WorldWideScience

Sample records for accident development modeling

  1. Accident sequence precursor analysis level 2/3 model development

    Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Galyean, W.J.; Brownson, D.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1997-02-01

    The US Nuclear Regulatory Commission`s Accident Sequence Precursor (ASP) program currently uses simple Level 1 models to assess the conditional core damage probability for operational events occurring in commercial nuclear power plants (NPP). Since not all accident sequences leading to core damage will result in the same radiological consequences, it is necessary to develop simple Level 2/3 models that can be used to analyze the response of the NPP containment structure in the context of a core damage accident, estimate the magnitude of the resulting radioactive releases to the environment, and calculate the consequences associated with these releases. The simple Level 2/3 model development work was initiated in 1995, and several prototype models have been completed. Once developed, these simple Level 2/3 models are linked to the simple Level 1 models to provide risk perspectives for operational events. This paper describes the methods implemented for the development of these simple Level 2/3 ASP models, and the linkage process to the existing Level 1 models.

  2. Severe accident development modeling and evaluation for CANDU

    Negut, Gheorghe [National Agency for Radioactive Waste, 1, Campului Str., 115400 Mioveni (Romania)], E-mail: gheorghe.negut@andrad.ro; Catana, Alexandru [Institute for Nuclear Research Pitesti, 1, Campului Str., Mioveni P.O. Box 78, 0300 Pitesti (Romania); Prisecaru, Ilie; Dupleac, Daniel [Politehnica University Bucharest, 313, Splaiul Independentei, Sect. 6, 060042 Bucharest (Romania)

    2009-09-15

    Romania as UE member got new challenges for its nuclear industry. Romania operates since 1996 a CANDU nuclear power reactor and since 2007 the second CANDU unit. In EU are operated mainly PWR reactors, so, ours have to meet UE standards. Safety analysis guidelines require to model nuclear reactors severe accidents. Starting from previous studies, a CANDU degraded core thermal hydraulic model was developed. The initiating event is a LOCA, with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperature inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the decay heat is transferred to the moderator. Due to the lack of cooling, the moderator, eventually, begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) uncover, then disintegrate and fall down to the calandria vessel bottom. All the quantity of calandria moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which surrounds the calandria vessel. The thermal hydraulics phenomena described above are modeled, analyzed and compared with the existing data.

  3. Development of a parametric containment event tree model for a severe BWR accident

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  4. Development of a parametric containment event tree model for a severe BWR accident

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.)

  5. Development and application of traffic accident density estimation models using kernel density estimation

    Seiji Hashimoto; Syuji Yoshiki; Ryoko Saeki; Yasuhiro Mimura; Ryosuke Ando; Shutaro Nanba

    2016-01-01

    Traffic accident frequency has been decreasing in Japan in recent years. Nevertheless, many accidents still occur on residential roads. Area-wide traffic calming measures including Zone 30, which discourages traffic by setting a speed limit of 30 km/h in residential areas, have been implemented. However, no objective implementation method has been established. Development of a model for traffic accident density estimation explained by GIS data can enable the determination of dangerous areas o...

  6. Development of a parametric containment event tree model of a severe PWR accident

    The study supports the development project of STUK on 'Living' PSA Level 2. The main work objective is to develop review tools for the Level 2 PSA studies underway at the utilities. The SPSA (STUK PSA) code is specifically designed for the purpose. In this work, SPSA is utilized as the Level 2 programming and calculation tool. A containment event tree (CET) model is built for analysis of severe accidents at the Loviisa pressurized water reactor (PWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to include new research results, and so it facilitates the Living PSA concept on Level 2 as well. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting at a low primary system pressure. Severe accident progression from five plant damage states (PDSs) is examined, however the integration with Level 1 is deferred to more definitive, integrated, safety assessments. (34 refs., 5 figs., 9 tabs.)

  7. German offsite accident consequence model for nuclear facilities: further development and application

    The German Offsite Accident Consequence Model - first applied in the German Risk Study for nuclear power plants with light water reactors - has been further developed with the improvement of several important submodels in the areas of atmospheric dispersion, shielding effects of houses, and the foodchains. To aid interpretation, the presentation of results has been extended with special emphasis on the presentation of the loss of life expectancy. The accident consequence model has been further developed for application to risk assessments for other nuclear facilities, e.g., the liquid metal fast breeder reactor (SNR-300) and the high temperature gas cooled reactor. Moreover the model have been further developed in the area of optimal countermeasure strategies (sheltering, evacuation, etc.) in the case of the Central European conditions. Preliminary considerations has been performed in connection with safety goals on the basis of doses

  8. Development and application of random walk model of atmospheric diffusion in emergency response of nuclear accidents

    Plume concentration prediction is one of the main contents of radioactive consequence assessment for early emergency to nuclear accidents. This paper describes random characteristics of atmospheric diffusion itself, introduces random walk model of atmospheric diffusion (Random Walk), and compare with Lagrangian puff model (RIMPUFF) in the nuclear emergency decision support system (RODOS) developed by European Community for verification. The results show the concentrations calculated by the two models are quite close except that plume area calculated by Random Walk is a little smaller than that by RIMPUFF. The random walk model for atmospheric diffusion can simulate the atmospheric diffusion in case of nuclear accidents and provide more actual information for early emergency and consequence assessment as one atmospheric diffusion module of the nuclear emergency decision support system. (authors)

  9. Development of an Ontology to Assist the Modeling of Accident Scenarii "Application on Railroad Transport "

    Maalel, Ahmed; Mejri, Lassad; Ghezela, Henda Hajjami Ben

    2012-01-01

    In a world where communication and information sharing are at the heart of our business, the terminology needs are most pressing. It has become imperative to identify the terms used and defined in a consensual and coherent way while preserving linguistic diversity. To streamline and strengthen the process of acquisition, representation and exploitation of scenarii of train accidents, it is necessary to harmonize and standardize the terminology used by players in the security field. The research aims to significantly improve analytical activities and operations of the various safety studies, by tracking the error in system, hardware, software and human. This paper presents the contribution of ontology to modeling scenarii for rail accidents through a knowledge model based on a generic ontology and domain ontology. After a detailed presentation of the state of the art material, this article presents the first results of the developed model.

  10. Accident consequence assessment code development

    This paper describes the new computer code system, OSCAAR developed for off-site consequence assessment of a potential nuclear accident. OSCAAR consists of several modules which have modeling capabilities in atmospheric transport, foodchain transport, dosimetry, emergency response and radiological health effects. The major modules of the consequence assessment code are described, highlighting the validation and verification of the models. (author)

  11. The development and demonstration of integrated models for the evaluation of severe accident management strategies - SAMEM

    This study is concerned with the further development of integrated models for the assessment of existing and potential severe accident management (SAM) measures. This paper provides a brief summary of these models, based on Probabilistic Safety Assessment (PSA) methods and the Risk Oriented Accident Analysis Methodology (ROAAM) approach, and their application to a number of case studies spanning both preventive and mitigative accident management regimes. In the course of this study it became evident that the starting point to guide the selection of methodology and any further improvement is the intended application. Accordingly, such features as the type and area of application and the confidence requirement are addressed in this project. The application of an integrated ROAAM approach led to the implementation, at the Loviisa NPP, of a hydrogen mitigation strategy, which requires substantial plant modifications. A revised level 2 PSA model was applied to the Sizewell B NPP to assess the feasibility of the in-vessel retention strategy. Similarly the application of PSA based models was extended to the Barseback and Ringhals 2 NPPs to improve the emergency operating procedures, notably actions related to manual operations. A human reliability analysis based on the Human Cognitive Reliability (HCR) and Technique For Human Error Rate (THERP) models was applied to a case study addressing secondary and primary bleed and feed procedures. Some aspects pertinent to the quantification of severe accident phenomena were further examined in this project. A comparison of the applications of PSA based approach and ROAAM to two severe accident issues, viz hydrogen combustion and in-vessel retention, was made. A general conclusion is that there is no requirement for further major development of the PSA and ROAAM methodologies in the modelling of SAM strategies for a variety of applications as far as the technical aspects are concerned. As is demonstrated in this project, the

  12. Development and verification of models for cladding oxidation in the early stages of a severe accident

    Models have been developed for fuel cladding oxidation in the early stages of a severe accident. The models take account of the crucibilization effect of the zirconium dioxide layer on preventing the Zircaloy melt from flowing down, inner surface oxidation, and the steam starvation effect. The models have been included in the core thermal-hydraulic code SEFDAN. The SEFDAN code has been applied to analyses of severe fuel damage tests in the PBF and NRU facilities, and the TMI-2 accident. The calculated results are in good agreement with the measured or observed results. The analyses indicate that the fuel cladding temperature would have reached the melting point of zirconium dioxide in the PBF.SFD tests and in the TMI-2 accident, and that the fuel temperature would have reached the melting point of uranium dioxide in the PBF.SFD scoping test and TMI-2. In leading fuel rods to such high temperatures, the crucibilization effect of the zirconium dioxide layer plays an essential role, because it retains the molten Zircaloy and sustains the zirconium-water reaction of the molten Zircaloy. In addition, the significant role of the inner surface oxidation on temperature escalation and hydrogen generation rate has been revealed in the analyses of the NRU.FLHT-2 test. (author). 16 refs, 7 figs

  13. Development of a Gravid Uterus Model for the Study of Road Accidents Involving Pregnant Women.

    Auriault, F; Thollon, L; Behr, M

    2016-01-01

    Car accident simulations involving pregnant women are well documented in the literature and suggest that intra-uterine pressure could be responsible for the phenomenon of placental abruption, underlining the need for a realistic amniotic fluid model, including fluid-structure interactions (FSI). This study reports the development and validation of an amniotic fluid model using an Arbitrary Lagrangian Eulerian formulation in the LS-DYNA environment. Dedicated to the study of the mechanisms responsible for fetal injuries resulting from road accidents, the fluid model was validated using dynamic loading tests. Drop tests were performed on a deformable water-filled container at acceleration levels that would be experienced in a gravid uterus during a frontal car collision at 25 kph. During the test device braking phase, container deformation induced by inertial effects and FSI was recorded by kinematic analysis. These tests were then simulated in the LS-DYNA environment to validate a fluid model under dynamic loading, based on the container deformations. Finally, the coupling between the amniotic fluid model and an existing finite-element full-body pregnant woman model was validated in terms of pressure. To do so, experimental test results performed on four postmortem human surrogates (PMHS) (in which a physical gravid uterus model was inserted) were used. The experimental intra-uterine pressure from these tests was compared to intra uterine pressure from a numerical simulation performed under the same loading conditions. Both free fall numerical and experimental responses appear strongly correlated. The relationship between the amniotic fluid model and pregnant woman model provide intra-uterine pressure values correlated with the experimental test responses. The use of an Arbitrary Lagrangian Eulerian formulation allows the analysis of FSI between the amniotic fluid and the gravid uterus during a road accident involving pregnant women. PMID:26592419

  14. Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants

    This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs

  15. Model Development of Light Water Reactor Fuel Analysis Code RANNS for Reactivity-initiated Accident Conditions

    A light water reactor fuel analysis code RANNS has been developed to analyze thermal and mechanical behaviors of a single fuel rod in mainly Reactivity-Initiated Accident (RIA) conditions, based on the light water reactor fuel analysis code FEMAXI-7, which has been developed for normal operation conditions and anticipated transient conditions. The recent model development for the RANNS code has been focused on improving predictability of stress, strain, and temperature inside a fuel rod during pellet cladding mechanical interaction (PCMI), which is one of the most important behaviors of high-burnup fuels under RIA conditions. This report provides descriptions of the models developed and/or validated recently via experimental analyses using the RANNS code on the RIA-simulating experiments conducted in the Nuclear Safety Research Reactor (NSRR): models for mechanical behaviors as relocation of fuel pellets, pellet yielding, pellet-cladding mechanical bonding, and PCMI failure limit of fuel cladding, and thermal behaviors as pellet-cladding gap conductance and heat transfer from fuel rod surface to coolant water. (author)

  16. Development of super simulator `IMPACT`. Pt. 2. Modeling of severe accident phenomena and initial verification tests

    Miyagi, Kazumi; Vierow, K.M.; Naitoh, Masanori [Nuclear Power Engineering Corp., Tokyo (Japan); Hidaka, Masataka; Susuki, Akira; Ishida, Naoyuki; Yamagishi, Makoto; Abe, Nobuaki

    1998-05-01

    IMPACT employs advanced methods of physical modeling and numerical computation and can simulate a wide spectrum of scenarios ranging from normal operation to hypothetical, severe accidents. The simulator models major phenomena in the accident such as thermal hydraulics in the reactor cooling system (RCS), heat up of fuel rods, core melt, molten core relocation (freezing, slumping etc.), debris cooling in lower plenum, fission product (FP)s release and transport in RCS, steam explosion, debris/concrete interaction, thermal hydraulics in the containment vessel (CV), FPs transport in the CV. The modeling and combination of these phenomena could supply the ability to simulate the severe accident progress at Light Water Reactor. Initiated in fiscal year 1993, the project`s conceptual and detailed design phases have been completed and coding and verification phases are in progress. In the several analysis modules, verification studies for some modules are under way, and the steam explosion analysis module and the debris coolability analysis module are examined against typical experimental results to confirm the ability of each model. The premixing submodule for analysis of steam explosion phenomena under severe accident conditions has been completed, and was shown to simulate the MIXA tests well. Calculation results of debris spreading model in debris cooling process are compared with the experimental results and calculated average location of the spearhead at each time shows good agreement with the experimental observation, though spearhead shapes are different. (author)

  17. Development of super simulator 'IMPACT'. Pt. 2. Modeling of severe accident phenomena and initial verification tests

    IMPACT employs advanced methods of physical modeling and numerical computation and can simulate a wide spectrum of scenarios ranging from normal operation to hypothetical, severe accidents. The simulator models major phenomena in the accident such as thermal hydraulics in the reactor cooling system (RCS), heat up of fuel rods, core melt, molten core relocation (freezing, slumping etc.), debris cooling in lower plenum, fission product (FP)s release and transport in RCS, steam explosion, debris/concrete interaction, thermal hydraulics in the containment vessel (CV), FPs transport in the CV. The modeling and combination of these phenomena could supply the ability to simulate the severe accident progress at Light Water Reactor. Initiated in fiscal year 1993, the project's conceptual and detailed design phases have been completed and coding and verification phases are in progress. In the several analysis modules, verification studies for some modules are under way, and the steam explosion analysis module and the debris coolability analysis module are examined against typical experimental results to confirm the ability of each model. The premixing submodule for analysis of steam explosion phenomena under severe accident conditions has been completed, and was shown to simulate the MIXA tests well. Calculation results of debris spreading model in debris cooling process are compared with the experimental results and calculated average location of the spearhead at each time shows good agreement with the experimental observation, though spearhead shapes are different. (author)

  18. Developments in Reactor and Economic Modelling Considering the Performance of Accident Tolerant Fuels

    Accident tolerant fuel (ATF) technology is being developed to enhance the safety performance of nuclear fuels and cladding. The development and testing of ATF materials by NNL through its Nuclear Fuel Centre of Excellence is being complemented by parallel developments in fuel performance modelling, in addition to reactor physics and economic calculations to optimise ATF fuel. An approach for preliminary optimisation of ATF fuel pin and cladding parameters, in typical commercial PWRs is described, including an initial optimisation of uranium nitride (UN) fuel pellet dimensions and enrichment (combined with zirconium cladding) and for silicon carbide composite (SiC) clad fuel (combined with uranium oxide fuel (UO2)). In order to optimise pin reactivity, pellet diameter is less for UN compared with UO2. A lower feed enrichment was required to give an equilibrium energy output close to the equivalent UO2 fuel. Modelling this design indicates that there is a potential economic benefit, through lower fuel assembly costs, when using optimised UN fuel compared with standard UO2 PWR fuel. For standard UO2 fuel, full core calculations have examined the reactivity benefit when replacing zircaloy clad for SiC. Calculations assume idealised SiC clad thicknesses similar to those used with current zircaloy clads. An economic analysis, considering current cost estimates of SiC clad manufacture, indicates SiC clad fuel assembly costs are significantly increased. However, there remains scope for offsetting these increased fuel costs through optimised reactor operation by taking advantage of the reduced parasitic neutron absorption or higher temperature tolerance of SiC clad. An initial assessment is also undertaken of how the performance of the higher density uranium nitride fuel compares against key PWR safety measures: considering pin power peaking, shutdown margin, moderator temperature coefficients, boron reactivity worth, delayed neutron fractions and boration limits. All

  19. Development of severe accident management advisory and training simulator (SAMAT)

    The most operator support systems including the training simulator have been developed to assist the operator and they cover from normal operation to emergency operation. For the severe accident, the overall architecture for severe accident management is being developed in some developed countries according to the development of severe accident management guidelines which are the skeleton of severe accident management architecture. In Korea, the severe accident management guideline for KSNP was recently developed and it is expected to be a central axis of logical flow for severe accident management. There are a lot of uncertainties in the severe accident phenomena and scenarios and one of the major issues for developing a operator support system for a severe accident is the reduction of these uncertainties. In this paper, the severe accident management advisory system with training simulator, SAMAT, is developed as all available information for a severe accident are re-organized and provided to the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, the previous research results by knowledge-base technique, and the expected plant behavior using the severe accident training simulator. The plant model used in this paper is oriented to severe accident phenomena and thus can simulate the plant behavior for a severe accident. Therefore, the developed system may make a central role of the information source for decision-making for a severe accident management, and will be used as the training simulator for severe accident management

  20. Development of two-dimensional hot pool model and analysis of the ULOHS accident in KALIMER design

    In the new version of HP2D program, the variation model of the hot pool sodium level is added so that the temperature and velocity profiles can be predicted more accurately than old version. To verify and validate the developed new version model, comparison of the MONJU experimental data with the predicted one is performed and analyzed. And also the ULOHS(Unprotected Loss of Heat Sink) accident in the KALIMER design is performed and analyzed

  1. Development and application of a random walk model of atmospheric diffusion in the emergency response of nuclear accidents

    CHI Bing; LI Hong; FANG Dong

    2007-01-01

    Plume concentration prediction is one of the main contents of radioactive consequence assessment for early emergency response to nuclear accidents. Random characteristics of atmospheric diffusion itself was described, a random walk model of atmospheric diffusion (Random Walk) was introduced and compared with the Lagrangian puff model (RIMPUFF) in the nuclear emergency decision support system (RODOS) developed by the European Community for verification. The results show the concentrations calculated by the two models are quite close except that the plume area calculated by Random Walk is a little smaller than that by RIMPUFF. The random walk model for atmospheric diffusion can simulate the atmospheric diffusion in case of nuclear accidents, and provide more actual information for early emergency and consequence assessment as one of the atmospheric diffusion module of the nuclear emergency decision support system.

  2. Development of simplified 1D and 2D models for studying a PWR lower head failure under severe accident conditions

    In the study of severe accidents of nuclear pressurized water reactors, the scenarios that describe the relocation of significant quantities of liquid corium at the bottom of the lower head are investigated from the mechanical point of view. In these scenarios, the risk of a breach and the possibility of a large quantity of corium being released from the lower head exist. This may lead to direct heating of the containment or outer vessel steam explosion. These issues are important due to their early containment failure potential. Since the TMI-2 accident, many theoretical and experimental investigations, relating to lower head mechanical behaviour under severe thermo-mechanical loading in the event of a core meltdown accident have been performed. IRSN participated actively in the one-fifth scale USNRC/SNL LHF and OECD LHF (OLHF) programs. Within the framework of these programs, two simplified models were developed by IRSN: the first is a simplified 1D approach based on the theory of pressurized spherical shells and the second is a simplified 2D model based on the theory of shells of revolution under symmetric loading. The mathematical formulation of both models and the creep constitutive equations used are presented in detail in this paper. The corresponding models were used to interpret some of the OLHF program experiments and the calculation results were quite consistent with the experimental data. The two simplified models have been used to simulate the thermo-mechanical behaviour of a 900 MWe pressurized water reactor lower head under severe accident conditions leading to failure. The average transient heat flux produced by the corium relocated at the bottom of the lower head has been determined using the IRSN HARAR code. Two different methods, both taking into account the ablation of the internal surface, are used to determine the temperature profiles across the lower head wall and their effect on the time to failure is discussed. Using these simplified models

  3. Review of models applicable to accident aerosols

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity

  4. Modeling accidents for prioritizing prevention

    The Workgroup Occupational Risk Model (WORM) project in the Netherlands is developing a comprehensive set of scenarios to cover the full range of occupational accidents. The objective is to support companies in their risk analysis and prioritization of prevention. This paper describes how the modeling has developed through projects in the chemical industry, to this one in general industry and how this is planned to develop further in the future to model risk prevention in air transport. The core modeling technique is based on the bowtie, with addition of more explicit modeling of the barriers needed for risk control, the tasks needed to ensure provision, use, monitoring and maintenance of the barriers, and the management resources and tasks required to ensure that these barrier life cycle tasks are carried out effectively. The modeling is moving from a static notion of barriers which can fail, to seeing risk control dynamically as (fallible) means for staying within a safe envelope. The paper shows how concepts develop slowly over a series of projects as a core team works continuously together. It concludes with some results of the WORM project and some indications of how the modeling is raising fundamental questions about the conceptualization of system safety, which need future resolution

  5. Modeling secondary accidents identified by traffic shock waves.

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. PMID:26687540

  6. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    accident is very hazardous. If the operator initiates F and B operation properly under the combined accident including TLOFW accident, the operators can prevent the core damage. Since F and B operation is last resort to prevent core damage and necessary conditions of F and B operation are very complicated, the consequence of these events should be considered in PSA model to improve emergency response capabilities under the rare events. Dynamic PSA modeling is better to estimate the effects of heading order and timing issues. Especially, dynamic PSA can model accident sequences and estimate their probabilities through integrated, time-dependent, probabilistic and deterministic models of NPPs, based on the thermal-hydraulic processes and operator behavior in accident conditions. We will develop the dynamic PSA model for the combined accident including TLOFW accident in the further study.

  7. Severe accident assessment: development of the gas flux dryout model for cooling of core debris

    A model for boiling and dryout in a particle debris bed with permeable boundary conditions is developed and compared with various dryout models, and incorporated into the modified MARCH/KAERI computer code to analyze for the combined mechanisms of thermal interactions. Comparative and parametric studies show that the particle sizes have an important effect on debris bed cooling but not apparent effect on the magnitude of peak pressure in the containment building. It is also shown that the gas flux model represents an improvement of the combined thermal interactions among core debris, water and gas over the previous models. (Author)

  8. Application of 'FLUENT' to describe thermo-hydraulic processes in experimental facilities which model severe accident development in nuclear reactor

    The work is aimed at reviewing the applicability of the 'FLUENT v6.2' up-to-date software system for modeling such thermo hydraulic processes as boiling/condensation and melting/solidification concurrently taking place in multicomponent systems. The work presents an example of calculation modeling of processes taking place in experiments performed by National Nuclear Center of the Republic of Kazakhstan for research into final stages of an accident in nuclear reactor. Results of experimental works are used for nuclear facilities safety justification. Application of 'FLUENT v6.2' software system enables to reproduce sequence of events taking place in experiments and to forecast their development that is necessary for design of experiments and for results analysis as well. (author)

  9. Development of TRAIN for accident management

    Severe accident management can be defined as the use of existing and alternative resources, systems, and actions to prevent or mitigate a core-melt accident in nuclear power plants. TRAIN (Training pRogram for AMP In NPP), developed for training control room staff and the technical group, is introduced in this paper. The TRAIN composes of phenomenological knowledge base (KB), accident sequence KB and accident management procedures with AM strategy control diagrams and information needs. This TRAIN might contribute to training them by obtaining phenomenological knowledge of severe accidents, understanding plant vulnerabilities, and solving problems under high stress. (author)

  10. Development of zircaloy deformation model to describe the zircaloy-4 cladding tube during accidents

    The development of a high-temperature deformation model for Zircaloy-4 cans is primarily based on numerous well-parametrized tensile tests to get the material behaviour including statistical variance. It is shown that plastic deformation may be described by a power creep law, the coefficients of which show strong dependence on temperature in the relevant temperature region. These coefficients have been determined. A model based on these coefficients has been established which, apart from best estimate deformation, gives upper and lower bounds of possible deformation. The model derived from isothermal uniaxial tests is being verified against isothermal and transient tube burst tests. The influence of preoxidation and increased oxygen concentration during deformation is modeled on the basis of the pseudobinary Zircaloy-oxygen phase diagram. (author)

  11. Development of a deformation and failure model for Zircaloy at high temperatures for light water reactor loss-of-coolant-accident investigations

    To describe Zircaloy-4 deformation and failure behaviour at high temperatures (600 to 14000C), the phenomenological model NORA was developed and verified against numerous experimental results. The model can be applied to the calculation of fuel rod cladding deformation during small and large break loss-of-coolant-accidents. (orig./RW)

  12. Development of severe accident training support system

    In order for appropriate decision-making during plant operation and management, the professional knowledge, expert's opinion, and previous experiences as well as information for current status are utilized. The operation support systems such as training simulators have been developed to assist these decision-making process, and most of them cover from normal operation to emergency operation because of the very low frequency of severe accident and of uncertaintics included in severe accident phenomena and scenarios. However, the architectures for severe accident management are being established based on severe accident management guidelines in some developed countries. Recentrly, in Korea, as teh severe accident management guideline was developed, the basis for establishing severe accident management architecture is prepared and this leads to the development of tool for systematic education and training for personnel related to severe accident management. The severe accident taining support system thus is developed to assist decision-making during execution of severe accident management guidelines by providing plant status information, prefessional knowledge for phenomena and scenarios, expected behavior for strategy execution, and so on

  13. Using Numerical Models in the Development of Software Tools for Risk Management of Accidents with Oil and Inert Spills

    Fernandes, R.; Leitão, P. C.; Braunschweig, F.; Lourenço, F.; Galvão, P.; Neves, R.

    2012-04-01

    The increasing ship traffic and maritime transport of dangerous substances make it more difficult to significantly reduce the environmental, economic and social risks posed by potential spills, although the security rules are becoming more restrictive (ships with double hull, etc.) and the surveillance systems are becoming more developed (VTS, AIS). In fact, the problematic associated to spills is and will always be a main topic: spill events are continuously happening, most of them unknown for the general public because of their small scale impact, but with some of them (in a much smaller number) becoming authentic media phenomena in this information era, due to their large dimensions and environmental and social-economic impacts on ecosystems and local communities, and also due to some spectacular or shocking pictures generated. Hence, the adverse consequences posed by these type of accidents, increase the preoccupation of avoiding them in the future, or minimize their impacts, using not only surveillance and monitoring tools, but also increasing the capacity to predict the fate and behaviour of bodies, objects, or substances in the following hours after the accident - numerical models can have now a leading role in operational oceanography applied to safety and pollution response in the ocean because of their predictive potential. Search and rescue operation, oil, inert (ship debris, or floating containers), and HNS (hazardous and noxious substances) spills risk analysis are the main areas where models can be used. Model applications have been widely used in emergency or planning issues associated to pollution risks, and contingency and mitigation measures. Before a spill, in the planning stage, modelling simulations are used in environmental impact studies, or risk maps, using historical data, reference situations, and typical scenarios. After a spill, the use of fast and simple modelling applications allow to understand the fate and behaviour of the spilt

  14. Methodological guidelines for developing accident modification functions

    Elvik, Rune

    2015-01-01

    This paper proposes methodological guidelines for developing accident modification functions. An accident modification function is a mathematical function describing systematic variation in the effects of road safety measures. The paper describes ten guidelines. An example is given of how to use...... the guidelines. The importance of exploratory analysis and an iterative approach in developing accident modification functions is stressed. The example shows that strict compliance with all the guidelines may be difficult, but represents a level of stringency that should be strived for. Currently the...... main limitations in developing accident modification functions are the small number of good evaluation studies and the often huge variation in estimates of effect. It is therefore still not possible to develop accident modification functions for very many road safety measures. © 2015 Elsevier Ltd. All...

  15. A SCOPING STUDY: Development of Probabilistic Risk Assessment Models for Reactivity Insertion Accidents During Shutdown In U.S. Commercial Light Water Reactors

    S. Khericha

    2011-06-01

    This report documents the scoping study of developing generic simplified fuel damage risk models for quantitative analysis from inadvertent reactivity insertion events during shutdown (SD) in light water pressurized and boiling water reactors. In the past, nuclear fuel reactivity accidents have been analyzed both mainly deterministically and probabilistically for at-power and SD operations of nuclear power plants (NPPs). Since then, many NPPs had power up-rates and longer refueling intervals, which resulted in fuel configurations that may potentially respond differently (in an undesirable way) to reactivity accidents. Also, as shown in a recent event, several inadvertent operator actions caused potential nuclear fuel reactivity insertion accident during SD operations. The set inadvertent operator actions are likely to be plant- and operation-state specific and could lead to accident sequences. This study is an outcome of the concern which arose after the inadvertent withdrawal of control rods at Dresden Unit 3 in 2008 due to operator actions in the plant inadvertently three control rods were withdrawn from the reactor without knowledge of the main control room operator. The purpose of this Standardized Plant Analysis Risk (SPAR) Model development project is to develop simplified SPAR Models that can be used by staff analysts to perform risk analyses of operating events and/or conditions occurring during SD operation. These types of accident scenarios are dominated by the operator actions, (e.g., misalignment of valves, failure to follow procedures and errors of commissions). Human error probabilities specific to this model were assessed using the methodology developed for SPAR model human error evaluations. The event trees, fault trees, basic event data and data sources for the model are provided in the report. The end state is defined as the reactor becomes critical. The scoping study includes a brief literature search/review of historical events, developments of

  16. Development of integrated accident management assessment technology

    This project aims to develop critical technologies for accident management through securing evaluation frameworks and supporting tools, in order to enhance capabilities coping with severe accidents. For the research goal, firstly under the viewpoint of accident prevention, on-line risk monitoring system and the analysis framework for human error have been developed. Secondly, the training/supporting systems including the training simulator and the off-site risk evaluation system have been developed to enhance capabilities coping with severe accidents. Four kinds of research results have been obtained from this project. Firstly, the framework and taxonomy for human error analysis has been developed for accident management. As the second, the supporting system for accident managements has been developed. Using data that are obtained through the evaluation of off-site risk for Younggwang site, the risk database as well as the methodology for optimizing emergency responses has been constructed. As the third, a training support system, SAMAT, has been developed, which can be used as a training simulator for severe accident management. Finally, on-line risk monitoring system, DynaRM, has been developed for Ulchin 3 and 4 unit

  17. Correspondence model of occupational accidents

    Juan C. Conte

    2011-09-01

    Full Text Available We present a new generalized model for the diagnosis and prediction of accidents among the Spanish workforce. Based on observational data of the accident rate in all Spanish companies over eleven years (7,519,732 accidents, we classified them in a new risk-injury contingency table (19×19. Through correspondence analysis, we obtained a structure composed of three axes whose combination identifies three separate risk and injury groups, which we used as a general Spanish pattern. The most likely or frequent relationships between the risk and injuries identified in the pattern facilitated the decision-making process in companies at an early stage of risk assessment. Each risk-injury group has its own characteristics, which are understandable within the phenomenological framework of the accident. The main advantages of this model are its potential application to any other country and the feasibility of contrasting different country results. One limiting factor, however, is the need to set a common classification framework for risks and injuries to enhance comparison, a framework that does not exist today. The model aims to manage work-related accidents automatically at any level.Apresentamos aqui um modelo generalizado para o diagnóstico e predição de acidentes na classe de trabalhadores da Espanha. Baseados em dados sobre a frequência de acidentes em todas as companhias da Espanha em 11 anos (7.519.732 acidentes, nós os classificamos em uma nova tabela de contingência risco-injúria (19×19. Através de uma análise por correspondência obtivemos uma estrutura composta por 3 eixos cuja combinação identifica 3 grupos separados de risco e injúria, que nós usamos como um perfil geral na Espanha. As mais prováveis ou frequentes relações entre risco e injúrias identificadas nesse perfil facilitaram o processo de decisão nas companhias em um estágio inicial de apreciação do risco. Cada grupo de risco-injúria tem suas próprias caracter

  18. Modeling accident frequency in Denmark for improving road safety

    Lyckegaard, Allan; Hels, Tove; Kaplan, Sigal;

    Traffic accidents result in huge costs to society in terms of death, injury, lost productivity, and property damage. The main objective of the current study is the development of an accident frequency model that predicts the expected number of accidents on a given road segment, provided the...... infrastructure characteristics and the traffic conditions of the road. The model can be used to point out high risk road segments and support road authorities in planning interventions for the improvement of road safety on Danish roads. The number of accidents on a road link was modeled using a count model after...... concerning police recorded accidents, link characteristics of the road network, traffic volumes from the national transport models are merged to estimate the model. Spatial correlation between road sections is taken into account for correcting for unobserved correlation between contiguous locations....

  19. Development of criticality accident analysis code AGNES

    A one-point kinetics code, AGNES2, has been developed for the evaluation of the criticality accident of nuclear solution fuel system. The code has been evaluated through the simulation of TRACY experiments and used for the study of the condition of the JCO criticality accident. A code, AGNES-P, for the criticality accident of nuclear powder system has been developed based on AGNES2. It is expected that these codes be useful for the evaluation of criticality safety for fuel reprocessing and fabrication plants. (author)

  20. Occupational accidents in Turkey and providing and development of safety culture in preventing occupational accidents

    Dursun, Salih

    2011-01-01

    Occupational accidents cause socially and economically significant loss both in developed and developing countries. According to ILO each year, 2.2 million people lost their lives in the occupational accident. In Turkey, over 1600 people die in these accidents every year. In this case, an important part of occupational accidents like 95% based on “human”, requires more people-oriented approaches towards the prevention of accidents. In this context, to provide and develop the safety culture, w...

  1. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  2. Development of solution behavior observation system under criticality accident conditions

    A solution behavior observation system was developed for observing the behavior of fissile solution and radiolytic voids under criticality accident conditions in TRACY. The system consisted of a radiation-resistive optical fiberscope and a CCD color video camera. The system functioned properly in the mixed high radiation fields of gamma rays and neutrons under criticality accident conditions, and it succeeded in taking the images of their behavior. They provide an important information to understand phenomena of fuel solution at criticality accidents and to construct computational kinetic models. The images can also be used as teaching materials for plant workers and students in universities. (author)

  3. The development of severe accident analysis technology

    Kim, Heuy Dong; Cho, Sung Won; Kim, Sang Baek; Park, Jong Hwa; Lee, Kyu Jung; Park, Lae Joon; Hu, Hoh; Hong, Sung Wan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    The objective of the development of severe accident analysis technology is to understand the severe accident phenomena such as core melt progression and to provide a reliable analytical tool to assess severe accidents in a nuclear power plant. Furthermore, establishment of the accident management strategies for the prevention/mitigation of severe accidents is also the purpose of this research. The study may be categorized into three areas. For the first area, two specific issues were reviewed to identify the further research direction, that is the natural circulation in the reactor coolant system and the fuel-coolant interaction as an in-vessel and an ex-vessel phenomenological study. For the second area, the MELCOR and the CONTAIN codes have been upgraded, and a validation calculation of the MELCOR has been performed for the PHEBUS-B9+ experiment. Finally, the experimental program has been established for the in-vessel and the ex-vessel severe accident phenomena with the in-pile test loop in KMRR and the integral containment test facilities, respectively. (Author).

  4. The development of severe accident analysis technology

    The objective of the development of severe accident analysis technology is to understand the severe accident phenomena such as core melt progression and to provide a reliable analytical tool to assess severe accidents in a nuclear power plant. Furthermore, establishment of the accident management strategies for the prevention/mitigation of severe accidents is also the purpose of this research. The study may be categorized into three areas. For the first area, two specific issues were reviewed to identify the further research direction, that is the natural circulation in the reactor coolant system and the fuel-coolant interaction as an in-vessel and an ex-vessel phenomenological study. For the second area, the MELCOR and the CONTAIN codes have been upgraded, and a validation calculation of the MELCOR has been performed for the PHEBUS-B9+ experiment. Finally, the experimental program has been established for the in-vessel and the ex-vessel severe accident phenomena with the in-pile test loop in KMRR and the integral containment test facilities, respectively. (Author)

  5. Recent Developments in Level 2 PSA and Severe Accident Management

    In 1997, CSNI WGRISK produced a report on the state of the art in Level 2 PSA and severe accident management - NEA/CSNI/R(1997)11. Since then, there have been significant developments in that more Level 2 PSAs have been carried out worldwide for a variety of nuclear power plant designs including some that were not addressed in the original report. In addition, there is now a better understanding of the severe accident phenomena that can occur following core damage and the way that they should be modelled in the PSA. As requested by CSNI in December 2005, the objective of this study was to produce a report that updates the original report and gives an account of the developments that have taken place since 1997. The aim has been to capture the most significant new developments that have occurred rather than to provide a full update of the original report, most of which is still valid. This report is organised using the same structure as the original report as follows: Chapter 2: Summary on state of application, results and insights from recent Level 2 PSAs. Chapter 3: Discussion on key severe accident phenomena and modelling issues, identification of severe accident issues that should be treated in Level 2 PSAs for accident management applications, review of severe accident computer codes and the use of these codes in Level 2 PSAs. Chapter 4: Review of approaches and practices for accident management and SAM, evaluation of actions in Level 2 PSAs. Chapter 5: Review of available Level 2 PSA methodologies, including accident progression event tree / containment event tree development. Chapter 6: Aspects important to quantification, including the use of expert judgement and treatment of uncertainties. Chapter 7: Examples of the use of the results and insights from the Level 2 PSA in the context of an integrated (risk informed) decision making process

  6. Economic development, mobility and traffic accidents in Algeria.

    Bougueroua, M; Carnis, L

    2016-07-01

    The aim of this contribution is to estimate the impact of road economic conditions and mobility on traffic accidents for the case of Algeria. Using the cointegration approach and vector error correction model (VECM), we will examine simultaneously short term and long-term impacts between the number of traffic accidents, fuel consumption and gross domestic product (GDP) per capital, over the period 1970-2013. The main results of the estimation show that the number of traffic accidents in Algeria is positively influenced by the GDP per capita in the short and long term. It implies that a higher economic development worsens the road safety situation. However, the new traffic rules adopted in 2009 have an impact on the forecast trend of traffic accidents, meaning efficient public policy could improve the situation. This result calls for a strong political commitment with effective countermeasures for avoiding the further deterioration of road safety record in Algeria. PMID:27070081

  7. Full scope simulator with an extended scope of modeling as a tool for development and proof of operator aids for severe accident management

    Factor of risk caused by the personnel's faults primarily in non regular and emergency situations may be rather great. In the world practise the major way of its diminishing is the application of simulators. It betokens the RRC 'Kurchatov Institute' experience in creating the full-scope simulators, analysers and large modelling complexes for Nuclear Power Plants (NPPs) and other nuclear facilities. Recent developments of RRC 'Kurchatov Institute' are aimed at the soonest and minimum expenditure's creation of modern high-performance means for personnel's training and regular re-training and also at the development of means of modeling, safety analysis and operators' support with severe accidents to be included. In this view, the most elaborated one is the Training Support Center (TSC) created at the Leningrad NPP, Sosnovy Bor, Russia. To be applied in this center, GSE Systems of USA and RRC 'Kurchatov Institute' have jointly developed the Total Training System that incorporates full-scope simulator, analytical full-scope simulator, expert system, interactive system, psycho-physiological system, and training support programs. Mathematical models creating and special software developments were the responsibility of RRC 'Kurchatov Institute', the hardware and general purpose software were the responsibility of GSE Systems. Presented are the basic specifications of one of the world's largest simulators - the full-scope simulator for the Leningrad NPP that is the new-generation one. Owing to the extended modelling scope accomplished is the possibility of training personnel to act in terms of not only the design-basis but rather the severe beyond the design basis accidents. As an example, the Chernobyl accident and disaster modelling are presented for the 'old' and 'new' upgraded RBMK, Safety Systems design and core features. (authors)

  8. Development of preliminary Nevada transportation accident characteristics

    The US DOE, Yucca Mountain Site Characterization Project Office (YMSCPO) has been given the responsibility for characterization of the potential repository site at Yucca Mountain, Nevada, and the analysis of repository-related impacts in the State of Nevada. In support of these responsibilities, the YMSCPO initiated a preliminary study to develop background information on the character of the transportation accidents occurring on the highways and raillines in the State of Nevada. The results of this preliminary study shows that while the transportation accidents in Nevada follow national trends, there are some distinct differences between Nevada and the rest of the Nation. This paper summarizes those results

  9. Analysis of Accident Scenarios for the Development of Probabilistic Safety Assessment Model for the Metallic Fuel Sodium-Cooled Fast Reactor

    The safety analysis reports which were reported during the development of sodium cooled fast reactors in the foreign countries are reviewed for the establishment of Probabilistic Safety Analysis models for the domestic SFR which are under development. There are lots of differences in the safety characteristics between the mixed oxide (MOX) fuel SFR and metallic fuel SFR. Metallic fuel SFR is under development in Korea while MOX fuel SFR is under development in France, Japan, India and China. Therefore the status on the development of fast reactors in the foreign countries are reviewed at first and then the safety characteristics between the MOX fuel SFR and the metallic fuel SFR are reviewed. The core damage can be defined as coolant voiding, fuel melting, cladding damage. The melting points of metallic fuel and the MOX fuel is about 1000 .deg. C and 2300 .deg. C, respectively. The high energy stored in the MOX fuel have higher potential to voiding of coolant compared to the possibility in the metallic fuel. The metallic fuel has also inherent reactivity feedback characteristic that the metallic fuel SFR can be shutdown safely in the events of transient overpower, loss of flow, and loss of heat sink without scram. The metallic fuel has, however, lower melting point due to the eutectic formation between the uranium in metallic fuel and the ferrite in metallic cladding. It is needed to identify the core damage accident scenarios to develop Level-1 PSA model. SSC-K computer code is used to identify the conditions in which the core damage can occur in the KALIMER-600 SFR. The accident cases which are analyzed are the triple failure accidents such as unprotected transient over power events, loss of flow events, and loss of heat sink events with impaired safety systems or functions. Through the analysis of the triple failure accidents for the KALIMER-600 SFR, it is found that the PSA model developed for the PRISM reactor design can be applied to KALIMER-600. However

  10. The development of a severe accident analysis code

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity in an effect to improve existing models and develop analytical tools for the assessment of severe accidents. For hydrogen control, the analysis of hydrogen concentration in the containment and visualization for the concentration in the cell were performed. The computer code to predict combustion flame characteristic was also developed. the analytical model for the expansion phase of vapor explosion was developed and verified with the experimental results. The corium release fraction model from the cavity with the capture volume was developed and applied to the power plants. Pre-test calculation was performed for molten corium concrete interaction study and the crust formation process, heat transfer characteristics of the crust, and the sensitivity study using MELCOR code was carried out. A stress analysis code using finite element method for the reactor vessel lower head failure analysis was developed and the effect by gap formation between molten corium and vessel was analyzed. Through the international program of PHEBUS-FP and participation in the software development, the study on fission products release and transportation in the software development, the study on fission products release and transportation and aerosol deposition were performed. The system for severe accident analysis codes, CONTAIN and MELCOR codes etc., under the cooperation with USNRC were also established by installing in workstation and applying to experimental results and real plants. (author). 116 refs., 31 tabs., 59 figs

  11. Development of a totally integrated severe accident training system

    Recently KAERI has developed the severe accident management guidance to establish the Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, which uses the MELCOR code as the simulation engine. The simulator SATS graphically displays and simulates the severe accidents with interactive user commands. Especially the control capability of SATS could make a severe accident training course more interesting and effective. In this paper we will describe the development and functions of the electrical guidance module, HyperKAMG, and the SATS-HyperKAMG linkage system designed for a totally integrated and automated severe accident training. (author)

  12. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-15

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR.

