WorldWideScience

Sample records for accident management strategy

  1. Containment severe accident management - selected strategies

    The OECD Nuclear Energy Agency (NEA) organized in June 1994, in collaboration with the Swedish Nuclear Power Inspectorate (SKI), a Specialist Meeting on Selected Containment Severe Accident Management Strategies, to discuss their feasibility, effectiveness, benefits and drawbacks, and long-term impact. The meeting focused on water reactors, mainly on existing systems. The technical content covered topics such as general aspects of accident management strategies in OECD Member countries, hydrogen management techniques and other containment accident management strategies, surveillance and protection of the containment function. The main conclusions of the meeting are summarized in the paper. (author)

  2. Strategy generation in accident management support

    An increased interest for research in the field of Accident Management can be noted. Several international programmes have been started in order to be able to understand the basic physical and chemical phenomena in accident conditions. A feasibility study has shown that it would be possible to design and develop a computerized support system for plant staff in accident situations. To achieve this goal the Halden Project has initiated a research programme on Computerized Accident Management Support (CAMS project). The aim is to utilize the capabilities of computerized tools to support the plant staff during the various accident stages. The system will include identification of the accident state, assessment of the future development of the accident and planning of accident mitigation strategies. A prototype is developed to support operators and the Technical Support Centre in decision making during serious accident in nuclear power plants. A rule based system has been built to take care of the strategy generation. This system assists plant personnel in planning control proposals and mitigation strategies from normal operation to severe accident conditions. The ideal of a safety objective tree and knowledge from the emergency procedures have been used. Future prediction requires good state identification of the plant status and some knowledge about the history of some critical variables. The information needs to be validated as well. Accurate calculations in simulators and a large database including all important information form the plant will help the strategy planning. (author). 12 refs, 2 figs

  3. Assessment of candidate accident management strategies

    A set of candidate accident management strategies, whose purpose is to prevent or mitigate in-vessel core damage, were identified from various Nuclear Regulatory Commission (NRC) and industry reports. These strategies have been grouped in this report by the challenges they are intended to meet, and assessed to provide information which may be useful to individual licensees for consideration when they perform their Individual Plant Examinations. Each assessment focused on describing and explaining the strategy, considering its relationship to existing requirements and practices as well as identifying possible associated adverse effects. 10 refs

  4. Assessment of two BWR accident management strategies

    Candidate mitigative strategies for the management of in-vessel events during the late phase (after-core degradation has occurred) of postulated boiling water reactor (BWR) severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities, and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for further assessment. The first was a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertained to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose was to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies were performed during 1991 and this paper provides a discussion of the motivation for and purpose of these strategies, and the potential for their success. ((orig.))

  5. A Methodology for Evaluating Severe Accident Management Strategies

    Severe accidents are defined as those which entail at least an initial core damage, in many cases specified as the overcoming of the regulatory fuel. After Fukushima accident, the effectiveness of the severe accident management strategy has been attracted worldwide. There is a typical example of severe accident management strategy like Severe Accident Management and Guideline (SAMG). Unfortunately, suitable method for evaluating the accident management strategy is absence until now. In this study, the evaluation methodology which utilizes the decision tree is developed to evaluate the severe accident management strategies. In addition, we applied the developed methodology to ShinKori nuclear power plant Unit 3, 4 and modeled decision tree for evaluation. In this study, we developed a methodology to evaluate the severe accident management strategy by using decision tree. In addition, the evaluation was carried out by selecting the cavity flooding strategy. Shinkori unit 3, 4 which is APR1400 is selected and analyzed for reference plant. In order to evaluation, decision tree for cavity flooding is modeled. With reliability data, quantification will be conducted. The utility of other severe accident management strategies can be evaluated with proposed methodology in this study. Finally, it is expected that this methodology improves the safety of nuclear power plant

  6. Preliminary severe accident management strategies for Wolsong nuclear power plants

    Severe accident management strategies for Wolsong 2,3,4 Nuclear Power Plants are presented. The defense in depth concept, which limits release of radioactive materials out of containment building, is applied to develop these strategies. These strategies are actions to prevent or to mitigate core damage, rupture of calandria vessel, rupture of calandria vault, rupture of containment building, and release of radioactive materials. These strategies are deduced from the results of level 2 PSA for Wolsong NPPs. These preliminary results will be assessed further and proved to be effective to Wolsong Plants. Then these severe accident management strategies can be used to develop severe accident management program for Wolsong NPPs

  7. Severe accident management. Optimized guidelines and strategies

    The highest priority for mitigating the consequences of a severe accident with core melt lies in securing containment integrity, as this represents the last barrier against fission product release to the environment. Containment integrity is endangered by several physical phenomena, especially highly transient phenomena following high-pressure reactor pressure vessel failure (like direct containment heating or steam explosions which can lead to early containment failure), hydrogen combustion, quasi-static over-pressure, temperature failure of penetrations, and basemat penetration by core melt. Each of these challenges can be counteracted by dedicated severe accident mitigation hardware, like dedicated primary circuit depressurization valves, hydrogen recombiners or igniters, filtered containment venting, containment cooling systems, and core melt stabilization systems (if available). However, besides their main safety function these systems often have also secondary effects that need to be considered. Filtered containment venting causes (though limited) fission product release into the environment, primary circuit depressurization leads to loss of coolant, and an ex-vessel core melt stabilization system as well as hydrogen igniters can generate high pressure and temperature loads on the containment. To ensure that during a severe accident any available systems are used to their full beneficial extent while minimizing their potential negative impact, AREVA has implemented a severe accident management for German nuclear power plants. This concept makes use of extensive numerical simulations of the entire plant, quantifying the impact of system activations (operational systems, safety systems, as well as dedicated severe accident systems) on the accident progression for various scenarios. Based on the knowledge gained, a handbook has been developed, allowing the plant operators to understand the current state of the plant (supported by computational aids), to predict

  8. Verification of accident management strategies at the Forsmark plant

    Due to government requirements severe accident mitigating measures were implemented at the Swedish State Power Board nuclear power plants in 1988. These measures included protection against early containment impairment, highly redundant containment spray and filtered venting of the containment. We also developed accident management strategies and corresponding documents to counteract a severe accident situation. This paper describes the accident management strategies and documents at the Forsmark nuclear power plant, the verification process of the basic approach, and our ongoing program for further development and verification of the accident management program. In summary: From the beginning it was emphasized that it was not only mitigating measures implemented, it was an accident mitigation program, including new EOP's and education and training. This program was implemented, as required by the Swedish government in the end of 1988. Since that time the accident management strategy has been validated, verified and further developed. As a general conclusion, the implemented accident management program has reached a fair degree of completeness at the Forsmark plant. It is expected that in the case a hypothetical accident would occur the envisaged strategy would handle the accident in such a way that the radiological consequences would be insignificant and radiation exposure to the personnel would be within ICRP recommendations. To reach and keep this goal it is imperative that a mental preparedness is always present. This is achieved with a continuous education, training and analyses

  9. A framework for the assessment of severe accident management strategies

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed

  10. A framework for the assessment of severe accident management strategies

    Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

  11. Accident management strategy focusing on the software area

    Tokyo Electric Power Company has already conducted individual plant examination (IPE) and worked out specific accident management strategies. In addition to hardware projects which will be carried out in due order from now on, we have studied the software aspects of accident management, including personnel education and training in relevant subjects. Based on the results of these studies, a decision has been made on the work sharing between the main control room (MCR) and technical support center (TSC) in implementing accident management. We have also decided on a improvement of guidelines and manuals, such as emergency operation procedures (EOP) and accident management guidelines (AMG), and on a basic policy on personnel education and training in accident management. Following this decision, our future efforts will be focused on improving software measures in combination with hardware measures to work out a well-balanced accident management program. (author)

  12. Strategy generator in computerized accident management support system

    An increased interest for research in the field of accident management of nuclear power plants can be noted. Several international programmes have been started in order to be able to understand the basic physical and chemical phenomena in accident conditions. A feasibility study has shown that it would be possible to design and develop a computerized support system for plant staff in accident situations. To achieve this goal the Halden Project has initiated a research programme on Computerized Accident Management Support (CAMS project). The aim is to utilize the capabilities of computerized tools to support the plant staff during the various accident stages. The system will include identification of the accident state, assessment of the future development of the accident and planning of accident mitigation strategies. A prototype is developed to support operators and the Technical Support Centre in decision making during serious accidents in nuclear power plants. A rule based system has been built to take care of the strategy generation. This system assists plant personnel in planning control proposals and mitigation strategies from normal operation to severe accident conditions. The idea of a safety objective tree and knowledge from the emergency procedures have been used. Future prediction requires good state identification of the plant status and some knowledge about the history of some critical variables. The information needs to be validated as well. Accurate calculations in simulators and a large database including all important information from the plant will help the strategy planning. (orig.). (40 refs., 20 figs.)

  13. Investigation of accident management strategies for VVER-1000-Type reactors

    The goal of this work is the search for an optimal accident management strategy to prevent containment failure and to stop the core/concrete interaction from hindering cavity bottom melt-through on the one hand and from ending the ex-vessel source term increase on the other hand, i.e., to terminate the accident. The work is based on the results of previous studies of physical and chemical phenomena during different accident scenarios for VVER-1000-type reactors. For a TMLB' sequence (an accident caused by a transient in which core melt occurs because the electric power cannot be restored before the pressure vessel melts through), a number of calculations were performed using the source term code package (STCP) to investigate the influence of several accident management measures on the core/concrete interaction and the containment integrity

  14. Severe Accident Management Strategy for EU-APR1400

    In EU-APR1400, the dedicated instrumentation and mitigation features for SAM are being developed to keep the integrity of containment and to prevent the uncontrolled release of fission products. In this paper, SAM strategy for EU-APR1400 was introduced in stages. It is still under development and finally the Severe Accident Management Guidance will be completed based on this SAM Strategy. Severe accidents in a nuclear power plant are defined as certain unlikely event sequences involving significant core damage with the potential to lead to significant releases according to EUR 2.1.4.4. Even though the probability of severe accidents is extremely low, the radiation release may cause serious effect on people as well as environment. Severe Accident Management (SAM) encompasses those actions which could be considered in recovering from a severe accident and preventing or mitigating the release of fission products to the environment. Whether those actions are successful or not, depending on a progression status of a severe accident to mitigate the consequences of severe accident phenomena to limit the release of radioactive materials keeping the leak tightness of the Primary Containment, and finally to restore transient severe accident progression into a controlled and safe states

  15. A framework for assessing severe accident management strategies

    Accident management can be defined as the innovative use of existing and or alternative resources, systems and actions to prevent or mitigate a severe accident. Together with risk management (changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-in-depth safety philosophy for severe accidents. A significant number of probabilistic safety assessments (PSA) have been completed which yield the principal plant vulnerabilities. For each sequence/threat and each combination of strategy there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These considerations include uncertainty in key phenomena, uncertainty in operator behavior, uncertainty in system availability and behavior, and uncertainty in available information (i.e., instrumentation). The objective of this project is to develop a methodology for assessing severe accident management strategies given the key uncertainties mentioned above. Based on Decision Trees and Influence Diagrams, the methodology is currently being applied to two case studies: cavity flooding in a PWR to prevent vessel penetration or failure, and drywell flooding in a BWR to prevent containment failure

  16. Passive depressurization accident management strategy for boiling water reactors

    Highlights: • We proposed two passive depressurization systems for BWR severe accident management. • Sensitivity analysis of the passive depressurization systems with different leakage area. • Passive depressurization strategies can prevent direct containment heating. - Abstract: According to the current severe accident management guidance, operators are required to depressurize the reactor coolant system to prevent or mitigate the effects of direct containment heating using the safety/relief valves. During the course of a severe accident, the pressure boundary might fail prematurely, resulting in a rapid depressurization of the reactor cooling system before the startup of SRV operation. In this study, we demonstrated that a passive depressurization system could be used as a severe accident management tool under the severe accident conditions to depressurize the reactor coolant system and to prevent an additional devastating sequence of events and direct containment heating. The sensitivity analysis performed with SAMPSON code also demonstrated that the passive depressurization system with an optimized leakage area and failure condition is more efficient in managing a severe accident

  17. Proceedings of the specialist meeting on selected containment severe accident management strategies

    Twenty papers were presented at the first specialist meeting on Selected Containment Severe Accident management Strategies, held in Stockholm, Sweden, in 1994, half of them dealing with accident management strategies implementation status, half of them with research aspects. The four sessions were: general aspects of containment accident management strategies, hydrogen management techniques, other containment accident management strategies (spray cooling, core catcher...), surveillance and protection of containment function

  18. RASPLAV, Refine accident management strategies during a reactor core meltdown

    Description: OECD RASPLAV Project. The RASPLAV project aimed to refine accident management strategies during a reactor core meltdown; it was completed in June 2000. Little is known about the complex interactions that take place during a core meltdown, so one of the RASPLAV project's primary goals was to develop an understanding of this process. The information gathered during tests at the Kurchatov Institute have allowed scientists to develop models of a core meltdown. These models can be used in the design of new reactors and in refining the accident procedures for existing ones. Two aspects of the issue were considered. First, for existing reactors, where external cooling may not be practicable, the process and time sequence before melt-through were studied. This was to help develop management strategies for severe accidents. Secondly, for future and some existing reactor designs, the project aimed to determine the heat transfer conditions under which cavity flooding can be a viable accident management option. The project was run in two successive phases. The RASPLAV Phase-2 project investigated the progression of a severe accident and in particular the thermal loading imposed by a corium pool on the lower head of a Light Water Reactor (LWR) vessel. It followed an earlier Phase-1 project dedicated mainly to the build-up of the experimental and analytical infrastructure. The project objectives were to obtain relevant data on the physical and thermal behavior of the corium in large-scale tests, to derive thermal-physical property data for various molten core materials, and to investigate the effects of stratification of molten materials. The programme of work involved the use of the large facilities available at the Kurchatov Institute in Russia. Four large-scale tests were carried out and were complemented by a series of smaller-scale experiments, all involving the use of materials representative of power reactor cores. Experiments with these test materials in

  19. Identification and evaluation of PWR in-vessel severe accident management strategies

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents

  20. Specialist meeting on selected containment severe accident management strategies. Summary and conclusions

    The CSNI Specialist Meeting on Selected Containment Severe Accident Management Strategies held in Stockholm, Sweden in June 1994 was organised by the Task Group on Containment Aspects of Severe Accident Management (CAM) of CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases (PWG4) in collaboration with the Swedish Nuclear Power Inspectorate (SKI). Conclusions and recommendations are given for each of the sessions of the workshops: Containment accident management strategies (general aspects); hydrogen management techniques and other containment accident management techniques; surveillance and protection of containment function

  1. A preliminary study for the implementation of general accident management strategies

    Yang, Soo Hyung; Kim, Soo Hyung; Jeong, Young Hoon; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of each strategy are also investigated. 11 refs., 3 figs., 3 tabs. (Author)

  2. Implementation of Severe Accident Management Strategy at the Loviisa NPP

    A comprehensive severe accident management (SAM) strategy has been developed by Fortum for the Loviisa NPP in Finland. The strategy ensures reliable prevention and mitigation of containment - threatening phenomena, and it is built around a set of SAM safety functions. This paper focusses on the implementation status of the new SAM approach. We describe how and to what extent the modifications with regards to containment isolation, primary system depressurization, hydrogen mitigation, in-vessel retention of corium, and long-term containment cooling have been carried out. When implementing SAM, it was also necessary to modify the emergency response organisation to include a SAM support team. SAM guidelines, procedures and a SAM Handbook have been written. The automatic containment isolation function has been studied carefully within the SAM project. A successful isolation function is of paramount importance, when radioactive releases from the core can be expected to occur soon. Certain modifications have been carried out so that it is now possible to manually actuate missing isolation signals and to lock isolation status. New local control centres have been built to enable manual closure of certain isolation valves. Several new containment leak-tightness measurements have been installed. New depressurization valves, manually operated relief valves, were installed in 1996 for primary system depressurization purposes. The modifications to the ice condenser doors have been carried out in the years 2000 and 2001. Passive auto-catalytic recombiners have been successfully field-tested in the Loviisa containment atmosphere. We aim for installation in the year 2002. The locations of the glow plugs are being updated in a currently ongoing project. In-vessel retention of molten corium through external cooling of the reactor pressure vessel required certain plant modifications e.g. in order to guarantee access of water to the RPV wall. Most significantly, the support structures

  3. Role of the man-machine interface in accident management strategies

    First, this paper gives a short general review on important safety issues in the field of man-machine interaction as expressed by important nuclear safety organisations. Then follows a summary discussion on what constitutes a modern Man-Machine Interface (MMI) and what is normally meant with accident management and accident management strategies. Furthermore, the paper focuses on three major issues in the context of accident management. First, the need for reliable information in accidents and how this can be obtained by additional computer technology. Second, the use of procedures is discussed, and basic MMI aspects of computer support for procedure presentation are identified followed by a presentation of a new approach on how to computerise procedures. Third, typical information needs for characteristic end-users in accidents, such as the control room operators, technical support staff and plant emergency teams, is discussed. Some ideas on how to apply virtual reality technology in accident management is also presented

  4. Influence of accident management strategies on source terms of VVER-1000-type reactors

    The source term can be mitigated by effective accident management. The goal of this work is the investigation of the influence of a number of accident management strategies on the source term of a VVER-1000-type reactor. This work is one of a series of studies investigating the behavior of a VVER-1000-type reactor during severe accidents. In particular, it is based on the study in which the pressure rise in the containment and the melt-through of the cavity bottom was investigated, indicating potential mitigation strategies. To rate the usefulness of these strategies, the source terms of selected scenarios are also calculated in the present work. All the calculations were performed using the Source Term Code Package; hydrogen explosions are not considered. For the first time, the source term behavior of these scenarios was simulated up to the very end of the accident the solidification of the melt

  5. Framework for accident management

    Accident management is an essential element of the Nuclear Regulatory Commission (NRC) Integration Plan for the closure of severe accident issues. This element will consolidate the results from other key elements; such as the Individual Plant Examination (IPE), the Containment Performance Improvement, and the Severe Accident Research Programs, in a form that can be used to enhance the safety programs for nuclear power plants. The NRC is currently conducting an Accident Management Program that is intended to aid in defining the scope and attributes of an accident management program for nuclear power plants. The accident management plan will ensure that a plant specific program is developed and implemented to promote the most effective use of available utility resources (people and hardware) to prevent and mitigate severe accidents. Hardware changes or other plant modifications to reduce the frequency of severe accidents are not a central aim of this program. To accomplish the outlined objectives, the NRC has developed an accident management framework that is comprised of five elements: (1) accident management strategies, (2) training, (3) guidance and computational aids, (4) instrumentation, and (5) delineation of decision making responsibilities. A process for the development of an accident management program has been identified using these NRC framework elements

  6. Management of severe accidents

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery managment concevtrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that 'active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk', and goes further in considering and formulating the key issue: 'The most fruitful path to follow in reducing risk even further is through the planning of accident management.' (author)

  7. Identification and initial assessment of candidate BWR late-phase in-vessel accident management strategies

    Hodge, S.A.

    1991-04-15

    Work sponsored by the United States Nuclear Regulatory Commission (USNRC) to identify and perform preliminary assessments of candidate BWR (boiling water reactor) in-vessel accident management strategies was completed at Oak Ridge National Laboratory (ORNL) during fiscal year 1990. Mitigative strategies for containment events have been the subject of a companion study at Brookhaven National Laboratory. The focus of this Oak Ridge effort was the development of new strategies for mitigation of the late phase events, that is, the events that would occur in-vessel after the onset of significant core damage. The work began with an investigation of the current status of BWR in-vessel accident management procedures and proceeded through a preliminary evaluation of several candidate new strategies. The steps leading to the identification of the candidate strategies are described. The four new candidate late-phase (in-vessel) accident mitigation strategies identified by this study and discussed in the report are: (1) keep the reactor vessel depressurized; (2) restore injection in a controlled manner; (3) inject boron if control blade damage has occurred; and (4) containment flooding to maintain core and structural debris in-vessel. Additional assessments of these strategies are proposed.

  8. Evaluation of RCS injection strategy by normal residual heat removal system in severe accident management

    Highlights: • Integrated severe accident analysis model of ALWR RCS, ESF and containment is built. • Large-break loss of coolant accident and loss of feed water accident are analyzed. • Effectiveness of RNS injection strategy and plant system response are investigated. • Impact of RNS injection on hydrogen generation and distribution is evaluated. • Negative impact induced by different RCS depressurization measures is investigated. - Abstract: Severe Accident Management Guidelines (SAMGs) suggests mitigating the consequence of severe accident scenarios by using the non-safety systems if the safety systems are unavailable. For 1000 MWe advanced passive pressurized water reactor (PWR), the normal residual heat removal system (RNS) is proposed to implement the Reactor Coolant System (RCS) injection strategy during severe accidents if safety systems fail. Therefore, evaluation of the effectiveness and negative impact of RNS injection strategy is performed, in which two typical severe accident sequences are selected, which are the typical low-pressure core melt accident sequence induced by Large-break Loss of Coolant Accident (LLOCA) with double-ended guillotine break at cold leg and the typical high-pressure core melt accident induced by Loss of Feed Water (LOFW), to analyze RCS response using the integrated severe accident analysis code. The plant model, including RCS, Engineering Safety Features (ESF), containment and RNS, is built to evaluate the effectiveness of RNS injection by comparing the sequences with and without RCS injection, which shows that RNS injection can terminate core melt progression and maintain core cooling in these accident sequences. However, hydrogen generated during the core reflooding is investigated for the negative impact, which shows that RNS may increase the hydrogen concentration in the containment. For the sequence induced by LOFW, two different RCS depressurization measurements are compared, which shows that opening ADS

  9. Use of a fuzzy decision-making method in evaluating severe accident management strategies

    In developing severe accident management strategies, an engineering decision would be made based on the available data and information that are vague, imprecise and uncertain by nature. These sorts of vagueness and uncertainty are due to lack of knowledge for the severe accident sequences of interest. The fuzzy set theory offers a possibility of handling these sorts of data and information. In this paper, the possibility to apply the decision-making method based on fuzzy set theory to the evaluation of the accident management strategies at a nuclear power plant is scrutinized. The fuzzy decision-making method uses linguistic variables and fuzzy numbers to represent the decision-maker's subjective assessments for the decision alternatives according to the decision criteria. The fuzzy mean operator is used to aggregate the decision-maker's subjective assessments, while the total integral value method is used to rank the decision alternatives. As a case study, the proposed method is applied to evaluating the accident management strategies at a nuclear power plant

  10. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    Hanson, D.J.; Golden, D.W.; Chambers, R.; Miller, J.D.; Hallbert, B.P.; Dobbe, C.A. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-10-01

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of {approximately}922 K (1200{degree}F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs.

  11. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of ∼922 K (1200 degree F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs

  12. Accident management information needs

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, a methodology has been developed for identifying the plant information needs necessary for personnel involved in the management of an accident to diagnose that an accident is in progress, select and implement strategies to prevent or mitigate the accident, and monitor the effectiveness of these strategies. This report describes the methodology and presents an application of this methodology to a Pressurized Water Reactor (PWR) with a large dry containment. A risk-important severe accident sequence for a PWR is used to examine the capability of the existing measurements to supply the necessary information. The method includes an assessment of the effects of the sequence on the measurement availability including the effects of environmental conditions. The information needs and capabilities identified using this approach are also intended to form the basis for more comprehensive information needs assessment performed during the analyses and development of specific strategies for use in accident management prevention and mitigation. 3 refs., 16 figs., 7 tabs

  13. Strategy adopted for the safe management of the waste arising from the Goiania accident

    The radiological accident in Goiania brought on an unexpected radioactive decontamination problem which generated a large volume of waste. The key to a straightforward management of this waste was the definition of a successful strategy to deal with it. To achieve this, several fundamental aspects were taken into account. Among the most important, one can mention the properties of the waste, the infrastructure available for its collection, the decontamination logistics, the motivation and commitment of the workers of different organizations involved in the cleanup tasks, the politically sensitive definition of handling a different kind of waste and the administrative procedures to set up reliable records on the waste collected. In the aftermath of the accident, management of the waste became complex because of the delay in agreeing on and setting up a disposal facility. Four years after the accident, corrosion was detected in some packages and measures were taken to ensure safe interim storage until final disposal. These measures focused on waste reconditioning, the development and implementation of a database containing a detailed inventory of the waste and the development of a national safety evaluation procedure for the final disposal facility. An overview is presented of the management of the waste derived from the Goiania accident, as well as the solutions adopted for final disposal. (author)

  14. Evolution of accident management strategies from the present to the next generation nuclear power plants

    The knowledge gained in Accident Management (A.M.) by means of studies and experiments performed for the current NPPs can be largely implemented in the advanced, passive safety NPPs, for which A.M. is still an application step of the defence in depth principle. Obviously, such implementation will take into account the safety philosophy peculiarities of the concerned plants, and the role assigned to their operators, which is largely determined by the objective of drastically reducing human errors and their potential effects on the plant safety. Indeed, in comparison with the current NPPs, the operators of the considered advanced plants are not strictly required to perform safety actions early in accidents progression, but are entrusted to follow-up and support automatic interventions of active and passive systems, and to manage the post accident plant conditions. A preliminary analysis shows that the A.M. implementation in advanced, passive safety plants could undergo as from now recognizable problems, mainly regarding: supervision needs and equipment requirements; utilization strategies for A.M. supporting equipment; staffing and training of operators; technical bases and procedures to cope with severe accidents. The related safety issues should be solved by appropriate analyses, strictly interacting with the design development. Operator's role and needs for (modes of) human intervention should be taken into account in every development stage of the concerned plants designs and should be carefully evaluated in assessing the plant response to the considered events, with deterministic and probabilistic methods. Also, specific studies and experiments should be performed, to support the development of A.M. bases and procedures, and to determine the equipment effectiveness as well. In summary: The knowledge in A.M. gained by studies and experiments performed for the current NPPs must be transferred to the advanced, passive safety NPPs, for which A. M. is still a step of

  15. The development and demonstration of integrated models for the evaluation of severe accident management strategies - SAMEM

    This study is concerned with the further development of integrated models for the assessment of existing and potential severe accident management (SAM) measures. This paper provides a brief summary of these models, based on Probabilistic Safety Assessment (PSA) methods and the Risk Oriented Accident Analysis Methodology (ROAAM) approach, and their application to a number of case studies spanning both preventive and mitigative accident management regimes. In the course of this study it became evident that the starting point to guide the selection of methodology and any further improvement is the intended application. Accordingly, such features as the type and area of application and the confidence requirement are addressed in this project. The application of an integrated ROAAM approach led to the implementation, at the Loviisa NPP, of a hydrogen mitigation strategy, which requires substantial plant modifications. A revised level 2 PSA model was applied to the Sizewell B NPP to assess the feasibility of the in-vessel retention strategy. Similarly the application of PSA based models was extended to the Barseback and Ringhals 2 NPPs to improve the emergency operating procedures, notably actions related to manual operations. A human reliability analysis based on the Human Cognitive Reliability (HCR) and Technique For Human Error Rate (THERP) models was applied to a case study addressing secondary and primary bleed and feed procedures. Some aspects pertinent to the quantification of severe accident phenomena were further examined in this project. A comparison of the applications of PSA based approach and ROAAM to two severe accident issues, viz hydrogen combustion and in-vessel retention, was made. A general conclusion is that there is no requirement for further major development of the PSA and ROAAM methodologies in the modelling of SAM strategies for a variety of applications as far as the technical aspects are concerned. As is demonstrated in this project, the

  16. A strategy for the management of milk contaminated as a result of a nuclear accident

    In the context of nuclear accidents, milk is an important foodstuff because it is produced continually in large quantities. However, the availability of both practical advice and policy level guidance on the management of contaminated milk is limited. This report draws together information on the two strategic approaches that need to be considered: waste minimisation and disposal. Data sheets and decision trees are presented to guide the user through a range of potential management options. The practicability of these options is evaluated against a set of well-established criteria. Unsuitable options are also discussed. Finally, a concise, coherent framework on which to base a broad strategy for the management of contaminated milk is proposed which may be of use to senior government advisers. Recommendations for further work are also made so that any remaining uncertainties can be addressed. (author)

  17. Regional management of accidents risk level: strategy based on effective feedbacks

    Today the accidents prevention and environmental protection activity in Bashkortostan Republic is regulated by Governmental Programme including risk management as one of the main parts. The authors of the present paper accumulated some experience in risk management system creation because they took part in the investigations according to the mentioned Programme. Their proposal concerns this closed-loop system general structure which is planned to be based on three kinds of feedbacks: internal feedback (it utilizes the special Russian institutions for the plants state observation and limitation such 'Gosgortechnodzor', 'Gossanepidnadzor', etc...; all the noted institutions must be informed of the current situation and fulfill the actions oriented towards risk indices reduction); intermediate feedback (it is represented by the insurance system functioning with respect to insurance agencies investments into the plants operational security); external feedback (it includes the subsystem of HP security declarations analysis mechanism, special HP regional register and the expert commission whose decisions become the foundations for governmental responses). The authors consider all the feedbacks interaction in order to provide the stability of region development. The resulting strategy for accidents risk level management has been confirmed now by some normative documents in Bashkortostan Republic. (authors)

  18. Overview of plant specific severe accident management strategies for Kozloduy nuclear power plant, WWER-1000/320

    Andreeva, M. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)], E-mail: m_andreeva@inrne.bas.bg; Pavlova, M.P. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)], E-mail: pavlova@inrne.bas.bg; Groudev, P.P. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)], E-mail: pavlinpg@inrne.bas.bg

    2008-04-15

    This paper focuses on the fourth level of the defence in depth concept in nuclear safety, including the transitions from the third level and into the fifth level. The use of the severe accident management guideline (SAMG) is required when an accident situation is not handled adequately through the use of emergency operating procedures (EOP), thus leading to a partial or a total core melt. In the EOPs, the priority is to save the fuel, whereas, in the SAMG, the priority is to save the containment. Actions recommended in the SAMG aim at limiting the risk of radiologically significant radioactive releases in the short- and mid-term (a few hours to a few days). The paper describes basic severe accident management requirements related to nuclear power plant (NPP), specified by the IAEA and in Republic of Bulgaria Nuclear Legislation. It also surveys plant specific severe accident management (SAM) strategies for the Kozloduy NPP, equipped with WWER-1000 type reactors.

  19. SEVERE ACCIDENT MANAGEMENT TRAINING

    The purpose of this paper is (a) to define the International Atomic Energy Agency's role in the area of severe accident management training, (b) to briefly describe the status of representative severe accident analysis tools designed to support development and validation of accident management guidelines, and more recently, simulate the accident with sufficient accuracy to support the training of technical support and reactor operator staff, and (c) provide an overview of representative design-specific accident management guidelines and training. Since accident management and the development of accident management validation and training software is a rapidly evolving area, this paper is also intended to evolve as accident management guidelines and training programs are developed to meet different reactor design requirements and individual national requirements

  20. The Effect of Containment Filtered Venting System on the Severe Accident Management Strategies of the CANDU6 Plant

    In March, 2011, Fukushima daichi nuclear power plants experienced a long term station blackout and severe core damages and released a large amount of radioactive materials outside of the plants. After this accident Nuclear Safety and Security Commission (NSSC) decided to install a filtered containment venting system (CFVS) at all the operating nuclear power plants in Korean. To comply with NSSC's request, Wolsong Unit 1 has installed a CFVS. Current severe accident management guidance, which does not consider a CFVS has 6 severe accident management strategies for CANDU6 plant. These strategies are inject in to the primary heat transport system (PHTS), inject in to the calandria, inject into the calandria vault, reduce fission product releases, control containment conditions, reduce containment hydrogen. The CFVS is designed to open and to close isolation valves by an operator. An operator opens the CFVS isolation valve when the containment pressure exceeds the design pressure (124 kPa(g)) and closes isolation valves when the containment pressure decreases below 50 kPa(g). The operation of the CFVS not only influences the current strategies (adds a means of controlling containment conditions) but also requires the new strategies. This paper discusses the necessity of the new strategies, such as the prevention of containment vacuum and the injection into the containment. The necessity of the additional severe accident management strategies for CANDU6 plants which installed a CFVS is evaluated. The operation of a CFVS affects the water inventory in the basement also, but not significantly. The SBO accident requires the water injection into the containment at least 4 days after an accident initiation if a passive spray system fails. If a spray system operates, then the injection into the containment is required more than 10 days after an accident initiation even though a CFVS operates

  1. Framework for accident management

    A program is being conducted to establish those attributes of a severe accident management plan which are necessary to assure effective response to all credible severe accidents and to develop guidance for their incorporation in a plant's Accident Management Plan. This program is one part of the Accident Management Research Program being conducted by the U. S. Nuclear Regulatory Commission (NRC). The approach used in establishing attributes and developing guidance includes three steps. In the first step the general attributes of an accident management plan were identified based on: (1) the objectives established for the NRC accident management program, (2) the elements of an accident management framework identified by the NRC, and (3) a review of the processes used in developing the currently used approach for classifying and analyzing accidents. For the second step, a process was defined that uses the general attributes identified from the first step to develop an accident management plan. The third step applied the process defined in the second step at a nuclear power plant to refine and develop it into a benchmark accident management plan. Step one is completed, step two is underway and step three has not yet begun

  2. CAMS: Computerized Accident Management Support

    The OECD Halden Reactor Project has initiated a new research programme on computerised accident management support, the so-called CAMS project (CAMS = Computerized Accident Management Support). This work will investigate the possibilities for developing systems which provide more extensive support to the control room staff and technical support centre than the existing SPDS (Safety Parameter Display System) type of systems. The CAMS project will utilize available simulator codes and the capabilities of computerized tools to assist the plant staff during the various accident stages including: identification of the accident state, assessment of the future development of the accident, and planning accident mitigation strategies. This research programme aims at establishing a prototype system which can be used for experimental testing of the concept and serve as a tool for training and education in accident management. The CAMS prototype should provide support to the staff when the plant is in a normal state, in a disturbance sate, and in an accident state. Even though better support in an accident state is the main goal of the project, it is felt to be important that the staff is familiar with the use of the system during normal operation, when they utilize the system during transients

  3. Strategy implemented for a safe management of the waste arising from the Goiania accident

    The management of radioactive waste after the accident is discussed. Several aspects such as properties of the waste, the available infrastructure for its collection, the decontamination logistics, the motivation and commitment of works and the politically sensitive definition of handling different waste as well as the administrative procedure to set up reliable records on the collected waste are studied. Four years after the accident, corrosion was detected in some packages. Waste reconditioning, development and implementation of waste data base and development of a national safety evaluation procedure for the final disposal facility are presented

  4. Application of Core Exit Temperature for Effective Safety Injection Strategy of Severe Accident Management Guidance

    Due to limited time for operator's action under the postulated severe accident, immediate and short term actions are needed and relevant strategies are constructed in the SAMG. Therefore, the SAMG includes a variety of information to assist the proper operator actions. Among these, pre-calculated graphs and formulas facilitate understanding of plant status and operator's action needed for accident mitigation. These are essential for ease of application and regarded as Computational Aids (CA). The representative example is the estimation of injection flow rates for removing decay heat and oxidation heat of core, and hydrogen generation rate, to mention a few. Most of all, calculation of the necessary injection flow rate is important in order to mitigate and/or terminate core damages. In estimating the flow rate for accident mitigation, Core Exit Temperature (CET) is utilized as a key variable. CET is considered most effective and reliable means for diagnosing core state. As such, CET has been adopted as a criterion transitioning from EOPs to SAMG. In this study, the necessary flow rate is calculated utilizing simple model with CET for RCS injection in mitigation strategy of SAMG. MELCOR simulation results are introduced for the calculation. A simple model of flow rate necessary for core heat removal is developed using CET data obtained from MELCOR simulations of OPR1000. The suggested model is expected to contribute on judging the core state in its coolability and required flow injection due to ease of application. More detailed analyses are needed to normalize by including additional accident scenarios

  5. A strategy to the development of a human error analysis method for accident management in nuclear power plants using industrial accident dynamics

    This technical report describes the early progress of he establishment of a human error analysis method as a part of a human reliability analysis(HRA) method for the assessment of the human error potential in a given accident management strategy. At first, we review the shortages and limitations of the existing HRA methods through an example application. In order to enhance the bias to the quantitative aspect of the HRA method, we focused to the qualitative aspect, i.e., human error analysis(HEA), during the proposition of a strategy to the new method. For the establishment of a new HEA method, we discuss the basic theories and approaches to the human error in industry, and propose three basic requirements that should be maintained as pre-requisites for HEA method in practice. Finally, we test IAD(Industrial Accident Dynamics) which has been widely utilized in industrial fields, in order to know whether IAD can be so easily modified and extended to the nuclear power plant applications. We try to apply IAD to the same example case and develop new taxonomy of the performance shaping factors in accident management and their influence matrix, which could enhance the IAD method as an HEA method. (author). 33 refs., 17 tabs., 20 figs

  6. External cooling: The SWR 1000 severe accident management strategy. Part 1: motivation, strategy, analysis: melt phase, vessel integrity during melt-water interaction

    This paper provides the description of the basics behind design features for the severe accident management strategy of the SWR 1000. The hydrogen detonation/deflagration problem is avoided by containment inertization. In-vessel retention of molten core debris via water cooling of the external surface of the reactor vessel is the severe accident management concept of the SWR 1000 passive plant. During postulated bounding severe accidents, the accident management strategy is to flood the reactor cavity with Core Flooding Pool water and to submerge the reactor vessel, thus preventing vessel failure in the SWR 1000. Considerable safety margins have determined by using state of the art experiment and analysis: regarding (a) strength of the vessel during the melt relocation and its interaction with water; (b) the heat flux at the external vessel wall; (c) the structural resistance of the hot structures during the long term period. Ex-vessel events are prevented by preserving the integrity of the vessel and its penetrations and by assuring positive external pressure at the predominant part of the external vessel in the region of the molten corium pool. Part 1 describes the motivation for selecting this strategy, the general description of the strategy and the part of the analysis associated with the vessel integrity during the melt-water interaction. (author)

  7. The management of accidents

    R. B. Ward

    2009-01-01

    Full Text Available Purpose: This author’s experiences in investigating well over a hundred accident occurrences has led to questioning how such events can be managed - - - while immediately recognising that the idea of managing accidents is an oxymoron, we don’t want to manage them, we don’t want not to manage them, what we desire is not to have to manage not-them, that is, manage matters so they don’t happen and then we don’t have to manage the consequences.Design/methodology/approach: The research will begin by defining some common classes of accidents in manufacturing industry, with examples taken from cases investigated, and by working backwards (too late, of course show how those involved could have managed these sample events so they didn’t happen, finishing with the question whether any of that can be applied to other situations.Findings: As shown that the management actions needed to prevent accidents are control of design and application of technology, and control and integration of people.Research limitations/implications: This paper has shown in some of the examples provided, management actions have been know to lead to accidents being committed by others, lower in the organization.Originality/value: Today’s management activities involve, generally, the use of technology in many forms, varying from simple tools (such as knives to the use of heavy equipment, electric power, and explosives. Against these we commit, in control of those items, the comparatively frail human mind and body, which, again generally, does succeed in controlling these resources, with (another generality by appropriate management. However, sometimes the control slips and an accident occurs.

  8. Optimization of the Severe Accident Management Strategy for Domestic Plants and Validation Experiments

    Kim, S. B.; Kim, H. D.; Koo, K. M.; Park, R. J.; Hong, S. H.; Cho, Y. R.; Kim, J. T.; Ha, K. S.; Kang, K. H

    2007-04-15

    nuclear power plants, a technical basis report and computational aid tools were developed in parallel with the experimental and analytical works for the resolution of the uncertain safety issues. ELIAS experiments were carried out to quantify the boiling heat removal rate at the upper surface of a metallic layer for precise evaluations on the effect of a late in-vessel coolant injection. T-HERMES experiments were performed to examine the two-phase natural circulation phenomena through the gap between the reactor vessel and the insulator in the APR1400. Detailed analyses on the hydrogen control in the APR1400 containment were performed focused on the effect of spray system actuation on the hydrogen burning and the evaluation of the hydrogen behavior in the IRWST. To develop the technical basis report for the severe accident management, analyses using SCDAP/RELAP5 code were performed for the accident sequences of the OPR1000. Based on the experimental and analytical results performed in this study, the computational aids for the evaluations of hydrogen flammability in the containment, criteria of the in-vessel corium cooling, criteria of the external reactor vessel cooling were developed. An ASSA code was developed to validate the signal from the instrumentations during the severe accidents and to process the abnormal signal. Since ASSA can perform the signal processing from the direct input of the nuclear power plant during the severe accident, it can be platform of the computational aids. In this study, the ASSA was linked with the computaional aids for the hydrogen flammability.

  9. Accident and emergency management

    There is an increasing potential for severe accidents as the industrial development tends towards large, centralised production units. In several industries this has led to the formation of large organisations which are prepared for accidents fighting and for emergency management. The functioning of these organisations critically depends upon efficient decision making and exchange of information. This project is aimed at securing and possibly improving the functionality and efficiency of the accident and emergency management by verifying, demonstrating, and validating the possible use of advanced information technology in the organisations mentioned above. With the nuclear industry in focus the project consists of five main activities: 1) The study and detailed analysis of accident and emergency scenarios based on records from incidents and rills in nuclear installations. 2) Development of a conceptual understanding of accident and emergency management with emphasis on distributed decision making, information flow, and control structure sthat are involved. 3) Development of a general experimental methodology for evaluating the effects of different kinds of decision aids and forms of organisation for emergency management systems with distributed decision making. 4) Development and test of a prototype system for a limited part of an accident and emergency organisation to demonstrate the potential use of computer and communication systems, data-base and knowledge base technology, and applications of expert systems and methods used in artificial intelligence. 5) Production of guidelines for the introduction of advanced information technology in the organisations based on evaluation and validation of the prototype system. (author)

  10. Severe accident management guidelines tool

    Severe Accident is addressed by means of a great number of documents such as guidelines, calculation aids and diagnostic trees. The response methodology often requires the use of several documents at the same time while Technical Support Centre members need to assess the appropriate set of equipment within the adequate mitigation strategies. In order to facilitate the response, TECNATOM has developed SAMG TOOL, initially named GGAS TOOL, which is an easy to use computer program that clearly improves and accelerates the severe accident management. The software is designed with powerful features that allow the users to focus on the decision-making process. Consequently, SAMG TOOL significantly improves the severe accident training, ensuring a better response under a real situation. The software is already installed in several Spanish Nuclear Power Plants and trainees claim that the methodology can be followed easier with it, especially because guidelines, calculation aids, equipment information and strategies availability can be accessed immediately (authors)

  11. Development of TRAIN for accident management

    Severe accident management can be defined as the use of existing and alternative resources, systems, and actions to prevent or mitigate a core-melt accident in nuclear power plants. TRAIN (Training pRogram for AMP In NPP), developed for training control room staff and the technical group, is introduced in this paper. The TRAIN composes of phenomenological knowledge base (KB), accident sequence KB and accident management procedures with AM strategy control diagrams and information needs. This TRAIN might contribute to training them by obtaining phenomenological knowledge of severe accidents, understanding plant vulnerabilities, and solving problems under high stress. (author)

  12. In-vessel melt retention as a severe accident management strategy for the Loviisa Nuclear Power Plant

    Kymaelaeinen, O.; Tuomisto, H. [IVO International Ltd., Vantaa (Finland); Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)

    1997-02-01

    The concept of lower head coolability and in-vessel retention of corium has been approved as a basic element of the severe accident management strategy for IVO`s Loviisa Plant (VVER-440) in Finland. The selected approach takes advantage of the unique features of the plant such as low power density, reactor pressure vessel without penetrations at the bottom and ice-condenser containment which ensures flooded cavity in all risk significant sequences. The thermal analyses, which are supported by experimental program, demonstrate that in Loviisa the molten corium on the lower head of the reactor vessel is coolable externally with wide margins. This paper summarizes the approach and the plant modifications being implemented. During the approval process some technical concerns were raised, particularly with regard to thermal loadings caused by contact of cool cavity water and hot corium with the reactor vessel. Resolution of these concerns is also discussed.

  13. Computerised severe accident management aids

    operational regimes. If a severe accident situation occurs, CAMS should be able to switch to use and present pre-calculated transients from severe accident codes such as MAAP. Another approach would be to switch from using the SMABRE code to using the on-line MAAP-code [6] for detailed calculations during severe accident states. The switch could be governed by a very simple rule such as 'Switch to the MAAP-code when core temperature > 700 deg. C'. A third approach could be to use the on-line MARS code for the whole programme, but there are several arguments against this. The on-line MARS code is not available at present, and the system is assumed to be expensive. There is not very much information available about the system, and it is unclear how difficult it will be to include MARS in the CAMS design. The MARS code will presumably not be useful for other operational regimes than the most serious ones. It will therefore not meet the stated objectives. In CAMS the possibility to assess different accident management strategies is achieved by means of the strategy generator and the predictive simulator based on the SMABRE code. By means of interaction with the strategy generator and some stored information on accident management principles, it will be possible to formulate a first control strategy. This strategy is given to the predictive simulator that calculates forward in time. The outcome can be studied by the operator /TSC. Such a calculation can be done assuming no operator actions or with operator actions. A realisation of the proposed CAMS system design will accordingly meet the stated objectives both with respect to normal operation, accident and severe accident operational regimes. The modularized flexible design will allow a smooth expansion of the system with new modules. The system is designed around a central database. The inclusion of a more or less complete plant simulator in the plant monitoring system is adding a new dimension to the plant monitoring task. Any

  14. Effectiveness and adverse effects of reactor coolant system depressurization strategy with various severe accident management guidance entry conditions for OPR1000

    Severe accident analysis for Korean OPR1000 with MELCOR 1.8.6 was performed by adapting a mitigation strategy under different entry conditions of Severe Accident Management Guidance (SAMG). The analysis was focused on the effectiveness of the mitigation strategy and its adverse effects. Four core exit temperatures (CETs) were selected as SAMG entry conditions, and Small Break Loss of Coolant Accident (SBLOCA), Station Blackout (SBO), and Total Loss of Feed Water (TLOFW) were selected as postulated scenarios that may propagate into severe accidents. In order to delay reactor pressure vessel (RPV) failure, entering the SAMG when the CET reached 923 K, 923 K, and 753 K resulted in the best results for SBLOCA, SBO, and TLOFW scenarios, respectively. This implies that using event-based diagnosis for severe accidents may be more beneficial than using symptom-based diagnosis. There is no significant difference among selected SAMG entry conditions in light of the operator's available action time before the RPV failure. Potential vulnerability of the RPV due to hydrogen generation was analyzed to investigate the foreseeable adverse effects that act against the accident mitigation strategies. For the SBLOCA cases, mitigation cases generated more hydrogen than the base case. However, the amount of hydrogen generated was similar between the base and mitigation cases for SBO and TLOFW. Hydrogen concentrations of containment were less than 5% before RPV failure for most cases. (author)

  15. Accident management approach in Armenia

    In this lecture the accident management approach in Armenian NPP (ANPP) Unit 2 is described. List of BDBAs had been developed by OKB Gydropress in 1994. 13 accident sequences were included in this list. The relevant analyses had been performed in VNIIAES and the 'Guidelines on operator actions for beyond design basis accident (BDBA) management at ANPP Unit 2' had been prepared. These instructions are discussed

  16. Accident management insights from IPE's

    In response to the U.S. Nuclear Regulatory Commission's Generic Letter 88-20, each utility in the U.S.A. has undertaken a probabilistic severe accident study of each plant. This paper provides a high level summary of the generic PWR accident management insights that have been obtained from the IPE reports. More importantly, the paper details some of the limitations of the IPE studies with respect to accident management. The IPE studies and the methodology used was designed to provide a best estimate of the potential for a severe accident and/or for severe consequences from a core damage accident. The accepted methodology employs a number of assumptions to make the objective attainable with a reasonable expenditure of resources. However, some of the assumptions represent limitations with respect to developing an accident management program based solely on the IPE and its results. (author)

  17. Strategies for operation of containment related ESFs in managing activity release to the environment during accident conditions

    In Indian PHWR design, a double containment concept with passive vapour suppression pool (to limit peak pressure) system has been adopted. In addition to it, various Engineered Safety Features (ESFs) have been incorporated to limit the release of radioactivity to the environment. They are: Reactor building emergency coolers for cooling which results in fast reduction of overpressure; Primary Containment Filtration and Pump Back System (PCFPBS) for reduction in iodine concentration inside RB atmosphere during post LOCA period; and, Primary Containment Controlled Discharge System (PCCDS) for the rapid reduction of over-pressure tail. Due to operation of secondary containment purge system, which maintain negative pressure in the annulus, the ground level release is negligibly small. However, if non- availability of negative pressure in secondary containment space is assumed, then operation of PCFPBS and PCCDS system reduces the ground level release significantly. In this situation, depending upon time of operation of the PCFPBS, it can effectively reduce the iodine release, both in stack level and ground level by trapping it in charcoal filters. It is seen that delay time of PCFPBS operation in conjunction with prevailing weather condition can be manipulated to reduce the effect of stack level release of iodine. In this paper the containment related ESFs used in Indian PHWR is discussed in brief and the effectiveness of operator actions and management strategies in actuation of the ESFs in reducing the activity release to environment (during postulated accident conditions) will be brought out. (author)

  18. SAMSON: Severe Accident Management System Online Network

    SAMSON, Severe Accident Management System Online Network, is a computational tool used in the event of a nuclear power plant accident by accident managers in the Technical Support Centers (TSC) and Emergency Offsite Facilities (EOF). SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. The status points analyzed include radiation levels, flow rates, pressure levels, temperatures and water levels. SAMSON uses an expert system as well as neural networks trained with the back propagation learning algorithm to make predictions. Previous training on data from accident analysis code allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTR), with breaks ranging from one tube to eights tubes, and loss of coolant accidents (LOCA), with breaks ranging from 0.001 square feet in size to breaks 3.0 square feet. SAMSON contains several neural networks for each accident type and break size, and chooses the correct network after accident classification by in expert system. SAMSON also provides information concerning the status of plant sensors and recovery strategies

  19. Use of probabilistic safety analyses in severe accident management

    An important consideration in the development and assessment of severe accident management strategies is that while the strategies are often built on the knowledge base of Probabilistic Safety Analyses (PSA), they must be interpretable and meaningful in terms of the control room indicators. In the following, the relationships between PSA and severe accident management are explored using ex-vessel accident management at a PWR ice-condenser plant as an example. 2 refs., 1 fig., 3 tabs

  20. Optimization of the Severe Accident Management Strategy for Domestic Plants and Validation Experiments

    Kim, S. B.; Park, R. J.; Kim, H. D.; Koo, K. M.; Cho, Y. R.; Kim, J. T.; Ha, K. S.; Kang, K. H.; Hong, S. H.; Kim, H. Y

    2005-04-15

    Main components and structures in nuclear power plants generally use materials having superior resistance to corrosion.Since the damages related to corrosion have become a menace to the safety of NPPs as well as economical loss and the steam generator tubing forming a boundary between the primary and secondary sides of NPPs is one of the main components that are most damaged by corrosion, it is strongly required to verify the mechanisms of the steam generator tubing degradations, to develop remedial techniques for the degradations, to manage the damages, and to develop techniques for the extension of the plant's life. In this study, the PWSCC characteristics of the archived steam generator tube materials in the domestic NPPs were evaluated and the databases of the obtained results were established. Also, the PWSCC characteristics of the welding material, Alloy 182, for Alloy 600, were evaluated. To verify the damage mechanisms of the circumferential SCC occurring in the expansion transition region of the tubes in the Korean standard NPPS, the evaluation technique for the residual stresses in the expanded region was acquired. A procedure of the inhibition technique for the SCC occurring in the secondary side of steam generators and a model for estimating the safety of damaged tubes by the structural leakage were developed, by which the fundamental technologies for the safe operations of NPPs, the management of the damages, and the expansion of the plant life were acquired. The material improvement technique for the integrity enhancement of tubes was developed. Along with the development of the Ni-coating technique the evaluation of the properties such as mechanical and SCC properties of the coated film was performed.

