termination of accident progression in Swedish type Boiling Water Reactors (BWRs) is contingent upon efficacy of melt fragmentation and solidification in a deep pool of water below reactor vessel. When liquid melt reaches the bottom of the pool it can create agglomerated debris and “cake” regions that increase hydraulic resistance of the bed and affect coolability of the bed. This paper discusses development and application of a conservative-mechanistic approach to quantify mass fractions of agglomerated debris. Experimental data from the DEFOR-A (Debris Bed Formation and Agglomeration) tests with high superheat of binary oxidic simulant material melt is used for validation of the methods. Application of the approach to plant accident analysis suggests that melt superheat has less significant influence on agglomeration of the debris than jet penetration depth. The paper also discusses the impact of the uncertainty in the jet disintegration and penetration behavior on the agglomeration mode map. (author)

  2. Final safety analysis report for the Galileo Mission: Volume 2, Book 2: Accident model document: Appendices

    1988-12-15

    This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in these appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.

  3. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    J. Brandt

    2002-01-01

    Full Text Available A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model, has been developed for modelling transport, dispersion and deposition (wet and dry of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the total deposition of  137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations for dry- and wet deposition. The performance, compared to measurements, of using different combinations of two different wet deposition parameterizations and three different parameterizations of dry deposition has been evaluated, using different statistical tests. The best model performance, compared to measurements, is obtained when parameterizing the total deposition combined of a simple method for dry deposition and a subgrid-scale averaging scheme for wet deposition based on relative humidities. The same major conclusion is obtained for all the three different radioactive isotopes and using two different deposition measurement databases. Large differences are seen in the results obtained by using the two different parameterizations of wet deposition based on precipitation rates and relative humidities, respectively. The parameterization based on subgrid-scale averaging is, in all cases, performing better than the parameterization based on precipitation rates. This indicates that the in-cloud scavenging process is more important than the below cloud scavenging process for the submicron particles and that the precipitation rates are

  4. Radiological assessment by compartment model POSEIDON-R of radioactivity released in the ocean following Fukushima Daiichi accident

    Bezhenar, Roman; Maderich, Vladimir; Heling, Rudie; Jung, Kyung Tae; Myoung, Jung-Goo

    2013-04-01

    The modified compartment model POSEIDON-R (Lepicard et al, 2004), was applied to the North-Western Pacific and adjacent seas. It is for the first time, that a compartment model was used in this region, where 25 Nuclear Power Plants (NPP) are operated. The aim of this study is to perform a radiological assessment of the releases of radioactivity due to the Fukushima Daiichi accident. The model predicts the dispersion of radioactivity in water column and in the sediments, and the transfer of radionuclides throughout the marine food web, and the subsequent doses to the population due to the consumption of fishery products. A generic predictive dynamical food-chain model is used instead of concentration factor (CF) approach. The radionuclide uptake model for fish has as central feature the accumulation of radionuclides in the target tissue. Three layer structure of the water column makes it possible to describe deep-water transport adequately. In total 175 boxes cover the Northwestern Pacific, the East China Sea, and the Yellow Sea and East/Japan Sea. Water fluxes between boxes were calculated by averaging three-dimensional currents obtained by hydrodynamic model ROMS over a 10-years period. Tidal mixing between boxes was parameterized. The model was validated on observation data on the Cs-137 in water for the period 1945-2004. The source terms from nuclear weapon tests are regional source term from the bomb tests on Atoll Enewetak and Atoll Bikini and global deposition from weapons tests. The correlation coefficient between predicted and observed concentrations of Cs-137 in the surface water is 0.925 and RMSE=1.43 Bq/m3. A local-scale coastal box was used according POSEIDON's methodology to describe local processes of activity transport, deposition and food web around the Fukushima Daiichi NPP. The source term to the ocean from the Fukushima accident includes a 10-days release of Cs-134 (5 PBq) and Cs-137 (4 PBq) directly into the ocean and 6 and 5 PBq of Cs-134 and

  5. Phenomenological and mechanistic modeling of melt-structure-water interactions in a light water reactor severe accident

    The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance

  6. Advanced evacuation model managed through fuzzy logic during an accident in LNG terminal

    Evacuation of people located inside the enclosed area of an LNG terminal is a complex problem, especially considering that accidents involving LNG are potentially very hazardous. In order to create an evacuation model managed through fuzzy logic, extensive influence must be generated from safety analyses. A very important moment in the optimal functioning of an evacuation model is the creation of a database which incorporates all input indicators. The output result is the creation of a safety evacuation route which is active at the moment of the accident. (Author)

  7. Modeling of the corium cooling and loading factor analysis for containment during severe accidents

    The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS) against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks' distributions considered and the results of their work in the corium cooling pool are compared to the data of other PPS's conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents

  8. Fuel Behaviour and Modelling under Severe Transient and Loss of Coolant Accident (LOCA) Conditions. Proceedings of a Technical Meeting

    In recent years the demands on 'fuel duties' have increased, including transient regimes, higher burnups and longer fuel cycles. To satisfy these demands, fuel vendors have developed and introduced new cladding and fuel material designs to provide sufficient margins for safe operation of the fuel components. National and international experimental programmes have been launched, and models have been developed or adapted to take into account the changed conditions. These developments enable water cooled reactors, which contribute about 95% of the nuclear power in the world today, to operate safely under all operating conditions; moreover, even under severe transient or accident conditions, such as reactivity initiated accidents (RIAs) or loss of coolant accidents (LOCAs), the behaviour of the fuel can be adequately predicted and the consequences of such events can be safely contained. In 2010 the IAEA Technical Working Group on Fuel Performance and Technology (TWGFPT) recommended that a technical meeting on ''Fuel Behaviour and Modelling under Severe Transient and LOCA Conditions'' be held in Japan. The accident at the Fukushima Daiichi nuclear power plant in March 2011 highlighted the need to address this subject, and despite the difficult situation in Japan at the time, the recommended plan was confirmed, and the Japan Atomic Energy Agency (JAEA) hosted the technical meeting in Mito, Ibaraki Prefecture, Japan, from 18 to 21 October 2011. This meeting was the eighth in a series of IAEA meetings, which reflects Member States' continuing interest in the above issues. The previous meetings were held in 1980 (jointly with OECD Nuclear Energy Agency, Helsinki, Finland), 1983 (Riso, Denmark), 1986 (Vienna, Austria), 1988 (Preston, United Kingdom), 1992 (Pembroke, Canada), 1995 (Dimitrovgrad, Russian Federation) and 2001 (Halden, Norway). The purpose of the technical meeting was to provide a forum for international experts to review the current situation and the state of

  9. Predictive Modeling of Tokamak Configurations*

    Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.

    2001-10-01

    The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  10. DC Motor Control Predictive Models

    Ravinesh Singh

    2006-01-01

    Full Text Available DC motor speed and position controls are fundamental in vehicles in general and robotics in particular. This study presents a mathematical model for correlating the interactions of some DC motor control parameters such as duty cycle, terminal voltage, frequency and load on some responses such as output current, voltage and speed by means of response surface methodology. For this exercise, a five-level full factorial design was chosen for experimentation using a peripheral interface controller (PIC-based universal pulse width modulation (PWM H-Bridge motor controller built in-house. The significance of the mathematical model developed was ascertained using regression analysis method. The results obtained show that the mathematical models are useful not only for predicting optimum DC motor parameters for achieving the desired quality but for speed and position optimization. Using the optimal combination of these parameters is useful in minimizing the power consumption and realization of the optimal speed and invariably position control of DC motor operations.