  13. Mathematical models for steam generator accident simulation

    In this contribution, the numerical methods used in the DeBeNe-LMFBR development for the analysis of the hydrodynamic and mechanical consequences of steam generator accidents are presented. At first the definition of the source term, i.e. the water leak rate which has to be assumed in the design basis accident as well as the thermochemistry of the sodium/water-reaction is discussed. Then the computer-codes presently used to describe the hydrodynamic and mechanical consequences of steam generator accidents on the basis of the above mentioned source term are presented. These comprise the code-system SAPHYR and the code PTANER and PISCES. Furthermore, developments which are planned or already under way for future use, such as the BEREPOT-code, are presented. (author)

  14. A MELCOR model of Fukushima Daiichi Unit 3 accident

    Highlights: • A MELCOR model of the Fukushima Unit 3 accident was developed. • The MELCOR input file is published as electronic supplementary data with this paper. • Reactor pressure vessel lower head failed about 53 h after the earthquake. • 70% of fuel was discharged from reactor to containment. • 0.95% of cesium inventory was released to the environment. - Abstract: A MELCOR model of the Fukushima Daiichi Unit 3 accident was developed. The model is based on publicly available information, and the MELCOR input file is published as electronic supplementary data with this paper. According to the calculation, the reactor pressure vessel lower head failed about 53 h after the earthquake. At the end of the calculation, 30% of the fuel was still inside the reactor and 70% had been discharged to the containment. Almost all of the radioactive noble gases and 0.95% of the cesium inventory were released to the environment during the accident

  15. A MELCOR model of Fukushima Daiichi Unit 3 accident

    Sevón, Tuomo, E-mail: tuomo.sevon@vtt.fi

    2015-04-01

    Highlights: • A MELCOR model of the Fukushima Unit 3 accident was developed. • The MELCOR input file is published as electronic supplementary data with this paper. • Reactor pressure vessel lower head failed about 53 h after the earthquake. • 70% of fuel was discharged from reactor to containment. • 0.95% of cesium inventory was released to the environment. - Abstract: A MELCOR model of the Fukushima Daiichi Unit 3 accident was developed. The model is based on publicly available information, and the MELCOR input file is published as electronic supplementary data with this paper. According to the calculation, the reactor pressure vessel lower head failed about 53 h after the earthquake. At the end of the calculation, 30% of the fuel was still inside the reactor and 70% had been discharged to the containment. Almost all of the radioactive noble gases and 0.95% of the cesium inventory were released to the environment during the accident.

  16. Overview of SAMPSON code development for LWR severe accident analysis

    The Nuclear Power Engineering Corporation (NUPEC) has developed a severe accident analysis code 'SAMPSON'. SAMPSON's distinguishing features include inter-connected hierarchical modules and mechanistic models covering a wide spectrum of scenarios ranging from normal operation to hypothetical severe accident events. Each module included in the SAMPSON also runs independently for analysis of specific phenomena assigned. The OECD International Standard Problems (ISP-45 and 46) were solved by the SAMPSON for code verifications. The analysis results showed fairly good agreement with the test results. Then, severe accident phenomena in typical PWR and BWR plants were analyzed. The PWR analysis result showed 56 hours as the containment vessel failure timing, which was 9 hours later than one calculated by MELCOR code. The BWR analysis result showed no containment vessel failure during whole accident events, whereas the MELCOR result showed 10.8 hours. These differences were mainly due to consideration of heat release from the containment vessel wall to atmosphere in the SAMPSON code. Another PWR analysis with water injection as an accident management was performed. The analysis result showed that earlier water injection before the time when the fuel surface temperature reached 1,750 K was effective to prevent further core melt. Since fuel surface and fluid temperatures had spatial distribution, a careful consideration shall be required to determine the suitable location for temperature measurement as an index for the pump restart for water injection. The SAMPSON code was applied to the accident analysis of the Hamaoka-1 BWR plant, where the pipe ruptured due to hydrogen detonation. The SAMPSON had initially been developed to run on a parallel computer. Considering remarkable progress of computer hardware performance, as another version of the SAMPSON code, it has recently been modified so as to run on a single processor. The improvements of physical models, numerical

  17. Modeling alternative clad behavior for accident tolerant systems

    The US Department of Energy Fuel Cycle Research and Development program has a key goal of helping develop accident tolerant fuels (ATF) through investigating fuel and clad forms. In the current work thermochemical modeling and experiment are being used to assess fuel and clad alternatives. Cladding alternatives that have promise to improve fuel performance under accident conditions include the FeCrAl family of alloys and SiC-based composites. These are high strength and radiation resistant alloys and ceramics that have increased resistance to oxidation as compared to zirconium alloys. Accident modeling codes have indicated substantially increased time to failure and resulting effects. In the current work the thermochemical behavior of these materials are being assessed and the work reported here. (author)

  18. Thermal-hydraulic modeling of reactivity accidents in MTR reactors

    Khater Hany; Abu-El-Maty Talal; El-Morshdy El-Din Salah

    2006-01-01

    This paper describes the development of a dynamic model for the thermal-hydraulic analysis of MTR research reactors during a reactivity insertion accident. The model is formulated for coupling reactor kinetics with feedback reactivity and reactor core thermal-hydraulics. To represent the reactor core, two types of channels are considered, average and hot channels. The developed computer program is compiled and executed on a personal computer, using the FORTRAN language. The model is validated...

  19. Development of Integrated Evaluation System for Severe Accident Management

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs

  20. Development of Integrated Evaluation System for Severe Accident Management

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y

    2007-06-15

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs.

  1. An approach to accidents modeling based on compounds road environments.

    Fernandes, Ana; Neves, Jose

    2013-04-01

    The most common approach to study the influence of certain road features on accidents has been the consideration of uniform road segments characterized by a unique feature. However, when an accident is related to the road infrastructure, its cause is usually not a single characteristic but rather a complex combination of several characteristics. The main objective of this paper is to describe a methodology developed in order to consider the road as a complete environment by using compound road environments, overcoming the limitations inherented in considering only uniform road segments. The methodology consists of: dividing a sample of roads into segments; grouping them into quite homogeneous road environments using cluster analysis; and identifying the influence of skid resistance and texture depth on road accidents in each environment by using generalized linear models. The application of this methodology is demonstrated for eight roads. Based on real data from accidents and road characteristics, three compound road environments were established where the pavement surface properties significantly influence the occurrence of accidents. Results have showed clearly that road environments where braking maneuvers are more common or those with small radii of curvature and high speeds require higher skid resistance and texture depth as an important contribution to the accident prevention. PMID:23376544

  2. Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures

    This paper examines the historical development of finite-element-based concrete structural modeling and analysis since its inception in the middle Sixties: material behavior modeling (elastic and creep analysis, cracking analysis, compression behavior, shear behavior, rebar bond behavior), from material modeling to structural analysis (reactor pressure vessels, reactor containments - static and dynamic behavior, nuclear waste tanks - long term thermal creep behavior, concrete bridges). Numerical predictions of containment model tests conducted in the U.S. and the U.K. in the last two decades and more recently in Japan, round robin analyses, and international standard problem exercises provide historical measures from which to judge the degree of progress in finite element analysis capabilities for nuclear concrete structures. A critical assessment of the state of the art and future needs are described

  3. Validation and verification of accident consequence assessment models

    Homma, T.; Togawa, O. [Japan Atomic Energy Research Inst., Tokyo (Japan); Takahashi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Arkhipov, A.N. [Chernobyl Science and Technology Centre for International Research (Ukraine)

    2001-03-01

    An accident consequence assessment code, OSCAAR, primarily designed by Japan Atomic Energy Research Institute (JAERI) for use in probabilistic safety assessment (PSA) of nuclear reactors in Japan, was applied to use for siting, emergency planning, and development of design criteria, and in the comparative risk studies of different energy systems. After verifying the code system through the international code comparison organized by CEC and OECD/NEA, the validation and improvements of the individual models and the verification of the whole OSCAAR code system were made. The cooperative research between Chernobyl Science and Technology Center for International Research (CHESCIR) and JAERI provided a valuable opportunity to test the performance of the accident consequence assessment models by comparing the model predictions with data obtained in the Chernobyl accidents. The predictive capabilities of OSCAAR were demonstrated using the accident source term and meteorological data for estimating the early exposure to the public occurred during and shortly after plume passage. The calculations indicated that ground-shine dose and inhalation dose, particularly from large nonvolatile particulates were the main contributors in the early stage of the accident. (S. Ohno)

  4. Development of the MIDAS GUI environment for severe accident management and analyses

    MIDAS is being developed at KAERI as an integrated severe accident analysis code with existing model modification and new model addition. Also restructuring of the data transfer scheme is going on to improve user's convenience. In this paper, various MIDAS GUI systems which are input management system IEDIT, variable plotting system IPLOT, severe accident training simulator SATS, and online guidance module HyperKAMG, are introduced. In addition, detail functions and usage of these systems for severe accident management and analyses are described

  5. Accident evolution and barrier function and accident evolution management modeling of nuclear power plant incidents

    Every analysis of an accident or an incident is founded on a more or less explicit model of what an accident is. On a general level, the current approach models an incident or accident in a nuclear power plant as a failure to maintain a stable state with all variables within their ranges of stability. There are two main sets of subsystems in continuous interaction making up the analyzed system, namely the human-organizational and the technical subsystems. Several different but related approaches can be chosen to model an accident. However, two important difficulties accompany such modeling: the high level of system complexity and the very infrequent occurrence of accidents. The current approach acknowledges these problems and focuses on modeling reported incidents/accidents or scenarios selected in probabilistic risk assessment analyses to be of critical importance for the safety of a plant

  6. Development of a model to predict flow oscillations in low-flow sodium boiling. [Loss-of-Piping Integrity accidents

    Levin, A.E.; Griffith, P.

    1980-04-01

    Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed.

  7. Advanced accident sequence precursor analysis level 2 models

    Galyean, W.J.; Brownson, D.A.; Rempe, J.L. [and others

    1996-03-01

    The U.S. Nuclear Regulatory Commission Accident Sequence Precursor program pursues the ultimate objective of performing risk significant evaluations on operational events (precursors) occurring in commercial nuclear power plants. To achieve this objective, the Office of Nuclear Regulatory Research is supporting the development of simple probabilistic risk assessment models for all commercial nuclear power plants (NPP) in the U.S. Presently, only simple Level 1 plant models have been developed which estimate core damage frequencies. In order to provide a true risk perspective, the consequences associated with postulated core damage accidents also need to be considered. With the objective of performing risk evaluations in an integrated and consistent manner, a linked event tree approach which propagates the front end results to back end was developed. This approach utilizes simple plant models that analyze the response of the NPP containment structure in the context of a core damage accident, estimate the magnitude and timing of a radioactive release to the environment, and calculate the consequences for a given release. Detailed models and results from previous studies, such as the NUREG-1150 study, are used to quantify these simple models. These simple models are then linked to the existing Level 1 models, and are evaluated using the SAPHIRE code. To demonstrate the approach, prototypic models have been developed for a boiling water reactor, Peach Bottom, and a pressurized water reactor, Zion.

  8. WHEN MODEL MEETS REALITY – A REVIEW OF SPAR LEVEL 2 MODEL AGAINST FUKUSHIMA ACCIDENT

    Zhegang Ma

    2013-09-01

    The Standardized Plant Analysis Risk (SPAR) models are a set of probabilistic risk assessment (PRA) models used by the Nuclear Regulatory Commission (NRC) to evaluate the risk of operations at U.S. nuclear power plants and provide inputs to risk informed regulatory process. A small number of SPAR Level 2 models have been developed mostly for feasibility study purpose. They extend the Level 1 models to include containment systems, group plant damage states, and model containment phenomenology and accident progression in containment event trees. A severe earthquake and tsunami hit the eastern coast of Japan in March 2011 and caused significant damages on the reactors in Fukushima Daiichi site. Station blackout (SBO), core damage, containment damage, hydrogen explosion, and intensive radioactivity release, which have been previous analyzed and assumed as postulated accident progression in PRA models, now occurred with various degrees in the multi-units Fukushima Daiichi site. This paper reviews and compares a typical BWR SPAR Level 2 model with the “real” accident progressions and sequences occurred in Fukushima Daiichi Units 1, 2, and 3. It shows that the SPAR Level 2 model is a robust PRA model that could very reasonably describe the accident progression for a real and complicated nuclear accident in the world. On the other hand, the comparison shows that the SPAR model could be enhanced by incorporating some accident characteristics for better representation of severe accident progression.

  9. A model national emergency plan for radiological accidents

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request

  10. A model national emergency response plan for radiological accidents

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a results, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request. 2 tabs

  11. Development of radiation dose assessment system for radiation accident (RADARAC)

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC-INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC-DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  12. Developement of integrated evaluation system for severe accident management

    Kim, Dong Ha; Kim, H. D.; Park, S. Y.; Kim, K. R.; Park, S. H.; Choi, Y.; Song, Y. M.; Ahn, K. I.; Park, J. H

    2005-04-01

    The scope of the project includes four activities such as construction of DB, development of data base management tool, development of severe accident analysis code system and FP studies. In the construction of DB, level-1,2 PSA results and plant damage states event trees were mainly used to select the following target initiators based on frequencies: LLOCA, MLOCA, SLOCA, station black out, LOOP, LOFW and SGTR. These scenarios occupy more than 95% of the total frequencies of the core damage sequences at KSNP. In the development of data base management tool, SARD 2.0 was developed under the PC microsoft windows environment using the visual basic 6.0 language. In the development of severe accident analysis code system, MIDAS 1.0 was developed with new features of FORTRAN-90 which makes it possible to allocate the storage dynamically and to use the user-defined data type, leading to an efficient memory treatment and an easy understanding. Also for user's convenience, the input (IEDIT) and output (IPLOT) processors were developed and implemented into the MIDAS code. For the model development of MIDAS concerning the FP behavior, the one dimensional thermophoresis model was developed and it gave much improvement to predict the amount of FP deposited on the SG U-tube. Also the source term analysis methodology was set up and applied to the KSNP and APR1400.

  13. Development of the severe accident risk information database management system SARD

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies

  14. Development of the severe accident risk information database management system SARD

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies.

  15. MELCOR modeling of Fukushima unit 2 accident

    Sevon, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2014-12-15

    A MELCOR model of the Fukushima Daiichi unit 2 accident was created in order to get a better understanding of the event and to improve severe accident modeling methods. The measured pressure and water level could be reproduced relatively well with the calculation. This required adjusting the RCIC system flow rates and containment leak area so that a good match to the measurements is achieved. Modeling of gradual flooding of the torus room with water that originated from the tsunami was necessary for a satisfactory reproduction of the measured containment pressure. The reactor lower head did not fail in this calculation, and all the fuel remained in the RPV. 13 % of the fuel was relocated from the core area, and all the fuel rods lost their integrity, releasing at least some volatile radionuclides. According to the calculation, about 90 % of noble gas inventory and about 0.08 % of cesium inventory was released to the environment. The release started 78 h after the earthquake, and a second release peak came at 90 h. Uncertainties in the calculation are very large because there is scarce public data available about the Fukushima power plant and because it is not yet possible to inspect the status of the reactor and the containment. Uncertainty in the calculated cesium release is larger than factor of ten.

  16. MELCOR modeling of Fukushima unit 2 accident

    A MELCOR model of the Fukushima Daiichi unit 2 accident was created in order to get a better understanding of the event and to improve severe accident modeling methods. The measured pressure and water level could be reproduced relatively well with the calculation. This required adjusting the RCIC system flow rates and containment leak area so that a good match to the measurements is achieved. Modeling of gradual flooding of the torus room with water that originated from the tsunami was necessary for a satisfactory reproduction of the measured containment pressure. The reactor lower head did not fail in this calculation, and all the fuel remained in the RPV. 13 % of the fuel was relocated from the core area, and all the fuel rods lost their integrity, releasing at least some volatile radionuclides. According to the calculation, about 90 % of noble gas inventory and about 0.08 % of cesium inventory was released to the environment. The release started 78 h after the earthquake, and a second release peak came at 90 h. Uncertainties in the calculation are very large because there is scarce public data available about the Fukushima power plant and because it is not yet possible to inspect the status of the reactor and the containment. Uncertainty in the calculated cesium release is larger than factor of ten.

  17. Strategy for the Development of Severe Accident Analysis Technology

    To ensure the safety of people living near the nuclear power plants during the postulated events of severe accidents, a severe accident management strategy is prepared for the operating reactors and dedicated engineered features for the severe accidents are under research and development for the new reactors, such as GEN-III reactors. To accomplish these tasks, not only a proper understanding of fundamental physics of severe accident phenomena but also reliable computer codes for analyzing the severe accident phenomena is very necessary. This report deals with a strategic plan for a development and provision of computer code system for analyzing the severe accidents. This reports includes a summary of major phenomena of severe accidents, an peer review of the computer codes for analyzing the integral behavior of severe accident scenario and computer codes for analyzing the specific phenomena. Finally, a strategic plan for an equipment of severe accident computer codes either by use of already available computer codes or a development of our own computer codes, which could be competitive with world class foreign computer codes

  18. Development of Database for Accident Analysis in Indian Mines

    Tripathy, Debi Prasad; Guru Raghavendra Reddy, K.

    2015-08-01

    Mining is a hazardous industry and high accident rates associated with underground mining is a cause of deep concern. Technological developments notwithstanding, rate of fatal accidents and reportable incidents have not shown corresponding levels of decline. This paper argues that adoption of appropriate safety standards by both mine management and the government may result in appreciable reduction in accident frequency. This can be achieved by using the technology in improving the working conditions, sensitising workers and managers about causes and prevention of accidents. Inputs required for a detailed analysis of an accident include information on location, time, type, cost of accident, victim, nature of injury, personal and environmental factors etc. Such information can be generated from data available in the standard coded accident report form. This paper presents a web based application for accident analysis in Indian mines during 2001-2013. An accident database (SafeStat) prototype based on Intranet of the TCP/IP agreement, as developed by the authors, is also discussed.

  19. Health effects estimation code development for accident consequence analysis

    As part of a computer code system for nuclear reactor accident consequence analysis, two computer codes have been developed for estimating health effects expected to occur following an accident. Health effects models used in the codes are based on the models of NUREG/CR-4214 and are revised for the Japanese population on the basis of the data from the reassessment of the radiation dosimetry and information derived from epidemiological studies on atomic bomb survivors of Hiroshima and Nagasaki. The health effects models include early and continuing effects, late somatic effects and genetic effects. The values of some model parameters are revised for early mortality. The models are modified for predicting late somatic effects such as leukemia and various kinds of cancers. The models for genetic effects are the same as those of NUREG. In order to test the performance of one of these codes, it is applied to the U.S. and Japanese populations. This paper provides descriptions of health effects models used in the two codes and gives comparisons of the mortality risks from each type of cancer for the two populations. (author)

  20. Development of training course about Fukushima Daiichi NPPs accident

    The East Japan Great Earthquake and the resulting Tsunamis struck the Fukushima Daiichi Nuclear Power Plants on March 11, 2011, followed by the severe accidents falling into the core damage and the release of radioactive materials. This paper describes the new training program which BTC developed to help operators learn the accident sequence and lessons and the effect of countermeasures. (author)

  1. PSA modeling of long-term accident sequences

    In the traditional Level 1 PSA, the long term of the accident sequences is usually taken into account in a simplified manner. For example, some of the mitigations which are needed at long term are taken into account in the PSA, but the analysis and the associated failures probabilities quantification are estimated based on generic assessments. In the context of the extension of PSA scope to include the external hazards, in France, both operator (EDF) and IRSN work for the improvement of methods to better take into account in the PSA the long term of accident sequences induced by initiators which affect the whole site containing several nuclear installations (reactors, fuel pools, ...). This is an essential prerequisite for the development of external hazards PSA. It has to be noted that in the French PSA, even before Fukushima, this type of accident sequences was already taken into account, many insight being used, as complementary information, to enhance the safety level of the plants. The recent French and international operating experience is an opportunity for tuning the actual PSA methods for long term accident sequences modeling. The paper presents the main results of the ongoing efforts in this area. (author)

  2. Development of a mathematical model for studying rewetting of reactor fuel elements after a loss-of-coolant accident

    The ZETHYF model allows studying the flow, heat transmission and temperature conditions in a cooling channel and, thus, recretting of reactor fuel elements. Coolant flow is calculated for a single-phase or dual-phase coolant along coolant channel on the assumption of constant pressure. Within dual-phase flow, a thermodynamically balanced slip flow is assumed for small steam volume proportions and saturation temperature is assumed for water still existing in the form of droplets. Droplet velocity is represented by means of a momentum balance between steam and droplet, evaporation of droplets is established by means of heat supply from steam, cladding tube wall and by thermal radiation. Minimum film boiling temperature is taken as a criterium for secretting and is compared with local cladding tube temperature which is established by way of a 2-D thermal conduction equation check calculation of experiments (Flecht) yielded sufficient agreement. Calculation results yielded a somewhat slower cooling of heating element and, consequently, delayed rewetting. (orig./HP)

  3. Lessons Learned from the Past Accidents for Safety Culture Development

    All nuclear organizations strive to sustain and improve safety. There is diversity in the way organizations understand the concept of safety and the actions that can help to drive improvements. This paper presents an overview of the lessons to be learned from past nuclear accidents and their relevance for the development of nuclear safety culture. Although the term Safety Culture emerged after the Chernobyl accident, the factors that contributed to earlier accidents, of which the most notable was the accident of Three Mile Island Unit 2 , are also relevant for nuclear safety culture. As regards the Fukushima accident from 2011, safety culture was once again brought into discussion. It is easier to manage the workplaces and the organizations than the minds of employees, as it is not possible to change the human condition, but changing the conditions under which people work. For this, the commitment of the top management is important, without which, it is not possible to make the necessary changes. (author)

  4. Advanced accident sequence precursor analysis level 1 models

    Sattison, M.B.; Thatcher, T.A.; Knudsen, J.K.; Schroeder, J.A.; Siu, N.O. [Idaho National Engineering Lab., Idaho National Lab., Idaho Falls, ID (United States)

    1996-03-01

    INEL has been involved in the development of plant-specific Accident Sequence Precursor (ASP) models for the past two years. These models were developed for use with the SAPHIRE suite of PRA computer codes. They contained event tree/linked fault tree Level 1 risk models for the following initiating events: general transient, loss-of-offsite-power, steam generator tube rupture, small loss-of-coolant-accident, and anticipated transient without scram. Early in 1995 the ASP models were revised based on review comments from the NRC and an independent peer review. These models were released as Revision 1. The Office of Nuclear Regulatory Research has sponsored several projects at the INEL this fiscal year to further enhance the capabilities of the ASP models. Revision 2 models incorporates more detailed plant information into the models concerning plant response to station blackout conditions, information on battery life, and other unique features gleaned from an Office of Nuclear Reactor Regulation quick review of the Individual Plant Examination submittals. These models are currently being delivered to the NRC as they are completed. A related project is a feasibility study and model development of low power/shutdown (LP/SD) and external event extensions to the ASP models. This project will establish criteria for selection of LP/SD and external initiator operational events for analysis within the ASP program. Prototype models for each pertinent initiating event (loss of shutdown cooling, loss of inventory control, fire, flood, seismic, etc.) will be developed. A third project concerns development of enhancements to SAPHIRE. In relation to the ASP program, a new SAPHIRE module, GEM, was developed as a specific user interface for performing ASP evaluations. This module greatly simplifies the analysis process for determining the conditional core damage probability for a given combination of initiating events and equipment failures or degradations.

  5. Development of simplified evaluation models for the first power peak during a criticality accident and its verification by the TRACE code simulated results based on CRAC experimental data

    In a reprocessing facility or a part of uranium fuel manufacturing facility where nuclear fuel solution is processed, one could frequently observe a series of power peaks with the first highest right after a criticality accident. The criticality alarm system (CAS) is designed to detect the first power peak and immediately warn workers around the reacting material by any means such as sounding alarms. Consequently, exposure of the workers could be minimized by an immediate and effective evacuation. Therefore in the design and installation of CAS, it is necessary to estimate the magnitude of the first power peak and to set up the threshold point for CAS initiating alarm. Furthermore, it is necessary to estimate the potential level of accidental exposure of workers so as to decide whether or not it is appropriate to install CAS for any compartment. In this report, simplified evaluation models to estimate the minimum scale of the first power peak and the released energy during a criticality accident are derived only by theoretical consideration for use in the design of CAS to set up the threshold point triggering the alarm signal. Other simplified evaluation models are in the same way derived to estimate the maximum scale of the first power peak and the released energy and to predict possible exposure level of workers to be used to judge the appropriateness of CAS installation. These evaluation models are shown to have adequate margin in predicting the minimum and maximum scale of criticality accidents by comparing their results with French CRAC experiment data. Furthermore, comparison of the maximum scale of the first power peak simplified evaluation, has been made with simulated results by the TRACE code based on the extrapolated conditions predicted by the CRAC experiment data to verify the effectiveness of the derived evaluation models

  6. The accident evolution and barrier model applied to incident analysis in the processing industries

    This study presents a model for how accidents develop and how the accident evolution can be arrested. The model describes the interaction between the technical and human-organizational systems which may lead to an accident. The framework provided by the model may be used in predictive safety analyses as well as in post-hoc incident analyses. To illustrate this, the model is applied on an incident reported by the nuclear industry of Sweden. In general, application of the model will indicate where safety can be improved and raises questions about issues such as the cost, feasibility and effectiveness of different ways of increasing safety. (author). 15 refs, 2 figs

  7. WASA-BOSS. ATHLET-CD model for severe accident analysis for a generic KONVOI reactor

    Tusheva, Polina; Schaefer, Frank; Kozmenkov, Yaroslav; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Reactor Safety Div.; Hollands, Thorsten [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Trometer, Ailine; Buck, Michael [Stuttgart Univ. (Germany). Dept. of Reactor Safety, Systems and Environment

    2015-07-15

    Within the scope of the ongoing joint research project WASA-BOSS (Weiterentwicklung und Anwendung von Severe Accident Codes - Bewertung und Optimierung von Stoerfallmassnahmen) an ATHLET-CD model for investigation of severe accident scenarios has been developed. The model represents a generic pressurized water reactor (PWR) of type KONVOI. It has been applied for analyzing selected hypothetical core degradation scenarios, considering application of countermeasures and accident management measures, during the early phase of an accident, as well as the late in-vessel phase, when the core degradation process has already begun. Possible accident management measures for loss of coolant (LOCA) and station blackout (SBO) scenarios are discussed. This paper focuses on the ATHLET-CD model development and results from selected simulations for a SBO scenario without and with application of countermeasures.

  8. WASA-BOSS. ATHLET-CD model for severe accident analysis for a generic KONVOI reactor

    Within the scope of the ongoing joint research project WASA-BOSS (Weiterentwicklung und Anwendung von Severe Accident Codes - Bewertung und Optimierung von Stoerfallmassnahmen) an ATHLET-CD model for investigation of severe accident scenarios has been developed. The model represents a generic pressurized water reactor (PWR) of type KONVOI. It has been applied for analyzing selected hypothetical core degradation scenarios, considering application of countermeasures and accident management measures, during the early phase of an accident, as well as the late in-vessel phase, when the core degradation process has already begun. Possible accident management measures for loss of coolant (LOCA) and station blackout (SBO) scenarios are discussed. This paper focuses on the ATHLET-CD model development and results from selected simulations for a SBO scenario without and with application of countermeasures.

  9. Thermal-hydraulic modeling of reactivity accidents in MTR reactors

    Khater Hany

    2006-01-01

    Full Text Available This paper describes the development of a dynamic model for the thermal-hydraulic analysis of MTR research reactors during a reactivity insertion accident. The model is formulated for coupling reactor kinetics with feedback reactivity and reactor core thermal-hydraulics. To represent the reactor core, two types of channels are considered, average and hot channels. The developed computer program is compiled and executed on a personal computer, using the FORTRAN language. The model is validated by safety-related benchmark calculations for MTR-TYPE reactors of IAEA 10 MW generic reactor for both slow and fast reactivity insertion transients. A good agreement is shown between the present model and the benchmark calculations. Then, the model is used for simulating the uncontrolled withdrawal of a control rod of an ETRR-2 reactor in transient with over power scram trip. The model results for ETRR-2 are analyzed and discussed.

  10. Modeling of pipe break accident in a district heating system using RELAP5 computer code

    Reliability of a district heat supply system is a very important factor. However, accidents are inevitable and they occur due to various reasons, therefore it is necessary to have possibility to evaluate the consequences of possible accidents. This paper demonstrated the capabilities of developed district heating network model (for RELAP5 code) to analyze dynamic processes taking place in the network. A pipe break in a water supply line accident scenario in Kaunas city (Lithuania) heating network is presented in this paper. The results of this case study were used to demonstrate a possibility of the break location identification by pressure decrease propagation in the network. -- Highlights: ► Nuclear reactor accident analysis code RELAP5 was applied for accident analysis in a district heating network. ► Pipe break accident scenario in Kaunas city (Lithuania) district heating network has been analyzed. ► An innovative method of pipe break location identification by pressure-time data is proposed.

  11. Development of the MIDAS GUI environment for severe accident management and analyses

    Kim, K. R.; Park, S. H.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    MIDAS is being developed at KAERI as an integrated severe accident analysis code with existing model modification and new model addition. Also restructuring of the data transfer scheme is going on to improve user's convenience. In this paper, various MIDAS GUI systems which are input management system IEDIT, variable plotting system IPLOT, severe accident training simulator SATS, and online guidance module HyperKAMG, are introduced. In addition, detail functions and usage of these systems for severe accident management and analyses are described.

  12. Grey-Markov Model for Road Accidents Forecasting

    李相勇; 严余松; 蒋葛夫

    2003-01-01

    In order to improve the forecasting precision of road accidents, by introducing Markov chains forecasting method, a grey-Markov model for forecasting road accidents is established based on grey forecasting method. The model combines the advantages of both grey forecasting method and Markov chains forecasting method, overcomes the influence of random fluctuation data on forecasting precision and widens the application scope of the grey forecasting. An application example is conducted to evaluate the grey-Markov model, which shows that the precision of the grey-Markov model is better than that of grey model in forecasting road accidents.

  13. Effect of Candu Fuel Bundle Modeling on Sever Accident Analysis

    Dupleac, D.; Prisecaru, I. [Power Plant Engineering Faculty, Politehnica University, 313 Splaiul Independentei, 060042, sect. 6, Bucharest (Romania); Mladin, M. [Institute for Nuclear Research, Pitesti-Mioveni, 115400 (Romania)

    2009-06-15

    In a Candu 6 nuclear power reactor fuel bundles are located in horizontal Zircaloy pressure tubes through which the heavy-water coolant flows. Each pressure tube is surrounded by a concentric calandria tube. Outside the calandria tubes is the heavy-water moderator contained in the calandria itself. The moderator is maintained at a temperature of 70 deg. C by a separate cooling circuit. The moderator surrounding the calandria tubes provides a potential heat sink following a loss of core heat removal. The calandria vessel is in turn contained within a shield tank (or reactor vault), which provides biological shielding during normal operation and maintenance. It is a large concrete tank filled with ordinary water. During normal operation, about 0.4% of the core's thermal output is deposited in the shield tank and end shields, through heat transfer from the calandria structure and fission heating. In a severe accident scenario, the shield tank could provide an external calandria vessel cooling which can be maintained until the shield tank water level drops below the debris level. The Candu system design has specific features which are important to severe accidents progression and requires selective consideration of models, methods and techniques of severe accident evaluation. Moreover, it should be noted that the mechanistic models for severe accident in Candu system are largely less well validated and as the result the level of uncertainty remains high in many instances. Unlike the light water reactors, for which are several developed computer codes to analyze severe accidents, for Candu severe accidents analysis two codes were developed: MAAP4-Candu and ISAAC. However, both codes started by using MAAP4/PWR as reference code and implemented Candu 6 specific models. Thus, these two codes had many common features. Recently, a joint project involving Romanian nuclear organizations and coordinated by Politehnica University of Bucharest has been started. The purpose

  14. Development of a system of computer codes for severe accident analysis and its applications

    Jang, S. H.; Chun, S. W.; Jang, H. S. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1993-01-15

    As a continuing study for the development of a system of computer codes to analyze severe accidents which had been performed last year, major focuses were on the aspect of application of the developed code systems. As the first step, two most commonly used code packages other than STCP, i.e., MELCOR of NRC and MAAP of IDCOR were reviewed to compare the models that they used. Next, important heat transfer phenomena were surveyed as severe accident progressed. Particularly, debris bed coolability and molten core-concrete interaction were selected as sample models, and they were studied extensively. The recent theoretical works and experiments for these phenomena were surveyed, and also the relevant models adopted by major code packages were compared and assessed. Based on the results obtained in this study, it is expected to be able to take into account these phenomenological uncertainties when one uses the severe accident code packages for probabilistic safety assessments or accident management programs.

  15. Development of a system of computer codes for severe accident analysis and its applications

    As a continuing study for the development of a system of computer codes to analyze severe accidents which had been performed last year, major focuses were on the aspect of application of the developed code systems. As the first step, two most commonly used code packages other than STCP, i.e., MELCOR of NRC and MAAP of IDCOR were reviewed to compare the models that they used. Next, important heat transfer phenomena were surveyed as severe accident progressed. Particularly, debris bed coolability and molten core-concrete interaction were selected as sample models, and they were studied extensively. The recent theoretical works and experiments for these phenomena were surveyed, and also the relevant models adopted by major code packages were compared and assessed. Based on the results obtained in this study, it is expected to be able to take into account these phenomenological uncertainties when one uses the severe accident code packages for probabilistic safety assessments or accident management programs

  16. Development of Parameter Network for Accident Management Applications

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation

  17. Development of Parameter Network for Accident Management Applications

    Pak, Sukyoung; Ahemd, Rizwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek; Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    When a severe accident happens, it is hard to obtain the necessary information to understand of internal status because of the failure or damage of instrumentation and control systems. We learned the lessons from Fukushima accident that internal instrumentation system should be secured and must have ability to react in serious conditions. While there might be a number of methods to reinforce the integrity of instrumentation systems, we focused on the use of redundant behavior of plant parameters without additional hardware installation. Specifically, the objective of this study is to estimate the replaced value which is able to identify internal status by using set of available signals when it is impossible to use instrumentation information in a severe accident, which is the continuation of the paper which was submitted at the last KNS meeting. The concept of the VPN was suggested to improve the quality of parameters particularly to be logged during severe accidents in NPPs using a software based approach, and quantize the importance of each parameter for further maintenance. In the future, we will continue to perform the same analysis to other accident scenarios and extend the spectrum of initial conditions so that we are able to get more sets of VPNs and ANN models to predict the behavior of accident scenarios. The suggested method has the uncertainty underlain in the analysis code for severe accidents. However, In case of failure to the safety critical instrumentation, the information from the VPN would be available to carry out safety management operation.

  18. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage

  19. The DOE technology development programme on severe accident management

    The US Department of Energy (DOE) is sponsoring a programme in technology development aimed at resolving the technical issues in severe accident management strategies for advanced and evolutionary light water reactors (LWRs). The key objective of this effort is to achieve a robust defense-in-depth at the interface between prevention and mitigation of severe accidents. The approach taken towards this goal is based on the Risk Oriented Accident Analysis Methodology (ROAAM). Applications of ROAAM to the severe accident management strategy for the US AP600 advanced LWR have been effective both in enhancing the design and in achieving acceptance of the conclusions and base technology developed in the course of the work. This paper presents an overview of that effort and its key technical elements

  20. Development of Krsko Severe Accident Management Guidance (SAMG)

    In this lecture development of severe accident management guidances for Krsko NPP are described. Author deals with the history of severe accident management and implementation of issues (validation, review of E-plan and other aspects SAMG implementation guidance). Methods of Westinghouse owners group, of Combustion Engineering owners group, of Babcock and Wilcox owners group, of the BWR owners group, as well as application of US SAMG methodology in Europe and elsewhere are reviewed

  1. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented

  2. A MELCOR model of Fukushima Daiichi Unit 1 accident

    Highlights: • A MELCOR model of Fukushima Unit 1 accident was developed. • The MELCOR input file is published as Electronic Supplementary data with this paper. • Molten fuel was discharged to containment from broken reactor pressure vessel. • Almost all radioactive noble gases and about 0.05% of cesium inventory were released to the environment. • Calculated release rates from Units 1, 2, and 3 were compared with measured radiation dose rate. - Abstract: A MELCOR model of Fukushima Daiichi Unit 1 accident was developed. The model is based on publicly available information, and the MELCOR input file is published as Electronic Supplementary data with this paper. In order to reproduce the measured containment pressure, it was necessary to model a leak from the reactor coolant system. Recirculation pump seal leak, starting 5 h after the earthquake, was assumed in this study. The reactor pressure vessel lower head was calculated to fail, and all fuel was discharged to the containment. Almost all of the radioactive noble gases and about 0.05% of the cesium inventory were released to the environment, according to this calculation. Calculated release rates from Units 1, 2, and 3 were compared with measured radiation dose rate in the plant area

  3. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    Chang, Y.H.; Mosleh, A.; Dang, V.N

    2003-03-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  4. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patra, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baskes, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, C. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miao, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Ye, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Hofman, G. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, A. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, W. [ANATECH Corp., San Diego, CA (United States)

    2015-09-01

    U3Si2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy’s Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U3Si2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  5. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    U3Si2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy's Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U3Si2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  6. Severe accident tests and development of domestic severe accident system codes

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  7. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  8. Applying Functional Modeling for Accident Management of Nucler Power Plant

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigates applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  9. An analysis of LOCA sequences in the development of severe accident analysis DB

    Although a Level 2 PSA was performed for the Korean Standard Power Plants (KSNPs), and it considered the necessary sequences for an assessment of the containment integrity and source term analysis. In terms of an accident management, however, more cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results. At present, KAERI is calculating the severe accident sequences intensively for various initiating events and generating a database for the accident progression including thermal hydraulic and source term behaviours. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by knowledge-base technique, and the expected plant behaviour. The plant model used in this paper is oriented to the case of LOCAs related severe accident phenomena and thus can simulate the plant behaviours for a severe accident. Therefore the developed system may play a central role as an information source for decision-making for a severe accident management, and will be used as a training simulator for a severe accident management. (author)

  10. Models for describing the behaviour of light water reactors in serious accidents for the programs SCDAP/RELAP5, ATHLET/SA, CATHARE/ICARE, MELCOR etc.. First technical report on BMFT-sponsored research project 1500 831 7: Comparative assessment of different computer codes for severe accident analysis, contribution to the ATHLET/CD code development

    Within the scope of the project BMFT No. 15008317 entitled ''Comparative Assessment of Different Computer Codws for Severe Accident Analysis, Contribution to the ATHLET/SA-Code Development'' the codes ATHLET/SA, CATHARE/ICARE, MELCOR and SCDAP/RELAP5 are investigated. Emphasis is put on a comparison and an assessment of the governing modelling features implemented and operating in the codes under consideration. The codes are evaluated and compared on the base of selected experiments (especially the CORA experimental program of the Karlsruhe Research Center) and relevant severe accident scenarios. The present report is a reference study dealing with the governing models implemented in the severe accident codes SCDAP/RELAP5, ATHLET/SA, CATHARE/ICARE, MELCOR, KESS-III, MAAP and MELPROG/TRAC. Emphaisis is laid on the following models (molstly implemented in form of modules in the respective codes) dealing with: - thermal hydraulics; - heat generation and heat structures; - Radiation heat transfer; - mechanical (rod) behaviour; - core heatup, meltdown and relocation; - chemical reaction; - fission product release and transport; - material properties; - specific components. (orig.)

  11. Emergency control system based on the analytical hierarchy process and coordinated development degree model for sudden water pollution accidents in the Middle Route of the South-to-North Water Transfer Project in China.

    Long, Yan; Xu, Guobin; Ma, Chao; Chen, Liang

    2016-06-01

    Water transfer projects are important for realizing reasonable allocation of water resources, but once a water pollution accident occurs during such a project, the water environment is exposed to enormous risks. Therefore, it is critical to determine an appropriate emergency control system (ECS) for sudden water pollution accidents that occur in water transfer projects. In this study, the analytical hierarchy process (AHP) integrated with the coordinated development degree model (CDDM) was used to develop the ECS. This ECS was developed into two parts, including the emergency risk assessment and the emergency control. Feasible emergency control targets and control technology were also proposed for different sudden water pollution accidents. A demonstrative project was conducted in the Fangshui to Puyang channel, which is part of the Beijing-Shijiazhuang Emergency Water Supply Project (BSP) in the Middle Route of the South-to-North Water Transfer Project (MR-SNWTP) in China. However, we could not use an actual toxic soluble pollutant to validate our ECS, so we performed the experiment with sucrose to test the ECS based on its concentration variation. The relative error of peak sucrose concentration was less than 20 %. PMID:26979314

  12. Model based detection and reconstruction of road traffic accidents

    Hiemer, Marcus

    2005-01-01

    This thesis describes the detection and reconstruction of traffic accidents with event data recorders. The underlying idea is to describe the vehicle motion and dynamics up to the stability limit by means of linear and non-linear vehicle models. These models are used to categorize the driving behavior and to freeze the recorded data in a memory if an accident occurs. Based on these data, among others the vehicle trajectory is reconstructed with fuzzy data fusion. The side slip angle whi...

  13. Health effects models for nuclear power plant accident consequence analysis

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model

  14. Risk forecasting and evaluating model of Environmental pollution accident

    ZENG Wei-hua; CHENG Sheng-tong

    2005-01-01

    Environmental risk (ER) fact ore come from ER source and they are controlled by the primary control mechanism (PCM) of environmental risk, due to the self failures or the effects of external environment risk trigger mechanism, the PCM could not work regularly any more, then, the ER factore will release environmental space, and an ER field is formed up. The forming of ER field does not mean that any environmental pollution accident(EPA) will break out; only the ER receptore are exposed in the ER field and damaged seriously,the potential ER really turns into an actual EPA. Researching on the general laws of evolving from environmental risk to EPA, this paper bring forwards a relevant concept model of risk forecasting and evaluating of EPA. This model provides some scientific methods for risk evaluation, prevention and emergency response of EPA. This model not only enriches and develops the theory system of environment safety and emergency response, but also acts as an instruction for public safety, enterprise' s safety management and emergency response of the accident.