  1. Severe accident management. Prevention and Mitigation

    Effective planning for the management of severe accidents at nuclear power plants can produce both a reduction in the frequency of such accidents as well as the ability to mitigate their consequences if and when they should occur. This report provides an overview of accident management activities in OECD countries. It also presents the conclusions of a group of international experts regarding the development of accident management methods, the integration of accident management planning into reactor operations, and the benefits of accident management

  2. Severe accident management concept for LWRS

    Although the advanced built-in engineered safety features and the highly trained personnel have led to extremely low probabilities of core melt accidents, there is a common understanding that even for such very unlikely accidents the plant operators must have the ability and means to mitigate the consequences of such events. This paper outlines a concept for the management of severe accidents based on 1) Computer simulations. 2) Various strategies based on core and containment damage states. 3) Calculational Aids. 4) Procedures. 5) Technical basis report. 6) Training. 7) Drills. The major benefit of this concept is the fact that there is no dedicated operating manual for severe accidents; rather the required mitigative strategies and measures are incorporated into existing accident management manuals leading to truly integrated accident management at the plant. At present this concept is going to be implemented in the NPP Geogen. Although this approach is primarily developed for existing PWRs it is also applicable to other LWRs including new NPP designs. Specific features of the plant can be taken into account by an adaptation of the concept. (authors)

  3. The vver severe accident management

    The basic approach to the VVER safety management is based on the defence-in-depth principle the main idea of which is the multiplicity of physical barriers on the way of dangerous propagation on the one hand and the diversity of measures to protect each of them on the other hand. The main events of severe accident with loss of core cooling at NPP with WWER can be represented as a sequence of NPP states, in which each subsequent state is more severe than the previous one. The following sequence of states of the accident progression is supposed to be realistic and the most probable: -) loss of efficient core cooling; -) core melting, relocation of the molten core to the lower head and molten pool formation, -) reactor vessel damage, and -) containment damage and fission products release. The objectives of accident management at the design basis stage, the determining factors and appropriate determining parameters of processes are formulated in this paper. The same approach is used for the estimation of processes parameters at beyond design basis accident progression. The accident management goals and the determining factors and parameters are also listed in that case which is characterized by the loss of integrity of the fuel cladding. The accident management goal at the stage of core melt relocation implies the need for an efficient core-catcher

  4. Emergency monitoring strategy and radiation measurements. Working document of the NKS project emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD)

    This report is one of the deliverables of the NKS Project Emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD) (20022005). The project and the overall results are briefly described in the NKS publication 'Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD' (NKS-137, April 2006). In a nuclear or radiological emergency, all radiation measurements must be performed efficiently and the results interpreted correctly in order to provide the decision-makers with adequate data needed in analysing the situation and carrying out countermeasures. Managing measurements in different situations in a proper way requires the existence of pre-prepared emergency monitoring strategies. Preparing a comprehensive yet versatile strategy is not an easy task to perform because there are lots of different factors that have to be taken into account. The primary objective of this study was to discuss the general problematics concerning emergency monitoring strategies and to describe a few important features of an efficient emergency monitoring system as well as factors affecting measurement activities in practise. Some information concerning the current situation in the Nordic countries has also been included. (au)

  5. Emergency monitoring strategy and radiation measurements document of the NKS project emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD)

    Lahtinen, J. [Radiation and Nuclear Safety Authority (STUK) (Finland)

    2006-04-15

    This report is one of the deliverables of the NKS Project Emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD) (20022005). The project and the overall results are briefly described in the NKS publication 'Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD' (NKS-137, April 2006). In a nuclear or radiological emergency, all radiation measurements must be performed efficiently and the results interpreted correctly in order to provide the decision-makers with adequate data needed in analysing the situation and carrying out countermeasures. Managing measurements in different situations in a proper way requires the existence of pre-prepared emergency monitoring strategies. Preparing a comprehensive yet versatile strategy is not an easy task to perform because there are lots of different factors that have to be taken into account. The primary objective of this study was to discuss the general problematics concerning emergency monitoring strategies and to describe a few important features of an efficient emergency monitoring system as well as factors affecting measurement activities in practise. Some information concerning the current situation in the Nordic countries has also been included. (au)

  6. Alternative evacuation strategies for nuclear power accidents

    In the U.S., current protective-action strategies to safeguard the public following a nuclear power accident have remained largely unchanged since their implementation in the early 1980s. In the past thirty years, new technologies have been introduced, allowing faster computations, better modeling of predicted radiological consequences, and improved accident mapping using geographic information systems (GIS). Utilizing these new technologies, we evaluate the efficacy of alternative strategies, called adaptive protective action zones (APAZs), that use site-specific and event-specific data to dynamically determine evacuation boundaries with simple heuristics in order to better inform protective action decisions (rather than relying on pre-event regulatory bright lines). Several candidate APAZs were developed and then compared to the Nuclear Regulatory Commission’s keyhole evacuation strategy (and full evacuation of the emergency planning zone). Two of the APAZs were better on average than existing NRC strategies at reducing either the radiological exposure, the population evacuated, or both. These APAZs are especially effective for larger radioactive plumes and at high population sites; one of them is better at reducing radiation exposure, while the other is better at reducing the size of the population evacuated. - Highlights: • Developed framework to compare nuclear power accident evacuation strategies. • Evacuation strategies were compared on basis of radiological and evacuation risk. • Current strategies are adequate for smaller scale nuclear power accidents. • New strategies reduced radiation exposure and evacuation size for larger accidents

  7. Accident management information needs

    The tables contained in this Appendix A describe the information needs for a pressurized water reactor (PWR) with a large, dry containment. To identify these information needs, the branch points in the safety objective trees were examined to decide what information is necessary to (a) determine the status of the safety functions in the plant, i.e., whether the safety functions are being adequately maintained within predetermined limits, (b) identify plant behavior (mechanisms) or precursors to this behavior which indicate that a challenge to plant safety is occurring or is imminent, and (c) select strategies that will prevent or mitigate this plant behavior and monitor the implementation and effectiveness of these strategies. The information needs for the challenges to the safety functions are not examined since the summation of the information needs for all mechanisms associated with a challenge comprise the information needs for the challenge itself

  8. The management of radioactive waste from accidents

    Two accident case histories are reviewed - the Three Mile Island (TMI-2) reactor accident in 1979 and the Seveso accident in 1976. The status of the decontamination and radioactive waste management operations at TMI-2 as at 1986 is presented. 1986 estimates of reactor accident and recovery costs are given. 12 refs., 8 tabs

  9. Strategy for the Development of Severe Accident Analysis Technology

    To ensure the safety of people living near the nuclear power plants during the postulated events of severe accidents, a severe accident management strategy is prepared for the operating reactors and dedicated engineered features for the severe accidents are under research and development for the new reactors, such as GEN-III reactors. To accomplish these tasks, not only a proper understanding of fundamental physics of severe accident phenomena but also reliable computer codes for analyzing the severe accident phenomena is very necessary. This report deals with a strategic plan for a development and provision of computer code system for analyzing the severe accidents. This reports includes a summary of major phenomena of severe accidents, an peer review of the computer codes for analyzing the integral behavior of severe accident scenario and computer codes for analyzing the specific phenomena. Finally, a strategic plan for an equipment of severe accident computer codes either by use of already available computer codes or a development of our own computer codes, which could be competitive with world class foreign computer codes

  10. Analysis of Hydrogen Control Strategy Using Igniter during Severe Accident

    The Severe Accident Management Guidelines (SAMGs) for the operating pressurized water reactor (PWR) have been completed within 2006. Among the SAMG strategies, mitigation-07 is the most important strategy for managing a severe accident of a PWR in order to reduce containment hydrogen. The fastest way to reduce the containment hydrogen concentration is to intentionally ignite the hydrogen. For this strategy, igniters exist in Optimized Power Reactor 1000 (OPR 1000) to burn hydrogen for a severe accident. For using the igniters during a severe accident, the adverse effects such as the explosion of the hydrogen mixture should be considered for containment integrity. However, an applicable discrimination method to activate the igniters does not exist, so that the hydrogen control strategy using the igniters cannot be chosen during a severe accident. Thus, this study focused on suggesting an applicable discrimination method to carry out the strategy of using the igniters. In this study, the specific plant used for this analysis is Ulchin Unit 5 and 6, OPR 1000 plant, in Korea

  11. Severe accident analysis methodology in support of accident management

    The author addresses the implementation at BELGATOM of a generic severe accident analysis methodology, which is intended to support strategic decisions and to provide quantitative information in support of severe accident management. The analysis methodology is based on a combination of severe accident code calculations, generic phenomenological information (experimental evidence from various test facilities regarding issues beyond present code capabilities) and detailed plant-specific technical information

  12. Accident management insights after the Fukushima Daiichi NPP accident

    The Fukushima Daiichi nuclear power plant (NPP) accident, that took place on 11 March 2011, initiated a significant number of activities at the national and international levels to reassess the safety of existing NPPs, evaluate the sufficiency of technical means and administrative measures available for emergency response, and develop recommendations for increasing the robustness of NPPs to withstand extreme external events and beyond design basis accidents. The OECD Nuclear Energy Agency (NEA) is working closely with its member and partner countries to examine the causes of the accident and to identify lessons learnt with a view to the appropriate follow-up actions to be taken by the nuclear safety community. Accident management is a priority area of work for the NEA to address lessons being learnt from the accident at the Fukushima Daiichi NPP following the recommendations of Committee on Nuclear Regulatory Activities (CNRA), Committee on the Safety of Nuclear Installations (CSNI), and Committee on Radiation Protection and Public Health (CRPPH). Considering the importance of these issues, the CNRA authorised the formation of a task group on accident management (TGAM) in June 2012 to review the regulatory framework for accident management following the Fukushima Daiichi NPP accident. The task group was requested to assess the NEA member countries needs and challenges in light of the accident from a regulatory point of view. The general objectives of the TGAM review were to consider: - enhancements of on-site accident management procedures and guidelines based on lessons learnt from the Fukushima Daiichi NPP accident; - decision-making and guiding principles in emergency situations; - guidance for instrumentation, equipment and supplies for addressing long-term aspects of accident management; - guidance and implementation when taking extreme measures for accident management. The report is built on the existing bases for capabilities to respond to design basis

  13. Occupational Radiation Protection in Severe Accident Management

    application. Chapter 6 discusses monitoring and management strategies for the radioactive releases and contamination control during the emergency phase. Appendix-1 addresses key lessons learned from past accidents, including TMI, Chernobyl and Fukushima Daiichi and Appendix-2 includes information on the international workshop, which was organized in June 2014 to finalize this ISOE expert group report

  14. Stress in accident and post-accident management at Chernobyl

    The effects of the Chernobyl nuclear accident on the psychology of the affected population have been much discussed. The psychological dimension has been advanced as a factor explaining the emergence, from 1990 onwards, of a post-accident crisis in the main CIS countries affected. This article presents the conclusions of a series of European studies, which focused on the consequences of the Chernobyl accident. These studies show that the psychological and social effects associated with the post-accident situation arise from the interdependency of a number of complex factors exerting a deleterious effect on the population. We shall first attempt to characterise the stress phenomena observed among the population affected by the accident. Secondly, we will be presenting an anlysis of the various factors that have contributed to the emerging psychological and social features of population reaction to the accident and in post-accident phases, while not neglecting the effects of the pre-accident situation on the target population. Thirdly, we shall devote some initial consideration to the conditions that might be conducive to better management of post-accident stress. In conclusion, we shall emphasise the need to restore confidence among the population generally. (Author)

  15. Summary of a workshop on severe accident management for BWRs

    Severe accident management can be defined as the use of existing and/or alternative resources, systems and actions to prevent or mitigate a core-melt accident. For each accident sequence and each combination of strategies there may be several options available to the operator; and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrument behavior during an accident. During the period September 26--28, 1990, a workshop was held at the University of California, Los Angeles, to address these uncertainties for Boiling Water Reactors (BWRs). This report contains a summary of the workshop proceedings

  16. Depressurization as an accident management strategy for Jose Cabrera nuclear plant loss of feedwater and station blackout events

    This paper reports on an evaluation of the efficiency of the operator initiated depressurization in the Spanish Westinghouse one loop Jose Cabrera nuclear power plant that has been developed. This operation is recommended in the present emergency procedure for the total loss of feedwater event in the bleed and feed mode. RELAP5/MOD2 analyses show that this is an effective measure to bring the plant to a cold and stable condition in a design-based accident scenario

  17. The DOE technology development programme on severe accident management

    The US Department of Energy (DOE) is sponsoring a programme in technology development aimed at resolving the technical issues in severe accident management strategies for advanced and evolutionary light water reactors (LWRs). The key objective of this effort is to achieve a robust defense-in-depth at the interface between prevention and mitigation of severe accidents. The approach taken towards this goal is based on the Risk Oriented Accident Analysis Methodology (ROAAM). Applications of ROAAM to the severe accident management strategy for the US AP600 advanced LWR have been effective both in enhancing the design and in achieving acceptance of the conclusions and base technology developed in the course of the work. This paper presents an overview of that effort and its key technical elements

  18. The screening approach for review of accident management programmes

    In this lecture the screening approach for review of accident management programmes are presented. It contains objective trees for accident management: logic structure of the approach; objectives and safety functions for accident management; safety principles

  19. Validation of severe accident management guidance for the wolsong plants

    Full text: Full text: The severe accident management(SAM) guidance has been developed for the Wolsong nuclear power plants in Korea. The Wolsong plants are 700MWe CANDU-type reactors with heavy water as the primary coolant, natural uranium-fueled pressurized, horizontal tubes, surrounded by heavy water moderator inside a horizontal calandria vessel. The guidance includes six individual accident management strategies: (1) injection into primary heat transport system (2) injection into calandria vessel (3) injection into calandria vault (4) reduction of fission product release (5) control of reactor building condition (6) reduction of reactor building hydrogen. The paper provides the approaches to validate the SAM guidance. The validation includes the evaluation of:(l) effectiveness of accident management strategies, (2) performance of mitigation systems or components, (3) calculation aids, (4) strategy control diagram, and (5) interface with emergency operation procedure and with radiation emergency plan. Several severe accident sequences with high probability is selected from the plant specific level 2 probabilistic safety analysis results for the validation of SAM guidance. Afterward, thermal hydraulic and severe accident phenomenological analyses is performed using ISAAC(Integrated Severe Accident Analysis Code for CANDU Plant) computer program. Furthermore, the experiences obtained from a table-top-drill is also discussed

  20. Severe accident research and management in Nordic Countries - A status report

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  1. Severe accident research and management in Nordic Countries - A status report

    Frid, W. [Swedish Nuclear Power Inspectorate, SKI (Sweden)] (ed.)

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  2. Development of integrated accident management assessment technology

    This project aims to develop critical technologies for accident management through securing evaluation frameworks and supporting tools, in order to enhance capabilities coping with severe accidents. For the research goal, firstly under the viewpoint of accident prevention, on-line risk monitoring system and the analysis framework for human error have been developed. Secondly, the training/supporting systems including the training simulator and the off-site risk evaluation system have been developed to enhance capabilities coping with severe accidents. Four kinds of research results have been obtained from this project. Firstly, the framework and taxonomy for human error analysis has been developed for accident management. As the second, the supporting system for accident managements has been developed. Using data that are obtained through the evaluation of off-site risk for Younggwang site, the risk database as well as the methodology for optimizing emergency responses has been constructed. As the third, a training support system, SAMAT, has been developed, which can be used as a training simulator for severe accident management. Finally, on-line risk monitoring system, DynaRM, has been developed for Ulchin 3 and 4 unit

  3. Strategies for dealing with resistance to recommendations from accident investigations

    Lundberg, J.; Rollenhagen, C.; Hollnagel, E.;

    2012-01-01

    Accident investigation reports usually lead to a set of recommendations for change. These recommendations are, however, sometimes resisted for reasons such as various aspects of ethics and power. When accident investigators are aware of this, they use several strategies to overcome the resistance....... This paper describes strategies for dealing with four different types of resistance to change. The strategies were derived from qualitative analysis of 25 interviews with Swedish accident investigators from seven application domains. The main contribution of the paper is a better understanding of...... effective strategies for achieving change associated with accident investigation. (C) 2011 Elsevier Ltd. All rights reserved....

  4. A Survey of Implementation of Severe Accident Management in Sweden

    A comprehensive program for severe accident mitigation was completed for all Swedish reactors by the end of 1988. This work included development of new accident management procedures and also training programmes for operators . As a complement to the EOP's, knowledge based handbooks have been written for the reactors in Forsmark and Ringhals. They are intended for the emergency control centre in a late stage of a severe accident, when the procedures in the control room no longer are applicable. In a separate project, the impact from certain actions in a short perspective on the long term scenario has been investigated. Results from that work have been used in the development of knowledge based handbooks as decision support for the emergency control centre. For the PWR's in Ringhals the earlier procedures have been replaced by SAMG from WOG (Westinghouse Owners Group) in a project run by a team in Ringhals with support from Westinghouse. In the ongoing APRI-project (a cooperative effort between the Swedish Nuclear Power Inspectorate, the Swedish power utilities and TVO in Finland), accident management has been addressed in a sub-project with focus on validation of SAM strategies and use of results from the research on severe accidents to improve the SAM strategies. An important part of the program for severe accident mitigation was the development of accident management strategies. This work was documented in EOP's and other documentation to be used by the emergency organisation in case of an accident. Personnel at the utilities took an active part in the work mentioned above and also in later improvements such as the FR1PP project and in the development of handbooks for the emergency control centres in Forsmark and Ringhals. Generally, active participation of the end users in the development of documentation for severe accident management has clear advantages. One is that the staff at the plant will have a better insight in the work. To a certain extent the

  5. Accident knowledge and emergency management

    Rasmussen, B.; Groenberg, C.D.

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs.

  6. Accident knowledge and emergency management

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs

  7. Code strategy for simulating Severe Accident Scenario

    Severe accident scenarios of Sodium-cooled fast reactors involves various phenomena: core degradation, melt progression towards the core catcher, corium behaviour on the core catcher, energetic corium/sodium interactions, structure mechanical behaviour during expansion phase, containment behaviour, and fission production release and transport. In order to simulate the complete accident scenarios, CEA strategy relies on two sets of calculation codes: a reference set of codes and a set of simplified coupled models dedicated to Probabilistic Risk Assessment analyses. Concerning the reference set, that includes SAS-SFR, SIMMER, CONTAIN, EUROPLEXUS, and TOLBIAC, CEA started, with JAEA and KIT, a validation process based on existing experimental results such as CABRI and SCARABEE programs, and recently against the EAGLE1&2 program results, in the frame of a specific contract with JAEA. Furthermore, CEA is preparing additional experimental programs including in-pile experiments in IGR (NNC reactor), and out-of-pile experiments in the future experimental FOURNAISE facility to be built in CEA Cadarache (France). (author)

  8. Use of PSA and severe accident assessment results for the accident management

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management

  9. Medical response and management of radiation accidents

    An overview is provided of educational programs and principles essential to the appropriate medical management of radiation accident victims. Such an education program will provide details of the physical properties of radiation, of the sources of radiation exposure, of radiation protection standards and of biological radiation effects. The medical management of individuals involved in radiation accidents is discussed. Such management includes emergency medical stabilization, locating and quantitating the level and degree of internal and/or external contamination, wound decontamination, medical surveillance and the evaluation and treatment of local radiation injuries

  10. US nuclear industry perspective on accident management

    The Nuclear Management and Resources Council (NUMARC) serves as the United States nuclear power industry's principal mechanism for conveying industry views, concerns, and policies regarding industry wide regulatory issues to the Nuclear Regulatory Commission (NRC) and other government agencies as appropriate. NUMARC and the Electric Power Research Institute (EPRI), in support of the NUMARC Severe Accident Working Group's (SAWG's) efforts with regard to accident management, has developed a framework for evaluation of plant-specific accident management capabilities. These capabilities fall into one of three main categories: (1) personnel resources (organization, training, communications); (2) systems and equipment (restoration and repair, instrumentation, use of alternatives); and (3) information resources (procedures and guidance, technical information, process information). The purpose of this paper is to describe this framework, its objectives, the five major steps involved and areas to consider further

  11. Investigation on accident management measures for VVER-1000 reactors

    A consequence of a total loss of AC power supply (station blackout) leading to unavailability of major active safety systems which could not perform their safety functions is that the safety criteria ensuring a secure operation of the nuclear power plant would be violated and a consequent core heat-up with possible core degradation would occur. Currently, a study which examines the thermal-hydraulic behaviour of the plant during the early phase of the scenario is being performed. This paper focuses on the possibilities for delay or mitigation of the accident sequence to progress into a severe one by applying Accident Management Measures (AMM). The strategy 'Primary circuit depressurization' as a basic strategy, which is realized in the management of severe accidents is being investigated. By reducing the load over the vessel under severe accident conditions, prerequisites for maintaining the integrity of the primary circuit are being created. The time-margins for operators' intervention as key issues are being also assessed. The task is accomplished by applying the GRS thermal-hydraulic system code ATHLET. In addition, a comparative analysis of the accident progression for a station blackout event for both a reference German PWR and a reference VVER-1000, taking into account the plant specifics, is being performed. (authors)

  12. Severe Accident Management Measures Introduced in Belgian NPP's

    In response to the Belgian Safety Authorities' request to address the severe accident issue within a decennial safety review, Tractebel, on behalf of the Belgian Utility, Electrabel, examined in detail specific severe accident topics and provided the Utility with several measures that could be implemented to reduce the risk associated with beyond-design accidents. The present paper summarizes the key elements of the approach applied in Belgium: - Presentation of plant-specific studies related to severe accident issues; - Use of PSA results; - Inputs of international R and D projects; - Selection and justification of severe accident measures; - Comparative study between possible mitigative measures; - Definition and justification of implemented severe accident management strategies. The vulnerability to severe accidents as well as the potential causes of containment failures have been identified leading to the study of possible countermeasures taking into account the combination of conservative design and post-TMI measures already implemented . A section of the paper will also be devoted to the specific study made for the selection, the sizing and the implementation of hydrogen control means. After the description of the selected measures implemented, the paper also describes the content of the 'Severe Accident Management Guidelines' developed by Tractebel for the Tihange NPPs and for the Doel NPPs. This project aimed at providing the operators with procedures or guidelines enabling to deal with complex situations not formally considered in the standard Emergency Response Guidelines, including accidents in which a significant portion of the core melts. The objective of these SAMG's programs is to indicate actions that must bring the plant to a controlled stable state and, above all, mitigate any challenges to the fission product barriers. The plant personnel must use the available plant information to determine the best severe accident management measures. Obviously

  13. Effectiveness of selected accident management measures

    The spectrum of application of accident management measures and the boundary conditions for their performance are discussed. An assessment is made of the feasibility and effectiveness of selected possibilities of intervention for both types of light water reactors. Detailed descriptions are given of accident management measures (bleed and feed) on the secondary and on the primary side. Investigations have revealed that West German light water reactors have a great safety potential by flexible applicaton of the existing systems for controlling events which exceed the design basis. (orig./HP)

  14. Management of foodstuffs after nuclear accidents

    A model for the management of foodstuffs after nuclear accidents is presented. The model is a synthesis of traditions and principles taken from both radioactive protection and management of food. It is based on cooperation between the Nordic countries and on practical experience gained from the Chernobyl accident. The aim of the model is to produce a basis for common plans for critical situations based on criteria for decision making. In the case of radioactive accidents it is important that the protection of the public and of the society is handled in a positive way. The model concerns production, marketing and consumption of food and beverage. The overall aim is that the radiation doses should be as low and harmless to health for individual members of the public. (CLS) 35 refs

  15. Concern on accident management for the Korea next generation reactor

    The Korean Next Generation Reactor (KNGR) is under development to be built after year 2000 in Korea. To enhance its capability of preventing and/or mitigating severe accidents, various safety features are incorporated in its design. Some of them are designed against severe accidents and can be operated based on accident management program (AMP) for the KNGR. In this study, the potential capability of the Safety Depressurization System (SDS) and the Shutdown Cooling System (SCS) to mitigate the consequence of severe accidents was examined by using the MAAP 4.02 code as a preliminary step of the AMP development for the KNGR. The concerned accident sequences are small break loss of coolant accidents (SB LOCAs) with a failure of high pressure safety injection system (HPSIS) and a total loss of feedwater (TLOFW). In the level 1 Probabilistic Safety Assessment (PSA) of the KNGR, the operation of the SDS and SCS was not considered because the failures of the HPSIS and the aggressive secondary side cooling result in core damage based on the success criteria of the level 1 PSA. The analysis results show that the SDS can depressurize the RCS below the shutoff head of the shutdown cooling system (SCS) prior to reactor vessel failure. Although core uncovery and core damage occur early due to the opening of the SDS valves, the MAAP calculation results show that the SCS can reflood the damaged core and that core damage and reactor vessel failure can be mitigated or prevented by the feed-and-bleed operation with those systems. From the analysis results, therefore, it seems that the operation of the SDS and SCS can provide a means of mitigating accident consequences and can be employed as an effective accident management strategy for the KNGR. 5 refs., 6 figs., 4 tabs

  16. Development of severe accident management advisory and training simulator (SAMAT)

    The most operator support systems including the training simulator have been developed to assist the operator and they cover from normal operation to emergency operation. For the severe accident, the overall architecture for severe accident management is being developed in some developed countries according to the development of severe accident management guidelines which are the skeleton of severe accident management architecture. In Korea, the severe accident management guideline for KSNP was recently developed and it is expected to be a central axis of logical flow for severe accident management. There are a lot of uncertainties in the severe accident phenomena and scenarios and one of the major issues for developing a operator support system for a severe accident is the reduction of these uncertainties. In this paper, the severe accident management advisory system with training simulator, SAMAT, is developed as all available information for a severe accident are re-organized and provided to the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, the previous research results by knowledge-base technique, and the expected plant behavior using the severe accident training simulator. The plant model used in this paper is oriented to severe accident phenomena and thus can simulate the plant behavior for a severe accident. Therefore, the developed system may make a central role of the information source for decision-making for a severe accident management, and will be used as the training simulator for severe accident management

  17. Chernobyl reactor accident: medical management

    Chernobyl reactor accident on 26th April, 1986 is by far the worst radiation accident in the history of the nuclear industry. Nearly 500 plant personnel and rescue workers received doses varying from 1-16 Gy. Acute radiation syndrome (ARS) was seen only in the plant personnel. 499 individuals were screened for ARS symptoms like nausea, vomitting, diarrhoea and fever. Complete blood examination was done which showed initial granulocytosis followed by granulocytopenia and lymphocytopenia. Cytogenetic examinations were confirmatory in classifying the patients on the basis of the doses received. Two hundred and thirty seven cases of ARS were hospitalised in the first 24-36 hrs. No member of general public suffered from ARS. There were two immediate deaths and subsequently 28 died in hospital and one of the cases died due to myocardial infarction, making a total of 31 deaths. The majority of fatal cases had whole body doses of about 6 Gy, besides extensive skin burns. Two cases of radiation burns had thermal burns also. Treatment of ARS consisted of isolation, barrier nursing, replacement therapy with fluid electrolytes, platelets and RBC transfusions and antibiotic therapy for bacterial, fungal and viral infections. Bone marrow transplantations were given to 13 cases out of which 11 died due to various causes. Radiation burns due to beta, gamma radiations were seen in 56 cases and treated with dressings, surgical excision, skin grafting and amputation. Oropharangeal syndrome, producing extensive mucous in the oropharynx, was first seen in Chernobyl. The patients were treated with saline wash of the mouth. The patients who had radioactive contamination due to radioactive iodine were given stable iodine, following wash with soap, water and monitored. Fourteen survivors died subsequently due to other causes. Late health effects seen so far include excess of thyroid cancer in the children and psychological disorders due to stress. No excess leukemia has been reported so

  18. Neural network-based expert system for severe accident management

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. A second objective of the program was to develop an interactive graphical user interface which presented the system's information in an easily accessible and straightforward manner to the user. This paper describes the technical and regulatory foundation upon which the expert system is based and provides a background on the development of a new severe accident management tool. This tool provides data to assist in; (1) planning and developing priorities for recovery actions, (2) evaluating recovery action feasibility, (3) identifying recovery action options, and (4) assessing the timing and possible effects of potential recovery strategies. These performance characteristics represent the goals identified for the Severe Accident Management Strategies Online Network (SAMSON) which is currently under development. 4 refs, 1 fig., 1 tab

  19. Summary and conclusions of the specialist meeting on severe accident management programme development

    The CSNI Specialist meeting on severe accident management programme development was held in Rome and about seventy experts from thirteen countries attended the meeting. A total of 27 papers were presented in four sessions, covering specific aspects of accident management programme development. It purposely focused on the programmatic aspects of accident management rather than on some of the more complex technical issues associated with accident management strategies. Some of the major observations and conclusions from the meeting are that severe accident management is the ultimate part of the defense in depth concept within the plant. It is function and success oriented, not event oriented, as the aim is to prevent or minimize consequences of severe accidents. There is no guarantee it will always be successful but experts agree that it can reduce the risks significantly. It has to be exercised and the importance of emergency drills has been underlined. The basic structure and major elements of accident management programmes appear to be similar among OECD member countries. Dealing with significant phenomenological uncertainties in establishing accident management programmes continues to be an important issue, especially in confirming the appropriateness of specific accident management strategies

  20. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-15

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR.

  1. Modeling and measuring the effects of imprecision in accident management

    This paper presents two approaches for evaluating the uncertainties inherent in accident management strategies. Current PRA methodology uses expert opinion in the assessment of rare event probabilities. The problem is that these probabilities may be difficult to estimate even though reasonable engineering judgement is applied. This occurs because expert opinion under incomplete knowledge and limited data is inherently imprecise. In this case, the concept of uncertainty about a probability value is both intuitively appealing and potentially useful. This analysis considers accident management as a decision problem (i.e. 'applying a strategy' vs. 'do nothing') and uses an influence diagram. Then, the analysis applies two approaches to evaluating imprecise node probabilities in the influence diagram: 'a fuzzy probability' and 'an interval-valued subjective probability'. For the propagation of subjective probabilities, the analysis uses a Monte-Carlo simulation approach. In case of fuzzy probabilities, fuzzy logic is applied to propagate them. We believe that these approaches can allow us to better understand uncertainties associated with severe accident management strategies, because they provide additional information regarding the implications of using imprecise input data

  2. Development and validation of Maanshan severe accident management guidelines

    Maanshan is a Westinghouse pressurized water reactor Nuclear Power Plant (NPP) located in south Taiwan. The Severe Accident Management Guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG. The Maanshan SAMG is developed at the end of 2002. MAAP4 code is used as tool to validate the SAMG strategies. The development process and characteristics of Maanshan SAMG is described. A Station BlackOut (SBO) accident for Maanshan NPP which occurred in March 2001 is cited as a reference case for SAMG validation. A SBO accident is simulated first. The severe accident progression is simulated and the entry condition of SAMG is described. Mitigation actions are then applied to demonstrate the effect of SAMG. A RCS depressurization, RCS injection, and containment hydrogen reduction strategies are used to restore the system to a stable condition as power is recovered. Hot leg creep rupture is occurs during the mitigation action that is not considered in WOG SAMG. The effect of the RCS depressurization, RCS injection, and containment hydrogen reduction strategies are analyzed with MAAP4 code

  3. A study on the development of framework and supporting tools for severe accident management

    Through the extensive research on severe accidents, knowledge on severe accident phenomenology has constantly increased. Based upon such advance, probabilistic risk studies have been performed for some domestic plants to identify plant-specific vulnerabilities to severe accidents. Severe accident management is a program devised to cover such vulnerabilities, and leads to possible resolution of severe accident issues. This study aims at establishing severe accident management framework for domestic nuclear power plants where severe accident management program is not yet established. Emphasis is given to in-vessel and ex-vessel accident management strategies and instrumentation availability for severe accident management. Among the various strategies investigated, primary system depressurization is found to be the most effective means to prevent high pressure core melt scenarios. During low pressure core melt sequences, cooling of in-vessel molten corium through reactor cavity flooding is found to be effective. To prevent containment failure, containment filtered venting is found to be an effective measure to cope with long-term and gradual overpressurization, together with appropriate hydrogen control measure. Investigation of the availability of Yonggwang 3 and 4 instruments shows that most of instruments essential to severe accident management lose their desired functions during the early phase of severe accident progression, primarily due to the environmental condition exceeded ranges of instruments. To prevent instrument failure, a wider range of instruments are recommended to be used for some severe accident management strategies such as reactor cavity flooding. Severe accidents are generally known to accompany a number of complex phenomena and, therefore, it is very beneficial when severe accident management personnel is aided by appropriately designed supporting systems. In this study, a support system for severe accident management personnel is developed

  4. Severe accidents at nuclear power plants. Their risk assessment and accident management

    This document is to explain the severe accident issues. Severe Accidents are defined as accidents which are far beyond the design basis and result in severe damage of the core. Accidents at Three Mild Island in USA and at Chernobyl in former Soviet Union are examples of severe accidents. The causes and progressions of the accidents as well as the actions taken are described. Probabilistic Safety Assessment (PSA) is a method to estimate the risk of severe accidents at nuclear reactors. The methodology for PSA is briefly described and current status on its application to safety related issues is introduced. The acceptability of the risks which inherently accompany every technology is then discussed. Finally, provision of accident management in Japan is introduced, including the description of accident management measures proposed for BWRs and PWRs. (author)

  5. Estimation of cost per severe accident for improvement of accident protection and consequence mitigation strategies

    To assess the complex situations regarding the severe accidents such as what observed in Fukushima Accident, not only radiation protection aspects but also relevant aspects: health, environmental, economic and societal aspects; must be all included into the consequence assessment. In this study, the authors introduce the “cost per severe accident” as an index to analyze the consequences of severe accidents comprehensively. The cost per severe accident consists of various costs and consequences converted into monetary values. For the purpose of improvement of the accident protection and consequence mitigation strategies, the costs needed to introduce the protective actions, and health and psychological consequences are included in the present study. The evaluations of these costs and consequences were made based on the systematic consequence analysis using level 2 and 3 probabilistic safety assessment (PSA) codes. The accident sequences used in this analysis were taken from the results of level 2 seismic PSA of a virtual 1,100 MWe BWR-5. The doses to the public and the number of people affected were calculated using the level 3 PSA code OSCAAR of Japan Atomic Energy Agency (JAEA). The calculations have been made for 248 meteorological sequences, and the outputs are given as expectation values for various meteorological conditions. Using these outputs, the cost per severe accident is calculated based on the open documents on the Fukushima Accident regarding the cost of protective actions and compensations for psychological harms. Finally, optimized accident protection and consequence mitigation strategies are recommended taking into account the various aspects comprehensively using the cost per severe accident. The authors must emphasize that the aim is not to estimate the accident cost itself but to extend the scope of “risk-informed decision making” for continuous safety improvements of nuclear energy. (author)

  6. Development Process of Plant-specific Severe Accident Management Guidelines for Wolsong Nuclear Power Plants

    A severe accident, which occurred at the TMI in 1979 and Chernobyl in 1986, is an accident that exceeds design basis accidents and leads to significant core damage. The severe accident is the low possibility of occurrence but the high severity. To mitigate the consequences of the severe accidents, Korean Nuclear Safety Committee declared the Severe Accident Policy in 2001, which requested the development of Severe Accident Management Guidelines (SAMGs) for operating plants. SAMG is a symptom-based guidance that takes a set of actions to alleviate the outcomes of severe accidents and to get into the safe stable plant condition. The purpose of this paper is to presents the strategic development process of the PHWR SAMG. The guidelines consist of 5 categories: an emergency guide for the main control room (MCR) operators, a strategy implementing guide for the technical support center (TSC), six mitigation guides, a monitoring guide, and a termination guide

  7. Development of the severe accident risk information database management system SARD

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies

  8. Development of the severe accident risk information database management system SARD

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies.

  9. OSSA - An optimized approach to severe accident management: EPR application

    There is a recognized need to provide nuclear power plant technical staff with structured guidance for response to a potential severe accident condition involving core damage and potential release of fission products to the environment. Over the past ten years, many plants worldwide have implemented such guidance for their emergency technical support center teams either by following one of the generic approaches, or by developing fully independent approaches. There are many lessons to be learned from the experience of the past decade, in developing, implementing, and validating severe accident management guidance. Also, though numerous basic approaches exist which share common principles, there are differences in the methodology and application of the guidelines. AREVA/Framatome-ANP is developing an optimized approach to severe accident management guidance in a project called OSSA ('Operating Strategies for Severe Accidents'). There are still numerous operating power plants which have yet to implement severe accident management programs. For these, the option to use an updated approach which makes full use of lessons learned and experience, is seen as a major advantage. Very few of the current approaches covers all operating plant states, including shutdown states with the primary system closed and open. Although it is not necessary to develop an entirely new approach in order to add this capability, the opportunity has been taken to develop revised full scope guidance covering all plant states in addition to the fuel in the fuel building. The EPR includes at the design phase systems and measures to minimize the risk of severe accident and to mitigate such potential scenarios. This presents a difference in comparison with existing plant, for which severe accidents where not considered in the design. Thought developed for all type of plants, OSSA will also be applied on the EPR, with adaptations designed to take into account its favourable situation in that field

  10. Artificial intelligence applications in accident management

    For nuclear power plant accident management, there are some addition concerns: linking AI systems to live data streams must be mastered; techniques for processing sensor inputs with varying data quality need to be provided; systems responsiveness to changing plant conditions and multiple user requests should, in general, be improved; there is a need for porting applications from specialized AI machines onto conventional computer hardware without incurring unacceptable performance penalties; human factors guidelines are required for new user interfaces in AI applications; methods for verification and validation of AI-based systems must be developed; and, finally, there is a need for proven methods to evaluate use effectiveness and firmly establish the benefits of AI-based accident management systems. (orig./GL)

  11. The expert assistant in accident management

    In the event of a nuclear accident in proximity to an urban area, the consequences resulting from the complex processes of environmental transport of radioactivity would require complex countermeasures. Emphasis has been placed on either modelling the potential effects of such an event on the population, or on attempting to predict the geographical evolution of the release. Less emphasis has been placed on the development of accident management aids with a in-built data acquisition capability. Given the problems of predicting the evolution of an accidental release of activity, more emphasis should be placed on the development of small regional systems specifically engineered to acquire and display environmental data in the most efficaceous form possible. A wealth of information can be obtained from appropriately-sited outstations which can aid those responsible for countermeasures in their decision making processes. The substantial volume of data which would arrive within the duration and during the aftermath of an accident requires skilled interpretation under conditions of considerable stress. It is necessary that a management aid notonly presents these data in a rapidly assimilable form, but is capable of making intelligent decisions of its own, on such matters as information display priority and the polling frequency of outstations. The requirement is for an expert assistant. The XERSES accident management aid has been designed with the foregoing features in mind. Intended for covering regions up to approximately 100 kms square, it links with between 1 and 64 outstations supplying a variety of environmental data. Under quiescent conditions the system will operate unattended, raising alarms remotely only when detecting abnormal conditions. Under emergency conditions, the system automatically adjusts such operating parameters as data acquisition rate

  12. Simulation of severe accident in reactor core for training and accident management

    An Advanced Real-time Severe Accident Simulation (ARTSAS) train reactor operators and accident management teams for scenarios simulating severe accidents in nuclear reactors. The code has been integrated with the real-time tools and the RAINBO graphic package to provide training and analysis tools on workstations as well as on full-scope simulators. (orig.) (4 refs., 1 fig.)

  13. Proceedings of the Specialist Meeting on Severe Accident Management Programme Development

    Effective Accident Management planning can produce both a reduction in the frequency of severe accidents at nuclear power plants as well as the ability to mitigate a severe accident. The purpose of an accident management programme is to provide to the responsible plant staff the capability to cope with the complete range of credible severe accidents. This requires that appropriate instrumentation and equipment are available within the plant to enable plant staff to diagnose the faults and to implement appropriate strategies. The programme must also provide the necessary guidance, procedures, and training to assure that appropriate corrective actions will be implemented. One of the key issues to be discussed is the transition from control room operations and the associated emergency operating procedures to a technical support team approach (and the associated severe accident management strategies). Following a proposal made by the Senior Group of Experts on Severe Accident Management (SESAM), the Committee on the Safety of Nuclear Installations decided to sponsor a Specialist Meeting on Severe Accident Management Programme Development. The general objectives of the Specialist Meeting were to exchange experience, views, and information among the participants and to discuss the status of severe accident management programmes. The meeting brought together utilities, accident management programme developers, personnel training programme developers, regulators, and researchers. In general, the tone of the Specialist Meeting - designed to promote progress, as contrasted with conferences or symposia where the state-of-the-art is presented - was to be rather practical, and focus on accident management programme development, applications, results, difficulties and improvements. As shown by the conclusions of the meeting, there is no doubt that this objective was widely attained

  14. A Study on Reinforcement of the Accident Management System in Korea

    The aim of this study is to present the status of post-Fukushima actions with respect to accident management and also provides the current status of developing EDMGs and applicability of a FLEX strategy in Korea. As part of the post-Fukushima actions in Korea, SAMGs will be revised to improve the effectiveness of accident management. For this purpose, it is recommended to revise the EOPs and SAMGs and establish the EDMGs with consideration of prolonged SBO, spent fuel pool cooling, using mobile equipment for accident control, feedback of the implementation of the action items of the special safety inspection, multiple severe accidents for all reactors at a site. It is considered that the FLEX strategy may be useful to mitigate the accidents like Fukushima. Therefore, it is recommended to adopt this strategy including provision of the equipment with protection from external events. The Fukushima accident revealed that EOPs and SAMGs were not effectively coping with and mitigating the severe accident caused by extreme natural hazards such as earthquake and tsunami. The accident indicated needs for strengthening the existing accident management procedures such as emergency operating procedures (EOPs) and severe accident management guidelines (SAMGs). In particular, these procedures should address the possibility of extreme natural hazards causing a prolonged SBO condition, which affects multiple-units and Spent Fuel Pools (SFPs) (NTTF Recommendation 9). In addition, in order to prevent and mitigate the potential damage in an extensive scale at a multi-unit site due to external events, fire, various kinds of countermeasures are required by the Regulatory Body. These are the follow-up actions to the special safety inspection carried out just after the Fukushima accident and the stress tests for old plants. Especially, the Extensive Damage Mitigation Guidelines (EDMGs) are being provided by the utility in conjunction with adoption of the FLEX strategy (diverse and

  15. A database system for the management of severe accident risk information, SARD

    Ahn, K. I.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies.

  16. Accident management advisor system (AMAS): A Decision Aid for Interpreting Instrument Information and Managing Accident Conditions in Nuclear Power Plants

    Accident management can be characterized as the optimized use of all available plant resources to stop or mitigate the progression of a nuclear power plant accident sequence which may otherwise result i n reactor vessel and containment failure. It becomes important under conditions that have low probability of occurring. However, given that these conditions may lead to extremely severe financial consequences and public health effects, it is now recognized that it is important for the plant owners to develop realistic strategies and guidelines. Recent studies have classified accident management strategies as: - the use of alternative resources (i.e., air, water, power), - the use of alternative equipment (i.e., pumps, water lines, generators), the use of alternative actions (i.e., manual depressurization and injection, 'feed and bleed', etc.) The matching of these alternative actions and resources to an actual plant condition represents a decision process affected by a high degree of uncertainty in several of its fundamental inputs. This uncertainty includes the expected accident progression phenomenology (e.g., the issue of high pressure core ejection from the vessel in a PWR plant with possible 'direct containment heating'), as well as the expected availability and behavior of plant systems and of plant instrumentation. To support the accident management decision process with computer-based decision aids, one needs to develop accident progression models that can be stored in a computer knowledge based and retrieved at will for comparison with actual plant conditions, so that these conditions can be recognized and dealt with accordingly. Recent Probabilistic Safety Assessments (PSAs) [1] show the progression of a severe accident through and beyond the core melt stages via multi-branch accident progression trees. Although these 'accident tree models' were originally intended for accident probability assessment purposes, they do provide a basis of initial information

  17. "Defence-in-Depth" Strategy in Transport Risk Management

    Szymanek, Andrzej

    Safety management is a kind of system management, that is management by purposes. Taking "defence-in-depth" strategy, DDS - there can be defined four main aims and four method groups of risk management in transport: 1. minimizing transport accidents risk; 2. minimizing number of undesirable transport events (incidents, conflicts, collisions, accidents). Above purposes relate stages of safety management in transport. At each level of management should be elaborated methods, procedures and technologies of minimizing transport accidents risk. According to DDS any management system of transport safety should have a structure of multilevel chain protections which supervise main transport processes. About those problems in the paper.

  18. Strategies for psychosocial risk management in manufacturing

    Guadix Martín, José; Carrillo Castrillo, Jesús Antonio; Onieva Giménez, Luis Gerardo; Lucena, David

    2015-01-01

    Psychosocial risk is a concern for employers across Europe. Psychosocial risk management, however, is younger than other risk management fields such as safety, hygiene, and ergonomics. Psychosocial risk control prevents accidents and absenteeism. This study examines strategies for psychosocial risk management in manufacturing organizations. The study employs structural equation modeling to analyze results of the European Survey of Enterprises onNewand Emerging Risks (ESENER), a survey that fi...

  19. Severe accident management program at Cofrentes Nuclear Power Plant

    Cofrentes Nuclear Power Plant (GE BWR/6) has implemented its specific Severe Accident Management Program within this year 2000. New organization and guides have been developed to successfully undertake the management of a severe accident. In particular, the Technical Support Center will count on a new ''Severe Accident Management Team'' (SAMT) which will be in charge of the Severe Accident Guides (SAG) when Control Room Crew reaches the Emergency Operation Procedures (EOP) step that requires containment flooding. Specific tools and training have also been developed to help the SAMT to mitigate the accident. (author)

  20. Accident Precursor Analysis and Management: Reducing Technological Risk Through Diligence

    Phimister, James R. (Editor); Bier, Vicki M. (Editor); Kunreuther, Howard C. (Editor)

    2004-01-01

    Almost every year there is at least one technological disaster that highlights the challenge of managing technological risk. On February 1, 2003, the space shuttle Columbia and her crew were lost during reentry into the atmosphere. In the summer of 2003, there was a blackout that left millions of people in the northeast United States without electricity. Forensic analyses, congressional hearings, investigations by scientific boards and panels, and journalistic and academic research have yielded a wealth of information about the events that led up to each disaster, and questions have arisen. Why were the events that led to the accident not recognized as harbingers? Why were risk-reducing steps not taken? This line of questioning is based on the assumption that signals before an accident can and should be recognized. To examine the validity of this assumption, the National Academy of Engineering (NAE) undertook the Accident Precursors Project in February 2003. The project was overseen by a committee of experts from the safety and risk-sciences communities. Rather than examining a single accident or incident, the committee decided to investigate how different organizations anticipate and assess the likelihood of accidents from accident precursors. The project culminated in a workshop held in Washington, D.C., in July 2003. This report includes the papers presented at the workshop, as well as findings and recommendations based on the workshop results and committee discussions. The papers describe precursor strategies in aviation, the chemical industry, health care, nuclear power and security operations. In addition to current practices, they also address some areas for future research.

  1. Level 2 PSA methodology and severe accident management

    The objective of the work was to review current Level 2-PSA (Probabilistic Safety Assessment) methodologies and practices and to investigate how Level 2-PSA can support severe accident management programmes, i.e. the development, implementation, training and optimisation of accident management strategies and measures. For the most part, the presented material reflects the state in 1996. Current Level 2 PSA results and methodologies are reviewed and evaluated with respect to plant type specific and generic insights. Approaches and practices for using PSA results in the regulatory context and for supporting severe accident management programmes by input from level 2 PSAs are examined. The work is based on information contained in: PSA procedure guides, PSA review guides and regulatory guides for the use of PSA results in risk informed decision making; plant specific PSAs and PSA related literature exemplifying specific procedures, methods, analytical models, relevant input data and important results, use of computer codes and results of code calculations. The PSAs are evaluated with respect to results and insights. In the conclusion section, the present state of risk informed decision making, in particular in the level 2 domain, is described and substantiated by relevant examples

  2. A Methodology for Probabilistic Accident Management

    While techniques have been developed to tackle different tasks in accident management, there have been very few attempts to develop an on-line operator assistance tool for accident management and none that can be found in the literature that uses probabilistic arguments, which are important in today's licensing climate. The state/parameter estimation capability of the dynamic system doctor (DSD) approach is combined with the dynamic event-tree generation capability of the integrated safety assessment (ISA) methodology to address this issue. The DSD uses the cell-to-cell mapping technique for system representation that models the system evolution in terms of probability of transitions in time between sets of user-defined parameter/state variable magnitude intervals (cells) within a user-specified time interval (e.g., data sampling interval). The cell-to-cell transition probabilities are obtained from the given system model. The ISA follows the system dynamics in tree form and braches every time a setpoint for system/operator intervention is exceeded. The combined approach (a) can automatically account for uncertainties in the monitored system state, inputs, and modeling uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to rank the likelihood of possible system states in view of these uncertainties; (b) allows flexibility in system representation; (c) yields the lower and upper bounds on the estimated values of state variables/parameters as well as their expected values; and (d) leads to fewer branchings in the dynamic event-tree generation. Using a simple but realistic pressurizer model, the potential use of the DSD-ISA methodology for on-line probabilistic accident management is illustrated

  3. PWR accident management realated tests: some Bethsy results

    The BETHSY integral test facility which is a scaled down model of a 3 loop FRAMATOME PWR and is currently operated at the Nuclear Center of Grenoble, forms an important part of the French strategy for PWR Accident Management. In this paper the features of both the facility and the experimental program are presented. Two accident transients: a total loss of feedwater and a 2'' cold leg break in case of High Pressure Safety Injection System failure, involving either Event Oriented - or State Oriented-Emergency Operating Procedures (EO-EOP or SO-EOP) are described and the system response analyzed. CATHARE calculation results are also presented which illustrate the ability of this code to adequately predict the key phenomena of these transients. (authors). 13 figs., 11 refs., 2 tabs

  4. Investment Strategy Based on Aviation Accidents: Are there abnormal returns?

    Marcos Rosa Costa

    2013-06-01

    Full Text Available This article investigates whether an investment strategy based on aviation accidents can generate abnormal returns. We performed an event study considering all the aviation accidents with more than 10 fatalities in the period from 1998 to 2009 and the stock market performance of the respective airlines and aircraft manufacturers in the days after the event. The tests performed were based on the model of Campbell, Lo & MacKinlay (1997 for definition of abnormal returns, by means of linear regression between the firms’ stock returns and the return of a market portfolio used as a benchmark. This enabled projecting the expected future returns of the airlines and aircraft makers, for comparison with the observed returns after each event. The result obtained suggests that an investment strategy based on aviation accidents is feasible because abnormal returns can be obtained in the period immediately following an aviation disaster.