  15. A systematic process for developing and assessing accident management plans

    This document describes a four-phase approach for developing criteria recommended for use in assessing the adequacy of nuclear power plant accident management plans. Two phases of the approach have been completed and provide a prototype process that could be used to develop an accident management plan. Based on this process, a preliminary set of assessment criteria are derived. These preliminary criteria will be refined and improved when the remaining steps of the approach are completed, that is, after the prototype process is validated through application. 9 refs., 10 figs., 7 tabs

  16. Phenomenological and mechanistic modeling of melt-structure-water interactions in a light water reactor severe accident

    The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance

  17. Traffic Accident, System Model and Cluster Analysis in GIS

    Veronika Vlčková

    2015-07-01

    Full Text Available One of the many often frequented topics as normal journalism, so the professional public, is the problem of traffic accidents. This article illustrates the orientation of considerations to a less known context of accidents, with the help of constructive systems theory and its methods, cluster analysis and geoinformation engineering. Traffic accident is reframing the space-time, and therefore it can be to study with tools of technology of geographic information systems. The application of system approach enabling the formulation of the system model, grabbed by tools of geoinformation engineering and multicriterial and cluster analysis.

  18. A web-based nuclear accident illumination system based on multilevel flow model - for risk communication and nuclear safety culture

    This paper introduces a new method to illuminate the nuclear accident by Multilevel Flow Model, and based on the method, a web-based nuclear accident illumination system is proposed to represent the current nuclear accident in nuclear power plant of Japan in an understandable way. The MFM is a means-end and part-whole modeling method to describe the structure and the intention of a plant process. The relationship between the MFM functions enables accident prediction for a plant process. Thus, a web-based accident illumination system based by MFM can describe the nuclear accident in the nuclear power plant clearly and be accessed by public to make the public get to know and understand the nuclear power and nuclear risk. The public can build their own confidence of the nuclear power by their understanding of the nuclear accident with this system and this is helpful to build a harmonious development environment for nuclear power. (author)

  19. TIRE MODELS USED IN VEHICLE DYNAMIC APPLICATIONS AND THEIR USING IN VEHICLE ACCIDENT SIMULATIONS

    Osman ELDOĞAN

    1995-01-01

    Full Text Available Wheel model is very important in vehicle modelling, it is because the contact between vehicle and road is achieved by wheel. Vehicle models can be dynamic models which are used in vehicle design, they can also be models used in accident simulations. Because of the importance of subject, many studies including theoretical, experimental and mixed type have been carried out. In this study, information is given about development of wheel modelling and research studies and also use of these modellings in traffic accident simulations.

  20. Sensitivity analysis in severe accidents semi-mechanistic modeling

    A sensitivity analysis to determine the most influent phenomena in the core melt progression to be considered in a semi-mechanistic modeling have been performed in the present work. The semi-mechanistic program MARCH3 and the TMI-2 plant parameters were used in the TMI-2 severe accident. The sensitivity analysis was performed with the comparison of the results obtained by the program with the plant data recorded during the accident. The results enabled us to verify that although many phenomena are present in the accident, the modelling of the most important ones was enough to reproduce, at least in a qualitative way, the accident progression. This fact reflects the importance of the sensitivity analysis to select the most influent phenomena in a core melting process. (author). 48 refs., 28 figs., 6 tabs

  1. A method for modeling and analysis of directed weighted accident causation network (DWACN)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Ding, Jing

    2015-11-01

    Using complex network theory to analyze accidents is effective to understand the causes of accidents in complex systems. In this paper, a novel method is proposed to establish directed weighted accident causation network (DWACN) for the Rail Accident Investigation Branch (RAIB) in the UK, which is based on complex network and using event chains of accidents. DWACN is composed of 109 nodes which denote causal factors and 260 directed weighted edges which represent complex interrelationships among factors. The statistical properties of directed weighted complex network are applied to reveal the critical factors, the key event chains and the important classes in DWACN. Analysis results demonstrate that DWACN has characteristics of small-world networks with short average path length and high weighted clustering coefficient, and display the properties of scale-free networks captured by that the cumulative degree distribution follows an exponential function. This modeling and analysis method can assist us to discover the latent rules of accidents and feature of faults propagation to reduce accidents. This paper is further development on the research of accident analysis methods using complex network.

  2. Traffic Accident Prediction Model Implementation in Traffic Safety Management

    Wen, Keyao

    2009-01-01

    As one of the highest fatalities causes, traffic accidents and collisions always requires a large amounteffort to be reduced or prevented from occur. Traffic safety management routines therefore always needefficient and effective implementation due to the variations of traffic, especially from trafficengineering point of view apart from driver education.Traffic Accident Prediction Model, considered as one of the handy tool of traffic safety management,has become of well followed with interest...

  3. Development of emergency response support system for accident management

    Specific measures for the accident management (AM) are proposed to prevent the severe accident and to mitigate their effects in order to upgrade the safety of nuclear power plants even further. To ensure accident management effective, it is essential to grasp the plant status accurately. In consideration of the above mentioned background, the Emergency Response Support System (ERSS) was developed as a computer assisted prototype system by a joint study of Japanese BWR group. This system judges and predicts the plant status at the emergency condition in a nuclear power plant. This system displays the results of judgment and prediction. The effectiveness of the system was verified through the test and good prospects for applying the system to a plant was obtained. 7 refs., 10 figs

  4. Formation of decontamination cost calculation model for severe accident consequence assessment

    In previous studies, the authors developed an index “cost per severe accident” to perform a severe accident consequence assessment that can cover various kinds of accident consequences, namely health effects, economic, social and environmental impacts. Though decontamination cost was identified as a major component, it was taken into account using simple and conservative assumptions, which make it difficult to have further discussions. The decontamination cost calculation model was therefore reconsidered. 99 parameters were selected to take into account all decontamination-related issues, and the decontamination cost calculation model was formed. The distributions of all parameters were determined. A sensitivity analysis using the Morris method was performed in order to identify important parameters that have large influence on the cost per severe accident and large extent of interactions with other parameters. We identified 25 important parameters, and fixed most negligible parameters to the median of their distributions to form a simplified decontamination cost calculation model. Calculations of cost per severe accident with the full model (all parameters distributed), and with the simplified model were performed and compared. The differences of the cost per severe accident and its components were not significant, which ensure the validity of the simplified model. The simplified model is used to perform a full scope calculation of the cost per severe accident and compared with the previous study. The decontamination cost increased its importance significantly. (author)

  5. Core/concrete interaction model for full scope simulation of severe accidents

    Nuclear plant training simulators have only recently begun to model severe loss-of-coolant accidents in which molten core material can relocate to the bottom of the reactor vessel, fail the vessel, and migrate to the containment. For those accident sequences in which core debris )corium) can accumulate in direct contact with concrete in the containment, the potential for concrete erosion and its phenomenological consequences must be assessed in order that operator training for severe accidents can be attempted. The core/concrete interaction model presented in this paper was developed for the Westinghouse full scope simulator. It allows for extension of transient simulation to conditions beyond vessel failure, and is intended for real-time operator training for severe accidents on a full scope simulator. The model predictions compare favorably with more detailed MAAP calculations

  6. Role of accident analysis in development of severe accident management guidance for multi-unit CANDU nuclear power plants

    This paper discusses the role of accident analysis in support of the development of Severe Accident Management Guidance for domestic CANDU reactors. In general, analysis can identify what types of challenges can be expected during accident progression but it cannot specify when and to what degree accident phenomena will occur. SAMG overcomes these limitations by monitoring the actual values of key plant indicators that can be used directly or indirectly to infer the condition of the plant and by establishing setpoints beyond which corrective action is required. Analysis can provide a means to correlate observed post-accident plant behavior against predicted behaviour to improve the confidence in and quality of accident mitigation decisions. (author)

  7. Development and validation of Maanshan severe accident management guidelines

    Maanshan is a Westinghouse pressurized water reactor Nuclear Power Plant (NPP) located in south Taiwan. The Severe Accident Management Guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG. The Maanshan SAMG is developed at the end of 2002. MAAP4 code is used as tool to validate the SAMG strategies. The development process and characteristics of Maanshan SAMG is described. A Station BlackOut (SBO) accident for Maanshan NPP which occurred in March 2001 is cited as a reference case for SAMG validation. A SBO accident is simulated first. The severe accident progression is simulated and the entry condition of SAMG is described. Mitigation actions are then applied to demonstrate the effect of SAMG. A RCS depressurization, RCS injection, and containment hydrogen reduction strategies are used to restore the system to a stable condition as power is recovered. Hot leg creep rupture is occurs during the mitigation action that is not considered in WOG SAMG. The effect of the RCS depressurization, RCS injection, and containment hydrogen reduction strategies are analyzed with MAAP4 code

  8. Typical pedestrian accident scenarios for the development of autonomous emergency braking test protocols.

    Lenard, James; Badea-Romero, Alexandro; Danton, Russell

    2014-12-01

    An increasing proportion of new vehicles are being fitted with autonomous emergency braking systems. It is difficult for consumers to judge the effectiveness of these safety systems for individual models unless their performance is evaluated through track testing under controlled conditions. This paper aimed to contribute to the development of relevant test conditions by describing typical circumstances of pedestrian accidents. Cluster analysis was applied to two large British databases and both highlighted an urban scenario in daylight and fine weather where a small pedestrian walks across the road, especially from the near kerb, in clear view of a driver who is travelling straight ahead. For each dataset a main test configuration was defined to represent the conditions of the most common accident scenario along with test variations to reflect the characteristics of less common accident scenarios. Some of the variations pertaining to less common accident circumstances or to a minority of casualties in these scenarios were proposed as optional or supplementary test elements for an outstanding performance rating. Many considerations are incorporated into the final design and implementation of an actual testing regime, such as cost and the state of development of technology; only the representation of accident data lay within the scope of this paper. It would be desirable to ascertain the wider representativeness of the results by analysing accident data from other countries in a similar manner. PMID:25180785

  9. Accident progression modelling: containment event trees

    Containment Event Trees (CETs) are used to represent the various potential accident progressions following core melt. The EVNTRE code has a sophisticated Monte-Carlo capability. In this paper the small CET approach uses Decompositions Event Trees (DETs) to analyse the issues behind the CET headers and large CET approach (EVNTRE/NUREG-1150) are presented. The equipment survivability impact in CET, source term assignment via grouping of sequences into categories or by use of parametric code, sensitivity studies versus full Monte-Carlo simulation for study of the impact of uncertainties are also discussed

  10. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H2/air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author)

  11. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    Kim, Heui Dong; Cho, Sung Won; Park, Jong Hwa; Hong, Sung Wan; Yoo, Dong Han; Hwang, Moon Kyoo; Noh, Kee Man; Song, Yong Man [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H{sub 2}/air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author).

  12. An Evaluation Methodology Development and Application Process for Severe Accident Safety Issue Resolution

    Martin, Robert P.

    2012-01-01

    A general evaluation methodology development and application process (EMDAP) paradigm is described for the resolution of severe accident safety issues. For the broader objective of complete and comprehensive design validation, severe accident safety issues are resolved by demonstrating comprehensive severe-accident-related engineering through applicable testing programs, process studies demonstrating certain deterministic elements, probabilistic risk assessment, and severe accident management...

  13. Development of integrated computer code for analysis of risk reduction strategy; development of constitutive models of multiphase flows in severe accidents and safety analysis

    Bang, Kwang Hyun; Kim, Sun Sick; Park, Kyung Soo; Huh, Jae Kyung; Kim, Jong Myung; Chu, Won Ho [Korea Maritime University, Pusan (Korea)

    2002-03-01

    In the present work, experiments of flow film boiling and jet breakup have been conducted to develop a new set of data and constitutive relations as well as to better understand the phenomena. In flow film boiling experiment, a rotating water tank was used to achieve higher flow velocity. The flow velocity were 0.4{approx}1.5 m/s, the test sphere temperature were 500 .deg. C and 700 .deg. C, water temperature were 100 .deg. C and 90 .deg. C. Based on the present data, heat transfer correlations of saturated flow film boiling and subcooled flow film boiling have been constructed. In jet breakup experiment, Woods metal of 70 .deg. C melting temperature was used. Visualization of jet breakup provided characteristics of jet breakup in water. The jet velocity were 4.0{approx}7.0 m/s in tests of 10 mm jet diameter and 2.7{approx} 4.2 m/s in tests of 20 mm jet diameter. The debris were collected and sieved and the results show that the debris size of 1.0{approx}2.8 mm were the largest mass fraction, up to 50%. In the present experimental conditions, the Kelvin-Helmholtz instability is considered the most probable cause of jet breakup. 40 refs., 57 figs., 4 tabs. (Author)

  14. Development of Methodology for Spent Fuel Pool Severe Accident Analysis Using MELCOR Program

    Kim, Won-Tae; Shin, Jae-Uk [RETech. Co. LTD., Yongin (Korea, Republic of); Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The general reason why SFP severe accident analysis has to be considered is that there is a potential great risk due to the huge number of fuel assemblies and no containment in a SFP building. In most cases, the SFP building is vulnerable to external damage or attack. In contrary, low decay heat of fuel assemblies may make the accident processes slow compared to the accident in reactor core because of a great deal of water. In short, its severity of consequence cannot exclude the consideration of SFP risk management. The U.S. Nuclear Regulatory Commission has performed the consequence studies of postulated spent fuel pool accident. The Fukushima-Daiichi accident has accelerated the needs for the consequence studies of postulated spent fuel pool accidents, causing the nuclear industry and regulatory bodies to reexamine several assumptions concerning beyond-design basis events such as a station blackout. The tsunami brought about the loss of coolant accident, leading to the explosion of hydrogen in the SFP building. Analyses of SFP accident processes in the case of a loss of coolant with no heat removal have studied. Few studies however have focused on a long term process of SFP severe accident under no mitigation action such as a water makeup to SFP. USNRC and OECD have co-worked to examine the behavior of PWR fuel assemblies under severe accident conditions in a spent fuel rack. In support of the investigation, several new features of MELCOR model have been added to simulate both BWR fuel assembly and PWR 17 x 17 assembly in a spent fuel pool rack undergoing severe accident conditions. The purpose of the study in this paper is to develop a methodology of the long-term analysis for the plant level SFP severe accident by using the new-featured MELCOR program in the OPR-1000 Nuclear Power Plant. The study is to investigate the ability of MELCOR in predicting an entire process of SFP severe accident phenomena including the molten corium and concrete reaction. The

  15. Modeling and forecasting of accidents at nuclear industrial plants

    The papers on methodology of risk analysis are briefly reviewed. An analysis is performed for relationships between natural and technology-associated accidents. The program of works intended to create a standardization-methodical base of risk analysis at nuclear industrial plants is reported. A number of shortcomings is noted to exist in evaluating nuclear plant safety with the help of commonly used probabilistic criteria of safety. An algorithm of ecological-mathematical monitoring of potentially dangerous objects is suggested. It is pointed out that when developing mathematical models of potentially dangerous object operation not only technological processes, the stochasticity of heat- and mass transfer processes, environmental parameters should be taken into account but social and economical aspects as well

  16. Modeling and assessment of accident consequences; development of RODOS, a real-time on-line decision support system for nuclear emergencies in Europe

    In cooperation with NRPB (UK), the first version 1.0 of PC COSYMA for use on advanced PCs has been released; during a training course in mid 1993, future users were educated in operating the software. The main frame version of the program package COSYMA has been up-dated with new dose conversion factors and fodd-chain data and was distributed to some 20 institutes in Europe and abroad. The comparative calculations performed within the international OECD(NEA)/CEC intercomparison of accident consequence assessment codes were analysed and documented in three reports. Furtheron, consequence assessments have been performed for the research reactor BER II (two source terms) and documented; the influence on individual doses and emergency actions of inplant accident management measures in future EPRs was quantified; within th scope of a EC/US-study on the external costs of the energy cycle, accident consequences were assessed for three source terms. (orig.)

  17. Modelling of severe accident behaviour using the code ATHLET-CD

    Thermal-hydraulic and core degradation phenomena play a decisive role for the course of severe accidents in light water reactors. Therefore, the simulation of such accidents with computer codes requires comprehensive and detailed modelling of these processes. The code ATHLET-CD is being developed for realistic simulation of accidents with core degradation and for evaluation of accident management measures. It makes use of the detailed and validated models of the thermal-hydraulic code ATHLET in an efficient coupling with models for core degradation and fission product behaviour. The capabilities of the coupled code are demonstrated by means of the calculation of the TMI-2 accident. The first three phases of the accident were successfully simulated in a reasonable computing time. The calculated system pressure and pressurizer level after pump trip, during the pump restart, and until core slump are in acceptable agreement with the measured data. The calculated hydrogen generation before the pump restart is in accordance with the deduced value. Contrary to estimates based on the system behaviour, no significant hydrogen generation was calculated during the quench phase. Further model improvements regarding the quenching of degraded core material, fracture and relocation of solid fuel rods, as well as the simulation of debris bed behaviour are necessary for better simulation. (authors)

  18. Modelling and analysis of severe accidents for VVER-1000 reactors

    Tusheva, Polina

    2012-03-09

    effectiveness of the procedures strongly depends on the ability of the passive safety systems to inject as much water as possible into the reactor coolant system. The results on the early in-vessel phase have shown potentially delayed RPV failure by depressurization of the primary side, as slowing the core damage gives more time and different possibilities for operator interventions to recover systems and to mitigate or terminate the accident. The ANSYS model for the description of the molten pool behaviour in the RPV lower plenum has been extended by a model considering a stratified molten pool configuration. Two different pool configurations were analysed: homogeneous and segregated. The possible failure modes of the RPV and the time to failure were investigated to assess the possible loadings on the containment. The main treated issues are: the temperature field within the corium pool and the RPV and the structure-mechanical behaviour of the vessel wall. The results of the ASTEC calculations of the melt pool configuration were applied as initial conditions for the ANSYS simulations, allowing a more detailed and more accurate modelling of the thermal and mechanical behaviour of the core melt and the RPV wall. Moreover, for the late in-vessel phase, retention of the corium in the RPV was investigated presuming external cooling of the vessel wall as mitigative severe accident management measure. The study was based on the finite element computer code ANSYS. The highest thermomechanical loads are observed in the transition zone between the elliptical and the vertical vessel wall for homogeneous pool and in the vertical part of the vessel wall, which is in contact with the molten metal in case of sub-oxidized pool. Assuming external flooding will retain the corium within the RPV. Without flooding, the vessel wall will fail, as the necessary temperature for a balanced heat release from the external surface via radiation is near to or above the melting point of the steel.

  19. Modelling and analysis of severe accidents for VVER-1000 reactors

    effectiveness of the procedures strongly depends on the ability of the passive safety systems to inject as much water as possible into the reactor coolant system. The results on the early in-vessel phase have shown potentially delayed RPV failure by depressurization of the primary side, as slowing the core damage gives more time and different possibilities for operator interventions to recover systems and to mitigate or terminate the accident. The ANSYS model for the description of the molten pool behaviour in the RPV lower plenum has been extended by a model considering a stratified molten pool configuration. Two different pool configurations were analysed: homogeneous and segregated. The possible failure modes of the RPV and the time to failure were investigated to assess the possible loadings on the containment. The main treated issues are: the temperature field within the corium pool and the RPV and the structure-mechanical behaviour of the vessel wall. The results of the ASTEC calculations of the melt pool configuration were applied as initial conditions for the ANSYS simulations, allowing a more detailed and more accurate modelling of the thermal and mechanical behaviour of the core melt and the RPV wall. Moreover, for the late in-vessel phase, retention of the corium in the RPV was investigated presuming external cooling of the vessel wall as mitigative severe accident management measure. The study was based on the finite element computer code ANSYS. The highest thermomechanical loads are observed in the transition zone between the elliptical and the vertical vessel wall for homogeneous pool and in the vertical part of the vessel wall, which is in contact with the molten metal in case of sub-oxidized pool. Assuming external flooding will retain the corium within the RPV. Without flooding, the vessel wall will fail, as the necessary temperature for a balanced heat release from the external surface via radiation is near to or above the melting point of the steel.

  20. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  1. An integrated structure and scaling methodology for severe accident technical issue resolution: development of methodology

    Scaling has been identified as a particularly important element of the severe accident research program because of its relevance not only to experimentation, but also to analyses based on code calculations or special models. Recognizing the central importance of severe accident scaling issues, the United States Regulatory Commission implemented a severe accident scaling methodology (SASM) development program involving a lead laboratory contractor and a technical program group to guide the development and to demonstrate its practicality via a challenging application. The technical program group recognized that the severe accident scaling methodology was an integral part of a larger structure for technical issue resolution and, therefore, found the need to define and document this larger structure, the integrated structure for technical issue resolution (ISTIR). The larger part of the efforts have been devoted to the development and demonstration of the severe accident scaling methodology, which is component II of the ISTIR. The ISTIR and the SASM have been tested and demonstrated, by their application to a postulated direct containment heating scenario. The ISTIR objectives and process are summarized in this paper, as is its demonstration associated directly with the SASM. The objectives, processes and demonstration for the SASM are also summarized in the paper. The full body of work is referenced. (orig.)

  2. An integrated structure and scaling methodology for severe accident technical issue resolution: development of methodology

    Zuber, N.; Wilson, G.E. [Idaho National Engineering and Environmental Laboratory, PO Box 1625, Idaho Falls, ID 83415-3890 (United States); Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Wulff, W.; Lehner, J.R.; Valente, J. [Brookhaven National Laboratory, Building 475 B, Upton, NY 11973 (United States); Boyack, B.E. [Los Alamos National Laboratory, Mail Stop K555, Los Alamos, NM 87545 (United States); Dukler, A.E. [University of Houston, Houston, TX 77204-4791 (United States); Griffith, P. [Department of Mechanical Engineering, MIT, 138 Albany Street, Cambridge, MA 02139 (United States); Healzer, J.M.; Levy, S. [South Levy Inc., 3425 S. Bascom Avenue, Campbell, CA 95008 (United States); Henry, R.E. [Fauske and Associate, Inc., 16W070 West 83rd Street, Burr Ridge, IL 60521 (United States); Moody, F.J. [GE Nuclear Energy, 175 Curtner Avenue, MC 747, San Jose, CA 95125 (United States); Pilch, M. [Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185 (United States); Sehgal, B.R. [Royal Institute of Technology (KTH), Nuclear Power Safety, 100 44, Stockholm (Sweden); Spencer, B.W. [Argonne National Laboratory, 9700 South Case Avenue, Argonne, IL 60439 (United States); Theofanous, T.G. [Chemical and Nuclear Engineering Department, University of California - Santa Barbara, Santa Barbara, CA 93106 (United States)

    1998-11-01

    Scaling has been identified as a particularly important element of the severe accident research program because of its relevance not only to experimentation, but also to analyses based on code calculations or special models. Recognizing the central importance of severe accident scaling issues, the United States Regulatory Commission implemented a severe accident scaling methodology (SASM) development program involving a lead laboratory contractor and a technical program group to guide the development and to demonstrate its practicality via a challenging application. The technical program group recognized that the severe accident scaling methodology was an integral part of a larger structure for technical issue resolution and, therefore, found the need to define and document this larger structure, the integrated structure for technical issue resolution (ISTIR). The larger part of the efforts have been devoted to the development and demonstration of the severe accident scaling methodology, which is component II of the ISTIR. The ISTIR and the SASM have been tested and demonstrated, by their application to a postulated direct containment heating scenario. The ISTIR objectives and process are summarized in this paper, as is its demonstration associated directly with the SASM. The objectives, processes and demonstration for the SASM are also summarized in the paper. The full body of work is referenced. (orig.) 11 refs.

  3. Development of a system of computer codes for severe accident analyses and its applications

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy

  4. Development of a system of computer codes for severe accident analyses and its applications

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  5. Development status of Severe Accident Analysis Code SAMPSON

    The Four years of the IMPACT, 'Integrated Modular Plant Analysis and Computing Technology' project Phase 1 have been completed. The verification study of Severe Accident Analysis Code SAMPSON prototype developed in Phase 1 was conducted in two steps. First, each analysis module was run independently and analysis results were compared and verified against separate-effect test data with good results. Test data are as follows: CORA-13 (FZK) for the Core Heat-up Module; VI-3 of HI/VI Test (ORNL) for the FP Release from Fuel Module; KROTOS-37 (JRC-ISPRA) for the Molten Core Relocation Module; Water Spread Test (UCSB) for the Debris Spreading Model and Benard's Melting Test for Natural Convection Model in the Debris Cooling Module; Hydrogen Burning Test (NUPEC) for the Ex-Vessel Thermal Hydraulics Module; PREMIX, PM10 (FZK) for the Steam Explosion Module; and SWISS-2 (SNL) for the Debris-Concrete Interaction Module. Second, with the Simulation Supervisory System, up to 11 analysis modules were executed concurrently in the parallel environment (currently, NUPEC uses IBM-SP2 with 72 process elements), to demonstrate the code capability and integrity. The target plant was Surry as a typical PWR and the initiation events were a 10-inch cold leg failure. The analysis is divided to two cases; one is in-vessel retention analysis when the gap cooling is effective (In-vessel scenario test), the other is analysis of phenomena event is extended to ex-vessel due to the Reactor Pressure Vessel failure when the gap cooling is not sufficient (Ex-vessel scenario test). The system verification test has confirmed that the full scope of the scenarios can be analyzed and phenomena occurred in scenarios can be simulated qualitatively reasonably considering the physical models used for the situation. The Ministry of International Trade and Industry, Japan sponsors this work. (author)

  6. Development status of Severe Accident Analysis Code SAMPSON

    Iwashita, Tsuyoshi; Ujita, Hiroshi [Advanced Simulation Systems Department, Nuclear Power Engineering Corporation, Tokyo (Japan)

    2000-11-01

    The Four years of the IMPACT, 'Integrated Modular Plant Analysis and Computing Technology' project Phase 1 have been completed. The verification study of Severe Accident Analysis Code SAMPSON prototype developed in Phase 1 was conducted in two steps. First, each analysis module was run independently and analysis results were compared and verified against separate-effect test data with good results. Test data are as follows: CORA-13 (FZK) for the Core Heat-up Module; VI-3 of HI/VI Test (ORNL) for the FP Release from Fuel Module; KROTOS-37 (JRC-ISPRA) for the Molten Core Relocation Module; Water Spread Test (UCSB) for the Debris Spreading Model and Benard's Melting Test for Natural Convection Model in the Debris Cooling Module; Hydrogen Burning Test (NUPEC) for the Ex-Vessel Thermal Hydraulics Module; PREMIX, PM10 (FZK) for the Steam Explosion Module; and SWISS-2 (SNL) for the Debris-Concrete Interaction Module. Second, with the Simulation Supervisory System, up to 11 analysis modules were executed concurrently in the parallel environment (currently, NUPEC uses IBM-SP2 with 72 process elements), to demonstrate the code capability and integrity. The target plant was Surry as a typical PWR and the initiation events were a 10-inch cold leg failure. The analysis is divided to two cases; one is in-vessel retention analysis when the gap cooling is effective (In-vessel scenario test), the other is analysis of phenomena event is extended to ex-vessel due to the Reactor Pressure Vessel failure when the gap cooling is not sufficient (Ex-vessel scenario test). The system verification test has confirmed that the full scope of the scenarios can be analyzed and phenomena occurred in scenarios can be simulated qualitatively reasonably considering the physical models used for the situation. The Ministry of International Trade and Industry, Japan sponsors this work. (author)

  7. Modeling of the corium cooling and loading factor analysis for containment during severe accidents

    The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS) against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks' distributions considered and the results of their work in the corium cooling pool are compared to the data of other PPS's conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents

  8. Restructuring of an Event Tree for a Loss of Coolant Accident in a PSA model

    Lim, Ho-Gon; Han, Sang-Hoon; Park, Jin-Hee; Jang, Seong-Chul [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Conventional risk model using PSA (probabilistic Safety Assessment) for a NPP considers two types of accident initiators for internal events, LOCA (Loss of Coolant Accident) and transient event such as Loss of electric power, Loss of cooling, and so on. Traditionally, a LOCA is divided into three initiating event (IE) categories depending on the break size, small, medium, and large LOCA. In each IE group, safety functions or systems modeled in the accident sequences are considered to be applicable regardless of the break size. However, since the safety system or functions are not designed based on a break size, there exist lots of mismatch between safety system/function and an IE, which may make the risk model conservative or in some case optimistic. Present paper proposes new methodology for accident sequence analysis for LOCA. We suggest an integrated single ET construction for LOCA by incorporating a safety system/function and its applicable break spectrum into the ET. Integrated accident sequence analysis in terms of ET for LOCA was proposed in the present paper. Safety function/system can be properly assigned if its applicable range is given by break set point. Also, using simple Boolean algebra with the subset of the break spectrum, final accident sequences are expressed properly in terms of the Boolean multiplication, the occurrence frequency and the success/failure of safety system. The accident sequence results show that the accident sequence is described more detailed compared with the conventional results. Unfortunately, the quantitative results in terms of MCS (minimal Cut-Set) was not given because system fault tree was not constructed for this analysis and the break set points for all 7 point were not given as a specified numerical quantity. Further study may be needed to fix the break set point and to develop system fault tree.

  9. Restructuring of an Event Tree for a Loss of Coolant Accident in a PSA model

    Conventional risk model using PSA (probabilistic Safety Assessment) for a NPP considers two types of accident initiators for internal events, LOCA (Loss of Coolant Accident) and transient event such as Loss of electric power, Loss of cooling, and so on. Traditionally, a LOCA is divided into three initiating event (IE) categories depending on the break size, small, medium, and large LOCA. In each IE group, safety functions or systems modeled in the accident sequences are considered to be applicable regardless of the break size. However, since the safety system or functions are not designed based on a break size, there exist lots of mismatch between safety system/function and an IE, which may make the risk model conservative or in some case optimistic. Present paper proposes new methodology for accident sequence analysis for LOCA. We suggest an integrated single ET construction for LOCA by incorporating a safety system/function and its applicable break spectrum into the ET. Integrated accident sequence analysis in terms of ET for LOCA was proposed in the present paper. Safety function/system can be properly assigned if its applicable range is given by break set point. Also, using simple Boolean algebra with the subset of the break spectrum, final accident sequences are expressed properly in terms of the Boolean multiplication, the occurrence frequency and the success/failure of safety system. The accident sequence results show that the accident sequence is described more detailed compared with the conventional results. Unfortunately, the quantitative results in terms of MCS (minimal Cut-Set) was not given because system fault tree was not constructed for this analysis and the break set points for all 7 point were not given as a specified numerical quantity. Further study may be needed to fix the break set point and to develop system fault tree

  10. Final safety analysis report for the Galileo Mission: Volume 2, Book 2: Accident model document: Appendices

    1988-12-15

    This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in these appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.

  11. Reactor accident calculation models in use in the Nordic countries

    The report relates to a subproject under a Nordic project called ''Large reactor accidents - consequences and mitigating actions''. In the first part of the report short descriptions of the various models are given. A systematic list by subject is then given. In the main body of the report chapter and subchapter headings are by subject. (Auth.)

  12. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  13. Study on Developments in Accident Investigation Methods: A Survey of the 'State-of-the-Art'

    The objective of this project was to survey the main accident investigation methods that have been developed since the early or mid-1990s. The motivation was the increasing frequency of accidents that defy explanations in simple terms, for instance cause-effect chains or 'human error'. Whereas the complexity of socio-technical systems is steadily growing across all industrial domains, including nuclear power production, accident investigation methods are only updated when their inability to account for novel types of accidents and incidents becomes inescapable. Accident investigation methods therefore typically lag behind the socio-technological developments by 20 years or more. The project first compiled a set of methods from the recognised scientific literature and in major major research and development programs, excluding methods limited to risk assessment, technological malfunctions, human reliability, and safety management methods. An initial set of 21 methods was further reduced to seven by retaining only prima facie accident investigation methods and avoiding overlapping or highly similar methods. The second step was to develop a set of criteria used to characterise the methods. The starting point was Perrow's description of normal accidents in socio-technical systems, which used the dimensions of coupling, going from loose to tight, and interactions, going from linear to complex. For practical reasons, the second dimension was changed to that of tractability or how easy it is to describe the system, where the sub-criteria are the level of detail, the availability of an articulated model, and the system dynamics. On this basis the seven selected methods were characterised in terms of the systems - or conditions - they could account for, leading to the following four groups: methods suitable for systems that are loosely coupled and tractable, methods suitable for systems that are tightly coupled and tractable, methods suitable for systems that are loosely

  14. Illustration interface of accident progression in PWR by quick inference based on multilevel flow models

    In this paper, a new accident inference method is proposed by using a goal and function oriented modeling method called Multilevel Flow Model focusing on explaining the causal-consequence relations and the objective of automatic action in the accident of nuclear power plant. Users can easily grasp how the various plant parameters will behave and how the various safety facilities will be activated sequentially to cope with the accident until the nuclear power plants are settled into safety state, i.e., shutdown state. The applicability of the developed method was validated by the conduction of internet-based 'view' experiment to the voluntary respondents, and in the future, further elaboration of interface design and the further introduction of instruction contents will be developed to make it become the usable CAI system. (authors)

  15. Development of likelihood estimation method for criticality accidents of mixed oxide fuel fabrication facilities

    A criticality accident in a MOX fuel fabrication facility may occur depending on several parameters, such as mass inventory and plutonium enrichment. MOX handling units in the facility are designed and operated based on the double contingency principle to prevent criticality accidents. Control failures of at least two parameters are needed for the occurrence of criticality accident. To evaluate the probability of such control failures, the criticality conditions of each parameter for a specific handling unit are necessary for accident scenario analysis to be clarified quantitatively with a criticality analysis computer code. In addition to this issue, a computer-based control system for mass inventory is planned to be installed into MOX handling equipment in a commercial MOX fuel fabrication plant. The reliability analysis is another important issue in evaluating the likelihood of control failure caused by software malfunction. A likelihood estimation method for criticality accident has been developed with these issues been taken into consideration. In this paper, an example of analysis with the proposed method and the applicability of the method are also shown through a trial application to a model MOX fabrication facility. (author)

  16. Investigation of Key Factors for Accident Severity at Railroad Grade Crossings by Using a Logit Model

    Hu, Shou-Ren; Li, Chin-Shang; Lee, Chi-Kang

    2010-01-01

    Although several studies have used logit or probit models and their variants to fit data of accident severity on roadway segments, few have investigated accident severity at a railroad grade crossing (RGC). Compared to accident risk analysis in terms of accident frequency and severity of a highway system, investigation of the factors contributing to traffic accidents at an RGC may be more complicated because of additional highway–railway interactions. Because the proportional odds assumption ...

  17. Modelling and analysis of the behavior of LWRs at severe core accidents

    With respect to the assessment of the consequences of severe accidents in light water reactors from the initiation of the accident up to the thermal failure of the reactor pressure vessel (RPV), a modular program system has been developed. Experimental results will be considered with respect to the modeling of the fuel rod behavior, e.g. deformation of the fuel rod, metal water reaction and the melting of the fuel rods. The fuel and core models allow to estimate the coolability of fuel rods and core as well as the consequences of core meltdown accidents at various pressure levels. After partial failure of the lower core retention structure, the core material will drop into the lower plenum and heat up the RPV. This strong interaction between the thermal behavior of the remaining core and the partially dropped core material has been modeled because of an accident sequence analysis. The analyses described here show, that not the entire core will fail, but a partial drop of core material into the lower plenum is likely to occur. With respect to the validation of the program system, comparison calculations with the fuel rod behavior and melt models SSYST and EXMEL will be performed. Moreover, the program system will be applied to the bundle behavior in meltdown experiments, the TMI-2 core behavior and the course of a core meltdown accident in risk studies. (orig.)

  18. Development Process of Plant-specific Severe Accident Management Guidelines for Wolsong Nuclear Power Plants

    A severe accident, which occurred at the TMI in 1979 and Chernobyl in 1986, is an accident that exceeds design basis accidents and leads to significant core damage. The severe accident is the low possibility of occurrence but the high severity. To mitigate the consequences of the severe accidents, Korean Nuclear Safety Committee declared the Severe Accident Policy in 2001, which requested the development of Severe Accident Management Guidelines (SAMGs) for operating plants. SAMG is a symptom-based guidance that takes a set of actions to alleviate the outcomes of severe accidents and to get into the safe stable plant condition. The purpose of this paper is to presents the strategic development process of the PHWR SAMG. The guidelines consist of 5 categories: an emergency guide for the main control room (MCR) operators, a strategy implementing guide for the technical support center (TSC), six mitigation guides, a monitoring guide, and a termination guide

  19. Development of system of computer codes for severe accident analysis and its applications

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  20. Development of accident diagnosis and prediction system for research reactor

    A pilot system of early fault detection expert system has been developed. The early fault detection expert system is one of subsystems in the accident diagnosis and prediction system for the research reactor JRR-3 in JAERI. Functions of the pilot system are to detect deviations of process parameters from the steady state in the early stage of the transient and, if possible, to provide procedures to operators to avoid scram actuation. The reactor accident diagnosis system, DISKET, which had been developed in JAERI, was applied for developing the pilot system by extending functions as follows. (1) A frame structure has been introduced to a part of the knowledge base of DISKET in order to infer efficiently. (2) Numerical equation has been introduced to rule representation in order to calculate numerical value for rules. The pilot system was tested against some simulated transients to validate the effectiveness of the extension mentioned above as well as the performance of the system. This report describes development of the pilot system and the results of the test. (author)

  1. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  2. Phenomenological and mechanistic modeling of melt-structure-water interactions in a light water reactor severe accident

    Bui, V.A

    1998-10-01

    The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance 88 refs, 54 figs, 7 tabs

  3. Development of an Accident Diagnostic Scheme Using Artificial Intelligence Techniques (I)

    As a means to effectively manage the severe nuclear accidents, it is important to identify and diagnose the accident initiating events during an initial short time interval after the accidents by observing the major controlling parameters. Main objective of this study is to develop the diagnostic approach for the accurate prediction of accident initiating events using artificial intelligence techniques. For this, first, a variety of artificial intelligence techniques such as Finn, Gmbh, and Sm were examined through this study. Among them, Sc and Gmbh model were assessed as a useful approach to predict the break location and the break size of Local. In order to verify the proposed algorithm, the 111 accident simulation data (based on Map) were applied to train the Sc and Gmbh models, and the test data was used to independently verify whether or not the SVC and GMDH models work well. The analysis of the maximum errors and RMS errors, and the performance of the GMDH according to the existence of measurement errors and SIS actuation showed that the proposed SVC and GMDH models can accurately classify the break locations and accurately predict the break size. As the time-integrated signals were used for inputs into the GMDH model within a period of 60 second after a reactor scram, the actuation of the safety systems such as safety injection system (SIS), auxiliary feed water system, and containment spray system, were not considered in this study. It is because the initial 60 second time-integrated signals were used and the safety systems usually start to actuate after a more than 60 second time delay after the reactor scram

  4. Accident prediction model for public highway-rail grade crossings.

    Lu, Pan; Tolliver, Denver

    2016-05-01

    Considerable research has focused on roadway accident frequency analysis, but relatively little research has examined safety evaluation at highway-rail grade crossings. Highway-rail grade crossings are critical spatial locations of utmost importance for transportation safety because traffic crashes at highway-rail grade crossings are often catastrophic with serious consequences. The Poisson regression model has been employed to analyze vehicle accident frequency as a good starting point for many years. The most commonly applied variations of Poisson including negative binomial, and zero-inflated Poisson. These models are used to deal with common crash data issues such as over-dispersion (sample variance is larger than the sample mean) and preponderance of zeros (low sample mean and small sample size). On rare occasions traffic crash data have been shown to be under-dispersed (sample variance is smaller than the sample mean) and traditional distributions such as Poisson or negative binomial cannot handle under-dispersion well. The objective of this study is to investigate and compare various alternate highway-rail grade crossing accident frequency models that can handle the under-dispersion issue. The contributions of the paper are two-fold: (1) application of probability models to deal with under-dispersion issues and (2) obtain insights regarding to vehicle crashes at public highway-rail grade crossings. PMID:26922288

  5. Derived intervention levels in early stage of nuclear accident development

    In this paper the measures for protection of health and property of public in the case of nuclear accident are discussed. They are based on optimal application of so called intervention levels. The actual flow of decision depends on: (1) prognosis of mathematical modelling of possible course of nuclear accident, and (2) results of monitoring of radiation situation.The aim of this contribution was to analyze their mutual cooperation and to suggest such procedure of monitoring or radiation situation which could be used for suggestion of protective measures. In this contribution the zones of protection planning in the accident place surrounding for the urgent measures were specified : (1) regulation of free movement of persons; (2) sheltering; (3) iodine prophylaxis; (4) temporary evacuation; (5) long term or permanent emigration. At the specification of zones of planned protection it is also coming out that regulation of movement of persons, sheltering and iodine prophylaxis were ordered in advance based on the evaluation of the crashed establishment state. In such situation the decision on protective measures in the time interval 6 to 12 hours after the beginning of accidental release is forwarding to: withdrawing the accepted orders on measures and transition from sheltering to temporary evacuation. The criterion for temporary evacuation is: (1) probability of exceeding the effective dose 100 mSv for children up to 10 years of age and pregnant women and 500 mSv for other population within 48 hours after beginning of accidental release; (2) probability of averting the effective dose 50 mSv up to 7 days, 100 mSv up to 15 days and 150 mSv up to 30 days for all population groups. In next part the intervention level, interpretation of values of kerma dose rate in air and determination of the size of planned protection zones are discussed. (J.K.) 3 tabs

  6. FIRAC, Nuclear Power Plant Fire Accident Model

    1 - Description of program or function: FIRAC predicts fire-induced flows, thermal and material transport, and radioactive and non- radioactive source terms in a ventilation system. It is designed to predict the radioactive and nonradioactive source terms that lead to gas dynamic, material transport, and heat transfer transients. FIRAC's capabilities are directed toward nuclear fuel cycle facilities and the primary release pathway - the ventilation system. However, it is applicable to other facilities and can be used to model other airflow pathways within a structure. The basic material transport capability of FIRAC includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, and gas dynamics are also simulated. A ventilation system model includes elements such as filters, dampers, ducts, and blowers connected at nodal points to form networks. A zone-type compartment fire model is incorporated to simulate fire-induced transients within a facility. 2 - Method of solution: FIRAC solves one-dimensional, lumped-parameter, compressible flow equations by an implicit numerical scheme. The lumped-parameter method is the basic formulation that describes the gas dynamics system. No spatial distribution of parameters is considered in this approach, but an effect of spatial distribution can be approximated by noding. Network theory, using the lumped-parameter method, includes a number of system elements, called branches, joined at certain points, called nodes. Ventilation system components that exhibit flow resistance and inertia, such as dampers, ducts, valves, and filters, and those that exhibit flow potential, such as blowers, are located within the branches of the system. The connection points of branches are nodes for components that have finite volumes, such as rooms, gloveboxes, and plenums, and for boundaries where the volume is practically infinite. All internal nodes, therefore

  7. Accident consequence assessments with different atmospheric dispersion models

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.)

  8. Modelling of conspicuity-related motorcycle accidents in Seremban and Shah Alam, Malaysia.

    Radin, U R; Mackay, M G; Hills, B L

    1996-05-01

    Preliminary analysis of the short-term impact of a running headlights intervention revealed that there has been a significant drop in conspicuity-related motorcycle accidents in the pilot areas, Seremban and Shah Alam, Malaysia. This paper attempts to look in more detail at conspicuity-related accidents involving motorcycles. The aim of the analysis was to establish a statistical model to describe the relationship between the frequency of conspicuity-related motorcycle accidents and a range of explanatory variables so that new insights can be obtained into the effects of introducing a running headlight campaign and regulation. The exogenous variables in this analysis include the influence of time trends, changes in the recording and analysis system, the effect of fasting activities during Ramadhan and the "Balik Kampong" culture, a seasonal cultural-religious holiday activity unique to Malaysia. The model developed revealed that the running headlight intervention reduced the conspicuity-related motorcycle accidents by about 29%. It is concluded that the intervention has been successful in improving conspicuity-related motorcycle accidents in Malaysia. PMID:8799436

  9. Modelling the oil spill track from Prestige-Nassau accident

    Montero, P.; Leitao, P.; Penabad, E.; Balseiro, C. F.; Carracedo, P.; Braunschweig, F.; Fernandes, R.; Gomez, B.; Perez-Munuzuri, V.; Neves, R.

    2003-04-01

    On November 13th 2002, the tank ship Prestige-Nassau sent a SOS signal. The hull of the ship was damaged producing an oil spill in front of the Galician coast (NW Spain). The damaged ship took north direction spilling more fuel and affecting the western Galician coast. After this, it changed its track to south. At this first stage of the accident, the ship spilt around 10000 Tm in 19th at the Galician Bank, at 133 NM of Galician coast. From the very beginning, a monitoring and forecasting of the first slick was developed. Afterwards, since southwesternly winds are frequent in wintertime, the slick from the initial spill started to move towards the Galician coast. This drift movement was followed by overflights. With the aim of forecasting the place and arriving date to the coast, some simulations with two different models were developed. The first one was a very simple drift model forced with the surface winds generated by ARPS operational model (1) at MeteoGalicia (regional weather forecast service). The second one was a more complex hydrodynamic model, MOHID2000 (2,3), developed by MARETEC GROUP (Instituto Superior Técnico de Lisboa) in collaboration with GFNL (Grupo de Física Non Lineal, Universidade de Santiago de Compostela). On November 28th, some tarballs appeared at south of main slick. This observations could be explained taking into account the below surface water movement following Ekman dynamic. Some new simulations with the aim of understanding better the physic underlying these observations were performed. Agreed between observations and simulations was achieved. We performed simulations with and without slope current previously calculated by other authors, showing that this current can only introduce subtle differences in the slick's arriving point to the coast and introducing wind as the primary forcing. (1) A two-dimensional particle tracking model for pollution dispersion in A Coruña and Vigo Rias (NW Spain). M. Gómez-Gesteira, P. Montero, R

  10. Codes for NPP severe accident simulation: development, validation and applications

    The software tools that describe various safety aspects of NPP with VVER reactor have been developed at the Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE RAN). Functionally, the codes can be divided into two groups: the calculation codes that describe separate elements of NPP equipment and/or a group of processes and integrated software systems that allow solving the tasks of the NPP safety assessment in coupled formulation. In particular, IBRAE RAN in cooperation with the nuclear industry organizations has developed the integrated software package SOCRAT designed to analyze the behavior of NPP with VVER at various stages of beyond-design-basis accidents, including the stages of reactor core degradation and long-term melt retention in a core catcher. The general information about development, validation and applications of SOCRAT code is presented and discussed in the paper. (author)

  11. Processing Expert Judgements in Accident Consequence Modelling (invited paper)

    In performing uncertainty analysis a distribution on the code input parameters is required. The construction of the distribution on the code input parameters for the joint CEC/USNRC Accident Consequence Code Uncertainty Analysis using Expert Judgement is discussed. An example from the food chain module is used to illustrate the construction. Different mathematical techniques have been developed to transform the expert judgements into the required format. Finally, the effect of taking account of correlations in performing uncertainty analysis is investigated. (author)

  12. The development of a model to study the thermal behaviour of the coolant in the blind elements of a fast sodium-cooled breeder in the case of a severe hypothetical accident during the initial phase

    The enthalpy level of the coolant is studied in the interior of gaps and special elements of a fast sodium coded breeder reactor during the initial and the final stages of a hypothetical accident. For this purpose numerical models are presented to calculate the heat transport in the special element on the basis of heat conduction and axial convection. (orig./RW)

  13. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  14. The development of a nuclear accident risk information system

    The computerized system NARIS (Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analyses of the distribution of the health effects. The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system

  15. International collaboration for development of accident-resistant LWR fuel. International Collaboration for Development of Accident Resistant Light Water Reactor Fuel

    Department of Energy is providing substantial support for initial R and D on accident-tolerant fuel concepts with an aggressive target of a lead test assembly (LTA) in an LWR by 2022. EPRI proposes an additional stretch goal of commercialisation of a new LWR fuel by 2030. The scale of and resource demands associated with these R and D targets require a global collaborative structure to leverage resources, create an environment for innovation and co-operation, and foster necessary partnerships and arrangements among the many key players and roles spanning government, academic, and industrial sectors. EPRI is proposing a voluntary, open, and non-binding structure to quickly build momentum and to maximise early engagement and information exchange among key stakeholders. The flexibility of this organisational model offers an environment that is compatible with and encourages engagement, innovation, and development of the more formal arrangements and partnerships that will be needed to commercialise current R and D concepts. The opportunity for transformation of LWR fuel performance under normal and accident conditions is now. Accordingly, the time for action is now. Commercialisation of accident-tolerant fuel in the near future can only be realised with collaboration among governments, industry and academia on a scale commensurate with the challenges at hand

  16. Multilevel modelling for the regional effect of enforcement on road accidents.

    Yannis, George; Papadimitriou, Eleonora; Antoniou, Constantinos

    2007-07-01

    This paper investigates the effect of the intensification of Police enforcement on the number of road accidents at national and regional level in Greece, focusing on one of the most important road safety violations: drinking-and-driving. Multilevel negative binomial models are developed to describe the effect of the intensification of alcohol enforcement on the reduction of road accidents in different regions of Greece. Moreover, two approaches are explored as far as regional clustering is concerned: the first one concerns an ad hoc geographical clustering and the second one is based on the results of mathematical cluster analysis through demographic, transport and road safety characteristics. Results indicate that there are significant spatial dependences among road accidents and enforcement. Additionally, it is shown that these dependences are more efficiently interpreted when regions are determined on the basis of qualitative similarities than on the basis of geographical adjacency. PMID:17274938

  17. Input-output model for MACCS nuclear accident impacts estimation¹

    Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bixler, Nathan E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  18. Development of supporting system for emergency response to maritime transport accidents involving radioactive material

    National Maritime Research Institute has developed a supporting system for emergency response of competent authority to maritime transport accidents involving radioactive material. The supporting system for emergency response has functions of radiation shielding calculation, marine diffusion simulation, air diffusion simulation and radiological impact evaluation to grasp potential hazard of radiation. Loss of shielding performance accident and loss of sealing ability accident were postulated and impact of the accidents was evaluated based on the postulated accident scenario. Procedures for responding to emergency were examined by the present simulation results

  19. An Evaluation Methodology Development and Application Process for Severe Accident Safety Issue Resolution

    Robert P. Martin

    2012-01-01

    Full Text Available A general evaluation methodology development and application process (EMDAP paradigm is described for the resolution of severe accident safety issues. For the broader objective of complete and comprehensive design validation, severe accident safety issues are resolved by demonstrating comprehensive severe-accident-related engineering through applicable testing programs, process studies demonstrating certain deterministic elements, probabilistic risk assessment, and severe accident management guidelines. The basic framework described in this paper extends the top-down, bottom-up strategy described in the U.S Nuclear Regulatory Commission Regulatory Guide 1.203 to severe accident evaluations addressing U.S. NRC expectation for plant design certification applications.

  20. [Guilty victims: a model to perpetuate impunity for work-related accidents].

    Vilela, Rodolfo Andrade Gouveia; Iguti, Aparecida Mari; Almeida, Ildeberto Muniz

    2004-01-01

    This article analyzes reports and data from the investigation of severe and fatal work-related accidents by the Regional Institute of Criminology in Piracicaba, São Paulo State, Brazil. Some 71 accident investigation reports were analyzed from 1998, 1999, and 2000. Accidents involving machinery represented 38.0% of the total, followed by high falls (15.5%), and electric shocks (11.3%). The reports conclude that 80.0% of the accidents are caused by "unsafe acts" committed by workers themselves, while the lack of safety or "unsafe conditions" account for only 15.5% of cases. Victims are blamed even in situations involving high risk in which not even minimum safety conditions are adopted, thus favoring employers' interests. Such conclusions reflect traditional reductionist explanatory models, in which accidents are viewed as simple, unicausal phenomena, generally focused on slipups and errors by the workers themselves. Despite criticism in recent decades from the technical and academic community, this concept is still hegemonic, thus jeopardizing the development of preventive policies and the improvement of work conditions. PMID:15073638

  1. Source term modelling in case of nuclear accidents

    The relative isotopic composition of the nuclides released during a nuclear accidents depends strongly on the implied mechanisms in the failure of fuel elements, safety barriers and accident dynamics. Also, the released fraction depends on the volatility degree and the temperature attaint in the reactor core and the fuel elements during the accident, respectively. At regime operation temperature, when the fuel sheaths are failed the noble gases (Xe and Kr isotopes), the extremely volatile and volatile fission products (I isotopes and Cs, Te and Ru, respectively) are released into the reactor primary circuit. As the temperature increases, other isotopes are released too. Two tables are given presenting a classification of the isotopes in groups of boiling and melting point temperatures, respectively. From the radiologic point of view, evaluation of the impact of the contaminant radioactive release requires consideration of several factors, namely: - activity, half-life, chemical form, biological hazard, geometrical size of the radioactive aerosols, etc. The activity of each isotope at the reactor stack or at the external walls of the reactor building is called source term. The isotopic and combined activity in a point of the environment located at a given distance from the source is evaluated by means of dispersion models starting from the source term. An expression of the activity of a given isotope in terms of its reactor core inventory and the parameters of the safety barriers is presented

  2. Markov Model of Severe Accident Progression and Management

    Bari, R.A.; Cheng, L.; Cuadra,A.; Ginsberg,T.; Lehner,J.; Martinez-Guridi,G.; Mubayi,V.; Pratt,W.T.; Yue, M.

    2012-06-25

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  3. Markov Model of Severe Accident Progression and Management

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  4. RADE-AID, the development of a Radiological Accident DEcision AIDing system

    The objective of the project is the development of a Radiological Accident DEcision AIDing system. A prototype computer program was developed to assist in decision on countermeasures following radiological emergencies. In order to demonstrate the potential of this decision tool, some illustrative applications were developed. During the current contract the computer system will be further developed with particular reference to the user-interface, the decision logic and a database of model predictions supplied for use with the system. The objectives and results of the three contributions to the project for the reporting period are presented. (R.P.)

  5. Development of ultrasonic high temperature system for severe accidents research

    The aims of this study are to find a gap formation between corium melt and the reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at suggesting development of a new high temperature measuring system using an ultrasonic method which overcomes the limitations of the present thermocouple method used for severe accident experiments. Also, this report describes the design and manufacturing method of the ultrasonic system. At that time, the sensor element is fabricated to a reflective element using 1mm diameter and 50 mm and 80 mm long tungsten alloy wires. This temperature measuring system is intended to measure up to 2800 deg C

  6. Health effects models for nuclear power plant accident consequence analysis

    This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other''. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk

  7. Critical analysis of accident scenario and consequences modelling applied to light-water reactor power plants for accident categories beyond the design basis accident (DBA)

    A critical analysis and sensitivity study of the modelling of accident scenarios and environmental consequences are presented, for light-water reactor accident categories beyond the standard design-basis-accident category. The first chapter, on ''source term'' deals with the release of fission products from a damaged core inventory and their migration within the primary circuit and the reactor containment. Particular attention is given to the influence of engineering safeguards intervention and of the chemical forms of the released fission products. The second chapter deals with their release to the atmosphere, transport and wet or dry deposition, outlining relevant partial effects and confronting short-duration or prolonged releases. The third chapter presents a variability analysis, for environmental contamination levels, for two extreme hypothetical scenarios, evidencing the importance of plume rise. A numerical plume rise model is outlined

  8. Study on severe accident mitigation measures for the development of PWR SAMG

    2006-01-01

    In the development of the Severe Accident Management Guidelines (SAMG), it is very important to choose the main severe accident sequences and verify their mitigation measures. In this article, Loss-of-Coolant Accident (LOCA), Steam Generator Tube Rupture (SGTR), Station Blackout (SBO), and Anticipated Transients without Scram (ATWS) in PWR with 300 MWe are selected as the main severe accident sequences. The core damage progressions induced by the above-mentioned sequences are analyzed using SCDAP/RELAP5. To arrest the core damage progression and mitigate the consequences of severe accidents, the measures for the severe accident management (SAM) such as feed and bleed, and depressurizations are verified using the calculation. The results suggest that implementing feed and bleed and depressurization could be an effective way to arrest the severe accident sequences in PWR.

  9. Operator modeling of a loss-of-pumping accident using MicroSAINT

    The Savannah River Laboratory (SRL) human factors group has been developing methods for analyzing nuclear reactor operator actions during hypothetical design-basis accident scenarios. The SRL reactors operate at a lower temperature and pressure than power reactors resulting in accident sequences that differ from those of power reactors. Current methodology development is focused on modeling control room operator response times dictated by system event times specified in the Savannah River Site Reactor Safety Analysis Report (SAR). The modeling methods must be flexible enough to incorporate changes to hardware, procedures, or postulated system event times and permit timely evaluation. The initial model developed was for the loss-of-pumping accident (LOPA) because a significant number of operator actions are required to respond to this postulated event. Human factors engineers had been researching and testing a network modeling simulation language called MicroSAINT to simulate operators' personal and interpersonal actions relative to operating system events. The LOPA operator modeling project demonstrated the versatility and flexibility of MicroSAINT for modeling control room crew interactions

  10. Developing and validating severe accident management guidelines using SAMPSON-RELAP/SCDAPSIM.MOD3.4

    The development and validation of Severe Accident Management Guidelines (SAMGs) must consider complex thermal-hydraulic and severe accident phenomena. Yet, many of the simplified integral Severe Accident codes, that have been used widely to develop SAMGs in Europe, Asia, and the United States, cannot accurately predict many of these complex interactions. By contrast, detailed codes such as SAMPSON-RELAP/SCDAPSIM have shown, through comparison with the TMI-2 accident and experiments, that they can predict such complex behavior. This paper describes the merger of SAMPSON with RELAP/SCDAPSIM/MOD3.4, reviews the severe accident phenomena important for Severe Accident Management, and then describes the potential impact of using SAMPSON-RELAP/SCDAPSIM on the development and validation of SAMGs. A companion paper, being presented at this conference provides an example of the application of SAMPSON-RELAP/SCDAPSIM for the development and validation of a SAMG for a Nuclear Power Plant. (authors)

  11. Development of LWR Fuels with Enhanced Accident Tolerance

    Lahoda, Edward J. [Westinghouse Electric Company, LLC, Cranberry Woods, PA (United States); Boylan, Frank A. [Westinghouse Electric Company, LLC, Cranberry Woods, PA (United States)

    2015-10-30

    Significant progress was made on the technical, licensing, and business aspects of the Westinghouse Electric Company’s Enhanced Accident Tolerant Fuel (ATF) by the Westinghouse ATF team. The fuel pellet options included waterproofed U15N and U3Si2 and the cladding options SiC composites and zirconium alloys with surface treatments. Technology was developed that resulted in U3Si2 pellets with densities of >94% being achieved at the Idaho National Laboratory (INL). The use of U3Si2 will represent a 15% increase in U235 loadings over those in UO₂ fuel pellets. This technology was then applied to manufacture pellets for 6 test rodlets which were inserted in the Advanced Test Reactor (ATR) in early 2015 in zirconium alloy cladding. The first of these rodlets are expected to be removed in about 2017. Key characteristics to be determined include verification of the centerline temperature calculations, thermal conductivity, fission gas release, swelling and degree of amorphization. Waterproofed UN pellets have achieved >94% density for a 32% U3Si2/68% UN composite pellet at Texas A&M University. This represents a U235 increase of about 31% over current UO2 pellets. Pellets and powders of UO2, UN, and U3Si2the were tested by Westinghouse and Los Alamos National Laboratory (LANL) using differential scanning calorimetry to determine what their steam and 20% oxygen corrosion temperatures were as compared to UO2. Cold spray application of either the amorphous steel or the Ti2AlC was successful in forming an adherent ~20 micron coating that remained after testing at 420°C in a steam autoclave. Tests at 1200°C in 100% steam on coatings for Zr alloy have not been successful, possibly due to the low density of the coatings which allowed steam transport to the base zirconium metal. Significant modeling and testing

  12. Development of LWR Fuels with Enhanced Accident Tolerance

    Significant progress was made on the technical, licensing, and business aspects of the Westinghouse Electric Company's Enhanced Accident Tolerant Fuel (ATF) by the Westinghouse ATF team. The fuel pellet options included waterproofed U15N and U3Si2 and the cladding options SiC composites and zirconium alloys with surface treatments. Technology was developed that resulted in U3Si2 pellets with densities of >94% being achieved at the Idaho National Laboratory (INL). The use of U3Si2 will represent a 15% increase in U235 loadings over those in UO fuel pellets. This technology was then applied to manufacture pellets for 6 test rodlets which were inserted in the Advanced Test Reactor (ATR) in early 2015 in zirconium alloy cladding. The first of these rodlets are expected to be removed in about 2017. Key characteristics to be determined include verification of the centerline temperature calculations, thermal conductivity, fission gas release, swelling and degree of amorphization. Waterproofed UN pellets have achieved >94% density for a 32% U3Si2/68% UN composite pellet at Texas A&M University. This represents a U235 increase of about 31% over current UO2 pellets. Pellets and powders of UO2, UN, and U3Si2the were tested by Westinghouse and Los Alamos National Laboratory (LANL) using differential scanning calorimetry to determine what their steam and 20% oxygen corrosion temperatures were as compared to UO2. Cold spray application of either the amorphous steel or the Ti2AlC was successful in forming an adherent ~20 micron coating that remained after testing at 420°C in a steam autoclave. Tests at 1200°C in 100% steam on coatings for Zr alloy have not been successful, possibly due to the low density of the coatings which allowed steam transport to the base zirconium metal. Significant modeling and testing has been carried out for the SiC/SiC composite/SiC monolith structures. A structure with the monolith on the outside and composite on the inside was developed which

  13. Development of the french accident management and procedures - role of operators in accident and incident management

    This paper gives a brief overview of the set of emergency operating procedures for French NPPs and the method used to built and validate these procedures. Particular emphasis is put on the role and organisation of the operating team during an incident or accident. (orig.)

  14. Accident sequence modeling: human actions, system response, intelligent decision support

    In Probabilistic Safety Assessment (PSA) of large technological systems, accident sequence modeling represents the synthesis of expert judgement, system modeling, and operational evidence. This book contains the papers that were presented at a two-day Seminar that was held in Munich in August 1987. The aim of this Seminar was to provide a forum for in-depth discussion in a workshop atmosphere of the key elements in the modeling process, such as operator actions and system response, and to assess the possibilities of using such models to design operator decision support systems in the form of expert systems or interactive man computer structures. While this evaluation of the state of the art was done in the context of nuclear power reactor safety, most of the models and ideas advanced by the participants have wide applicability and can be used in safety assessments and reliability enhancement programs for other fields, for example the chemical process and aerospace industries. (author)

  15. Markov Model of Accident Progression at Fukushima Daiichi

    Cuadra A.; Bari R.; Cheng, L-Y; Ginsberg, T.; Lehner, J.; Martinez-Guridi, G.; Mubayi, V.; Pratt, T.; Yue, M.

    2012-11-11

    On March 11, 2011, a magnitude 9.0 earthquake followed by a tsunami caused loss of offsite power and disabled the emergency diesel generators, leading to a prolonged station blackout at the Fukushima Daiichi site. After successful reactor trip for all operating reactors, the inability to remove decay heat over an extended period led to boil-off of the water inventory and fuel uncovery in Units 1-3. A significant amount of metal-water reaction occurred, as evidenced by the quantities of hydrogen generated that led to hydrogen explosions in the auxiliary buildings of the Units 1 & 3, and in the de-fuelled Unit 4. Although it was assumed that extensive fuel damage, including fuel melting, slumping, and relocation was likely to have occurred in the core of the affected reactors, the status of the fuel, vessel, and drywell was uncertain. To understand the possible evolution of the accident conditions at Fukushima Daiichi, a Markov model of the likely state of one of the reactors was constructed and executed under different assumptions regarding system performance and reliability. The Markov approach was selected for several reasons: It is a probabilistic model that provides flexibility in scenario construction and incorporates time dependence of different model states. It also readily allows for sensitivity and uncertainty analyses of different failure and repair rates of cooling systems. While the analysis was motivated by a need to gain insight on the course of events for the damaged units at Fukushima Daiichi, the work reported here provides a more general analytical basis for studying and evaluating severe accident evolution over extended periods of time. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accidents.

  16. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided

  17. BRAIN INJURY BIOMECHANICS IN REAL WORLD VEHICLE ACCIDENT USING MATHEMATICAL MODELS

    YANG Jikuang; XU Wei; OTTE Dietmar

    2008-01-01

    This paper aims at investigating brain injury mechanisms and predicting head injuries in real world accidents. For this purpose, a 3D human head finite element model (HBM-head) was developed based on head-brain anatomy. The HBM head model was validated with two experimental tests. Then the head finite element(FE) model and a multi-body system (MBS) model were used to carry out reconstructions of real world vehicle-pedestrian accidents and brain injuries. The MBS models were used for calculating the head impact conditions in vehicle impacts. The HBM-head model was used for calculating the injury related physical parameters, such as intracranial pressure, stress, and strain. The calculated intracranial pressure and strain distribution were correlated with the injury outcomes observed from accidents. It is shown that this model can predict the intracranial biomechanical response and calculate the injury related physical parameters. The head FE model has good biofidelity and will be a valuable tool for the study of injury mechanisms and the tolerance level of the brain.

  18. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    J. Brandt

    2002-01-01

    Full Text Available A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model, has been developed for modelling transport, dispersion and deposition (wet and dry of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the total deposition of  137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations for dry- and wet deposition. The performance, compared to measurements, of using different combinations of two different wet deposition parameterizations and three different parameterizations of dry deposition has been evaluated, using different statistical tests. The best model performance, compared to measurements, is obtained when parameterizing the total deposition combined of a simple method for dry deposition and a subgrid-scale averaging scheme for wet deposition based on relative humidities. The same major conclusion is obtained for all the three different radioactive isotopes and using two different deposition measurement databases. Large differences are seen in the results obtained by using the two different parameterizations of wet deposition based on precipitation rates and relative humidities, respectively. The parameterization based on subgrid-scale averaging is, in all cases, performing better than the parameterization based on precipitation rates. This indicates that the in-cloud scavenging process is more important than the below cloud scavenging process for the submicron particles and that the precipitation rates are

  19. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 1. Accident scenario based on thermodynamic model

    An accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 1 is analyzed from the data open to the public. Two thermodynamic modes are introduced i.e. a phase equilibrium process model in the reactor pressure vessel (RPV) and an adiabatic model in the pressure containment vessel (PVC). Almost the measured data and observed evidences are explained by the scenario that the isolation condenser was working and a crack at RPV opened at the initial stage of the accident, which is different from TEPCO and the government reports. (author)

  20. The accident consequence model of the German safety study

    The accident consequence model essentially describes a) the diffusion in the atmosphere and deposition on the soil of radioactive material released from the reactor into the atmosphere; b) the irradiation exposure and health consequences of persons affected. It is used to calculate c) the number of persons suffering from acute or late damage, taking into account possible counteractions such as relocation or evacuation, and d) the total risk to the population from the various types of accident. The model, the underlying parameters and assumptions are described. The bone marrow dose distribution is shown for the case of late overpressure containment failure, which is discussed in the paper of Heuser/Kotthoff, combined with four typical weather conditions. The probability distribution functions for acute mortality, late incidence of cancer and genetic damage are evaluated, assuming a characteristic population distribution. The aim of these calculations is first the presentation of some results of the consequence model as an example, in second the identification of problems, which need possibly in a second phase of study to be evaluated in more detail. (orig.)

  1. Global atmospheric dispersion modelling after the Fukushima accident

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  2. Development of a reactor vessel failure diagnosis system for accident management

    Diagnosis of vessel failure provides for operators and TSC personnel very important information to manage the severe accident in nuclear power plant. However, operators can not diagnose the reactor vessel failure by watching the temporal trends of some parameters because they never have experienced the severe accident. Therefore, this study proposes a method on the diagnosis of the PWR vessel failure using a Spatiotemporal Neural Network (STN). STNs can deal directly with both the spatial and the temporal aspects of input signals and can well identify a time-varying problem. The target patterns are generated from MAAP code. Vessel failure diagnosis has been performed for 8 accidents and the developed STNs have been verified for untrained three severe accidents. STNs identifies the vessel failure time and the initiating events. For example, when large break LOCA (break size = 0.16 m2) is used for input accident scenario, only the output value for the target pattern of LBLOCA is activated greater than the threshold value near the real vessel failure. To validate vessel failure diagnosis system and to train severe accident to operators, extensive severe accident simulator is to be an absolute necessity. Therefore, a simplified severe accident simulator, SIMAAP (severe accident Simulator based on MAAP), has been developed. SIMAAP simulates the various severe accident progress through on-line communication with MAAP

  3. Development and application of calculational theoretical methods for analysis of the RBMK reactor severe accidents

    One studied high-improbable reactor emergencies that may result in a high consequence accident. To control these accidents and to mitigate their consequences one should study and analyze similar emergencies via detailed computer simulation. Application of foreign and Russian codes for RBMK type reactor should be associated with their supplementary verification. In that context one elaborated the table list of processes for supplementary verification of thermohydraulic models of codes designed to analyze severe accidents

  4. Concept and validation studies of the real-time reactor-accident consequences assessment model ECOSYS

    The Chernobyl accident has demonstrated the urgent need for computer programs for real-time assessment of potential radiological consequences of major reactor accidents and for timely recommendations of useful and cost-efficient counter measures. During the past decade the dynamic radioecological program ECOSYS has been developed for nuclear accident consequence assessment with high resolution in space, time and exposure pathways. The Chernobyl reactor accident leading to relatively high contamination of Southern Germany provided excellent conditions for realistic validation studies of concept, sub-models and parameters of ECOSYS. To this purpose more than 7000 low level and in-situ gamma spectroscopy measurements were performed to study experimentally the behaviour of radionuclides in foodchains and in the urban environment and to compare the results to theoretical predictions of ECOSYS. The results show good agreement in the contamination levels of important food stuffs and in external exposure dose rates from a given surface contamination. Improvements were necessary in the assumptions regarding the food consumption habits which changed considerably - and in the functions describing the weathering off from urban and plant surfaces. The results of this validation study and the concept of the improved computerised model, which has subsequently been converted into a real-time code, are discussed in detail

  5. Dynamic modelling of radionuclide uptake by marine biota: application to the Fukushima nuclear power plant accident.

    Vives i Batlle, Jordi

    2016-01-01

    The dynamic model D-DAT was developed to study the dynamics of radionuclide uptake and turnover in biota and sediments in the immediate aftermath of the Fukushima accident. This dynamics is determined by the interplay between the residence time of radionuclides in seawater/sediments and the biological half-lives of elimination by the biota. The model calculates time-variable activity concentration of (131)I, (134)Cs, (137)Cs and (90)Sr in seabed sediment, fish, crustaceans, molluscs and macroalgae from surrounding activity concentrations in seawater, with which to derive internal and external dose rates. A central element of the model is the inclusion of dynamic transfer of radionuclides to/from sediments by factorising the depletion of radionuclides adsorbed onto suspended particulates, molecular diffusion, pore water mixing and bioturbation, represented by a simple set of differential equations coupled with the biological uptake/turnover processes. In this way, the model is capable of reproducing activity concentration in sediment more realistically. The model was used to assess the radiological impact of the Fukushima accident on marine biota in the acute phase of the accident. Sediment and biota activity concentrations are within the wide range of actual monitoring data. Activity concentrations in marine biota are thus shown to be better calculated by a dynamic model than with the simpler equilibrium approach based on concentration factors, which tends to overestimate for the acute accident period. Modelled dose rates from external exposure from sediment are also significantly below equilibrium predictions. The model calculations confirm previous studies showing that radioactivity levels in marine biota have been generally below the levels necessary to cause a measurable effect on populations. The model was used in mass-balance mode to calculate total integrated releases of 103, 30 and 3 PBq for (131)I, (137)Cs and (90)Sr, reasonably in line with previous

  6. ATMOSPHERIC MODELING IN SUPPORT OF A ROADWAY ACCIDENT

    Buckley, R.; Hunter, C.

    2010-10-21

    The United States Forest Service-Savannah River (USFS) routinely performs prescribed fires at the Savannah River Site (SRS), a Department of Energy (DOE) facility located in southwest South Carolina. This facility covers {approx}800 square kilometers and is mainly wooded except for scattered industrial areas containing facilities used in managing nuclear materials for national defense and waste processing. Prescribed fires of forest undergrowth are necessary to reduce the risk of inadvertent wild fires which have the potential to destroy large areas and threaten nuclear facility operations. This paper discusses meteorological observations and numerical model simulations from a period in early 2002 of an incident involving an early-morning multicar accident caused by poor visibility along a major roadway on the northern border of the SRS. At the time of the accident, it was not clear if the limited visibility was due solely to fog or whether smoke from a prescribed burn conducted the previous day just to the northwest of the crash site had contributed to the visibility. Through use of available meteorological information and detailed modeling, it was determined that the primary reason for the low visibility on this night was fog induced by meteorological conditions.

  7. A Study of The Relationship Between The Components of The Five-Factor Model of Personality and The Occurrence of Occupational Accidents in Industry Workers

    Ehsanollah Habibi

    2016-05-01

    Full Text Available Accidents are among the most important problems of both the developed and the developing countries. Individual factors and personality traits are the primary causes of human errors and contribute to accidents. The present study aims to investigate the relationship between the components of the five-factor model of personality and the occurrence of occupational accidents in industrial workers. The independent T-test indicated that there is a meaningful relationship between the personality traits and accident proneness. In the two groups of industry workers injured in occupational accidents and industry workers without any occupational accidents, there is a significant relationship between personality traits, neuroticism (p=0.001, openness to experience (p=0.001, extraversion (p=0.024 and conscientiousness (p=0.021. Nonetheless, concerning the personality trait of agreeableness (p = 0.09, the group of workers with accidents did not differ significantly from the workers without any accidents. The results showed that there is a direct and significant relationship between accident proneness and the personality traits of neuroticism and openness to experience. Furthermore, there is a meaningful but inverse correlation between accident proneness and the personality traits of extraversion and conscientiousness, while there was no relationship between accident proneness and the personality trait of agreeableness.

  8. Probabilistic models for early and continuing radiobiological effects of nuclear power plant accidents

    In this paper the theoretical basis is discussed for specific dose-rate models developed for estimating the risk of death from early and continuing effects of exposure of man to low linear-energy-transfer radiations. Dose-rate models for hematopoietic death and for death from radiation pneumonitis and/or pulmonary fibrosis are provided and are based partly on an assumed Weibull tolerance dose distribution. The dose-rate models were prepared for use by the Nuclear Regulatory Commission in probabilistic analyses of health effects risks associated with potential light-water nuclear reactor accidents. Both exact and approximate solutions are provided. The approximate solutions require less computer time than the exact solutions and therefore may be preferable for complicated radiation accident scenarios

  9. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives

    Chatelard, P., E-mail: patrick.chatelard@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France); Reinke, N.; Arndt, S. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50677 Köln (Germany); Belon, S.; Cantrel, L.; Carenini, L.; Chevalier-Jabet, K.; Cousin, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France); Eckel, J. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50677 Köln (Germany); Jacq, F.; Marchetto, C.; Mun, C.; Piar, L. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, B.250, Cadarache BP3 13115, Saint-Paul-lez-Durance, Cedex (France)

    2014-06-01

    The severe accident integral code ASTEC, jointly developed since almost 20 years by IRSN and GRS, simulates the behaviour of a whole nuclear power plant under severe accident conditions, including severe accident management by engineering systems and procedures. Since 2004, the ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out in the frame of the SARNET European network of excellence. The first version of the new series ASTEC V2 was released in 2009 to about 30 organizations worldwide and in particular to SARNET partners. With respect to the previous V1 series, this new V2 series includes advanced core degradation models (issued from the ICARE2 IRSN mechanistic code) and necessary extensions to be applicable to Gen. III reactor designs, notably a description of the core catcher component to simulate severe accidents transients applied to the EPR reactor. Besides these two key-evolutions, most of the other physical modules have also been improved and ASTEC V2 is now coupled to the SUNSET statistical tool to make easier the uncertainty and sensitivity analyses. The ASTEC models are today at the state of the art (in particular fission product models with respect to source term evaluation), except for quenching of a severely damage core. Beyond the need to develop an adequate model for the reflooding of a degraded core, the main other mean-term objectives are to further progress on the on-going extension of the scope of application to BWR and CANDU reactors, to spent fuel pool accidents as well as to accidents in both the ITER Fusion facility and Gen. IV reactors (in priority on sodium-cooled fast reactors) while making ASTEC evolving towards a severe accident simulator constitutes the main long-term objective. This paper presents the status of the ASTEC V2 versions, focussing on the description of V2.0 models for water-cooled nuclear plants.

  10. Development of Evaluation Technology for Hydrogen Combustion in containment and Accident Management Code for CANDU

    Kim, S. B.; Kim, D. H.; Song, Y. M.; and others

    2011-08-15

    For a licensing of nuclear power plant(NPP) construction and operation, the hydrogen combustion and hydrogen mitigation system in the containment is one of the important safety issues. Hydrogen safety and its control for the new NPPs(Shin-Wolsong 1 and 2, Shin-Ulchin 1 and 2) have been evaluated in detail by using the 3-dimensional analysis code GASFLOW. The experimental and computational studies on the hydrogen combustion, and participations of the OEDE/NEA programs such as THAI and ISP-49 secures the resolving capabilities of the hydrogen safety and its control for the domestic nuclear power plants. ISAAC4.0, which has been developed for the assessment of severe accident management at CANDU plants, was already delivered to the regulatory body (KINS) for the assessment of the severe accident management guidelines (SAMG) for Wolsong units 1 to 4, which are scheduled to be submitted to KINS. The models for severe accident management strategy were newly added and the graphic simulator, CAVIAR, was coupled to addition, the ISAAC computer code is anticipated as a platform for the development and maintenance of Wolsong plant risk monitor and Wolsong-specific SAMG.

  11. Development of a dose assessment computer code for the NPP severe accident

    A real-time emergency dose assessment computer code called KEDA (KAIST NPP Emergency Dose Assessment) has been developed for the NPP severe accident. A new mathematical model which can calculate cloud shine has been developed and implemented in the code. KEDA considers the specific Korean situations(complex topography, orientals' thyroid metabolism, continuous washout, etc.), and provides functions of dose-monitoring and automatic decision-making. To verify the code results, KEDA has been compared with an NRC officially certified code, RASCAL, for eight hypertical accident scenarios. Through the comparison, KEDA has been proved to provide reasonable results. Qualitative sensitivity analysis also the been performed for potentially important six input parameters, and the trends of the dose v.s. down-wind distance curve have been analyzed comparing with the physical phenomena occurred in the real atmosphere. The source term and meteorological conditions are turned out to be the most important input parameters. KEDA also has been applied to simulate Kori site and a hyperthetical accident with semi-real meteorological data has been simulated and analyzed

  12. Methodological development for selection of significant predictors explaining fatal road accidents.

    Dadashova, Bahar; Arenas-Ramírez, Blanca; Mira-McWilliams, José; Aparicio-Izquierdo, Francisco

    2016-05-01

    Identification of the most relevant factors for explaining road accident occurrence is an important issue in road safety research, particularly for future decision-making processes in transport policy. However model selection for this particular purpose is still an ongoing research. In this paper we propose a methodological development for model selection which addresses both explanatory variable and adequate model selection issues. A variable selection procedure, TIM (two-input model) method is carried out by combining neural network design and statistical approaches. The error structure of the fitted model is assumed to follow an autoregressive process. All models are estimated using Markov Chain Monte Carlo method where the model parameters are assigned non-informative prior distributions. The final model is built using the results of the variable selection. For the application of the proposed methodology the number of fatal accidents in Spain during 2000-2011 was used. This indicator has experienced the maximum reduction internationally during the indicated years thus making it an interesting time series from a road safety policy perspective. Hence the identification of the variables that have affected this reduction is of particular interest for future decision making. The results of the variable selection process show that the selected variables are main subjects of road safety policy measures. PMID:26928290

  13. Complex accident scenarios modelled and analysed by Stochastic Petri Nets

    This paper is focused on the usage of Petri nets for an effective modelling and simulation of complicated accident scenarios, where an order of events can vary and some events may occur anywhere in an event chain. These cases are hardly manageable by traditional methods as event trees – e.g. one pivotal event must be often inserted several times into one branch of the tree. Our approach is based on Stochastic Petri Nets with Predicates and Assertions and on an idea, which comes from the area of Programmable Logic Controllers: an accidental scenario is described as a net of interconnected blocks, which represent parts of the scenario. So the scenario is firstly divided into parts, which are then modelled by Petri nets. Every block can be easily interconnected with other blocks by input/output variables to create complex ones. In the presented approach, every event or a part of a scenario is modelled only once, independently on a number of its occurrences in the scenario. The final model is much more transparent then the corresponding event tree. The method is shown in two case studies, where the advanced one contains a dynamic behavior. - Highlights: • Event & Fault trees have problems with scenarios where an order of events can vary. • Paper presents a method for modelling and analysis of dynamic accident scenarios. • The presented method is based on Petri nets. • The proposed method solves mentioned problems of traditional approaches. • The method is shown in two case studies: simple and advanced (with dynamic behavior)

  14. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 2. Accident scenario based on thermodynamic model

    An accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 2 is analyzed from the data open to the public. Phase equilibrium process model was introduced that the vapor and water are at saturation point in the vessels. Proposed accident scenario agrees very well with the data of the plant parameters obtained just after the accident. The estimation describes that the rupture time of the reactor pressure vessel (RPV) was at 22:50 14/3/2011. The estimation shows that the rupture time of the pressure containment vessel (RCP) was at 7:40 15/3/2011. These estimations are different from the ones by TEPCO, however; many measured evidences show good accordance with the present scenario. (author)

  15. Summary and conclusions of the specialist meeting on severe accident management programme development

    The CSNI Specialist meeting on severe accident management programme development was held in Rome and about seventy experts from thirteen countries attended the meeting. A total of 27 papers were presented in four sessions, covering specific aspects of accident management programme development. It purposely focused on the programmatic aspects of accident management rather than on some of the more complex technical issues associated with accident management strategies. Some of the major observations and conclusions from the meeting are that severe accident management is the ultimate part of the defense in depth concept within the plant. It is function and success oriented, not event oriented, as the aim is to prevent or minimize consequences of severe accidents. There is no guarantee it will always be successful but experts agree that it can reduce the risks significantly. It has to be exercised and the importance of emergency drills has been underlined. The basic structure and major elements of accident management programmes appear to be similar among OECD member countries. Dealing with significant phenomenological uncertainties in establishing accident management programmes continues to be an important issue, especially in confirming the appropriateness of specific accident management strategies

  16. Proceedings of the Specialist Meeting on Severe Accident Management Programme Development

    Effective Accident Management planning can produce both a reduction in the frequency of severe accidents at nuclear power plants as well as the ability to mitigate a severe accident. The purpose of an accident management programme is to provide to the responsible plant staff the capability to cope with the complete range of credible severe accidents. This requires that appropriate instrumentation and equipment are available within the plant to enable plant staff to diagnose the faults and to implement appropriate strategies. The programme must also provide the necessary guidance, procedures, and training to assure that appropriate corrective actions will be implemented. One of the key issues to be discussed is the transition from control room operations and the associated emergency operating procedures to a technical support team approach (and the associated severe accident management strategies). Following a proposal made by the Senior Group of Experts on Severe Accident Management (SESAM), the Committee on the Safety of Nuclear Installations decided to sponsor a Specialist Meeting on Severe Accident Management Programme Development. The general objectives of the Specialist Meeting were to exchange experience, views, and information among the participants and to discuss the status of severe accident management programmes. The meeting brought together utilities, accident management programme developers, personnel training programme developers, regulators, and researchers. In general, the tone of the Specialist Meeting - designed to promote progress, as contrasted with conferences or symposia where the state-of-the-art is presented - was to be rather practical, and focus on accident management programme development, applications, results, difficulties and improvements. As shown by the conclusions of the meeting, there is no doubt that this objective was widely attained

  17. Development of a component Monte Carlo program for accident sequence analysis to apply for reprocessing facility

    In consideration of application for reprocessing facility, where a variety of causal events such as equipment failure and human error might occur, and the event progression would take place with relatively substantial time delay before getting to the accident stage, a component Monte Carlo program for accident sequence analysis has been developed to pursue chronologically the probabilistic behavior of each component failure and repair in an exact manner. In comparison with analytical formulation and its calculated results, this Monte Carlo technique is shown to predict a reasonable result. Then, taking an example for a sample problem from a German reprocessing facility model, an accident sequence of red-oil explosion in a plutonium evaporator is analyzed to give a comprehensive interpretation about statistic variation range and computer time elapsed for random walk history calculations. Furthermore, to discuss about its applicability for the practical case of plant system with complex component constitution, a possibility of drastic speed-up of computation is shown by parallelization of the computer program. (author)

  18. Development of a retrospective/fortuitous accident dosimetry service based on OSL of mobile phones

    Work is presented on the development of a retrospective/fortuitous accident dosimetry service using optically stimulated luminescence of resistors found in mobile phones to determine the doses of radiation to members of the public following a radiological accident or terrorist incident. The system is described and discussed in terms of its likely accuracy in a real incident. (authors)

  19. Health effects models for off-site radiological consequence analysis of nuclear reactor accidents

    A first version of models has been developed for predicting the number of occurrences of health effects induced by radiation exposure in nuclear reactor accidents. The models are based on the health effects models developed originally by Harvard University (NUREG/CR-4214). These models are revised on the basis of the new information on risk estimates by the reassessment of the radiation dosimetry in Hiroshima and Nagasaki. The models deal with the following effects: (1) early effects models for bone marrow, lungs, gastrointestinal tract, central nervous system, thyroid, skin and reproductive organs, using the Weibull function, (2) late somatic effects models including leukemia and cancers of breast, lungs, thyroid, gastrointestinal tract and so forth, on the basis of the information derived from epidemiological studies on the atomic bomb survivors of Hiroshima and Nagasaki, (3) models for late and developmental effects due to exposure in utero. (author)

  20. Modelling and analysis of severe accidents for VVER-1000 reactors

    Tusheva, Polina

    2013-01-01

    Accident conditions involving significant core degradation are termed severe accidents /IAEA: NS-G-2.15/. Despite the low probability of occurrence of such events, the investigation of severe accident scenarios is an important part of the nuclear safety research. Considering a hypothetical core melt down scenario in a VVER-1000 light water reactor, the early in-vessel phase focusing on the thermal-hydraulic phenomena, and the late in-vessel phase focusing on the melt relocation into the re...