  5. Speed Management Strategies; A Systematic Review

    Homayoun Sadeghi-Bazargani

    2016-07-01

    Full Text Available Objective: To systematically identify the various methods of speed management and their effects. Methods: A systematic search was performed in Science Direct, Ovid Medline, Scopus, PubMed and ProQuest databases from April to June 2015. Hand searching and reference of selected articles were used to improve article identification. Articles published after 1990 which had reported on efficacy/effectiveness of speed management strategies were included. Data were extracted using pre-defined extraction table. Results: Of the 803 retrieved articles, 22 articles were included in this review. Most of the included articles (63% had before-after design and were done in European countries. Speed cameras, engineering schemes, intelligent speed adaption (ISA, speed limits and zones, vehicle activated sign and integrated strategies were the most common strategies reported in the literature. Various strategies had different effects on mean speed of the vehicles ranging from 1.6 to 10 km/h. Moreover, 8-65% and 11-71% reduction was reported in person injured accidents and fatal accidents, respectively as a result of employing various strategies. Conclusion: Literature revealed positive effects of various speed management strategies. Using various strategies was mostly dependent on road characteristics, driver’s attitude about the strategy as well as economic and technological capabilities of the country. Political support is considered as a main determinant in selecting speed management strategies.

  6. Speed Management Strategies; A Systematic Review

    Sadeghi-Bazargani, Homayoun; Saadati, Mohammad

    2016-01-01

    Objective: To systematically identify the various methods of speed management and their effects. Methods: A systematic search was performed in Science Direct, Ovid Medline, Scopus, PubMed and ProQuest databases from April to June 2015. Hand searching and reference of selected articles were used to improve article identification. Articles published after 1990 which had reported on efficacy/effectiveness of speed management strategies were included. Data were extracted using pre-defined extraction table. Results: Of the 803 retrieved articles, 22 articles were included in this review. Most of the included articles (63%) had before-after design and were done in European countries. Speed cameras, engineering schemes, intelligent speed adaption (ISA), speed limits and zones, vehicle activated sign and integrated strategies were the most common strategies reported in the literature. Various strategies had different effects on mean speed of the vehicles ranging from 1.6 to 10 km/h. Moreover, 8-65% and 11-71% reduction was reported in person injured accidents and fatal accidents, respectively as a result of employing various strategies. Conclusion: Literature revealed positive effects of various speed management strategies. Using various strategies was mostly dependent on road characteristics, driver’s attitude about the strategy as well as economic and technological capabilities of the country. Political support is considered as a main determinant in selecting speed management strategies.

  7. Implementation of severe accident management measures - Summary and conclusions

    The objectives of the meeting were: 1) to exchange information on activities in the area of SAM implementation and on the rationale for such actions, 2) to monitor progress made, 3) to identify cases of agreement or disagreement, 4) to discuss future orientations of work, 5) to make recommendations to the CSNI. Session summaries prepared by the Chairpersons and discussed by the whole writing group are given in Annex. During the first session, 'SAM Programmes Implementation', papers from one regulator and several utilities and national research institutes were presented to outline the status of implementation of SAM programmes in countries like Switzerland, Russia, Spain, Finland, Belgium and Korea. Also, the contribution of SAM to the safety of Japanese plants (in terms of core damage frequency) was quantified in a paper. One paper gave an overview on the situation regarding SAM implementation in Europe. The second session, 'SAM Approach', provided background and bases for Severe Accident Management in countries like Sweden, Japan, Germany and Switzerland, as well as for hardware features in advanced light water reactor designs, such as the European Pressurised Reactor (EPR), regarding Severe Accident Management. The third session, 'SAM Mitigation Measures', was about hardware measures, in particular those oriented towards hydrogen mitigation where fundamentally different approaches have been taken in Scandinavian countries, France, Germany and Korea. Three papers addressed specific contributions from research to provide a broader basis for the assumptions made in certain computer codes used for the assessment of plant risk arising from beyond-design accident sequences. The fourth session, 'Implementation of SAM Measures on VVER-1000 Reactors', was about the status of work on Severe Accident Management implementation in VVER reactors of existing design and in a new plant currently under construction. The overall picture is that Severe Accident Management has been

  8. Emergency room management of radiation accidents

    Emergency room management of radioactively contaminated patients who have an associated medical injury requiring immediate attention must be handled with care. Radioactive contamination of the skin of a worker is not a medical emergency and is usually dealt with at the plant. Effective preplanning and on-the-scene triage will allow the seriously injured and contaminated patients to get the medical care they need with a minimum of confusion and interference. Immediate medical and surgical priorities always take precedence over radiation injuries and radioactive contamination. Probably the most difficult aspect of emergency management is the rarity of such accidents and hence the unfamiliarity of the medical staff with the appropriate procedures. The authors discuss how the answer to these problems is preplanning, having a simple and workable procedure and finally having 24-h access to experts

  9. EC-sponsored research activities on accident management measures

    The European Commission (EC) is currently funding, via the 1994-1998 R and D Framework Programme, a number of activities in the field of Nuclear Fission Safety (NFS), and particularly in several areas related to 'Reactor Safety Severe Accidents'. This programme continues the research activities of the previous Community Reactor Safety Programme which was carried out as a Reinforced Concerted Action (RCA) during the period 1992-1995. The group of multi-partners projects selected for financial support from the EC under Area B.5.1 of the current NFS Programme, 'Supporting Activities / Accident Management Measures' (known as the 'AMM' cluster) are basically aiming at implementing the results of severe accident research into practical Accident Management (AM) strategies. The generic objective is to exchange information and to develop a common European approach regarding aspects such as phenomena related uncertainties, possible adverse effects of operator actions on the progression of the accident, interpretation of measurements, equipment performance, instrument survival and human error under stress. This paper briefly discusses the objectives and achievements of a completed project of the 1992-1995 RCA, known as 'Accident Management Support' ('AMS'), and also presents the current status of an on-going project of the 1994-1998 NFS Programme, 'Algorithm support for accident identification and Critical safety Functions signal validation' ('ASIA'). The objectives of the 'AMS' project were (i) to define, investigate and develop means and methods to provide reliable information and diagnostics, as well as support tools for accident management, and (ii) investigate the different signal validation methodologies with emphasis on the existing instrumentation rather than on new instrumentation needs. The work started with the writing of two state-of-the-art reports (SOARs) in these two areas. In parallel to the compilation of the SOARs, and later in a second phase, specific

  10. Management strategies for fibromyalgia

    Le Marshall KF; Littlejohn GO

    2011-01-01

    Kim Francis Le Marshall, Geoffrey Owen LittlejohnDepartments of Rheumatology and Medicine, Monash Medical Centre and Monash University, Victoria, AustraliaDate of preparation: 14 June 2011Clinical question: What are the effective, evidence-based strategies available for the management of fibromyalgia?Conclusion: There are a number of management strategies available with robust evidence to support their use in clinical practice.Definition: Fibromyalgia is a complex pain syndrome characterized ...

  11. ATHLET validation using accident management experiments

    The computer code ATHLET is being developed as an advanced best-estimate code for the simulation of leaks and transients in PWRs and BWRs including beyond design basis accidents. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialisation by a steady-state calculation, full-range drift-flux model, and dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The systematic validation of ATHLET is based on a well balanced set of integral and separate effect tests derived from the CSNI proposal emphasising, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities. PKL-III test B 2.1 simulates a cool-down procedure during an emergency power case with three steam generators isolated. Natural circulation under these conditions was investigated in detail in a pressure range of 4 to 2 MPa. The transient was calculated over 22000 s with complicated boundary conditions including manual control actions. The calculations demonstrations the capability to model the following processes successfully: (1) variation of the natural circulation caused by steam generator isolation, (2) vapour formation in the U-tubes of the isolated steam generators, (3) break-down of circulation in the loop containing the isolated steam generator following controlled cool-down of the secondary side, (4) accumulation of vapour in the pressure vessel dome. One conclusion with respect to the suitability of experiments simulating AM procedures for code validation purposes is that complete documentation of control actions during the experiment must be available. Special attention should be given to the documentation of operator actions in the course of the experiment

  12. Assessment of light water reactor accident management programs and experience

    The objective of this report is to provide an assessment of the current light water reactor experience regarding accident management programs and associated technology developments. This assessment for light water reactor (LWR) designs is provided as a resource and reference for the development of accident management capabilities for the production reactors at the Savannah River Site. The specific objectives of this assessment are as follows: 1. Perform a review of the NRC, utility, and industry (NUMARC, EPRI) accident management programs and implementation experience. 2. Provide an assessment of the problems and opportunities in developing an accident management program in conjunction or following the Individual Plant Examination process. 3. Review current NRC, utility, and industry technological developments in the areas of computational tools, severe accident predictive tools, diagnostic aids, and severe accident training and simulation

  13. Assessment of light water reactor accident management programs and experience

    Hammersley, R.J. [Fauske and Associates, Inc., Burr Ridge, IL (United States)

    1992-03-01

    The objective of this report is to provide an assessment of the current light water reactor experience regarding accident management programs and associated technology developments. This assessment for light water reactor (LWR) designs is provided as a resource and reference for the development of accident management capabilities for the production reactors at the Savannah River Site. The specific objectives of this assessment are as follows: 1. Perform a review of the NRC, utility, and industry (NUMARC, EPRI) accident management programs and implementation experience. 2. Provide an assessment of the problems and opportunities in developing an accident management program in conjunction or following the Individual Plant Examination process. 3. Review current NRC, utility, and industry technological developments in the areas of computational tools, severe accident predictive tools, diagnostic aids, and severe accident training and simulation.

  14. A Study on the Operation Strategy for Combined Accident including TLOFW accident

    It is difficult for operators to recognize the necessity of a feed-and-bleed (F-B) operation when the loss of coolant accident and failure of secondary side occur. An F-B operation directly cools down the reactor coolant system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. The plant is not always necessary the F-B operation when the secondary side is failed. It is not necessary to initiate an F-B operation in the case of a medium or large break because these cases correspond to low RCS pressure sequences when the secondary side is failed. If the break size is too small to sufficiently decrease the RCS pressure, the F-B operation is necessary. Therefore, in the case of a combined accident including a secondary cooling system failure, the provision of clear information will play a critical role in the operators' decision to initiate an F-B operation. This study focuses on the how we establish the operation strategy for combined accident including the failure of secondary side in consideration of plant and operating conditions. Previous studies have usually focused on accidents involving a TLOFW accident. The plant conditions to make the operators confused seriously are usually the combined accident because the ORP only focuses on a single accident and FRP is less familiar with operators. The relationship between CET and PCT under various plant conditions is important to decide the limitation of initiating the F-B operation to prevent core damage

  15. Using MARS to assist in managing a severe accident

    During an accident, information about the current and possible future states of the plant provides guidance for accident managers in evaluating which actions should be taken. However, depending upon the nature of the accident and the stress levels imposed on the plant staff responding to the accident the current and future plant assessments may be very difficult or nearly impossible to perform without supplemental training and/or appropriate tools. The MAAP Accident Response System (MARS) has been developed as a calculational aid to assist the responsible accident management individuals. Specifically MARS provides additional insights on the current and possible future states of the plant during an accident including the influence of operator actions. In addition to serving as a calculational aid, the MARS software can be an effective means for providing supplemental training. The MARS software uses engineering calculations to perform an integral assessment of the plant status including a consistency assessment of the available instrumentation. In addition, it uses the Modular Accident Analysis Program (MAAP) to provide near term predictions of the plant response if corrective actions are taken. This paper will discuss the types of information that are beneficial to the accident manager and how MARS addresses each. The MARS calculational functions include: instrumentation, validation and simulation, projected operator response based on the EOPs, as well as estimated timing and magnitude of in-plant and off-site radiation dose releases. Each of these items is influential in the management of a severe accident. (author)

  16. Application of PCTRAN-3/U to studying accident management during PWR severe accident

    In order to improve the safety of nuclear power plant, operator action should be taken into account during a severe accident. While it takes a long time to simulate the plant transient behavior under a severe accident in comparison with the design based accident, a transient simulator should have both high speed calculation capability and interactive functions to model the operating procedures. PCTRAN has been developing to be a simple simulator by using a personal computer to simulate plant behavior under an accident condition. While currently available means usually take relatively long time to simulate plant behavior, using a current high-powered personal computer (PC), PCTRAN-3/U code is designed to operate at a speed significantly faster than real-time. The author describes some results of PCTRAN application in studying the efficiency of accident management for a pressurized water reactor (PWR) during an severe accident

  17. Emergency medical management of radiation accident. Lessons learned from the JCO criticality accident

    A criticality accident occurred at the JCO nuclear fuel processing plant in Tokai-mura, Japan at 10:35 am on September 30, 1999. Three workers while working nearby were exposed to high doses of radiation, especially rich in neutron. They suffered from the acute radiation syndrome and two of them were still under medical treatment. This criticality accident taught us significant lessons of radiation protection for the personnels, e.g. physicians, nurses and firemen who are expected to rescue radiation-exposed patients in radiation accidents. In this article, medical management of radiation accident, e.g. treatment of patient, with high-dosed radiation-exposure and with internal contamination of radioactive nuclides and estimation of individual radiation dose, were briefly explained. The Japanese Association for Medical Management of Radiation Accident was founded on August 29, 1997, in order to promote the mutual communication of physicians who have to be engaged in treatment of radiation-exposed patients. (author)

  18. Accident management to ensure containment integrity at Seabrook Station

    This paper reports that PSA results for Seabrook Station have shown capability and strength of the large dry primary containment to withstand early pressure loads that could result from a potential severe core damage event. To build upon a high degree of confidence that containment integrity would be maintained in light of issues such as direct containment heating (DCH) and induced steam generator tube rupture (ISGTR), select accident management strategies have been evaluated for the plant. These strategies include emergency response technical support center procedures and hardware modifications to eliminate the potential for DCH and ISGTR for high pressure core melt scenarios. Operator actions that would result from these strategies include primary system depressurization using the pressurizer power-operated relief valves (PORV) and use of fire water pumps to prevent overheating and thermal creep rupture of the steam generator tubes. The risk management effectiveness of these strategies was quantified with the use of a full-scope Level 3 PSA model of Seabrook Station. A byproduct of this evaluation is a current assessment of the risk significance of DCH and ISGTR for this paper

  19. The management of individuals involved in radiation accidents

    The author defines the objectives and the coverage of two radiation accident courses presented in 1990 by the US Radiation Emergency Assistance Centre and Training Site of the Oak Ridge Associated Universities together with some Australian Medical institutions. It is estimated that the courses, directed towards physicians, radiotherapists and nurses gave plenty practical advices and details on how to go about radiation accident managements. A manual on handling radiation accidents is also to be prepared after the courses

  20. Systematic Review of Accident Management Programs - Principles, Experiences

    Although all plants have some form of accident management, there is not always a proper review of the accident management program neither of its products, i.e. the various procedures and guidelines. Moreover, such reviews are often limited to Emergency Operating Procedures (EOPs) and Severe Accident Management Guidelines (SAMG). More complex events, which include large damage on the site, require additional tools and procedures / guidelines. The present paper describes a new review method that covers this larger area and is capable to identify problems and shortcomings, and offers solutions for those. It basically exists of a three-tier approach: 1. interviews with the national regulator and/or the plant to evaluate the scope of the accident management as required by the national regulation and in comparison with international regulation; 2. interviews with the plant staff to discuss the technical basis of the accident management program and its implementation; and 3. observation of an exercise to test the capability of the plant staff to execute the accident management procedures and guidelines, as well as the value of the exercise for such test. The method is an extension of the IAEA 'Review of Accident Management Program which is limited to review of EOPs and SAMG. It is based on extensive experience with plant reviews. (authors)

  1. On preparation for accident management in LWR power stations

    Nuclear Safety Commission received the report from Reactor Safety General Examination Committee which investigated the policy of executing the preparation for accident management. The basic policy on the preparation for accident management was decided by Nuclear Safety Commission in May, 1992. This Examination Committee investigated the policy of executing the preparation for accident management, which had been reported from the administrative office, and as the result, it judged the policy as adequate, therefore, the report is made. The course to the foundation of subcommittee is reported. The basic policy of the examination on accident management by the subcommittee conforming to the decision by Nuclear Safety Commission, the measures of accident management which were extracted for BWR and PWR facilities, the examination of the technical adequacy of selecting accident sequences in BWR and PWR facilities and the countermeasures to them, the adequacy of the evaluation of the possibility of executing accident management measures and their effectiveness and the adequacy of the evaluation of effect to existing safety functions, the preparation of operation procedure manual, and education and training plan are reported. (K.I.)

  2. Influence diagrams and decision trees for severe accident management

    A review of relevant methodologies based on Influence Diagrams (IDs), Decision Trees (DTs), and Containment Event Trees (CETs) was conducted to assess the practicality of these methods for the selection of effective strategies for Severe Accident Management (SAM). The review included an evaluation of some software packages for these methods. The emphasis was on possible pitfalls of using IDs and on practical aspects, the latter by performance of a case study that was based on an existing Level 2 Probabilistic Safety Assessment (PSA). The study showed that the use of a combined ID/DT model has advantages over CET models, in particular when conservatisms in the Level 2 PSA have been identified and replaced by fair assessments of the uncertainties involved. It is recommended to use ID/DT models complementary to CET models. (orig.)

  3. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  4. Applying Functional Modeling for Accident Management of Nucler Power Plant

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigates applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  5. Development of Krsko Severe Accident Management Guidance (SAMG)

    In this lecture development of severe accident management guidances for Krsko NPP are described. Author deals with the history of severe accident management and implementation of issues (validation, review of E-plan and other aspects SAMG implementation guidance). Methods of Westinghouse owners group, of Combustion Engineering owners group, of Babcock and Wilcox owners group, of the BWR owners group, as well as application of US SAMG methodology in Europe and elsewhere are reviewed

  6. Traffic Accident Prediction Model Implementation in Traffic Safety Management

    Wen, Keyao

    2009-01-01

    As one of the highest fatalities causes, traffic accidents and collisions always requires a large amounteffort to be reduced or prevented from occur. Traffic safety management routines therefore always needefficient and effective implementation due to the variations of traffic, especially from trafficengineering point of view apart from driver education.Traffic Accident Prediction Model, considered as one of the handy tool of traffic safety management,has become of well followed with interest...

  7. Regulatory requirements on accident management and emergency preparedness - concept of nuclear and radiation safety during beyond-design-basis accidents

    Actual practice the and proposals for further activities in the field of Accident Management (AM) in the member countries of the Co-operation Forum of WWER regulators and in Western countries have been assessed. Further the results of the last working group on AM , the overview of interactions of severe accident research and the regulatory positions in various countries, IAEA reports, practice in Switzerland and Finland, were taken into consideration. From this information, the working group derived recommendations on Accident Management. The general proposals correspond to the present state of the art on AM. They do not describe the whole spectra of recommendations on AM for NPPs with WWER reactors. A basis for the implementation of an AM program is given, which could be extended in a follow-up working group. The developments and research concerning AM have to be continued. The positions of various countries with regard to the 'Interactions of severe accident research and the regulatory positions' are given. On the basis of the working group proposals, the WWER regulators could set regulatory requirements and support further developments of AM strategies, making use of the benefits of common features of NPPs with WWER reactors. Concerted actions in the field of AM between the WWER regulators would bundle the development of a unified concept of recommendations and speed up the implementation of AM measures in order to minimise the risks involved in nuclear power generation

  8. Remediation strategies for contaminated territories resulting from the Chernobyl accident

    The Directorate General for Environment of the European Commission has supported two projects on the issue of remediation strategies for contaminated territories resulting from the Chernobyl accident. The first one aimed at identifying and costing a set of additional countermeasures that would enable the reduction of the annual exposure of the inhabitants down to 1 mSv. The second one (still running) is developing a new rehabilitation approach based on the involvement of the local population in the decision taking process concerning the type of countermeasures to be applied (the ETHOS approach). (author)

  9. Severe accident mitigation strategy for the generation II PWRs in France. Some outcomes of the on-going periodic safety review of the French 1300 MWe PWR series

    The 3rd Periodic Safety Review of the French 1300 MWe PWRs series includes some modifications to increase their robustness in case of a severe accident. Their review is based on both deterministic and probabilistic approaches, keeping in mind that severe accidents frequencies and radiological consequences should be as low as reasonably practicable, severe accidents management strategies should be as safe as possible and the robustness of equipment used for severe accident management should be ensured. Consequently, the IRSN level 2 probabilistic safety assessment (L2 PSA) studies for the 1300 MWe reactors have been used to re-assess the results of the utility's L2 PSA and rank them to identify the containment failure modes contributing the most to the global risk. This ranking helped the review of plant modifications. Regarding strategies for accident management, the EDF management of water in the reactor cavity during a severe accident for the 1300 MWe PWRs is presented as well as the IRSN position on this strategy: this is an example where the optimal severe accident management strategy choice is not so easy to define. Regarding the robustness of equipment used for severe accident management, the interest of a diversification or redundancy of the French emergency filtered containment venting opening is one example among many others. (orig.)

  10. Facility accident considerations in the US Department of Energy Waste Management Program

    A principal consideration in developing waste management strategies is the relative importance of Potential radiological and hazardous releases to the environment during postulated facility accidents with respect to protection of human health and the environment. The Office of Environmental Management (EM) within the US Department of Energy (DOE) is currently formulating an integrated national program to manage the treatment, storage, and disposal of existing and future wastes at DOE sites. As part of this process, a Programmatic Environmental impact Statement (PEIS) is being prepared to evaluate different waste management alternatives. This paper reviews analyses that have been Performed to characterize, screen, and develop source terms for accidents that may occur in facilities used to store and treat the waste streams considered in these alternatives. Preliminary results of these analyses are discussed with respect to the comparative potential for significant releases due to accidents affecting various treatment processes and facility configurations. Key assumptions and sensitivities are described

  11. Formalizing a Debt Management Strategy

    Magnusson, Tomas I.

    2005-01-01

    In short, central government debt management can be defined as the process of establishing and executing a strategy in order to meet the debt management objectives. Undoubtedly, the development of the strategy is the most important debt management decision. Given the market constraints, it is the strategy document that decides on issues such as the level of exposure to foreign currency ris...

  12. The Goiania accident waste management - Reconditioning operation

    As a result of an accidental breakage of a 137Cs radiotherapy source, radioactive waste was generated in Goiania-Brazil. It was collected in different types of packaging and removed to a temporary storage site near Abadia de Goias. After four years in open air storage, corrosion was detected in some packages, especially in the 200 1drums. Measures to ensure a safe interim storage were adopted, until a final disposal plan was to be executed. The objective was to make the waste product suitable for the final disposal requests according to Brazilian standards. These measures were concerned mainly with the waste reconditioning. This paper presents the waste management strategy adopted for this operation

  13. Regulatory perspective on accident management issues

    Effective response to reactor accidents requires a combination of emergency operations, technical support and emergency response. The NRC and industry have actively pursued programs to assure the adequacy of emergency operations and emergency response. These programs will continue to receive high priority. By contrast, the technical support function has received relatively little attention from NRC and the industry. The results from numerous PRA studies and the severe accident programs of NRC and the industry have yielded a wealth of insights on prevention and mitigation of severe accidents. The NRC intends to work with the industry to make these insights available to the technical support staffs through a combination of guidance, training and periodic drills

  14. Accident Management Issues within the ARTIST Project

    An experimental project to be performed in the ARTIST (AeRosol Trapping In a Steam generaTor ) facility is planned at the Paul Scherrer Institut to address aerosol retention in the various parts of the steam generator (SG) following a steam generator tube rupture (SGTR) event. The project will study phenomena at the separate effect and integral levels, and also address accident management (AM) issues. Seven distinct phases are foreseen: 1) Aerosol retention in the tube under dry secondary side conditions, 2) Aerosol retention in the near field close to break under dry conditions, 3) Aerosol retention in the bundle far field under dry conditions, 4) Aerosol retention in the separator and dryer under dry conditions, 5) Aerosol retention in the bundle section under wet conditions, 6) Droplet retention in separator and dryer sections and 7) Integral tests to examine overall retention. The prescribed values of the controlling parameters (aerosol size, aerosol type, gas flow velocity, residence time, etc) cover the range expected in severe accident scenarios. The ARTIST facility is well suited to study phenomena relating to AM. Refilling of the SG might be adopted as an AM measure during an accident in which the SG has dried out. For instance, water injection will establish a pool where the incoming aerosols can be scrubbed to various degrees depending on the aerosol characteristics, water depth and subcooling and steam content in the carrier gas flow. Aerosols are expected to be removed mainly through inertial impaction and diffusiophoresis (condensation) in the vicinity of the break. Away from the break, the remaining gas breaks up in smaller bubbles which rise in the pool, and periodically squirt out through the narrow constrictions of the support plates. In this latter phase, aerosol removal is mainly due to inertial mechanisms. There are many questions that need to be resolved before deciding on the efficacy of flooding the secondary side of a dry SG. These include

  15. Strategies for operator response in mitigating loss of containment heat removal accident scenarios

    In anticipation of the US Nuclear Regulatory Commission generic letter regarding accident management, the Boiling Water Reactor Owners' Group (BWROG) has commissioned the development of Accident Management Guidelines (AMGs). One outgrowth of the industry performance of individual plant examinations (IPES) is the development of more effective accident management guidance to prevent or mitigate the effects of severe accidents. The BWROG is determining a process for integrating these insights into a coherent format that can be implemented by BWR owners as part of accident management

  16. Main post-accident management stakes: IRSN's point of view

    Full text of publication follows: Off site management of a radiological crisis covers two phases which need to be clearly distinguished even if there are links between them: emergency phase and recovery phase (also called late or post-accident phase). The presentation will deal with the latter, rather neglected up until recently, but conveying special attention from now on in France and at the international level. It is clear now that the long term management of a radiological or nuclear crisis cannot be reduced to merely site decontamination. Actually, environmental decontamination considerations would be only one amongst other essential economical, social, health, psychological, cultural, and symbolical concerns. This is why off site management of a radiological crisis requires innovative governance, in order to challenge such a complexity. This need for challenge led IRSN to have on the go technical developments and new governance modes reflection. 1) Technical developments: they deal with implementing an organisation, a set of methods, a platform of technical tools which would allow the stakeholders to carry out efficiently their mission during the recovery phase. For example, countermeasures for agricultural and urban rehabilitation are developed within the framework of the 6. PCRDT EURANOS programme. Teams from several countries are involved in common elaboration of rehabilitation strategies based on the best available knowledge. Besides this, simple operational decision aiding tools for the stakeholders (local administration, elected representatives, professional agricultural groups, etc.) are currently developed by IRSN within the framework of the nuclear post-accident exercises. IRSN is also involved in doctrinal reflections about the respective roles of radioactive measurements in the environment and radiological consequences calculation during emergency and recovery phases. Criteria for emergency countermeasures withdrawal are also currently under

  17. The computer aided education and training system for accident management

    Under severe accident conditions of a nuclear power plant, plant operators and technical support center (TSC) staffs will be under a amount of stress. Therefore, those individuals responsible for managing the plant should promote their understanding about the accident management and operations. Moreover, it is also important to train in ordinary times, so that they can carry out accident management operations effectively on severe accidents. Therefore, the education and training system which works on personal computers was developed by Japanese BWR group (Tokyo Electric Power Co.,Inc., Tohoku Electric Power Co. ,Inc., Chubu Electric Power Co. ,Inc., Hokuriku Electric Power Co.,Inc., Chugoku Electric Power Co.,Inc., Japan Atomic Power Co.,Inc.), and Hitachi, Ltd. The education and training system is composed of two systems. One is computer aided instruction (CAI) education system and the other is education and training system with a computer simulation. Both systems are designed to execute on MS-Windows(R) platform of personal computers. These systems provide plant operators and technical support center staffs with an effective education and training tool for accident management. TEPCO used the simulation system for the emergency exercise assuming the occurrence of hypothetical severe accident, and have performed an effective exercise in March, 2000. (author)

  18. Fundamentals for reviewing accident managements of reprocessing facilities

    The accident at Fukushima Daiichi Nuclear Power Station insisted a necessity of reconsideration of the defence in depth concept against events exceeding design basis. The insistence suggested a need of practical guidance for reviewing accident management measures for such events. Soon after the accident, Japan Nuclear Energy Safety Organization (JNES) started a preliminary study on the points to be considered in reviewing comprehensiveness and consistency of accident management measures for reprocessing facilities. The results of PSA studies which have been pursued at JNES contributed significantly to the preliminary study, because the contents of the PSA studies have a close relation with subjects to be considered in the review. Based on the insight the paper focuses on such relation and discusses fundamentals for the review in terms of the knowledge derived from the PSA and specific features of reprocessing facilities. The result of the study is also described with touching relations to the fundamentals. (author)

  19. WASTE-ACC: A computer model for analysis of waste management accidents

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy`s (DOE`s) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives.

  20. WASTE-ACC: A computer model for analysis of waste management accidents

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  1. Reconstruction of the Chernobyl emergency and accident management

    Full text of publication follows: on April 26, 1986 the most serious civil technological accident in the history of mankind occurred of the Chernobyl Nuclear Power Plant (ChNPP) in the former Soviet Union. As a direct result of the accident, the reactor was severely destroyed and large quantities of radionuclides were released. Some 800000 persons, also called 'liquidators' - including plant operators, fire-fighters, scientists, technicians, construction workers, emergency managers, volunteers, as well as medical and military personnel - were part of emergency measurements and accident management efforts. Activities included measures to prevent the escalation of the accident, mitigation actions, help for victims as well as activities in order to provide a basic infrastructure for this unprecedented and overwhelming task. The overall goal of the 'Project Chernobyl' of the Institute of Risk Research of the University of Vienna was to preserve for mankind the experience and knowledge of the experts among the 'liquidators' before it is lost forever. One method used to reconstruct the emergency measures of Chernobyl was the direct cooperation with liquidators. Simple questionnaires were distributed among liquidators and a database of leading accident managers, engineers, medical experts etc. was established. During an initial struggle with a number of difficulties, the response was sparse. However, after an official permit had been issued, the questionnaires delivered a wealth of data. Furthermore a documentary archive was established, which provided additional information. The multidimensional problem in connection with the severe accident of Chernobyl, the clarification of the causes of the accident, as well as failures and successes and lessons to be learned from the Chernobyl emergency measures and accident management are discussed. (authors)

  2. Containment response to a severe accident (TMLB sequence) with and without mitigation strategies

    A loss of SG feed-water (TMLB sequence) for a prototypic PWR 900 MWe with a multi-compartment configuration (with 11 and 16 cells nodalization) has been calculated by the author using the ASTEC code in the frame of the EVITA project (5th Framework Programme, FWP). A variety of hypothesis (e.g. activation of sprays and hydrogen recombiners) and possible consequences of these assumptions (cavity flooding, hydrogen combustion, etc.) have been made in order to evaluate the global reactor containment building response (pressure, aerosol/FP concentration, etc.). The need to dispose of severe accident management guidelines (SAMGs) is increasing. These guidelines are meant for nuclear plants' operators in order to allow them to apply mitigation strategies all along a severe accident, which, only in its initial phase, may last several days. The purpose of this paper is to outline the influence on the containment load of most common accident occurrences and operators actions, which is essential in establishing SAMGs. ASTEC (Accident Source Term Evaluation Code) is a computer code for the evaluation of the consequences of a postulated nuclear plant severe accident sequence. ASTEC is a computer tool currently under joint development by the Institut de Radioprotection et de Surete Nucleaire (IRSN), France, and Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS), Germany. The aim of the development is to create a fast running integral code package, reliable in all simulations of a severe accident, to be used for level-2 PSA analysis. It must be said that several recent developments have significantly improved the best-estimate models of ASTEC and a new version (ASTEC V1.0) has been released mid-2002. Nevertheless, the somehow obsolete ASTECv0.3 version here used, has given results very useful for the estimation of the global risk of a nuclear plant. Moreover, under the current 6th FWP (Sustainable Integration of EU Research on Severe Accident Phenomenology and Management), the

  3. Recent Developments in Level 2 PSA and Severe Accident Management

    In 1997, CSNI WGRISK produced a report on the state of the art in Level 2 PSA and severe accident management - NEA/CSNI/R(1997)11. Since then, there have been significant developments in that more Level 2 PSAs have been carried out worldwide for a variety of nuclear power plant designs including some that were not addressed in the original report. In addition, there is now a better understanding of the severe accident phenomena that can occur following core damage and the way that they should be modelled in the PSA. As requested by CSNI in December 2005, the objective of this study was to produce a report that updates the original report and gives an account of the developments that have taken place since 1997. The aim has been to capture the most significant new developments that have occurred rather than to provide a full update of the original report, most of which is still valid. This report is organised using the same structure as the original report as follows: Chapter 2: Summary on state of application, results and insights from recent Level 2 PSAs. Chapter 3: Discussion on key severe accident phenomena and modelling issues, identification of severe accident issues that should be treated in Level 2 PSAs for accident management applications, review of severe accident computer codes and the use of these codes in Level 2 PSAs. Chapter 4: Review of approaches and practices for accident management and SAM, evaluation of actions in Level 2 PSAs. Chapter 5: Review of available Level 2 PSA methodologies, including accident progression event tree / containment event tree development. Chapter 6: Aspects important to quantification, including the use of expert judgement and treatment of uncertainties. Chapter 7: Examples of the use of the results and insights from the Level 2 PSA in the context of an integrated (risk informed) decision making process

  4. Immunosuppressive strategies and management

    Shi-hui PAN

    2008-01-01

    Advances in immunosuppressive therapy have significantly improved short-term allograft and patient survival.However,chronic allograft failure,antibody mediated rejection,recurrent diseases and immunosuppressive drug associated adverse effects remain serious barriers to long-term survival and quality of life.New immunosuppressive agents and protocols are being evaluated to combat these problems.Importantly,clinicians must work to manage post-transplant complications and avoid complex medication regimens,which will potentiate drug interactions and non.compliance.Different organs have different immunogenicities and each recipient has a unique clinical and immunologic profile.The clinician must recognize these variations and customize the immunosuppressive regimens and treatment protocols based on the individual condition.The general principles of an individualized immunosuppressive protocol should take the following factors into account:organ type,donor and recipient characteristics,quality of the donor organ,recipienVs medical history,recipient's undedying disease,immunologic risk for acute rejection,potential co-morbidity related to immunosuppression,significant druginteractions,medication costs and patient compliance.In addition,the combination of immunosuppressive drugs must have a pharmacologic rationale to achieve the desired goal of suppressing the individual's immune system to render the patient tolerant to the allograft while minimizing co-morbidities.For the past few years,many clinical strategies have been applied in an attempt to improve graft survival or to reduce immunsuppressants induced side-effects.Specific protocols include steroid or CNI avoidance,minimization or withdraw,desensitization,and treatment for antibody mediated rejection,disease specific,and pediatric specific.The short-term outcomes from these different strategies are promising but the long-term results remain to be determined.Unfortunately,current immunosuppressive agents or strategies

  5. Severe Accident Management System On-line Network SAMSON

    SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the back propagation learning algorithms to make predictions. Training on data from an accident analysis code (MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm2) in size to breaks 3.0 square feet in size (2800 cm2). (author)

  6. Development of Parameter Network for Accident Management Applications

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation

  7. Development of Parameter Network for Accident Management Applications

    Pak, Sukyoung; Ahemd, Rizwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek; Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation.

  8. Unconventional sources of plant information for accident management

    Oehlberg, R.; Machiels, A.; Chao, J.; Weiss, J. (Electric Power Research Inst., Palo Alto, CA (United States)); True, D.; James, R. (ERIN Engineering and Research, Walnut Creek, CA (United States))

    1992-01-01

    One phase of accident management covers the actions taken during the course of an accident by the plant operating and technical staff to prevent or minimize off-site radiation releases, gain control, and return the plant to a safe state. Inherent in accomplishing these goals is obtaining a clear picture of the nature of the accident and plant status. Development of a consistent and coherent understanding of the accident and plant status requires plant staff to evaluate and interpret data from a wide range of sources. Plant information during an accident can be obtained from the following sources: (1) plant instrumentation, including Regulatory Guide 1.97 instrumentation; and (2) information sources identified in abnormal operations or emergency operations procedures. Probabilistic risk analyses have shown that events involving the loss of key electrical support systems can be significant contributors to core damage. Such events could jeopardize or degrade instrument availability. Plant-specific accident procedures and interpretation of instruments intended for design-basis events may not be applicable in severe accidents. Information sources such as other nuclear steam supply systems (NSSSs) and balance-of-plant (BOP) instrumentation may be available.

  9. Decision-making guide for management of agriculture in the case of a nuclear accident

    For several years, agricultural and nuclear professionals in France have been working on how to manage the agricultural situation in the event of a nuclear accident. This work resulted in measures at both the national (Aube nuclear safety exercises in 2003, INEX3 in 2005) and international levels (EURATOM Programmes). Following on from the European FARMING (FP5) and EURANOS (FP6) works, ACTA', IRSN and six agricultural technical institutes which are specialized in agricultural production and processing network (arable crop [especially cereals, maize, pulses, potatoes and forage crops], fruits and vegetables, vine and wine, livestock farming [cattle, sheep, goats, pigs, poultry]), created a resource adapted to the French context: the Decision-aiding Tool for the Management of Agriculture in case of a Nuclear Accident. Devised for the Ministry of Agriculture services supporting state officials in a radiation emergency, this manual focuses on the early phase following the accident when the state of emergency would make discussion on countermeasures with a large stakeholder panel impossible. Supported by the Ministry of Agriculture and Fisheries and the French Nuclear Safety Authority, this project increased knowledge of post-accident management strategies and made an important contribution to the national think tank set up within the framework of the French Steering Committee for managing the post-event phase of a nuclear accident (CODIRPA). This article describes how the manual evolved throughout the project and the development of new resources. (authors)

  10. Decision-making guide for management of agriculture in the case of a nuclear accident

    For several years, agricultural and nuclear professionals in France have been working on how to manage the agricultural situation in the event of a nuclear accident. This work resulted in measures at both the national (Aube nuclear safety exercises in 2003, INEX3 in 2005) and international levels (EURATOM Programmes). Following on from the European FARMING (FP5) and EURANOS (FP6) works, ACTA', IRSN and six agricultural technical institutes which are specialized in agricultural production and processing network (arable crop [especially cereals, maize, pulses, potatoes and forage crops], fruits and vegetables, vine and wine, livestock farming [cattle, sheep, goats, pigs, poultry]), created a resource adapted to the French context: the Decision-aiding Tool for the Management of Agriculture in case of a Nuclear Accident. Devised for the Ministry of Agriculture services supporting state officials in a radiation emergency, this manual focuses on the early phase following the accident when the state of emergency would make discussion on countermeasures with a large stakeholder panel impossible. Supported by the Ministry of Agriculture and Fisheries and the French Nuclear Safety Authority, this project increased knowledge of post-accident management strategies and made an important contribution to the national think tank set up within the framework of the French Steering Committee for managing the post-event phase of a nuclear accident (CODIRPA). This article describes how the manual evolved throughout the project and the development of new resources

  11. Seabrook Station Level 2 PRA Update to Include Accident Management

    A ground-breaking study was recently completed as part of the Seabrook Level 2 PRA update. This study updates the post-core damage phenomena to be consistent with the most recent information and includes accident management activities that should be modeled in the Level 2 PRA. Overall, the result is a Level 2 PRA that fully meets the requirements of the ASME PRA Standard with respect to modeling accident management in the LERF assessment and NRC requirements in Regulatory Guide 1.174 for considering late containment failures. This technical paper deals only with the incorporation of operator actions into the Level 2 PRA based on a comprehensive study of the Seabrook Station accident response procedures and guidance. The paper describes the process used to identify the key operator actions that can influence the Level 2 PRA results and the development of success criteria for these key operator actions. This addresses a key requirement of the ASME PRA Standard for considering SAMG. An important benefit of this assessment was the identification of Seabrook specific accident management insights that can be fed back into the Seabrook Station accident management procedures and guidance or the training provided to plant personnel for these procedures and guidance. (authors)

  12. U.S. nuclear industry perspective on accident management

    The Nuclear Management and Resources Council (NUMARC) serves as the United States nuclear power industry's principal mechanism for conveying industry views, concerns, and policies regarding industry wide regulatory issues to the Nuclear Regulatory Commission (NRC) and other government agencies as appropriate. NUMARC and the Electric Power Research Institute (EPRI), in support of the NUMARC Severe Accident Working Group's (SAWG's) efforts with regard to accident management, has developed a framework for evaluation of plant-specific accident management capabilities. These capabilities fall into one of three main categories: (1) personnel resources (organization, training, communications); (2) systems and equipment (restoration and repair, instrumentation, use of alternatives); and (3) information resources (procedures and guidance, technical information, process information). The purpose of this paper is to describe this framework, its objectives, the five major steps involved and areas to consider further. (orig.)

  13. Managing major chemical accidents in China: Towards effective risk information

    Chemical industries, from their very inception, have been controversial due to the high risks they impose on safety of human beings and the environment. Recent decades have witnessed increasing impacts of the accelerating expansion of chemical industries and chemical accidents have become a major contributor to environmental and health risks in China. This calls for the establishment of an effective chemical risk management system, which requires reliable, accurate and comprehensive data in the first place. However, the current chemical accident-related data system is highly fragmented and incomplete, as different responsible authorities adopt different data collection standards and procedures for different purposes. In building a more comprehensive, integrated and effective information system, this article: (i) reviews and assesses the existing data sources and data management, (ii) analyzes data on 976 recorded major hazardous chemical accidents in China over the last 40 years, and (iii) identifies the improvements required for developing integrated risk management in China.

  14. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented

  15. Nuclear emergency preparedness in Germany - an introduction. Pt. 1. Accident management in NPPs

    For the realization of all safety-relevant requirements of the Atomic Energy Act (Atomgesetz, AtG) and their attached legal and sublegal nuclear regulations the design and operation of nuclear power plants in Germany is based on the 'Multi-Level Defense-in-Depth Safety Concept'. Experiences derived from severe accidents and continuously conducted safety research led to development and implementation of strategies and measures of severe accident management step by step in order to recognize plant states beyond the design basis in good time, to control their course and to limit their on-site and off-site consequences effectively. An overview is provided of the integration of severe accident management into the defense-in-depth concept and the on-site technical, organizational and administrative precautionary measures are described. (orig.)

  16. The computer aided education and training system for accident management

    The education and training system for Accident Management was developed by the Japanese BWR group and Hitachi Ltd. The education and training system is composed of two systems. One is computer aided instruction (CAI) education system and the education and training system with computer simulations. Both systems are designed to be executed on personal computers. The outlines of the CAI education system and the education and training system with simulator are reported below. These systems provides plant operators and technical support center staff with the effective education and training for accident management. (author)

  17. A systematic process for developing and assessing accident management plans

    This document describes a four-phase approach for developing criteria recommended for use in assessing the adequacy of nuclear power plant accident management plans. Two phases of the approach have been completed and provide a prototype process that could be used to develop an accident management plan. Based on this process, a preliminary set of assessment criteria are derived. These preliminary criteria will be refined and improved when the remaining steps of the approach are completed, that is, after the prototype process is validated through application. 9 refs., 10 figs., 7 tabs

  18. The evolution of computerized displays in accident management

    Key regulations implemented by the NRC in 1982, which included requirements such as upgraded emergency operating procedures, detailed control room design reviews, the addition of a safety parameter display system, and the inclusion of a degreed shift technical advisor as part of the operating staff, have enabled the use of computerized displays to evolve as an integral part of accident management within each of the four main vendor groups. Problems, however, remain to be resolved in the area of technical content, information reliability, and rules for use in order to achieve the goal of more reliable accident management in nuclear power plants

  19. Identification and assessment of containment and release management strategies

    Brookhaven National Laboratory, under the auspices of the U.S. Nuclear Regulatory Commission, is investigating accident management strategies which could help preserve containment integrity or minimize releases during a severe accident. The objective is to make use of existing plant systems and equipment in innovative ways to reduce the likelihood of containment failure or to mitigate the release of fission products to the environment if failure cannot be prevented. Many of these strategies would be implemented during the later stages of a severe accident (i.e., after vessel breach) and sizeable uncertainties exist regarding some of the phenomena involved. A majority of the strategies identified go well beyond existing procedures and often depend on the specific containment type. Strategies for all of the five different containments used in the U.S. are being considered: BWR Mark I, Mark II, and Mark III, as well as PWR ice condenser and large dry containments. Accident management strategies related to the in-vessel phase of a severe core melt accident are being dealt with under another NRC program. For each containment type the most likely challenges are identified and existing emergency guidelines and procedures are reviewed as to how they address these challenges

  20. PSA use in accident management studies in Japan

    The safety of NPPs in Japan is secured by stringent safety regulations based on the deterministic method, minimizing the possibility a severe accident to a technologically negligible level. PSA is not required in the current regulatory procedures. Accident management based on PSA is a 'knowledge-based' action dependent on utilities' technical knowledge aimed at further reduction of the risk which is kept small enough by existing measures. The paper discusses the following three kinds of PSAs that have been conducted practically and efficiently on NPPs to provide supplemental information about their safety characteristics in addition to the deterministic evaluation used in the regulatory safety review: PSAs on typical NPPs, PSAs on all NPPs to examine candidates for accident management, and PSAs as part of periodic safety review (PSR). 1 fig., 5 tabs

  1. Development of emergency response support system for accident management

    Specific measures for the accident management (AM) are proposed to prevent the severe accident and to mitigate their effects in order to upgrade the safety of nuclear power plants even further. To ensure accident management effective, it is essential to grasp the plant status accurately. In consideration of the above mentioned background, the Emergency Response Support System (ERSS) was developed as a computer assisted prototype system by a joint study of Japanese BWR group. This system judges and predicts the plant status at the emergency condition in a nuclear power plant. This system displays the results of judgment and prediction. The effectiveness of the system was verified through the test and good prospects for applying the system to a plant was obtained. 7 refs., 10 figs

  2. Plant specific severe accident management - the implementation phase

    Many plants are in the process of developing on-site guidance for technical staff to respond to a severe accident situation severe accident management guidance (SAMG). Once the guidance is developed, the SAMG must be implemented at the plant site, and this involves addressing a number of additional aspects. In this paper, approaches to this implementation phase are reviewed, including review and verification of plant specific SAMG, organizational aspects and integration with the emergency plan, training of SAMG users, validation and self-assessment and SAMG maintenance. Examples draw on experience from assisting numerous plants to implement symptom based severe accident management guidelines based on the Westinghouse Owners Group approach, in Westinghouse, non-Westinghouse and VVER plant types. It is hoped that it will be of use to those plant operators about to perform these activities.(author)

  3. Identification and assessment of containment and release management strategies

    Lehner, J.R. (Dept. of Nuclear Energy, Brookhaven National Lab., Upton, NY (United States)); Lin, C.C. (Dept. of Nuclear Energy, Brookhaven National Lab., Upton, NY (United States)); Neogy, P. (Dept. of Nuclear Energy, Brookhaven National Lab., Upton, NY (United States))

    1993-08-01

    Brookhaven National Laboratory, under the auspices of the U.S. Nuclear Regulatory Commission, is investigating accident management strategies which could help preserve containment integrity or minimize the release of radioactivity during a severe accident in a nuclear reactor. The objective is to make use of existing plant systems and equipment in innovative ways to reduce the likelihood of containment failure or to mitigate the release of fission products to the environment if failure cannot be prevented. Many of these strategies would be implemented during the later stages of a severe accident, i.e. after the molten core penetrates the reactor vessel. Significant uncertainties exist regarding some of the phenomena involved with this phase of a severe accident. The identification and assessment process for containment and release strategies is described, and some insights derived from its application to a BWR Mark I plant are presented. A station blackout accident for this kind of plant is considered. The challenges encountered are identified and existing emergency guidelines are reviewed, where needed and when possible, new strategies are devised. The feasibility and effectiveness of these new strategies are assessed, making due allowances for the complicated phenomena and associated uncertainties involved. Both beneficial and adverse effects of the suggested strategies are considered. (orig.)

  4. Development of Integrated Evaluation System for Severe Accident Management

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs

  5. Development of Integrated Evaluation System for Severe Accident Management

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y

    2007-06-15

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs.

  6. Handbook for medical management of persons exposed in radiation accidents

    The document is intended as a rapid reference handbook for the use of physicians who may be called upon to handle the cases of radiation emergency. It deals mainly with the diagnosis and treatment procedures which should be followed by medical officers. The handbook has following sections : basic radiobiology, classification of radiation accidents and preparedness for medical intervention, management of external radiation exposure, management of radioactive contamination, and action plan for handling radiation facilities. It is advisable to have a separate medical unit for proper management of persons exposed in radiation accidents. Infrastructure and facilities required in such a set-up are described. Names and addresses of : (1) physicians in India who have specialized in medical management of radiation injuries, and (2)medical doctors trained in radiation protection and occupational health in different states of India are listed in an appendix. (M.G.B.). 10 refs., figs., tabs

  7. Effectiveness of talent management strategies

    Bethke-Langenegger, Pamela; Mahler, Philippe (collab.); Staffelbach, Bruno

    2011-01-01

    This paper investigates the effects of different types of talent management strategies on organisational performance. We introduce four different strategies and show how they affect organisational performance. For this purpose, we use a particularly detailed dataset of 138 Swiss companies. We find that talent management focusing on retaining and developing talents as job satisfaction, motivation, commitment and trust in leaders. Moreover, talent management practices with a strong focus on cor...

  8. Recommendations on accident management for NPP with WWER

    The work deals with the analysis of practices in the field of beyond design basis accidents (BDBA) management in countries operating WWER type reactors. The recommendations of the working group are presented. The aim is to cooperate the actions of the regulatory bodies for the development of an unified concept for recommendations and to speed up the DBDA management realization for the decreasing of the risk from the nuclear power plant operation

  9. A framework for assessing hydrogen management strategies involving multiple decisions

    An accident management framework consisting of multiple and sequential decisions is developed and applied to a hydrogen control strategy for a reference plant. The compact influence diagrams including multiple decisions are constructed and evaluated with MAAP4 calculations. Each decision variable, represented by a node in the influence diagrams, has an uncertainty distribution. Using the values from the IPE (Individual Plant Examinations) report for the reference plant (UCN 3 and 4), the hydrogen control and accident management strategies are assessed. In this paper, a problem with two decisions is modeled for a simple illustration of the process involved. One decision is whether or not to actuate igniters at the time of core uncovery. Another decision is whether or not to turn on the containment sprays. We chose a small-break loss-of-coolant accident (LOCA) sequence, which was one of the dominant accident sequences in the reference plant. The framework involves the modeling of the decision problem by using decision-making tools, data analysis, and the MAAP4 calculations. It is shown that the proposed framework with a new measure for assessing hydrogen control is flexible enough to be applied to various accident management strategies. (author)

  10. Precept from the management for the accident of Fukushima daiichi

    At 17 hours after the accident of Fukushima Daiichi Nuclear Power Plant due to the Great East Japan Earthquake, National Institute of Radiological Sciences sent the first REMAT (Radiation Emergency Medical Assistance Team) in the 20 km range from the Plant. The team members were confronted by two issues: (1) Medical activities under the infrastructures destructed by a multiple disaster caused by earthquake, tsunami and nuclear accident, which was not presumed. (2) Radiation protection management for dispatched staff. Measures for this situation worked out by activities on the site are presented. (K.Y.)

  11. Marketing Management and Strategy

    with practical information from the cases, the reader is introduced to issues relating to marketing strategy formulation, managerial actions in designing and implementing marketing decisions, as well as the operational contexts within which these actions are taken. The book is essential reading for both...... undergraduate and graduate students in marketing, international strategy and international business who require an understanding of African business...

  12. Proceedings of the International Workshop on Occupational Radiation Protection in Severe Accident Management 'sharing practices and experiences'

    The objective of the Workshop on Occupational Radiation Protection in Severe Accident Management was to share practices and experiences in approaches to severe accident management. The workshop: provided an international forum for information and experience exchange amongst nuclear electricity utilities and national regulatory authorities on approaches to, and issues in severe accident management, including national and international implications. Focus was placed on sharing practices and experiences in many countries on approaches to severe accident management; identified best occupational radiation protection approaches in strategies, practices, as well as limitations for developing effective management. This included experiences in various countries; identified national experiences to be incorporated into the final version of ISOE EG-SAM report. The workshop included a series of plenary presentations that provided participants with an overview of practices and experiences in severe accident management from various countries. Furthermore, by taking into account the structure of the interim report, common themes and issues were discussed in follow-up breakout sessions. Sessions included invited speakers, moderated by designated experts, allowing participants to discuss their national experiences and possible inputs into the report. The outcomes of the breakout sessions were presented in plenary by the respective moderators followed by an open discussion, with a view towards elaborating ways forward to achieve more effective severe accident management. This document brings together the abstracts and the slides of the available presentations

  13. Severe accident analysis to verify the effectiveness of severe accident management guidelines for large pressurized heavy water reactor

    Gokhale, O.S., E-mail: onkarsg@barc.gov.in; Mukhopadhyay, D., E-mail: dmukho@barc.gov.in; Lele, H.G., E-mail: hglele@barc.gov.in; Singh, R.K., E-mail: rksingh@barc.gov.in

    2014-10-15

    Highlights: • The progression of severe accident initiated from high pressure scenario of station black out has been analyzed using RELAP5/SCDAP. • The effectiveness of SAMG actions prescribed has been established through analysis. • The time margin available to invoke the SAMG action has been specified. - Abstract: The pressurized heavy water reactor (PHWR) contains both inherent and engineered safety features that help the reactor become resistant to severe accident and its consequences. However in case of a low frequency severe accident, despite the safety features, procedural action should be in place to mitigate the accident progression. Severe accident analysis of such low frequency event provides insight into the accident progression and basis to develop the severe accident management guidelines (SAMG). Since the order of uncertainty in the progression path of severe accident is very high, it is necessary to study the consequences of the SAMG actions prescribed. The paper discusses severe accident analysis for large PHWRs for multiple failure transients involving a high pressure scenario (initiation event like SBO with loss of emergency core cooling system and loss of moderator cooling). SAMG actions prescribed for such a scenario include water injection into steam generator, calandria vessel or calandria vault at different stages of accident. The effectiveness of SAMG actions prescribed has been investigated. It is found that there is sufficient time margin available to the operator to execute these SAMG actions and the progression of severe accident is arrested in all the three cases.

  14. Severe accident analysis to verify the effectiveness of severe accident management guidelines for large pressurized heavy water reactor

    Highlights: • The progression of severe accident initiated from high pressure scenario of station black out has been analyzed using RELAP5/SCDAP. • The effectiveness of SAMG actions prescribed has been established through analysis. • The time margin available to invoke the SAMG action has been specified. - Abstract: The pressurized heavy water reactor (PHWR) contains both inherent and engineered safety features that help the reactor become resistant to severe accident and its consequences. However in case of a low frequency severe accident, despite the safety features, procedural action should be in place to mitigate the accident progression. Severe accident analysis of such low frequency event provides insight into the accident progression and basis to develop the severe accident management guidelines (SAMG). Since the order of uncertainty in the progression path of severe accident is very high, it is necessary to study the consequences of the SAMG actions prescribed. The paper discusses severe accident analysis for large PHWRs for multiple failure transients involving a high pressure scenario (initiation event like SBO with loss of emergency core cooling system and loss of moderator cooling). SAMG actions prescribed for such a scenario include water injection into steam generator, calandria vessel or calandria vault at different stages of accident. The effectiveness of SAMG actions prescribed has been investigated. It is found that there is sufficient time margin available to the operator to execute these SAMG actions and the progression of severe accident is arrested in all the three cases

  15. Hydrogen management strategies using the igniters and recombiners

    Hydrogen, which is generated by cladding oxidation, can diffuse to all subcompartments in the containment so that high hydrogen concentration may be induced only locally. If the hydrogen concentration in containment reaches to the flammability limit and enough hydrogen is allowed to build up, the hydrogen can ignite and cause a spike in containment pressure that exceeds the containment ultimate design pressure, thereby failing the containment. It is thus important to analyze the accident sequence inducing high hydrogen concentration locally and to develop adequate control and management strategies. In this paper, a framework for evaluating hydrogen control and management strategies involving multiple decisions is presented. The compact influence diagrams including multiple decisions are constructed and evaluated with the MAAP4 calculations. Each decision variable, represented by a node in the influence diagrams, has an uncertainty distribution. Using the values from standard safety analysis report of the reference plant, Advanced Power Reactor 1400MWe (APR1400), the hydrogen control and accident management strategies are assessed. The strategies are ranked with respect to a new measure in terms of hydrogen concentration. The MAAP4 code calculations are performed to generate data for hydrogen concentrations and to identify the important severe accident phenomena in containment for the decision-making analysis as well. In this paper, a problem with two decisions is modeled for a simplistic illustration. One decision is whether or not to actuate the igniters at the time of core uncovery; another decision is to use the passive autocatalytic recombiners (PARs). We chose a small-break loss-of-coolant accident (LOCA) sequence, which was one of the dominant accident sequences in the reference plant, as the reference case. The framework ling of the decision problem by using the decision-making tools, data analysis, and the MAAP4 calculations. It is shown that the proposed

  16. Accident Monitoring Systems for Nuclear Power Plants

    In the Fukushima Daiichi accident, the instrumentation provided for accident monitoring proved to be ineffective for a combination of reasons. The accident has highlighted the need to re-examine criteria for accident monitoring instrumentation. This publication covers all relevant aspects of accident monitoring in NPPs. The critical issues discussed reflect the lessons learned from the Fukushima Daiichi accident, involve accident management and accident monitoring strategies for nuclear power plants, selection of plant parameters for monitoring plant status, establishment of performance, design, qualification, display, and quality assurance criteria for designated accident monitoring instrumentation, and design and implementation considerations. Technology needs and techniques for accident monitoring instrumentation are also addressed

  17. Management of a radiological emergency. Experience feedback and post-accident management

    In France, the organization of crisis situations and the management of radiological emergency situations are regularly tested through simulation exercises for a continuous improvement. Past severe accidents represent experience feedback resources of prime importance which have led to deep changes in crisis organizations. However, the management of the post-accident phase is still the object of considerations and reflections between the public authorities and the intervening parties. This document presents, first, the nuclear crisis exercises organized in France, then, the experience feedback of past accidents and exercises, and finally, the main aspects to consider for the post-accident management of such events: 1 - Crisis exercises: objectives, types (local, national and international exercises), principles and progress, limits; 2 - Experience feedback: real crises (major accidents, other recent accidental situations or incidents), crisis exercises (experience feedback organization, improvements); 3 - post-accident management: environmental contamination and people exposure, management of contaminated territories, management of populations (additional protection, living conditions, medical-psychological follow up), indemnification, organization during the post-accident phase; 4 - conclusion and perspectives. (J.S.)

  18. Regulatory Research of the PWR Severe Accident. Information Needs and Instrumentation for Hydrogen Control and Management

    Park, Gun Chul; Suh, Kune Y.; Lee, Jin Yong; Lee, Seung Dong [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2001-03-15

    The current research is concerned with generation of basic engineering data needed in the process of developing hydrogen control guidelines as part of accident management strategies for domestic nuclear power plants and formulating pertinent regulatory requirements. Major focus is placed on identification of information needs and instrumentation methods for hydrogen control and management in the primary system and in the containment, development of decision-making trees for hydrogen management and their quantification, the instrument availability under severe accident conditions, critical review of relevant hydrogen generation model and phenomena In relation to hydrogen behavior, we analyzed the severe accident related hydrogen generation in the UCN 3{center_dot}4 PWR with modified hydrogen generation model. On the basis of the hydrogen mixing experiment and related GASFLOW calculation, the necessity of 3-dimensional analysis of the hydrogen mixing was investigated. We examined the hydrogen control models related to the PAR(Passive Autocatalytic Recombiner) and performed MAAP4 calculation in relation to the decision tree to estimate the capability and the role of the PAR during a severe accident.

  19. Regulatory Research of the PWR Severe Accident. Information Needs and Instrumentation for Hydrogen Control and Management

    The current research is concerned with generation of basic engineering data needed in the process of developing hydrogen control guidelines as part of accident management strategies for domestic nuclear power plants and formulating pertinent regulatory requirements. Major focus is placed on identification of information needs and instrumentation methods for hydrogen control and management in the primary system and in the containment, development of decision-making trees for hydrogen management and their quantification, the instrument availability under severe accident conditions, critical review of relevant hydrogen generation model and phenomena In relation to hydrogen behavior, we analyzed the severe accident related hydrogen generation in the UCN 3·4 PWR with modified hydrogen generation model. On the basis of the hydrogen mixing experiment and related GASFLOW calculation, the necessity of 3-dimensional analysis of the hydrogen mixing was investigated. We examined the hydrogen control models related to the PAR(Passive Autocatalytic Recombiner) and performed MAAP4 calculation in relation to the decision tree to estimate the capability and the role of the PAR during a severe accident

  20. The Assesment Of Radioactive Accident Management On The RSG-GAS

    In the operational reactor facilities include RSG-GAS, safety factor for radioactive accident very important to be prioritized. Till now the anticipate happening radioactive accident on the RSG-GAS threat only by the RSG-GAS Operation Manual. For increasing the working function need to create radioactive accident management by facility level. From studying result which source IAEA guidebook, can be composed the assessment accident management of radioactive the RSG-GAS.The sketching this accident management of radioactive to be hoped can helping P2TRR organization by handling radioactive accident if this moment happen on the RSG-GAS

  1. Impact of short-term severe accident management actions in a long-term perspective. Final Report

    The present systems for severe accident management are focused on mitigating the consequences of special severe accident phenomena and to reach a safe plant state. However, in the development of strategies and procedures for severe accident management, it is also important to consider the long-term perspective of accident management and especially to secure the safe state of the plant. The main reason for this is that certain short-term actions have an impact on the long-term scenario. Both positive and negative effects from short-term actions on the accident management in the long-term perspective have been included in this paper. Short-term actions are accident management measures taken within about 24 hours after the initiating event. The purpose of short-term actions is to reach a stable status of the plant. The main goal in the long-term perspective is to maintain the reactor in a stable state and prevent uncontrolled releases of activity. The purpose of this short Technical Note, deliberately limited in scope, is to draw attention to potential long-term problems, important to utilities and regulatory authorities, arising from the way a severe accident would be managed during the first hours. Its objective is to encourage discussions on the safest - and maybe also most economical - way to manage a severe accident in the long term by not making the situation worse through inappropriate short-term actions, and on the identification of short-term actions likely to make long-term management easier and safer. The Note is intended as a contribution to the knowledge base put at the disposal of Member countries through international collaboration. The scope of the work has been limited to a literature search. Useful further activities have been identified. However, there is no proposal, at this stage, for more detailed work to be undertaken under the auspices of the CSNI. Plant-specific applications would need to be developed by utilities

  2. Development of the french accident management and procedures - role of operators in accident and incident management

    This paper gives a brief overview of the set of emergency operating procedures for French NPPs and the method used to built and validate these procedures. Particular emphasis is put on the role and organisation of the operating team during an incident or accident. (orig.)

  3. Market-oriented management method of coalmine accident hidden dangers

    LIU Zhao-xia; LI Xing-dong; LU Ying; REN Da-wei

    2007-01-01

    By analyzing the problems which exist currently in the accident hidden dangers management of the coal mine, this paper proposed a new kind of management method-"simulating the market", in which an operation pattern of simulating the market to transact hidden troubles was constructed. This method introduces "Market Mechanism"into safe management, and adopts measurable value to describe the hidden dangers such as" human behavior, technique, environment, equipments etc.". It regards the hidden dangers as "the goods produced by labor" which are found out by the safety managers and the security inspectors, then sells as "commodity". By the process of disposing, counterchecking, re-selling, and redisposing. It forms a set of market-oriented closed-form management pattern of coalmine accident hidden dangers. This kind of management method changes the past traditional methods in which the wageworkers treat safety management passively, but to encourage and restrict them to participate in the check-up and improvement of the hidden dangers.

  4. A structured approach to individual plant evaluation and accident management

    The need for long term development of accident management programs is acknowledged and the key tool for that development is identified as the IPE Program. The Edison commitment to build an integrated program is cited and the effect on the IPE effort is considered. Edison's integrated program is discussed in detail. The key benefits, realism and long term savings, are discussed. Some of the highly visible products such as neural network artificial intelligence systems are cited

  5. Role of accident analysis in development of severe accident management guidance for multi-unit CANDU nuclear power plants

    This paper discusses the role of accident analysis in support of the development of Severe Accident Management Guidance for domestic CANDU reactors. In general, analysis can identify what types of challenges can be expected during accident progression but it cannot specify when and to what degree accident phenomena will occur. SAMG overcomes these limitations by monitoring the actual values of key plant indicators that can be used directly or indirectly to infer the condition of the plant and by establishing setpoints beyond which corrective action is required. Analysis can provide a means to correlate observed post-accident plant behavior against predicted behaviour to improve the confidence in and quality of accident mitigation decisions. (author)

  6. Lessons learned from Fukushima accident in relation to emergency management

    The latest accident in Fukushima, Japan, which involved concurrent accidents at multiple nuclear facilities due to the earthquakes and tsunami, as well as station blackouts for an extended period of time, demonstrated the need for an overall review of existing prevention measures. These measures include emergency protection measures for residents beyond the emergency planning zone, the application of radiation protection criteria that consider the release of radioactive materials to the environment over an extended period and the disposal of large-scale radioactive wastes and radiation protection criteria to be applied upon recovery. Accordingly, Japan has taken improvement initiatives in the area of prevention by submitting a government report on the Fukushima accident prior to the IAEA Ministerial Conference on Nuclear Safety in June last year, and the US has devised a regulatory system of its own, including directions for improvement through the NRC, which operated a temporary taskforce specifically for this purpose. This study examined how Japan is responding to the Fukushima accident and investigated directions that countries around the world can take to improve the area of nuclear protection in order to enhance Korea's own radiological emergency management system

  7. Strategy of fuel management

    The management of nuclear fuels in PWR type reactors has been adapted to improve the safety and the competitiveness of brackets. The economic optimum, at the park level, depends on many parameters, variable with time and in function of them, we favour the annual campaigns and the economy won on the cost of cycle, or long campaigns with benefit on availability. The reduction of the number of stopping improves the availability, limits the doses integrated by the personnel of intervention and reduces the number of incidents during the stopping. An other determining factor is connected to the policy of closed cycle with the the principle of equality between the reprocessing flux and the valorization of reprocessed fuels: plutonium and reprocessed uranium. The progress of fuel have allowed significant improvements in the managements of cores. With the safety, the aim is also to keep if not improve the competitiveness of the Nuclear park by valorizing the matter coming from reprocessing. (N.C.)

  8. Spent fuel management strategies

    Nuclear fuel cycle is divided into two sections; front end and back end of the fuel cycle. Front end of the fuel cycle, which covers all the activities of the fuel cycle before the fuel goes into the reactor has better developed and well-defined technologies. For storage of the spent fuel which are subjects of the back end of the fuel cycle, the waste management policies are not so well defined. There are three approaches that exist today for management of spent fuel. 1. For once through or open fuel cycles direct disposal of spent fuel in a deep geological repository, 2. For closed fuel cycles reprocessing of spent fuel and recycling of the recovered plutonium and uranium in new mixed oxide (MOX) fuels, 3. The spent fuel is placed in long term interim storage pending a decision as to its ultimate reprocessing or disposal. There are so large scale geological repositories for the final disposal of spent fuel in operation. Studies on suitable site selection, design, construction and licensing take about 30-40 years. Reprocessing, on the other hand, produces plutonium and is therefore under close inspection because of the Non Proliferation Treaty. Today more countries are delaying their final decision about the spent fuel management approach and using the long term interim storage approach

  9. Radioactive Waste Management In The Chernobyl Exclusion Zone - 25 Years Since The Chernobyl Nuclear Power Plant Accident

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  10. RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    Farfan, E.; Jannik, T.

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  11. Strategies for password management

    2013-01-01

    Passwords are a critical part of information and network security. Passwords serve as primary authentication method to protect user accounts but a poorly chosen password, if compromised, could put the entire network at risk. Many users do not understand why good passwords and password management are important for information systems. “We‟re secure! We use passwords!” How many of us have heard this claim? Or even – “We‟re secure! We have a password policy!” Using a password or having a passwor...

  12. Westinghouse severe accident management guidance overview and current status

    The Westinghouse Owners Group has completed a major development program in Severe Accident Management. This program draws on all presently available sources of information in the field, including in the field, including NRC, NUMARC and EPRI programs, plant specific Individual Plant Examinations and Probabilistic Safety Assessments, and other international activities. The program has developed a full set of Severe Accident Management Guidance (SAMG) applicable to Westinghouse and Westinghouse licensee PWR plant. The SAMG enhances the capabilities of the plant emergency response team for accident sequences that progress to fuel damage, and therefore beyond the range of applicability of present guidance in the form of Emergency Operating Procedures. Since the first draft of SAMG was transmitted officially to the WOG members and the NRC in July 1993, many activities have been carried out by the different organizations involved, and although no significant changes to the SAMG structure have resulted from these activities, several enhancement have been included, mainly from the comments recorded during the generic SAMG validation exercise at the Point Beach plant. With the issue in June 1994 of the revision 0 SAMG, some plants in the U.S. and abroad are already implementing plant specific guidelines. This paper provides an overview of the SAMG package, and also describe the most important comments and feedback from the validation and review efforts. (author)

  13. Unconventional sources of plant information for accident management

    An essential element to accident management is having as clear a picture as is practical of the plant status and thus of the accident and its progress. Effective, appropriate decisions to control and mitigate an accident are dependent on making this assessment of the accident. The objective of this paper is to stimulate consideration of unconventional plant information sources through discussion of specific examples. A plant's condition during an accident can be characterized by plant parameters such as temperatures and pressures and by plant system operational status. For example, core damage is associated with increasing temperatures, pressures, and radiation levels in many different systems and plant areas. Reg. Guide 1.97 instrumentation exists to provide information to allow operators to take specified manual actions (Type A), to indicate whether plant safety functions are being accomplished (Type B), to indicate the potential for breach of barriers to fission product release (Type C), to indicate operability of individual safety systems (Type D), and to indicate the magnitude of radioactive material releases (Type E). Reg. Guide 1.97 instrument range requirements, with the exception of pressure instruments, address conditions up to design basis conditions. Pressure instrument range requirements exceed design basis conditions. During a severe accident, some instruments may not see conditions beyond their design basis. Effective accident management includes the ability to establish a consistent picture of the accident by accumulating information from as many sources as is practical. Operability of systems and components, and non-safety related temperature, radiation, pressure, and water-level indication can be used to directly indicate, measure, or infer plant parameters which confirm, augment or replace those otherwise available. Innovative uses of information sources thus serve to increase the diversity and flexibility of accident data available. Both the

  14. Proceedings of the specialist meeting on severe accident management implementation

    The Niantic Specialist meeting was structured around three main themes, one for each session. During the first session, papers from regulators, research groups, designers/owners groups and some utilities discussed the critical decisions in Severe Accident Management (SAM), how these decisions were addressed and implemented in generic SAM guidelines, what equipment and instrumentation was used, what are the differences in national approaches, etc. During the second session, papers were presented by utility specialists that described approaches chosen to specific implementation of the generic guidelines, the difficulties encountered in the implementation process and the perceived likelihood of success of their SAM program in dealing with severe accidents. The third session was dedicated to discussing what are the remaining uncertainties and open questions in SAM. Experts from several OECD countries presented significant perspectives on remaining open issues

  15. Summary and conclusions: Specialist Meeting on Severe Accident Management Implementation

    During the first session of this meeting, regulators, research groups, designers/owners' groups and some utilities discussed the critical decisions in SAM (Severe Accident Management), how these decisions were addressed and implemented in generic SAM guidelines, what equipment and instrumentation was used, what are the differences in national approaches, etc. During the second session, papers were presented by utility specialists that described approaches chosen for specific implementation of the generic guidelines, the difficulties encountered in the implementation process and the perceived likelihood of success of their SAM programme in dealing with severe accidents. The third and final sessions was dedicated to discussing what are the remaining uncertainties and open questions in SAM. Experts from several OECD countries presented significant perspectives on remaining open issues

  16. Campfire-2000: Comprehensive Accident Management Program Featuring Innovative Research and Engineering for the Year 2000 and Beyond

    The CAMPFIRE-2000 accident management program is being developed at the Korea Atomic Energy Research Institute symphonizing the proven state-of-the-art technologies and newly proposed innovative research and engineering. The ultimate goal of the program is to resolve the plant-specific accident management issues utilizing a coherent, consistent, pragmatic, methodical approach. The program focuses on the preventive measures to maintain reactor core geometry and the mitigative measures to secure containment integrity, should a severe accident take place in a nuclear power plant. CAMPFIRE-2000 consists of strategy assessment methods, guidance and procedures, instrumentation and information, calculational aids and tools, human and organization factors, handbook of accident management, and technical expert system. In particular, the one most immediate issue involves the simulation of the rather rapid cooling of the core debris and the reactor vessel lower head of be Three Mile Island Unit 2 nuclear plant as has recently been identified from post-accident metallurgical testing of the sample specimens. As a top-notch companion experiment for CAMPFIRE-2000, a large-scale, real-material, high pressure system test SONATA-IV is proposed as a multi-lateral, multi-disciplinary project calling for international collaboration to investigate the potentially inherent, naturally-occurring in-vessel cooling mechanism from the very relevant severe accident management perspective

  17. Strategies for managing margins.

    2012-08-01

    Potential Medicare and Medicaid reimbursement cuts have made it critical for home health agencies to manage their gross and net operating profit margins. Agencies need to develop tools to analyze their margins and make sure they are following best practices. Try as you may, your agency might still face the question, "Why am I not meeting my budget?" Get some answers in this session from David Berman and Andrea L. Devoti. Berman is a principal at Simione Healthcare Consultants in Hamden, CT, where he is responsible for merchant acquisitions, business valuation due diligence, and oversight of the financial monitor benchmarking tool besides serving as interim chief financial officer. Devoti is chairman of the NAHC board and President & CEO of Neighborhood Health Visiting Nurse Association in West Chester PA. PMID:23074756

  18. A proposal for accident management optimization based on the study of accident sequence analysis for a BWR

    The paper describes a proposal for accident management optimization based on the study of accident sequence and source term analyses for a BWR. In Japan, accident management measures are to be implemented in all LWRs by the year 2000 in accordance with the recommendation of the regulatory organization and based on the PSAs carried out by the utilities. Source terms were evaluated by the Japan Atomic Energy Research Institute (JAERI) with the THALES code for all BWR sequences in which loss of decay heat removal resulted in the largest release. Identification of the priority and importance of accident management measures was carried out for the sequences with larger risk contributions. Considerations for optimizing emergency operation guides are believed to be essential for risk reduction. (author)

  19. Implementation of accident management programmes in nuclear power plants

    According to the generally established defence in depth concept in nuclear safety, consideration in plant operation is also given to highly improbable severe plant conditions that were not explicitly addressed in the original design of currently operating nuclear power plants (NPPs). Defence in depth is achieved primarily by means of four successive barriers which prevent the release of radioactive material (fuel matrix, cladding, primary coolant boundary and containment), and these barriers are primarily protected by three levels of design measures: prevention of abnormal operation and failures (level 1), control of abnormal operation and detection of failures (level 2) and control of accidents within the design basis (level 3). If these first three levels fail to ensure the structural integrity of the core, e.g. due to beyond the design basis multiple failures, or due to extremely unlikely initiating events, additional efforts are made at level 4 to further reduce the risks. The objective at the fourth level is to ensure that both the likelihood of an accident entailing significant core damage (severe accident) and the magnitude of radioactive releases following a severe accident are kept as low as reasonably achievable. Finally, level 5 includes off-site emergency response measures, with the objective of mitigating the radiological consequences of significant releases of radioactive material. The implementation of the emergency response is usually dependent upon the type and magnitude of the accident. Good co-ordination between the operator and the responding organizations is needed to ensure the appropriate response. Accident management is one of the key components of effective defence in depth. In accordance with defence in depth, each design level should be protected individually, independently of other levels. This report focuses on the fourth level of defence in depth, including the transitions from the third level and into the fifth level. It describes

  20. Managing incontinence: women's normalizing strategies.

    Skoner, M M; Haylor, M J

    1993-01-01

    Women's strategies for managing urinary incontinence were examined in a grounded-theory study. The women's basic social concern was dealing with incontinence in a manner that enabled them to feel normal. Feeling normal meant being able to do what they wanted to do and needed to do to have a normal life-style as they perceived it. This goal was accomplished by normalizing incontinence and its management. Normalization was achieved by directing its course through self-management, accounting for it in terms of personal history and life experiences, and delaying medical counsel. These strategies are described. The findings provide fresh insights about women's response to incontinence and their practice of self-managing its consequences. PMID:8138472

  1. Use of an influence diagram and fuzzy probability for evaluating accident management in a BWR

    This paper develops a new approach for evaluating severe accident management strategies. At first, this approach considers accident management as a decision problem (i.e., ''applying a strategy'' vs. ''do nothing'') and uses influence diagrams. This approach introduces the concept of a ''fuzzy probability'' in the evaluation of an influence diagram. When fuzzy logic is applied, fuzzy probabilities in an influence diagram can be easily propagated to obtain results. In addition, the results obtained provide not only information similar to the classical approach using point-estimate values, but also additional information regarding the impact from imprecise input data. The proposed methodology is applied to the evaluation of the drywell flooding strategy for a long-term station blackout sequence in the Peach Bottom nuclear power plant. The results show that the drywell flooding strategy seems to be beneficial for preventing reactor vessel breach. It is also effective for reducing the probability of the containment failure for both liner melt-through and late overpressurization. Even though there exists uncertainty in the results, ''flooding'' is preferred to ''do nothing'' when evaluated in terms of expected consequences, i.e., early and late fatalities

  2. Strategie podniku a management jakosti

    BOČKOVÁ, Jiřina

    2012-01-01

    The aim of the thesis was to analyze the selected project management company, including a review of the objectives of the strategy. Market environment has been investigated and followed the SWOT analysis, from which I draw the appropriate consequences. The result landed proposed solution in the form of an investment plan. The development of a Project Management Plan that defines the philosophy of the investment project, an integral part of the timetable for the progress of work and cost analy...

  3. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  4. Specific features of RBMK severe accidents progression and approach to the accident management

    Fundamental construction features of the LWGR facilities (absence of common external containment shell, disintegrated circulation circuit and multichannel reactor core, positive vapor reactivity coefficient, high mass of thermally capacious graphite moderator) predetermining development of assumed heavy non-projected accidents and handling them are treated. Rating the categories of the reactor core damages for non-projected accidents and accident types producing specific grope of damages is given. Passing standard non-projected accidents, possible methods of attack accident consequences, as well as methods of calculated analysis of non-projected accidents are demonstrated

  5. Experimental and analytical verification of accident management measures

    Two complementary test facilities - the Upper Plenum Test Facility and the ''Primaerkreislauf'' test facility were constructed to investigate the thermal hydraulic response of a pressurized water reactor during postulated accidents. The general objective of the experimental programs is to contribute to a better understanding of accident sequences and to provide a detailed data base for the validation of computer codes, i.e. ATHLET and RELAP, the latter being used by Siemens/KWU for reactor safety analyses. A major target of the recent experimental programs has been the verification of accident management procedures, such as secondary and/or primary side bleed-and-feed. The experimental results demonstrate that secondary side bleed-and-feed is a very effective method for removing decay heat without contaminating the containment. Primary side bleed-and-feed was also shown to be a highly effective measure to ensure core cooling under beyond-design-basis conditions. This publication presents results from experiments at the Upper Plenum Test Facility and the ''Primaerkreislauf'' test facility as well as from corresponding RELAP 5/Mod 2 analyses. (orig.)

  6. Development of Evaluation Technology for Hydrogen Combustion in containment and Accident Management Code for CANDU

    Kim, S. B.; Kim, D. H.; Song, Y. M.; and others

    2011-08-15

    For a licensing of nuclear power plant(NPP) construction and operation, the hydrogen combustion and hydrogen mitigation system in the containment is one of the important safety issues. Hydrogen safety and its control for the new NPPs(Shin-Wolsong 1 and 2, Shin-Ulchin 1 and 2) have been evaluated in detail by using the 3-dimensional analysis code GASFLOW. The experimental and computational studies on the hydrogen combustion, and participations of the OEDE/NEA programs such as THAI and ISP-49 secures the resolving capabilities of the hydrogen safety and its control for the domestic nuclear power plants. ISAAC4.0, which has been developed for the assessment of severe accident management at CANDU plants, was already delivered to the regulatory body (KINS) for the assessment of the severe accident management guidelines (SAMG) for Wolsong units 1 to 4, which are scheduled to be submitted to KINS. The models for severe accident management strategy were newly added and the graphic simulator, CAVIAR, was coupled to addition, the ISAAC computer code is anticipated as a platform for the development and maintenance of Wolsong plant risk monitor and Wolsong-specific SAMG.

  7. Conflict Management Strategies in Workplace

    黄玉霞

    2011-01-01

    As we all know, it is inevitable to be confronted with verbal aggressiveness by employees, peers, and supervisors in the workplace. In order to avoid these conflict with others in the future workplace, this paper is to discuss about the management strategies dealing with these conflicts.

  8. Nuclear Malaysia Disaster Management-Japan Nuclear Accident

    Japan worst Nuclear Accident tragedy due to the earthquake and tsunami, were shocking the world. Malaysia also feels the impact from this disaster. Nuclear Malaysia personnel was mobilize to perform the radiation and contamination monitoring at Malaysian Airport (KLIA and KKIA), environmental monitoring and sampling at Kudat, Sabah, contamination screening centre at Block 13 and also at National Radiology Emergency Centre at AELB. This paper will discuss how this disaster management being performs and its challenge and also the number or personnel and man-hours involved within 1st month after the tragedy. (author)

  9. Management strategies for encouraging creativity.

    Preston, P

    1998-01-01

    Change, chaos, and uncertainty touch every part of every institution. The laboratory is not immune. Managers content to continue on their familiar path soon will find themselves bypassed. To meet today's challenges, directors of technical operations, laboratory directors, team leaders, and coordinators need plenty of creativity--from everyone on their staff. It is no longer just "nice" to improve group output and problem-solving skills while staying within a "shoestring" budget. It is absolutely necessary. In this article, we explore strategies laboratory managers can use to tap the creative potential and commitment of their people. These strategies work. Whether it involves using humor, creating "idea centers," or "deconstructing the bureaucracy," the goal is the same: to encourage clinical managers to think beyond their technical and managerial experience. The examples in this article may not suit the needs, situations, or tastes of all laboratory managers. They are "food for thought." The concepts and strategies these examples illustrate are every laboratory manager's keys to adapting successfully to future challenges. PMID:10181491

  10. RADIATION ACCIDENTS: EXPERIENCE OF MEDICAL PROTECTION AND MODERN STRATEGY OF PHARMACOLOGICAL MAINTENANCE

    A. N. Grebenyuk

    2012-01-01

    Full Text Available Experience of medical protection at radiation accidents is analyzed. It is shown, that medicines that have been in the arsenal of medical service during the liquidation of consequences of the Chernobyl nuclear power plant accident satisfied their predestination in a whole and were rather effective for radiation protection. The modern strategy of pharmacological maintenance based on use of means and methods, allowing to keeping a life, health and professional serviceability of people in conditions of amazing action of a complex of factors of radiation accidents, is submitted.

  11. RADIATION ACCIDENTS: EXPERIENCE OF MEDICAL PROTECTION AND MODERN STRATEGY OF PHARMACOLOGICAL MAINTENANCE

    A. N. Grebenyuk; V. I. Legeza; V. V. Zatsepin

    2012-01-01

    Experience of medical protection at radiation accidents is analyzed. It is shown, that medicines that have been in the arsenal of medical service during the liquidation of consequences of the Chernobyl nuclear power plant accident satisfied their predestination in a whole and were rather effective for radiation protection. The modern strategy of pharmacological maintenance based on use of means and methods, allowing to keeping a life, health and professional serviceability of people in condit...

  12. Generalities on nuclear accidents and their short-dated and middle-dated management

    All the nuclear activities present a radiation risk. The radiation exposure of the employees or the public, may occur during normal activity or during an accident. The IRSN realized a document on this radiation risk and the actions of protection. The sanitary and medical aspects of a radiation accident are detailed. The actions of the population protection during an accident and the post accident management are also discussed. (A.L.B.)

  13. Developement of integrated evaluation system for severe accident management

    Kim, Dong Ha; Kim, H. D.; Park, S. Y.; Kim, K. R.; Park, S. H.; Choi, Y.; Song, Y. M.; Ahn, K. I.; Park, J. H

    2005-04-01

    The scope of the project includes four activities such as construction of DB, development of data base management tool, development of severe accident analysis code system and FP studies. In the construction of DB, level-1,2 PSA results and plant damage states event trees were mainly used to select the following target initiators based on frequencies: LLOCA, MLOCA, SLOCA, station black out, LOOP, LOFW and SGTR. These scenarios occupy more than 95% of the total frequencies of the core damage sequences at KSNP. In the development of data base management tool, SARD 2.0 was developed under the PC microsoft windows environment using the visual basic 6.0 language. In the development of severe accident analysis code system, MIDAS 1.0 was developed with new features of FORTRAN-90 which makes it possible to allocate the storage dynamically and to use the user-defined data type, leading to an efficient memory treatment and an easy understanding. Also for user's convenience, the input (IEDIT) and output (IPLOT) processors were developed and implemented into the MIDAS code. For the model development of MIDAS concerning the FP behavior, the one dimensional thermophoresis model was developed and it gave much improvement to predict the amount of FP deposited on the SG U-tube. Also the source term analysis methodology was set up and applied to the KSNP and APR1400.

  14. Study of Containment Vent Strategies During Severe Accident Progression for the CANDU6 Plant

    In March, 2011, Fukushima daichi nuclear power plants experienced a long term station blackout. Severe core damage occurred and a large amount of radioactive materials are released outside of the plants. After this terrible accident Nuclear Safety and Security Commission (NSSC) enforced to increase nuclear safety for all operating plants in Korea. To increase plant safety, both hardware reinforcement and software improvement are encouraged. Hardware reinforcement includes the preparation of the external water injection paths to the RCS and the spent fuel pool, a filtered containment venting system (CFVS), and AC power generating truck. Software improvement includes the increase of the effectiveness of the severe accident management guidance (SAMG) and plant staff training. To comply with NSSC's request, Wolsong Unit 1 has fulfilled the hardware reinforcement including the installation of a CFVS and started the extension of a SAMG to the low power and shutdown operation mode. Current SAMG deals accident occurred during full power operation only. The CFVS is designed to open and to close isolation valves manually. It does not require AC power. The operation of the CFVS prevents the reactor containment building failure due to the over-pressurization but it may release radioactive materials out of the reactor containment building. This paper discusses the radiological source terms for the containment vent strategy during severe accident progression which occurred during shutdown operation mode. This work is a part of the development of shutdown SAMG.. The CFVS is an effective means to control the containment pressure when the local air coolers are unavailable. Radioactive materials may release through the CFVS, but their amounts are reduced significantly. The alternative means, i.e., containment vent through the ventilation system which does not have an effective filter, is not a good choice to control the containment condition. It can maintain the containment

  15. Study of Containment Vent Strategies During Severe Accident Progression for the CANDU6 Plant

    Jin, Youngho; Ahn, K. I. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In March, 2011, Fukushima daichi nuclear power plants experienced a long term station blackout. Severe core damage occurred and a large amount of radioactive materials are released outside of the plants. After this terrible accident Nuclear Safety and Security Commission (NSSC) enforced to increase nuclear safety for all operating plants in Korea. To increase plant safety, both hardware reinforcement and software improvement are encouraged. Hardware reinforcement includes the preparation of the external water injection paths to the RCS and the spent fuel pool, a filtered containment venting system (CFVS), and AC power generating truck. Software improvement includes the increase of the effectiveness of the severe accident management guidance (SAMG) and plant staff training. To comply with NSSC's request, Wolsong Unit 1 has fulfilled the hardware reinforcement including the installation of a CFVS and started the extension of a SAMG to the low power and shutdown operation mode. Current SAMG deals accident occurred during full power operation only. The CFVS is designed to open and to close isolation valves manually. It does not require AC power. The operation of the CFVS prevents the reactor containment building failure due to the over-pressurization but it may release radioactive materials out of the reactor containment building. This paper discusses the radiological source terms for the containment vent strategy during severe accident progression which occurred during shutdown operation mode. This work is a part of the development of shutdown SAMG.. The CFVS is an effective means to control the containment pressure when the local air coolers are unavailable. Radioactive materials may release through the CFVS, but their amounts are reduced significantly. The alternative means, i.e., containment vent through the ventilation system which does not have an effective filter, is not a good choice to control the containment condition. It can maintain the containment

  16. EC Research Contribution to Decision-making Processes Relevant to Severe Accident Management

    As a result of the two well-known civil nuclear accidents and of the consequent increase in safety requirements, the need to properly assess severe accident (SA) scenarios for present and future nuclear power plants (going beyond the traditional three-level defence-in-depth strategy) became evident. In this line, various research activities were launched and are performed within the Euratom Framework Programmes, in particular the completed Fourth one (F P-4, 1994-1998) and the present Fifth one (FP-5, 1998-2002). The initial orientation of the EC research activities was mainly focused on improving the understanding of the phenomena and mechanisms involved in such accidents, in order to contribute to prevent possible final radioactivity releases. A consensus on how to model those SA phenomena in accident safety analyses by means of specific tools (SA codes developed, verified and validated through experimental results provided) is reasonably advanced. Currently, the EC research activities related to severe accidents are balanced between a twofold approach aimed at assessing the risks related with severe accident scenarios and to support the development of severe accident management (SAM) strategies, together with the optimisation of backfitting measures for existing reactors or specific designs for future nuclear power plants. This new orientation is confronting difficulties, inherent to the phenomenological character of several research activities, which make a direct application of the results into SAM measures premature in some cases. In this regard, this paper presents a series of ten selected FP-5 projects with emphasis placed on the applicability of research results towards SAM strategies to be used by decision-makers amongst utilities, the nuclear industry in particular designers, and regulators. The majority of them also contain -further to the SAM approach- supporting elements focused on risk assessment. The revised programme of the key action 'Nuclear

  17. The rehabilitation strategies in agriculture in the long term after the Chernobyl NPP accident

    The experience gained in the aftermath of the severe radiation accidents shows that in the case of large-scaled radionuclide contamination the limitation of internal radiation doses to people by means of restoration of agricultural lands is more realistic than reduction of levels of external irradiation. Therefore, the problems connected with the optimal restoration strategies of agricultural land subjected to radioactive contamination after the Chernobyl accident are of crucial importance. The justification of the approach for the estimation of the effectiveness of countermeasure strategies in the long term after the Chernobyl accident, based on the classification of farms by contamination density and risk of the exceeding of radiological standards, restricting the use of agricultural products, is presented. For each class of the farms the ranking of rehabilitation options and the time periods when their application would be of importance are given. Comparative analysis of the rehabilitation strategies, which are different in their effectiveness and cost, is provided. (author)

  18. Hazardous waste storage facility accident scenarios for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    Policastro, A.; Roglans-Ribas, J.; Marmer, D.; Lazaro, M.; Mueller, C. [Argonne National Lab., IL (United States); Freeman, W. [Univ. of Illinois, Chicago, IL (United States). Dept. of Chemistry

    1994-03-01

    This paper presents the methods for developing accident categories and accident frequencies for internally initiated accidents at hazardous waste storage facilities (HWSFs) at US Department of Energy (DOE) sites. This categorization is a necessary first step in evaluating the risk of accidents to workers and the general population at each of the sites. This risk evaluation is part of the process of comparing alternative management strategies in DOE`s Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Such strategies involve regionalization, decentralization, and centralization of waste treatment, storage, and disposal activities. Potential accidents at the HWSFs at the DOE sites are divided into categories of spill alone, spill plus fire, and other event combinations including spill plus fire plus explosion, fire only, spill and explosion, and fire and explosion. One or more accidents are chosen to represent the types of accidents for FY 1992 for 12 DOE sites were studied to determine the most representative set of possible accidents at all DOE sites. Each accident scenario is given a probability of occurrence that is adjusted, depending on the throughput and waste composition that passes through the HWSF at the particular site. The justification for the probabilities chosen is presented.

  19. Hazardous waste storage facility accident scenarios for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    This paper presents the methods for developing accident categories and accident frequencies for internally initiated accidents at hazardous waste storage facilities (HWSFs) at US Department of Energy (DOE) sites. This categorization is a necessary first step in evaluating the risk of accidents to workers and the general population at each of the sites. This risk evaluation is part of the process of comparing alternative management strategies in DOE's Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Such strategies involve regionalization, decentralization, and centralization of waste treatment, storage, and disposal activities. Potential accidents at the HWSFs at the DOE sites are divided into categories of spill alone, spill plus fire, and other event combinations including spill plus fire plus explosion, fire only, spill and explosion, and fire and explosion. One or more accidents are chosen to represent the types of accidents for FY 1992 for 12 DOE sites were studied to determine the most representative set of possible accidents at all DOE sites. Each accident scenario is given a probability of occurrence that is adjusted, depending on the throughput and waste composition that passes through the HWSF at the particular site. The justification for the probabilities chosen is presented

  20. Emerging framework of safety management after Fukushima accident

    Since the Fukushima accident onset, concerned organizations and experts have tried to identify the causes and effects of the incident. Many have formulated new national regulatory measures to strengthen nuclear safety in an effort to protect the general public to the extent of probabilistic cases of the most severe or extreme accidents. The Japanese government is set to install a regulatory authority, comparable to the US NRC, which is completely independent from the promotion of nuclear energy. An official report of the National Diet (or Senate) of Japan in June of 2012 laments a lack of safety culture and insists the accident could have been prevented if due consideration and attention had been provided. Both France and other European countries have performed stress tests to their operating units, and have identified many areas for improvement including that of their regulatory framework. The US NRC also conducted special inspections of all operating reactors. In addition, the NRC established both near and long term specific goals, and issued a policy statement for streamlining patch worked regulatory framework. It is also applying the Risk informed Defense in Depth Design which includes the extended design basis requirements. The IAEA General Conference adopted a Nuclear Safety Action Plan in September 2011 and organized an International Expert Meeting in March 2012 in order to analyze all relevant technical aspects from the Japanese incident in order to prevent a reoccurrence. Korea is not an exception to this trend. She was swift to conduct a special inspection of operating reactors and is now implementing many scheduled measures. Numerous facts and insights are now available, not only those gained from the Japanese incident, but also those gleaned from experts worldwide concerning a wide array of information. Therefore, this is an opportunistic time to summarize the insights that have been identified with respect to nuclear safety management and to overview

  1. Emerging framework of safety management after Fukushima accident

    Lee, Joo Sang [TUV SUD KOCEN, Yongin (Korea, Republic of); Rawls, Scott [EXCEL, JP (United States)

    2012-10-15

    Since the Fukushima accident onset, concerned organizations and experts have tried to identify the causes and effects of the incident. Many have formulated new national regulatory measures to strengthen nuclear safety in an effort to protect the general public to the extent of probabilistic cases of the most severe or extreme accidents. The Japanese government is set to install a regulatory authority, comparable to the US NRC, which is completely independent from the promotion of nuclear energy. An official report of the National Diet (or Senate) of Japan in June of 2012 laments a lack of safety culture and insists the accident could have been prevented if due consideration and attention had been provided. Both France and other European countries have performed stress tests to their operating units, and have identified many areas for improvement including that of their regulatory framework. The US NRC also conducted special inspections of all operating reactors. In addition, the NRC established both near and long term specific goals, and issued a policy statement for streamlining patch worked regulatory framework. It is also applying the Risk informed Defense in Depth Design which includes the extended design basis requirements. The IAEA General Conference adopted a Nuclear Safety Action Plan in September 2011 and organized an International Expert Meeting in March 2012 in order to analyze all relevant technical aspects from the Japanese incident in order to prevent a reoccurrence. Korea is not an exception to this trend. She was swift to conduct a special inspection of operating reactors and is now implementing many scheduled measures. Numerous facts and insights are now available, not only those gained from the Japanese incident, but also those gleaned from experts worldwide concerning a wide array of information. Therefore, this is an opportunistic time to summarize the insights that have been identified with respect to nuclear safety management and to overview

  2. Methodology for rehabilitation strategies evaluation aid after an accident: application and results

    Post-accidental management is a matter for an optimisation process in a multi-criteria context, which has to combine quantitative parameters as well as qualitative parameters. In order to fit with this problematic, a methodological work has been realised at IPSN, in the context of the Becquerel national exercise, which has Simulated a Borax type accident on an experimental reactor. The methodology consists in making a systematic evaluation of indicators in order to provide inter-comparing data for many rehabilitation strategies. Thus, each strategy is evaluated on the one hand in terms of radiological benefit and on the other hand, in terms of incidences such as duration of realisation, materials and human means, workers doses, amount of generated wastes. In this context, calculations highlighted the importance of counter-measures aiming at reducing the external exposure, which is the dominating exposure pathway. The counter-measures aimed at reducing the dose by ingestion lead to a reduction of specific activity are then useful mainly in regard to the limits of commercialization. This work is a first and useful contribution to the clarification of the post-accidental rehabilitation problem. It has also put the light on three important needs: formalization of counter-measures and gathering into a data base, adaptation of calculation tools to make their use easier, and improvement of the knowledge of the operational considerations for the interventions. (authors)

  3. Accident evolution and barrier function and accident evolution management modeling of nuclear power plant incidents

    Every analysis of an accident or an incident is founded on a more or less explicit model of what an accident is. On a general level, the current approach models an incident or accident in a nuclear power plant as a failure to maintain a stable state with all variables within their ranges of stability. There are two main sets of subsystems in continuous interaction making up the analyzed system, namely the human-organizational and the technical subsystems. Several different but related approaches can be chosen to model an accident. However, two important difficulties accompany such modeling: the high level of system complexity and the very infrequent occurrence of accidents. The current approach acknowledges these problems and focuses on modeling reported incidents/accidents or scenarios selected in probabilistic risk assessment analyses to be of critical importance for the safety of a plant

  4. Reactor accidents. Public health strategies and their medical implications

    In a reactor accident with release of radioactivity, the major potential public health risks are likely to result from radioiodines, particularly iodine 131, which can be readily volatilized and dispersed. They are rapidly absorbed and concentrated by the thyroid, which could result in substantial thyroidal radiation. Although some forms of radiation can cause thyroid cancer in humans, 131I has not been shown to do so, and 40 years of safe experience with this radionuclide in routine clinical thyroid testing and treatment has been reassuring. Nevertheless, since 131I has been shown to cause thyroid neoplasms in animals, efforts to minimize unwarranted exposure seem advisable. Potassium iodide, administered at an appropriate time, will effectively block thyroid uptake, but it has potential toxicity and may be difficult to distribute effectively and safely on a large scale in an emergency. Evaluation of the risks and benefits of potassium iodide use is essential to establishing sound public health policy but awaits additional scientific information

  5. Program for accident and incident management support, AIMS

    A prototype of an advisory computer program is presented which could be used in monitoring and analyzing an ongoing incident in a nuclear power plant. The advisory computer program, called the Accident and Incident Management Support (AIMS), focuses on processing a set of data that is to be transmitted from a nuclear power plant to a national or regional emergency center during an incident. The AIMS program will assess the reactor conditions by processing the measured plant parameters. The applied model of the power plant contains a level of complexity that is comparable with the simplified plant model that the power plant operator uses. A standardized decay heat function and a steam water property library is used in the integral balance equations for mass and energy. A simulation of the station blackout accident of the Borssele plant is used to test the program. The program predicts successively: (1) the time of dryout of the steam generators, (2) the time of saturation of the primary system, and (3) the onset of core uncovery. The coolant system with the actual water levels will be displayed on the screen. (orig./HP)

  6. Nuclear accidents. Optimisation in the planning of strategies for the introduction of precautionary countermeasures

    The profile of a nuclear accident commences with an initiator and may progress, through a number of stages, to a major release to the environment. Emergency planners, in drawing up contingency arrangements must take into account the range of possible accidents, the available countermeasures and their effectiveness in achieving averted dose for comparison against a range of national or international intervention levels. When precautionary countermeasures are considered it is often difficult to demonstrate that the initial response proposed provides for optimised protection. This paper aims to provide a simple method which may be used as an input to deciding optimum countermeasure strategies and planning zones. The method requires a knowledge of the frequencies and consequences of a representative range of accident sequences together with details of suitable warning times and release durations for each sequence. Local knowledge of the likely effectiveness of a countermeasure is also required in order to estimate the averted dose benefit for a given implementation strategy. The method takes into account the likely development of each sequence and its frequency weighting. Finally, a site specific assessment of the disbenefit of implementation of a countermeasure is incorporated so that the net benefit for each strategy may be derived as a function of distance from the accident site. The paper develops an example showing how the net benefit of a range of strategies may be compared leading to a choice of optimum strategy within a range of possible planning zones. (author)

  7. Development of the MIDAS GUI environment for severe accident management and analyses

    MIDAS is being developed at KAERI as an integrated severe accident analysis code with existing model modification and new model addition. Also restructuring of the data transfer scheme is going on to improve user's convenience. In this paper, various MIDAS GUI systems which are input management system IEDIT, variable plotting system IPLOT, severe accident training simulator SATS, and online guidance module HyperKAMG, are introduced. In addition, detail functions and usage of these systems for severe accident management and analyses are described

  8. Radiation accidents and their management: emphasis on the role of nuclear medicine professionals

    Bomanji, Jamshed B.; NOVRUZOV, Fuad; Vinjamuri, Sobhan

    2014-01-01

    Large-scale radiation accidents are few in number, but those that have occurred have subsequently led to strict regulation in most countries. Here, different accident scenarios involving exposure to radiation have been reviewed. A triage of injured persons has been summarized and guidance on management has been provided in accordance with the early symptoms. Types of casualty to be expected in atomic blasts have been discussed. Management at the scene of an accident has been described, with e...