  1. Development of Lower Plenum Molten Pool Module of Severe Accident Analysis Code in Korea

    Son, Donggun; Kim, Dong-Ha; Park, Rae-Jun; Bae, Jun-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shim, Suk-Ku; Marigomen, Ralph [Environment and Energy Technology, Daejeon (Korea, Republic of)

    2014-10-15

    To simulate a severe accident progression of nuclear power plant and forecast reactor pressure vessel failure, we develop computational software called COMPASS (COre Meltdown Progression Accident Simulation Software) for whole physical phenomena inside the reactor pressure vessel from a core heat-up to a vessel failure. As a part of COMPASS project, in the first phase of COMPASS development (2011 - 2014), we focused on the molten pool behavior in the lower plenum, heat-up and ablation of reactor vessel wall. Input from the core module of COMPASS is relocated melt composition and mass in time. Molten pool behavior is described based on the lumped parameter model. Heat transfers in between oxidic, metallic molten pools, overlying water, steam and debris bed are considered in the present study. The models and correlations used in this study are appropriately selected by the physical conditions of severe accident progression. Interaction between molten pools and reactor vessel wall is also simulated based on the lumped parameter model. Heat transfers between oxidic pool, thin crust of oxidic pool and reactor vessel wall are considered and we solve simple energy balance equations for the crust thickness of oxidic pool and reactor vessel wall. As a result, we simulate a benchmark calculation for APR1400 nuclear power plant, with assumption of relocated mass from the core is constant in time such that 0.2ton/sec. We discuss about the molten pool behavior and wall ablation, to validate our models and correlations used in the COMPASS. Stand-alone SIMPLE program is developed as the lower plenum molten pool module for the COMPASS in-vessel severe accident analysis code. SIMPLE program formulates the mass and energy balance for water, steam, particulate debris bed, molten corium pools and oxidic crust from the first principle and uses models and correlations as the constitutive relations for the governing equations. Limited steam table and the material properties are provided

  2. A study on the development of framework and supporting tools for severe accident management

    Through the extensive research on severe accidents, knowledge on severe accident phenomenology has constantly increased. Based upon such advance, probabilistic risk studies have been performed for some domestic plants to identify plant-specific vulnerabilities to severe accidents. Severe accident management is a program devised to cover such vulnerabilities, and leads to possible resolution of severe accident issues. This study aims at establishing severe accident management framework for domestic nuclear power plants where severe accident management program is not yet established. Emphasis is given to in-vessel and ex-vessel accident management strategies and instrumentation availability for severe accident management. Among the various strategies investigated, primary system depressurization is found to be the most effective means to prevent high pressure core melt scenarios. During low pressure core melt sequences, cooling of in-vessel molten corium through reactor cavity flooding is found to be effective. To prevent containment failure, containment filtered venting is found to be an effective measure to cope with long-term and gradual overpressurization, together with appropriate hydrogen control measure. Investigation of the availability of Yonggwang 3 and 4 instruments shows that most of instruments essential to severe accident management lose their desired functions during the early phase of severe accident progression, primarily due to the environmental condition exceeded ranges of instruments. To prevent instrument failure, a wider range of instruments are recommended to be used for some severe accident management strategies such as reactor cavity flooding. Severe accidents are generally known to accompany a number of complex phenomena and, therefore, it is very beneficial when severe accident management personnel is aided by appropriately designed supporting systems. In this study, a support system for severe accident management personnel is developed

  3. Development of a prototype graphic simulation program for severe accident training

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo

    2000-05-01

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database

  4. Development of a prototype graphic simulation program for severe accident training

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database interface module. Main functions of

  5. HYSPLIT's Capability for Radiological Aerial Monitoring in Nuclear Emergencies: Model Validation and Assessment on the Chernobyl Accident

    Jung, Gunhyo; Kim, Juyoul [Seoul National University, Seoul (Korea, Republic of); Shin, Hyeongki [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-10-15

    The Chernobyl accident took place on 25 April 1986 in Ukraine. Consequently large amount of radionuclides were released into the atmosphere. The release was a widespread distribution of radioactivity throughout the northern hemisphere, mainly across Europe. A total of 31 persons died as a consequence of the accident, and about 140 persons suffered various degrees of radiation sickness and health impairment in the acute health impact. The possible increase of cancer incidence has been a real and significant increase of carcinomas of the thyroid among the children living in the contaminated regions as the late health effects. Recently, a variety of atmospheric dispersion models have been developed and used around the world. Among them, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model developed by NOAA (National Oceanic and Atmospheric Administration)/ARL (Air Resources Laboratory) is being widely used. To verify the HYSPLIT model for radiological aerial monitoring in nuclear emergencies, a case study on the Chernobyl accident is performed.

  6. Study of the Severity of Accidents in Tehran Using Statistical Modeling and Data Mining Techniques

    Hesamaldin Razi

    2013-01-01

    Full Text Available AbstractBackgrounds and Aims: The Tehran province was subject to the second highest incidence of fatalities due to traffic accidents in 1390. Most studies in this field examine rural traffic accidents, but this study is based on the use of logit models and artificial neural networks to evaluate the factors that affect the severity of accidents within the city of Tehran.Materials and Methods: Among the various types of crashes, head-on collisions are specified as the most serious type, which is investigated in this study with the use of Tehran’s accident data. In the modeling process, the severity of the accident is the dependent variable and defined as a binary covariate, which are non-injury accidents and injury accidents. The independent variables are parameters such as the characteristics of the driver, time of the accident, traffic and environmental characteristics. In addition to the prediction accuracy comparison of the two models, the elasticity of the logit model is compared with a sensitivity analysis of the neural network.Results: The results show that the proposed model provides a good estimate of an accident's severity. The explanatory variables that have been determined to be significant in the final models are the driver’s gender, age and education, along with negligence of the traffic rules, inappropriate acceleration, deviation to the left, type of vehicle, pavement conditions, time of the crash and street width.Conclusion: An artificial neural network model can be useful as a statistical model in the analysis of factors that affect the severity of accidents. According to the results, human errors and illiteracy of drivers increase the severity of crashes, and therefore, educating drivers is the main strategy that will reduce accident severity in Iran. Special attention should be given to a driver’s age group, with particular care taken when they are very young.

  7. A drug cost model for injuries due to road traffic accidents.

    Riewpaiboon A

    2008-03-01

    Full Text Available Objective: This study aimed to develop a drug cost model for injuries due to road traffic accidents for patients receiving treatment at a regional hospital in Thailand. Methods: The study was designed as a retrospective, descriptive analysis. The cases were all from road traffic accidents receiving treatment at a public regional hospital in the fiscal year 2004. Results: Three thousand seven hundred and twenty-three road accident patients were included in the study. The mean drug cost per case was USD18.20 (SD=73.49, median=2.36. The fitted drug cost model had an adjusted R2 of 0.449. The positive significant predictor variables of drug costs were prolonged length of stay, age over 30 years old, male, Universal Health Coverage Scheme, time of accident during 18:00-24:00 o’clock, and motorcycle comparing to bus. To forecast the drug budget for 2006, there were two approaches identified, the mean drug cost and the predicted average drug cost. The predicted average drug cost was calculated based on the forecasted values of statistically significant (p<0.05 predictor variables included in the fitted model; predicted total drug cost was USD44,334. Alternatively, based on the mean cost, predicted total drug cost in 2006 was USD63,408. This was 43% higher than the figure based on the predicted cost approach.Conclusions: The planned budget of drug cost based on the mean cost and predicted average cost were meaningfully different. The application of a predicted average cost model could result in a more accurate budget planning than that of a mean statistic approach.

  8. The development and application of the accident dynamic simulator for dynamic probabilistic risk assessment of nuclear power plants

    This paper describes the principal modelling concepts, practical aspects, and an application of the Accident Dynamic Simulator (ADS) developed for full scale dynamic probabilistic risk assessment (DPRA) of nuclear power plants. Full scale refers not only to the size of the models, but also to the number of potential sequences which should be studied. Plant thermal-hydraulics behaviour, safety systems response, and operator interactions are explicitly accounted for as integrated active parts in the development of accident scenarios. ADS uses discrete dynamic event trees (D-DET) as the main accident scenario modelling approach, and introduces computational techniques to minimize the computer memory requirement and expedite the simulation. An operator model (including procedure-based behaviour and several types of omission and commission errors) and a thermal-hydraulic model with a PC run time more than 300 times faster than real accident time are among the main modules of ADS. To demonstrate the capabilities of ADS, a dynamic PRA of the Steam Generator Tube Rupture event of a US nuclear power plant is analyzed

  9. Fuel models and results from the TRAC-PF1/MIMAS TMI-2 accident calculation

    A brief description of several fuel models used in the TRAC-PF1/MIMAS analysis of the TMI-2 accident is presented, and some of the significant fuel-rod behavior results from this analysis are given. Peak fuel-rod temperatures, oxidation heat production, and embrittlement and failure behavior calculated for the TMI-2 accident are discussed. Other aspects of fuel behavior, such as cladding ballooning and fuel-cladding eutectic formation, were found not to significantly affect the accident progression

  10. An overview of severe accident modeling and analysis work for the ANS reactor conceptual safety analysis report

    ORNL's Advanced Neutron Source (ANS) will be a new user facility for all kinds of neutron research, centered around a research reactor of unprecedented neutron beam flux. A defense-in-depth philosophy has been adopted. In response to this commitment, ANS Project management has initiated severe accident analysis and related technology development efforts early-on in the design phase itself. Early consideration of severe accident issues will aid in designing a sufficiently robust containment for retention and controlled release of radionuclides in the event of such an accident. It will also provide a means for satisfying on- and off-site regulatory requirements and provide containment response and source term analyses for level-2 and -3 Probabilistic Risk Analyses (PRAs) that will be produced. Moreover, it will provide the best possible understanding of the ANS under severe accident conditions, and consequently provide insights for the development of strategies and design philosophies for accident management, mitigation, and emergency preparedness. This paper presents a perspective overview of the severe accident modeling and analysis work for the ANS Conceptual Safety Analysis Report (CSAR)

  11. Statistical modelling of the frequency and severity of road accidents

    Janstrup, Kira Hyldekær

    reporting traffic accidents. The second questionnaire was administered to stakeholders in the transportation field and was made to detect strengths, threats and opportunities for reporting traffic accidents within the police. This Ph.D. study contributes significantly to the literature about under......Under-reporting of traffic accidents is a well-discussed subject in traffic safety and it is well-known that the degree of under-reporting of traffic accidents is quite high in many countries. Nevertheless, very little literature has been made to investigate what causes the high degree of under......-reporting. The problem of under-reporting is not unique for traffic accidents as severe under-reporting is a challenge in many other fields of incident reporting. In other incidents fields with intended or unintended harm, research has investigated the behavioural reasons for why people choose to report an...

  12. Study on Developments in Accident Investigation Methods: A Survey of the 'State-of-the-Art'

    Hollnagel, Erik; Speziali, Josephine (Ecole des Mines de Paris, F-06904 Sophia Antipolis (France))

    2008-01-15

    The objective of this project was to survey the main accident investigation methods that have been developed since the early or mid-1990s. The motivation was the increasing frequency of accidents that defy explanations in simple terms, for instance cause-effect chains or 'human error'. Whereas the complexity of socio-technical systems is steadily growing across all industrial domains, including nuclear power production, accident investigation methods are only updated when their inability to account for novel types of accidents and incidents becomes inescapable. Accident investigation methods therefore typically lag behind the socio-technological developments by 20 years or more. The project first compiled a set of methods from the recognised scientific literature and in major major research and development programs, excluding methods limited to risk assessment, technological malfunctions, human reliability, and safety management methods. An initial set of 21 methods was further reduced to seven by retaining only prima facie accident investigation methods and avoiding overlapping or highly similar methods. The second step was to develop a set of criteria used to characterise the methods. The starting point was Perrow's description of normal accidents in socio-technical systems, which used the dimensions of coupling, going from loose to tight, and interactions, going from linear to complex. For practical reasons, the second dimension was changed to that of tractability or how easy it is to describe the system, where the sub-criteria are the level of detail, the availability of an articulated model, and the system dynamics. On this basis the seven selected methods were characterised in terms of the systems - or conditions - they could account for, leading to the following four groups: methods suitable for systems that are loosely coupled and tractable, methods suitable for systems that are tightly coupled and tractable, methods suitable for systems that

  13. A Report of the Joint Development of a Prototype Communications Link to Share Nuclear Accident Dispersion and Dose Assessment Modeling Products Between JAERI/WSPEEDI and LLNL/NARAC

    Sullivan, T J; Belles, R D; Ellis, J S; Chino, M; Nagai, H

    2001-05-01

    In June of 1997, under an umbrella Memorandum of Understanding between the Japan Atomic Energy Research Institute (JAERI) and the U.S. Department of Energy (US/DOE) concerning matters of nuclear research and development, a Specific Memorandum of Agreement (SMA) entitled ''A Collaborative Programme of Development of a Prototype Communication Link to Share Atmospheric Dispersion and Dose Assessment Modelling Products'' was signed. This SMA formalized an informal collaborative exchange between the DOE's Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) center and the Japan Atomic Energy Research Institute (JAERI) Worldwide System for Prediction of Environmental Emergency Dose Information (WSPEEDI). The intended objective of this agreement was to explore various modes of information exchange, beyond facsimile transmission, which could provide for the quick exchange of information between two major nuclear emergency dose assessment and prediction national centers to provide consistency checks and data exchange before public release of their calculations. The extreme sensitivity of the general public to any nuclear accident information has been a strong motivation to seek peer preview prior to public release. Other intended objectives of this work are the development of an affordable/accessible system for distribution of prediction results to other countries having no prediction capabilities and utilization of the link for collaboration studies. To fulfill the objectives of this project JAERI and LLNL scientists determined to assess the evolving Internet and rapidly emerging communications application software. Our timing was a little early in 1997-1998 but nonetheless a few candidate software packages were found, evaluated and a selection was made for initial test and evaluation. Subsequently several new candidate software packages have arrived, albeit with limitations. This report outlines the ARAC and

  14. Co-ordinated research programme on reference studies on probabilistic modelling of accident sequences

    The co-ordinated research programme (CRP) on probabilistic modelling of accident sequences was established in order to ensure that International Atomic Energy Agency (IAEA) Member States not previously involved in international benchmark exercises obtain adequate practice in applying the available PSA techniques and benefit from the extensive international experience. A supportive peer review group was formed to provide guidance and transfer the insights derived from similar European projects. Seventeen countries participate in this programme which will be completed during 1991. Three working groups have been organized around different reactor types, namely WWER-440 PWRs (with a subgroup analysing AST-500, a district heating plant), Framatome PWRs and CANDU. Each participant in a group studied the same initiating event for a reference plant. For detailed analysis one particular accident sequence has been selected by each team. The logic models (event trees and fault trees) were developed and accident sequences were quantified. Sensitivity analyses are presently in progress. The paper presents some preliminary results and insights. The experiences gained from this CRP are considered as extremely useful for the national PSA programmes in several IAEA Member States. (author). 8 refs, 2 figs, 1 tab

  15. Knowledge-based modeling of operator response for severe-accident analysis

    Studies of severe accidents in light water reactors have shown that operator response can play a crucial role in the predicted outcomes of dominant accident scenarios. Although computer codes such as MAAP are available to predict the thermal-hydraulic response, substantial knowledge about plant practices and procedures is needed to make reasonable assumptions about operator response. Based on the thermal-hydraulic state of the plant, symptom-oriented procedures provide general guidance to the operators, who then take one of several possible actions. The paper pictures this process as a feedback loop that relies heavily on the judgment of the individual safety analyst. The ability to more explicitly model the procedural guidance and operator response can help close this analytical loop and improve the overall integration and consistency of severe accident analysis. An object-oriented model for operator response characteristics and symptom-oriented procedures was developed using the NEXPERT OBJECT expert system shell. This prototype system reads MAAP transient output files and determines the instructions and operator response characteristics that are implied by the observable plant variables. A limited set of boiling water reactor (BWR6) emergency operating procedures (EOPs) was formulated as a rule set, and pattern-matching techniques were used to generate message queues for display and reports

  16. A Comparative analysis for control rod drop accident in RETRAN DNB and CETOP DNB Model

    In Korea, the nuclear industries such as fuel manufacturer, the architect engineer and the utility, have been using the methodologies and codes of vendors, such as Westinghouse(WH), Combustion Engineering, for the safety analyses of nuclear power plants. Consequently the industries have kept up the many organizations to operate the methodologies and to maintain the codes for each vendor. It may occur difficulty to improve the safety analyses efficiency and technology related. So, the necessity another of methodologies and code systems applicable to Non- LOCA, beyond design basis accident and performance analyses for all types of pressurized water reactor(PWR) has been raised. Due to the above reason, the Korea Electric Power Research Institute(KEPRI) had decided to develop the new safety analysis code system for Korea Standard Nuclear Power Plants in Korea. As the first requirement, the best-estimate codes were required for applicable wider application area and realistic behavior prediction of power plants with various and sophisticated functions. After the investigation for few candidates, RETRAN-3D has been chosen as a system analysis code. As a part of the feasibility estimation for the methodology and code system, CRD(Control Rod Drop) accident which an event of Non-LOCA accidents for Uljin units 3 and 4 and Yonggwang 1 and 2 was selected to verify the feasibility of the methodology using the RETRAN-3D. In this paper, RETRAN DNB Model and CETOP DNB Model were analyzed by using comparative method

  17. Modeling of in-vessel fission product release including fuel morphology effects for severe accident analyses

    A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs

  18. Modelling of Nuclear Fuel Under Accident Conditions by Means of Transuranus

    The TRANSURANUS fuel performance code, which is developed at the JRC-ITU and in collaboration with many partner institutes since more than three decades, has been adapted in order to be able to simulate design basis accident (DBA) conditions. In a first step, the developments and associated validation work will be summarised for LOCA conditions. This part includes modifications in the model for large strains, for the crystallographic phase transition in Zircaloy, and for burst release and large cladding deformations. In a second step, the ongoing work for simulations of RIA conditions will be outlined that include the model for the plenum temperature, along with the separate effect studies and detailed model developments made in parallel by means of multi-scale and multi-physics tools for the high burnup structure. Finally, the perspectives of model developments and needs for further verification and validation in the frame of international benchmark exercises dedicated to DBA simulations and the first phase of a severe accident, i.e. when the cylindrical fuel rod geometry is preserved, will be presented for discussion. (author)

  19. Atmospheric dispersion modeling and radiological safety analysis for a hypothetical accident of Ghana Research Reactor-1 (GHARR-1)

    Highlights: • An atmospheric dispersion model for a hypothetical accident of Ghana Research Reactor-1 (GHARR-1) was developed. • Radiological safety analysis after the postulated accident was also carried out. • The MCNPX and HotSpot codes were used to achieve the objectives of our study. • All the values of effective dose obtained following the accident were far below the regulatory limits. - Abstract: Atmospheric dispersion modeling and radiological safety analysis were performed for a postulated accident scenario of the generic Low-Enriched Uranium (LEU) Ghana Research Reactor-1 (GHARR-1) core. The source term was generated from an inventory of peak radioisotope activities released by using the isotope generation code MCNPX. The health physics code, HotSpot, was used to perform the atmospheric transport modeling which was then applied to calculate the total effective dose and how it would be distributed to human organs as a function of distance downwind. All accident scenarios were selected from the GHARR-1 Safety Analysis Report (SAR), assuming that the activities were released to the atmosphere after a design basis accident. The adopted methodology was the use of predominant site-specific meteorological data and dispersion modeling theories to analyze the incident of a hypothetical release to the environment of some selected radionuclides from the site and evaluate to what extent such a release may have radiological effects on the public. The results indicate that all the values of Effective dose obtained, with the maximum of 2.62 × 10−2 mSv at 110 m from the reactor, were far below the regulatory limits, making the use of the reactor safe, even in the event of severe accident scenario

  20. Development of a severe-accident simulator with a visual plant behavior display

    Severe-accident management is one of the important safety concerns of the nuclear industry and regulatory organizations. Mitsubishi Atomic Power and Mitsubishi Heavy Industries in Japan have developed a severe-accident simulator with the ability to display plant thermal-hydraulic behavior visually in order to develop operating guidelines and to use as an education and training tool. The main features of this simulator are described

  1. Development of auditing technology for accident analysis of SMART-P

    Chung, B. D.; Kim, H. C.; Bae, K. H.; Lee, Y. J.; Chung, Y. J.; Jeong, J. J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-06-15

    The objective of this project is to develop thermal hydraulic models of the regulatory auditing codes for the application of SMART-P integrated reactor. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement. Well known PIRT methodology has been applied to identify model improvement items. As a part of PIRT process, the identification of SMART-P system and compenent has been performed. The scenario of each key accident and phenonema have been identified. To identify SMART-P thermal-hydraulic characteristics, preliminary calculation has been performed and identify the applicability and inprovement items of current auditing code, RELAP5.

  2. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents

    This is the third in a series of five papers describing the IDAC (Information, Decision, and Action in Crew context) model for human reliability analysis. An example application of this modeling technique is also discussed in this series. The model is developed to probabilistically predict the responses of the nuclear power plant control room operating crew in accident conditions. The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper discusses the modeling components and their process rules. An operator's problem-solving process is divided into three types: information pre-processing (I), diagnosis and decision-making (D), and action execution (A). Explicit and context-dependent behavior rules for each type of operator are developed in the form of tables, and logical or mathematical relations. These regulate the process and activities of each of the three types of response. The behavior rules are developed for three generic types of operator: Decision Maker, Action Taker, and Consultant. This paper also provides a simple approach to calculating normalized probabilities of alternative behaviors given a context

  3. Predictive accident modeling approach inrelation to workover systems

    Jermstad, Lene Bøkseth

    2011-01-01

    Hydro carbon releases are the main contributor to the major accident risk on oil and gas platforms, and the Petroleum Safety Authority Norway (PSA) has thus set a target for reducing such releases. Traditionally topside equipment has been the main focus of study in risk analysis, but to obtain the reduction goals it is important to focus on drilling and well intervention as well. This is due to the complexity of the systems, and the lessons learned from several accidents during such operation...

  4. Researching Effects of Drivers Features on Traffic Accidents: Kocaeli Model

    UÇKUN, Ceylan Gazi; ÇELİKKOL, Ethem Soner; TEKİN, Vasfı Nadir; ÇELİKKOL, Şimal

    2013-01-01

    In addition to environmental conditions, weather conditions and density, situations related to drivers are more effective on traffic accidents, according to available data. Regarding occurrence of traffic accidents, it is observed that point of view of drivers towards traffic rules and drivers’ compliance with these rules is not parallel. It is important to research the reasons that cause this situation. A normal person’s mental state does not change without any reason at traffic. It is clear...

  5. RESEARCHING EFFECTS OF DRIVERS FEATURES ON TRAFFIC ACCIDENTS: KOCAELİ MODEL

    CEYLAN GAZI UÇKUN; ETHEM SONER ÇELİKKOL; VASFI NADIR TEKİN; ŞIMAL ÇELİKKOL

    2013-01-01

    In addition to environmental conditions, weather conditions and density, situations related to drivers are more effective on traffic accidents, according to available data.Regarding occurrence of traffic accidents, it is observed that point of view of drivers towards traffic rules and drivers’ compliance with these rules is not parallel. It is important to research the reasons that cause this situation. A normal person’s mental state does not change without any reason at traffic. It is clear ...

  6. Thermohydrodynamic models adequacy assessment methods within the frameworks of a calculation means verification/validation program for accident processes analysis

    Within the frameworks of the previous developed by authors generalised calculation means (codes) verification / validation methodology in given article considers procedure realisation that related to mathematical thermohydrodynamic models adequacy analysis to real processes of accident / transition modes.For concreteness the last RELAP5 modifications are considered as a calculation code,and VVER reactor equipment is considered as a study object

  7. Development of Auditing Technology for Accident Analysis of SMART-P

    Chung, B. D.; Lee, Y. J.; Jeong, J. J.; Kim, H. C.; Chung, Y. J.; Bae, K. H

    2006-02-15

    The objective of this project is to develop thermal hydraulic models of the regulatory auditing codes for the application of SMART-P integrated reactor. At initial period, PIRT has been performed to identify the model deficiencies and determine the priority of model improvements. The identified thermal hydraulic models has been implemented to RELAP5/MOD3.3 auditing code according to the PIRT ranking. The input model for SMART-P has been developed with consistent to the current design status documents and checked by independent reviewer as Q/A procedure.The evaluation of experimental availabilities and code collapsible has been done by expert group and summarized as validation matrix forms. The experimental data of VISTA, which is the only integral effect test facility, were used to validate the improved model. The safety analysis has been demonstrated for the essential accident scenario. The validation and demonstration show that the developed models are applicable to utilize in reliable and independent auditing for SMART design certification.

  8. A simplified model for calculating early offsite consequences from nuclear reactor accidents

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1988-07-01

    A personal computer-based model, SMART, has been developed that uses an integral approach for calculating early offsite consequences from nuclear reactor accidents. The solution procedure uses simplified meteorology and involves direct analytic integration of air concentration equations over time and position. This is different from the discretization approach currently used in the CRAC2 and MACCS codes. The SMART code is fast-running, thereby providing a valuable tool for sensitivity and uncertainty studies. The code was benchmarked against both MACCS version 1.4 and CRAC2. Results of benchmarking and detailed sensitivity/uncertainty analyses using SMART are presented. 34 refs., 21 figs., 24 tabs.

  9. Updating and testing of a PWR model for the Modular Accident Analysis Programe MAAP5

    Marcos Delgado, Elisabet

    2013-01-01

    The present Master’s Thesis is part of the Master’s degree in Nuclear Engineering of the Universitat Politècnica de Catalunya and the ENDESA Escuela de Energía, and it was developed during the internship in a Spanish Pressurized Water Reactor (PWR). The objective of the project is to update and test the nuclear plant model used for the Safety Analysis department which belongs to the Licensing Department mainly for Severe Accidents phenomenology studies to prepare for and respond to emergen...

  10. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  11. Development of an operator support system for accident management in Indian PHWRs

    Nuclear power plants are highly complex systems that are operated and monitored by human operators. When faced with an unplanned event, such as a plant accident scenario, the operator has to carry out diagnostic and corrective actions relatively faster, which involve complex judgments, making trade-offs between partly incompatible demands and requires expertise to take proper decision. The operator's response in some situations may be too late to mitigate or minimize any consequences due to short time and lack of expert knowledge. An artificial neural network (ANN) based diagnostic system for identifying accident scenarios in Indian PHWRs has been developed. This is an operator support system which continuously monitors the reactor conditions and identifies a transient quickly, and assists the operator to take corrective actions during abnormal operations of the reactor. As a pilot study, the large break loss of coolant accident (LOCA) in reactor inlet or outlet headers with or without the availability of emergency core cooling system (ECCS) has been considered and the break scenarios ranging from 20% to 200% of the header break have been analysed. The time dependent transient data for these break scenarios have been generated using RELAP5 and CONTRAN codes. The training and testing of neural networks has carried out using BIKAS neural networks simulator. Several blind case analyses have also been carried out to validate the trained neural network model. This entire system has been set up on a distributed network and has been demonstrated for online diagnosis purpose. Whenever an event is identified, this system will display the type of the event, time at which the event has occurred, relevant process parameters and their values at the time of initiation of the event and necessary operator actions for mitigation. (author)

  12. The impact of safety design consideration on future LMFBR developments. (R and D needs related to accident accommodation)

    Accident accommodation for design accidents or even beyond design basis accidents is based on components and systems for which important research and development work is needed. Main issues are treated: fuel failure faults, sodium fires, decay heat removal, accommodation of energetics and debris

  13. Multidisciplinary response for a radiological accident developed in Argentina

    In January 2009 during an oil well logging task in Rincon de los Sauces, Province of Neuquen, Argentina, and, as a result of the temporary loss of control of a 137Cs sealed source of 92,5 GBq (2,5 Ci), two workers were allegedly exposed to ionizing radiation. The Health Emergency Coordination System in Neuquen activated the Radiological Emergency Intervention System of the Nuclear Regulatory Authority (NRA). An initial assessment of the accident scenario and the involved persons was performed. Two workers were were transfer to Buenos Aires for a biodosimetry evaluation. In Buenos Aires, the Burn Hospital performed the first diagnostic and therapeutic approach of the radioinduced skin injuries. The NRA estimated the biological absorbed doses and the studies of telethermography. The Italian Hospital was in charge of the studies using ultrasonography and Eco- Doppler. As a result of the multidisciplinary evaluation performed, one of the workers was diagnosed with superficial radioinduced dermatitis. The mentioned intervention highlighted the importance of multidisciplinary and multiparametric work for the evaluation of a radiological accident, as well as for the diagnosis and early treatment of the exposed persons. (authors)

  14. Development of solution behavior observation system under criticality accident conditions in TRACY

    An observation system has been developed as a new instrumentation of TRACY (Transient Experiment Critical Facility) in order to observe the behavior of uranyl nitrate solution and radiolytic gas voids under criticality accident conditions. The system consists of a radiation-resistive optical fiberscope, a light source and a radiation-resistive video camera. The severe radiation environment in TRACY and safety functions as the primary boundary of TRACY were considered in the design of the system. The system has been successfully utilized in the recent TRACY experiments, and provided clear color motion pictures showing the behavior of the solution and radiolytic gas voids. As a result, it was visually confirmed that there is the difference in the behavior of the solution and radiolytic gas voids depending on the conditions of the reactivity addition. The system provides detailed information on the behavior of the solution and voids, and will contribute to the development of a computational kinetics model. (author)

  15. Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident

    Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.

    2012-04-01

    Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.

  16. Modelling of the hydrogen production during the reflooding phase in case of severe accident in a nuclear power plant reactor

    In 1979, the Three Mile Island (TMI) accident accelerated research activities in the field of severe accidents, i.e. accidents leading to a significant core degradation. Among the different computer codes developed in this scope, one of them is a scenario code, called Modular Accident Analysis Program (MAAP). It has been developed in the US and has been used by Electricite de France since 1991 to carry out safety analyses. In this thesis, only severe accidents that lead the core of a Pressurized Water Reactor to be partially or totally uncovered are considered. To avoid that such accidents get worse and lead to a radioactivity release into the environment, procedures imply massive water injections to flood the core. Different comparative studies showed that current computer codes, including the MAAP code, could not model correctly this phenomenon and, in particular, could not predict with accuracy the generation of hydrogen observed in experiments. In a certain range of concentrations, hydrogen and oxygen could recombine in an explosive manner. To prevent this risk in France, it has been decided to build passive auto-catalytic recombiners in the reactor containment building. Their design is strongly dependant on the hydrogen generation kinetics that is estimated with such computer codes. This thesis aims at gathering the state-of-the-art knowledge from a literature review, analysing current models in the MAAP4 code, developing new models and validating them against data from the TMI accident and from the QUENCH experiments (carried out in Forschungszentrum Karlsruhe, Germany). The main results of this research led us to change the oxidation correlations that apply at high temperature in the MAAP4 code and to add two new models. The first one is a simplified two-phase flow thermal-hydraulics model that improves the calculation of the cladding temperature axial profile; the second model takes into consideration the increase of the surface likely to get oxidized after

  17. Development of a database system for hypothetical criticality accident evaluation of MOX fuel fabrication facility

    A system has been developed at JAERI, which includes a database that supports the analysis of criticality accident evaluation codes. In this system, which is accessible through LAN, free software PostgreSQL is used as database management system and Tomcat 5.0 s adopted as a Web server. The main functions of this database system are: to generate input data for criticality accident evaluation codes, to control execution of criticality accident evaluation codes, to process the output of criticality accident evaluation codes, to update the database, to survey information, to display graph output. The following analytic parameters have been stored on the database for various MOX fuel conditions. static parameters : k-infinity, critical mass, critical diameter, critical volume. kinetic parameters : delayed neutron fraction, life time, decay constant. (author)

  18. Development of a computer code concerning the diffusion of radioactive effluents and radiological exposure following an accident

    Cheap and clean energy can be supplied with nuclear power plant whose accident probability is very low comparing with that of the other industrial facilities. However, the consequences of severe accident of nuclear power plant may result in a critical impact on population and ecosystem over a wide area due to the radioactive effluents released into the atmosphere as was in the case of the Chernobyl accident. Therefore, it is necessary to prepare an effective computer analysis system for real-time dose assessment against a potential severe accident of nuclear facility. The objective of this study is a development of the real-time assessment system of environmental exposure dose in an emergency and the installation of its prototype system. Wind field model satisfying the mass conservation and Monte Carlo diffusion model to save computing time were developed in order to assess real-time diffusion of radioactive effluents in an accident. Comparing studies were done in 3 kinds of typical topographic situation dependent on every atmospheric stability. Data library of exposure doses was documented by several computer calculation so that computation time could be reduced considerably. These results of the computation with data library showed a good agreement with the real calculation by the existing mode in which numerical integration model was used. And a graphic package was established that enabled to display the wind vector, concentration field of radioactives, and distribution of exposure dose every time step on the color graphic terminal. Work station was composed of host computer CDC-CYBER, graphic application processor - TEK 4301, graphic CRT - TEK 4125 and hard copier - TEK 4693 D. (Author)

  19. Interactive Rapid Dose Assessment Model (IRDAM): reactor-accident assessment methods. Vol. 2

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness, the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This document describes the technical bases for IRDAM including methods, models and assumptions used in calculations. IRDAM calculates whole body (5-cm depth) and infant thyroid doses at six fixed downwind distances between 500 and 20,000 meters. Radionuclides considered primarily consist of noble gases and radioiodines. In order to provide a rapid assessment capability consistent with the capacity of the Osborne-1 computer, certain simplifying approximations and assumptions are made. These are described, along with default values (assumptions used in the absence of specific input) in the text of this document. Two companion volumes to this one provide additional information on IRDAM. The user's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios.

  20. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences

  1. Interactive Rapid Dose Assessment Model (IRDAM): reactor-accident assessment methods. Vol.2

    As part of the continuing emphasis on emergency preparedness, the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This document describes the technical bases for IRDAM including methods, models and assumptions used in calculations. IRDAM calculates whole body (5-cm depth) and infant thyroid doses at six fixed downwind distances between 500 and 20,000 meters. Radionuclides considered primarily consist of noble gases and radioiodines. In order to provide a rapid assessment capability consistent with the capacity of the Osborne-1 computer, certain simplifying approximations and assumptions are made. These are described, along with default values (assumptions used in the absence of specific input) in the text of this document. Two companion volumes to this one provide additional information on IRDAM. The user's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios

  2. Skills development at a paramedic accident simulation centre.

    Donaghy, John

    2016-02-01

    Practice simulation in acute and pre-hospital care settings is a growing area of interest for clinicians and health educationalists, and there is much evidence to support its use (Pike and O'Donnell 2010). Most simulation is delivered through computer-aided software or in virtual environments, however last year the University of Hertfordshire opened an accident simulation centre which is an outdoor facility that offers pre- and post-registration paramedics the opportunity to experience a range of scenarios in a 'real life' but secure environment. This article describes how the centre enables students to apply theory to practice in complex situations, such as managing patients injured in road traffic collisions. PMID:26853672

  3. A new modelling approach for containment event tree construction -Accident progression stage event tree method

    The Accident Progression Stage Event Tree (APSET) method presented here is a new modelling approach for construction of comprehensive and concise containment event trees to describe physical processes inside containment and accident mitigation actions, yet provide enough detail to analyze important factors for containment responses to severe accidents. In this approach, the accident progression is generally divided into four accident stages, i.e., Pre-stage for Core-melt, Core-melt Progression Stage, Debris Exit Stage, and Long-term Progression Stage, to reflect the timing of containment failure. Physical phenomena which challenge the containment integrity and accident mitigation actions are chronologically represented in event trees for each stage. Event trees for two successive stages are cross-linked by interface parameter. The interface parameter is defined as a set of plant conditions that have a significant influence on physical processes in the subsequent stage. By quantifying the containment event trees constructed with the APSET method, the respective conditional probabilities of the containment failure modes and the accident termination can be calculated stage by stage for each core melt accident sequence. The quantification results provide the characteristics of each core melt sequence on containment responses such as a dominant containment failure mode, its timing, and the effectiveness of mitigation actions. The usefulness of the APSET method was demonstrated through its application to a containment event tree analysis for BWR with MARK-II containment. (author). 11 refs., 2 tabs., 4 figs

  4. Development of New Neutron Detectors for Accident Dosimetry

    New detectors and measuring techniques are proposed to improve the assessment of individual dose received from persons involved in a criticality accident. The aim was to reduce the number of detectors in the conventional detector combinations, to use sensitive activation reactions and to measure the dose of intermediate and fast neutrons directly. The proposed neutron detectors for the dosimeter combination are: (a) Arsenic, to detect slow and intermediate neutrons up to 1 MeV by the 75As(n, y) 76As reaction (half-life of 76As is 26.4 h); (b) Phosphorus, to detect fast neutrons above a threshold of 2 MeV by the 31P (n, γ) 31Si reaction (half-life of 31Si is 2.6 h), and slow neutrons by the 31P(n, γ) 32P reaction (half-life of 32P is 14 d); (d) A polycarbonate detector (Makrofol E) as a nuclear track detector to detect fast neutrons above a threshold of 0.5 MeV by elastic scattering and (n,a) reactions in carbon and oxygen. The S-activity of 76As, 31Si and 32P can be measured directly in As2S3 glass and in phosphate glass by means of the β-induced Cerenkov effect. It uses a liquid scintillation counter set up as for tritium measurements. The calibration of the detectors was performed by calculations of the detector sensitivity for different neutron spectra and by irradiation with different neutron sources at different ctiticality installations. After an accident a first estimation of the neutron dose is obtained by a β-counting of the arsenic phosphate glass, which indicates the surface adsorbed dose or the total neutron fluence directly. It is energy independent over the range of intermediate and fast neutrons. (author)

  5. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi [Nuclear Power Corp. (Japan)] [and others

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.

  6. Ontology Development and Evolution in the Accident Investigation Domain

    Carvalho, Robert; Berrios, Dan; Williams, James

    2004-01-01

    InvestiigationOrganizer (IO) is a collaborative semantic web system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, allowing investigators to integrate evidence, causal models, and investigation results. IO has been used to support investigations ranging from a small property damage case to the loss of the Space Shuttle Columbia. Through IO'S use in these investigations, we have learned significant lessons? about the application of ontologies and semantic systems to solving real-world problems. This paper will describe the development of the ontology within IO, from the initial development, its growth in response to user requests during use in investigations, and the recent work that was done to control the results of that growth. This paper will also describe the lessons learned from this experience and how they may apply to the implementaton of future ontologies and semantic systems.

  7. Development on quantitative safety analysis method of accident scenario. The automatic scenario generator development for event sequence construction of accident

    This study intends to develop a more sophisticated tool that will advance the current event tree method used in all PSA, and to focus on non-catastrophic events, specifically a non-core melt sequence scenario not included in an ordinary PSA. In the non-catastrophic event PSA, it is necessary to consider various end states and failure combinations for the purpose of multiple scenario construction. Therefore it is anticipated that an analysis work should be reduced and automated method and tool is required. A scenario generator that can automatically handle scenario construction logic and generate the enormous size of sequences logically identified by state-of-the-art methodology was developed. To fulfill the scenario generation as a technical tool, a simulation model associated with AI technique and graphical interface, was introduced. The AI simulation model in this study was verified for the feasibility of its capability to evaluate actual systems. In this feasibility study, a spurious SI signal was selected to test the model's applicability. As a result, the basic capability of the scenario generator could be demonstrated and important scenarios were generated. The human interface with a system and its operation, as well as time dependent factors and their quantification in scenario modeling, was added utilizing human scenario generator concept. Then the feasibility of an improved scenario generator was tested for actual use. Automatic scenario generation with a certain level of credibility, was achieved by this study. (author)

  8. Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment

    Within the framework of the generation IV Sodium Fast Reactors, the safety in case of severe accidents is assessed. From this statement, CEA has developed a new physical tool to model the accident initiated by the Total Instantaneous Blockage (TIB) of a sub-assembly. This TIB simulator depends on many uncertain input parameters. This paper aims at proposing a global methodology combining several advanced statistical techniques in order to perform a global sensitivity analysis of this TIB simulator. The objective is to identify the most influential uncertain inputs for the various TIB outputs involved in the safety analysis. The proposed statistical methodology combining several advanced statistical techniques enables to take into account the constraints on the TIB simulator outputs (positivity constraints) and to deal simultaneously with various outputs. To do this, a space-filling design is used and the corresponding TIB model simulations are performed. Based on this learning sample, an efficient constrained Gaussian process metamodel is fitted on each TIB model outputs. Then, using the metamodels, classical sensitivity analyses are made for each TIB output. Multivariate global sensitivity analyses based on aggregated indices are also performed, providing additional valuable information. Main conclusions on the influence of each uncertain input are derived. - Highlights: • Physical-statistical tool for Sodium Fast Reactors TIB accident. • 27 uncertain parameters (core state, lack of physical knowledge) are highlighted. • Constrained Gaussian process efficiently predicts TIB outputs (safety criteria). • Multivariate sensitivity analyses reveal that three inputs are mainly influential. • The type of corium propagation (thermal or hydrodynamic) is the most influential

  9. Investigation of steam line break accident during the development of emergency operating procedures for WWER440/V230

    The results of thermal-hydraulic analyses of Steam Line Break (SLB) accident in supporting of symptom based emergency operating procedures are presented. This kind of analyses are designed to provide the response of monitored plant parameters to identify symptoms available to the operators, timing of the loss of critical safety functions and timing of operator actions to avoid the loss of critical safety functions or core damage. RELAP5/MOD3.2 computer code has been used to simulate the SLB accident in a WWER 440 NPP model. This model was developed at the Institute for Nuclear Research and Nuclear Energy for analyses of operational occurrences, abnormal events, and design bases scenarios. The model provides a significant analytical capability for the specialists working in the field of NPP safety. (authors)

  10. Research and development with regard to severe accidents in pressurised water reactors: Summary and outlook

    transport in the primary and the secondary circuit (7.2), aerosol behaviour in the containment (7.4) and FP chemistry (7.5). Finally, Chapter 8 presents a review of development and validation efforts for the main severe accident codes: ASTEC, MAAP and MELCOR. In Chapters 3-7, for each of the theme areas, the phenomena involved are reviewed. The major relevant experiments are then briefly described, including recent, ongoing and future projects. The key models and specific codes (except for integral codes) used to simulate the phenomena in question are also discussed. Finally, the state of current knowledge is reviewed and an outlook for the future is presented, especially regarding experimental programmes and the development of modelling tools. (authors)

  11. Speed Spatial Distribution Models for Traffic Accident Section of Freeway Based on Computer Simulation

    Decai Li; Jiangwei Chu; Wenhui Zhang; Xiaojuan Wang; Guosheng Zhang

    2015-01-01

    Simulation models for accident section on freeway are built in microscopic traffic flow simulation environment. In these models involving 2⁃lane, 3⁃lane and 4⁃lane freeway, one detector is set every 10 m to measure section running speed. According to the simulation results, speed spatial distribution curves for traffic accident section on freeway are drawn which help to determine dangerous sections on upstream of accident section. Furthermore, the speed spatial distribution models are obtained for every speed distribution curve. The results provide theoretical basis for determination on temporal and spatial influence ranges of traffic accident and offer reference to formulation of speed limit scheme and other management measures.