  9. Review of current Severe Accident Management (SAM) approaches for Nuclear Power Plants in Europe

    HERMSMEYER Stephan; Iglesias, R.; Herranz, L; REER B.; SONNENKALB M; NOWACK H.; Stefanova, A.; Raimond, E.; CHATELARD P.; FOUCHER Laurent; BARNAK M.; MATEJOVIC P; PASCAL GHISLAIN; VELA GARCIA MONICA; SANGIORGI MARCO

    2014-01-01

    The Fukushima accidents highlighted that both the in-depth understanding of such sequences and the development or improvement of adequate Severe Accident Management (SAM) measures are essential in order to further increase the safety of the nuclear power plants operated in Europe. To support this effort, the CESAM (Code for European Severe Accident Management) R&D project, coordinated by GRS, started in April 2013 for 4 years in the 7th EC Framework Programme of research and development of th...

  10. The management of risk to society from potential accidents

    The main report of the United Kingdom Atomic Energy Authority (UKAEA) Working Group on Risks to Society from Potential Major Accidents is presented. It is the outcome of a study by AEA Technology, the trading name of the UKAEA, in support of its own decision-making on risk management of the nuclear plants and laboratories it controls. The principles underlying decisions on social risk are of much broader applicability, however. The report is prefaced by an Executive Summary which is intended to be a stand-alone summary of the results of the study. The topics covered include: an examination of the nature of risk; the distinction to be drawn between individual and societal risk; existing risks; risk estimation; goals and targets as defined in terms of acceptance, tolerability and comparison between risks; regulations relating to risk targets; risk management decisions in theory and practice; societal risk management. A final chapter brings together the conclusions and recommendations from the preceding nine with respect to risk estimation, evaluation, management and overall approach. Two appendices deal with cost benefit analysis and provide a glossary and acronyms. (UK)

  11. CATHARE Assessment of PACTEL LOCA Experiments with Accident Management

    Luben Sabotinov

    2010-01-01

    Full Text Available This paper summarizes the analysis results of three PACTEL experiments, carried out with the advanced thermal-hydraulic system computer CATHARE 2 code as a part of the second work package WP2 (analytical work of the EC project “Improved Accident Management of VVER nuclear power plants” (IMPAM-VVER. The three LOCA experiments, conducted on the Finnish test facility PACTEL (VVER-440 model, represent 7.4% cold leg breaks with combination of secondary bleed and primary bleed and feed and different actuation modes of the passive safety injection. The code was used for both defining and analyzing the experiments, and to assess its capabilities in predicting the associated complex VVER-related phenomena. The code results are in reasonable agreement with the measurements, and the important physical phenomena are well predicted, although still further improvement and validation might be necessary.

  12. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    This paper describes the Waste Management Facility Accident Analysis (WASTEunderscoreACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy's (DOE's) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTEunderscoreACC is a decision support and database system that is compatible with Microsoft reg-sign Windows trademark. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure will allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTEunderscoreACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTEunderscoreACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTEunderscoreMGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes

  13. Psychological and social factors influencing the choice of strategy after a nuclear accident

    The analysis of the post-accident situation in Chernobyl provides information that focuses on social and psychological factors in the management of nuclear accidents. This paper concentrates on the short term countermeasures. It presents the main conclusions of a field survey carried out in Ukraine. The issues talked are the concern about extend of post-response in Chernobyl, the worries over health, contamination, the concern over the future and the complexity of post-accident situation. In a second part, the paper analyses and models the factors that caused the 1993 post-accident situation. Finally, several advices are given concerning the public information and behaviour focusing on the social and psychological aspect of short-term decisions (a constant effort should always be, for example, limiting the element of surprise in order to reduce the stress of population). (TEC). 3 figs

  14. Analytical support for SAMG development as a part of accident management

    The decision to built up and implement a comprehensive Accident Management Program applying best world-wide knowledge made during last year at Temelin. A small group of engineers dedicated to Accident Management was formed at Temelin NPP as a part of the plant organisation scheme. A short summary of these activities performed by this group is presented. (author)

  15. Motor vehicle accidents: how should cirrhotic patients be managed?

    Kawaguchi, Takumi; Taniguchi, Eitaro; Sata, Michio

    2012-06-01

    Motor vehicle accidents (MVAs) are serious social issues worldwide and driver illness is an important cause of MVAs. Minimal hepatic encephalopathy (MHE) is a complex cognitive dysfunction with attention deficit, which frequently occurs in cirrhotic patients independent of severity of liver disease. Although MHE is known as a risk factor for MVAs, the impact of diagnosis and treatment of MHE on MVA-related societal costs is largely unknown. Recently, Bajaj et al demonstrated valuable findings that the diagnosis of MHE by rapid screening using the inhibitory control test (ICT), and subsequent treatment with lactulose could substantially reduce the societal costs by preventing MVAs. Besides the ICT and lactulose, there are various diagnostic tools and therapeutic strategies for MHE. In this commentary, we discussed a current issue of diagnostic tools for MHE, including neuropsychological tests. We also discussed the advantages of the other therapeutic strategies for MHE, such as intake of a regular breakfast and coffee, and supplementation with zinc and branched chain amino acids, on the MVA-related societal costs. PMID:22690067

  16. Motor vehicle accidents: How should cirrhotic patients be managed?

    Takumi Kawaguchi; Eitaro Taniguchi; Michio Sata

    2012-01-01

    Motor vehicle accidents (MVAs) are serious social issues worldwide and driver illness is an important cause of MVAs.Minimal hepatic encephalopathy (MHE) is a complex cognitive dysfunction with attention deficit,which frequently occurs in cirrhotic patients independent of severity of liver disease.Although MHE is known as a risk factor for MVAs,the impact of diagnosis and treatment of MHE on MVA-related societal costs is largely unknown.Recently,Bajaj et al demonstrated valuable findings that the diagnosis of MHE by rapid screening using the inhibitory control test (ICT),and subsequent treatment with lactulose could substantially reduce the societal costs by preventing MVAs,Besides the ICT and lactulose,there are various diagnostic tools and therapeutic strategies for MHE.In this commentary,we discussed a current issue of diagnostic tools for MHE,including neuropsychological tests.We also discussed the advantages of the other therapeutic strategies for MHE,such as intake of a regular breakfast and coffee,and supplementation with zinc and branched chain amino acids,on the MVA-related societal costs.

  17. Assessment of accident management measures on early in-vessel station blackout sequence at VVER-1000 pressurized water reactors

    Highlights: • Accident management procedures for a station blackout scenario are investigated. • Secondary and primary side countermeasures are compared. • In-depth analyses of the plant behaviour and estimation of time margins. • Insights into the physical phenomena which can influence the passive feeding. • Assessment of the effectiveness of the applied bleed and feed procedures. - Abstract: In the process of elaboration and evaluation of severe accident management guidelines, the assessment of the accident management measures and procedures plays an important role. This paper investigates the early in-vessel phase accident progression of a hypothetical station blackout scenario for a generic VVER-1000 pressurized water reactor. The study focuses on the following accident management measures: primary side depressurization with passive safety systems injection, secondary side depressurization with passive feeding from the feedwater system, and a combination of the both procedures. The analyses have been done with the mechanistic computer code ATHLET. The simulations give in-depth analyses of the reactor system behaviour, assessment of the time margins till heating up of the reactor core and insights into physical phenomena which can influence the passive feeding procedures for cooling of the reactor core. The simulation results show that such accident management measures can significantly prolong the time till core degradation. Maximum delay for core heat up can be achieved by sequentially realization of the secondary and primary side bleed and feed strategies. Due to reversed heat transfer in the steam generators or caused by the depressurization itself a part of the injected water is evaporated. Evaporation or flashing in the feedwater system can lead to an intermittent water injection, thus reducing the effectiveness of the feeding procedure

  18. Assessment of accident management measures on early in-vessel station blackout sequence at VVER-1000 pressurized water reactors

    Tusheva, P., E-mail: p.tusheva@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Reactor Safety Division, POB 51 01 19, 01314 Dresden (Germany); Schäfer, F., E-mail: f.schaefer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Reactor Safety Division, POB 51 01 19, 01314 Dresden (Germany); Reinke, N., E-mail: nils.reinke@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50667 Cologne (Germany); Kamenov, Al., E-mail: alkamenov@npp.bg [Kozloduy NPP Plc., 3321 Kozloduy (Bulgaria); Mladenov, I., E-mail: ivanmladenov@abv.bg [Kozloduy NPP Plc., 3321 Kozloduy (Bulgaria); Kamenov, K., E-mail: k_kamenov@npp.bg [Kozloduy NPP Plc., 3321 Kozloduy (Bulgaria); Kliem, S., E-mail: s.kliem@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Reactor Safety Division, POB 51 01 19, 01314 Dresden (Germany)

    2014-10-01

    Highlights: • Accident management procedures for a station blackout scenario are investigated. • Secondary and primary side countermeasures are compared. • In-depth analyses of the plant behaviour and estimation of time margins. • Insights into the physical phenomena which can influence the passive feeding. • Assessment of the effectiveness of the applied bleed and feed procedures. - Abstract: In the process of elaboration and evaluation of severe accident management guidelines, the assessment of the accident management measures and procedures plays an important role. This paper investigates the early in-vessel phase accident progression of a hypothetical station blackout scenario for a generic VVER-1000 pressurized water reactor. The study focuses on the following accident management measures: primary side depressurization with passive safety systems injection, secondary side depressurization with passive feeding from the feedwater system, and a combination of the both procedures. The analyses have been done with the mechanistic computer code ATHLET. The simulations give in-depth analyses of the reactor system behaviour, assessment of the time margins till heating up of the reactor core and insights into physical phenomena which can influence the passive feeding procedures for cooling of the reactor core. The simulation results show that such accident management measures can significantly prolong the time till core degradation. Maximum delay for core heat up can be achieved by sequentially realization of the secondary and primary side bleed and feed strategies. Due to reversed heat transfer in the steam generators or caused by the depressurization itself a part of the injected water is evaporated. Evaporation or flashing in the feedwater system can lead to an intermittent water injection, thus reducing the effectiveness of the feeding procedure.

  19. Communication strategies for conflict management

    The current debates in Swiss nuclear power policy about the power increase in one nuclear generating unit and about a repository for radioactive waste are used as models for strategic decisionmaking. For this purpose, two independent, but complementary, schools of thought are combined: First, a sensitivity model is employed to analyze societal mechanisms in a coherent, holistic frame of reference; secondly, a meta-analysis concentrates on the process of conflict management among the Federal Government, the managers of the electricity utilities, their political opponents, and the public. The way in which the participating groups make decisions and implement them is of critical importance to their behavior in the next phase. This is the stage at which models show how the behavior of the players will develop over time. The establishment of a highly flexible strategic knowledge base illustrates how the findings made can be employed in designing successful communication strategies. (orig.)

  20. MELCOR Simulation of Direct Depressurization Strategy for Total Loss of Feed Water Accident

    Reactor coolant system (RCS) is very important for mitigating the severe accidents of high pressure sequences. There are two ways to achieve this goal: first, indirect depressurization by using secondary side (i.e., feed and bleed strategy) and second, by using safety depressurization system (SDS) to directly de pressurize RCS. Total loss of feed water (TLOFW) accident, which is dominant event among severe accidents of OPR1000, cannot be mitigated by using the secondary side feed and bleed strategy because there is no feed water. Therefore, RCS should be directly de pressurized by using SDS. In this research, different opening number of valves and opening times are chosen for accident scenarios, and PSA 2 level code, MELCOR version 1.8.6, is used. The result of simulation of MELCOR for TLOFW accident shows that in order to delay the time of the reactor vessel failure time, opening the SDS early is more effective than increasing the opening number of the valve. However, sensitivity analysis on the opening time of the SDV and analysis on the rate of flow out of SDV and its effect are needed in the next research

  1. Emergency management in nuclear accident situations the disaster exercise 1995 'Northern Light'

    Emergency management does not only start after something has happened. Initially, a feasibility study usually assesses the risk for technologically critical processes and applications. Preventive strategies will be employed both in the administrative and technical field to minimize risk. Technical solutions will increase inherent safety or provide monitoring of critical components. Administrative action would result e.g. in restricted access, training programs, or detailed operating protocols. A final stage would be preparation for remedial action and defining the groundwork for emergency management in cooperation with civil defense forces. Appropriate precautions will be based on hazard potential, which is inherently substantial when dealing with nuclear accidents. Being the last line of defence, the civil or military defense forces will be involved if a major disaster occurs despite all precautions, overpowering on-site crew capabilities. For major disasters requiring even international assistance, the United Nations Department of Humanitarian Affairs has started to conduct disaster preparedness exercises to improve cooperation and communication among the international relief teams and the local authorities. The EXERCISE '95 was organized by the Russian ministry for disaster management simulating a major accident in an atomic power plant located on the Kola peninsula. (author)

  2. Policy elements for post-accident management in the event of nuclear accident. Document drawn up by the Steering Committee for the Management of the Post-Accident Phase of a Nuclear Accident (CODIRPA). Final version - 5 October 2012

    Pursuant to the Inter-ministerial Directive on the Action of the Public Authorities, dated 7 April 2005, in the face of an event triggering a radiological emergency, the National directorate on nuclear safety and radiation protection (DGSNR), which became the Nuclear safety authority (ASN) in 2006, was tasked with working the relevant Ministerial offices in order to set out the framework and outline, prepare and implement the provisions needed to address post-accident situations arising from a nuclear accident. In June 2005, the ASN set up a Steering committee for the management of the post-accident phase in the event of nuclear accident or a radiological emergency situation (CODIRPA), put in charge of drafting the related policy elements. To carry out its work, CODIRPA set up a number of thematic working groups from 2005 on, involving in total several hundred experts from different backgrounds (local information commissions, associations, elected officials, health agencies, expertise agencies, authorities, etc.). The working groups reports have been published by the ASN. Experiments on the policy elements under construction were carried out at the local level in 2010 across three nuclear sites and several of the neighbouring municipalities, as well as during national crisis drills conducted since 2008. These works gave rise to two international conferences organised by ASN in 2007 and 2011. The policy elements prepared by CODIRPA were drafted in regard to nuclear accidents of medium scale causing short-term radioactive release (less than 24 hours) that might occur at French nuclear facilities equipped with a special intervention plan (PPI). They also apply to actions to be carried out in the event of accidents during the transport of radioactive materials. Following definitions of each stage of a nuclear accident, this document lists the principles selected by CODIRPA to support management efforts subsequent to a nuclear accident. Then, it presents the main

  3. Remediation strategies after nuclear or radiological accidents: part 2 - accident scenarios for assessing effectiveness of cleanup procedures

    The selection of protective measures and remediation strategies after an accident needs to be based on previously established criteria, to minimize unnecessary stress and the exposures involved in cleanup operations that are not effective in reducing doses to the public. In a first stage, a database describing the countermeasures has been developed including their efficiency on removing contamination from surfaces. However, to assess the effectiveness of cleanup procedures in reducing doses to members of the public, it was necessary to derive specific scenarios in order to simulate the long term behavior of the material in the environment, since the contribution of different surfaces to doses changes with time after contamination. A basic release and exposure scenario was developed to assess the dose reduction due to the mostly used procedures. Exposure scenarios were selected to fit the surroundings of the Brazilian nuclear power plants in Angra dos Reis. Simulations were performed using SIEM, the integrated system for dose assessment after contamination events, developed at IRD. The contamination of urban environments was assessed for Cs-137, as this was found to be the most relevant long term radionuclide to contribute to doses to member of the public. The effects on reducing external exposures were assessed for periods up to 50 years after the contamination. For agricultural areas, the focus was on ingestion doses from contamination with I-131 for periods up to 1 year after contamination. Results will be complemented on the database in order to support multi-criteria decision making processes after accidents. (author)

  4. Analysis for relocation strategy using the method of probabilistic accident consequence assessment

    Relocation is one of the long-term protective actions in case of nuclear emergency to mitigate the consequences of an accidental release of radionuclides. The strategy of relocation is characterized by its protective benefit, cost and the corresponding residual dose in planning. This paper describes the application of a probabilistic accident consequence assessment model to the calculation of these quantities and the planning of relocation. Calculations of the consequence have been made of a postulated accident with source terms derived from a generic level 2 PSA. The results provided the insights for the development optimum dose criteria for introducing and terminating relocation. (author)

  5. Lessons learned from post-accident management at Chernobyl: the P.a.r.e.x. project

    Return of experience on Chernobyl post-accident management: the PAREX study Belarus is the country the most affected by the Chernobyl fallouts and is among the most significant experiences in the nuclear post-accident field. Despite specificities inherent to the political and social situation in Belarus, the experience of post-accidental management in this country holds a wealth of lessons in the perspective of preparation to a post-accidental situation in the French and European context. Through the PAREX project (2005-2006), the French Nuclear Safety Authority analysed the return of experience of Chernobyl post-accident management from 1986 to 2005 in order to draw its lessons in the perspective of a preparation policy. The study was led by a group of experts and involved the participation of a pluralistic group of about thirty participants (public authorities, local governments, NGOs, experts, operators). PAREX highlighted the complexity of a situation of long-lasting radioactive contamination (diversity of stakeholders and of dimensions at stake: health, environment, economy, society...). Beyond traditional public crisis management tools and frameworks, post-accident strategies also involves in the longer term a territorial and social response, which relies on local capacities of initiative. Preparation to such process requires experimenting new modes of operation that allow a diversity of local actors to take part to the response to a situation of contamination and to the surveillance system, with the support of public authorities. The conclusions of PAREX include a set of recommendations in this perspective. (authors)

  6. Knowledge data base for severe accident management of nuclear power plants

    For the reinforcement of the safety of NPPs, the continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of this present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of severe accident, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of accident management. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the severe accident analysis codes and the accident management knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2010 are as follows; Experimental study on OECD/NEA projects such as MCCI, SERENA, SFP and international cooperative PSI-ARTIST project, and analytical study on accident management review of new plant and making regulation for severe accident. (author)

  7. Knowledge data base for severe accident management of nuclear power plants

    For the reinforcement of the safety of NPPs, the continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of this present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of severe accident, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of accident management. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the severe accident analysis codes and the accident management knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2011 are as follows; Experimental study on OECD/NEA projects such as MCCI, SERENA, SFP and international cooperative PSI-ARTIST project, and analytical study on accident management review of new plant and making regulation for severe accident. (author)

  8. Remediation strategies after nuclear or radiological accidents: part 1 - database development

    The selection of protective measures and of remediation strategies of areas after a nuclear or radiological accident needs to be based on previously established criteria, in way to minimize the public's emotional stress and the exposure to workers involved in cleanup operations due to the implementation of procedures that are not effective in reducing doses to the public. Thus this work intended to develop a database which allows supporting the decision-making process after these accidents, by describing the foreseen strategies according to the type of accident and the type of affected environment, in order to be used in a multi-criteria selective process. To achieve that, in this first stage, the database has been developed including the following aspects: type of environment (urban, rural or aquatic); their contamination removal efficiency, as function of the time elapsed since the contamination event; the type and the amount of waste generated in the application of the strategy; the expected doses to the work team and basic needs such as specific materials, equipment, training, IPE, among others. The protection measures are usually described in literature considering their activity removal efficiency of a certain surface or environment. In order to determine their efficiency in the reduction of doses, a second stage is foreseen, involving the simulation of the implementation of the measures in different moments after the contamination, based on pre-defined accidents and scenarios, with focus on the surroundings of the Brazilian Nuclear Power Plants in Angra dos Reis. (author)

  9. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  10. Developing and validating severe accident management guidelines using SAMPSON-RELAP/SCDAPSIM.MOD3.4

    The development and validation of Severe Accident Management Guidelines (SAMGs) must consider complex thermal-hydraulic and severe accident phenomena. Yet, many of the simplified integral Severe Accident codes, that have been used widely to develop SAMGs in Europe, Asia, and the United States, cannot accurately predict many of these complex interactions. By contrast, detailed codes such as SAMPSON-RELAP/SCDAPSIM have shown, through comparison with the TMI-2 accident and experiments, that they can predict such complex behavior. This paper describes the merger of SAMPSON with RELAP/SCDAPSIM/MOD3.4, reviews the severe accident phenomena important for Severe Accident Management, and then describes the potential impact of using SAMPSON-RELAP/SCDAPSIM on the development and validation of SAMGs. A companion paper, being presented at this conference provides an example of the application of SAMPSON-RELAP/SCDAPSIM for the development and validation of a SAMG for a Nuclear Power Plant. (authors)

  11. Configuration Management Process Assessment Strategy

    Henry, Thad

    2014-01-01

    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  12. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  13. Management of a severe accident on a pressurised water reactor in France

    This brief document defines what a severe accident is on a nuclear reactor, indicates the different failure modes which have been defined (vapour explosion in the reactor vessel, hydrogen explosion, and so on). It describes the management of a core fusion accident for pressurized water reactors, for which a guide has been designed, the GIAG (intervention guide for a severe accident situation). The principles of such an intervention are described, and then the approach for an EPR reactor

  14. Proceedings of the workshop on operator training for severe accident management and instrumentation capabilities during severe accidents

    This Workshop was organised in collaboration with Electricite de France (Service Etudes et Projets Thermiques et Nucleaires). There were 34 participants, representing thirteen OECD Member countries, the Russian Federation and the OECD/NEA. Almost half the participants represented utilities. The second largest group was regulatory authorities and their technical support organisations. Basically, the Workshop was a follow-up to the 1997 Second Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) [Reports NEA/CSNI/R(97)10 and 27] and to the 1992 Specialist Meeting on Instrumentation to Manage Severe Accidents [Reports NEA/CSNI/R(92)11 and (93)3]. It was aimed at sharing and comparing progress made and experience gained from these two meetings, emphasizing practical lessons learnt during training or incidents as well as feedback from instrumentation capability assessment. The objectives of the Workshop were therefore: - to exchange information on recent and current activities in the area of operator training for SAM, and lessons learnt during the management of real incidents ('operator' is defined hear as all personnel involved in SAM); - to compare capabilities and use of instrumentation available during severe accidents; - to monitor progress made; - to identify and discuss differences between approaches relevant to reactor safety; - and to make recommendations to the Working Group on the Analysis and Management of Accidents and the CSNI (GAMA). The meeting confirmed that only limited information is needed for making required decisions for SAM. In most cases existing instrumentation should be able to provide usable information. Additional instrumentation requirements may arise from particular accident management measures implemented in some plants. In any case, depending on the time frame where the instrumentation should be relied upon, it should be assessed whether it is likely to survive the harsh environmental conditions it will be exposed

  15. Homosexuality in Turkey: strategies for managing heterosexism.

    Bakacak, Ayça Gelgeç; Oktem, Pinar

    2014-01-01

    The goal of this study was to identify the strategies used by young homosexuals to manage their sexual minority status in Turkey. In-depth interviews were conducted with 15 self-identified homosexual university students. The data on the strategies employed by homosexuals suggested a categorization of these strategies into four interrelated areas: strategies employed in the process of self-acceptance; strategies to manage sexual stigma and prejudice; strategies specific to the coming-out process; and the strategies used while openly expressing their sexual identities. PMID:24328758

  16. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident

    Sugiyama, Daisuke; Hattori, Takatoshi

    2012-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed...

  17. Development of Operation Strategy for Hybrid-SIT in SBO Accident

    Passive system is suggested as an alternative way for active system because passive system doesn't need external energy source and passive system can also increase the diversity of mitigation technique of Nuclear Power Plant (NPP). A hybrid safety injection tank (H-SIT) is a passive injection system that adjusts to the APR+. This system is developed for mitigation of SBO scenarios. Main function of this system is injection of coolant to the Reactor Coolant System (RCS) in a passive way.. The H-SIT system can inject water using the pressure from nitrogen gas as a normal SIT in low-pressure accidents such as large and medium break loss-of-coolant accidents. Additionally, the H-SIT system can inject water using the gravitational force in over-pressure accidents, which means that the pressure is higher than the safety injection pump (SIP) injection pressure. Figure 1 presents the outline of the H-SIT system. Operation strategy of H-SIT can be divided into four case in SBO accident and each case has a deferent strategy of H-SIT operation. In case 1, timing of H-SIT operation has the best efficiency when core level is 50% of its level in normal operation. H-SIT extend failure time of cladding up to 5686s. In case 2, timing of H-SIT operation has the best efficiency when seal LOCA occur

  18. Development of Operation Strategy for Hybrid-SIT in SBO Accident

    Jeon, In Seop; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2014-10-15

    Passive system is suggested as an alternative way for active system because passive system doesn't need external energy source and passive system can also increase the diversity of mitigation technique of Nuclear Power Plant (NPP). A hybrid safety injection tank (H-SIT) is a passive injection system that adjusts to the APR+. This system is developed for mitigation of SBO scenarios. Main function of this system is injection of coolant to the Reactor Coolant System (RCS) in a passive way.. The H-SIT system can inject water using the pressure from nitrogen gas as a normal SIT in low-pressure accidents such as large and medium break loss-of-coolant accidents. Additionally, the H-SIT system can inject water using the gravitational force in over-pressure accidents, which means that the pressure is higher than the safety injection pump (SIP) injection pressure. Figure 1 presents the outline of the H-SIT system. Operation strategy of H-SIT can be divided into four case in SBO accident and each case has a deferent strategy of H-SIT operation. In case 1, timing of H-SIT operation has the best efficiency when core level is 50% of its level in normal operation. H-SIT extend failure time of cladding up to 5686s. In case 2, timing of H-SIT operation has the best efficiency when seal LOCA occur.

  19. Identification and assessment of containment and release management strategies for a BWR Mark II containment

    Accident management strategies that have the potential to maintain containment integrity and control or mitigate the release of radioactivity following a severe accident at a boiling water reactor with a Mark 2 type of containment are identified and evaluated. The strategies are referred to as containment and release strategies. Using information available from probabilistic risk assessments and other existing severe accident research, and employing simplified containment and release event trees, this report identified the challenges a Mark 2 containment may encounter during a severe accident, the mechanisms behind these challenges, and the strategies that could be used to mitigate the challenge. By means of a safety objective tree, the strategies are linked to the general safety objectives of containment and release management. As part of the assessment process, the strategies are applied to certain severe accident sequence categories deemed important to a Mark 2 containment. These sequence categories exhibit one or more of the following characteristics: high probability of core damage, high consequences, lead to a number of challenges, and involve the failure of multiple systems. The Limerick Generating Station is used as a representative Mark 2 plant to illustrate plant specifics in this report

  20. Identification and assessment of containment and release management strategies for a BWR Mark II containment

    Lin, C.C.; Lehner, J.R. [Brookhaven National Lab., Upton, NY (United States)

    1992-06-01

    Accident management strategies that have the potential to maintain containment integrity and control or mitigate the release of radioactivity following a severe accident at a boiling water reactor with a Mark 2 type of containment are identified and evaluated. The strategies are referred to as containment and release strategies. Using information available from probabilistic risk assessments and other existing severe accident research, and employing simplified containment and release event trees, this report identified the challenges a Mark 2 containment may encounter during a severe accident, the mechanisms behind these challenges, and the strategies that could be used to mitigate the challenge. By means of a safety objective tree, the strategies are linked to the general safety objectives of containment and release management. As part of the assessment process, the strategies are applied to certain severe accident sequence categories deemed important to a Mark 2 containment. These sequence categories exhibit one or more of the following characteristics: high probability of core damage, high consequences, lead to a number of challenges, and involve the failure of multiple systems. The Limerick Generating Station is used as a representative Mark 2 plant to illustrate plant specifics in this report.

  1. Applicability of Phebus FP results to severe accident safety evaluations and management measures

    The international Phebus FP (Fission Product) programme is the largest research programme in the world investigating core degradation and radioactive product release should a core meltdown accident occur in a light water reactor plant. Three integral experiments have already been performed. The experimental database obtained so far contains a wealth of information to validate the computer codes used for safety and accident management assessment

  2. Opportunities for international cooperation in nuclear accident preparedness and management: Procedural and organizational measures

    In this paper we address a difficult problem: How can we create and maintain preparedness for nuclear accidents? Our research has shown that this can be broken down into two questions: (1) How can we maintain the resources and expertise necessary to manage an accident once it occurs? and (2) How can we develop plans that will help in actually managing an accident once it occurs? It is apparently beyond the means of ordinary human organizations to maintain the capability to respond to a rare event. (A rare event is defined as something like an accident that only happens once every five years or so, somewhere in the world.) Other more immediate pressures tend to capture the resources that should, in a cost/benefit sense, be devoted to maintaining the capability. This paper demonstrates that some of the important factors behind that phenomenon can be mitigated by an international body that promotes and enforces preparedness. Therefore this problem provides a unique opportunity for international cooperation: an international organization promoting and enforcing preparedness could help save us from our own organizational failings. Developing useful accident management plans can be viewed as a human performance problem. It can be restated: how can we support and off-load the accident managers so that their tasks are more feasible? This question reveals the decision analytic perspective of this paper. That is, we look at the problem managing a nuclear accident by focusing on the decision makers, the accident managers: how do we create a decision frame for the accident managers to best help them manage? The decision frame is outlined and discussed. 9 refs

  3. Strategy tools and strategy toys : management tools in strategy work

    Stenfors, Sari

    2007-01-01

    This dissertation elaborates on the challenges and opportunities of strategy-tool use in strategy work. Strategy tools, such as Porter’s Five Forces, SWOT Analysis, Scenario Analysis, Executive Information Systems, and the Balanced Scorecard, are developed to support organizations with the complex demands of competitive markets and the quest for maintaining and creating strategic advantage. Strategy tools are often based on academic research and they are introduced into practice through busin...

  4. Development of a reactor vessel failure diagnosis system for accident management

    Diagnosis of vessel failure provides for operators and TSC personnel very important information to manage the severe accident in nuclear power plant. However, operators can not diagnose the reactor vessel failure by watching the temporal trends of some parameters because they never have experienced the severe accident. Therefore, this study proposes a method on the diagnosis of the PWR vessel failure using a Spatiotemporal Neural Network (STN). STNs can deal directly with both the spatial and the temporal aspects of input signals and can well identify a time-varying problem. The target patterns are generated from MAAP code. Vessel failure diagnosis has been performed for 8 accidents and the developed STNs have been verified for untrained three severe accidents. STNs identifies the vessel failure time and the initiating events. For example, when large break LOCA (break size = 0.16 m2) is used for input accident scenario, only the output value for the target pattern of LBLOCA is activated greater than the threshold value near the real vessel failure. To validate vessel failure diagnosis system and to train severe accident to operators, extensive severe accident simulator is to be an absolute necessity. Therefore, a simplified severe accident simulator, SIMAAP (severe accident Simulator based on MAAP), has been developed. SIMAAP simulates the various severe accident progress through on-line communication with MAAP

  5. A study on the use of neural network for severe accident management

    Based on the consensus that the course and consequence of a severe core damage accident can be greatly influenced by the operators' action, there have been extensive efforts to establish severe accident management program. A severe accident management process is essentially a sequence of decision making with a wide variety of available information under the highly uncertain condition, aimed at successful termination of accident progression or consequence minimization. For operators to take correct and timely accident management actions, they should be informed of the accident progression. Some key events, such as onset of core uncovery, core-melt initiation, reactor vessel lower head failure, containment failure, etc., act as landmarks for operators to make decisions in severe accident management process. Thus it is of critical importance to identify the timing at which such events occur in accident management. Unfortunately, it is difficult task partly due to phenomenological complexity and partly due to the lack of instrumentation reliability in severe accident environment, making the traditional procedural or rule-based approach inappropriate to be adopted to this end. Instead a technique, called artificial neural network, has been successfully applied to the similar problem domain out of various disciplines including nuclear industry. This paper presents a study on the application of a special kind of artificial neural network having the capability of recognizing time-varying patterns, called spatiotemporal network (STN), to the event timing prediction which is an important sub function of integrated computer supporting system for severe accident management. As the first trial, concentration was put on the identification of reactor vessel lower head failure which is considered the most critical events discriminating between so called in-vessel and ex-vessel accident management phases. Several sets of seven parameter signals from MAAP-based severe accident

  6. Solid waste accident analysis in support of the Savannah River Waste Management Environmental Impact Statement

    The potential for facility accidents and the magnitude of their impacts are important factors in the evaluation of the solid waste management addressed in the Environmental Impact Statement. The purpose of this document is to address the potential solid waste management facility accidents for comparative use in support of the Environmental Impact Statement. This document must not be construed as an Authorization Basis document for any of the SRS waste management facilities. Because of the time constraints placed on preparing this accident impact analysis, all accident information was derived from existing safety documentation that has been prepared for SRS waste management facilities. A list of facilities to include in the accident impact analysis was provided as input by the Savannah River Technology Section. The accident impact analyses include existing SRS waste management facilities as well as proposed facilities. Safety documentation exists for all existing and many of the proposed facilities. Information was extracted from this existing documentation for this impact analysis. There are a few proposed facilities for which safety analyses have not been prepared. However, these facilities have similar processes to existing facilities and will treat, store, or dispose of the same type of material that is in existing facilities; therefore, the accidents can be expected to be similar

  7. The philosophy of severe accident management in the US

    The US NRC has put forth the initial steps in what is viewed as the resolution of the severe accident issue. Underlying this process is a fundamental philosophy that if followed will likely lead to an order of magnitude reduction in the risk of severe accidents. Thus far, this philosophy has proven cost effective through improved performance. This paper briefly examines this philosophy and the next step in closure of the severe accident issue, the IPE. An example of the authors experience with determinist. (author)

  8. Medical management of radiological accidents in non-specialized clinics: mistakes and lessons

    In 1996-2002 three radiological accidents were developed in Georgia. There were some people injured in those accidents. During medical management of the injured some mistakes and errors were revealed both in diagnostics and scheme of the treatment. The goal of this article is to summarize medical management of the mentioned radiological accidents, to estimate reasons of mistakes and errors, to present the lessons drawn in result of Georgia radiological accidents. There was no clinic with specialized profile and experience. Accordingly due to having no relevant experience late diagnosis can be considered as the main error. It had direct influence on the patients' health and results of treatment. Lessons to be drawn after analyzing Georgian radiological accidents: 1. informing medical staff about radiological injuries (pathogenesis, types, symptoms, clinical course, principles of treatment and etc.); 2. organization of training and meetings in non-specialized clinics or medical institutions for medical staff; 3. preparation of informational booklets and guidelines.(author)

  9. A strategy model for management

    Friis, Ole Uhrskov; Holmgren, Jens; Eskildsen, Jacob Kjær

    2016-01-01

    . Methodology: Using different state-of-the-art strategy approaches to create and validate a solid and causal strategy model. Findings: The nature of strategy is complex, and organisations are indeed facing more complex tasks which require that internal resources are available to meet the environmental demands......Purpose: Developing a strategy model which explains what organisations should focus on in their strategy work, both in terms of the environment as well as how the strategy is implemented. In addition, the purpose is to demonstrate how this can influence and improve the organisations’ performance...

  10. Marine Accidents in Northern Nigeria: Causes, Prevention and Management

    Lawal Bello Dogarawa

    2012-01-01

    Boat mishaps tend to be increasing in Nigeria in spite of all regulatory measures which have been taken to prevent and control marine accidents. Boat mishaps could occur anywhere water transportation takes place. However, there is a general impression that water transportation takes place only in the riverine areas located in Southern Nigeria but, this paper reports about marine accident cases in Northern Nigeria. It evaluates the safety measures put in place by operators and other institutio...

  11. Application of containment and release management strategies to PWR dry-containment plants

    Yang, J.W.; Lehner, J.R. (Brookhaven National Lab., Upton, NY (United States))

    1992-06-01

    This report identifies and evaluates accident management strategies that are potentially of value in maintaining containment integrity and controlling the release of radioactivity following a severe accident as a pressurized water reactor with large-dry containment. The strategies are identified using a logic tree structure leading from the safety objectives and safety functions, through the mechanisms that challenge these safety functions, to the strategies. The strategies are applied to severe accident sequences which have one or more of the following characteristics: significant probability of core damage, high consequences, give rise to a number of potential challenges, and include the failure of important safety systems. Zion and Surry are selected as the representative plants for the atmospheric and sub-atmospheric designs, respectively.

  12. Development of the MIDAS GUI environment for severe accident management and analyses

    Kim, K. R.; Park, S. H.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    MIDAS is being developed at KAERI as an integrated severe accident analysis code with existing model modification and new model addition. Also restructuring of the data transfer scheme is going on to improve user's convenience. In this paper, various MIDAS GUI systems which are input management system IEDIT, variable plotting system IPLOT, severe accident training simulator SATS, and online guidance module HyperKAMG, are introduced. In addition, detail functions and usage of these systems for severe accident management and analyses are described.

  13. Physical dose reconstruction in case of radiological accidents: an asset for the victims' management

    In most cases of radiological accidents caused by an external source, the irradiation is heterogeneous, even for a whole body irradiation. Therefore, more than a whole body dose, estimating the dose distribution in the victim's organism is essential to assess biological damages. This dose distribution can be obtained by physical dosimetric reconstruction methods. The laboratory has developed several techniques based on experimental and numerical dose reconstruction and retrospective dosimetry by ESR in order to assess as accurately as possible and as quickly as possible the dose received and especially its distribution throughout the organism so that the physicians may fine tune their diagnosis and prescribe the most suitable treatment. These last years, these techniques were applied several times and each time the results obtained proved to be essential for the physicians in charge of the victims in order to define the therapeutic strategy. This article proposes a review of the physical dose reconstructions performed in the laboratory for recent radiological accidents focusing on the complementarity of the methods and the gain for the victims' management. (author)

  14. The notion of strategy in facility management

    Holzweber, Markus

    2013-01-01

    Strategy implementation is critical for any type of organization. Strategy implementation is complex despite previous research describing mechanisms related to the construction of strategy and strategy use of organizations. In this article I attempt to fill this vacuity by examining strategy...... and components of strategy in Facility Management (FM). Since strategy refers to a complex network of thoughts, insights, experiences, expertise, and expectations that provide general guidance for management action, organizations must keep pace with the changing environment to increase market shares and business...... success. Based on a literature review, the findings of the study report a service-strategy classification grid. Such a service-strategy grid provides for a better understanding of the business environment. The study findings are intended to enhance business managers’ understandings of the issues behind FM...

  15. Application of simulation techniques for accident management training in nuclear power plants

    Many IAEA Member States operating nuclear power plants (NPPs) are at present developing accident management programmes (AMPs) for the prevention and mitigation of severe accidents. However, the level of implementation varies significantly between NPPs. The exchange of experience and best practices can considerably contribute to the quality, and facilitate the implementation of AMPs at the plants. Various IAEA activities assist countries in the area of accident management. Several publications have been developed which provide guidance and support in establishing accident management at NPPs. The defence in depth concept in nuclear safety requires that, although highly unlikely, beyond design basis and severe accident conditions should also be considered, in spite of the fact that they were not explicitly addressed in the original design of currently operating nuclear power plants (NPPs). Defence in depth is physically achieved by means of four successive barriers (fuel matrix, cladding, primary coolant boundary, and containment) that prevent the release of radioactive material. These barriers are protected by a set of design measures at three levels, including prevention of abnormal operation and failures (level 1), control of abnormal operation and detection of failures (level 2) and control of accidents within the design basis (level 3). Should these first three levels fail to ensure the structural integrity of the core, additional efforts are made at the fourth level of defence in depth in order to further reduce the risks. The objective at level 4 is to ensure that both the likelihood of an accident entailing significant core damage (severe accident) and the magnitude of radioactive releases following a severe accident are kept as low as reasonably achievable. The term 'accident management' refers to the overall range of capabilities of a NPP and its personnel to both prevent and mitigate accident situations that could lead to severe fuel damage in the reactor

  16. Selection of intellectual capital management strategies

    Shcherbachenko Viktoriia Oleksiivna

    2016-01-01

    This article deals with the selection of intellectual capital management strategy. The attention is paid to the structure of intellectual capital, which consists of human capital, customer capital, process capital, intellectual property, intangible assets. The algorithm of selection of intellectual capital management strategy was created by author.

  17. Accident analysis for transuranic waste management alternatives in the U.S. Department of Energy waste management program

    Preliminary accident analyses and radiological source term evaluations have been conducted for transuranic waste (TRUW) as part of the US Department of Energy (DOE) effort to manage storage, treatment, and disposal of radioactive wastes at its various sites. The approach to assessing radiological releases from facility accidents was developed in support of the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The methodology developed in this work is in accordance with the latest DOE guidelines, which consider the spectrum of possible accident scenarios in the implementation of various actions evaluated in an EIS. The radiological releases from potential risk-dominant accidents in storage and treatment facilities considered in the EM PEIS TRUW alternatives are described in this paper. The results show that significant releases can be predicted for only the most severe and extremely improbable accidents sequences

  18. Initial medical management of criticality accident victim; Conduite a tenir aux victimes d'un accident de criticite

    Miele, A.; Bebaron-Jacobs, L

    2005-07-01

    The extremely severe criticality accidents known to this day, and the subsequent deaths recorded (Sarov 1997 and Tokai Mura 1999), demonstrate the need for sustained surveillance and constant adapted training for the teams in charge of irradiated and/or contaminated victims. The aim of this work group, composed of occupational health services and associated medical biology laboratories, is to present, in leaflet format, the essential data on the documentation and the conduct to be held when facing the victims of a criticality accident. The studies of this work group confirm the difficulties involved in managing this type of accident, both from the dosimetric evaluation point of view and from the therapeutic management point of view. That is why several research themes and perspectives are developed. During the different phases of victim triage, the recommendations given on these leaflets describe the operational conducts to be held. This work will have to be updated according to the evolution in knowledge and means: short and long term effects of exposure to neutrons, multi-competence hospital cooperation, expertise networks related to dosimetric reconstitution. (authors)

  19. Help guides for post-accident consequence management: farm activities and exiting the emergency phase

    After having recalled the main actions foreseen in the PPIs (plans particuliers d'intervention, intervention specific plans) in case of radionuclide release in the environment after a nuclear accident, i.e. sheltering and ingestion of steady iodine, and also indicated the different phases of consequence management (preparation, emergency and post-accident phases), this report describes and comments the contents of two guides published by the IRSN (the French Radioprotection and Nuclear Safety Institute) and dealing with the management of post-accident consequences. The first one is a guide to aid to decision-making for the management of the agricultural sector in case of nuclear accident, and the second one is a guide for the preparation of the end of the emergency phase in which actions to be performed during the first week after the end of accidental releases are described

  20. Second Specialist Meeting on operator aids for severe accident management: summary and conclusions

    The second OECD Specialist Meeting on operator aids for severe accident management (SAMOA-2) was held in Lyon, France (1997), and was attended by 33 specialists representing ten OECD member countries. As for SAMOA-1, the scope of SAMOA-2 was limited to operator aids for accident management which were in operation or could be soon. The meeting concentrated on the management of accidents beyond the design basis, including tools which might be extended from the design basis range into the severe accident area. Relevant simulation tools for operator training were also part of the scope of the meeting. 20 papers were presented; there were two demonstrations of computerized systems (the ATLAS analysis simulator developed by GRS, and EDF's 'Simulateur Post Accidentels' (SIPA). The three sessions dealt with operator aids for control rooms, operator aids for technical support centres, and simulation tools for operator training. The various papers for each session are summarized

  1. Objective provision tree application to the effectiveness evaluation of accident management guidelines

    After the Fukushima accident in 2011, various lessons and safety enhancement action items were announced by national regulatory bodies. Among those items, the enforcement of procedural efficiency verification for accidents management guidelines including emergency operating procedures (EOPs), severe accident management guides (SAMGs) and extensive damage mitigating guidelines (EDMG) if applicable, was raised. The Objective Provision Tree (OPT) method is a top down approach which starts from the level of Defense in Depth (DiD), objectives and barriers, safety functions, challenges, mechanisms and finally ends with provisions. The benefit of OPT application to safety concerns includes that the OPT enables the comprehensive review for the verification of consistency and integrity of safety requirements for a specific safety issue. In this study, the preliminary framework for the application of OPT to the effectiveness evaluation of accident management guideline was introduced

  2. The Management of Beyond Design Basis Accidents with Loss of Cooling at NPPs with WWER

    The analysis of Ukrainian guidance on management of beyond design basis accidents at NPP is carried out. International experience on development regulatory documents in this area is considered. Directions for improvements of regulatory documents for NPPs with WWER are determined. For the analysis PSA results of the Ukrainian NPPs are used. It is shown that the primary circuit LOCAs are the dominant contributors of CDF. The set of symptoms for each LOCA group is developed. To develop the management algorithms for each accident group the approach to grouping of accident sequences on the basis of critical configurations of systems is submitted. Examples of necessary changes for improvement of guidance on management of beyond design basis accidents at NPPs with WWER are presented.(author)

  3. Stakeholder involvement in the management of rural areas following a nuclear accident: the farming network

    The importance of the participation of stakeholders in the formulation of strategies for maintaining agricultural production and food safety following a nuclear accident, has been successfully demonstrated by the Agriculture and Food Countermeasures Working Group (AFCWG). This group was set up in the UK by the National Radiological Protection Board (NRPB) and the then Ministry of Agriculture, Fisheries and Food in 1997 (Nisbet and Mondon, 2001). Before this time stakeholder organisations had not collectively considered the implications of contamination of the foodchain in the event of an accidental release of radioactivity. With funding from the European Commission (EC) the UK approach to stakeholder engagement is being taken forward on a European basis during the period 2000-2004 through a project given the acronym FARMING (Food and Agriculture Restoration Management Involving Networked Groups). The overall objective of this project is to create a network of stakeholder working groups in 5 member states (UK, Belgium, Finland, France and Greece) to assist in the development of robust and practicable strategies for restoring and managing contaminated agricultural land and food products in a sustainable way. The initial intention was to involve at least 50 individual stakeholders

  4. Strategic Information Management: Challenges and Strategies in Managing Information Systems

    Edson Luiz Riccio

    2004-01-01

    Book review: Strategic Information Management: Challenges and Strategies in Managing Information Systems by Robert D. Galliers and Dorothy E. Leidner Published by Butterworth-Heinemann, 2003, 3rd Edition, 625pp. ISBN: 0-7506-5619-0

  5. Sisifo-gas a computerised system to support severe accident training and management

    Nuclear Power Plants (NPP) will have to be prepared to face the management of severe accidents, through the development of Severe Accident Guides and sophisticated systems of calculation, as a supporting to the decision-making. SISIFO-GAS is a flexible computerized tool, both for the supporting to accident management and for education and training in severe accident. It is an interactive system, a visual and an easily handle one, and needs no specific knowledge in MAAP code to make complicate simulations in conditions of severe accident. The system is configured and adjusted to work in a BWR/6 technology plant with Mark III Containment, as it is Cofrentes NPP. But it is easily portable to every other kind of reactor, having the level 2 PSA (probabilistic safety analysis) of the plant to be able to establish the categories of the source term and the most important sequences in the progression of the accident. The graphic interface allows following in a very intuitive and formative way the evolution and the most relevant events in the accident, in the both system's way of work, training and management. (authors)

  6. Severe accident recriticality analyses (SARA)

    Frid, W.; Højerup, C.F.; Lindholm, I.;

    2001-01-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the ...

  7. Research on the management of the wastes from plant accidents

    The accident in Fukushima Daiichi Nuclear Power Plant released large amount of radio-nuclides and contaminated wide areas within and out of the site. The decontamination, storage, treatment and disposal of generated wastes are now under planning. Though the regulations for radioactive wastes discharged from normal operation and decommissioning of nuclear facilities have been prepared, it is necessary to make amendments of those regulations to deal with wastes from the severe accidents which may have much different features on nuclides contents, or possibility to accompany hazardous chemical materials. Characteristics, treatment and disposal of wastes from accidents were surveyed by literature and the radionuclide migration from the assumed temporally storage yards of the disaster debris was analyzed for consideration of future regulation. (author)

  8. Investigation of the management of the wastes from plant accident

    The accident in Fukushima Daiichi Nuclear Power Plant discharged large amount of radio-nuclides and contaminated wide areas in and out of the site. The decontamination, storage, treatment and disposal of generated wastes are now under planning. Though regulations for the radioactive wastes arisen from normal operation and decommissioning of nuclear facilities have been prepared, it is necessary to make amendment of those regulations to deal with wastes from the severe accident which may have much different features on nuclides contents, or possible accompanying hazardous chemical materials. Characteristics of wastes from accidents in foreign nuclear installations, and the treatment and the disposal of those wastes were surveyed by literature and radionuclide migration from the assumed temporally storage yards of the disaster debris was analyzed for consideration of future regulation. (author)

  9. Identification and assessment of containment and release management strategies for a BWR Mark III containment

    This report identifies and assesses accident management strategies which could be important for preventing containment failure and/or mitigating the release of fission products during a severe accident in a BWR plant with a Mark III type of containment. Based on information available from probabilistic risk assessments and other existing severe accident research, and using simplified containment and release event trees, the report identifies the challenges a Mark III containment could face during the course of a severe accident, the mechanisms behind these challenges, and the strategies that could be used to mitigate the challenges. The strategies are linked to the general safety objectives which apply for containment and release management by means of a safety objective tree. The strategies were assessed by applying them to certain severe accident sequence categories deemed important for a Mark III containment because of one or more of the following characteristics: high probability of core damage, high consequences, lead to a number of challenges, and involve the failure of multiple systems

  10. Example of severe accident management guidelines validation and verification using full scope simulator

    The purpose of Severe Accident Management Guidelines (SAMG) is to provide guidelines to mitigate and control beyond design bases accidents. These guidelines are to be used by the technical support center that is established at the plant within one hour after the beginning of the accident as a technical support for the main control room operators. Since some of the accidents can progress very fast there are also two guidelines provided for the main control room operators. The first one is to be used if the core damage occurs and the TSC is not established yet and the second one after technical support center become operational. After SG replacement and power uprate in year 2000, NPP Krsko developed Rev.1 of these procedures, which have been validated and verified during one-week effort. Plant specific simulator capable of simulating severe accidents was extensively used.(author)

  11. Radioactive waste management after NPP accident: Post-Chernobyl experience

    As a result of the Chernobyl NPP accident a very large amount of so-called 'Chernobyl waste' were generated in the territory of Belarus, which was contaminated much more than all other countries. These wastes relate mainly to two following categories: low-level waste (LLW) and new one 'Conventionally Radioactive Waste' (CRW). Neither regulations nor technology and equipment were sufficiently developed for such an amount and kind of waste before the accident. It required proper decisions in respect of regulations, treatment, transportation, disposal of waste, etc. (author)

  12. Direction Committee for the management of the post-accident phase of a nuclear accident or of a radiological event (CODIRPA). Work group nr 3: 'Assessment of radiological and dose consequences in a post-accident situation'. Final report

    This report first describes how radioactive contamination occurs after a nuclear accident, whether it concerns plants, animals, people, and buildings, how people can be exposed, and how a post-accidental zoning is implemented either to protect population or to control territories. It describes principles and methods for the assessment of the contamination of the environment (radiological values, characterization of radioactive deposits, of agriculture products, and of wastes, materials and manufactured products). It describes how to organise radioactivity measurements in the environment (principles and objectives of measurement programmes, sampling organisation and management, laboratory radioactivity measurements, identification and preparation of radioactivity measurement operators, results management). It describes how to assess doses received by exposed people (measurement techniques, retrospective assessment, proposition of a dose assessment strategy for exposed population)

  13. Leadership Strategies for Managing Conflict.

    Kormanski, Chuck

    1982-01-01

    Discusses the impact of conflict in small group development theory. Views conflict as a positive, normally occurring behavior and presents leadership strategies involving withdrawal, suppression, integration, compromise, and power. Examines situational contingencies and presents a rationale for strategy selection and intervention. (Author)

  14. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    Putman, V.L.