  12. Radiological accident in Goiania seven years later: what developing country must never forget

    In September 1987, the removal of the rotating assembly of the shielding head of a teletherapy unit and the dismantling of the capsule containing 50.9 TBq (1375 Ci) of Cs-137 was the most serious radiological accident to have occurred to date. It resulted in the injure by radiation of many people, four of them fatally, and in a widespread contamination of central Goiania, a Brazilian city, of one million inhabitants, Capital of the State of Goias, 180 km far from Brasilia, capital of Brazil. This accident presents lessons that cover the pre-accident period, the emergency phase, and the post-accident phase up to the the present, seven years later, now involving social and economical deliberation for the final Goiania Waste Repository. In each of them were found errors, omissions and correct actions form individuals and organization and, specially in developing country, must be continuously analyzed in terms of safety culture problems identification and safety culture and human beahvior because, not with standing the recommendations contained in publications concerning emergency planning and preparedness, this radiological accident gave evidence of several adverse vectors not mentioned in the literature. Not only social, political, economic and technical problems we had to deal with, but also psychological aspects as fear and depression of the population and also discrimination against the victioms and the main products of the city. This paper also concentrates on safety culture characteristics from the accident lessons, which in developing country are substantially different from the developed one, including the influence and difference of legislation and rules applied, the interfaces and conflicts between the state and the BNCNE and the different aspects involved in providing information and reports to the government, to the organizations and to the community; and finally call the attention from the national and international organizations for questions still in

  13. A source term estimation method for a nuclear accident using atmospheric dispersion models

    Kim, Minsik; Ohba, Ryohji; Oura, Masamichi;

    2015-01-01

    The objective of this study is to develop an operational source term estimation (STE) method applicable for a nuclear accident like the incident that occurred at the Fukushima Dai-ichi nuclear power station in 2011. The new STE method presented here is based on data from atmospheric dispersion...... models and short-range observational data around the nuclear power plants.The accuracy of this method is validated with data from a wind tunnel study that involved a tracer gas release from a scaled model experiment at Tokai Daini nuclear power station in Japan. We then use the methodology developed...... and validated through the effort described in this manuscript to estimate the release rate of radioactive material from the Fukushima Dai-ichi nuclear power station....

  14. A model for non-volatile fission product release during reactor accident conditions

    An analytical model has been developed to describe the release kinetics of non-volatile fission products (e.g., Mo, Ce, Ru and Ba) from uranium dioxide fuel under severe reactor accident conditions. The present treatment considers the rate-controlling process of release in accordance with diffusional transport in the fuel matrix and fission product vaporization from the fuel surface into the surrounding gas atmosphere. The effect of the oxygen potential in the gas atmosphere on the chemical form and volatility of the fission product is considered. A correlation is also developed to account for the trapping effects of Sb and Te in the Zircaloy cladding. This model has been used to interpret the release behaviour of fission products observed in the CEA experiments conducted in the HEVA/VERCORS facility at high temperature in a hydrogen and steam atmosphere. (author)

  15. Modelling of plate-out under gas-cooled reactor (GCR) accident conditions

    The importance of plate-out in mitigating consequences of gas-cooled reactor accidents, and its place in assessing these consequences, are discussed. The data requirements of a plate-out modelling program are discussed, and a brief description is given of parallel work programs on thermal/hydraulic reactor behaviour and fuel modelling, both of which will provide inputs to the plate-out program under development. The representation of a GCR system used in SRD studies is presented, and the equations governing iodine adsorption, desorption and transport round the circuit are derived. The status of SRD's plate-out program is described, and the type of sensitivity studies to be undertaken with the partially-developed computer program in order to identify the most useful lines for future research is discussed. (author)

  16. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    Heames, T.J. (Science Applications International Corp., Albuquerque, NM (USA)); Williams, D.A.; Johns, N.A.; Chown, N.M. (UKAEA Atomic Energy Establishment, Winfrith (UK)); Bixler, N.E.; Grimley, A.J. (Sandia National Labs., Albuquerque, NM (USA)); Wheatley, C.J. (UKAEA Safety and Reliability Directorate, Culcheth (UK))

    1990-10-01

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs.

  17. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs

  18. Effects of improved modeling on best estimate BWR severe accident analysis

    Since 1981, ORNL has completed best estimate studies analyzing several dominant BWR accident scenarios. These scenarios were identified by early Probabilistic Risk Assessment (PRA) studies and detailed ORNL analysis complements such studies. In performing these studies, ORNL has used the MARCH code extensively. ORNL investigators have identified several deficiencies in early versions of MARCH with regard to BWR modeling. Some of these deficiencies appear to have been remedied by the most recent release of the code. It is the purpose of this paper to identify several of these deficiencies. All the information presented concerns the degraded core thermal/hydraulic analysis associated with each of the ORNL studies. This includes calculations of the containment response. The period of interest is from the time of permanent core uncovery to the end of the transient. Specific objectives include the determination of the extent of core damage and timing of major events (i.e., onset of Zr/H2O reaction, initial clad/fuel melting, loss of control blade structure, etc.). As mentioned previously the major analysis tool used thus far was derived from an early version of MARCH. BWRs have unique features which must be modeled for best estimate severe accident analysis. ORNL has developed and incorporated into its version of MARCH several improved models. These include (1) channel boxes and control blades, (2) SRV actuations, (3) vessel water level, (4) multi-node analysis of in-vessel water inventory, (5) comprehensive hydrogen and water properties package, (6) first order correction to the ideal gas law, and (7) separation of fuel and cladding. Ongoing and future modeling efforts are required. These include (1) detailed modeling for the pressure suppression pool, (2) incorporation of B4C/steam reaction models, (3) phenomenological model of corium mass transport, and (4) advanced corium/concrete interaction modeling. 10 references, 17 figures, 1 table

  19. Survey of accidents in suburban Tehran and the prediction of future events based on a time-series model

    Heidar Teymuri, Ghulam; Bahmani, Rahman; Asghari, Mehdi; Madrese, Elham; Rahmani, Abdolrasoul; Abbasinia, Marzieh; Ahmadnezhad, Iman; Samavati, Mehdi

    2014-01-01

    Background: Car accidents are currently a social issue globally because they result in the deaths of many people. The aim of this study was to examine traffic accidents in suburban Tehran and forecast the number of future accidents using a time-series model. Methods: The sample population of this cross-sectional study was all traffic accidents that caused death and physical injuries in suburban Tehran in 2010 and 2011, as registered by the Tehran Emergency Section. In the present study, Minit...

  20. Modeling of DECL accident in the reactor containment by the CONTAIN 2.0 code

    Abbasi, Molood; Rahgoshay, Mohhamad [Islamic Azad Univ., Teheran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch

    2013-11-15

    In this paper, a specific type of the Loss of Coolant Accident (LOCA), the DECL (Double Ended Cold Leg) break, that means totally Guillotine type of break in the cold leg pipe, has been modeled. The accident is simulated with the CONTAIN 2.0 code. In the event of a LOCA accident, coolant mass and energy are released to the containment through the break. This causes an increase of pressure and temperature in the containment. The modeling is performed in the VVER-1000 reactor containment. The analysis includes average pressure in the containment and temperature distribution in sample cells in the long-time. The results are compared with the existing reports on studies that used the ANGAR code. Results show that the CONTAIN 2.0 code is an adaptable tool for the analysis of nuclear events such as DECL accident. (orig.)

  1. Modeling of DECL accident in the reactor containment by the CONTAIN 2.0 code

    In this paper, a specific type of the Loss of Coolant Accident (LOCA), the DECL (Double Ended Cold Leg) break, that means totally Guillotine type of break in the cold leg pipe, has been modeled. The accident is simulated with the CONTAIN 2.0 code. In the event of a LOCA accident, coolant mass and energy are released to the containment through the break. This causes an increase of pressure and temperature in the containment. The modeling is performed in the VVER-1000 reactor containment. The analysis includes average pressure in the containment and temperature distribution in sample cells in the long-time. The results are compared with the existing reports on studies that used the ANGAR code. Results show that the CONTAIN 2.0 code is an adaptable tool for the analysis of nuclear events such as DECL accident. (orig.)

  2. Development of accident frequency analysis S/W for chemical processes

    Seo, Jae Min; Ko, Jae wook [College of Chemical Engineering, Kwangwoon University (Korea); Shin, Dong Il [School of Chemical Engineering, Seoul National University, Seoul (Korea)

    1999-12-01

    In this study, a computerized prototype program was developed with frequency analysis system as a main system and data base as sub-items to utilize data. Through use of gate-by-gate analysis and minimal cut set using boolean algebra, the frequency analysis program performed the qualitative approach for the accident development path and a quantitative risk analysis. In conclusion, it is thought that the resulting installation will be effective for lessening the probability of accidents through use of this lower cost software. 7 refs., 7 figs.

  3. Modeling Advanced Neutron Source reactor station blackout accident using RELAP5

    The Advanced Neutron Source (ANS) system model using RELAP5 has been developed to perform loss-of-coolant accident (LOCA) and non-LOCA transients as safety-related input for early design considerations. The transients studies include LOCA, station blackout, and reactivity insertion accidents. The small-, medium-, and large-break LOCA results were presented and documented. This paper will focus on the station blackout scenario. The station blackout analyses have concentrated on thermal-hydraulic system response with and without accumulators. Five transient calculations were performed to characterize system performance using various numbers and sizes of accumulators at several key sites. The main findings will be discussed with recommendations for conceptual design considerations. ANS is a state-of-the-art research reactor to be built and operated at high heat flux, high mass flux, and high coolant subcooling. To accommodate these features, three ANS-specific changes were made in the RELAP5 code by adding: the Petukhov heat transfer correlation for single-phase forced convection in the thin coolant channel; the Gambill additive method with the Weatherhead wall superheat for the critical heat flux; and the Griffith drift flux model for the interfacial drag in the slug flow regime. 7 refs., 6 figs., 1 tab

  4. A dynamic food-chain model and program for predicting the radiological consequences of nuclear accident

    A dynamic food-chain model and program, DYFOM-95, for predicting the radiological consequences of nuclear accident has been developed, which is not only suitable to the West food-chain but also to Chinese food chain. The following processes, caused by accident release which will make an impact on radionuclide concentration in the edible parts of vegetable are considered: dry and wet deposition interception and initial retention, translocation, percolation, root uptake and tillage. Activity intake rate of animals, effects of processing and activity intake of human through ingestion pathway are also considered in calculations. The effects of leaf area index LAI of vegetable are considered in dry deposition model. A method for calculating the contribution of rain with different period and different intensity to total wet deposition is established. The program contains 1 main code and 5 sub-codes to calculate dry and wet deposition on surface of vegetable and soil, translocation of nuclides in vegetable, nuclide concentration in the edible parts of vegetable and in animal products and activity intake of human and so on. (24 refs., 9 figs., 11 tabs.)

  5. Modeling and measuring the effects of imprecision in accident management

    This paper presents two approaches for evaluating the uncertainties inherent in accident management strategies. Current PRA methodology uses expert opinion in the assessment of rare event probabilities. The problem is that these probabilities may be difficult to estimate even though reasonable engineering judgement is applied. This occurs because expert opinion under incomplete knowledge and limited data is inherently imprecise. In this case, the concept of uncertainty about a probability value is both intuitively appealing and potentially useful. This analysis considers accident management as a decision problem (i.e. 'applying a strategy' vs. 'do nothing') and uses an influence diagram. Then, the analysis applies two approaches to evaluating imprecise node probabilities in the influence diagram: 'a fuzzy probability' and 'an interval-valued subjective probability'. For the propagation of subjective probabilities, the analysis uses a Monte-Carlo simulation approach. In case of fuzzy probabilities, fuzzy logic is applied to propagate them. We believe that these approaches can allow us to better understand uncertainties associated with severe accident management strategies, because they provide additional information regarding the implications of using imprecise input data

  6. A space-time multivariate Bayesian model to analyse road traffic accidents by severity

    Boulieri, A; Liverani, S; Hoogh, K. de; Blangiardo, M.

    2016-01-01

    The paper investigates the dependences between levels of severity of road traffic accidents, accounting at the same time for spatial and temporal correlations. The study analyses road traffic accidents data at ward level in England over the period 2005–2013. We include in our model multivariate spatially structured and unstructured effects to capture the dependences between severities, within a Bayesian hierarchical formulation. We also include a temporal component to capture the time effects...

  7. Development of a multi-criteria decision tool for remediation after a nuclear or radiological accident

    The review of accidents involving Nuclear Power Plants or facilities that use or process radioactive sources have raised issues related to the decision-making processes and to the procedures used to reestablish the normal living conditions in the affected areas. Due to the large complexity of the decision processes after accidents, a multi-criteria approach has been recommended to support the choice among the several procedures that may improve the environmental conditions. As part of the process of developing a multi-criteria decision support tool, a questionnaire was created to be fulfilled by experts to derive the relevance of the technical criteria to be considered in the model. At this stage, only the technical criteria related to radiation protection of the public will be focused; legal aspects, costs and public opinion, although relevant in the decision-making process, are beyond the scope of this work. The questionnaire contains 12 questions, each containing 5 degrees of importance. The answers are statically analyzed to generate a multiplicative factor to be included in the multicriteria model. To facilitate the process of distributing the questionnaire to the selected experts and then for a better processing and ordering of the information gathered, a program based on the Hypertext Preprocessor language (PHP) was created; this methodology has been chosen because of its compatibility and security in existing operating systems. The relevance rank showed the long-term dose reduction and the generation of wastes as the most relevant aspects to be considered in selecting remediation strategies for a contaminated area. (author)

  8. Development of a multi-criteria decision tool for remediation after a nuclear or radiological accident

    Luca, Christiano de; Rochedo, Elaine R.R.; Ferreira, Nadya M.P.D., E-mail: christiano_luca@hotmail.com, E-mail: elainerochedo@gmail.com, E-mail: nadya@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The review of accidents involving Nuclear Power Plants or facilities that use or process radioactive sources have raised issues related to the decision-making processes and to the procedures used to reestablish the normal living conditions in the affected areas. Due to the large complexity of the decision processes after accidents, a multi-criteria approach has been recommended to support the choice among the several procedures that may improve the environmental conditions. As part of the process of developing a multi-criteria decision support tool, a questionnaire was created to be fulfilled by experts to derive the relevance of the technical criteria to be considered in the model. At this stage, only the technical criteria related to radiation protection of the public will be focused; legal aspects, costs and public opinion, although relevant in the decision-making process, are beyond the scope of this work. The questionnaire contains 12 questions, each containing 5 degrees of importance. The answers are statically analyzed to generate a multiplicative factor to be included in the multicriteria model. To facilitate the process of distributing the questionnaire to the selected experts and then for a better processing and ordering of the information gathered, a program based on the Hypertext Preprocessor language (PHP) was created; this methodology has been chosen because of its compatibility and security in existing operating systems. The relevance rank showed the long-term dose reduction and the generation of wastes as the most relevant aspects to be considered in selecting remediation strategies for a contaminated area. (author)

  9. Development of a DNBR evaluation method for the CEA ejection accident in SMART core

    Hwang, Dae Hyun; Yoo, Y. J.; In, W. K.; Chang, M. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    A methodology applicable to the analysis of the CEA ejection accident in SMART is developed for the evaluation of the fraction of fuel failure caused by DNB. The transient behavior of the core thermal-hydraulic conditions is calculated by the subchannel analysis code MATRA. The minimum DNBR during the accident is calculated by KRB-1 CHF correlation considering the 1/8 symmetry of hot assembly. The variation of hot assembly power during the accident is simulated by the LTC(Limiting transient Curve) which is determined from the analysis of power distribution data resulting from the three-dimensional core dynamics calculations. The initial condition of the accident is determined by considering LOC(Limiting Conditions for Operation) of SMART core. Two different methodologies for the evaluation of DNB failure rate are established; a deterministic method based on the DNB envelope, and a probabilistic method based on the DNB probability of each fuel rod. The methodology developed in this study is applied to the analysis of CEA ejection accident in the preliminary design core of SMART. As the result, the fractions of DNB fuel failure by the deterministic method and the probabilistic method are calculated as 38.7% and 7.8%, respectively. 16 refs., 16 figs., 5 tabs. (Author)

  10. Environmental accident and its treatment in a developing country: a case study on China.

    Hou, Yu

    2012-08-01

    Along with their rapid progress, developing countries have had to deal with more environmental problems, which have been a cause for concern among policy makers and the public in general. This study cites two accidents that happened in China in 2006 that caused serious environmental problems in nearby communities and discusses the problems these accidents created and the resulting disputes among the concerned people. Pollution-causing accidents not only pose threats to the health of the victims but also give rise to environmental disputes that jeopardise national security and social stability. Conflicts normally ensue following a pollution-causing accident, which are more likely to happen within a development zone or industrial park. Few environmental conflicts in the past decades were resolved through litigation. Nevertheless, there are lapses in the regulatory system, which have to be addressed to ensure that the public's rights and interests are protected. Currently, reports on pollution-causing accidents are difficult to obtain and are often released very late. A majority of industrial firms operate without environmental clearance, thus highlighting the government's inefficiency in environmental management. It is about time that the Chinese government takes seriously the use of the Environmental Impact Assessment. PMID:21909707

  11. Development of transmitter with hybrid-IC for Post-accident monitoring instrumentation

    After the TMI accident, Post-accident Monitoring (PAM) Instrumentation based on the U.S. Guideline (R.G.1.97) was applied to Japanese PWRs. And we have back-fitted the PAM Instrumentation to old plants step by step. Recently, new type transmitters arrive on the market. They have better accuracy, and stability than old type. However, they cannot be applied as the PAM instrumentation, because new type are insufficient in a qualification for the PAM instrumentation and a modification to endure in-containment accident conditions. Hence, Japanese PWR utilities and Mitsubishi Heavy Industries are developing a new type transmitter for PAM instrumentation to improve accuracy and stability in the period of 1994 through 1996. This paper describes nowadays results in this development of a new PAM transmitter. (author). 8 figs, 3 tabs

  12. Radiation protection survey of research and development activities initiated after the Chernobyl accident. Review report

    The compilation of research and development activities in the various fields of radiation protection in OECD Member countries which have been undertaken or planned specifically to address open questions arising from the Chernobyl reactor accident experience shows a potential for international cooperative arrangements and/or coordination between national programmes. Both the preliminary review of the answers, which only cover a part of the relevant activities in OECD Member countries, and a computerized literature search indicate that the multidisciplinarity of the research area under consideration will call for special efforts to efficiently implement new models and new quantitative findings from the different fields of activity to provide an improved basis for emergency management and risk assessment. Further improvements could also be achieved by efforts to initiate new activities to close gaps in the programmes under way, to enhance international cooperation, and to coordinate the evaluation of the results. This preliminary review of the answers of 17 Member countries to the questionnaire on research and development activities initiated after the Chernobyl accident is not sufficient as a basis for a balanced decision on those research areas most in need for international cooperation and coordination. It may however serve as a guide for the exploration of the potential for international cooperative arrangements and/or coordination between national programmes by the CRPPH. Even at this preliminary stage, several specific activities are proposed to the NEA/OECD by Member countries. Whole body counting and the intercomparison of national data bases on the behaviour of radionuclides in the environment did attract most calls for international cooperation sponsored by the NEA

  13. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  14. Accident analysis of TEPCO's Fukushima Daiichi Nuclear Power Plant with the SAMPSON severe accident code. (1) Improvement of debris relocation model

    SAMPSON was designed as a large scale simulation system of inter-connected hierarchical modules covering a wide spectrum of scenarios ranging from normal operation to severe accidents. The code was validated by a wide range of analyses for separate-effect tests, and integral tests mainly through participation in the Organisation for Economic Co-operation and Development projects. In the previous analysis of TEPCO’s Fukushima Daiichi Nuclear Power Plant (1F) with the SAMPSON code, melt retention at a core plate was assumed based on observations after the Three Mile Island Unit 2 accident. The melt relocation to the core plate occurred when the water level was below the core plate in the SAMPSON analysis of the 1F accident. Therefore debris relocation phenomena were investigated using the Molten Core Relocation Analysis (MCRA) module of SAMPSON. The detailed model of the MCRA module was applied to the XR2-1 BWR metallic relocation experiment first. Molten material in the control rod area accumulated on the velocity limiter in the XR2-1 experiment and this phenomenon was reproduced by the SAMPSON analysis. A part of the molten metal fell directly through the inlet orifice in both the XR2-1 experiment and the SAMPSON analysis. Then the detailed model of the MCRA module was applied to the relocation phenomena of actual fuel bundles. The molten material accumulation on the velocity limiter and direct falling of the molten material through the inlet orifice were also observed in the analysis of actual fuel bundles. Based on the observations described above, MCRA noding for the system calculation was modified as follows. (1) The velocity limiters and control guide tubes were newly taken into account. (2) The flow path of debris was modified so that the molten materials could go to the lower plenum after passing through the inlet orifice without forced accumulation at the core plate. (author)

  15. Radiation accidents

    Radiation accidents may be viewed as unusual exposure event which provide possible high exposure to a few people and, in the case of nuclear plants events, low exposure to large population. A number of radiation accidents have occurred over the past 50 years, involving radiation machines, radioactive materials and uncontrolled nuclear reactors. These accidents have resulted in number of people have been exposed to a range of internal and external radiation doses and those involving radioactive materials have involved multiple routs of exposure. Some of the more important accidents involving significant radiation doses or releases of radioactive materials, including any known health effects involves in it. An analysis of the common characteristics of accidents is useful resolving overarching issues, as has been done following nuclear power, industrial radiography and medical accidents. Success in avoiding accidents and responding when they do occur requires planning in order to have adequately trained and prepared health physics organization; well defined and developed instrument program; close cooperation among radiation protection experts, local and state authorities. Focus is given to the successful avoidance of accidents and response in the events they do occur. Palomares, spain in late 1960, Goiania, Brazil in 1987, Thule, Greenland in 1968, Rocky flats, Colorado in 1957 and 1969, Three mile island, Pennsylvania in 1979, Chernobyl Ukraine in april 1986, Kyshtym, former Soviet Union in 1957, Windscale, UK in Oct. 1957 Tomsk, Russian Federation in 1993, and many others are the important examples of major radiation accidents. (author)

  16. Developing GIS based decision-support tools for agricultural counter-measurements after radiation accident

    There is a whole variety of possibilities proposed by EURANOS data sheets for agriculture, for mid-term and long-term counter-measures after contamination of crops by radiation. We have developed a set of supportive tools for decision-makers within the project 'Methods of evaluation of contaminated territory after radiation accident - the importance of structure and functioning of a land cover'. Our TM tools are based on ArcGIS platform and Python programming language. We have developed a simple model for estimating the current biomass of the polluted crops. Inputs for this model are: a shape file of land cover data, database table with customisable plant growth characteristics and shape file of polluted areas. The model provides a shape file data set of estimated amounts of biomass of selected crops per hectare for a given day. The results are helpful for better performing of the countermeasure 'Early removal of crops'. The total amount of polluted waste, logistic costs (transport of people and material; required time; other costs) could be estimated only with basic GIS tools. The number of days expected for the harvest can be also calculated and compared with the dose and half-lives of the contaminating radionuclides. This analysis could also lead to a 'Do nothing' decision, especially in case of radionuclides with short times of half-life. (author)

  17. Possibility of the development of a Serbian protection system against chemical accidents

    Dejan R. Inđić

    2012-10-01

    Full Text Available The paper presents a draft of a system model for responding in case of chemical accidents in accordance with the current legislation regarding the environment protection, the structure and elements of the existing response system in case of chemical accidents, other works dealing with the issue as well as the prospects planned by those responsible for the environmental protection. The paper discuss the possibilities of different institutions and agencies of the Republic of Serbia to engage in specialized methods of cooperation and protection against chemical hazards in accordance with Article X of the Convention on the Prohibition of Chemical Weapons.

  18. Development of Instrument Transmitter Protecting Device against High-Temperature Condition during Severe Accidents

    Min Yoo

    2014-01-01

    Full Text Available Reliable information through instrumentation systems is essential in mitigating severe accidents such as the one that occurred at the Fukushima Daiichi nuclear power plant. There are five elements which might pose a potential threat to the reliability of parameter detection at nuclear power plants during a severe accident: high temperature, high pressure, high humidity, high radiation, and missiles generated during the evolution of a severe accident. Of these, high temperature apparently poses the most serious threat, since thin shielding can get rid of pressure, humidity, radiation (specifically, alpha and beta radiations, and missile effects. In view of this fact, our study focused on designing an instrument transmitter protecting device that can eliminate the high-temperature effect on transmitters to maintain their functional integrity. We present herein a novel concept for designing such a device in terms of heat transfer model that takes into account various heat transfer mechanisms associated with the device.

  19. Using Immersive Virtual Reality to Reduce Work Accidents in Developing Countries.

    Nedel, Luciana; de Souza, Vinicius Costa; Menin, Aline; Sebben, Lucia; Oliveira, Jackson; Faria, Frederico; Maciel, Anderson

    2016-01-01

    Thousands of people die or are injured in work accidents every year. Although the lack of safety equipment is one of the causes, especially in developing countries, behavioral issues caused by psychosocial factors are also to blame. This article introduces the use of immersive VR simulators to preventively reduce accidents in the workplace by detecting behavioral patterns that may lead to an increased predisposition to risk exposure. The system simulates day-to-day situations, analyzes user reactions, and classifies the behaviors according to four psychosocial groups. The results of a user study support the effectiveness of this approach. PMID:26915116

  20. Lessons learned from former radiation accidents on development of software tools for effective decision making support

    Pecha, Petr; Hofman, Radek; Kuča, P.

    Praha : T-SOFT a.s, 2009, 15-1-15-8. ISBN 978-80-254-5913-3. [11th International Conference on Present and Future of Crisis Management 2009. Praha (CZ), 23.11.2009-24.11.2009] R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : Nuclear Accident * Lessons Learned * Software Support Subject RIV: AQ - Safety, Health Protection, Human - Machine http://library.utia.cas.cz/separaty/2009/AS/pecha- lessons learned from former radiation accidents on development of software tools for effective decision making support.pdf

  1. Trends in state-level freight accident rates: An enhancement of risk factor development for RADTRAN

    Under the Nuclear Waste Policy Act, the Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) is concerned with understanding and managing risk as it applies to the shipment of spent commercial nuclear reactor fuel. Understanding risk in relation to mode and geography may provide opportunities to minimize radiological and non-radiological risks of transportation. To enhance such an understanding, a set of state-or waterway-specific accident, fatality, and injury rates (expressed as rates per shipment kilometer) by transportation mode and highway administrative class was developed, using publicly-available data bases. Adjustments made to accommodate miscoded or incomplete information in accident data are described, as well as the procedures for estimating state-level flow data. Results indicate that the shipping conditions under which spent fuel is likely to be transported should be less subject to accidents than the ''average'' shipment within mode. 10 refs., 3 tabs

  2. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    In a nuclear power plant, much knowledge on severe accidents has been acquired through PSA, and accident management (AM) guidelines are prepared by incorporating that knowledge. In PSA, it is necessary to evaluate the effectiveness of AM using the decision-making failure probability (DFP) of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipment. However, to date there has been no suitable quantification method for PSA to obtain DFP. In this study, we developed a new method for DFP quantification of an emergency organization using a cognitive analysis model, and tried to apply it to S2DC and TMLF sequence of a typical plant. As a result: (1) The methods enabled to DFP quantification appropriate to level 1.5PSA by choosing the suitable value of a basic failure probability and an error factor. (2) The DFPs of six AMs appeared to be in the range of 0.23 to 0.41 (screening method) and in the range of 0.10 to 0.19 (detailed method), and the DFP decreased about 50% as a result of sensitivity analysis of the conservative assumption. (3) The screening method was more conservative than the detailed method, and it was shown to satisfy the screening performance required by PSA. (author)

  3. CFD modeling of debris melting phenomena during late phase Candu 6 severe accident

    The objective of this paper was to study the phase change of the debris formed on the Candu 6 calandria bottom in a postulated accident sequence. The molten pool and crust formation were studied employing the Ansys-Fluent code. The 3D model using Large Eddy Simulation (LES) predicts the conjugate, radiative and convective heat transfer inside and from the corium pool. LES simulations require a very fine grid to capture the crust formation and the free convection flow. This aspect (fine mesh requirement) correlated with the long transient has imposed the use of a slice from the 3D calandria geometry in order not to exceed the computing resources. The preliminary results include heat transfer coefficients, temperature profiles and heat fluxes through calandria wall. From the safety point of view it is very important to maintain a heat flux through the wall below the CHF assuring the integrity of the calandria vessel. This can be achieved by proper cooling of the tank water which contains the vessel. Also, transient duration can be estimated being important in developing guidelines for severe accidents management. The debris physical structure and material properties have large uncertainties in the temperature range of interest. Thus, further sensitivity studies should be carried out in order to better understand the influence of these parameters on this complex phenomenon. (authors)

  4. Simplified evaluation models for total fission number in a criticality accident

    For handling of nuclear fuel during reprocessing or for design of spent-fuel storage and transportation, one needs to know the scale of maximum credible criticality accidents, i.e., the total fission number so as to know the radiological exposure of working personnel as well as the risk to the public in the event of an accident. Some simplified evaluation models for conservatively predicting the number of total fissions during an accident are derived theoretically using the one-point adiabatic reactivity balance model for the homogeneous and thermogenesis systems, respectively, which are frequently seen in nuclear fuel facilities. These simplified evaluation models are subsequently validated with the transient experiment data and actual accident data published to date from the world nuclear community. Some conventionally used simplified evaluation models of this kind are quoted and compared with the results to show the convenience of the current models, having almost no restrictions in the application for any kind of nuclear fuel, material composition, geometry, and dimension, and thus, ensuring adequate margins for predicting the total fission number at the time of a criticality accident

  5. Simplified evaluation models for total fission number in a criticality accident

    Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Ibaraki (Japan). Dept. of Fuel Cycle Safety Research

    1995-01-01

    For handling of nuclear fuel during reprocessing or for design of spent-fuel storage and transportation, one needs to know the scale of maximum credible criticality accidents, i.e., the total fission number so as to know the radiological exposure of working personnel as well as the risk to the public in the event of an accident. Some simplified evaluation models for conservatively predicting the number of total fissions during an accident are derived theoretically using the one-point adiabatic reactivity balance model for the homogeneous and thermogenesis systems, respectively, which are frequently seen in nuclear fuel facilities. These simplified evaluation models are subsequently validated with the transient experiment data and actual accident data published to date from the world nuclear community. Some conventionally used simplified evaluation models of this kind are quoted and compared with the results to show the convenience of the current models, having almost no restrictions in the application for any kind of nuclear fuel, material composition, geometry, and dimension, and thus, ensuring adequate margins for predicting the total fission number at the time of a criticality accident.

  6. Pin-by-pin modeling of fuel cycle and reactivity initiated accidents in LWR

    This study deals with validation results for pin-by-pin methods to model fuel cycle and reactivity initiated accidents (RIAs) in LWR. Both methods are based on a heterogeneous pin-by-pin reactor model, realized in the BARS code. Validation results are presented for separate steps of WWER fuel cycle modeling. Features and advantages of a pin-by-pin approach for modeling of LWR RIA shown on the basis of calculations of control rod ejection accidents (REAs) in South Ukrainian NPP Unit 1 WWER-1000 and Three Mile Island Unit 1 (TMI-1) PWR at the end of cycles. Calculations were performed using the coupled RELAP-BARS code. Effects of pin-by-pin power and burnup distribution on estimation of the accident consequences are considered. (Authors)

  7. Control rod ejection analysis during a depressurization accident and the development of a rod-ejection-preventing device

    The control rods used for the experimental VHTR are suspended in the core by means of flexible steel cables and it is conceivable that an accidental rod ejection could occur due to a depressurization accident. The computer code AFLADE was developed in order to analyze the possibility of accidental rod ejection, and several studies were performed. The parametric study results showed that the adopted design condition for the VHTR core will not cause a rod ejection accident. In parallel with these accident analyses, a rod-ejection-preventing device was developed in preparation for a hypothetical accident, and its function was verified by the component tests

  8. Robot developments for the nuclear power accident in TEPCO

    Many robots had been very active at Fukushima Daiichi Nuclear Power Station since March 11, 2011. Working robots consisted of existing robots such as Packbot firstly entering reactor building and newly developed robots after March 11. Deployment of existing robots required not easy processes such as contract with robot manufacturer, operation training, actual needs and necessary modifications, mockup testing, procedure manual preparation, and real application at site. This article focused on small size robot development in TEPCO, for which the author had been working as remote control technology development team. Robot development started with introduction of DOE-Talon with wired dose ratemeter, and gamma camera and radiation resistant cameras installed on the robot operation vehicle with shielding for high dose measurement around reactor building. Remote technology application committee was set up in June to discuss future needs of robot development and listed required robots corresponding to short-term issues. Development of wired Quince with improved crawler function going up or down stairs had been done with many modifications including cable handling with mockup testing and application experiences. Small size robots for basement survey had been developed for investigation around catwalk in torus room of basement (Survey Runner) and around containment penetration at first floor of unit 1 (FRIGO-MA). Small size robot for high-access survey had been developed for investigation around containment penetration at a high place of first floor of unit 2. (T. Tanaka)

  9. Development of the source term PIRT based on findings during Fukushima Daiichi NPPs accident

    Highlights: • We developed the source term PIRT based on findings during the Fukushima accident. • The FoM is the masses or fractions of radionuclides released into the environment. • 68 phenomena were identified as influencing to the FoM. • Radionuclide release from molten fuel had the highest score in the early phase. • MCCI, iodine chemistry, and chemical form had the highest score in the later phase. - Abstract: Research Expert Committee on Evaluation of Severe Accident of AESJ (Atomic Energy Society of Japan) has developed thermal hydraulic PIRT (Phenomena Identification and Ranking Table) and source term (ST) PIRT based on findings during the Fukushima Daiichi NPPs accident. These PIRTs aim to explore the debris distribution and the current condition in the NPPs with high accuracy and to extract higher priority from the aspect of the sophistication of the analytical technology to predict the severe accident phenomena by the analytical codes. The ST PIRT is divided into 3 phases for time domain and 9 categories for spatial domain. The 68 phenomena have been extracted and the importance from the viewpoint of the source term has been ranked through brainstorming and discussions among experts. The present paper describes the developed ST PIRT list and summarizes the high ranked phenomena in each phase

  10. ACCIDENT PREDICTION METHODOLOGY USING CONFLICT ZONE METHOD FOR “TRANSIT TRANSPORT-PEDESTRIAN” CONFLICT SITUATION AND MODELS OF TRAFFIC FLOWS AT CONTROLLED INTERSECTION

    D. V. Kapsky

    2015-01-01

    Full Text Available Accidents are considered as the most significant cost of road traffic. Therefore any measures for road traffic management should be evaluated according to a minimization  criterion of accident losses. In order to develop a method for evaluation of the accident losses it is necessary to prepare a methodology for cost estimate of road accidents of various severity with due account of their consequences and prediction (economic assessment and severity level of their consequences (quantitative risk assessment. The research has been carried with the purpose to devise appropriate models for accident prediction at a decision-making stage while organizing road traffic in respect of  the “transport-pedestrian” conflict. An interaction of pedestrian and transit road traffic flows  is characterized by rather high risk level. In order to reduce number of road accidents  and  severity of their consequences in the observed conflict, it is necessary to evaluate  proposed solutions, in other words to predict accidents at the stage of object designing and  development of measures.The paper presents its observations on specificity of road traffic and pedestrian flow interactions and analysis of spatial conflict point formation and conflict zone creation in the studied conflict between transport facilities and pedestrians at controlled pedestrian crossings which are located in the area of intersections. Methodology has been developed for accident prediction in accordance with the conflict zone method for various traffic modes at intersections. Dependences of the represented road traffic accidents (according to consequence severity on potential danger of conflicts have been determined for various traffic modes and various conditions of conflict interaction.

  11. Combined Prediction Model of Death Toll for Road Traffic Accidents Based on Independent and Dependent Variables

    Feng Zhong-xiang

    2014-01-01

    Full Text Available In order to build a combined model which can meet the variation rule of death toll data for road traffic accidents and can reflect the influence of multiple factors on traffic accidents and improve prediction accuracy for accidents, the Verhulst model was built based on the number of death tolls for road traffic accidents in China from 2002 to 2011; and car ownership, population, GDP, highway freight volume, highway passenger transportation volume, and highway mileage were chosen as the factors to build the death toll multivariate linear regression model. Then the two models were combined to be a combined prediction model which has weight coefficient. Shapley value method was applied to calculate the weight coefficient by assessing contributions. Finally, the combined model was used to recalculate the number of death tolls from 2002 to 2011, and the combined model was compared with the Verhulst and multivariate linear regression models. The results showed that the new model could not only characterize the death toll data characteristics but also quantify the degree of influence to the death toll by each influencing factor and had high accuracy as well as strong practicability.

  12. Development and application of a radioactivity evaluation technique the to obtain radiation exposure dose of radioactivity evaluation technique when a severe accident occurs in the a power station of a severe accident. Accident management guidelines of knowledge-based maintenance

    As a One of the lessons learned from the nuclear accident at the Fukushima Daiichi Nuclear Power Stations of Tokyo Electric Power Company, the was the need for improvement of accident management guidelines is required. In this report study, we developed and applied a dose evaluation technique to evaluated the radiation dose in a nuclear power plant assuming three conditions: employees were evacuation evacuated at the time of a severe accident occurrence; operators carried out the accident management operation; of the operators, and the repair work was carried out for of the trouble damaged apparatuses in a the nuclear power plant using a dose evaluation system. The following knowledge findings were obtained and should to be reflected to in the knowledge base of the guidelines was obtained. (1) By making clearly identifying an areas beforehand becoming the that would receive high radiation doses at the time of a severe accident definitely beforehand, we can employees can be moved to the evacuation places through an areas having of low dose rate and it is also known it how much we long employees can safely stay in the evacuation places. (2) When they circulate CV containment vessel recirculation sump water is recirculated by for the accident management operation and the restoration of safety in the facilities, because the plumbing piping and the apparatuses become radioactive radioactivity sources, the dose evaluation of the shortest access route and detour access routes with should be made for effective the accident management operation is effective. Because the area where a dose rate rises changes which as safety apparatuses are restored, in consideration of a plant state, it is necessary to judge the rightness or wrongness of the work continuation from the spot radioactive dose of the actual apparatus area, with based on precedence of the need to restore with precedence, and to choose a system to be used for accident management. (author)

  13. Pretest analysis of containment studies facility model for simulated loss of coolant accident conditions

    An experimental facility called Containment Studies Facility (CSF) has been constructed at Bhabha Atomic Research Centre (BARC), Trombay for the purpose of research and development in the area of nuclear reactor containment thermal hydraulics. The facility consists of reinforced concrete containment structural model and a Primary Heat Transport Model (PHTM) vessel. The containment model is approximately 1:250 volumetrically scaled down model of a 220 MWe Indian Pressurized Heavy Water Reactor (IPHWR) containment system and the PHTM represents the primary heat transport system of the prototype reactor. The PHTM with a pressure vessel and associated pump and piping system is designed for simulating the Loss of Coolant Accident (LOCA) or Main Steam Line Break (MSLB) conditions within the containment model. As part of CSF project thermal hydraulic analysis, a pretest analysis was carried out for simulated LOCA conditions. Blow down mass and energy discharge data were obtained using Relap/MOD3.2 code for different blow down conditions and were used as inputs to CONTRAN code for simulating LOCA or main steam line break (MSLB) conditions in the containment model. Pressure and temperature transients in the CSF model for different blow down conditions and a number of parametric studies were conducted to assess the influence of a large number of thermodynamic and geometrical parameters which are known to affect the transients and alter the peak pressure and temperature values. (author)

  14. Improved models for the simulation of severe LWR accidents - processes during quenching and chemical interactions

    In the Core Degradation Project, the contributions of the IKE mainly concerns the improvements and extensions of models, basic versions of which have been developed in the frame of the national BMBF - project KESS. In this project detailed models have been developed to simulate the main processes in the core during a severe accident in light water reactors. The first part of this report is focused on the interacting processes during quenching, like the embrittlement of the fuel rod cladding and of the refreezed melt, the oxidation of the cladding and the crust as well as the cooling effect due to the rapid vaporization. The improved and extended models have been implemented in the code system KESS and as a frist step of the validation the integral bundle experiment CORA-13 has been used. The second part of this report is directed to the chemical interaction between the fuel rod cladding and the Inconel grid spacer. Hereby, a basic diffusion model has been developed and applied to specific bundle conditions to take into account the time of failure of the grid spacer. (orig.)

  15. Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents

    If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted

  16. Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents

    Benjamin, A.S.

    1997-11-01

    If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted.