    1995-09-01

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies.

  15. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies

  16. Populations protection and territories management in nuclear emergency and post-accident situation

    This document gathers the slides of the available presentations given during these conference days. Twenty seven presentations out of 29 are assembled in the document and deal with: 1 - radiological and dosimetric consequences in nuclear accident situation: impact on the safety approach and protection stakes (E. Cogez); 2 - organisation of public authorities in case of emergency and in post-event situation (in case of nuclear accident or radiological terror attack in France and abroad), (O. Kayser); 3 - ORSEC plan and 'nuclear' particular intervention plan (PPI), (C. Guenon); 4 - thyroid protection by stable iodine ingestion: European perspective (J.R. Jourdain); 5 - preventive distribution of stable iodine: presentation of the 2009/2010 public information campaign (E. Bouchot); 6 - 2009/2010 iodine campaign: presentation and status (O. Godino); 7 - populations protection in emergency and post-accident situation in Switzerland (C. Murith); 8 - CIPR's recommendations on the management of emergency and post-accident situations (J. Lochard); 9 - nuclear exercises in France - status and perspectives (B. Verhaeghe); 10 - the accidental rejection of uranium at the Socatri plant: lessons learnt from crisis management (D. Champion); 11 - IRE's radiological accident of August 22, 2008 (C. Vandecasteele); 12 - presentation of the CEA's crisis national organisation: coordination centre in case of crisis, technical teams, intervention means (X. Pectorin); 13 - coordination and realisation of environmental radioactivity measurement programs, exploitation and presentation of results: status of IRSN's actions and perspectives (P. Dubiau); 14 - M2IRAGE - measurements management in the framework of geographically-assisted radiological interventions in the environment (O. Gerphagnon and H. Roche); 15 - post-accident management of a nuclear accident - the CODIRPA works (I. Mehl-Auget); 16 - nuclear post-accident: new challenges of crisis expertise (D. Champion); 17 - aid guidebooks

  17. Managing price risk - setting and implementing strategies

    The three hedging strategies for price risk management within the natural gas industry are described. The three strategies are: (1) speculative trader (characterized by 'trading for profit, i.e. small margin/large volumes); (2) price optimizer (the objective here is to outperform the market in the establishment of a price); and (3) strategic hedger( the characteristic concern in this strategy is to manage long-term company goals, i.e. balance sheet orientation). The strategies are not mutually exclusive, but overlapping areas can be the source of considerable confusion. Any firm can enter into more than one of these strategies. Integrated companies will adopt very different strategies for upstream versus downstream operations. Details of the three strategies are provided

  18. Accidents - Chernobyl accident

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  19. Evaluating risk management strategies in resource planning

    This paper discusses the evaluation of risk management strategies as a part of integrated resource planning. Value- and scope-related uncertainties can be addressed during the process of planning, but uncertainties in the operating environment require technical analysis within planning models. Flexibility and robustness are two key classes of strategies for managing the risk posed by these uncertainties. This paper reviews standard capacity expansion planning models and shows that they are poorly equipped to compare risk management strategies. Those that acknowledge uncertainty are better at evaluating robustness than flexibility, which implies a bias against flexible options. Techniques are available to overcome this bias

  20. A training simulator to support the Loviisa VVER-440 severe accident management programme

    A simulation tool for training operators and technical support personnel for severe accidents is being developed at VTT. The system will be accomplished by implementing severe accident models into the APROS - Advanced Process Simulator - environment, which already includes a model of the Loviisa VVER-440 plant. The system development is closely coupled with the plant severe accident management programme. The Loviisa severe accident management programme consists of four high level actions: primary system depressurization, retention of molten core within the pressure vessel, hydrogen control and containment external spray cooling. The training system will at the first stage simulate in simple terms the key phenomena associated with these actions and their effect on the plant response. The paper describes the system objectives, outline and modelling philosophy

  1. Application of probabilistic methods to accident analysis at waste management facilities

    Probabilistic risk assessment is a technique used to systematically analyze complex technical systems, such as nuclear waste management facilities, in order to identify and measure their public health, environmental, and economic risks. Probabilistic techniques have been utilized at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, to evaluate the probability of a catastrophic waste hoist accident. A probability model was developed to represent the hoisting system, and fault trees were constructed to identify potential sequences of events that could result in a hoist accident. Quantification of the fault trees using statistics compiled by the Mine Safety and Health Administration (MSHA) indicated that the annual probability of a catastrophic hoist accident at WIPP is less than one in 60 million. This result allowed classification of a catastrophic hoist accident as ''not credible'' at WIPP per DOE definition. Potential uses of probabilistic techniques at other waste management facilities are discussed

  2. Information processing system and neural network utilization for accident management support

    Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Faculty of Electrical and Electronic Engineering; Verhoef, J.P. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Ouden, A.C.B. den [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1996-03-01

    Information processing system with data sensor fusion technology together with potential application of neural network is developed. System is designed for operator in the form of Accident Management Support (AMS) with verification and validation (V and V) for cases of severe accident. To this end, primarily noise analysis techniques are used and their merits are merged for exhaustive information extraction in accident cases where the data from sensors may be obscured by drift, modulation so forth or even incomplete. The information from different methodologies are processed in synergetic form (data sensor fusion) by means of statistical distance measures and neural networks with optimal decisions. (orig.).

  3. Hydrogen management and the metamorphosis of NRC policy on severe nuclear accident risk

    From the early days of light water reactor developments, it was understood that, following a loss-of-coolant accident, hydrogen could accumulate inside the primary reactor containment as a result of: (1) metal-water reaction involving the fuel element cladding; (2) the radiolytic decomposition of the water in the reactor core and the containment sump; (3) the corrosion of certain construction materials by some spray solutions; and (4) possible synergistic effects of chemical, thermal and radiolytic by-products of accidents on containment protective coatings and electric cable insulation. The NRC's policy decisions regarding hydrogen management prior to and in light of the TMI-2 loss of coolant accident are discussed

  4. Requirement analysis of computerized procedures of AP1000 severe accident management guidelines

    Computerized procedures are drawing increased interest for application in nuclear power plants to enhance operator performance, especially in the accident conditions. AP1000 Severe Accident Management Guidelines (SAMG) are established to protect the containment fission product boundaries and to mitigate the accident consequences. This paper introduces the AP1000 SAMG, and according to the functional requirements of the Computerized Procedure System (CPS), some requirements are analyzed. These requirements are special to the Computerized AP1000 SAMG, which need to be especially noticed in the design process. (author)

  5. Information processing system and neural network utilization for accident management support

    Information processing system with data sensor fusion technology together with potential application of neural network is developed. System is designed for operator in the form of Accident Management Support (AMS) with verification and validation (V and V) for cases of severe accident. To this end, primarily noise analysis techniques are used and their merits are merged for exhaustive information extraction in accident cases where the data from sensors may be obscured by drift, modulation so forth or even incomplete. The information from different methodologies are processed in synergetic form (data sensor fusion) by means of statistical distance measures and neural networks with optimal decisions. (orig.)

  6. Time management strategies for research productivity.

    Chase, Jo-Ana D; Topp, Robert; Smith, Carol E; Cohen, Marlene Z; Fahrenwald, Nancy; Zerwic, Julie J; Benefield, Lazelle E; Anderson, Cindy M; Conn, Vicki S

    2013-02-01

    Researchers function in a complex environment and carry multiple role responsibilities. This environment is prone to various distractions that can derail productivity and decrease efficiency. Effective time management allows researchers to maintain focus on their work, contributing to research productivity. Thus, improving time management skills is essential to developing and sustaining a successful program of research. This article presents time management strategies addressing behaviors surrounding time assessment, planning, and monitoring. Herein, the Western Journal of Nursing Research editorial board recommends strategies to enhance time management, including setting realistic goals, prioritizing, and optimizing planning. Involving a team, problem-solving barriers, and early management of potential distractions can facilitate maintaining focus on a research program. Continually evaluating the effectiveness of time management strategies allows researchers to identify areas of improvement and recognize progress. PMID:22868990

  7. Managing regional innovation strategy projects

    Patricia Wolf; Christoph Hanisch

    2014-01-01

    This paper presents a qualitative interview study with 28 RIS project managers that aimed at understanding whether or not this is true in the context of regional innovation and what the specifics of managing regional innovation projects are. In taking up a recent claim for policy intervention studies which allow to “derive precise suggestions for their design and management”.  The study investigated the interrelation between the agility of the management approach and the achievements of RIS p...

  8. Editorial: strategy in hospitality management.

    Marnburg, Einar

    2008-01-01

    Doing research in strategy is exciting but perhaps also one of the most difficult things to do. It is exciting because strategy concerns considering the overall situation and development of companies and industries in a changing environment. Difficult because it leads to multidimensional models where it is neither clear which variables should be included or excluded, or what causality, if any, there is between the chosen variables. A glimpse into the most relevant scientific...

  9. Recycling - Danish Waste Management Strategy

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis;

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  10. Overweight and obesity management strategies.

    Kahan, Scott

    2016-06-01

    Comprehensive lifestyle interventions, including nutrition, physical activity, and behavioral therapy, are the foundation for clinical obesity management. New tools and treatment approaches help clinicians provide these interventions and support weight management in the primary care setting. Escalating treatment, such as using pharmacotherapy, medical devices, or bariatric surgery, are important considerations for appropriate patients who do not respond to lifestyle counseling. This article provides a review of obesity treatment in primary care and managed care settings. Principles of lifestyle changes for weight management, behavioral counseling, and options for pharmacotherapy, medical devices, and bariatric surgery are discussed. PMID:27356116

  11. Conflict Management and Its Related Strategies

    S Araghieh Farahani; SMH Mousavi; H Dargahi; G Shaham

    2008-01-01

    Conflict management is a kind of management which could be administered the organization with the best ways and create balance between organization and staffs and eliminates the conflict. Generally , conflict management is the process of conflict roles recognition between intergroups and intragroups and use of conflict techniques for eliminate or simulate conflict for organizational effectiveness.This research is aimed to introduce conflict management and how to use its strategies to modify ...

  12. RESEARCH METHODOLOGY STRATEGIES IN STRATEGIC MANAGEMENT

    Jose G. Vargas-Hernandez, M.B.A.

    2014-01-01

    This paper review and examine how strategic management researchers apply research methods, and what strategies use as part of the research process, to locate, organize, manage, transform, create, communicate and evaluate research tools, data and information resources. It also analyzes recent developments on research methodology to create scientific knowledge in theory building and practice in strategic management offering an overview of methodologies used in strategic management research. The...

  13. 福岛第一核电厂严重事故管理研究%Research on severe accident management in Fukushima Daiichi Nuclear Power Plant

    刘凯; 王炜

    2013-01-01

    The accident of Fukushima Nuclear Power Plant led to a severe accident of core meltdown, and its process of emergency management exposed various defects which raised great concern about severe accident management in nuclear power plants. In this paper, the specifications of severe accident management that issued by IAEA and Japan were overviewed. Based on Japan specifications, the analysis of sequences and management strategies were presented on severe accident in Fukushima Daiichi Nuclear Power Plant. Following identification of defects on severe accident management, possible corrective measures for current and future plants were discussed. Finally , an approach and a frame model for severe accident management were presented, which may improve nuclear safety in current and future plants.%日本福岛核事故造成了堆芯熔毁的严重事故,应急处置过程暴露出严重事故管理的种种不足,引起对核电厂严重事故管理的关注.简述了国际原子能机构和日本关于核电厂严重事故管理的规范要求,分析了福岛第一核电厂事故序列和严重事故管理策略,讨论了严重事故管理存在的问题及其可能的改进措施,最后提出了改进核电厂严重事故管理的框架模型和方法.

  14. Nuclear operations branch outage management strategy

    In 1991, partly in response to declining nuclear performance in Ontario Hydro, six priority areas were chosen where improvement efforts should be focused. Of these, outage management has the greatest potential for increasing near-term electrical generation. Many initiatives are being undertaken to improve performance in this key area. The outage management strategy is intended to focus these improvement efforts, and put outage management at Ontario Hydro's nuclear generating stations on a more predictable and business-like basis. This paper outlines the strategic planning process, and provides an overview of the outage management strategy. 2 refs, 1 tab., 4 figs

  15. Causal Factors and Adverse Events of Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon M.; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.

    2011-01-01

    Causal factors in aviation accidents and incidents related to system/component failure/malfunction (SCFM) were examined for Federal Aviation Regulation Parts 121 and 135 operations to establish future requirements for the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project. Data analyzed includes National Transportation Safety Board (NSTB) accident data (1988 to 2003), Federal Aviation Administration (FAA) incident data (1988 to 2003), and Aviation Safety Reporting System (ASRS) incident data (1993 to 2008). Failure modes and effects analyses were examined to identify possible modes of SCFM. A table of potential adverse conditions was developed to help evaluate IVHM research technologies. Tables present details of specific SCFM for the incidents and accidents. Of the 370 NTSB accidents affected by SCFM, 48 percent involved the engine or fuel system, and 31 percent involved landing gear or hydraulic failure and malfunctions. A total of 35 percent of all SCFM accidents were caused by improper maintenance. Of the 7732 FAA database incidents affected by SCFM, 33 percent involved landing gear or hydraulics, and 33 percent involved the engine and fuel system. The most frequent SCFM found in ASRS were turbine engine, pressurization system, hydraulic main system, flight management system/flight management computer, and engine. Because the IVHM Project does not address maintenance issues, and landing gear and hydraulic systems accidents are usually not fatal, the focus of research should be those SCFMs that occur in the engine/fuel and flight control/structures systems as well as power systems.

  16. Comprehensive Self-Management Strategies.

    Bourbeau, J; Lavoie, K L; Sedeno, M

    2015-08-01

    In this article, we provide a review of the literature on self-management interventions and we are giving some thought to how, when, and by whom they should be offered to patients. The present literature based on randomized clinical trials has demonstrated benefits (reduced hospital admissions and improved health status) for chronic obstructive pulmonary disease (COPD) patients undergoing self-management interventions, although there are still problems with the heterogeneity among interventions, study populations, follow-up time, and outcome measures that make generalization difficult in real life. Key to the success, self-management intervention has to target behavior change. Proper self-management support is a basic prerequisite, for example, techniques and skills used by health care providers "case manager" to instrument patients with the knowledge, confidence, and skills required to effectively self-manage their disease. To improve health behaviors and engagement in self-management, self-management interventions need to target enhancing intrinsic motivation to change. This will best be done using client-centered communication (motivational communication) that encourages patients to express what intrinsically motivates them (e.g., consistent with their values or life goals) to adopt certain health behavior, with the goal of helping them overcome their ambivalence about change. Finally, if we want to be able to design and implement self-management interventions that are integrated, coherent, and have a strong likelihood of success, we need to take a more careful look and give more attention at the case manager, the patient (patient evaluation), and the quality assurance. PMID:26238647

  17. Support calculations for management of PRISE leakage accidents

    Matejovic, P.; Vranka, L. [Nuclear Power Plants Research Inst. Vuje, Trnava (Slovakia)

    1997-12-31

    Accidents involving primary-to-secondary leakage (PRISE) caused by rupture of one or a few tubes are well known design basis events in both, western and VVER NPPs. Operating experience and in-service inspections of VVER-440 units have demonstrated also the potential for large PRISE leaks in the case of the steam generator (SG) primary collector cover lift-up (Rovno NPP). Without performing any countermeasure for limitation of SG collector cover lift-up, a full opening results in PRISE leak with an equivalent diameter 107 mm. Although this accident was not considered in the original design, this event is usually analysed as DBA too. Different means are available for detection and mitigation of PRISE leakage in NPPs currently in operation (J.Bohunice V-1 and V-2) or under construction (Mochovce) in Slovakia. 8 refs.

  18. Motor vehicle accidents: How should cirrhotic patients be managed?

    2012-01-01

    Motor vehicle accidents (MVAs) are serious social issues worldwide and driver illness is an important cause of MVAs. Minimal hepatic encephalopathy (MHE) is a complex cognitive dysfunction with attention deficit, which frequently occurs in cirrhotic patients independent of severity of liver disease. Although MHE is known as a risk factor for MVAs, the impact of diagnosis and treatment of MHE on MVA-related societal costs is largely unknown. Recently, Bajaj et al demonstrated valuable findings...

  19. Markov Model of Severe Accident Progression and Management

    Bari, R.A.; Cheng, L.; Cuadra,A.; Ginsberg,T.; Lehner,J.; Martinez-Guridi,G.; Mubayi,V.; Pratt,W.T.; Yue, M.

    2012-06-25

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  20. Markov Model of Severe Accident Progression and Management

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  1. The EPR concept for serious accident management, and accompanying research

    An accident, even if the probability of occurrence is so low that it can practically be excluded, must not require any serious external emergency measures, such as evacuation of human populations outside the immediate neighbourhood of the plant. This demand, which in the meantime has also become part of the German article law, creates a new situation for future light water reactors. In addition to the measures which are to reduce the probability of occurrence of serious accidents, a level is introduced which is designed to control the consequences of serious accidents with postulated core meltdown. The introduction of specific measures and design characteristics is a new challenge which cannot be met by industry alone. It is necessary to resort, to a large extent, to present and future research and development work which has been and will be carried out in this area by large-scale research institutions and universities. As regards the EPR, research and development cooperation in this field has been intensified recently. The CEA research centres and the FZKA signed an agreement on information exchange. (orig./HP)

  2. Role of management devices in enacting strategy

    Harritz, Daniel

    2016-01-01

    Purpose - This study illustrates the role of management devices in enacting strategy and strategic decisions, resulting in the development of a Shared Service Centre (SSC) in a Danish municipality. It shows how devices interact in defending, rejecting and reframing strategy, leading to the closure...

  3. National radioactive waste management strategy

    This article briefs out the strategic management of radioactive wastes in Malaysia. The criteria and methods discussed are those promoted by UTN (Nuclear Energy Unit) which has been given the authority to carry out local research programs in nuclear energy

  4. Strategies for Application Management Services

    Brenner, Walter; Uebernickel, Falk; Wulf, Jochen; Zelt, Saskia; Györy, Andreas Antonius Béla; Heym, Michael; Warnke, Achim

    2012-01-01

    Over the past ten years we have witnessed powerful advances in the professionalization of IT management. Today, especially the standardization and virtualization of the IT infrastructure and the subsequent market growth of mature service providers enable organizations to access flexible services of higher quality and reliability at lower cost. Nevertheless, even greater potential is seen in the professionalization of application management. As companies permanently need to adapt business proc...

  5. Identification and assessment of containment and release management strategies for a BWR Mark I containment

    This report identifies and assesses accident management strategies which could be important for preventing containment failure and/or mitigating the release of fission products during a severe accident in a BWR plant with a Mark 1 type of containment. Based on information available from probabilistic risk assessments and other existing severe accident research, and using simplified containment and release event trees, the report identifies the challenges a Mark 1 containment could face during the course of a severe accident, the mechanisms behind these challenges, and the strategies that could be used to mitigate the challenges. A safety objective tree is developed which provides the connection between the safety objectives, the safety functions, the challenges, and the strategies. The strategies were assessed by applying them to certain severe accident sequence categories which have one or more of the following characteristics: have high probability of core damage or high consequences, lead to a number of challenges, and involve the failure of multiple systems. 59 refs., 55 figs., 27 tabs

  6. Strategies for managing a busy emergency department.

    Campbell, Samuel G; Sinclair, Douglas E

    2004-07-01

    In a time of increased patient loads and emergency department (ED) exit block, the need for strategies to manage patient flow in the ED has become increasingly important. In March 2002 we contacted all 1282 members of the Canadian Association of Emergency Physicians and asked them to delineate strategies for enhancing ED patient flow and ED productivity without increasing stress levels, reducing care standards or compromising patient safety. Thirty physicians responded. Their suggested flow management strategies, which ranged from clinical decision-making to communication to choreography of time, space and personnel, are summarized here. PMID:17382005

  7. Applying of Reliability Techniques and Expert Systems in Management of Radioactive Accidents

    Accidents including radioactive exposure have variety of nature and size. This makes such accidents complex situations to be handled by radiation protection agencies or any responsible authority. The situations becomes worse with introducing advanced technology with high complexity that provide operator huge information about system working on. This paper discusses the application of reliability techniques in radioactive risk management. Event tree technique from nuclear field is described as well as two other techniques from nonnuclear fields, Hazard and Operability and Quality Function Deployment. The objective is to show the importance and the applicability of these techniques in radiation risk management. Finally, Expert Systems in the field of accidents management are explored and classified upon their applications

  8. Drought Management Strategies in Spain

    Pilar Paneque

    2015-11-01

    Full Text Available The ongoing debate on water policies in Spain is characterised by a traditional paradigm, dominated by the intervention on hydrological systems through the construction and management of infrastructure, which is progressively being abandoned but is currently still strong while the emergence of new management approaches. Climate change and the Water Framework Directive (WFD are, in addition, the background to increasing challenges to traditional perspectives on drought, and important steps have been taken towards their replacement. This work analyzes the evolution of the normative structure and management models to identify recent shifts. The analysis is based on a fundamental conceptual change that places drought in the framework of risk, rather than that of crisis. I argue for the need to advance new prevention policies that can finally overcome productivist inertia and undertake essential tasks such as reallocating water flows, revising and controlling the water-concession system, and reinforcing and guaranteeing public participation.

  9. The role of SKI in the severe accident management programme in Sweden

    The Swedish Nuclear Power Inspectorate (SKI) has responsibilities in all regulatory aspects of the licensing and operation of nuclear reactors. The twelve Swedish reactors have all implemented technical as well as procedural features for the avoidance and mitigation of the consequences of severe accidents. Work is presently in progress to further develop accident management as well as to further reinforce the basis of knowledge in order to verify measures taken. In the event of an accident, SKI has a specific duty to provide an independent assessment of the potential course of the accident in order to assist regional authorities in making decisions on emergency actions. This paper accounts for SKI's past and present efforts in the severe accident management programme. In all parts of reactor operation human factor aspects are essential, and so indeed in severe accident management. The paper brings forward these aspects in the SKI programme. In conclusion: In war it is common sense that you can only trust proven equipment and trained organizations. The same applies to Severe Accident Management. Technical equipment must be adequate and operable. Tools must be logical, clean cut, easy to find, easy to use and if possible easy to learn. The organization should be clear with regard to distribution of authority and responsibility, have short links of communication, be easy to mobilize and be staffed with competent and dedicated people who are well trained to their tasks. Preparedness against nuclear accidents must always be a consideration in daily operational work. Ensuring that good conditions exist for accident management is one important objective of SKI's assessment. Another is the analysis of organizational behaviour in emergency situations. A frequent conclusion of accident analysis is the major role played by the human factor. It is not hard to find examples where accident management decisions have been taken too soon, on the basis of insufficient information

  10. Energy strategy implementation – eco management approach

    Mirjana Radovanovic

    2015-05-01

    Full Text Available The series ISO 14001 of international voluntary standards is an effective tool for improving organizational environmental performance and implementation of sustainable approach to energy management. These standards established and implemented a systematic management plan. Plan is made to continually identify and reduce environmental impacts. Eco-management approach may be suitable because its implementation is a possible way to replace the widely used environmental control system based on legislation and controlling of the application of environmental and energy regulations. Ecomanagement systems can help companies to integrate environmental efforts into decision making. Application of eco-management system improves compliance with environmental regulations. Today, the number of companies in the world which tend to integrate the system of eco-management in their business strategies is rapidly increasing. They accept advanced technologies. Systems of eco-management encourage companies to consider environmental consequences of their operations. To reduce waste, risks and costs the companies then define strategies which would help them.

  11. Using accident management to address phenomenological uncertainties related to lower plenum debris bed chemistry and mixing during in-vessel retention (IVR) of molten core debris in the AP1000 passive plant

    In-vessel retention (IVR) of core debris via external reactor vessel cooling is an important severe accident management strategy that is inherent in the AP1000 passive nuclear power plant. Uncertainties in molten debris bed chemistry and mixing behavior in the lower plenum of a RPV (reactor pressure vessel), at the extreme bounding limits, have been suggested to potentially result in lower plenum debris bed configurations that may challenge vessel integrity during IVR. To resolve epistemic uncertainties related to severe accident phenomena, the uncertainties are addressed via engineered severe accident management solutions that are shown to be reliable using a probabilistic framework to quantify success. Vessel failure probability and large release frequency in the AP1000 plant design are demonstrated to be as low as reasonably practicable (ALARP), and the IVR strategy is demonstrated to provide a robust approach to severe accident management in the AP1000 plant, capable of addressing postulated uncertainties and concerns

  12. Management Strategies for Neonatal Hypoglycemia

    Sweet, Courtney B.; Grayson, Stephanie; Polak, Mark

    2013-01-01

    While hypoglycemia occurs commonly among neonates, treatment can be challenging if hypoglycemia persists beyond the first few days of life. This review discusses the available treatment options for both transient and persistent neonatal hypoglycemia. These treatment options include dextrose infusions, glucagon, glucocorticoids, diazoxide, octreotide, and nifedipine. A stepwise, practical approach to the management of these patients is offered.

  13. Medical management of two accidents by ionizing radiations

    Two cases of accidents of occupationally exposed personnel are presented, the first one was an accidental sharp exhibition to whole body that a 27 year-old worker suffered when being exposed to a source of Iridium 192 of 94 Curies. For this case it was diagnosed an hematopoiesis syndrome that it was responded to the handling prescribe until him recovery. The second case, a radiologist technical 22 year-old that was irradiated with a source of Iridium 192 of 79 Curies. The treatment consisted on cleaning, antibiotics, analgesic and inert ointment, being achieved recovery after several weeks

  14. Triage and medical management of criticality accident victims

    The criticality accident is the result of an uncontrolled chain fission reaction initiated when the quantities of nuclear materials (uranium or plutonium)present accidentally exceed a given limit called the critical mass. As soon as the critical state is exceeded, the chain reaction increases exponentially. The result is a fast increase in the number of fission events which occur within the fissile medium. This phenomenon results in a release of energy mainly in the form of heat, accompanied by the intense emission of neutron and gamma radiation and the release of fission gases (Barby, 1983)

  15. The liquidity reserve funding and management strategies

    Heidorn, Thomas; Buschmann, Christian

    2014-01-01

    This paper investigates the managing strategies of a bank's liquidity reserve in the broader context of the role of asset-liability management according to the liquidity issues of a banking organisation. Several types of liquidity are presented and how these are interconnected and how they might affect a financial institution's liquidity risk. When managing the liquidity reserve and its included assets, the following influencing factors need to be taken into account: Firstly, the banking orga...

  16. Review of current status for designing severe accident management support system

    Jeong, Kwang Sub

    2000-05-01

    The development of operator support system (OSS) is ongoing in many other countries due to the complexity both in design and in operation for nuclear power plant. The computerized operator support system includes monitoring of some critical parameters, early detection of plant transient, monitoring of component status, plant maintenance, and safety parameter display, and the operator support system for these areas are developed and are being used in some plants. Up to now, the most operator support system covers the normal operation, abnormal operation, and emergency operation. Recently, however, the operator support system for severe accident is to be developed in some countries. The study for the phenomena of severe accident is not performed sufficiently, but, based on the result up to now, the operator support system even for severe accident will be developed in this study. To do this, at first, the current status of the operator support system for normal/abnormal/emergency operation is reviewed, and the positive aspects and negative aspects of systems are analyzed by their characteristics. And also, the major items that should be considered in designing the severe accident operator support system are derived from the review. With the survey of domestic and foreign operator support systems, they are reviewed in terms of the safety parameter display system, decision-making support system, and procedure-tracking system. For the severe accident, the severe accident management guideline (SAMG) which is developed by Westinghouse is reviewed; the characteristics, structure, and logical flow of SAMG are studied. In addition, the critical parameters for severe accident, which are the basis for operators decision-making in severe accident management and are supplied to the operators and the technical support center, are reviewed, too.

  17. The Fukushima Dai Ichi accident. The narrative of the station manager. Volume 1. The destruction

    While outlining that the Fukushima accident could have been more severe without the courage and action of men who stayed at the controls of the plant under the management of Masao Yoshida, this book proposes a translation of the manager's narrative made for the official inquiry commission. He tells the story of a team of workers facing a disaster foretold. Besides this narrative, the authors propose a discussion on emergency engineering, present the Kan inquiry commission, present the power station and recall the circumstances of the accident and its consequences. Several hearings are reported

  18. Mental health effects from radiological accidents and their social management

    Mental health effects resulting from exposure to radiation have been identified principally in the context of large radiological accidents. They cover an extended scope of manifestations in relation with the notion of stress: increase of some hormones, modifications in mental concentration, symptoms of anxiety and depression, psycho-somatic diseases, deviation behaviours, and, on the long term, a possible post-traumatic stress disorder (PTSD). The main results come from the Three Mile Island, Goiania, and Chernobyl accidents and several modifying factors have been identified. Considering those facts, diverse social responses can be brought to reduce the detriment to affected individuals and communities. Medical treatments are necessary for persons who suffer from pathological diseases. In most cases, a structured public health follow-up is required to establish the seriousness of the health problems, to forecast the extent of medical and psychological assistance, and to inform people who express fears and worries. Social assistance is always valuable under various forms: financial compensations, preferential medical care, and particular advantages concerning working and living conditions. If this social assistance is necessary and helpful, it also induces a loss in personal adjustment capability and initiative capacity. To overcome those negative impacts, some guidelines to authorities' action can be set up. But the best approach, not excluding the previous ones, remains problem solving at the local level through community responsibilization; some instructive examples come from the Chernobyl experience. (author)

  19. Mental health effects from radiological accidents and their social management

    Brenot, J.; Charron, S.; Verger, P. [Institute for Protection and Nuclear Safety, Fontenay-aux-Roses Cedex (France)

    2000-05-01

    Mental health effects resulting from exposure to radiation have been identified principally in the context of large radiological accidents. They cover an extended scope of manifestations in relation with the notion of stress: increase of some hormones, modifications in mental concentration, symptoms of anxiety and depression, psycho-somatic diseases, deviation behaviours, and, on the long term, a possible post-traumatic stress disorder (PTSD). The main results come from the Three Mile Island, Goiania, and Chernobyl accidents and several modifying factors have been identified. Considering those facts, diverse social responses can be brought to reduce the detriment to affected individuals and communities. Medical treatments are necessary for persons who suffer from pathological diseases. In most cases, a structured public health follow-up is required to establish the seriousness of the health problems, to forecast the extent of medical and psychological assistance, and to inform people who express fears and worries. Social assistance is always valuable under various forms: financial compensations, preferential medical care, and particular advantages concerning working and living conditions. If this social assistance is necessary and helpful, it also induces a loss in personal adjustment capability and initiative capacity. To overcome those negative impacts, some guidelines to authorities' action can be set up. But the best approach, not excluding the previous ones, remains problem solving at the local level through community responsibilization; some instructive examples come from the Chernobyl experience. (author)

  20. Brand Management Strategy in Services

    Ondrušová, Petra

    2013-01-01

    This thesis deals with the brand programmes functioning in the Czech Republic. The first part contains basic theoretical brand management grounds, marketing research and its plan creation. Furthermore there are analysed particular brand programmes on the European, national and regional level in the thesis. The following part is marketing research which is concerned with the respondents' consumable behaviour, European brand programmes knowledge and popularity of the Poutnik brewery. The final ...

  1. Organizational Knowledge Management Movement Strategies

    Alen Badal

    2013-01-01

    Organizational behaviour is often dependent on the strategic movement of internal knowledge for success. Organizational knowledge management methodologies require the involvement of stakeholders. In large organizations, involved stakeholders shall be selected by the entire membership. Key involvement roles and considerations should be offered to/involve the ‘least likely to participate’. Suck stakeholders often possess the most influential power to move the stakeholders; if not, they demonstr...

  2. Heat Management Strategy Trade Study

    Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer

    2009-09-01

    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  3. Proceedings of the first OECD (NEA) CSNI-Specialist Meeting on Instrumentation to Manage Severe Accidents

    OECD member countries have adopted various accident management measures and procedures. To initiate these measures and control their effectiveness, information on the status of the plant and on accident symptoms is necessary. This information includes physical data (pressure, temperatures, hydrogen concentrations, etc.) but also data on the condition of components such as pumps, valves, power supplies, etc. In response to proposals made by the CSNI - PWG 4 Task Group on Containment Aspects of Severe Accident Management (CAM) and endorsed by PWG 4, CSNI has decided to sponsor a Specialist Meeting on Instrumentation to Manage Severe Accidents. The knowledge-basis for the Specialist Meeting was the paper on 'Instrumentation for Accident Management in Containment'. This technical document (NEA/CSNI/R(92)4) was prepared by the CSNI - Principle Working Group Number 4 of experts on January 1992. The Specialist Meeting was structured in the following sessions: I. Information Needs for Managing Severe Accidents, II. Capabilities and Limitations of Existing Instrumentation, III. Unconventional Use and Further Development of Instrumentation, IV. Operational Aids and Artificial Intelligence. The Specialist Meeting concentrated on existing instrumentation and its possible use under severe accident conditions; it also examined developments underway and planed. Desirable new instrumentation was discussed briefly. The interactions and discussions during the sessions were helpful to bring different perspectives to bear, thus sharpening the thinking of all. Questions were raised concerning the long-term viability of current (or added) instrumentation. It must be realized that the subject of instrumentation to manage severe accidents is very new, and that no international meeting on this topic was held previously. One of the objectives was to bring this important issue to the attention of both safety authorities and experts. It could be seen from several of the presentations and from

  4. Fuel performance under transients, and accident management using Geno-Fuzzy concept for nuclear reactors

    Simulation of Pressurized Water Reactor Power Plant (PWR) has been investigated by simulating all components installed in the power plant namely: the reactor core, steam generator, pressurizer, reactor coolant pumps, and turbine. All plant components have been introduced. This simulator is useful for transient analysis studies, engineering designs, safety analysis, and accident management. Accidents in Pressurized Water Reactor Nuclear Power Plant (PWR NPP) may be occurred either due to component failures or human error during maintenance or operation. The main target of accident management is to mitigate accidents if it occurs. The Geno-Fuzzy concept is the way to select some important plant state variables as a gene for the overall plant state chromosome. The selected genes are: reactor power, primary coolant pressure, steam generator water level, and onset boiling on clad surface which has direct impact on fuel behavior. Each of these genes has associated fuzzy level. The main objective of Geno-Fuzzy is turning the plant gene from abnormal states to the normal state by associated control variable using the inference wise fuzzy technique. The Pressurized Water Reactor Nuclear Power Plant simulator has been tested for a typical PWR, for normal transients, Anticipated Transient Without Scram (ATWS), and using the proposed Geno-Fuzzy concept for accident management, which gives very good results in reactor accident mitigation. Some of these tested accidents are; reactor control rod ejection, change in turbine steam load, and loss of coolant flow, which have direct effects on fuel safety and performance. The parameters affecting the behavior of the reactor fuel integrity are analyzed to be considered in future reactor designs. (author)

  5. Beyond Design Basis Severe Accident Management as an Element of DiD Concept Strengthening

    The 4th Level of DiD is ensured by management of beyond design basis accidents which is achieved by implementation of the Beyond Design Basis Accidents Management Guidance (BDBAMG) and, if necessary, by additional technical devices and organizational measures at NPP Unit. BDBAMG is located between Levels 3 and 5 in DiD and is related to them. It is connected with Level 3 by means of conditions generated at this Level and according to which BDBAM should be initiated (Level 4). It is associated with Level 5 by conditions which necessitate implementation of Emergency planning. Both types of conditions should be identified in BDBAMG. BDBAs including the phase of severe damage of fuel and protective barriers (severe accidents) in accordance with Russian regulatory framework are a subset of all BDBAs set. In this connection, such accident scenarios meet the representativeness criterion for further analysis and development of Guidance for their management. BDBAMG availability, as it provides robustness of DiD as a whole, is an obligatory condition for obtaining a NPP operational license. In the process of BDBAMG development and implementation a feedback with technical and organizational measures, comprising Level 1 and, to a less extent, Level 2, comes up. BDBAMG verification is an important final stage of its development. Addressing severe accidents, it is a challenging issue for a full scope simulator and may require its software modernization to make it responsive to severe accident phenomena. The existing BDBAMGs should be updated due to NPP Unit modernizations and in conjunction with the latest knowledge on severe accident phenomenology and lessons learnt from known events (e.g. NPP Fukushima). Thus, improvements incorporated in BDBAMG, enhance the strength of DiD. (author)

  6. Is the current management system at Statoil sufficient to prevent potential major accidents from happening at the Snorre A platform?

    Mork, Monica

    2013-01-01

    Only small margins prevented the gas-blow out at one of Statoil's platforms, Snorre A, to develop into a major accident in 2004. The underlying reasons of the accident showed extensive improvement areas, including Statoil's management system. The purpose is to find out whether the current management system at Statoil is sufficient to prevent potential major accidents from happening at the Snorre A platform again. As a guidance, four questions have been deduced. These include if...

  7. Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD

    In order to manage various nuclear or radiological emergencies the authorities must have pre-prepared plans. The purpose of the NKS project EMARAD (Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents) was to produce and gather various data and information that could be useful in drawing up emergency plans and radiation monitoring strategies. One of the specific objectives of the project was to establish a www site that would contain various radiation-threat and radiation-monitoring related data and documents and that could be accessed by all Nordic countries. Other important objectives were discussing various factors affecting measurements in an emergency, efficient use of communication technology and disseminating relevant information on such topics as urban dispersion and illicit use of radiation. The web server is hosted by the Radiation and Nuclear Safety Authority (STUK) of Finland. The data stored include pre-calculated consequence data for nuclear power plant accidents as well as documents and presentations describing e.g. general features of monitoring strategies, the testing of the British urban dispersion model UDM and the scenarios and aspects related to malicious use of radiation sources and radioactive material. As regards the last item mentioned, a special workshop dealing with the subject was arranged in Sweden in 2005 within the framework of the project. (au)

  8. Occupational Radiation Protection in Severe Accident Management. EG-SAM Interim Report

    As an early response to the Fukushima NPP accident, the ISOE Bureau decided to focus on the following issues as an initial response of the joint program after having direct communications with the Japanese official participants in April 2011; - Management of high radiation area worker doses: It has been decided to make available the experience and information from the Chernobyl accident in terms of how emergency worker / responder doses were legally and practically managed, - Personal protective equipment for highly-contaminated areas: It was agreed to collect information about the types of personnel protective equipment and other equipment (e.g. air bottles, respirators, air-hoods or plastic suits, etc.), as well as high-radiation area worker dosimetry use (e.g. type, number and placement of dosimetry) for different types of emergency and high-radiation work situations. Detailed information was collected on dose criteria which are used for emergency workers/responders and their basis, dose management criteria for high dose/dose rate areas, protective equipment which is recommended for emergency workers / responders, recommended individual monitoring procedures, and any special requirement for assessment from the ISOE participating nuclear utilities and regulatory authorities and made available for Japanese utilities. With this positive response of the ISOE actors and interest in the situation in Fukushima, the Expert Group on Occupational Radiation Protection in Severe Accident Management (EG-SAM) was established by the ISOE Management Board in May 2011. The overall objective of the EG-SAM is to contribute to occupational exposure management (providing a view on management of high radiation area worker doses) within the Fukushima plant boundary with the ISOE participants and to develop a state-of-the- art ISOE report on best radiation protection management practices for proper radiation protection job coverage during severe accident initial response and recovery

  9. Severe accident management (SAM), operator training and instrumentation capabilities - Summary and conclusions

    The Workshop on Operator Training for Severe Accident Management (SAM) and Instrumentation Capabilities During Severe Accidents was organised in collaboration with Electricite de France (Service Etudes et Projets Thermiques et Nucleaires). There were 34 participants, representing thirteen OECD Member countries, the Russian Federation and the OECD/NEA. Almost half the participants represented utilities. The second largest group was regulatory authorities and their technical support organisations. Basically, the Workshop was a follow-up to the 1997 Second Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) [Reports NEA/CSNI/R(97)10 and 27] and to the 1992 Specialist Meeting on Instrumentation to Manage Severe Accidents [Reports NEA/CSNI/R(92)11 and (93)3]. It was aimed at sharing and comparing progress made and experience gained from these two meetings, emphasizing practical lessons learnt during training or incidents as well as feedback from instrumentation capability assessment. The objectives of the Workshop were therefore: - to exchange information on recent and current activities in the area of operator training for SAM, and lessons learnt during the management of real incidents ('operator' is defined hear as all personnel involved in SAM); - to compare capabilities and use of instrumentation available during severe accidents; - to monitor progress made; - to identify and discuss differences between approaches relevant to reactor safety; - and to make recommendations to the Working Group on the Analysis and Management of Accidents and the CSNI (GAMA). The Workshop was organised into five sessions: - 1: Introduction; - 2: Tools and Methods; - 3: Training Programmes and Experience; - 4: SAM Organisation Efficiency; - 5: Instrumentation Capabilities. It was concluded by a Panel and General Discussion. This report presents the summary and conclusions: the meeting confirmed that only limited information is needed for making required decisions

  10. Policies and strategies for radioactive waste management

    A policy for spent fuel and radioactive waste management should include a set of goals or requirements to ensure the safe and efficient management of spent fuel and radioactive waste in the country. Policy is mainly established by the national government and may become codified in the national legislative system. The spent fuel and radioactive waste management strategy sets out the means for achieving the goals and requirements set out in the national policy. It is normally established by the relevant waste owner or nuclear facility operator, or by government (institutional waste). Thus, the national policy may be elaborated in several different strategy components. To ensure the safe, technically optimal and cost effective management of radioactive waste, countries are advised to formulate appropriate policies and strategies. A typical policy should include the following elements: defined safety and security objectives, arrangements for providing resources for spent fuel and radioactive waste management, identification of the main approaches for the management of the national spent fuel and radioactive waste categories, policy on export/import of radioactive waste, and provisions for public information and participation. In addition, the policy should define national roles and responsibilities for spent fuel and radioactive waste management. In order to formulate a meaningful policy, it is necessary to have sufficient information on the national situation, for example, on the existing national legal framework, institutional structures, relevant international obligations, other relevant national policies and strategies, indicative waste and spent fuel inventories, the availability of resources, the situation in other countries and the preferences of the major interested parties. The strategy reflects and elaborates the goals and requirements set out in the policy statement. For its formulation, detailed information is needed on the current situation in the country

  11. The Optimum Operation Strategy of Hybrid SIT with PAFS following a Station Blackout Accident

    A coolant storage tank of PAFS can provide coolant for reactor cooling more than 8 hours and a dedicated battery system of PAFS can provide electricity for I-C more than 72 hours. PAFS is 2-train system, that is, PAFS has two water tanks, two battery systems and two heat exchangers. PAFS provides feedwater to steam generator more than 8 hours, even if single train was unavailable, AC power was not provided and water tank is not refilled. Following Fukushima Daiichi Accident, we have made many improvements and challenging research to prevent and mitigate accidents which can be caused by earthquake, tsunami or station blackout. It includes the Hybrid SIT to deliver cooling water into core even if RCS pressure is high. To prevent a waste of SIT water and maintain core cooling more long time, an optimum operation strategy of Hybrid SIT has been developed. It considers the operation of PAFS and the optimum coolability of SIT water. For the optimum coolability of Hybrid SIT with PAFS, some operation methods were considered. It shows that the coolant injected before the swelling of RCS water is released during the first POSRV opening and has very little effect on core cooling. The core cooling period is longest when the Hybrid SIT is actuated one by one after a exhaustion of PAFS and POSRV opening

  12. System Design Strategies of Post-Accident Monitoring System for a PGSFR in Korea

    Monitoring systems of a PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) in Korea provide alarms, integrity information in the reactor building, sodium-water reaction information in the steam generator, fuel failure information, and supporting information for maintenance and inspection. In particular, a Post-Accident Monitoring System (PAMS) provides primary information for operators to assess the plant conditions and perform their role in bringing the plant to a safe condition during an accident. Some PAM variables can be allocated as more two types. It is important for system designers to confirm the suitability of the selection of PAM variables. In addition, the PAMS is a position 4 display against common cause failures of safety I and C systems. The position 4 display should be independent and diverse from the safety I and C systems. The diversity of safety I and C equipment has led to an increase in the design and verification and validation cost. Thus, this paper proposes the system design strategies on the PAMS design problems of the PGSFR in KOREA. The results will be input into a conceptual system design for the PAMS of the PGSFR in KOREA. (authors)

  13. The Optimum Operation Strategy of Hybrid SIT with PAFS following a Station Blackout Accident

    Heo, Sun; Ha, Hui-Un [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2014-10-15

    A coolant storage tank of PAFS can provide coolant for reactor cooling more than 8 hours and a dedicated battery system of PAFS can provide electricity for I-C more than 72 hours. PAFS is 2-train system, that is, PAFS has two water tanks, two battery systems and two heat exchangers. PAFS provides feedwater to steam generator more than 8 hours, even if single train was unavailable, AC power was not provided and water tank is not refilled. Following Fukushima Daiichi Accident, we have made many improvements and challenging research to prevent and mitigate accidents which can be caused by earthquake, tsunami or station blackout. It includes the Hybrid SIT to deliver cooling water into core even if RCS pressure is high. To prevent a waste of SIT water and maintain core cooling more long time, an optimum operation strategy of Hybrid SIT has been developed. It considers the operation of PAFS and the optimum coolability of SIT water. For the optimum coolability of Hybrid SIT with PAFS, some operation methods were considered. It shows that the coolant injected before the swelling of RCS water is released during the first POSRV opening and has very little effect on core cooling. The core cooling period is longest when the Hybrid SIT is actuated one by one after a exhaustion of PAFS and POSRV opening.

  14. Management of accident radioactive waste from Czech nuclear power plants

    A mobile decontamination unit is proposed for the treatment of waste resulting from a LOCA type design accident associated with a compensable or non-compensable primary circuit coolant leakage. The unit comprises a sorption-filtration module for the removal of toxic nuclides, a vitrification module for the solidification of spent inorganic sorbents, and a module for exhaust gases decontamination. The beta-gamma activity of liquid waste is reduced in sorption columns packed with mordenite, to a level enabling its further treatment in the standard decontamination plant of the nuclear power station. The spent inorganic sorbent is mixed with low-melting borosilicate glass and vitrified at 1050 degC, yielding a product suitable for disposal. The result of a long-term cesium leaching rate test of this product, performed according to ISO 6961, is Rn=8.6x10-8 g.cm-2.day-1. (author) 7 tabs., 10 refs

  15. Unconventional sources of plant information for accident management

    Oehlberg, R. (Electric Power Research Inst., Palo Alto, CA (United States). Nuclear Power Div.); Machiels, A. (Electric Power Research Inst., Palo Alto, CA (United States). Nuclear Power Div.); Chao, J. (Electric Power Research Inst., Palo Alto, CA (United States). Nuclear Power Div.); Weiss, J. (Electric Power Research Inst., Palo Alto, CA (United States). Nuclear Power Div.); True, D. (ERIN Engineering and Research, Inc., Walnut Creek, CA (United States)); James, R. (ERIN Engineering and Research, Inc., Walnut Creek, CA (United States))

    1992-07-01

    The paper highlighted that other information sources can help to augment and confirm data available from dedicated accident instrumentation such as Reg. Guide 1.97 Instrumentation: inferences of plant status are possible from measurements and measurement trends obtained from instruments not expected to function, observations of system or component operability/inoperability, and observations of locally harsh environmental conditions. Detailed plant-specific examples are given, e.g. regarding the reactor pressure and level indication in BWRs, or the reactor cavity temperature indication on WE-type PWRs which the authors speculate may yield information related to vessel and core temperature. The authors advocate that others look at their information sources in a creative way. (orig.)

  16. Implementation of the severe accident management in Slovenske Elektrarne, subsidiary of ENEL

    Implementation of the Severe Accident Management (SAM) in Slovenske Elektrarne, subsidiary of ENEL, is a process initiated well before the Fukushima Daiichi accident. The main goal was to cover, comprehensively, level 4 of the Defense in Depth (DiD). The process included development of plant specific severe accident management guidelines (SAMGs) and installation of hardware modifications dedicated to mitigation of severe accidents as an upgrade the original VVER-440/V213. The SAM modifications have been developed with the aim to address all main generic vulnerabilities of VVER-440/V213 containments identified during initial analysis supporting the development of plant specific SAMGs. SAM modifications, in addition to their original purpose, improved plant response also at the level 3 of DiD. SAM modifications installed on VVER-440/V213 units in operation or under construction in Slovakia can be considered as an independent and diverse provision for the main safety functions: core subcriticality, core heat removal and confinement integrity. Basic set of SAM modifications includes independent diesel generator (DG), independent external source of borated water and containment vacuum breaker. Major contribution to safety from SAM modifications has been proved to be the implementation of in-vessel retention, hydrogen management in the containment and reliable depressurization of RCS. The complete set of SAM modifications installed incorporates dedicated SAM I and C to allow for determination and monitoring of plant status via dedicated instrumentation and control of SAM equipment installed at plants during a severe accident. SAM project including updating of SAMGs has been successfully completed on both units of Bohunice NPP and respective activities are continuing on operating units no. 1 and 2 in Mochovce with expected deadline in 2015. The basic design of Mochovce units no. 3 and 4 that are under construction has been modified to incorporate hardware changes

  17. Marine Accidents in Northern Nigeria: Causes, Prevention and Management

    Lawal Bello Dogarawa

    2012-11-01

    Full Text Available Boat mishaps tend to be increasing in Nigeria in spite of all regulatory measures which have been taken to prevent and control marine accidents. Boat mishaps could occur anywhere water transportation takes place. However, there is a general impression that water transportation takes place only in the riverine areas located in Southern Nigeria but, this paper reports about marine accident cases in Northern Nigeria. It evaluates the safety measures put in place by operators and other institutional bodies in the areas and assesses the level of infrastructure in terms of quantity, quality and accessibility to boat operators, boat users and institutional staff. Questionnaires were administered through individual and group interviews with boat owners, boat drivers, boat users, boat builders, boat engine mechanics, local government officials, maritime workers union, the marine police, traditional regulators and staff of the federal government agencies for maritime affairs. The paper found that marine transportation is neglected in Northern Nigeria with dilapidated jetties, ill-equipped marine police, non-functional ferries and boast meant to be used by federal officials and wrecks in water channels without removal. Maritime safety is therefore compromised with cases of overloading carrying people, animals, grains and petroleum products in one boat without fire extinguisher and no lifejackets. The paper concludes that there are considerable water transportation activities in Northern Nigeria without a corresponding government attention. It is therefore recommend that government should intervene by providing lifejackets, fire extinguishers, training of surveyors, refurbishing ferries for enforcement as well as creating safety awareness in the region.

  18. Project management strategies for prototyping breakdowns

    Granlien, Maren Sander; Pries-Heje, Jan; Baskerville, Richard

    2009-01-01

    , managing the explorative and iterative aspects of prototyping projects is not a trivial task. We examine the managerial challenges in a small scale prototyping project in the Danish healthcare sector where a prototype breakdown and project escalation occurs. From this study we derive a framework of...... strategies for coping with escalation in troubled prototyping projects; the framework is based on project management triangle theory and is useful when considering how to manage prototype breakdown and escalation. All strategies were applied in the project case at different points in time. The strategies led......Prototyping is often presented as a universal solution to many intractable information systems project problems. Prototyping is known to offer at least three advantages (1) provide users with a concrete understanding, (2) eliminate the confusion, (3) cope with uncertainty. On the other hand...