  17. Development of GRIF-SM: The code for analysis of beyond design basis accidents in sodium cooled reactors

    GRIF-SM code was developed at the IPPE fast reactor department in 1992 for the analysis of transients in sodium cooled fast reactors under severe accident conditions. This code provides solution of transient hydrodynamics and heat transfer equations taking into account possibility of coolant boiling, fuel and steel melting, reactor kinetics and reactivity feedback due to variations of the core components temperature, density and dimensions. As a result of calculation, transient distribution of the coolant velocity and density was determined as well as temperatures of the fuel pins, reactor core and primary circuit as a whole. Development of the code during further 6 years period was aimed at the modification of the models describing thermal hydraulic characteristics of the reactor, and in particular in detailed description of the sodium boiling process. The GRIF-SM code was carefully validated against FZK experimental data on steady state sodium boiling in the electrically heated tube; transient sodium boiling in the 7-pin bundle; transient sodium boiling in the 37-pin bundle under flow redaction simulating ULOF accident. To show the code capabilities some results of code application for beyond design basis accident analysis on BN-800-type reactor are presented. (author)

  18. Remediation strategies after nuclear or radiological accidents: part 1 - database development

    The selection of protective measures and of remediation strategies of areas after a nuclear or radiological accident needs to be based on previously established criteria, in way to minimize the public's emotional stress and the exposure to workers involved in cleanup operations due to the implementation of procedures that are not effective in reducing doses to the public. Thus this work intended to develop a database which allows supporting the decision-making process after these accidents, by describing the foreseen strategies according to the type of accident and the type of affected environment, in order to be used in a multi-criteria selective process. To achieve that, in this first stage, the database has been developed including the following aspects: type of environment (urban, rural or aquatic); their contamination removal efficiency, as function of the time elapsed since the contamination event; the type and the amount of waste generated in the application of the strategy; the expected doses to the work team and basic needs such as specific materials, equipment, training, IPE, among others. The protection measures are usually described in literature considering their activity removal efficiency of a certain surface or environment. In order to determine their efficiency in the reduction of doses, a second stage is foreseen, involving the simulation of the implementation of the measures in different moments after the contamination, based on pre-defined accidents and scenarios, with focus on the surroundings of the Brazilian Nuclear Power Plants in Angra dos Reis. (author)

  19. Radioecological zoning of territory and model of territory for monitoring of agrosphere after heavy accident at the NPP

    To improve the effectiveness of responses to severe accident in the field of population and agricultural production before the accident, proposed to prevent collect and analyze cartographic, statistical, environmental and others. The information needed to predict and assess the radiological situation. The methodology of radio-ecological zoning of the territory contaminated with radioactive fallout, using GIS technology, which was based on landscape-basin principle. A model of the territory, taxonomic units which are elements of the landscape or objects of agricultural land use. The river pond is a primary objective of the existing structural unit of the territory. The main characteristics are the type of soil, the type of terrain and the type of underlying surface. The application model provides the coordination of spatial and temporal distribution of characteristics, coupled models of atmospheric diffusion and migration of radionuclides on the chain ''soil - plants - animals - Products - man'' and dosimetric models to determine countermeasures that may be necessary after the accident. To forecast the radiation environment on the track used by the accidental release of the authors developed a model of atmospheric transport of radionuclides, aeral and root of plant contamination

  20. Initial VHTR accident scenario classification: models and data.

    Vilim, R. B.; Feldman, E. E.; Pointer, W. D.; Wei, T. Y. C.; Nuclear Engineering Division

    2005-09-30

    Nuclear systems codes are being prepared for use as computational tools for conducting performance/safety analyses of the Very High Temperature Reactor. The thermal-hydraulic codes are RELAP5/ATHENA for one-dimensional systems modeling and FLUENT and/or Star-CD for three-dimensional modeling. We describe a formal qualification framework, the development of Phenomena Identification and Ranking Tables (PIRTs), the initial filtering of the experiment databases, and a preliminary screening of these codes for use in the performance/safety analyses. In the second year of this project we focused on development of PIRTS. Two events that result in maximum fuel and vessel temperatures, the Pressurized Conduction Cooldown (PCC) event and the Depressurized Conduction Cooldown (DCC) event, were selected for PIRT generation. A third event that may result in significant thermal stresses, the Load Change event, is also selected for PIRT generation. Gas reactor design experience and engineering judgment were used to identify the important phenomena in the primary system for these events. Sensitivity calculations performed with the RELAP5 code were used as an aid to rank the phenomena in order of importance with respect to the approach of plant response to safety limits. The overall code qualification methodology was illustrated by focusing on the Reactor Cavity Cooling System (RCCS). The mixed convection mode of heat transfer and pressure drop is identified as an important phenomenon for Reactor Cavity Cooling System (RCCS) operation. Scaling studies showed that the mixed convection mode is likely to occur in the RCCS air duct during normal operation and during conduction cooldown events. The RELAP5/ATHENA code was found to not adequately treat the mixed convection regime. Readying the code will require adding models for the turbulent mixed convection regime while possibly performing new experiments for the laminar mixed convection regime. Candidate correlations for the turbulent

  1. Debris interactions in reactor vessel lower plena during a severe accident. I. Predictive model

    For pt.II see ibid., p.165-78, 1996. An integral predictive physico-numerical model has been developed to understand and interpret debris interactions in the reactor vessel plenum such as those which took place in the TMI-2 accident. The model represents the extent of debris jet disintegration by a jet-water entrainment model which can result in two types of debris configurations. One is particulated debris which eventually quenches in the water as a result of the entrainment process. The remainder of the debris penetrates to the bottom of the lower plenum and collects as a continuous layer. Each is treated as a separate region and has governing principles for its behavior. The potential for creating gap (contact) resistance and boiling heat removal is considered for heat transfer between the debris bed, the reactor vessel and steel structures and, most importantly, the vessel-to-crust gap water. The proposed in-vessel cooling mechanism due to material creep and water ingression into the expanding gap between the core debris and the vessel wall was found to explain the non-failure of the TMI-2 vessel in the course of the accident. The particulate debris bed is a mixture of metal and oxide, which is distributed as individual spherical particles of sizes determined at the time of entrainment. Energy is received from the continuum bed below by radiation and convection. The continuum debris bed is described by the crust behavior with the heat flux to the crust given by the natural convection correlations relating the Nusselt and Rayleigh numbers for the central region of debris. Using these governing principles, the rate laws for heat and mass transfer are formulated for each type of debris condition in the lower plenum

  2. Advanced evacuation model managed through fuzzy logic during an accident in LNG terminal

    Evacuation of people located inside the enclosed area of an LNG terminal is a complex problem, especially considering that accidents involving LNG are potentially very hazardous. In order to create an evacuation model managed through fuzzy logic, extensive influence must be generated from safety analyses. A very important moment in the optimal functioning of an evacuation model is the creation of a database which incorporates all input indicators. The output result is the creation of a safety evacuation route which is active at the moment of the accident. (Author)

  3. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  4. Development of advanced claddings for suppressing the hydrogen emission in accident conditions. Development of advanced claddings for suppressing the hydrogen emission in the accident condition

    The development of accident-tolerant fuels can be a breakthrough to help solve the challenge facing nuclear fuels. One of the goals to be reached with accident-tolerant fuels is to reduce the hydrogen emission in the accident condition by improving the high-temperature oxidation resistance of claddings. KAERI launched a new project to develop the accident-tolerant fuel claddings with the primary objective to suppress the hydrogen emission even in severe accident conditions. Two concepts are now being considered as hydrogen-suppressed cladding. In concept 1, the surface modification technique was used to improve the oxidation resistance of Zr claddings. Like in concept 2, the metal-ceramic hybrid cladding which has a ceramic composite layer between the Zr inner layer and the outer surface coating is being developed. The high-temperature steam oxidation behaviour was investigated for several candidate materials for the surface modification of Zr claddings. From the oxidation tests carried out in 1 200 deg. C steam, it was found that the high-temperature steam oxidation resistance of Cr and Si was much higher than that of zircaloy-4. Al3Ti-based alloys also showed extremely low-oxidation rate compared to zircaloy-4. One important part in the surface modification is to develop the surface coating technology where the optimum process needs to be established depending on the surface layer materials. Several candidate materials were coated on the Zr alloy specimens by a laser beam scanning (LBS), a plasma spray (PS) and a PS followed by LBS and subject to the high-temperature steam oxidation test. It was found that Cr and Si coating layers were effective in protecting Zr-alloys from the oxidation. The corrosion behaviour of the candidate materials in normal reactor operation condition such as 360 deg. C water will be investigated after the screening test in the high-temperature steam. The metal-ceramic hybrid cladding consisted of three major parts; a Zr liner, a ceramic

  5. Usefulness of high resolution coastal models for operational oil spill forecast: the "Full City" accident

    G. Broström

    2011-11-01

    Full Text Available Oil spill modeling is considered to be an important part of a decision support system (DeSS for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution, the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas.

  6. Health effects models for nuclear power plant accident consequence analysis: Low LET radiation

    This report describes dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes -- are considered. In addition, models are included for assessing the risks of several nonlethal early and continuing effects -- including prodromal vomiting and diarrhea, hypothyroidism and radiation thyroiditis, skin burns, reproductive effects, and pregnancy losses. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other.'' The category, ''other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also developed. For most cancers, both incidence and mortality are addressed. The models of cancer risk are derived largely from information summarized in BEIR III -- with some adjustment to reflect more recent studies. 64 refs., 18 figs., 46 tabs

  7. Health effects models for nuclear power plant accident consequence analysis: Low LET radiation

    Evans, J.S. (Harvard Univ., Boston, MA (USA). School of Public Health)

    1990-01-01

    This report describes dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes -- are considered. In addition, models are included for assessing the risks of several nonlethal early and continuing effects -- including prodromal vomiting and diarrhea, hypothyroidism and radiation thyroiditis, skin burns, reproductive effects, and pregnancy losses. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid, and other.'' The category, other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also developed. For most cancers, both incidence and mortality are addressed. The models of cancer risk are derived largely from information summarized in BEIR III -- with some adjustment to reflect more recent studies. 64 refs., 18 figs., 46 tabs.

  8. Development of Operation Strategy for Hybrid-SIT in SBO Accident

    Passive system is suggested as an alternative way for active system because passive system doesn't need external energy source and passive system can also increase the diversity of mitigation technique of Nuclear Power Plant (NPP). A hybrid safety injection tank (H-SIT) is a passive injection system that adjusts to the APR+. This system is developed for mitigation of SBO scenarios. Main function of this system is injection of coolant to the Reactor Coolant System (RCS) in a passive way.. The H-SIT system can inject water using the pressure from nitrogen gas as a normal SIT in low-pressure accidents such as large and medium break loss-of-coolant accidents. Additionally, the H-SIT system can inject water using the gravitational force in over-pressure accidents, which means that the pressure is higher than the safety injection pump (SIP) injection pressure. Figure 1 presents the outline of the H-SIT system. Operation strategy of H-SIT can be divided into four case in SBO accident and each case has a deferent strategy of H-SIT operation. In case 1, timing of H-SIT operation has the best efficiency when core level is 50% of its level in normal operation. H-SIT extend failure time of cladding up to 5686s. In case 2, timing of H-SIT operation has the best efficiency when seal LOCA occur

  9. Development of Operation Strategy for Hybrid-SIT in SBO Accident

    Jeon, In Seop; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2014-10-15

    Passive system is suggested as an alternative way for active system because passive system doesn't need external energy source and passive system can also increase the diversity of mitigation technique of Nuclear Power Plant (NPP). A hybrid safety injection tank (H-SIT) is a passive injection system that adjusts to the APR+. This system is developed for mitigation of SBO scenarios. Main function of this system is injection of coolant to the Reactor Coolant System (RCS) in a passive way.. The H-SIT system can inject water using the pressure from nitrogen gas as a normal SIT in low-pressure accidents such as large and medium break loss-of-coolant accidents. Additionally, the H-SIT system can inject water using the gravitational force in over-pressure accidents, which means that the pressure is higher than the safety injection pump (SIP) injection pressure. Figure 1 presents the outline of the H-SIT system. Operation strategy of H-SIT can be divided into four case in SBO accident and each case has a deferent strategy of H-SIT operation. In case 1, timing of H-SIT operation has the best efficiency when core level is 50% of its level in normal operation. H-SIT extend failure time of cladding up to 5686s. In case 2, timing of H-SIT operation has the best efficiency when seal LOCA occur.

  10. A model for the analysis of loss of decay heat removal accident in MTR pool type research reactors

    During a loss of coolant accident leading to total emptying of the reactor pool, the decay heat could be removed through air natural convection. However, under partial pool emptying the core is partially submerged and the coolant circulation inside the fuel element could no more be possible. In such conditions, a core overheat take place, and the heat is essentially diffused from the core to its periphery by combined thermal radiation and conduction. In order to predict fuel element temperature evolution under such conditions a mathematical model is performed. The model is based on a three dimensional geometry and takes into account a variety of core configurations including fuel elements (standard and control), reflector elements and grid plates. The homogeneous flow model is used and the time and space dependent non-linear partial differential fluid conservation equations are solved using a semi-implicit finite difference method. Preliminary tests of the developed model were made by considering a series of hypothetical accidents. In the current framework a loss of decay heat removal accidents in the IAEA benchmark open pool MTR-type research reactor is considered. It is shown that in the case of a low core immersion height no water boiling is observed and the fuel surface temperature rise remains below the melting point of the aluminium cladding. (author)

  11. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  12. Development of an accident consequence analysis program based on the object oriented programming technique

    The KAERI accident consequence analysis program KAPAC is being developed on the basis of reusable objects in PPAM (platform for the development of plant analysis and management codes). Development of PPAM is being conducted at the Korea Atomic Energy Research Institute (KAERI) in order to be able to provide portability and reusability of computer codes, and consistent user interface in developing software with the use of object oriented programming (OOP) under a Microsoft Windows environment. By constructing the platform, software development can benefit from a shorter development cycle and an easier validation and verification process. 1 ref., 2 figs

  13. An approach to modelling operator behaviour in integrated dynamic accident sequence analysis

    The paper describes an integrated dynamic methodology for simulating nuclear power plant accidents, with special focus on the operator behaviour model. The overall model consists of accident sequence pre-processor, operator response model, safety and support system model, plant dependence model, thermal hydraulics model, and accident sequence scheduler. The operator model consists of the knowledge base (KB) and the decision making module (DM). KB consists of rules of behaviour. Behaviour is guided by emergency operating procedures (EOPs), thermal hydraulics parameters of the plant, system status, and other factors including stress, training, experience, etc. Possible error mechanisms in following symptom based EOPs are mentioned, and factors which cause some of these errors are identified. Plant parameters are classified as ''diagnostic'' and ''control''. Comparison of operator expectations and plant inputs guides the behaviour. System states affect only control action and not diagnosis. The decision maker simulates the operator behaviour in the way it accesses the KB, assuming that the KB contains all the knowledge that is necessary for managing the accident. This is modelled through a ''filter'' concept where the factors that affect behaviour are filters that affect the access to KB. Actions are categorized in verifying the response of reactor protection systems, and in controlling inventory and heat removal. System modelling is done at system rather than component level since operator actions affect the plant at system level. The methodology is being implemented in PC environment. Possible applications include analysis of causes and consequences of operator actions, particularly errors of commission, EOP validation, analysis of dynamic effects of accident sequences, and performing probabilistic risk assessments. 15 refs, 2 figs, 1 tab

  14. Fuel Behaviour and Modelling under Severe Transient and Loss of Coolant Accident (LOCA) Conditions. Proceedings of a Technical Meeting

    In recent years the demands on 'fuel duties' have increased, including transient regimes, higher burnups and longer fuel cycles. To satisfy these demands, fuel vendors have developed and introduced new cladding and fuel material designs to provide sufficient margins for safe operation of the fuel components. National and international experimental programmes have been launched, and models have been developed or adapted to take into account the changed conditions. These developments enable water cooled reactors, which contribute about 95% of the nuclear power in the world today, to operate safely under all operating conditions; moreover, even under severe transient or accident conditions, such as reactivity initiated accidents (RIAs) or loss of coolant accidents (LOCAs), the behaviour of the fuel can be adequately predicted and the consequences of such events can be safely contained. In 2010 the IAEA Technical Working Group on Fuel Performance and Technology (TWGFPT) recommended that a technical meeting on ''Fuel Behaviour and Modelling under Severe Transient and LOCA Conditions'' be held in Japan. The accident at the Fukushima Daiichi nuclear power plant in March 2011 highlighted the need to address this subject, and despite the difficult situation in Japan at the time, the recommended plan was confirmed, and the Japan Atomic Energy Agency (JAEA) hosted the technical meeting in Mito, Ibaraki Prefecture, Japan, from 18 to 21 October 2011. This meeting was the eighth in a series of IAEA meetings, which reflects Member States' continuing interest in the above issues. The previous meetings were held in 1980 (jointly with OECD Nuclear Energy Agency, Helsinki, Finland), 1983 (Riso, Denmark), 1986 (Vienna, Austria), 1988 (Preston, United Kingdom), 1992 (Pembroke, Canada), 1995 (Dimitrovgrad, Russian Federation) and 2001 (Halden, Norway). The purpose of the technical meeting was to provide a forum for international experts to review the current situation and the state of

  15. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Calmon, P.; Gonze, M.-A.; Mourlon, Ch.

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  16. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  17. Cold leg condensation model for analyzing loss-of-coolant accident in PWR

    Liao, Jun, E-mail: liaoj@westinghouse.com; Frepoli, Cesare; Ohkawa, Katsuhiro

    2015-04-15

    Highlights: • Direct contact cold leg condensation model for full spectrum LOCA evaluation model. • The cold leg condensation model addresses both large break LOCA and small break LOCA. • The model is assessed against both large break and small break LOCA experiments. • Scalability of the cold leg condensation model to full scale PWR is discussed. - Abstract: Direct contact condensation in the cold leg of pressurized water reactor is an important phenomenon during a postulated loss-of-coolant accident. The amount of condensation in the cold legs impacts the thermal hydraulic behavior of the reactor coolant system and eventually the integration of reactor nuclear core. A cold leg condensation model was developed for the WCOBRA/TRAC-TF2 safety analysis code. The model correlated the COSI test data and addressed the scaling issues with respect to geometry, pressure, and steam and water flow rates expected during a typical PWR LOCA. The correlation was found to be in good agreement with separate effects and integral effects experimental data and implemented in the WCOBRA/TRAC-TF2 safety analysis code. The cold leg condensation model was assessed against various small break and large break LOCA separate effects tests such as COSI experiments, ROSA experiments and UPTF experiments. Those experiments cover a wide range of cold leg dimensions, system pressures, mass flow rates, and fluid properties. All the predicted condensation results match reasonably well with the experimental data. Scalability discussions on the diameter, flow area, length, superficial velocity, Reynolds number of both cold leg and SI line, and Froude number of SI line in the Westinghouse COSI test facility were provided. The distortion of the SI jet Reynolds number is moderate. The scaling analysis together with the validation matrix covering a wide range of cold leg diameter, SI flow rate and SI Reynolds number support the scalability of the developed cold leg condensation model to the full

  18. WASTE-ACC: A computer model for analysis of waste management accidents

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy`s (DOE`s) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives.

  19. WASTE-ACC: A computer model for analysis of waste management accidents

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  20. Development of the post-accident expert assessment capacity of I.R.S.N

    Emergency preparedness is a key feature of IRSN's mission within the French institutional organisation of nuclear safety and radiation protection. In the event of an accident, IRSN is expected to propose to authorities the appropriate technical decisions in order to safeguard public health, environmental protection, and to restore safety. The article discusses the nature of the challenges that IRSN would have to meet in order to implement its mission during the 'post-accident' phase, which would last a long time if a significative environmental contamination did occur. These four challenges shape the strategy chosen by IRSN to prepare itself for such an eventuality: - to ensure the readiness of its experts, and the validity of its doctrine for intervention, on the basis of research results and of accumulated practical experience, - to maintain state of the art metrology facilities and computer models which would be needed to operate IRSN's response, - to elaborate, and maintain through exercises, plans to mobilize efficiently for the purpose of post-accident operations IRSN's resources which are normally dedicated to other tasks, - the work conducted by IRSN would also be expected to contribute to confidence rebuilding across society, after a nuclear accident. Communication and transparency will play a major role for this, and IRSN's culture and values have to take this fully into account. The conclusion stresses the importance of resource allocation across the different missions of IRSN, the achievement of prevention of accidents through the safety analysis and research processes remaining of paramount importance, and emergency preparedness being the last line of defence. International cooperation is in this respect one of the better ways to enhanced efficiency. (author)

  1. A dynamic event tree informed approach to probabilistic accident sequence modeling: Dynamics and variabilities in medium LOCA

    In Probability Safety Assessments, accident scenario dynamics are addressed in the accident sequence analysis task. In an analyst-driven, iterative process, assumptions are made about equipment responses and operator actions and simulations of the scenario evolution are performed. To calculate how scenario dynamics and stochastic variabilities may affect the results of this process in terms of estimated risk, this work applies Dynamic Event Trees (DETs) to more comprehensively examine the accident scenario space. Alternative event tree models are developed and the core damage frequency is quantified to reveal the effects of different delineations of the sequences and of the bounding assumptions underlying success criteria. The results from a case study on Medium-break Loss of Coolant Accident scenarios in a Pressurized Water Reactor are presented, considering the break size, available injection trains, and the timing of rapid cooldown and the switchover to recirculation. The results show not only that estimated risk can be very sensitive to the numerous assumptions made in current accident sequence analysis but also that bounding assumptions do not always result in conservative risk estimates, thereby confirming the benefits that DETs provide in terms of characterizing scenario dynamics. - Highlights: • The overall most challenging MLOCA break is at neither extreme of the size range. • Selecting the limiting break size influenced estimated risk strongly (6″ vs 7″). • Success criteria can be defined more realistically by splitting the MLOCA range. • A more demanding success criterion for one top event can reduce overall risk. • Non-limiting success branches may lead to more demanding subsequent success criteria

  2. A two-stage optimization model for emergency material reserve layout planning under uncertainty in response to environmental accidents.

    Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Liu, Rentao; Wang, Peng

    2016-06-01

    In the emergency management relevant to pollution accidents, efficiency emergency rescues can be deeply influenced by a reasonable assignment of the available emergency materials to the related risk sources. In this study, a two-stage optimization framework is developed for emergency material reserve layout planning under uncertainty to identify material warehouse locations and emergency material reserve schemes in pre-accident phase coping with potential environmental accidents. This framework is based on an integration of Hierarchical clustering analysis - improved center of gravity (HCA-ICG) model and material warehouse location - emergency material allocation (MWL-EMA) model. First, decision alternatives are generated using HCA-ICG to identify newly-built emergency material warehouses for risk sources which cannot be satisfied by existing ones with a time-effective manner. Second, emergency material reserve planning is obtained using MWL-EMA to make emergency materials be prepared in advance with a cost-effective manner. The optimization framework is then applied to emergency management system planning in Jiangsu province, China. The results demonstrate that the developed framework not only could facilitate material warehouse selection but also effectively provide emergency material for emergency operations in a quick response. PMID:26897572

  3. Fuel Behavior Simulation Code FEMAXI-FBR Development for SFR Core Disruptive Accident Analysis

    Japan Nuclear Energy Safety Organization (JNES) has been developing ASTERIA-FBR code system for SFR core disruptive accident analysis to contribute as a part of the regulation activity for Japanese prototype FBR, MONJU. The ASTERIA-FBR code system consists of detailed fuel behavior analysis module (FEMAXI-FBR), neutronic Monte-Carlo calculation module (GMVP), and thermal hydraulic module (CONCORD). The calculation scope of the ASTERIA-FBR covers the initiating, transitional and post disassembly expansion processes. The FEMAXI-FBR is based on LWR fuel behavior simulation code FEMAXI-6 and modified the material properties and the calculation models under steady state and transient operational condition. The FEMAXI-FBR has been verified in steady state calculations compared with those of SAS-4A code. Furthermore, the code has been validated by French CABRI slow-TOP (E12) and fast-TOP (BI2) transient calculations. Through these verification and validation, good agreement has been obtained with the FP-gas release ratio, the fuel restructuring, the gap width between pellet and cladding, and the fuel pin failure position. (author)

  4. The study on development of emergency operating procedures based on symptom and risk for accident management

    The Advanced EOP(AEOP) has been developed by focusing on the importance of the operators role in emergency conditions. In the AEOP, to overcome the complexity of current EOPs and maintain the consistency of operators action according to plant emergency conditions, operator's task were allocated according to their duties. As an alternative, the Computerized Operator Aid System (COAS) has been developed to reduce operator's burden and provide detailed instructions of procedure. Probabilistic Safety Assessment (PSA) results were synthesized in the AEOP using the event tree to give the awareness and the prediction of accident progression in advance. In conclusion, the existing EOP with its inherent complexity should be simplified and consolidated using computerized operator support system and task allocation to prevent more severe accidents and to reduce operator cognitive overload in emergency conditions

  5. Instrument Fault Detection Sensitivity of an Empirical Model under Accident Condition in NPPs

    After the recent accident in Fukushima, Japan, it has been proven that we cannot obtain fully reliable information from instruments during severe accident conditions. Although the reactor core really melted down, the RV water level indicator showed a more optimistic value than the actual conditions. Accordingly, plant operators were under the misunderstanding that the core was not exposed. This caused confusion for the incident response. Therefore, it is necessary to be equipped with a function that informs operators of the status of the instrument integrity in real time. If plant operators verify that the instruments are working properly during accident conditions, they able to make safer decisions. In an effort to solve this problem, we considered an empirical model using a Process Equipment Monitoring (PEM) tool as a method of instrument diagnosis in a nuclear power plant

  6. Risk factors associated with bus accident severity in the United States: A generalized ordered logit model

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    2011. Method: The current study investigates the underlying risk factors of bus accident severity in the United States by estimating a generalized ordered logit model. Data for the analysis are retrieved from the General Estimates System (GES) database for the years 2005–2009. Results: Results show...

  7. A review of accident response models for risk assessments involving the transport of spent nuclear fuel

    A study was performed to explore the differences between two spent fuel transportation risk assessment models used to calculate conditional accident probabilities and radionuclide release fractions. The Wilmot model, from work performed at Sandia National Laboratories, and the NRC-sponsored Modal Study model were compared to identify areas of conservatism and to assess their applicability to current risk assessment studies. The study included reviewing model assumptions, mathematical equations, and data sources for each model. The total probability hazard results showed that Modal Study gave several orders of magnitude higher total relative risk than the Wilmot values. However, considering the very low magnitudes of the risk, this difference is not considered significant with respect to the overall risk assessment. It was also found that the documentation and referencing of accident response region models needs improvements

  8. DEVELOPMENT OF METHODOLOGY FOR TRAFFIC ACCIDENT FORECASTING AT VARIOUS TYPICAL URBAN AREAS

    D. Kapsky

    2014-01-01

    The paper provides investigation results pertaining to development of methodology for forecasting traffic accidents using a “conflict zone” method that considers potential danger for two typical urban areas, namely: signaled crossings and bumps that are made in the areas of zebra crossings and it also considers various types and kinds of conflicts. The investigations have made it possible to obtain various indices of threshold sensitivity in respect of  potential risks  and in relation to tra...

  9. A cladding failure model for fuel rods subjected to operational and accident transients

    Concerns about high burnup effects on cladding integrity during operational and accident transients have been invoked by licensing authorities in the United States of America, Europe and Japan as potentially limiting for burnup extension. Transient experiments recently conducted in France and Japan to simulate reactivity initiation accidents (RIAs) in light water reactors have shown that high burnup fuel rods can fail at enthalpy levels well below the current licensing limits. Analytical research conducted by EPRI during the last few years, in support of the RIA tests evaluation, has led to the development of a cladding failure model for reactor transients, including RIA and power oscillation events in boiling water reactors known as ATWS (anticipated transient without scram). The model is incorporated in EPRI's fuel behavior code FALCON, which is the modern version of the FREY code that was presented in previous IAEA fuel behavior meeting. The most distinguishing feature of the model is that it computes the mechanical energy locally at material points in the cladding as function of time during the transient event, from which the failure location and failure time are predicted. The database for the model consists of stress-strain data obtained from mechanical property tests for cladding tubes as function of fast fluence, temperature, hydrogen concentration and material type. From this data, the material's capacity, or resistance to failure, is formulated as the total (elastic+plastic) mechanical energy per unit volume that can be absorbed by the cladding before it can fail, and is termed the critical strain energy density (CSED). The FALCON code calculates the strain energy density (SED) that a transient event can deliver to the cladding through PCMI and internal pressure loading, which is then compared to the CSED for failure determination. Clearly, the complete stress and strain states enter into the calculation of the SED, and therefore, all three true

  10. Aspects of uncertainty analysis in accident consequence modeling

    Mathematical models are frequently used to determine probable dose to man from an accidental release of radionuclides by a nuclear facility. With increased emphasis on the accuracy of these models, the incorporation of uncertainty analysis has become one of the most crucial and sensitive components in evaluating the significance of model predictions. In the present paper, we address three aspects of uncertainty in models used to assess the radiological impact to humans: uncertainties resulting from the natural variability in human biological parameters; the propagation of parameter variability by mathematical models; and comparison of model predictions to observational data

  11. Study of heat and mass transfer phenomena in fuel assembly models under accident conditions

    The majority of the material in support of the thermal - hydraulic safety of WWER core was obtained on single - assembly models containing a relatively small number of elements - heater rods. Upgrading the requirements to the reactor safety leads to the necessity for studying phenomena in channels representing the cross - sectional core dimensions and non - uniform radial power generation. Under such conditions, the contribution of natural convection can be significant in some core zones, including the occurrence of reverse flows and interchannel instability. These phenomena can have an important influence on heat transfer processes. Such influence is especially drastical under accident conditions associated with ceasing the forced circulation over the circuit. A number of urgent reactor safety problems at low operating parameters is related with the computer code verification and certification. One of the important trends in the reactor safety research is concerned with the rod bundle reflooding and verificational calculations of this phenomenon. To assess the water cooled reactor safety, the best fit computer codes are employed, which make it possible to simulate accident and transient operating conditions in a reactor installation. One of the most widely known computer codes is the RELAP5/MOD3 Code. The paper presents the comparison of the results calculated using this computer code with the test data on 4 - rod bundle quenching, which were obtained at the SSCRF-IPPE. Recently, the investigations on the steam - zirconium reaction kinetics have been performed at the SSCFR-IPPE and are being presently performed for the purpose of developing new and verifying available computer codes. (author). 3 refs, 6 figs

  12. Development of a software platform for providing environmental monitoring data for the Fukushima Daiichi nuclear accident

    In nuclear emergencies, it is especially important to carry out a wide range of environmental monitoring and provide the data immediately so as to understand the current distribution of radionuclides and investigate countermeasures. Therefore, it is indispensable for a nuclear emergency response to establish a system that supports rapid provision of these data. The authors have been developing the software platform by integrating technologies of environmental monitoring, information processing and network communication, based on the experience of the Fukushima Daiichi Nuclear Accident. It was discovered that the platform is effective in reducing the time needed to publish the monitoring data. Reducing the cost and workload for publishing the monitoring data is also important because monitoring should be continued over a few decades in the case of the Fukushima accident. The authors' platform is expected to help to mitigate the problem, too. (authors)

  13. Application of Westinghouse NEXUS/ANC9 cross-section model for PWR accident analyses

    NEXUS/ANC9 is the latest licensed PWR core design code system developed by Westinghouse. This system has demonstrated capabilities of modeling advanced core designs with improved accuracy in core reactivity and power distribution predictions. NEXUS/ANC9 system is being rolled out to replace the current APA system (ALPHA/PHOENIX-P/ANC) for routine core calculations. In addition to the standard core design calculations, investigations are underway to explore the possibility to expand the NEXUS/ANC9 application for safety analysis, especially at accident conditions. The main focus of the investigation is the evaluation of the NEXUS/ANC9 cross-section representation model conditions like high void and significant change of core pressure. Comparisons of the predicted parameters among ANC9, PARAGON lattice code and MCNP calculations are presented. The results show that NEXUS/ANC9 is able to model the cross-section behavior and accurately reproduce lattice code results at all simulated conditions. (author)

  14. Effect of expansion wave on WWER type reactor model in loss-of-coolant accident

    An experimental device was developed for the investigation of the effect of the expansion wave arising during a loss-of-coolant accident on a WWER pressure vessel model (1:8). The device enables a maximum pressure of 12 MPa to be achieved in the system. Water heating is provided by electrical heating to 270 degC at the outlet from the inlet vessel neck and 300 degC from the outlet neck. A total of 100 tests were performed with different outlet opening dimensions and different models of vessel internals fixed in various ways. The starting values mostly corresponded to those for WWER-440 reactors. The results of the experiments indicate a marked thermodynamic off-equilibrium of the process in the starting stage of the outflow and existence of a bonding between the internal structure and the coolant. A semiempirical relation was derived for determining the minimal pressure during the passage of the underpressure expansion wave front. Analysis of the mutual effects of the coolant hydrodynamics and the dynamics of the internals confirmed a dispersion nature of propagation of the exciting impulse in the model. (Z.M.). 4 figs., 3 refs

  15. Generation IV benchmarking of TRISO fuel performance models under accident conditions. Modeling input data

    Blaise Collin

    2014-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison

  16. The effect of Chernobyl accident on the development of malignant diseases - situation after 20 years

    The accident that occurred at the Chernobyl Nuclear Power Plant in 1986, released large quantities of radionuclides - among them radioiodine - into the atmosphere, thereby raising public concerns about its influence on thyroid structure and function, especially the development of malignancy. There were even reports about 700 deaths due to thyroid carcinoma in Russian Federation, Ukraine and Belarus, resulting from the accident. In this review we discussed the incidence of thyroid cancer in different parts of the world, especially in heavily contaminated countries, as Ukraine and Belarus, and the possible link between radioisotope activity in the thyroid and the development of malignancy. The study carried out in Minsk showed 40-fold increase of the incidence of thyroid cancer in the years 1986 - 1994, in comparison to the period 1977- 1985. An increase of the incidence of thyroid cancer has generally been observed in many countries after the Chernobyl accident. We focused on the factors that may have an influence on this phenomenon, especially diagnostic tests, health care, social and environmental factors, like iodine level in water and soil. The results of molecular biology studies, e.g. RET translocation in carcinoma type RET/PTC1 in elderly and RET/PTC3 in children, and expression Ax1 and Gas6 in children were reviewed as well. We also mentioned other thyroid diseases, like nodular goitre, cysts, the disturbance of thyroid function and autoimmunity, possibly linked to the radiation after Chernobyl accident. Data obtained from the regions near Chernobyl showed no increased risk of other types of malignancy (leukaemia, Hodgkin's and non Hodgkin's lymphoma) in 1986 - 1996. In this article the epidemiology of thyroid diseases in Poland was also reviewed

  17. The usefulness of time-dependent reactor accident consequence modelling for emergency response planning

    After major releases of radionuclides into the atmosphere fast reaction of authorities will be necessary to inform the public of potential consequences and to consider and optimize mitigating actions. These activities require availability of well designed computer models, adequate and fast measurements and prior training of responsible persons. The quantitative assessment models should be capable of taking into account of actual atmospheric dispersion conditions, actual deposition situation (dry, rain, snow, fog), seasonal status of the agriculture, food processing and distribution pathways, etc. In this paper the usefulness of such models will be discussed, their limitations, the relative importance of exposure pathways and a selection of important methods to decrease the activity in food products after an accident. Real-time reactor accident consequence models should be considered as a condition sine qua non for responsible use of nuclear power for electricity production

  18. Oil Spill Detection and Modelling: Preliminary Results for the Cercal Accident

    da Costa, R. T.; Azevedo, A.; da Silva, J. C. B.; Oliveira, A.

    2013-03-01

    Oil spill research has significantly increased mainly as a result of the severe consequences experienced from industry accidents. Oil spill models are currently able to simulate the processes that determine the fate of oil slicks, playing an important role in disaster prevention, control and mitigation, generating valuable information for decision makers and the population in general. On the other hand, satellite Synthetic Aperture Radar (SAR) imagery has demonstrated significant potential in accidental oil spill detection, when they are accurately differentiated from look-alikes. The combination of both tools can lead to breakthroughs, particularly in the development of Early Warning Systems (EWS). This paper presents a hindcast simulation of the oil slick resulting from the Motor Tanker (MT) Cercal oil spill, listed by the Portuguese Navy as one of the major oil spills in the Portuguese Atlantic Coast. The accident took place nearby Leix˜oes Harbour, North of the Douro River, Porto (Portugal) on the 2nd of October 1994. The oil slick was segmented from available European Remote Sensing (ERS) satellite SAR images, using an algorithm based on a simplified version of the K-means clustering formulation. The image-acquired information, added to the initial conditions and forcings, provided the necessary inputs for the oil spill model. Simulations were made considering the tri-dimensional hydrodynamics in a crossscale domain, from the interior of the Douro River Estuary to the open-ocean on the Iberian Atlantic shelf. Atmospheric forcings (from ECMWF - the European Centre for Medium-Range Weather Forecasts and NOAA - the National Oceanic and Atmospheric Administration), river forcings (from SNIRH - the Portuguese National Information System of the Hydric Resources) and tidal forcings (from LNEC - the National Laboratory for Civil Engineering), including baroclinic gradients (NOAA), were considered. The lack of data for validation purposes only allowed the use of the

  19. Severe Nuclear Accident Program (SNAP) - a real time model for accidental releases

    The model: Several Nuclear Accident Program (SNAP) has been developed at the Norwegian Meteorological Institute (DNMI) in Oslo to provide decision makers and Government officials with real-time tool for simulating large accidental releases of radioactivity from nuclear power plants or other sources. SNAP is developed in the Lagrangian framework in which atmospheric transport of radioactive pollutants is simulated by emitting a large number of particles from the source. The main advantage of the Lagrangian approach is a possibility of precise parameterization of advection processes, especially close to the source. SNAP can be used to predict the transport and deposition of a radioactive cloud in e future (up to 48 hours, in the present version) or to analyze the behavior of the cloud in the past. It is also possible to run the model in the mixed mode (partly analysis and partly forecast). In the routine run we assume unit (1 g s-1) emission in each of three classes. This assumption is very convenient for the main user of the model output in case of emergency: Norwegian Radiation Protection Agency. Due to linearity of the model equations, user can test different emission scenarios as a post processing task by assigning different weights to concentration and deposition fields corresponding to each of three emission classes. SNAP is fully operational and can be run by the meteorologist on duty at any time. The output from SNAP has two forms: First on the maps of Europe, or selected parts of Europe, individual particles are shown during the simulation period. Second, immediately after the simulation, concentration/deposition fields can be shown every three hours of the simulation period as isoline maps for each emission class. In addition, concentration and deposition maps, as well as some meteorological data, are stored on a public accessible disk for further processing by the model users

  20. Modelling of fission product release behavior from HTR spherical fuel elements under accident conditions

    Computer codes for modelling the fission product release behavior of spherical fuel elements for High Temperature Reactors (HTR) have been developed for the purpose of being used in risk analyses for HTRs. An important part of the validation and verification procedure for these calculation models is the theoretical investigation of accident simulation experiments which have been conducted in the KueFA test facility in the Hot Cells at KFA. The paper gives a presentation of the basic modeling and the calculational results of fission product release from modern German HTR fuel elements in the temperature range 1600-1800 deg. C using the TRISO coated particle failure model PANAMA and the diffusion model FRESCO. Measurements of the transient release behavior for cesium and strontium and of their concentration profiles after heating have provided informations about diffusion data in the important retention barriers of the fuel: silicon carbide and matrix graphite. It could be shown that the diffusion coefficients of both cesium and strontium in silicon carbide can significantly be reduced using a factor in the range of 0.02 - 0.15 compared to older HTR fuel. Also in the development of fuel element graphite, a tendency towards lower diffusion coefficients for both nuclides can be derived. Special heating tests focussing on the fission gases and iodine release from the matrix contamination have been evaluated to derive corresponding effective diffusion data for iodine in fuel element graphite which are more realistic than the iodine transport data used so far. Finally, a prediction of krypton and cesium release from spherical fuel elements under heating conditions will be given for fuel elements which at present are irradiated in the FRJ2, Juelich, and which are intended to be heated at 1600/1800 deg. C in the KueFA furnace in near future. (author). 7 refs, 11 figs

  1. A dynamical model of Sayano-Shushenskaya hydropower plant: stability, oscillations, and accident

    Leonov, G. A.; Kuznetsov, N. V.; Solovyeva, E. P.

    2015-01-01

    This work is devoted to the construction and study of a mathematical model of hydropower unit, consisting of synchronous generator, hydraulic turbine, and speed governor. It is motivated by the accident happened on the Sayano-Shushenskaya hydropower plant in 2009 year. Parameters of the Sayano-Shushenskaya hydropower plant were used for modeling the system. Oscillations in zones, which were not recommended for operation, were found. The obtained results are consistent with the full-scale test...

  2. Characteristics of the development of the radiological situation resulting from the accident, intervention levels and countermeasures

    Great efforts have been made in the frame of the national and international research programs to get complete data on the radioactive releases, environmental contamination and radiological situation resulted from the Chernobyl accident. Beginning from the first publication (IAEA meeting, August 1986) these data have been considerably improved and added. The most important change of them with their influence on the decision making in the mitigation activity and the current situation is described and analyzed. The national and international regulatory documents at the moment of the accident were neither complete nor perfect in some necessary aspects especially in respect to the countermeasures at the intermediate and long-term phases. New documents have been worked out during the intervention activity. From 1986 series of documents were developed on the national and international levels. These documents are considered and analyzed in the context of their practical implementation and by the modern experience and research results. The history of countermeasures adopted on the different intervention phases are described. These documents mainly establish intervention levels in terms of averted doses and regulate only radiation protection. They don't content any intervention levels in terms of residual doses and risk, which are necessary for regulation of social and health protection of population suffered from the accident. Other restriction for the optimal regulation comes from use of the effective dose for establishing intervention levels. These and other respective aspects are discussed

  3. Use of scale models to assess structural response of nuclear shipping containers under accident conditions

    Experimental scale modelling techniques were used to investigate the complex behaviour of truck-type high level waste and spent fuel shipping packaging during severe impact accidents. A series of experiments were conducted with distorted replica scale models fabricated with Type 304 stainless steel and unbonded lead shielding. The models were fabricated to represent typical 1/8, 1/4, and 1/2 linear scaled versions of a full scale prototype unit. Experiments were conducted for 9m (30 ft) free fall accidents onto an essentially unyielding surface with the centre-of-gravity of the model directly over the centre of its bottom plate. The test temperatures were - 40 and 1750C to cover the extreme environmental conditions that this type of packaging may encounter in its normal service life. The inertial loading of the model was controlled during the simulated impact accident by attaching a balsa wood impact limiter to the bottom of the model. Deceleration measurements obtained during the tests were in the range of 1000g. Permanent strain induced in the steel shells was in the range of 0.004 m/m with the largest strain induced at 1750C as expected. Lead slump occurred in all experiments and was in the range of 1 to 3% of the original shielded length. (author)

  4. Modeling control room crews in accident sequence analysis

    Studies of small groups in business, political, and civil aviation environments have found that communication and other group interactions can be critical factors in evaluating group performance. This paper presents a simulation-based model for a nuclear power plant control room crew that treats these interactions as well as operator cognitive behavior. It also provides a rationale for emphasizing the treatment of group interaction, and discusses the current status of the model. (author)

  5. Uncertainties propagation in the framework of a Rod Ejection Accident modeling based on a multi-physics approach

    The control of uncertainties in the field of reactor physics and their propagation in best-estimate modeling are a major issue in safety analysis. In this framework, the CEA develops a methodology to perform multi-physics simulations including uncertainties analysis. The present paper aims to present and apply this methodology for the analysis of an accidental situation such as REA (Rod Ejection Accident). This accident is characterized by a strong interaction between the different areas of the reactor physics (neutronic, fuel thermal and thermal hydraulic). The modeling is performed with CRONOS2 code. The uncertainties analysis has been conducted with the URANIE platform developed by the CEA: For each identified response from the modeling (output) and considering a set of key parameters with their uncertainties (input), a surrogate model in the form of a neural network has been produced. The set of neural networks is then used to carry out a sensitivity analysis which consists on a global variance analysis with the determination of the Sobol indices for all responses. The sensitivity indices are obtained for the input parameters by an approach based on the use of polynomial chaos. The present exercise helped to develop a methodological flow scheme, to consolidate the use of URANIE tool in the framework of parallel calculations. Finally, the use of polynomial chaos allowed computing high order sensitivity indices and thus highlighting and classifying the influence of identified uncertainties on each response of the analysis (single and interaction effects). (authors)

  6. Partial least square method for modelling ergonomic risks factors on express bus accidents in the east coast of peninsular west Malaysia

    Hashim, Yusof bin [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang 26300 Kuantan, Pahang (Malaysia); Taha, Zahari bin [Faculty of Manufacturing Engineering, Malaysia Pahang, 26600 Pekan, Pahang (Malaysia)

    2015-02-03

    Public, stake holders and authorities in Malaysian government show great concern towards high numbers of passenger’s injuries and passengers fatalities in express bus accident. This paper studies the underlying factors involved in determining ergonomics risk factors towards human error as the reasons in express bus accidents in order to develop an integrated analytical framework. Reliable information about drivers towards bus accident should lead to the design of strategies intended to make the public feel safe in public transport services. In addition there is an analysis of ergonomics risk factors to determine highly ergonomic risk factors which led to accidents. The research was performed in east coast of peninsular Malaysia using variance-based structural equation modeling namely the Partial Least Squares (PLS) regression techniques. A questionnaire survey was carried out at random among 65 express bus drivers operating from the city of Kuantan in Pahang and among 49 express bus drivers operating from the city of Kuala Terengganu in Terengganu to all towns in the east coast of peninsular west Malaysia. The ergonomic risks factors questionnaire is based on demographic information, occupational information, organizational safety climate, ergonomic workplace, physiological factors, stress at workplace, physical fatigue and near miss accidents. The correlation and significant values between latent constructs (near miss accident) were analyzed using SEM SmartPLS, 3M. The finding shows that the correlated ergonomic risks factors (occupational information, t=2.04, stress at workplace, t = 2.81, physiological factor, t=2.08) are significant to physical fatigue and as the mediator to near miss accident at t = 2.14 at p<0.05and T-statistics, t>1.96. The results shows that the effects of physical fatigue due to ergonomic risks factors influence the human error as the reasons in express bus accidents.