  19. Waste management strategy in Germany

    The Federal Republic of Germany intends to dispose of all types of radioactive waste in deep geological formations. The Federal Government made a pronounced change in energy policy since 1998, the most important feature of which is phasing out of nuclear energy, finally set in force by the April 2002 amendment of the Atomic Energy Act. According to the new approach to waste management and disposal, further sites in various host rocks shall be investigated for their suitability based on repository site selection criteria and respective procedures developed by a special expert group. The objective of the site selection procedure is to identify with public participation potential disposal sites in a comprehensible and reliable way. (author)

  20. Rural areas affected by the Chernobyl accident: radiation exposure and remediation strategies.

    Jacob, P; Fesenko, S; Bogdevitch, I; Kashparov, V; Sanzharova, N; Grebenshikova, N; Isamov, N; Lazarev, N; Panov, A; Ulanovsky, A; Zhuchenko, Y; Zhurba, M

    2009-12-15

    Main objectives of the present work were to develop an internationally agreed methodology for deriving optimized remediation strategies in rural areas that are still affected by the Chernobyl accident, and to give an overview of the radiological situation in the three affected countries, Belarus, Russia and Ukraine. Study settlements were defined by having in 2004 less than 10,000 inhabitants and official dose estimates exceeding 1 mSv. Data on population, current farming practices, contamination of soils and foodstuffs, and remedial actions previously applied were collected for each of such 541 study settlements. Calculations of the annual effective dose from internal radiation were validated with extensive data sets on whole body counter measurements. According to our calculations for 2004, in 290 of the study settlements the effective dose exceeded 1 mSv, and the collective dose in these settlements amounted to about 66 person-Sv. Six remedial actions were considered: radical improvement of grassland, application of ferrocyn to cows, feeding pigs with uncontaminated fodder before slaughter, application of mineral fertilizers for potato fields, information campaign on contaminated forest produce, and replacement of contaminated soil in populated areas by uncontaminated soil. Side effects of the remedial actions were quantified by a 'degree of acceptability'. Results are presented for two remediation strategies, namely, Strategy 1, in which the degree of acceptability was given a priority, and Remediation Strategy 2, in which remedial actions were chosen according to lowest costs per averted dose only. Results are highly country-specific varying from preference for soil replacement in populated areas in Belarus to preference for application of ferrocyn to cows in Ukraine. Remedial actions in 2010 can avert a large collective dose of about 150 person-Sv (including averted doses, which would be received in the following years). Nevertheless, the number of

  1. Overview on spent fuel management strategies

    This paper presents an overview on spent fuel management strategies which range from reprocessing to interim storage in a centralised facility followed by final disposal in a repository. In either case, more spent fuel storage capacity (wet or dry, at-reactor or away-from-reactor, national or regional) is required as spent fuel is continuously accumulated while most countries prefer to defer their decision to choose between these two strategies. (author)

  2. General description and attendance strategy for the radioactive accident in Goiana, 1987

    In mid-September 1987, a capsule containing 50.9 TBq (1375 Ci) of Cs-137 used for radiotherapy was broken open in Goiania, Brazil, and the accident only detected on September 29. During this period fragments of source and materials contaminated by it were manipulated and transported by several people to various places, giving rise to a rapid spread of contamination. This event resulted in the death of 4 people, acute radiation exposure and high level internal and external contamination of many people, places and soils. A general description of the strategy used to localize contaminated areas and persons, attendance to the public and decontamination of areas is presented. Technical procedures and equipment used for scanning and monitoring are described, as well as the initial difficulties related to radioactive waste disposal near the site. (author)

  3. Workshop on iodine aspects of severe accident management. Summary and conclusions

    Following a recommendation of the OECD Workshop on the Chemistry of Iodine in Reactor Safety held in Wuerenlingen (Switzerland) in June 1996 [Summary and Conclusions of the Workshop, Report NEA/CSNI/R(96)7], the CSNI decided to sponsor a Workshop on Iodine Aspects of Severe Accident Management, and their planned or effective implementation. The starting point for this conclusion was the realization that the consolidation of the accumulated iodine chemistry knowledge into accident management guidelines and procedures remained, to a large extent, to be done. The purpose of the meeting was therefore to help build a bridge between iodine research and the application of its results in nuclear power plants, with particular emphasis on severe accident management. Specifically, the Workshop was expected to answer the following questions: - what is the role of iodine in severe accident management? - what are the needs of the utilities? - how can research fulfill these needs? The Workshop was organized in Vantaa (Helsinki), Finland, from 18 to 20 May 1999, in collaboration with Fortum Engineering Ltd. It was attended by forty-six specialists representing fifteen Member countries and the European Commission. Twenty-eight papers were presented. These included four utility papers, representing the views of Electricite de France (EDF), Teollisuuden Voima Oy and Fortum Engineering Ltd (Finland), the Nuclear Energy Institute (USA), and Japanese utilities. The papers were presented in five sessions: - iodine speciation; - organic compound control; - iodine control; - modeling; - iodine management; A sixth session was devoted to a general discussion on iodine management under severe accident conditions. This report summarizes the content of the papers and the conclusions of the workshop

  4. Cost per severe accident as an index for severe accident consequence assessment and its applications

    The Fukushima Accident emphasizes the need to integrate the assessments of health effects, economic impacts, social impacts and environmental impacts, in order to perform a comprehensive consequence assessment of severe accidents in nuclear power plants. “Cost per severe accident” is introduced as an index for that purpose. The calculation methodology, including the consequence analysis using level 3 probabilistic risk assessment code OSCAAR and the calculation method of the cost per severe accident, is proposed. This methodology was applied to a virtual 1,100 MWe boiling water reactor. The breakdown of the cost per severe accident was provided. The radiation effect cost, the relocation cost and the decontamination cost were the three largest components. Sensitivity analyses were carried out, and parameters sensitive to cost per severe accident were specified. The cost per severe accident was compared with the amount of source terms, to demonstrate the performance of the cost per severe accident as an index to evaluate severe accident consequences. The ways to use the cost per severe accident for optimization of radiation protection countermeasures and for estimation of the effects of accident management strategies are discussed as its applications. - Highlights: • Cost per severe accident is used for severe accident consequence assessment. • Assessments of health, economic, social and environmental impacts are included. • Radiation effect, relocation and decontamination costs are important cost components. • Cost per severe accident can be used to optimize radiation protection measures. • Effects of accident management can be estimated using the cost per severe accident

  5. The technical requirements concerning severe accident management in nuclear power plants

    The Great East Japan Earthquake with a magnitude of 9.0 (The 2011 off the Pacific coast of Tohoku Earthquake) occurred on March 11, 2011, and the beyond design-basis tsunami descended on the Fukushima Daiichi Nuclear Power Plant by the earthquake. Eventually, the core cooling systems of the units 1, 2 and 3 could not operate stably, they all suffered severe accident, and hydrogen explosions were triggered in the reactor buildings of units 1, 3 and 4. In the light of these circumstances, Atomic Energy Society of Japan (AESJ) decided to establish a standard that consolidates the concept of maintaining and improving severe accident management. In the SAM standard, the combination of hardware and software measures based on the risk assessment enables a scientific and rational approach to apply to scenarios of various severe accidents including low-frequency, high-impact events, and assures safety with functionality and flexibility. The SAM standard is already established in March, 2014. After publication of the SAM standard, with regard to effectiveness assessment for accident management and treatment of the uncertainty of severe accident analysis code, for example, the detailed guideline will be prepared as appendices of the standard. (author)

  6. Management strategies in chronic inflammatory demyelinating polyradiculoneuropathy

    Patel Kamakshi

    2010-01-01

    Full Text Available Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP is a chronic, proximal and distal, asymmetrical or symmetrical, motor and sensory demyelinating polyneuropathy with a progressive course for at least 2 months. The accurate diagnosis is crucial as CIDP is amenable to treatment. Recent advances have provided new strategies and options for management of this syndrome. In this article, we review the clinical and diagnostic features as well as discuss recent insights and treatment strategies along with our experience in the management of patients with CIDP.

  7. CUSTOMER RELATIONSHIP MANAGEMENT AND BUSINESS STRATEGIES

    Rozitta Chittaie

    2012-06-01

    Full Text Available Changing in the current competitive environment, increasing simplicity of penetrating into the competitive market, and rapid growing of information technology are essential motives for performing activities in an environment. Nowadays, some companies step into rapid and instant development of their markets in order to improve customer relationship. These companies through adopting customer relationship management (CRM systems can earn and retain their customers' loyalty. As a result, designing customer relationship management strategies can lead to market protection, customer value increase, and greater customer satisfaction opportunities for continuous promotion of the enterprise. Regarding the complexity and the variety of strategies associated with managing a business, information-related capability seems to be an essential capability for earning profit from companies' activities and competition among peers. Hence, relation and information are employed for managing the firms are vital tools for seizing opportunities and tackling future issues. Giving the information only employed to support a company’s performance, making crucial decision about surrounding environment, increasing competitive ability of the enterprise will be difficult for company. Furthermore, since increase of competitive ability is accompanied by making greater profit on the deal, methods of raising competitive ability is an interesting and critical issue. Therefore, companies through information technology, cost reduction, and development of low-level relations with customers can achieve greater profitability. This paper probes into customer relationship management and business strategies. The implications of CRM strategies are discussed in detail.

  8. Management strategies for acne vulgaris

    Whitney KM

    2011-04-01

    Full Text Available Kristen M Whitney1, Chérie M Ditre21Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA; 2Skin Enhancement Center and Cosmetic Dermatology, Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USADate of preparation: 30th November 2010Conflicts of interest: None declaredClinical question: What are the most effective treatment(s for mild, moderate, severe, and hormonally driven acne?Results: Mild acne responds favorably to topical treatments such as benzoyl peroxide, salicylic acid, and a low-dose retinoid. Moderate acne responds well to combination therapy comprising-topical benzoyl peroxide, antibiotics, and/or retinoids, as well as oral antibiotics in refractory cases and oral contraceptive pills for female acne patients. Severe nodulocystic acne vulgaris responds best to oral isotretinoin therapy. In female patients with moderate to severe acne, facial hair, loss of scalp hair and irregular periods, polycystic ovarian syndrome should be considered and appropriate treatment with hormonal modulation given. Adjunctive procedures can also be considered for all acne patients.Implementation: Pitfalls to avoid when treating acne: treatment of acne in women of childbearing age; familiarization of all acne treatments in order to individualize management for patients; indications for specialist referral.Keywords: acne vulgaris, benzoyl peroxide, retinoids, antibiotics, light and laser therapy, photodynamic therapy, photopneumatic therapy, chemical peels

  9. Quantitative investment strategies and portfolio management

    Guo, J.

    2012-01-01

    This book contains three essays on alternative investments and portfolio management. Taking from a portfolio investor’s perspective, the first essay analyzes the portfolio implication of investing in hedge funds when there is a hedge fund lockup period. The second essay studies the investment preference by fund of hedge funds managers. The analysis suggests that single-strategy hedge funds enter into the portfolio of funds of funds in a non-random way. Finally, the last essay shows that the e...

  10. Management Strategies and Dynamic Financial Analysis

    Eling, Martin; Parnitzke, Thomas; Schmeiser, Hato

    2008-01-01

    Dynamic financial analysis (DFA) has become an important tool in analyzing the financial situation of insurance companies. Constant development and documentation of DFA tools has occurred during the last years. However, several questions concerning the implementation of DFA systems have not been answered in the DFA literature to date. One such important issue is the consideration of management strategies in the DFA context. The aim of this paper is to study the effects of different management...

  11. Conclusions of the specialist meeting on operator AIDS for severe accident management and training (SAMOA)

    The scope of the Specialist Meeting was limited to operator aids for accident management which were in operation or could be soon. Moreover, the meeting concentrated on the management of accidents beyond the design basis, including tools which might be extended from the design basis range into the severe accident area. Relevant simulation tools for operator training were also part of the scope of the meeting. The presentations showed that the design and implementation of operator aids were closely related to the organisation adopted by the user, whether it was a utility or a governmental agency. The most common organisation is to share the management of severe accidents among two groups of people: the operating team in the Control Room (CR) and a team of specialists in a Technical Support Centre (TSC). The CR is in charge of the operation of the plant in all conditions using a set of procedures and guidelines, while the experts in the TSC are able to produce in-depth analyses of the plant state and its evolution. The responsibility is shared between the CR and the TSC during accident progression. The TSC acts as a support for the CR for reactor operation and takes charge of the predictions of radioactive releases (source term, accident progression, release and dispersion of radioactive substances, as well as the interaction with public authorities). But this type of organisation is not general and the differences can induce different approaches in the design of operator aids. The first session was dedicated to operator aids for control rooms, the second session to operator aids for technical support centres

  12. Strategies for Managing a Multigenerational Workforce

    Iden, Ronald

    The multigenerational workforce presents a critical challenge for business managers, and each generation has different expectations. A human resource management study of organizations with more than 500 employees reported 58% of the managers experiencing conflict between younger and older workers. The purpose of this single case study was to explore the multigenerational strategies used by 3 managers from a Franklin County, Ohio manufacturing facility with a population size of 6 participants. The conceptual framework for this study was built upon generational theory and cohort group theory. The data were collected through face-to-face semistructured interviews, company documents, and a reflexive journal. Member checking was completed to strengthen the credibility and trustworthiness of the interpretation of participants' responses. A modified van Kaam method enabled separation of themes following the coding of data. Four themes emerged from the data: (a) required multigenerational managerial skills, (b) generational cohort differences, (c) most effective multigenerational management strategies, and (d) least effective multigenerational management strategies. Findings from this study may contribute to social change through better understanding, acceptance, and appreciation of the primary generations in the workforce, and, in turn, improve community relationships.

  13. Accident management measures. Demand for action as seen by the supervising authority

    The various measures taken for accident management in the plant are to be classified into categories of nuclear law, as there are: prevention of hazards, prevention of risks, or non-preventive measures ( management of remaining risk). Screening the various measures for classification shows that most of them belong to the category of preventive action under the Atomic Energy Act. This means that these measures have to be addressed in KTA safety standards. (orig./HP)

  14. An examination of the accident and emergency management of deliberate self harm.

    Dennis, M; BEACH, M; Evans, P A; Winston, A.; Friedman, T.

    1997-01-01

    OBJECTIVE: To examine the adequacy of assessment and management of deliberate self harm (DSH) undertaken by accident and emergency (A&E) medical staff. METHODS: The records for attendances to the Leicester Royal Infirmary A&E department with a diagnosis of "self inflicted" injury for the 12 month period April 1994 to March 1995 were scrutinised. If the episode was identified as DSH, then assessment and management were examined, using an instrument based on the Royal College of Psychiatrists' ...

  15. Uncertainty quantification for accident management using ACE surrogates

    The alternating conditional expectation (ACE) regression method is used to generate RELAP5 surrogates which are then used to determine the distribution of the peak clad temperature (PCT) during the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed (F and B) operation in the Zion-1 nuclear power plant. The construction of the surrogates assumes conditional independence relations among key reactor parameters. The choice of parameters to model is based on the macroscopic balance statements governing the behavior of the reactor. The peak clad temperature is calculated based on the independent variables that are known to be important in determining the success of the F and B operation. The relationship between these independent variables and the plant parameters such as coolant pressure and temperature is represented by surrogates that are constructed based on 45 RELAP5 cases. The time-dependent PCT for different values of F and B parameters is calculated by sampling the independent variables from their probability distributions and propagating the information through two layers of surrogates. The results of our analysis show that the ACE surrogates are able to satisfactorily reproduce the behavior of the plant parameters even though a quasi-static assumption is primarily used in their construction. The PCT is found to be lower in cases where the F and B operation is initiated, compared to the case without F and B, regardless of the F and B parameters used. (authors)

  16. Classification of the Strategies of International Enterprise Marketing Management

    I. Yulegina

    2010-01-01

    In modern economic literature authors increasingly refer to the terms "marketing management" and "market-oriented management". Hereupon there is a need to study the issue of classification of marketing management strategies and compare it with enterprise marketing management strategies and marketing strategies.The aim of the article is to study the approaches to the classification of strategies of enterprise marketing management and to identify strategies of international enterprise marketing...

  17. Advanced evacuation model managed through fuzzy logic during an accident in LNG terminal

    Evacuation of people located inside the enclosed area of an LNG terminal is a complex problem, especially considering that accidents involving LNG are potentially very hazardous. In order to create an evacuation model managed through fuzzy logic, extensive influence must be generated from safety analyses. A very important moment in the optimal functioning of an evacuation model is the creation of a database which incorporates all input indicators. The output result is the creation of a safety evacuation route which is active at the moment of the accident. (Author)

  18. Development and application of a radioactivity evaluation technique the to obtain radiation exposure dose of radioactivity evaluation technique when a severe accident occurs in the a power station of a severe accident. Accident management guidelines of knowledge-based maintenance

    As a One of the lessons learned from the nuclear accident at the Fukushima Daiichi Nuclear Power Stations of Tokyo Electric Power Company, the was the need for improvement of accident management guidelines is required. In this report study, we developed and applied a dose evaluation technique to evaluated the radiation dose in a nuclear power plant assuming three conditions: employees were evacuation evacuated at the time of a severe accident occurrence; operators carried out the accident management operation; of the operators, and the repair work was carried out for of the trouble damaged apparatuses in a the nuclear power plant using a dose evaluation system. The following knowledge findings were obtained and should to be reflected to in the knowledge base of the guidelines was obtained. (1) By making clearly identifying an areas beforehand becoming the that would receive high radiation doses at the time of a severe accident definitely beforehand, we can employees can be moved to the evacuation places through an areas having of low dose rate and it is also known it how much we long employees can safely stay in the evacuation places. (2) When they circulate CV containment vessel recirculation sump water is recirculated by for the accident management operation and the restoration of safety in the facilities, because the plumbing piping and the apparatuses become radioactive radioactivity sources, the dose evaluation of the shortest access route and detour access routes with should be made for effective the accident management operation is effective. Because the area where a dose rate rises changes which as safety apparatuses are restored, in consideration of a plant state, it is necessary to judge the rightness or wrongness of the work continuation from the spot radioactive dose of the actual apparatus area, with based on precedence of the need to restore with precedence, and to choose a system to be used for accident management. (author)

  19. Overview of the facility accident analysis for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    An integrated risk-based approach has been developed to address the human health risks of radiological and chemical releases from potential facility accidents in support of the U.S. Department of Energy (DOE) Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Accordingly, the facility accident analysis has been developed to allow risk-based comparisons of EM PEIS strategies for consolidating the storage and treatment of wastes at different sites throughout the country. The analysis has also been developed in accordance with the latest DOE guidance by considering the spectrum of accident scenarios that could occur in implementing the various actions evaluated in the EM PEIS. The individual waste storage and treatment operations and inventories at each site are specified by the functional requirements defined for each waste management alternative to be evaluated. For each alternative, the accident analysis determines the risk-dominant accident sequences and derives the source terms from the associated releases. This information is then used to perform health effects and risk calculations that are used to evaluate the various alternatives

  20. Common Sense Strategies for Managing Conflicts.

    Fairman, Marvin; Clark, Elizabeth A.

    1983-01-01

    Describes the application by principals of situational leadership concepts to reduce conflict among groups participating in decision making. Factors covered include maturity levels of participants, flexibility of leadership style, and possible variations in conflict management strategies appropriate to different maturity levels of participants.…

  1. INTEGRATION OF PROGRESS STRATEGY IN PROJECT MANAGEMENT

    БЕЗУГЛЫЙ, Дмитрий Георгиевич

    2015-01-01

    The methods and tools of the developed project promotion, the planning system of promotion strategy are suggested; the main approaches used in the project promotion have been identified. The conclusions about the importance, necessity and role in the promotion of a holistic project management system have been made.

  2. Negotiation strategies in Supply Chain Management

    Zachariassen, Frederik

    2008-01-01

    Purpose - This paper seeks to explore the impact of different negotiation strategies on then negotiation setting in different buyer-supplier relationships. So far, the extant supply chain management (SCM) literature has only briefly touched this subject, though such a study has been advocated on...

  3. Management Strategies for Ecocities of Sustainable Development

    Zhao Linan; Yang Bolin; Xu Mingzhi

    2004-01-01

    Building ecocities becomes an objective requirement for sustainable development. This article discusses the relationship between sustainable development and sustainable urban development.On the basis of discussing the sigificance of sustainable urban development and that of an eco-city from different perspectives, it suggests several management strategies for developing an eco-city, a desirable sustainable urban model.

  4. Successful Dairy Farm Debt Management Strategies

    Kauffman, Jonas B. III; Tauer, Loren

    1985-01-01

    Stochastic dominance was used to group 112 dairy farms based upon 10 years of returns to equity capital. Debt strategies of farms partitioned by first-degree stochastic dominance were similar. Second-degree efficient farms were consistently less indebted. Compared to 1974-1978, debt management during 1979-1983 was more important for high return rates.

  5. Proceedings of the second OECD specialist meeting on operator aids for severe accident management - SAMOA-2

    The second OECD Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) was organized in Lyon, France from 8 to 10 September 1997 in collaboration with the Thermal and Nuclear Studies and Project Department (SEPTEN) of Electricite de France. It was attended by 33 specialists representing ten OECD Member countries, the OECD Halden Reactor Project, the Commission of the European Communities, and the Russian Federation. The scope of SAMOA-2 was limited to operator aids for accident management which were in operation or could be soon. The meeting concentrated on the management of accidents beyond the design basis, including tools which might be extended from the design basis range into the severe accident area. Relevant simulation tools for operator training were also part of the scope of the meeting. Twenty papers were presented during the meeting, grouped into three sessions. Session 1: operator aids for control rooms; Session 2: operator aids for technical support centres; session 3: simulation tools for operator training. There were two demonstrations of computerized systems: the ATLAS analysis simulator developed by GRS, and EDF's 'Simulateurs Post Accidentels' (SIPA). There was also a video demonstration of the Full Scope Simulator developed by a joint Russian-U.S. team for the Leningrad nuclear power

  6. Identifying the Components of a Knowledge Management Strategy

    Aagaard, Annabeth; Jennex, Murray

    2016-01-01

    What should a good knowledge management strategy incorporate? This paper uses a study that compares a proposed set of knowledge management strategy components to the outcomes of knowledge management projects/initiatives. As expected it was found that highly successful knowledge management projects....../initiatives are more likely to have the proposed set of knowledge management strategy components than less successful to unsuccessful knowledge management projects/initiatives. The conclusion of the paper is that the proposed set of knowledge management strategy components is an appropriate list that knowledge...... management practitioners and researchers can use to construct an organization’s knowledge management strategy....

  7. PCTRAN-3: The third generation of personal computer-based plant analyzer for severe accident management

    PCTRAN is a plant analyzer that uses a personal computer to simulate plant response. The plant model is recently expanded to accommodate beyond design-basis severe accidents. In the event of multiple failures of the plant safety systems, the core may experience heatup and extensive failure. Using a high-powered personal computer (PC), PCTRAN-3 is designed to operate at a speed significantly faster than real-time. A convenient, interactive and user-friendly graphics interface allows full control by the operator. The plant analyzer is intended for use in severe accident management. In this paper the code's component models and sample runs ranging from normal operational transients to severe accidents are reviewed. (author)

  8. Knowledge data base for severe accident management of nuclear power plants

    For the safety enhancement of Nuclear Power Plants (NPPs), continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of the present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of SA, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of AM. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the SA analysis codes and the AM knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2012 are as follows; Analytical study on OECD/NEA projects such as MCCI, SERENA and SFP projects, and support in making regulation for SA. (author)

  9. Effectiveness of In-Vessel Retention Strategies and Minimum Safety Injection Flow over Postulated Severe Accidents of OPR1000

    The objective of this study is first to evaluate various serious severe accident scenarios of OPR1000 with and without in-vessel retention strategies using MELCOR code. Second is to develop a mechanistic model of minimum safety injection flow using the thermal-hydraulic parameters of CET and collapsed water level obtained from the MELCOR simulation results. Effectiveness of RCS depressurization of OPR1000 is investigated for postulated severe accidents of SBLOCA, SBO, and TLOF. It is seen that timely operator action is important to achieve the best mitigation. Also The MELCOR simulation results of SBLOCA, SBO, and TLOFW are utilized to develop a model for minimum safety injection flow. The model suggests that if HPSI is available with RCS pressure lower than 120 bars, the core coolability can be guaranteed. In this study, several MELCOR simulations are conducted in search for effective in-vessel retention strategies over postulated severe accidents of SBLOCA, SBO, and TLOFW of OPR1000. Detailed accident sequences are presented and indicative parameters diagnosing the reactor thermal-hydraulic state are interrogated to provide useful information to the operator actions. To properly assist operator's action during the severe accident, the thermal-hydraulic parameters should be virtual, intuitive, and reliable. In addition, the parameters should be collected through the instrumentations close to the reactor core. In this regard, Core Exit Temperature (CET) and collapsed core water level are deemed as the commensurate parameters

  10. Social Media Strategies and Destination Management

    Munar, Ana Maria

    2012-01-01

    This study provides insights into social media practices and strategic considerations used by destination management organizations (DMOs). It examines a theoretical model of generic social media strategies for destination management and applies qualitative methods to analyze the social media...... initiatives of DMOs of Denmark, Norway, Finland, Sweden and the Scandinavian Tourist Board Asia/Pacific in the Nordic European Region. The study provides empirical evidence of emerging social media strategies among DMOs and confirms the growing importance of these new media. The findings point to the...... conflicting relationship between corporate culture and social media culture, the challenges innovative communication tools present for traditional management structures, poor levels of formalization and the lack of a knowledge base which results in ad-hoc decision making. Overall, the paper discusses the...

  11. RBMK-1500 accident management for loss of long-term core cooling

    Results of the Level 1 probabilistic safety assessment of the Ignalina NPP has shown that in topography of the risk, transients dominate above the accidents with LOCAs and failure of the core long-term cooling are the main factors to frequency of the core damage. Previous analyses have shown, that after initial event, as a rule, the reactivity control, as well as short-term and intermediate cooling are provided. However, the acceptance criteria of the long-term cooling are not always carried out. It means that from this point of view the most dangerous accident scenarios are the scenarios related to loss of the core long-term cooling. On the other hand, the transition to the core condition due to loss of the long-term cooling specifies potential opportunities for the management of the accident consequences. Hence, accident management for the mitigation of the accident consequences should be considered and developed. The most likely initiating event, which probably leads to the loss of long term cooling accident, is station blackout. The station blackout is the loss of normal electrical power supply for local needs with an additional failure on start-up of all diesel generators. In the case of loss of electrical power supply MCPs, the circulating pumps of the service water system and MFWPs are switched-off. At the same time, TCV of both turbines are closed. Failure of diesel generators leads to the non-operability of the ECCS long-term cooling subsystem. It means the impossibility to feed MCC by water. The analysis of the station blackout for Ignalina NPP was performed using RELAP5 code. (author)

  12. Severe accident management: a summary of the VAHTI and ROIMA projects

    Two severe accident research projects: 'Severe Accident Management' (VAHTI), 1994-96 and 'Reactor Accidents' Phenomena and Simulation (ROIMA) 1997-98. have been conducted at VTT Energy within the RETU research programme. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The projects had several subtopics. These included thermal hydraulic validation of the APROS code, studies of failure mode of the BWR pressure vessel, investigation of core melt progression within a BWR pressure vessel, containment phenomena, development of a computerised severe accident training tool, and aerosol behaviour experiments. The last topic is summarised by another paper in the seminar. The projects have met the objectives set at the project commencement. Calculation tools have been developed and validated suitable for analyses of questions specific for the Finnish plants. Experimental fission product data have been produced that can be used to validate containment aerosol codes. The tools and results have been utilised in plant assessments. One of the main achievements has been the computer code PASULA for analysis of interactions between core melt and pressure vessel. The code has been applied to pressure vessel penetration analysis. The results have shown the importance of the nozzle construction. Modelling possibilities have recently improved by addition of a creep and porous debris models. Cooling of a degraded BWR core has been systematically studied as joint Nordic projects with a set of severe accident codes. Estimates for coolable conditions have been provided. Recriticality due to reflooding of a damaged core has been evaluated. (orig.)

  13. Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents

    Lida Barba

    2014-01-01

    Full Text Available Two smoothing strategies combined with autoregressive integrated moving average (ARIMA and autoregressive neural networks (ANNs models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD. In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%.

  14. Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents.

    Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia

    2014-01-01

    Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%. PMID:25243200

  15. Application of fuzzy decision making to countermeasure strategies after a nuclear accident

    In the event of a nuclear accident, any decision on countermeasures to protect the public should be made based upon the basic principles recommended by the International Commission on Radiological Protection. The application of these principles requires that there is a balance between the cost and the averted radiation dose, taking into account many subjective factors such as social/political acceptability, psychological stress, and the confidence of the population in the authorities etc. In the framework of classical methods, it is difficult to quantify human subjective judgements and the uncertainties of data efficiently. Hence, any attempt to find the optimal solution for countermeasure strategies without deliberative sensitivity analysis can be misleading. However, fuzzy sets, with linguistic terms to describe the human subjective judgement and with fuzzy numbers to model the uncertainties of the parameters, can be introduced to eliminate these difficulties. With fuzzy rating, a fuzzy multiple attribute decision making method can rank the possible countermeasure strategies. This paper will describe the procedure of the method and present an illustrative example

  16. Effect of guidelines on management of head injury on record keeping and decision making in accident and emergency departments.

    Thomson, R.; Gray, J; Madhok, R; Mordue, A.; Mendelow, A D

    1994-01-01

    OBJECTIVE--To compare record keeping and decision making in accident and emergency departments before and after distribution of guidelines on head injury management as indices of implementation. DESIGN--Before (1987) and after (1990) study of accident and emergency medical records. SETTING--Two accident and emergency departments in England. PATIENTS--1144 adult patients with head injury in department 1 (533 in 1987, 613 in 1990) and 734 in department 2 (370, 364 respectively). MAIN MEASURES--...

  17. Risk management - unappreciated instrument of supply chain management strategy

    Wojciech Machowiak

    2012-12-01

    Full Text Available Background: Unlike Enterprise Risk Management, which is certainly quite well rooted in business practice, Supply Chain Risk Management (SCRM still continues to be dynamically developing subject of academic research, whereas its practical applications are rather scarce. Material and methods: On the basis of broad review of the current state of the art in world literature, significant  relevancies to the core processes and enterprise strategy are discussed.   Results: The paper shows some interesting from the enterprise's performance and competitiveness point of view additional benefits, potentially resulting from the proactive, consistent and effective implementation of the SCRM system. Conclusions: Some additional advantages from proactive supply chain risk management account for perceiving SCRM as multifunctional instrument of strategic SC management, exceeding established understanding RM as security and threat-prevention  tool only. Positive influence from SCRM onto SC performance and competitiveness can make reasonable to enhance its position within SCM strategy.

  18. Containment management in the event of a severe accident in French power plants

    Monitoring of the quality of the containment is a preoccupation which is present at all stages of construction and operation of French PWR plant units. In case of accident, the emergency operating procedures give priority to preventing core uncovering. Monitoring of the containment then aims to detect any abnormal feature and to limit any risk of release which might not be strictly justified by a safeguard action. In the event of a severe accident, the priority is clearly given to safeguarding the containment. The strategic options proposed to the team in charge of the situation are determined pragmatically in the Severe Accident Intervention Guide which includes the emergency procedures for containment monitoring (U2) and decompression-filtration (U5). In all cases, maintaining the containment is based on the earliest possible detection of the leak tightness defect or of bypass. For this reason, in parallel with the operating procedures, a guide devoted to the overall monitoring of the containment has been developed for the use of crisis teams. All the monitoring techniques and strategies chosen aim, in the event of a severe accident, to bring the plant back as quickly as possible to a situation in which any radiological releases are delayed, limited and filtered In order to enable the population protection plan to be applied. On future plant units, it is possible to include installation progress at design stage, both in order to reduce the risk of severe accident and to limit the impact that this would have. Special attention is given to preventing energy accidents within the containment, and to ensuring the removal of power outside the containment in the long term

  19. Risk management - unappreciated instrument of supply chain management strategy

    Wojciech Machowiak

    2012-01-01

    Background: Unlike Enterprise Risk Management, which is certainly quite well rooted in business practice, Supply Chain Risk Management (SCRM) still continues to be dynamically developing subject of academic research, whereas its practical applications are rather scarce. Material and methods: On the basis of broad review of the current state of the art in world literature, significant  relevancies to the core processes and enterprise strategy are discussed.   Results: ...

  20. Construction safety: Can management prevent all accidents or are workers responsible for their own actions?

    The construction industry has struggled for many years with the answer to the question posed in the title: Can Management Prevent All Accidents or Are Workers Responsible for Their Own Actions? In the litigious society that we live, it has become more important to find someone open-quotes at faultclose quotes for an accident than it is to find out how we can prevent it from ever happening again. Most successful companies subscribe to the theme that open-quotes all accidents can be prevented.close quotes They institute training and qualification programs, safe performance incentives, and culture-change-driven directorates such as the Voluntary Protection Program (VPP); yet we still see construction accidents that result in lost time, and occasionally death, which is extremely costly in the shortsighted measure of money and, in real terms, impact to the worker''s family. Workers need to be properly trained in safety and health protection before they are assigned to a job that may expose them to safety and health hazards. A management committed to improving worker safety and health will bring about significant results in terms of financial savings, improved employee morale, enhanced communities, and increased production. But how can this happen, you say? Reduction in injury and lost workdays are the rewards. A decline in reduction of injuries and lost workdays results in lower workers'' compensation premiums and insurance rates. In 1991, United States workplace injuries and illnesses cost public and private sector employers an estimated $62 billion in workers'' compensation expenditures

  1. WWER Technical Support Center and Training of its Staff for Severe Accident Management

    The Russian Utility organization Concern Rosenergoatom (REA) has well developed multi-level system of prevention and liquidation of emergency situations at nuclear power plants. This system covers all aspects related to beyond design accidents - from the technical support of the plant personnel to the measures for protection of the population and environment. In case a radiation dangerous situation or accident at a NPP occurred, the urgent help is being performed by the OPAS group, which coordinates the activities of forces and means participating in localization and liquidation of accident. Technical and information needs of the OPAS group is assured by Crisis center of REA (CC) with its Expert group. The task of CC is the development of the technical recommendations for the plant personnel on the accident management measures aimed to prevent the severe accident or to restrict its consequences. This task is being solved by Expert group (EG) of Crisis center in interaction with the Technical support centers (TSC) established in different design and scientific organizations (NSSS General designer, NPP General designer, Scientific leader of NPP design, institutes of Academy of Sciences, etc). Each TSC is being considered as a constituent of Rosenergoatom CC. Such Technical support center for WWER nuclear power plants (WWER TCS) has been established in OKB Gidropress some years ago. Three modes of WWER TSC operation (and, accordingly, its interaction with REA CC) are defined: normal operation, increased readiness and emergency situation. In case of beyond design accident on a plant, WWER TSC under request of REA CC will develop the recommendations for CC Expert group aimed to prevent the accident progression to the severe phase or to restrict the severe accident consequences, if it nevertheless has occurred. In chapter 2 of the present paper, place and role of WWER TSC in general system of emergency response of Rosenergoatom is highlighted. TSC structure, functions of

  2. Balancing energy strategies in electricity portfolio management

    Traditional management of electricity portfolios is focused on the day-ahead market and futures of longer maturity. Within limits, market participants can however also resort to the balancing energy market to close their positions. In this paper, we determine strategic positions in the balancing energy market and identify corresponding economic incentives in an analysis of the German balancing energy demand. We find that those strategies allow an economically optimal starting point for real-time balancing and create a marketplace for flexible capacity that is more open than alternative marketplaces. The strategies we proffer in this paper we believe will contribute to an effective functioning of the electricity market. (author)

  3. Severe accident management development program for VVER-1000 and VVER-440/213 based on the westinghouse owners group approach

    The development of the Westinghouse Owners Group Severe Accident Management Guidelines (WOG SAMG) between 1991 and 1994 was initiated in response to the U.S. Nuclear Regulatory Commission (NRC) requirement for addressing the regulatory severe accident concerns. Hence, the WOG SAMG is designed to interface with other existing procedures at the plant and is used in accident sequences that have progressed to the point where these other procedures are not applicable any longer, i.e. following core damage. The primary purpose of the WOG SAMG is to reach a controlled stable state, which can be declared when fission product releases are controlled, challenges to the confinement fission product boundary have been mitigated, and adequate heat removal is provided to the core and the containment. Although the WOG SAMG is a generic severe accident management guidance developed for use by the entirety of the operating Westinghouse PWR plants, provisions have been made in their development to address specific features of individual plants such as confinement type and the feasibility of reactor cavity flooding. Similarly, the generic SAMG does not address unique plant features and equipment, but rather allows for consideration of plant specific features and strategies. This adaptable approach has led to several SAMG development programs for VVER-1000 and VVER-440 type of power plants, under Westinghouse' s lead. The first of these programs carried out to completion was for Temelin NPP - VVER-1000 - in the first quarter of 2003. Other ongoing programs aim at providing a similar work for VVER-440 design, namely Dukovany, Mochovce and Bohunice NPPs. The challenge of adapting the existing generic WOG material to plants other than PWRs mainly arises for VVER-440 because of important differences in confinement design, making it more vulnerable to ex-vessel phenomena such as hydrogen burn. Also, for both eastern designs, cavity flooding strategy requires special consideration and

  4. Management of radioactive waste during the initial period of eliminating the consequences of the Chornobyl accident. Review and analysis

    This review discusses basic sources of radioactive waste (RAW) formation during the Chornobyl accident, processes of RAW formation, and describes the relevant experience of RAW collection and disposal. Not all sources and materials were available for the research, but the author endeavored to provide the most comprehensive presentation of all the aspects of RAW management during elimination of the Chornobyl accident

  5. Instrumentation Capabilities. Their Influence on Severe Accident Management and How Operator Training can be contemplated

    No currently operating nuclear unit has been explicitly designed to withstand the loads resulting from accident sequences resulting in melting of a very significant portion of the core. As a consequence, instrumentation needs were defined based on what was deemed necessary to control the unit during normal operation and contemplated accident sequences. Detailed requirements for instrumentation were then established based on environmental conditions anticipated during accident sequences addressed in the design, estimation of additional conservatism deemed reasonable for assessing sensor robustness and information reliability, and a realistic understanding of the influence of aging. Though instrument failures could not be excluded, consequences were necessarily limited as adequate redundancy was provided by design for all information needed to adequately control the unit and bring it back to safe shutdown in case of accident could be assumed available. Training programs largely built on this very robust approach and operators were challenged to control situations whose main attributes were: - all systems needed to fulfill essential safety functions are available and have the minimal capability for allowing compliance with otherwise stated acceptance criteria, - information needed to make decisions is available and reliable, - plant evolution, if not easily understandable in all cases, is not confusing to operators as all involved physical phenomena are unambiguous on one side, and can be reasonably well monitored. However, though current plant designs are generally very robust, one cannot exclude that accident sequences involving significant melting of the core can happen. First estimates through risk studies reported in WASH-1400 showed that the risk of core-melt could not be ignored, and the TMI-2 accident in a first step, then Chernobyl confirmed this conclusion. These events gave impetus to the development of Severe Accident Management (SAM) programs, and

  6. Strategy on radioactive waste management in Lithuania

    Poskas, P.; Adomaitis, J.E. [Lithuanian Energy Inst., Nuclear Engineering Lab., Kaunas (Lithuania)

    2003-07-01

    In Lithuania about 70-80% of all electricity is generated at a single power station, Ignalian NPP which has two non-upgradable RBMK-1500 type reactors. The unit 1 will be closed by 2005. The decision on unit 2 should be made in Lithuanian Parliament very soon taking into consideration substantial long-term financial assistance from the EU, G7 and other states as well as international institutions. The Government approved the Strategy on Radioactive Waste Management in 2002. Objectives of this strategy are to develop the radioactive waste management infrastructure based on modern technologies and provide for the set of practical actions that shall bring management of radioactive waste in Lithuania in compliance with radioactive waste management principles of IAEA and with good practices in force in EU Member States. Ignalina NPP is undertaking a program of decommissioning support projects, financed by grants from the International Ignalina Decommissioning Support Fund, administered by the European Bank for Reconstruction and Development. This program comprises also the implementation of investment projects in a number of pre-decommissioning facilities including the management of radioactive waste and spent nuclear fuel. (orig.)

  7. Strategy Approach towards Product Lifecycle Management

    林毅; 亢英英; 严隽琪

    2004-01-01

    Mass Customization and global economic collaboration drives the product development and management beyond internal enterprise to cover the whole product value chain. To meet such requirement, a strategy approach focusing on data organization for product lifecycle management was promoted. The approach takes product platform as the base, view engine and rule-based access as data access mechanism, and integration and collaboration bus as a enabler to allow participants involved in product lifecycle to get convenient, WEB-based access to the internal and external content, applications, and services.

  8. Radioactive waste management strategy in Argentina

    In this paper, an outline is given concerning the treatment, conditioning, characterization, storage, transport and final disposal of radioactive wastes arising in the fuel cycle, radioisotopes production plant, research centers, etc. The overall strategy of the Argentina program is to plan, develop and implement the technology and provide the facilities for the permanent isolation of commercially generated wastes, with the aim that this waste not compromise the health and safety of the general public. To implement all these activities, CNEA has established in 1986 a Radioactive Waste Management Program. This long term project is aimed at meeting all the requirements for the radioactive waste management of Argentina

  9. Management Strategies in Multi-year Enterprise Risk Management

    Dorothea Diers

    2011-01-01

    In enterprise risk management, strategies should be evaluated and managed from a multi-year view. In this paper, we present a multi-year model approach and apply a multi-year risk-capital concept to enable the company's “Own Risk and Solvency Assessment” as a part of enterprise risk management on a multi-year basis. We show under which assumptions an allocation method gives the “right” strategic incentives. We illustrate the usefulness of the concept for managerial decision support using data...

  10. Environmental Management Strategy: Four Forces Analysis

    Doyle, Martin W.; Von Windheim, Jesko

    2015-01-01

    We develop an analytical approach for more systematically analyzing environmental management problems in order to develop strategic plans. This approach can be deployed by agencies, non-profit organizations, corporations, or other organizations and institutions tasked with improving environmental quality. The analysis relies on assessing the underlying natural processes followed by articulation of the relevant societal forces causing environmental change: (1) science and technology, (2) governance, (3) markets and the economy, and (4) public behavior. The four forces analysis is then used to strategize which types of actions might be most effective at influencing environmental quality. Such strategy has been under-used and under-valued in environmental management outside of the corporate sector, and we suggest that this four forces analysis is a useful analytic to begin developing such strategy.

  11. Buffer management optimization strategy for satellite ATM

    Lu Rong; Cao Zhigang

    2006-01-01

    ECTD (erroneous cell tail drop), a buffer management optimization strategy is suggested which can improve the utilization of buffer resources in satellite ATM (asynchronous transfer mode) networks. The strategy, in which erroneous cells caused by satellite channel and the following cells that belong to the same PDU (protocol data Unit) are discarded, concerns non-real-time data services that use higher layer protocol for retransmission. Based on EPD (early packet drop) policy, mathematical models are established with and without ECTD. The numerical results show that ECTD would optimize buffer management and improve effective throughput (goodput), and the increment of goodput is relative to the CER (cell error ratio) and the PDU length. The higher their values are, the greater the increment. For example,when the average PDU length values are 30 and 90, the improvement of goodput are respectively about 4% and 10%.

  12. Development of severe accident training support system

    In order for appropriate decision-making during plant operation and management, the professional knowledge, expert's opinion, and previous experiences as well as information for current status are utilized. The operation support systems such as training simulators have been developed to assist these decision-making process, and most of them cover from normal operation to emergency operation because of the very low frequency of severe accident and of uncertaintics included in severe accident phenomena and scenarios. However, the architectures for severe accident management are being established based on severe accident management guidelines in some developed countries. Recentrly, in Korea, as teh severe accident management guideline was developed, the basis for establishing severe accident management architecture is prepared and this leads to the development of tool for systematic education and training for personnel related to severe accident management. The severe accident taining support system thus is developed to assist decision-making during execution of severe accident management guidelines by providing plant status information, prefessional knowledge for phenomena and scenarios, expected behavior for strategy execution, and so on

  13. Marketing strategy of competitiveness management building enterprise

    A.O. Vasilichenko

    2011-12-01

    Full Text Available In article is elaborated system category and notional device of the competitive studies in condition of the building branch in intercoupling with methods of the realization to strategies of the development. The author is motivated practicability of the use the methods of marketing in competitiveness management building enterprise and is presented author's model managerial system by competitiveness of the building enterprise with provision for specifics of the diagnostics of the processes of the development enterprise to building branch.

  14. Management strategies in chronic inflammatory demyelinating polyradiculoneuropathy

    Patel Kamakshi; Bhanushali Minal; Muley Suraj

    2010-01-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a chronic, proximal and distal, asymmetrical or symmetrical, motor and sensory demyelinating polyneuropathy with a progressive course for at least 2 months. The accurate diagnosis is crucial as CIDP is amenable to treatment. Recent advances have provided new strategies and options for management of this syndrome. In this article, we review the clinical and diagnostic features as well as discuss recent insights and treatment s...

  15. METHODS OF MANAGEMENT STRATEGIES FINANCIAL RESTRUCTURING

    Prokhorova, V.

    2014-01-01

    This article explores the methods of management strategies used during the financial restructuring of the company; The factors that affect the level of risk when making restructuring; formulated the essential view, the effectiveness of the financial restructuring of the company; parametric specificity of evaluating the effectiveness of the implementation of financial restructuring. Determined that the fundamental diagnostics company according to the following components of economic activity a...

  16. Discussion on Localization Management Strategy of KFC

    马遥

    2015-01-01

    In the contemporary society, localization and globalization are inseparable. For multinational corporations, enhancing the relationship between multinational corporations and host countries can achieve a win-win situation. Through analyze the lo-calization management strategies in the field of menu, slogan,ingredient and public relationship of of KFC and conclude that Chinese culture, the needs, preference of Chinese people, good government relationship is more important to multinational cor-porations.

  17. Crooked nose: An update of management strategies

    Wael K.A. Hussein

    2015-01-01

    Importance: Crooked nose has always been a surgical challenge for surgeons. It is of essential importance to achieve both functional and esthetic improvements. Objective: Various techniques have evolved through times to attain correction of the deviated nose. This work is devoted to review updates in management strategies of crooked nose. Methods: Description of various techniques available for nasal reconstruction of crooked nose. Conclusions: Deformities of the deviated nose can be...

  18. The Mathematical Study of Pest Management Strategy

    Jinbo Fu; Yanzhen Wang

    2012-01-01

    The theory of impulsive state feedback control is used to establish a mathematical model in the pest management strategy. Then, the qualitative analysis of the mathematical model was provided. Here, a successor function in the geometry theory of differential equations is used to prove the sufficient conditions for uniqueness of the 1-periodic solution. It proved the orbital asymptotic stability of the periodic solution. In addition, numerical analysis is used to discuss the application signif...

  19. Effectiveness of core exit thermocouple (CET) indication in accident management of light water reactors

    The working group on Analysis and Management of Accidents (WGAMA) of the Committee on the Safety of Nuclear Installations (CSNI) of OECD-NEA had a task on the effectiveness of CET indication in accident management (AM) of light water reactors (LWR). The task collected and reviewed the design basis of CET application for AM procedures through a survey of the CET use in the NEA member countries, and reviewed pertinent experimental results from such test facilities as LOFT, ROSA/LSTF, PKL and PSB-VVER focusing on the time delay in CET from core temperature rise. Scaling issues were discussed considering extrapolation of experimental results to LWR. This paper summarizes major outcomes of the task and indicates possible future work. (author)

  20. Risk management and role of schools of the Tokai-village radiation accident in 1999. Safety education and risk management before and during the radiation accident from the standpoint of school nurse teachers

    The purpose of this study is to evaluate safety education and risk management in the neighborhood schools before and during the radiation accident in the Tokai-village in 1999 from the standpoint of school nurse teachers. Eighty-six school nurse teachers from 44 elementary, 25 junior-high, 14 high and 3 handicapped children's schools were surveyed within neighboring towns and villages. The main results were as follows: There had been few risk management systems against the potential radiation accidents including safety education, radiological monitoring and protection in all of the neighboring schools. There were no significant difference in risk management systems among the schools before the accident, though the anxiety rates of school children were significantly higher in the schools nearest to the accident site. Some radiation risk management systems must be established in neighboring schools including safety education, radiological monitoring and protection. (author)

  1. Generalities on nuclear accidents and their short-dated and middle-dated management; Generalites sur les accidents nucleaires et leur gestion a court terme et a long terme

    NONE

    2003-03-01

    All the nuclear activities present a radiation risk. The radiation exposure of the employees or the public, may occur during normal activity or during an accident. The IRSN realized a document on this radiation risk and the actions of protection. The sanitary and medical aspects of a radiation accident are detailed. The actions of the population protection during an accident and the post accident management are also discussed. (A.L.B.)

  2. Comprehensive Health Risk Management after the Fukushima Nuclear Power Plant Accident.

    Yamashita, S

    2016-04-01

    Five years have passed since the Great East Japan Earthquake and the subsequent Fukushima Daiichi Nuclear Power Plant accident on 11 March 2011. Countermeasures aimed at human protection during the emergency period, including evacuation, sheltering and control of the food chain were implemented in a timely manner by the Japanese Government. However, there is an apparent need for improvement, especially in the areas of nuclear safety and protection, and also in the management of radiation health risk during and even after the accident. Continuous monitoring and characterisation of the levels of radioactivity in the environment and foods in Fukushima are now essential for obtaining informed consent to the decisions on living in the radio-contaminated areas and also on returning back to the evacuated areas once re-entry is allowed; it is also important to carry out a realistic assessment of the radiation doses on the basis of measurements. Until now, various types of radiation health risk management projects and research have been implemented in Fukushima, among which the Fukushima Health Management Survey is the largest health monitoring project. It includes the Basic Survey for the estimation of external radiation doses received during the first 4 months after the accident and four detailed surveys: thyroid ultrasound examination, comprehensive health check-up, mental health and lifestyle survey, and survey on pregnant women and nursing mothers, with the aim to prospectively take care of the health of all the residents of Fukushima Prefecture for a long time. In particular, among evacuees of the Fukushima Nuclear Power Plant accident, concern about radiation risk is associated with psychological stresses. Here, ongoing health risk management will be reviewed, focusing on the difficult challenge of post-disaster recovery and resilience in Fukushima. PMID:26817782

  3. Management of the radioactive wastes arising from the accident in Goiania, Brazil

    The radiological accident that occurred during the month of September, 1987, in Goiania, Brazil, involving a 50,9 TBq (1375 Ci) of a Caesium-137 source has led to the contamination of a large number of individuals and several urban area. The objective of the present article is to describe the waste management program that was implemented in order to deal with the c.a. 3340 m3 of wastes generated as a result of decontamination works performed

  4. Accident analysis for high-level waste management alternatives in the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    A comparative generic accident analysis was performed for the programmatic alternatives for high-level waste (HLW) management in the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). The key facilities and operations of the five major HLW management phases were considered: current storage, retrieval, pretreatment, treatment, and interim canister storage. A spectrum of accidents covering the risk-dominant accidents was analyzed. Preliminary results are presented for HLW management at the Hanford site. A comparison of these results with those previously advanced shows fair agreement

  5. Safety Strategy of JSFR to Establish the In-Vessel Retention of the Core Disruptive Accident

    In the JSFR (Japan Sodium Cooled Fast Reactor), design measure to eliminate severe power burst events and keep the cooling of core materials by sodium in the Core Disruptive Accident (CDA) is applied to achieve the retention of core materials within the reactor vessel. The design strategy is to control the potential of excessive void reactivity insertion in the early phase of the CDA by selecting appropriate design parameters such as maximum void reactivity, while fuel sub-assembly with inner duct is introduced to exclude core-wide molten-fuel-pool formation, which has been the main issue of CDA. The multi-layered debris tray is also applied in JSFR to realize the stable and permanent cooling of core materials after the relocation of core materials to lower plenum of reactor vessel. The effectiveness of these design measures is evaluated based on existing experimental knowledge and computer simulation with validated analytical tools. It is judged that the present JSFR design can exclude severe power burst events. Phenomenological consideration on general characteristics and preliminary evaluations for the long-term material relocation and cooling phases gave a perspective that in-vessel retention would be attained with appropriate design measures. (author)

  6. Building strategies for restoration of contaminated areas after a nuclear accident: implementation of related studies and first orientations

    The widespread contamination resulting from the Chernobyl accident has lead IPSN to implement a program, aiming at building strategies for environmental restoration after an accident potentially occurring in a reactor or a fuel cycle facility. Establishing optimized strategies requires to consider the incidence of all remediation operations, from the collection of the contaminated material to the final storage of the wastes issued from decontamination. Most of the decontamination strategies actually consist in shifting the polluting substances from the environment to a controlled and safer system, i.e. a storage or a repository, which result in the overall decrease of hazards undergone by the various groups of the population exposed. The usefulness of the treatment of contaminated material against the direct storage of the latter will therefore strongly depend on the ability of applied technologies to transform the material in an innocuous product or reduce significantly the volumes of wastes to store, so that doses and costs are globally spared. The incidence of storage will therefore be of great importance in determining optimized strategies. Another important aspect of remediation relates to the feasibility of the industrial implementation of technologies. Some considerations on the above issues are given in the present paper. As a starting point. only rural environments contaminated after a major nuclear power plant accident were considered. (author)

  7. Combining Neural Methods and Knowledge-Based Methods in Accident Management

    Miki Sirola

    2012-01-01

    Full Text Available Accident management became a popular research issue in the early 1990s. Computerized decision support was studied from many points of view. Early fault detection and information visualization are important key issues in accident management also today. In this paper we make a brief review on this research history mostly from the last two decades including the severe accident management. The author’s studies are reflected to the state of the art. The self-organizing map method is combined with other more or less traditional methods. Neural methods used together with knowledge-based methods constitute a methodological base for the presented decision support prototypes. Two application examples with modern decision support visualizations are introduced more in detail. A case example of detecting a pressure drift on the boiling water reactor by multivariate methods including innovative visualizations is studied in detail. Promising results in early fault detection are achieved. The operators are provided by added information value to be able to detect anomalies in an early stage already. We provide the plant staff with a methodological tool set, which can be combined in various ways depending on the special needs in each case.

  8. Parking management : strategies, evaluation and planning

    Parking facilities are a major cost to society. Current planning practices are based on the assumption that parking should be abundant and provided free, with costs borne indirectly. This report examined parking management strategies related to integrated parking plans. Problems with current parking planning practices were reviewed. The costs of parking facilities were examined, as well as the savings that can accrue from improved management techniques. Strategies included shared parking; remote parking and shuttle services; walking and cycling improvements; improved enforcement and control; and increasing the capacity of existing parking facilities. Parking pricing methods, financial incentives and parking tax reforms were reviewed. Issues concerning user information and marketing were examined. Overflow parking plans were evaluated. Three illustrative examples of parking management programs were outlined, along with details of implementation, planning and evaluation procedures. It was concluded that cost-effective parking management programs can often reduce parking requirements by 20 to 40 per cent compared with conventional planning requirements, in addition to providing economic, social and environmental benefits. 32 refs., 7 tabs., 3 figs

  9. Research of severe accident induced by small LOCA and accident mitigation

    Fangjiashan nuclear power plant is modeled, by using MAAP4 code. Base on this model, the small LOCA accident is calculated, which will cause the worst consequence. The response of the plant and relevant severe accident phenomena are obtained. The phenomena of DCH (direct containment heat) happened during the accident, containment failure and release of the fission production are analyzed. Then, according to the related severe accident management and characteristic of this accident, the strategy of mitigating the accident consequence is studied and calculated. The result indicated that the mitigation action is very efficient. Therefore, a feasible strategy of mitigating the severe accident consequence is provided for the three-loop plant like Fangjiashan in China. (authors)

  10. Medical and psychological aspects of crisis management during a nuclear accident

    Drottz-Sjoeberg, B.M.

    1993-06-01

    Crisis handling in most kinds of disasters is affected by e.g. the information situation, prior experience and preparedness, availability of resources, efficiency of leadership and coordination, and type of disaster. A nuclear accident creates a situation which differs from many `normal` disasters and natural catastrophes, for example with respects to the invisible nature of radiation and radioactive contamination and thus the dependence on access to specific technical equipment and expertise, and to information about the radiation situation. The scope of the accident, and the existing levels of radiation, define subsequent actions; information policies and existing channels of communication lay the foundation for public reactions. The present paper explores some examples of public reactions, and crisis handling of some previous radiation accidents on the basis of two dimensions, i.e. degree of information availability and degree of impact or `environmental damage`. The examples include the radiation accidents in the Chelyabinsk region in the southern Urals, at Three Mile Island, USA, at Chernobyl in the Ukraine, and in Goiania, Brazil. It is concluded that public reactions differ as a function of existing expectations, and the crisis handling is more affected by the existing organizational and social structures than by needs and reactions of potential victims. Another conclusion is that pre-disaster preparedness regarding public information, and organization of countermeasures, are crucial to the outcome of a successful crisis handling and for enhancing public trust in crisis management. 39 refs, 2 figs.

  11. A procedure to optimize the timing of operator actions of accident management procedures

    The analysis of beyond design basis accidents (BDBA) is an essential component of the safety concept of nuclear power plants (NPP). Goal of the analysis is to achieve a set of actions aimed to prevent the escalation into a severe accident, to mitigate consequences of a severe accident, and to achieve a long term controllable state of the NPP. This paper presents an analytical procedure to optimize the timing of operator interventions. The procedure is demonstrated based on four sets of parameters, first, parameters which define the operator actions are chosen. Second, parameters which define the system availability are chosen. Third, parameters which define in a continuous way the status of the plant are chosen. Finally, one looks for a functional dependency of the accident management (AM)-parameters and the parameters describing the plant status. Once a function could be found, this function is 'optimized' in the sense that the AM-parameters are varied to find a optimal overall condition for the plant. In the first part, the paper presents the analytical procedure in a general way, in the second part, an initiating event is chosen. The procedure is applied to a station black out (SBO) transient, and as operator action secondary side bleed and feed, followed by primary side bleed and feed, is foreseen. As result, the optimal timing to initiate both actions is achieved

  12. Medical and psychological aspects of crisis management during a nuclear accident

    Crisis handling in most kinds of disasters is affected by e.g. the information situation, prior experience and preparedness, availability of resources, efficiency of leadership and coordination, and type of disaster. A nuclear accident creates a situation which differs from many 'normal' disasters and natural catastrophes, for example with respects to the invisible nature of radiation and radioactive contamination and thus the dependence on access to specific technical equipment and expertise, and to information about the radiation situation. The scope of the accident, and the existing levels of radiation, define subsequent actions; information policies and existing channels of communication lay the foundation for public reactions. The present paper explores some examples of public reactions, and crisis handling of some previous radiation accidents on the basis of two dimensions, i.e. degree of information availability and degree of impact or 'environmental damage'. The examples include the radiation accidents in the Chelyabinsk region in the southern Urals, at Three Mile Island, USA, at Chernobyl in the Ukraine, and in Goiania, Brazil. It is concluded that public reactions differ as a function of existing expectations, and the crisis handling is more affected by the existing organizational and social structures than by needs and reactions of potential victims. Another conclusion is that pre-disaster preparedness regarding public information, and organization of countermeasures, are crucial to the outcome of a successful crisis handling and for enhancing public trust in crisis management. 39 refs, 2 figs

  13. Management strategies for nuclear power plant outages

    More competitive energy markets have significant implications for nuclear power plant operations, including, among others, the need for more efficient use of resources and effective management of plant activities such as on-line maintenance and outages. Outage management is a key factor for safe, reliable and economic plant performance and involves many aspects: plant policy, coordination of available resources, nuclear safety, regulatory and technical requirements, and all activities and work hazards, before and during the outage. The IAEA has produced this report on nuclear power plant outage management strategies to provide both a summary and an update of a follow-up to a series of technical documents related to practices regarding outage management and cost effective maintenance. The aim of this publication is to identify good practices in outage management: outage planning and preparation, outage execution and post-outage review. As in in the related technical documents, this report aims to communicate these practices in such a way that they can be used by operating organizations and regulatory bodies in Member States. The report was prepared as part of an IAEA project on continuous process improvement. The objective of this project is to increase Member State capabilities in improving plant performance and competitiveness through the utilization of proven engineering and management practices developed and transferred by the IAEA

  14. Doctrinal elements for the post-accidental management of a nuclear accident - Final version

    This report examines and defines the objectives, principles and main actions for the post-accidental management of a nuclear accident. It defines the emergency phase and the post-accidental phase, three basic objectives (to protect the population against the hazards of ionizing radiations, to support populations affected by the accident consequences, to restore affected territories), management principles, key issues for post-accidental management. It defines actions to be undertaken: post-accidental zoning, monitoring of deposited radioactivity, early actions for the protection and taking charge of population, information. It addresses the different aspects of post-accidental management planning in a period of transition: reception of population, reduction of population exposure to deposited radioactivity, treatment of public health problems, improvement of the knowledge on the radiological situation of the environment, improvement of the radiological quality of the different environments, dealing with wastes, empowerment of stakeholders through an adequate governance, support and redeployment of economic activity, help and compensation, information. Appendices more deeply discuss actions to be undertaken just after the emergency phase, for the management of the transition period, and for the management of the long-term period

  15. Safety by design: A new approach to accident management in the IRIS reactor

    Safety by design is an improved approach to safety, which is being fully implemented in the IRIS reactor. It means to prevent the accident through eliminating by design the probability of its occurrence rather than engineering how to cope with its consequences. The integral reactor vessel configuration of IRIS is an ideal layout for implementing this approach. A brief review of how various accidents can be handled in IRIS is given, followed by a detailed discussion of the IRIS response to small-to-medium LOCAs. An innovative containment design coupled with the integral vessel allows the core to remain safely covered for days under the worst LOCA conditions, without any safety injection. Details of the response to various postulated LOCAs are given. A brief review of the Core Melt Exclusion Strategy (CMES) is given; its application to IRIS will demonstrate a very significant improvement in reactor safety, licensing and economics which can possibly be extended to other advanced reactors. (author)

  16. Designing a fuzzy expert system for selecting knowledge management strategy

    Ameneh Khadivar

    2014-12-01

    Full Text Available knowledge management strategy is mentioned as one of the most important success factors for implementing knowledge management. The KM strategy selection is a complex decision that requires consideration of several factors. For evaluation and selection of an appropriate knowledge management strategy in organizations, many factors must be considered. The identified factors and their impact on knowledge management strategy are inherently ambiguous. In this study, an overview of theoretical foundations of research regarding the different knowledge management strategies has been done And factors influencing the knowledge management strategy selection have been extracted from conceptual frameworks and models. How these factors influence the knowledge management strategy selection is extracted through the fuzzy Delphi. Next a fuzzy expert system for the selection of appropriate knowledge management strategy is designed with respect to factors that have an impact on knowledge management strategy. The factors which influence the selection of knowledge management strategy include: general business strategy, organizational structure, cultural factors, IT strategy, strategic human resource management, social level, the types of knowledge creation processes and release it. The factors which influence the knowledge management strategy selection include: business strategy general, organizational structure, cultural factors, IT strategy, human resource management strategies, socialization level, knowledge types and its creation and diffusion processes. According to identified factors which affect the knowledge management strategy, the final strategy is recommended based on the range of human-oriented and system-oriented by keep the balance of explicit and implicit knowledge. The Designed system performance is tested and evaluated by the information related to three Iranian organization.

  17. Overview of training methodology for accident management at nuclear power plants

    Many IAEA Member States operating nuclear power plants (NPPs) are at present developing accident management programmes (AMPs) for the prevention and mitigation of severe accidents. However, the level of implementation varies significantly between NPPs. The exchange of experience and best practices can considerably contribute to the quality and facilitate the implementation of AMPs at the plants. The main objective of this publication is to describe available material and technical support tools that can be used to support training of the personnel involved in the accident management (AM), and to highlight the current status of their application. The focus is on those operator aids that can help the plant personnel to take correct actions during an emergency to prevent and mitigate consequences of a severe accident. The second objective is to describe the available material for the training courses of those people who are responsible of the AMP development and implementation of an individual plant. The third objective is to collect a compact set of information on various aspects of AM training into a single publication. In this context, the AM personnel includes both the plant staff responsible for taking the decision and actions concerning preventive and mitigative AM and the persons involved in the management of off-site releases. Thus, the scope of this publication is on the training of personnel directly involved in the decisions and execution of the SAM actions during progression of an accident. The integration of training into the AMP development and implementation is summarized. The technical AM support tools and material are defined as operator aids involving severe accident guidelines, various computational aids and computerized tools. The operator aids make also an essential part of the training tools. The simulators to be applied for the AM training have been developed or are under development by various organizations in order to support the training on

  18. Hybrid electric vehicles energy management strategies

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  19. Management strategies in hospitals: scenario planning

    Ghanem, Mohamed

    2015-06-01

    Full Text Available Background: Instead of waiting for challenges to confront hospital management, doctors and managers should act in advance to optimize and sustain value-based health. This work highlights the importance of scenario planning in hospitals, proposes an elaborated definition of the stakeholders of a hospital and defines the influence factors to which hospitals are exposed to. Methodology: Based on literature analysis as well as on personal interviews with stakeholders we propose an elaborated definition of stakeholders and designed a questionnaire that integrated the following influence factors, which have relevant impact on hospital management: political/legal, economic, social, technological and environmental forces. These influence factors are examined to develop the so-called critical uncertainties. Thorough identification of uncertainties was based on a “Stakeholder Feedback”. Results: Two key uncertainties were identified and considered in this study: According to the developed scenarios, complementary education of the medical staff as well as of non-medical top executives and managers of hospitals was the recommended core strategy. Complementary scenario-specific strategic options should be considered whenever needed to optimize dealing with a specific future development of the health care environment. Conclusion: Strategic planning in hospitals is essential to ensure sustainable success. It considers multiple situations and integrates internal and external insights and perspectives in addition to identifying weak signals and “blind spots”. This flows into a sound planning for multiple strategic options. It is a state of the art tool that allows dealing with the increasing challenges facing hospital management.

  20. Quantifying human and organizational factors in accident management using decision trees: the HORAAM method

    In the framework of the level 2 Probabilistic Safety Study (PSA 2) project, the Institute for Nuclear Safety and Protection (IPSN) has developed a method for taking into account Human and Organizational Reliability Aspects during accident management. Actions are taken during very degraded installation operations by teams of experts in the French framework of Crisis Organization (ONC). After describing the background of the framework of the Level 2 PSA, the French specific Crisis Organization and the characteristics of human actions in the Accident Progression Event Tree, this paper describes the method developed to introduce in PSA the Human and Organizational Reliability Analysis in Accident Management (HORAAM). This method is based on the Decision Tree method and has gone through a number of steps in its development. The first one was the observation of crisis center exercises, in order to identify the main influence factors (IFs) which affect human and organizational reliability. These IFs were used as headings in the Decision Tree method. Expert judgment was used in order to verify the IFs, to rank them, and to estimate the value of the aggregated factors to simplify the quantification of the tree. A tool based on Mathematica was developed to increase the flexibility and the efficiency of the study

  1. Fundamental study on serious accidents and their management in fuel fabrication/enrichment facilities and reprocessing facilities

    The 'Act for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors' was amended and issued in June 2012 taking into account the lessons derived from the accident of TEPCO Fukushima Daiichi Nuclear Power Plant occurred in March 2011. The main amendments were as follows; Preparation for the management of serious accidents, Introduction of evaluation system for safety improvement, Application of new standards to existing nuclear facility (back-fitting). Japan Nuclear Energy Safety organization (JNES) started this fundamental study on serious accidents and their management, as a safety studying in fuel fabrication/enrichment facilities and reprocessing facilities, for the purpose to contribute to the implementation of new Rules by Nuclear Regulation Authority. From the technical view to be concerned such as fundamental concept of the Rules and applicability of risk-informed regulation, the following 7 subjects were studied: 1) Application concept of the defense in depth to these facilities. 2) Positioning of serious accidents and their management in the defense in depth. 3) Definition of the serious accidents in these facilities. 4) Postulated external events for the study of the serious accidents and their management. 5) Objectives and requirements of the accident management (assurance of reliability). 6) Confirmation logic flow on sequence of the serious accidents and the accident management measures. 7) Applicability of risk information. During the study on these subjects, features of the facilities were clarified at first. Based on concept of the defense in depth, which is the basic principle in safety, and referring to information related to domestic/foreign serious accidents, JNES conducted the fundamental study and made the following suggestions: 1) Definition of the serious accidents of the facilities. The definition is expected to contribute the discussion on new Rules by Nuclear Regulation Authority. 2) Methodology to examine the

  2. Proceedings of the workshop on the implementation of severe accident management measures

    The OECD/NEA Workshop on the Implementation of Severe Accident Management (SAM) Measures was hosted by the PSI (Paul Schemer Institut), by two Swiss Utilities (Kernkraftwerk Beznau and Kernkraftwerk Leibstadt), and by Electricite de France. Eighty specialists from fourteen OECD Member countries attended the meeting, as well as specialists from three non-Member economies and the European Commission. Thirty-three papers were presented in four sessions, preceded by a brief Introductory Session (two invited papers) and followed by a General Discussion. The objectives of the meeting were: 1) to exchange information on activities in the area of SAM implementation and on the rationale for such actions, 2) to monitor progress made, 3) to identify cases of agreement or disagreement, 4) to discuss future orientations of work, 5) to make recommendations to the CSNI. Session summaries prepared by the Chairpersons and discussed by the whole writing group are given in Annex. During the first session, 'SAM Programmes Implementation', papers from one regulator and several utilities and national research institutes were presented to outline the status of implementation of SAM programmes in countries like Switzerland, Russia, Spain, Finland, Belgium and Korea. Also, the contribution of SAM to the safety of Japanese plants (in terms of core damage frequency) was quantified in a paper. One paper gave an overview on the situation regarding SAM implementation in Europe. The second session, 'SAM Approach', provided background and bases for Severe Accident Management in countries like Sweden, Japan, Germany and Switzerland, as well as for hardware features in advanced light water reactor designs, such as the European Pressurised Reactor (EPR), regarding Severe Accident Management. The third session, 'SAM Mitigation Measures', was about hardware measures, in particular those oriented towards hydrogen mitigation where fundamentally different approaches have been taken in Scandinavian

  3. Analysis simulator, a tool for the evaluation of accident management measures

    The analysis simulator is a manifold and variable engineered tool which permits the interactive handling of very comprehensive model codes and offers the wealth of information calculated by the models in a condensed and uncluttered way by means of graphic displays. The first phase of work on the simulator concentrated on the development of interfaces, interactivity and communication. The experience gathered so far and the case study, in which an accident management measure is taken to prevent a severe accident, show both the advantages of the analysis simulator and its limitations as far as the speed of simulation, its sturdiness and the extent of the models are concerned. The continuation of work on the analysis simulator and the test control room will further extend these limits in order to fully comply with the requirements for the simulation of measures oriented towards certain aims of protection. (orig.)

  4. Accident Management ampersand Risk-Based Compliance With 40 CFR 68 for Chemical Process Facilities

    A risk-based logic model is suggested as an appropriate basis for better predicting accident progression and ensuing source terms to the environment from process upset conditions in complex chemical process facilities. Under emergency conditions, decision-makers may use the Accident Progression Event Tree approach to identify the best countermeasure for minimizing deleterious consequences to receptor groups before the atmospheric release has initiated. It is concluded that the chemical process industry may use this methodology as a supplemental information provider to better comply with the Environmental Protection Agency's proposed 40 CFR 68 Risk Management Program rule. An illustration using a benzene-nitric acid potential interaction demonstrates the value of the logic process. The identification of worst-case releases and planning for emergency response are improved through these methods, at minimum. It also provides a systematic basis for prioritizing facility modifications to correct vulnerabilities

  5. Statfjord field: Development strategy and reservoir management

    This paper reviews the reservoir performance and management of the Statfjord Field after eight years of production. The reason behind the reservoir development strategies and field experiences are presented. The original development plans have been refined based on field performance through an extensive monitoring program and use of reservoir simulation. The acquired data has improved the geological model and the knowledge of fluid movements in all three reservoirs. This has resulted in a large and complex reservoir simulation model with more than 20,000 grid blocks

  6. Radiological accidents potentially important to human health risk in the U.S. Department of Energy waste management program

    Human health risks as a consequence of potential radiological releases resulting from plausible accident scenarios constitute an important consideration in the US Department of Energy (DOE) national program to manage the treatment, storage, and disposal of wastes. As part of this program, the Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks that could result from managing five different waste types. This paper (1) briefly reviews the overall approach used to assess process and facility accidents for the EM PEIS; (2) summarizes the key inventory, storage, and treatment characteristics of the various DOE waste types important to the selection of accidents; (3) discusses in detail the key assumptions in modeling risk-dominant accidents; and (4) relates comparative source term results and sensitivities

  7. The strategy of radwaste management in Slovenia

    This paper's intention is to show the present situation and future activities of the Agency for radwaste management. It was established by the slovene government to provide the strategy for a safe management of radioactive waste. The safety is the main concern of the Agency, since the situation in Slovenia is quite complex as it is a small country with a limited number of suitable locations and a strong public opposition towards anything connected with nuclear power generation or radioactivity in general. The emphasis of the Agency's activities at the moment is siting and technology selection for low level waste and intermediate level waste repository as well as solutions on interim storage of high level waste

  8. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  9. Bussines strategy or bussines policy management applied in modern firms

    Enea, C.

    2010-01-01

    In literature, the term widely used for all action levels of strategic management is that of strategy. For this reason, it is necessary to achieve a differentiation between corporate strategies (typical strategies), business strategies (with policies), operational strategies (business plans) and operational strategies (programs and tactics).In the same context, strategies become the basis for the definition and implementation of policies, which differ by time horizon that is lower and their h...

  10. Spent fuel management strategy in Italy

    As a consequence of a national referendum in 1987, the Italian Government decided to close definitively all operating NPPs in Italy. Plans for decommissioning of the NPPs and disposal of the spent fuel had to be reviewed and the strategies revisited. The majority of spent fuel was by large that generated by ENEL NPPs, which decided to proceed with the interim storage of the spent fuel (< 250 t/HM) not covered by reprocessing contracts. ENEL finally decided to follow the strategy of interim dry storage in metallic casks on the plant sites, which could ensure a timely removal of the fuel from the to be decommissioned plant pools, in compliance with decommissioning programmes, independently from the availability of a centralized interim storage site. Therefore, the casks will be stored provisionally on Trino and Caorso sites, then they will be transported to the centralized interim facility, as soon as it will be made available by the Government. Current planning foresees that the Trino spent fuel pool shall be emptied by the end of 2002 and the Caorso pool at the end of 2004. An international bidding phase is currently underway. A smaller residual quantity of spent fuel is also currently owned in Italy by ENEA, the National Agency, responsible also for the nuclear research. Also ENEA has a programme of storing its spent fuel in dry metallic casks with the aim of transporting them to the national storage site as soon as it will be available. ENEL's Technical Specifications for the casks are stringent, but in line with other European installations of the same type, taking into account also recent US NRC regulatory documents, in particular on protection against aircraft crash. Design margins to accommodate site characteristics not currently identified (the European Utility Requirements reference site parameters have been used), have been introduced. Some important issues are identified, such as: definition and identification of failed fuel elements and/or pins, specific

  11. OVERVIEW OF MODULAR HTGR SAFETY CHARACTERIZATION AND POSTULATED ACCIDENT BEHAVIOR LICENSING STRATEGY

    Ball, Sydney J [ORNL

    2014-06-01

    This report provides an update on modular high-temperature gas-cooled reactor (HTGR) accident analyses and risk assessments. One objective of this report is to improve the characterization of the safety case to better meet current regulatory practice, which is commonly geared to address features of today s light water reactors (LWRs). The approach makes use of surrogates for accident prevention and mitigation to make comparisons with LWRs. The safety related design features of modular HTGRs are described, along with the means for rigorously characterizing accident selection and progression methodologies. Approaches commonly used in the United States and elsewhere are described, along with detailed descriptions and comments on design basis (and beyond) postulated accident sequences.

  12. Review of current severe accident management approaches in Europe and identification of related modelling requirements for the computer code ASTEC V2.1

    Hermsmeyer, S. [European Commission JRC, Petten (Netherlands). Inst. for Energy and Transport; Herranz, L.E.; Iglesias, R. [CIEMAT, Madrid (Spain); and others

    2015-07-15

    The severe accident at the Fukushima-Daiichi nuclear power plant (NPP) has led to a worldwide review of nuclear safety approaches and is bringing a refocussing of R and D in the field. To support these efforts several new Euratom FP7 projects have been launched. The CESAM project focuses on the improvement of the ASTEC computer code. ASTEC is jointly developed by IRSN and GRS and is considered as the European reference code for Severe Accident Analyses since it capitalizes knowledge from the extensive Euro-pean R and D in the field. The project aims at the code's enhancement and extension for use in Severe Accident Management (SAM) analysis of the NPPs of Generation II-III presently under operation or foreseen in the near future in Europe, spent fuel pools included. The work reported here is concerned with the importance, for the further development of the code, of SAM strategies to be simulated. To this end, SAM strategies applied in the EU have been compiled. This compilation is mainly based on the public information made available in the frame of the EU ''stress tests'' for NPPs and has been complemented by information pro-vided by the different CESAM partners. The context of SAM is explained and the strategies are presented. The modelling capabilities for the simulation of these strategies in the current production version 2.0 of ASTEC are discussed. Furthermore, the requirements for the next version of ASTEC V2.1 that is supported in the CESAM project are highlighted. They are a necessary complement to the list of code improvements that is drawn from consolidating new fields of application, like SFP and BWR model enhancements, and from new experimental results on severe accident phenomena.

  13. Review of current severe accident management approaches in Europe and identification of related modelling requirements for the computer code ASTEC V2.1

    The severe accident at the Fukushima-Daiichi nuclear power plant (NPP) has led to a worldwide review of nuclear safety approaches and is bringing a refocussing of R and D in the field. To support these efforts several new Euratom FP7 projects have been launched. The CESAM project focuses on the improvement of the ASTEC computer code. ASTEC is jointly developed by IRSN and GRS and is considered as the European reference code for Severe Accident Analyses since it capitalizes knowledge from the extensive Euro-pean R and D in the field. The project aims at the code's enhancement and extension for use in Severe Accident Management (SAM) analysis of the NPPs of Generation II-III presently under operation or foreseen in the near future in Europe, spent fuel pools included. The work reported here is concerned with the importance, for the further development of the code, of SAM strategies to be simulated. To this end, SAM strategies applied in the EU have been compiled. This compilation is mainly based on the public information made available in the frame of the EU ''stress tests'' for NPPs and has been complemented by information pro-vided by the different CESAM partners. The context of SAM is explained and the strategies are presented. The modelling capabilities for the simulation of these strategies in the current production version 2.0 of ASTEC are discussed. Furthermore, the requirements for the next version of ASTEC V2.1 that is supported in the CESAM project are highlighted. They are a necessary complement to the list of code improvements that is drawn from consolidating new fields of application, like SFP and BWR model enhancements, and from new experimental results on severe accident phenomena.

  14. The management strategy of spent nuclear fuel

    The assessment of management strategy of spent nuclear fuel has been carried out. Spent nuclear fuel is one of the by-products of nuclear power plant. The technical operations related to the management of spent fuel discharged from reactors are called the back-end fuel cycle. It can be largely divided into three option s : the once-through cycle, the closed cycle and the so-called ‟wait and see” policy. Whatever strategy is selected for the back-end of the nuclear fuel cycle, Away-from-Reactor (AFR) storage facilities has to be constructed. For the once through cycle, the entire content of spent fuel is considered as waste, and is subject to be disposed of into a deep underground repository. In the closed cycle, however, can be divided into: (1) uranium and plutonium are recovered from spent fuel by reprocessing and recycled to manufacture mixed oxide (MOX) fuel rods, (2) waste transmutation in accelerator-driven subcritical reactors, (3) DUPIC (Direct Use of Spent PWR Fuel In CANDU) concept. In wait and see policy, which means first storing the spent fuel and deciding at a later stage on reprocessing or disposal. (author)

  15. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Deng Tao; Huang Xiguang

    2015-01-01

    To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  16. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  17. The Catalog Management Strategy of Distributed Data Base Systems

    周龙骧; 秦箕英

    1994-01-01

    In this paper the catalog management strategy of the successfully integrating and running DDBMS C-POREL is summarized.The new catalog management strategy and its implementation scheme are based on the analysis of the catalog management methods of the pioneer DDBMS.The goal of the new strategy is to improve the system efficiency.Analysis and practice show that this strategy is successful.

  18. Workshop proceedings of ISAMM 2009: Implementation of severe accident management measures

    Guentay, S. (ed.) [Paul Scherrer Institute (PSI), Nuclear Energy and Safety Research Department, Laboratory for Thermal Hydraulics, ViIligen (Switzerland)

    2010-10-15

    This comprehensive report published by the Paul Scherrer Institute (PSI) in Switzerland reports on a conference and workshop held in Switzerland in October 2009 dealing with Severe Accidents Management (SAM) in nuclear power stations. The workshop provided an update on the status of severe accident management measures and their implications since the OECD/CSNI workshop held in 2001 at the PSI in Switzerland. Since the 2001 workshop, additional work has been performed to integrate emergency procedures and SAM measures into risk assessments in order to better reflect operator responses to recover a plant from a damaged state. The major focus of the workshop was to address SAM measures for both operational plants and new plant designs. Also, the integration of SAM measures into contemporary/future probabilistic risk assessments was discussed. 41 papers were presented in 8 sessions. The papers addressed the following areas: 1) Current status and insights of SAM (2 sessions); 2) Probabilistic Safety Assessment (PSA) modelling issues; 3) code analysis for supporting Serious Accident Management Guidance (SAMG, 2 sessions); 4) decision making, tools, training, risk-targets and entrance to SAM; 5) design modifications for implementation of SAM; 6) physical phenomena. The last part of the workshop was devoted to the presentation of the most striking highlights of the papers in the above areas, followed by two panellists giving presentations on human and organisational aspects of SAM, their importance in relation to technical issues and the effectiveness of current SAMG implementation. The question of how consequence analyses can be used to improve the effectiveness of SAM is discussed. The contributions were presented by representatives from Austria, Germany, Japan, France, the USA, Korea, Switzerland, Finland, Hungary, Belgium, Canada, Sweden, the Czech republic, the United kingdom, the Netherlands, Spain, Slovenia and Russia. The authors state that the overall picture

  19. Workshop proceedings of ISAMM 2009: Implementation of severe accident management measures

    This comprehensive report published by the Paul Scherrer Institute (PSI) in Switzerland reports on a conference and workshop held in Switzerland in October 2009 dealing with Severe Accidents Management (SAM) in nuclear power stations. The workshop provided an update on the status of severe accident management measures and their implications since the OECD/CSNI workshop held in 2001 at the PSI in Switzerland. Since the 2001 workshop, additional work has been performed to integrate emergency procedures and SAM measures into risk assessments in order to better reflect operator responses to recover a plant from a damaged state. The major focus of the workshop was to address SAM measures for both operational plants and new plant designs. Also, the integration of SAM measures into contemporary/future probabilistic risk assessments was discussed. 41 papers were presented in 8 sessions. The papers addressed the following areas: 1) Current status and insights of SAM (2 sessions); 2) Probabilistic Safety Assessment (PSA) modelling issues; 3) code analysis for supporting Serious Accident Management Guidance (SAMG, 2 sessions); 4) decision making, tools, training, risk-targets and entrance to SAM; 5) design modifications for implementation of SAM; 6) physical phenomena. The last part of the workshop was devoted to the presentation of the most striking highlights of the papers in the above areas, followed by two panellists giving presentations on human and organisational aspects of SAM, their importance in relation to technical issues and the effectiveness of current SAMG implementation. The question of how consequence analyses can be used to improve the effectiveness of SAM is discussed. The contributions were presented by representatives from Austria, Germany, Japan, France, the USA, Korea, Switzerland, Finland, Hungary, Belgium, Canada, Sweden, the Czech republic, the United kingdom, the Netherlands, Spain, Slovenia and Russia. The authors state that the overall picture

  20. Assisting emergency operating procedures execution with AMAS, an Accident Management Advisor System

    In an accident situation, because any decisions that the operators make will depend on how instrumentation readings are ultimately interpreted, the issue of instrument uncertainty is of paramount importance. This uncertainty exists because instrument readings may not be available in the desired form - i.e., only indirect readings for a parameter of interest may exist, with uncertainty on which physical models may be used to deduce its value from these indirect indications -, or because readings may be coming from instruments whose accuracy and reliability in the face of the severe conditions produced by the accident are far from what may be expected under normal operating conditions. In following the EOPs, the operators must rely on instrumentation whose readings may not reflect the real situation. The Accident Management Advisor System (AMAS) is a decision aid intended to supplement plant Emergency Operating Procedures (EOPs) by accounting for instrumentation uncertainty, and by alerting the operators if they are on the wrong procedures, or otherwise performing an action that is not optimal in terms of preventing core damage. In AMAS, the availability and reliability of certain important instrument readings is treated in probabilistic, rather than deterministic terms. This issue is discussed in greater detail later in the paper, since it relates to one of the key characteristics of the AMAS decision aid. (author)

  1. The roles of water addition and gas composition in AGR accident management

    Severe Accident Guidelines (SAGs) are being produced in line with best international practice for managing a severe accident in an AGR. Such an accident would be extremely unlikely due to the long timescales for recovery prior to core damage. A number of actions proposed in the SAGs are concerned with the prevention of air ingress and the deliberate injection of water into the core. Air ingress is minimized by sealing breaches and by the controlled injection of inert gases into the vessel, although at high temperatures the change in reactor gas from CO2 to CO provides a more inert atmosphere and reduces any ingressing oxygen. Consideration would be given to the injection of water into the core if the installed cooling systems could not be recovered sufficiently in a direct or improvised manner. In such cases sufficient cooling should be possible by injecting water uniformly across the core into a few tens of channels. Ideally the water would be injected before significant fission product release had occurred and before the graphite had become hot enough to oxidise in steam. This advice is reinforced by experiments with a simulated fuel pin in the presence of reactor graphite which showed that fission products released from the pin could be transported on fine (0.1 μm) graphite aerosols. (author). 4 refs, 6 figs

  2. Management of severe pelvic injury following road traffic accident in a resource-limited setting

    A 34 year old woman involved in road traffic accident with severe anterior and posterior pelvic fractures with associated soft tissue injury was referred from Wa Regional Hospital 18 hours after the accident to Tania Specialist Hospital in Tamale. Emergency resuscitative measures such as catheterization and management of pain with analgesics were initiated. Computed tomography (CT scan) or Magnetic resonance imaging has been recommended as the appropriate tools for risk assessment in such cases however none of this was available at the time of the accident. The only assessment tool available was the C-arm machine which was used to X-ray the pelvis in the following plane; anterio - posterior pelvic - inlet and pelvic - outlet. Early internal reduction and stabilization of pelvis was immediately carried out using the procedure of open reduction and internal fixation (ORIF). Approximately 2 weeks after the operation, radiographs showed signs of healing and the patient was discharged on partial body weight bearing. Upon second review 12 weeks post operatively, complete recovery was accomplished.

  3. SARNET: Sustainable integration of EU research on severe accident phenomenology and management

    In spite of the accomplishments reached in severe accident research, thanks notably to the EU projects carried out during previous Framework Programmes, a limited number of specific items remain where research activities are still necessary to reduce further uncertainties that are considered of importance for nuclear reactor safety and to consolidate severe accident management plans. Facing and anticipating budget reductions, 52 European R and D organizations, including technical supports of safety authorities, industry, utilities and universities, have decided to join their efforts in a durable way by networking their research activities in the frame of a Network of Excellence proposed as a FP-6 project called SARNET, coordinated by the French Institut de Radioprotection et de Surete Nucleaire. The integral severe accident analysis code ASTEC, developed by IRSN and GRS, will provide the backbone of the integration. Actions are proposed to integrate in ASTEC the current knowledge and all the future knowledge generated within SARNET. In addition, integrating activities will be carried out as the creation of large scientific databases, the elaboration of a research priority index, education and training. (authors)

  4. Severe human factor accidents and their management in a in-service nuclear Power plant

    Human Reliability Analysis (HRA) is an important part of Probabilistic Safety Assessment (PSA) in a nuclear power plant (NPP). It can be used to evaluate and quantify the behaviors of the operators in a post-accident response. The paper picks up the serious human factor event sequences that contribute more than 5% to the overall Core Damage Frequency (CDF) involved in PSA through a HRA analysis on a domestic PWR. The basic human error probabilities (BHEPs) of these human factor event sequences are resulted, on the basis of which the actions of the operators within the main control room (MCR) after the accidents are analyzed and their criticalities are arranged in order. The paper, from the point of engineering management,puts forward the measures to improve the corresponding emergency operating procedures (EOPs) and the MCR surroundings through analyzing serious human factor event sequence arrangement and the actions of operators in the post-accident interferences. With regard to the operator's interferences of high criticality the NPP should enforce training and improve its ability of interferences. (authors)

  5. Analysis of the containment spray effect for severe accident management during Molten Core-Concrete Interaction

    Massive combustible gases generated by MCCI during a severe accident in NPP causes a problem of when we should spray the containment. The increase of hydrogen concentration due to the steam condensation caused by spraying might lead to a hydrogen burning and thus intimidate the containment integrity. In case the containment is designed to be robust enough to sustain the AICC (Adiabatic Isochoric Complete Combustion) load and to prevent DDT (Deflagration to Detonation Transition), it might be effective to spray and thus burn the hydrogen at early phase of MCCI to keep the containment integrity. Spraying the containment at late phase of MCCI might cause the containment to fail because of the increased combustible gases generation. MELCOR analysis for APR1400 shows that spraying the containment at early phase can delay the time to reach containment failure pressure by steam inerting and oxygen depletion. This kind of analysis helps us to better establish a spray actuation time for an accident management procedure against a postulated severe accident

  6. Serious accidents on boiling water reactors (BWR)

    This short document describes, first, the specificities of boiling water reactors (BWRs) with respect to PWRs in front of the progress of a serious accident, and then, the strategies of accident management: restoration of core cooling, water injection, core flooding, management of hydrogen release, depressurization of the primary coolant circuit, containment spraying, controlled venting, external vessel cooling, erosion of the lower foundation raft by the corium). (J.S.)

  7. The Risk Assessment on Arbitrary Accidents Orientating in the TSF For LILW Management

    The objective of this study is to conduct the risk assessment on arbitrary accidents originating in the TSF for LILW management through the result of dose assessment. In order to conduct the risk assessment on arbitrary accidents originating in the TSF for LILW management, the result of dose assessment was converted to the risk index. The risk conversion parameter for deriving the risk index was considered in the concept of the total risk factor suggested in the ICRP. After considering each parameter, the total risk factor was represented by the value of 7.3E·5 risk/mSv in terms of risk dimension. And then, the risk-level was also derived with respect to each risk degree. Consequently, the risk-level of all of drums was III regardless of waste stream with respect to the dropping of drums and fire. Especially, the risk originated in dropping of drums could be ignored. In opposition to many of researches on the disposal of LILW, the risk assessment on the TSF has scarcely been conducted. Furthermore, the details in regards of the safety analysis on this facility have not been considered in the preliminary and final safety analysis report because this report focused on the nuclear reactor system rather than this facility. As a consequence of these situations, the number of the researches on the arbitrary accidents occurring in the TSF has not been enough. And then, the numbers of the researches on the predisposal management of LILW have been required for the preparation on new regulatory frame

  8. Strategy analysis for krypton-85 waste management

    Krypton-85 is a chemically inert, radioactive gas produced by fission of uranium or plutonium isotopes. Depending on the fuel cycle, krypton-85 production in nuclear reactors may range from approx. 200 to approx. 600 kCi/GW/sub e/-year. However, the EPA has published a standard restricting krypton-85 release to 50 kCi/GW/sub e/-year for fuel irradiated after January 1, 1983. To conform with the federal standard, recovery and storage of krypton-85 will be required in some nuclear fuel cycle processes. The long-term waste management of krypton-85 poses unique judgemental problems. Release, recovery, immobilization, and storage (individually, and in combinations), involve a wide range of environmental, economic, and social commitments. The choice of applicable technologies, if such technologies are to be used at all, imposes another set of boundary conditions. This strategy analysis describes the use of a general framework for decision-making in evaluating krypton-85 waste management systems. Such a framework can be further used to provide technical assessment and dose-probability calculations for individual technologies, and to show the interactions among technological options required for the overall waste management scheme

  9. Stake-holder involvement in the management of rural areas after an accident

    Widespread contamination of the food chain following a nuclear accident could have considerable consequences for European farming and food industries. For the purposes of contingency planning it is important to bring together the many and diverse stakeholders who would be involved in intervention so that strategies can be developed for maintaining agricultural production and food safety. This type of approach has been successfully implemented in the UK through the setting up of the Agriculture and Food Countermeasures Working Group. Building on this initiative, the European Commission under the auspices of its 5. Framework Programme is funding a thematic network in which similar stakeholder groups are being established in four other Member States. These national groups contain individuals involved in making policy decisions within government departments and agencies, regulatory authorities, the water, milk and farming industries, the retail trade and consumer groups, as well as individuals with specialist expertise. The stakeholder network will provide a European focus for tackling future nuclear accidents and assist in the harmonization of policies and strategies between Member States. This paper gives an overview of the approaches being adopted and discusses the achievements and expected benefits of stakeholder engagement. (author)

  10. Stake-holder involvement in the management of rural areas after an accident

    Nisbet, A.F. [National Radiological Protection Board (NRPB), Oxon (United Kingdom)

    2001-07-01

    Widespread contamination of the food chain following a nuclear accident could have considerable consequences for European farming and food industries. For the purposes of contingency planning it is important to bring together the many and diverse stakeholders who would be involved in intervention so that strategies can be developed for maintaining agricultural production and food safety. This type of approach has been successfully implemented in the UK through the setting up of the Agriculture and Food Countermeasures Working Group. Building on this initiative, the European Commission under the auspices of its 5. Framework Programme is funding a thematic network in which similar stakeholder groups are being established in four other Member States. These national groups contain individuals involved in making policy decisions within government departments and agencies, regulatory authorities, the water, milk and farming industries, the retail trade and consumer groups, as well as individuals with specialist expertise. The stakeholder network will provide a European focus for tackling future nuclear accidents and assist in the harmonization of policies and strategies between Member States. This paper gives an overview of the approaches being adopted and discusses the achievements and expected benefits of stakeholder engagement. (author)

  11. Fitness for accident management through NPP personnel training, simulators and technical support

    The contributions within the context of accident management of the Siemens A G-Power Generation Group Crisis Centre and the Siemens A G Training Centre are described. The Crisis Centre provides direct technical consulting to NPPs from experts in design and engineering. Training of NPP personnel is here outlined with particular emphasis on the use of simulators in getting practice of emergency handling and on development of documentation and operating procedures. It is pointed to projects to the introduction of these services in Eastern NPPs and training facilities

  12. Relationship-Driven Classroom Management: Strategies That Promote Student Motivation.

    Vitto, John M.

    This book combines information about resiliency, classroom management, and discipline into a user-friendly discussion suitable for all teachers. The material covers both preventive strategies and reactive strategies. The chapters of part 1, "Reinventive Strategies," are: (1) "Relationship-Driven Classroom Management and Resilience"; (2)…

  13. Strategies for effective management of health and safety in confined site construction

    John Spillane

    2013-12-01

    Full Text Available Purpose: The overall aim of this research is to identify and catalogue the numerous managerial strategies for effective management of health and safety on a confined, urban, construction site. Design/Methodology/Approach: This is achieved by utilising individual interviews, focus groups discussion on selected case studies of confined construction sites, coupled with a questionnaire survey. Findings: The top five key strategies include (1 Employ safe system of work plans to mitigate personnel health and safety issues; (2 Inform personnel, before starting on-site, of the potential issues using site inductions; (3 Effective communication among site personnel; (4 Draft and implement an effective design site layout prior to starting on-site; and (5 Use of banksman (traffic co-ordinator to segregate personnel from vehicular traffic. Practical Implication: The construction sector is one of the leading industries in accident causation and with the continued development and regeneration of our urban centres, confined site construction is quickly becoming the norm - an environment which only fuels accident creation within the construction sector. Originality/Value: This research aids on-site management that requires direction and assistance in the identification and implementation of key strategies for the management of health and safety, particularly in confined construction site environments.

  14. Pyroprocessing as a waste management strategy

    Pyroprocessing, as incorporated in the Integral Fast Reactor (IFR) program, is being developed as a resource-efficient means of providing fuel for a reactor which has outstanding safety characteristics and performance potential. This process has been shown to be an effective way to partition uranium, transuranic elements, and fissions products. Being a gross separation process, it is not compatible with production of pure plutonium, but permits the recycle of essentially all the transuranic material to the Integral Fast Reactor for consumption. Whether this process can also significantly simplify the LWR waste disposal problem depends on the outcome of process development -- estimated to take five years, and of the subsequent applications development programs. If successful, this program could influence the ultimate waste loading of the first repository and modify the requirements for a second repository. This document, discusses the possibility of pyroprocessing being utilized in waste management strategies

  15. Facilities Management a new strategy at CERN

    Nonis, M; CERN. Geneva. ST Division

    2002-01-01

    Starting from 2002, the management of all the tertiary infrastructure of CERN in charge of ST Division shall be carried out through a single Contractor; this includes both maintenance activities on the buildings and their technical installations, and general services such as security, cleaning, gardening, and waste disposal. At present, all these activities are carried out by external contractors via several different contracts. The major purposes of the unification in one single contract is to transfer the coordination tasks of the contracts thus reducing the direct control operation costs, release internal resources in order to be better focused on the core business of the Division and the reduction of the costs of each activity by taking profit of the synergies among the different services. The authors will thoroughly report on the main aspects related to this new contract, focusing their attention in particular to the result oriented strategy through a Service Level Agreement, the key performance indicato...

  16. Regulatory research of the PWR severe accident information needs and instrumentation availability for hydrogen control and management

    Park, Jae-Hong; Park, Gun-Chul; Suh, Kune Y.; Kang, Yun-Moon; Lee, Un-Jang; Oh, Se-Chul; Lee, Jin-Yong [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-03-15

    During the current research period, we have set forth the methodology for identification of a severe accident, developed a framework for hydrogen management decision trees, and analyzed the literature on hydrogen management and experimental data for hydrogen bum. Specifically, we have summarized me results for information needs in a severe accident obtained in the U.S. and other countries, and applied the methodology to the reference plant YGN 3 and 4 as part of severe accident management. We have also examined the existing instruments in terms of their availability and survivability during a severe accident, and identified additionally needed information needs and instruments. We have identified dominant accident sequences for me reference plant YGN 3 and 4 to construct decision trees, and extracted available data from the IPE study of the plant. Based upon the data we have performed preliminary study on the decision tree and decision node. Last, we have examined various mechanisms for hydrogen generation and reIevant experimental data to predict me amount of hydrogen generation and governing factors in me process. We have also reviewed the hydrogen generation related models in the severe accident analysis.

  17. Regulatory research of the PWR severe accident information needs and instrumentation availability for hydrogen control and management

    During the current research period, we have set forth the methodology for identification of a severe accident, developed a framework for hydrogen management decision trees, and analyzed the literature on hydrogen management and experimental data for hydrogen bum. Specifically, we have summarized me results for information needs in a severe accident obtained in the U.S. and other countries, and applied the methodology to the reference plant YGN 3 and 4 as part of severe accident management. We have also examined the existing instruments in terms of their availability and survivability during a severe accident, and identified additionally needed information needs and instruments. We have identified dominant accident sequences for me reference plant YGN 3 and 4 to construct decision trees, and extracted available data from the IPE study of the plant. Based upon the data we have performed preliminary study on the decision tree and decision node. Last, we have examined various mechanisms for hydrogen generation and reIevant experimental data to predict me amount of hydrogen generation and governing factors in me process. We have also reviewed the hydrogen generation related models in the severe accident analysis

  18. Performance management vital in implementing new strategies

    Wedged between the growing cost of environmental compliance and consumer protests over prices, the downstream oil and gas and petrochemical business segments are having to accelerate the changes that have engulfed their industry. Despite recent price increases, thinning margins have driven energy companies to rethink their role in life and to revaluate and reshape operations and assets in pursuit of new strategies. As companies concentrate on core competencies, shift to demand-pull production, and try to leverage their clout in selected regions for market dominance, performance of key operations has become paramount. In theory, performance management is a simple, straightforward proposition. It means deploying a comprehensive, strategy-linked framework for measuring performance across the entire enterprise and then using the results of these measurements to serve two critical managerial functions. First, performance measurement is the means for making informed, knowledge-based decisions about important business issues such as minimizing operational costs, manufacturing the right mix of products, identifying the most profitable distribution channels, and optimizing the utilization of assets. Second -- and in the long run more importantly -- measuring performance is a means for identifying and addressing areas where a company needs to make the kinds of organizational and process improvements that can develop, sustain, and amplify competitive advantage over the long haul. Experiences at a variety of companies, both within and outside the oil and gas and chemical business segments, demonstrate that progress towards comprehensive performance management is possible, with quantifiable benefits and results. Competitive advantage will be enjoyed by those companies that advance further and faster down this path

  19. Preparing Future Leaders: Project Management Strategies for Service Learning

    Munger, Roger; Gutowski, Amanda

    2008-01-01

    This article makes a case for teaching project management strategies in service-learning courses. The authors describe three specific documents students can create to help them manage a service-learning project and then present strategies that can help students manage their project teams. Such skills, the authors argue, provide the tools students…

  20. A cross-country analysis of public debt management strategies

    Melecky, Martin

    2007-01-01

    This paper analyzes results of a survey on debt management strategies conducted by the Banking and Debt Management Department of the World Bank. The analysis focuses on (1) whether a public debt management strategy exists in a given country, (2) whether it is made public, and (3) in which form it is imparted. The paper analyzes the distribution of the latter characteristics over different ...