  7. Partial least square method for modelling ergonomic risks factors on express bus accidents in the east coast of peninsular west Malaysia

    Public, stake holders and authorities in Malaysian government show great concern towards high numbers of passenger’s injuries and passengers fatalities in express bus accident. This paper studies the underlying factors involved in determining ergonomics risk factors towards human error as the reasons in express bus accidents in order to develop an integrated analytical framework. Reliable information about drivers towards bus accident should lead to the design of strategies intended to make the public feel safe in public transport services. In addition there is an analysis of ergonomics risk factors to determine highly ergonomic risk factors which led to accidents. The research was performed in east coast of peninsular Malaysia using variance-based structural equation modeling namely the Partial Least Squares (PLS) regression techniques. A questionnaire survey was carried out at random among 65 express bus drivers operating from the city of Kuantan in Pahang and among 49 express bus drivers operating from the city of Kuala Terengganu in Terengganu to all towns in the east coast of peninsular west Malaysia. The ergonomic risks factors questionnaire is based on demographic information, occupational information, organizational safety climate, ergonomic workplace, physiological factors, stress at workplace, physical fatigue and near miss accidents. The correlation and significant values between latent constructs (near miss accident) were analyzed using SEM SmartPLS, 3M. The finding shows that the correlated ergonomic risks factors (occupational information, t=2.04, stress at workplace, t = 2.81, physiological factor, t=2.08) are significant to physical fatigue and as the mediator to near miss accident at t = 2.14 at p<0.05and T-statistics, t>1.96. The results shows that the effects of physical fatigue due to ergonomic risks factors influence the human error as the reasons in express bus accidents

  8. Development of solution behavior observation system under criticality accident conditions in TRACY

    Understanding of radiolytic gas behavior in fissile solution is very important to evaluate feedback reactivity, amount of released radioactive materials and pressure increase under criticality accident conditions. For this purpose, an observation system has been developed to observe behavior of the solution and radiolytic gas on the solution surface in TRACY (Transient Experiment Critical Facility). The system has been provided clear motion pictures, which can contribute the development of a computational code. This paper summarizes an outline of the system and experimental results. (author)

  9. A dynamic food-chain model and program for predicting the consequences of nuclear accident

    1998-01-01

    A dynamic food-chain model and program, DYFOM-95, forpredicting the radiological consequences of nuclear accident hasbeen developed, which is not only suitable to the West food-chainbut also to Chinese food chain. The following processes, caused byaccident release which will make an impact on radionuclideconcentration in the edible parts of vegetable are considered: dryand wet deposition interception and initial retention,translocation, percolation, root uptake and tillage. Activityintake rate of animals, effects of processing and activity intakeof human through ingestion pathway are also considered incalculations. The effects of leaf area index LAI of vegetable areconsidered in dry deposition model. A method for calculating thecontribution of rain with different period and different intensityto total wet deposition is established. The program contains 1 maincode and 5 sub-codes to calculate dry and wet deposition on surfaceof vegetable and soil, translocation of nuclides in vegetable,nuclide concentration in the edible parts of vegetable and inanimal products and activity intake of human and so on.

  10. Applying the DSNP modular modeling system to transient and accident simulations of lead cooled reactors

    The modeling and simulation of the Encapsulated Nuclear Heat Source (ENHS) is presented in this study. The purpose of the simulations was to evaluate the safety characteristics of the proposed modular liquid metal cooled reactor. The DSNP simulation package was modified to accept LBE (Lead Bismuth Eutectic) and lead as a reactor coolant and as heat transfer medium in the primary and secondary loops. Appropriate equations of state, heat transfer and flow correlations were also introduced to permit a full range of simulations of the ENHS and other lead and LBE cooled systems. Models of different levels of complexity were developed to study various events and their consequences. Due to the very large heat capacity of the ENHS reactor, unusually long simulation times ranging from hours up to days were needed to follow some of the transients. This in turn required modifications to various elements of the DSNP simulation system to permit these long execution times. It is concluded that the ENHS has an inherently safe response to all initiating events, and that the DSNP system is capable to simulate most of the accidents of interest to the safety evaluation of the plant. (author)

  11. Fault-tree Models of Accident Scenarios of RoPax Vessels

    Pedro Ant(a)o; C. Guedes Soares

    2006-01-01

    Ro-Ro vessels for cargo and passengers (RoPax) are a relatively new concept that has proven to be popular in the Mediterranean region and is becoming more widespread in Northern Europe. Due to its design characteristics and amount of passengers, although less than a regular passenger liner, accidents with RoPax vessels have far reaching consequences both for economical and for human life. The objective of this paper is to identify hazards related to casualties of RoPax vessels. The terminal casualty events chosen are related to accident and incident statistics for this type of vessel. This paper focuses on the identification of the basic events that can lead to an accident and the performance requirements. The hazard identification is carried out as the first step of a Formal Safety Assessment (FSA) and the modelling of the relation between the relevant events is made using Fault Tree Analysis (FTA). The conclusions of this study are recommendations to the later steps of FSA rather than for decision making (Step 5 of FSA). These recommendations will be focused on the possible design shortcomings identified during the analysis by fault trees throughout cut sets. Also the role that human factors have is analysed through a sensitivity analysis where it is shown that their influence is higher for groundings and collisions where an increase of the initial probability leads to the change of almost 90% of the accident occurrence.

  12. Distributed framework for modeling and reconstruction of nuclear accidents

    Hofman, Radek; Pecha, Petr; Šmídl, Václav

    Vienna : CTBTO, 2013. s. 63-63. [CTBT Science and Technology 2013 Conference. 17.-21.6. 2013, Vienna] R&D Projects: GA MV VG20102013018 Institutional support: RVO:67985556 Keywords : distributed computing * Bayesian filtering * atmospheric dispersion modeling Subject RIV: DG - Athmosphere Sciences, Meteorology http://library.utia.cas.cz/separaty/2013/AS/hoffman-0394249.pdf

  13. The survey analysis of problems of calculated modelling of accidents with loss the heat-carrier on a VVER

    The analysis of known outcomes of accounts of accidents by de pressurizing of outlines of a VVER is carried out. The outcomes of these researches confirm realization of normative conditions of safety. At the same time, the development of direction connected with the calculated analysis additional to the plan of accidents is necessary

  14. Development of intergrated accident management assessment technology; development of interface modules of risk-monitoring system

    Kang, S. K.; Park, S. K.; Seok, H.; Kim, D. K.; Han, J. K.; Park, B. R. [KOPEC, Taejeon (Korea)

    2002-03-01

    Based on the development of interface modules with FORTE.- DynaRM can quantify risk model very fast (Very frequent risk model quantification is needed for configuration risk management).- risk monitoring system technology transfer to foreign NPPs. Contribution to component failure and maintenance control automation with the development of Tagging control System. On-Line risk monitoring system development by joint team between Korea Atomic Energy Research Institute and KOPEC is a request by KEPCO. The softwares developed in this study is easily implemented at domestic NPPs without extra study or cost. Economic benefit and Software export to foreign NPPs are expected because of the development of technology related to risk monitoring system and its management. 6 refs., 3 figs., 1 tab. (Author)

  15. Modeling of Spray System Operation under Hydrogen and Steam Emissions in NPP Containment during Severe Accident

    The paper describes one of the variants of mathematical models of a fluid dynamics process inside the containment, which occurs in the conditions of operation of spray systems in severe accidents at nuclear power plant. The source of emergency emissions in this case is the leak of the coolant or rupture at full cross-section of the main circulating pipeline in a reactor building. Leak or rupture characteristics define the localization and the temporal law of functioning of a source of emergency emission (or accrued operating) of warmed up hydrogen and steam in the containment. Operation of this source at the course of analyzed accident models should be described by the assignment of the relevant Dirichlet boundary conditions. Functioning of the passive autocatalytic recombiners of hydrogen is described in the form of the complex Newton boundary conditions

  16. Accident consequence analysis models applied to licensing process of nuclear installations, radioactive and conventional industries

    The industrial accidents happened in the last years, particularly in the eighty's decade, had contributed in a significant way to call the attention to government authorities, industry and society as a whole, demanding mechanisms for preventing episodes that could affect people's safety and environment quality. Techniques and methods already thoroughly used in the nuclear, aeronautic and war industries were then adapted for performing analysis and evaluation of the risks associated to other industrial activities, especially in the petroleum, chemistry and petrochemical areas. Some models for analyzing the consequences of accidents involving fire and explosion, used in the licensing processes of nuclear and radioactive facilities, are presented in this paper. These models have also application in the licensing of conventional industrial facilities. (author)

  17. Modeling of Spray System Operation under Hydrogen and Steam Emissions in NPP Containment during Severe Accident

    Vadim E. Seleznev

    2011-01-01

    Full Text Available The paper describes one of the variants of mathematical models of a fluid dynamics process inside the containment, which occurs in the conditions of operation of spray systems in severe accidents at nuclear power plant. The source of emergency emissions in this case is the leak of the coolant or rupture at full cross-section of the main circulating pipeline in a reactor building. Leak or rupture characteristics define the localization and the temporal law of functioning of a source of emergency emission (or accrued operating of warmed up hydrogen and steam in the containment. Operation of this source at the course of analyzed accident models should be described by the assignment of the relevant Dirichlet boundary conditions. Functioning of the passive autocatalytic recombiners of hydrogen is described in the form of the complex Newton boundary conditions.

  18. Modeling of the thermal transfer inside a porous environment: application to nuclear reactors in accident situation

    The purpose of this report is to simulate heat exchanges occurring by conduction, by convection and by radiating in a porous medium made up of opaque particles in a semi-transparent fluid. Usually the determination of the macroscopic equations is based on homogenization techniques, but in the case of a major accident, the complexity of the problem is so overwhelming that semi-empirical methods are used to determine macroscopic coefficients. The author develops a new method to determine these coefficients, this method is based on the calculation of different tensors: the equivalent conductivity tensor, the radiative conductivity tensor, the thermal conductivity tensor and the heat exchange coefficient (hsf) between the solid phase and the fluid one. The first chapter briefly describes energy, impulse and mass balances. In the case of the energy balance the solid phase is not supposed to be in thermal equilibrium with the liquid phase. The second chapter presents an application of the porous media method to a one-dimensional and stationary problem, this application to a simple problem gives an idea of the performance of the method. The model allowing the calculation of hsf is developed, it is a wide range model. The second chapter ends with the presentation of the model allowing the computing of the effective conductivity of fuel rods. A comparison between results given by this new method and other numeric calculations or experimental data coming from benchmarks is presented in the third chapter. This chapter ends with the simulation of a reactor core in accidental situation, 2 cases are presented: with and without the presence of water steam. (A.C.)

  19. Uncertainty and sensitivity analysis of food pathway results with the MACCS Reactor Accident Consequence Model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the food pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 87 imprecisely-known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, milk growing season dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, area dependent cost, crop disposal cost, milk disposal cost, condemnation area, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: fraction of cesium deposition on grain fields that is retained on plant surfaces and transferred directly to grain, maximum allowable ground concentrations of Cs-137 and Sr-90 for production of crops, ground concentrations of Cs-134, Cs-137 and I-131 at which the disposal of milk will be initiated due to accidents that occur during the growing season, ground concentrations of Cs-134, I-131 and Sr-90 at which the disposal of crops will be initiated due to accidents that occur during the growing season, rate of depletion of Cs-137 and Sr-90 from the root zone, transfer of Sr-90 from soil to legumes, transfer of Cs-137 from soil to pasture, transfer of cesium from animal feed to meat, and the transfer of cesium, iodine and strontium from animal feed to milk

  20. Uncertainty and sensitivity analysis of food pathway results with the MACCS Reactor Accident Consequence Model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D.; Rollstin, J.A. [GRAM, Inc., Albuquerque, NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the food pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 87 imprecisely-known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, milk growing season dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, area dependent cost, crop disposal cost, milk disposal cost, condemnation area, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: fraction of cesium deposition on grain fields that is retained on plant surfaces and transferred directly to grain, maximum allowable ground concentrations of Cs-137 and Sr-90 for production of crops, ground concentrations of Cs-134, Cs-137 and I-131 at which the disposal of milk will be initiated due to accidents that occur during the growing season, ground concentrations of Cs-134, I-131 and Sr-90 at which the disposal of crops will be initiated due to accidents that occur during the growing season, rate of depletion of Cs-137 and Sr-90 from the root zone, transfer of Sr-90 from soil to legumes, transfer of Cs-137 from soil to pasture, transfer of cesium from animal feed to meat, and the transfer of cesium, iodine and strontium from animal feed to milk.

  1. Development of Co-Pilgering Process for Manufacturing Double Clad Tubes for Accident Tolerant Fuel

    Accident Tolerant Fuels (ATF) are those that, in comparison with the standard UO2 - Zr system, can tolerate loss of active cooling in the core for a considerably longer time period (depending on the accident scenario), while maintaining or improving the fuel performance during normal operations. ATF cladding development efforts focus on materials with more benign steam reaction. For this, advanced steels (e.g. FeCrAl), refractory metals (e.g. Mo), ceramic cladding (SiC), Innovative alloys with dopants, zirconium alloy with coating or sleeve are being developed. Single material like zirconium alloy as clad may not be compatible with both fuel and coolant at elevated temperatures in accident scenario. Double clad tube is one of the prime concepts which has to be explored to develop ATF cladding. Two different clad materials- one oxidant resistant (like FeCrAl) and the other, fuel compatible (like Zr-4) constitute together as outer and inner tube to form ATF cladding. Bonding two different tubes in controlled thickness ratios and with almost no gap in between is utmost difficult. Different types of processes are available for production of double clad tubes such as coating, co-extrusion, co- drawing, internal expansion/external compaction, explosive bonding, co-pilgering etc,. Nuclear Fuel Complex (NFC), India has successfully demonstrated manufacturing of double clad tube by co-pilgering process where in outer cladding is of modified 9Cr-1Mo Steel and inner liner is of zircaloy-4. Considering different deformation behaviour of above materials during pilgering, fabrication of double clad tube is very critical. Optimization of tube dimensions like outer diameter and wall thickness at pre and final stages during pilgering is very important to achieve the required overall tube dimension and bonding between the tubes. This paper gives the methodology of manufacture of Double Clad Tubes by pilgering and the bonding between the two materials achieved in this process

  2. Verification of fuel-coolant interaction model for severe accident simulations

    Results of recent verification studies of VAPEX-M module intended for the calculation of fuel-coolant interaction (FCI) are presented. The mathematical model and correlations for the main physical processes are described. Comparisons of calculated results with three series of FCI experiments (MAGICO-2000, QUEOS, FARO) are presented. It is shown that the main features of melt-water interaction are reproduced by VAPEX-M with reasonable accuracy, which makes the module a useful tool for severe accident analysis. (author)

  3. Intracardiac therapy following emergency thoracotomy in the accident and emergency department: an experimental model.

    Moulton, C; Pennycook, A; Crawford, R

    1992-01-01

    For a select group of patients with penetrating chest trauma, immediate thoracotomy in the accident and emergency department offers the only chance of survival. Foley catheters have been used to achieve haemostasis in cardiac wounds but are not widely used for intracardiac fluid and drug administration during resuscitation. In an anatomical model designed to assess this procedure an average flow rate of 275 ml min-1 was achieved. The equipment required is readily available and easily assembled.

  4. Development of an Integrated Simulator and Real Time Information System for Training in Severe Accidents

    As part of a Research and Development project jointly undertaken by Nuclenor S.A. and the Department of Applied Mathematics and Computer Science of the University of Cantabria, at the beginning of 1995 a plant transient and accident simulator was released, based on the MAAP computer code, which is able to analyse emergency situations beyond the design basis. The use of this tool at Sta. Maria de Garona NPP has significantly improved the operators and support personnel training on Emergency Procedures. This simulator has an interactive graphic interface to control the simulation itself and the safeguard systems. It also allows the link with the SPDS. The simulator is designed in such a way that several users can interact simultaneously on the process. It currently consists of six monitors assigned both to control and to visualise systems. The instructor can provoke anomalies before and during the training exercises. The operators have several consoles (5) from which they can interact in real time to control operations and resolve the conflictive situations. It is important to note that the use of a common tool for training and safety analysis favors the collaboration of the plant and engineering personnel responsible for these two areas. An additional capacity already incorporated into the simulator is the possibility of visualising the real time plant data from the SCADA system. The same screens developed for the training simulator are used for this purpose and vice versa. This capacity can be achieved from any computer station at the network. The paper describes the following applications and benefits of the system: - The simulator is used for periodic retraining of Plant operators on abnormal and emergency operating procedures. Its use has facilitated the collaboration of the operator on the accident sequence analysis part of the PSA. Some human reliability aspects, especially those relating to operator response are better analysed with the help of the simulator

  5. Model verification of the debris coolability analysis module in the severe accident analysis code 'SAMPSON'

    The debris coolability analysis module in the severe accident analysis code 'SAMPSON' has been enhanced to predict more mechanistically the safety margin of present reactor pressure vessels in a severe accident. The module calculates debris spreading and cooling through melting and solidification in combination with the temperature distribution of the vessel wall and it evaluates the wall failure. Debris cooling after spreading is solved on the basis of natural convection analysis with melting and solidification on three-dimensional Cartesian co-ordinates. The calculated results for the cooling model are compared with the results from a three-dimensional natural convection experiment. The comparisons show the module capability for predictions of the debris temperature in the cooling process. Furthermore, it is seen that the prediction capability in the thermal load of the vessel wall is improved, since the penetration nozzles melting is modeled and combined with the cooling model. The module provides a good tool for the prediction of the reactor safety margin in a severe accident through the three-dimensional analysis of debris cooling. (author)

  6. Development of a detailed plan for site restoration following a nuclear reactor accident

    A severe radiological accident at a nuclear power plant could require the deployment of vast labour and equipment resources to restore the contaminated property. A detailed site restoration plan in this situation can promote the efficient use of these resources. Using a computer program called the Site Restoration Program (SRP), it is shown how the site restoration plan can be developed and how it can be employed to guide the use of the restoration resources. For a hypothetical accident, the development of a site restoration plan is described through four phases. In Phase I, the objective is to obtain quick but rough estimates of the magnitude of the economic losses. In Phase II, cleanup options are developed and a strategy and cleanup level are provisionally selected. In the third phase, the area to be restored is broken down into a great many grid elements so that each city block or even individual structure can be separately analysed. During the last phase, after cleanup operations begin, actual results from these operations are monitored and then used to recalibrate the SRP's knowledge database. Adjustments to the site restoration plan may be indicated as a result. (author). 7 refs, 2 figs, 4 tabs

  7. A strategy to the development of a human error analysis method for accident management in nuclear power plants using industrial accident dynamics

    This technical report describes the early progress of he establishment of a human error analysis method as a part of a human reliability analysis(HRA) method for the assessment of the human error potential in a given accident management strategy. At first, we review the shortages and limitations of the existing HRA methods through an example application. In order to enhance the bias to the quantitative aspect of the HRA method, we focused to the qualitative aspect, i.e., human error analysis(HEA), during the proposition of a strategy to the new method. For the establishment of a new HEA method, we discuss the basic theories and approaches to the human error in industry, and propose three basic requirements that should be maintained as pre-requisites for HEA method in practice. Finally, we test IAD(Industrial Accident Dynamics) which has been widely utilized in industrial fields, in order to know whether IAD can be so easily modified and extended to the nuclear power plant applications. We try to apply IAD to the same example case and develop new taxonomy of the performance shaping factors in accident management and their influence matrix, which could enhance the IAD method as an HEA method. (author). 33 refs., 17 tabs., 20 figs

  8. Modelling and simulation of the radioactive release during the Fukushima accident

    The nuclear accident of Fukushima raised again the discussion how operating companies and authorities can react in such a case of emergency. This paper investigates from a scientific perspective, how the tools and measures introduced in the last years, in particular the simulation models, can be applied to assist the decision makers. To this end, the simulation system ABR, which calculates the dispersion of radioactive particles and the resulting radiological exposure in general, is introduced. Especially, it is shown how the ABR system has been adopted to simulate the Fukushima accident. The assumptions that were made to determine the most important data like the source term and weather conditions are described and the simulation results obtained by the ABR system are discussed. (orig.)

  9. Development of aerosol models for NPP applications (AMY). Aerosol model development for nuclear applications

    AMY-project concentrates on understanding and modelling on deposition-resuspension phenomena of aerosols in pipe flow. The aim is to develop a calculation model that could resolve the current deficiencies in the aerosol deposition modelling in turbulent flows, and to implement the models into the tools that are used for calculating the fission product behaviour and release in severe reactor accidents. These tools are APROS SA, which is used for simulating the severe accident phenomena and progression of the accident, and SaTu (support system for radiation experts), which is originally designed to estimate radiation levels and radioactive releases during the accident situation. In addition to the deposition-resuspension model, other important models are to be implemented in the tools mentioned above. Revaporisation of deposited fission products from primary circuit surfaces may increase the releases into the reactor containment and further into the environment, and thus the phenomenon should be taken into account. To the SaTu system, models for estimating the environmental consequences will be implemented, as well, and the system will be modified to be able to describe nuclear power plants other than the Loviisa plant. Another important feature for source term calculations in PSA level 2 analyses is implementation of the uncertainty calculation environment in SaTu. (orig.)

  10. SEVERE ACCIDENT MANAGEMENT TRAINING

    The purpose of this paper is (a) to define the International Atomic Energy Agency's role in the area of severe accident management training, (b) to briefly describe the status of representative severe accident analysis tools designed to support development and validation of accident management guidelines, and more recently, simulate the accident with sufficient accuracy to support the training of technical support and reactor operator staff, and (c) provide an overview of representative design-specific accident management guidelines and training. Since accident management and the development of accident management validation and training software is a rapidly evolving area, this paper is also intended to evolve as accident management guidelines and training programs are developed to meet different reactor design requirements and individual national requirements

  11. 基于事故发展与控制的隐患分级方法%Risk Classification Method for Accident Potential Based on Development and Control Measures of Accident

    赵东风; 申玉琪; 赵志强; 张佑明; 孟亦飞

    2012-01-01

    For the purpose of making the management of accident potential more scientific, the relationship between accident potential and accident was discussed and studied. The fundamental property of accident potential was brought forward that it can make the accident happen or develop. The mechanism whereby accident potential functions in the accident was revealed clearly, by predicting the impelling and inhibiting factors in the accident process. The accident potential was classified into two types (the first type of accident potential and the second type of accident potential) according to the different time they work. In the risk assessment, the problem of specific accident potential grading was resolved. By introducing the assessment indexes of accident potential exposure frequency, possibility of other factors, corrective actions, the initial value of the consequences of the accident, the correction factor of personnel protection, the correction factor of personnel exposure, the correction factor of emergency measures, the correction factor of property loss, an assessment index system was established. By calculating the risk of accident potential-causing accident, the real risk of accident potential was assessed.%为使隐患管理工作更加科学,对隐患与事故的关系进行研讨,提出隐患的根本属性是能够促使事故发生或发展.通过预估促使和控制(阻碍)事故发展的因素,来揭示隐患在事故过程中的作用机制.根据发生作用的时间将隐患分为第1类隐患和第2类隐患.在风险评估过程中,解决了具体隐患风险分级的问题,提出隐患暴露频率、其他条件的可能性、隐患纠正系数、事故后果初始分值、人员防护修正系数、人员暴露修正系数、应急处理与事故控制修正系数和财产损失修正系数等评价指标.通过隐患致因事故风险的计算,评估隐患的最终风险.

  12. Development of training system to prevent accidents during decommissioning of nuclear facilities

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities

  13. Modeling in fast dynamics of accidents in the primary circuit of PWR type reactors

    Two kinds of accidents, liable to occur in the primary circuit of a Pressurized Water Reactor and involving fast dynamic phenomena, are analyzed. The Loss Of Coolant Accident (LOCA) is the accident used to define the current PWR. It consists in a large-size break located in a pipe of the primary circuit. A blowdown wave propagates through the circuit. The pressure differences between the different zones of the reactor induce high stresses in the structures of the lower head and may degrade the reactor core. The primary circuit starts emptying from the break opening. Pressure decreases very quickly, involving a large steaming. Two thermal-hydraulic simulations of the blowdown phase of a LOCA are computed with the Europlexus code. The primary circuit is represented by a pipe-model including the hydraulic peculiarities of the circuit. The main differences between both computations concern the kind of reactor, the break location and model, and the initialization of the accidental operation. Steam explosion is a hypothetical severe accident liable to happen after a core melting. The molten part of the core (called corium) falls in the lower part of the reactor. The interaction between the hot corium and the cold water remaining at the bottom of the vessel induces a massive and violent vaporization of water, similar to an explosive phenomenon. A shock wave propagates in the vessel. what can damage seriously the neighbouring structures or drill the vessel. This work presents a synthesis of in-vessel parametrical studies carried out with the Europlexus code, the linkage of the thermal-hydraulic code Mc3d dedicated to the pre-mixing phase with the Europlexus code dealing with the explosion, and finally a benchmark between the Cigalon and Europlexus codes relative to the Vulcano mock-up. (author)

  14. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    Kao, S.P.; Chang, S.K.; Huang, H.C. [Nuclear Training Branch, Northeast Utilities, Waterford, CT (United States)

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  15. Accidents - Chernobyl accident

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  16. Status report of advanced cladding modeling work to assess cladding performance under accident conditions

    B.J. Merrill; Shannon M. Bragg-Sitton

    2013-09-01

    Scoping simulations performed using a severe accident code can be applied to investigate the influence of advanced materials on beyond design basis accident progression and to identify any existing code limitations. In 2012 an effort was initiated to develop a numerical capability for understanding the potential safety advantages that might be realized during severe accident conditions by replacing Zircaloy components in light water reactors (LWRs) with silicon carbide (SiC) components. To this end, a version of the MELCOR code, under development at the Sandia National Laboratories in New Mexico (SNL/NM), was modified by replacing Zircaloy for SiC in the MELCOR reactor core oxidation and material properties routines. The modified version of MELCOR was benchmarked against available experimental data to ensure that present SiC oxidation theory in air and steam were correctly implemented in the code. Additional modifications have been implemented in the code in 2013 to improve the specificity in defining components fabricated from non-standard materials. An overview of these modifications and the status of their implementation are summarized below.

  17. Models and numerical methods for the simulation of loss-of-coolant accidents in nuclear reactors

    Seguin, Nicolas

    2014-05-01

    In view of the simulation of the water flows in pressurized water reactors (PWR), many models are available in the literature and their complexity deeply depends on the required accuracy, see for instance [1]. The loss-of-coolant accident (LOCA) may appear when a pipe is broken through. The coolant is composed by light water in its liquid form at very high temperature and pressure (around 300 °C and 155 bar), it then flashes and becomes instantaneously vapor in case of LOCA. A front of liquid/vapor phase transition appears in the pipes and may propagate towards the critical parts of the PWR. It is crucial to propose accurate models for the whole phenomenon, but also sufficiently robust to obtain relevant numerical results. Due to the application we have in mind, a complete description of the two-phase flow (with all the bubbles, droplets, interfaces…) is out of reach and irrelevant. We investigate averaged models, based on the use of void fractions for each phase, which represent the probability of presence of a phase at a given position and at a given time. The most accurate averaged model, based on the so-called Baer-Nunziato model, describes separately each phase by its own density, velocity and pressure. The two phases are coupled by non-conservative terms due to gradients of the void fractions and by source terms for mechanical relaxation, drag force and mass transfer. With appropriate closure laws, it has been proved [2] that this model complies with all the expected physical requirements: positivity of densities and temperatures, maximum principle for the void fraction, conservation of the mixture quantities, decrease of the global entropy… On the basis of this model, it is possible to derive simpler models, which can be used where the flow is still, see [3]. From the numerical point of view, we develop new Finite Volume schemes in [4], which also satisfy the requirements mentioned above. Since they are based on a partial linearization of the physical

  18. Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burnup condition

    This project was performed by KAERI in the frame of construction of the international cooperative basis on the nuclear energy. This was supported from MOST under the title of 'Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burn up condition'. The current operating NPP are converting the burned fuel to the wasted fuel after burn up of 40 GWD/MTU. But in Korea, burn up of more than 60 GWD/MTU will be expected because of the high fuel efficiency but also cost saving for storing the wasted fuel safely. The domestic research for the purpose of developing the fuel and the cladding that can be used under the high burn up condition up to 100 GWD/MTU is in progress now. But the current computer code adopts the model and the data that are valid only up to the 40 GWD/MTU at most. Therefore the current model could not take into account the phenomena that may cause differences in the fission product release behavior or in the core damage process due to the high burn up operation (more than 40 GWD/MTU). To evaluate the safety of the NPP with the high burn up fuel, the improvement of current severe accident code against the high burn up condition is an important research item. Also it should start without any delay. Therefore, in this study, an expert group was constructed to establish the research basis for the severe accident under high burn up conditions. From this expert group, the research items regarding the high burn up condition were selected and identified through discussion and technical seminars. Based on these selected items, the meeting between IRSN and KAERI to find out the cooperative research items on the severe accident under the high burn up condition was held in the IRSN headquater in Paris. After the meeting, KAERI and IRSN agreed to cooperate with each other on the selected items, and to co-host the international seminar, and to develop the model and to

  19. Accident report 1975/76

    The statistics previously published on the development of accidents were completed. It is the purpose of this accident report: 1) to present a survey of the development of the number of accidents (no radiation accidents) for the years 1960 - 1976, 2) to break down the accidents by different characteristics in order to be able to recognize the preventive measures to be taken so as to avoid further accidents, 3) to report about accidents experienced and to indicate activities performed with respect to accident prevention and health protection. (orig.)

  20. Traffic Congestion and Accidents

    Schrage, Andrea

    2006-01-01

    Obstructions caused by accidents can trigger or exacerbate traffic congestion. This paper derives the efficient traffic pattern for a rush hour with congestion and accidents and the corresponding road toll. Compared to the model without accidents, where the toll equals external costs imposed on drivers using the road at the same time, a new insight arises: An optimal toll also internalizes the expected increase in future congestion costs. Since accidents affect more drivers if traffic volumes...

  1. Uncertainty and sensitivity analysis of early exposure results with the MACCS Reactor Accident Consequence Model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D. [GRAM, Inc., Albuquerque, NM (United States); McKay, M.D. [Los Alamos National Lab., NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the early health effects associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 34 imprecisely known input variables on the following reactor accident consequences are studied: number of early fatalities, number of cases of prodromal vomiting, population dose within 10 mi of the reactor, population dose within 1000 mi of the reactor, individual early fatality probability within 1 mi of the reactor, and maximum early fatality distance. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: scaling factor for horizontal dispersion, dry deposition velocity, inhalation protection factor for nonevacuees, groundshine shielding factor for nonevacuees, early fatality hazard function alpha value for bone marrow exposure, and scaling factor for vertical dispersion.

  2. Uncertainty and sensitivity analysis of early exposure results with the MACCS Reactor Accident Consequence Model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the early health effects associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 34 imprecisely known input variables on the following reactor accident consequences are studied: number of early fatalities, number of cases of prodromal vomiting, population dose within 10 mi of the reactor, population dose within 1000 mi of the reactor, individual early fatality probability within 1 mi of the reactor, and maximum early fatality distance. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: scaling factor for horizontal dispersion, dry deposition velocity, inhalation protection factor for nonevacuees, groundshine shielding factor for nonevacuees, early fatality hazard function alpha value for bone marrow exposure, and scaling factor for vertical dispersion

  3. Development of debris coolability analysis module in severe accident analysis code SAMPSON for IMPACT project

    Debris coolability in the lower plenum of the reactor pressure vessel is an important factor for the evaluation of in-vessel debris retention. The debris coolability analysis module has been developed to predict more mechanistically the safety margin of the present reactor vessels in a severe accident. The module calculates debris spreading and cooling through melting and solidification in combination with the temperature distribution of the vessel wall and it evaluates the wall failure. Debris spreading is solved by the explicit method on a quasi-three-dimensional scheme and debris coolability is solved on the basis of natural convection analysis with melting and solidification. The calculated results for spreading were compared with the results from a water spreading experiment on the floor and the results for coolability were compared with those from an n-octadecane melting experiment in the rectangular vessel. The comparisons showed the capability for predictions of the spearhead transportation in the debris spreading process and of the melting front transportation and time evolution of the fluid temperature in the melting process. The module provides a good tool for the prediction of the reactor pressure vessel safety margin in a severe accident through the analysis of debris spreading and coolability. (author)

  4. The development of a nuclear accident risk information system(NARIS)

    Jeong, Jong Tae; Jung, Won Dea

    2001-03-01

    The computerized system, NARIS(Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analysis of the distribution of the health effects.The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system.

  5. Development of debris coolability analysis module in severe accident analysis code SAMPSON for IMPACT project

    Ujita, Hiroshi [Advanced Simulation Systems Department, Nuclear Power Engineering Cooperation, Tokyo (Japan); Hidaka, Masataka; Susuki, Akira; Ishida, Naoyuki

    1999-10-01

    Debris coolability in the lower plenum of the reactor pressure vessel is an important factor for the evaluation of in-vessel debris retention. The debris coolability analysis module has been developed to predict more mechanistically the safety margin of the present reactor vessels in a severe accident. The module calculates debris spreading and cooling through melting and solidification in combination with the temperature distribution of the vessel wall and it evaluates the wall failure. Debris spreading is solved by the explicit method on a quasi-three-dimensional scheme and debris coolability is solved on the basis of natural convection analysis with melting and solidification. The calculated results for spreading were compared with the results from a water spreading experiment on the floor and the results for coolability were compared with those from an n-octadecane melting experiment in the rectangular vessel. The comparisons showed the capability for predictions of the spearhead transportation in the debris spreading process and of the melting front transportation and time evolution of the fluid temperature in the melting process. The module provides a good tool for the prediction of the reactor pressure vessel safety margin in a severe accident through the analysis of debris spreading and coolability. (author)

  6. The development of a nuclear accident risk information system(NARIS)

    The computerized system, NARIS(Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analysis of the distribution of the health effects.The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system

  7. Development of Innovative Accident Tolerant High Thermal Conductivity UO2-Diamond Composite Fuel Pellets

    The University of Florida (UF) evaluated a composite fuel consisting of UO2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO2 – SiC and UO2 – Carbon Nanotube fuel pins. UF is proving with the current research results that the addition of diamond micro particles to UO2 may greatly enhanced the thermal conductivity of the UO2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.

  8. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season

  9. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing-season dose, crop long-term dose, water ingestion dose, milk growing-season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meet, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of I-131 at which disposal of crops will be initiated due to accidents that occur during the growing season. Reducing the uncertainty in the preceding variables was found to substantially reduce the uncertainty in the

  10. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D.; Rollstin, J.A. [Gram, Inc., Albuquerque, NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season.

  11. Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents

    Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; ''Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents''

  12. Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents

    Siefken, Larry James

    1999-02-01

    Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the clad-ding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; "Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents."

  13. Comparison of the foodchain transport models of WASH-1400 and MARC using the accident consequence model UFOMOD

    Within the frame of the contract with the European Community 'Methods for Assessing the Radiological Impact of Accidents' (CEC-MARIA) comparative accident consequence assessments were performed with the computer code UFOMOD, replacing the currently implemented foodchain transport model of the WASH-1400 study by the dynamic transport model of the MARC methodology. The calculations were based on the release category FK2 of the German Risk Study with meteorological data representing four different regions of the Federal Republic of Germany. The study of seasonal variations was carried out with the MARC data for four representative times of deposition with an agricultural practice adopted in the UK. In this report the differences are presented which are observed in the potential doses due to ingestion, the areas affected by food-bans and the late health effects when using both models and taking the influence of seasonal effects into account. (orig.)

  14. Modeling ampersand analysis of criticality-induced severe accidents during refueling for the Advanced Neutron Source Reactor

    This paper describes work done at the Oak Ridge National Laboratory (ORNL) for evaluating the potential and resulting consequences of a hypothetical criticality accident during refueling of the 330-MW Advanced Neutron Source (ANS) research reactor. The development of an analytical capability is described. Modeling and problem formulation were conducted using concepts of reactor neutronic theory for determining power level escalation, coupled with ORIGEN and MELCOR code simulations for radionuclide buildup and containment transport Gaussian plume transport modeling was done for determining off-site radiological consequences. Nuances associated with modeling this blast-type scenario are described. Analysis results for ANS containment response under a variety of postulated scenarios and containment failure modes are presented. It is demonstrated that individuals at the reactor site boundary will not receive doses beyond regulatory limits for any of the containment configurations studied

  15. Light-Weight Radioisotope Heater Unit final safety analysis report (LWRHU-FSAR): Volume 2: Accident Model Document (AMD)

    Johnson, E.W.

    1988-10-01

    The purpose of this volume of the LWRHU SAR, the Accident Model Document (AMD), are to: Identify all malfunctions, both singular and multiple, which can occur during the complete mission profile that could lead to release outside the clad of the radioisotopic material contained therein; Provide estimates of occurrence probabilities associated with these various accidents; Evaluate the response of the LWRHU (or its components) to the resultant accident environments; and Associate the potential event history with test data or analysis to determine the potential interaction of the released radionuclides with the biosphere.

  16. Radiocesium contamination in a submediterranean semi-natural ecosystem following the Chernobyl accident: Measurements and models

    Radiocesium dynamics in a Quercus conferta Kit ecosystem in Northern Greece have been extensively studied over the years 1993-1995. Radiocesium distribution in the different parts of the ecosystem was measured. A total 137Cs inventory of 243±66 MBq ha-1 due to the Chernobyl accident was measured in all parts of the ecosystem. Almost 90% of this inventory is still in the upper layers of the soil and the forest floor. In particular 13.4% is in the forest floor, 52.6% in the Ah horizon, and 23.4% in the upper 5 cm of the soil. Only 2.2% of this inventory is in the above ground biomass. The mean total 137Cs deposited on the forest floor from the above ground biomass is 0.18 MBq ha-1 y-1. Cesium leaching from the forest floor is negligible. The radiocesium distribution in soil is fixed and in equilibrium, at least since 1993. Most of radiocesium is not available for migration. Cesium migration in soil was modeled by (a) an open-quotes equivalent diffusionclose quotes model with different initial conditions and (b) a open-quotes compartmentclose quotes model derived from a diffusion-advection model. A compartment model for the contamination of living biomass is proposed. The total absorbed dose rate in air as well as the contribution due to 137Cs from the Chernobyl accident was determined inside the forest, by in-situ gamma spectrometry. 32 refs., 10 figs., 7 tabs

  17. Reactor physics modelling of accident tolerant fuel for LWRs using ANSWERS codes

    Lindley Benjamin A.

    2016-01-01

    adopts an integral configuration and a fully passive decay heat removal system to provide indefinite cooling capability for a class of accidents. This paper presents the equilibrium cycle core design and reactor physics behaviour of the I2S-LWR with U3Si2 and the advanced steel cladding. The results were obtained using the traditional two-stage approach, in which homogenized macroscopic cross-section sets were generated by WIMS and applied in a full 3D core solution with PANTHER. The results obtained with WIMS/PANTHER were compared against the Monte Carlo Serpent code developed by VTT and previously reported results for the I2S-LWR. The results were found to be in a good agreement (e.g. <200 pcm in reactivity among the compared codes, giving confidence that the WIMS/PANTHER reactor physics package can be reliably used in modelling advanced LWR systems.

  18. Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables.

    Zhang, Yingyu; Shao, Wei; Zhang, Mengjia; Li, Hejun; Yin, Shijiu; Xu, Yingjun

    2016-07-01

    Mining has been historically considered as a naturally high-risk industry worldwide. Deaths caused by coal mine accidents are more than the sum of all other accidents in China. Statistics of 320 coal mine accidents in Shandong province show that all accidents contain indicators of "unsafe conditions of the rules and regulations" with a frequency of 1590, accounting for 74.3% of the total frequency of 2140. "Unsafe behaviors of the operator" is another important contributory factor, which mainly includes "operator error" and "venturing into dangerous places." A systems analysis approach was applied by using structural equation modeling (SEM) to examine the interactions between the contributory factors of coal mine accidents. The analysis of results leads to three conclusions. (i) "Unsafe conditions of the rules and regulations," affect the "unsafe behaviors of the operator," "unsafe conditions of the equipment," and "unsafe conditions of the environment." (ii) The three influencing factors of coal mine accidents (with the frequency of effect relation in descending order) are "lack of safety education and training," "rules and regulations of safety production responsibility," and "rules and regulations of supervision and inspection." (iii) The three influenced factors (with the frequency in descending order) of coal mine accidents are "venturing into dangerous places," "poor workplace environment," and "operator error." PMID:27085591

  19. Development of Instrument Transmitter Protecting Device against High-Temperature Condition during Severe Accidents

    Min Yoo; Sung Min Shin; Hyun Gook Kang

    2014-01-01

    Reliable information through instrumentation systems is essential in mitigating severe accidents such as the one that occurred at the Fukushima Daiichi nuclear power plant. There are five elements which might pose a potential threat to the reliability of parameter detection at nuclear power plants during a severe accident: high temperature, high pressure, high humidity, high radiation, and missiles generated during the evolution of a severe accident. Of these, high temperature apparently pose...

  20. Health effects models for off-site radiological consequence analysis on nuclear reactor accidents (II)

    Homma, Toshimitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Tomoyuki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Yonehara, Hidenori [National Inst. of Radiological Sciences, Chiba (Japan)] [eds.

    2000-12-01

    This report is a revision of JAERI-M 91-005, 'Health Effects Models for Off-Site Radiological Consequence Analysis of Nuclear Reactor Accidents'. This revision provides a review of two revisions of NUREG/CR-4214 reports by the U.S. Nuclear Regulatory Commission which is the basis of the JAERI health effects models and other several recent reports that may impact the health effects models by international organizations. The major changes to the first version of the JAERI health effects models and the recommended parameters in this report are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies on the Japanese A-bomb survivors. This report also provides suggestions about future revisions of computational aspects on health effects models. (author)

  1. Health effects models for off-site radiological consequence analysis on nuclear reactor accidents (II)

    This report is a revision of JAERI-M 91-005, 'Health Effects Models for Off-Site Radiological Consequence Analysis of Nuclear Reactor Accidents'. This revision provides a review of two revisions of NUREG/CR-4214 reports by the U.S. Nuclear Regulatory Commission which is the basis of the JAERI health effects models and other several recent reports that may impact the health effects models by international organizations. The major changes to the first version of the JAERI health effects models and the recommended parameters in this report are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies on the Japanese A-bomb survivors. This report also provides suggestions about future revisions of computational aspects on health effects models. (author)

  2. Impact of the Three Mile Island accident on research and development programs

    The influence of the Three Mile Island (TMI) accident, on the evolution of the nuclear safety engineering concepts, are analyzed. An overview of the nuclear safety studies performed before and after the accident is presented. Before the TMI accident, the research programs were mainly centered on dimensional problems involving factors, such as explosions and earthquakes. The TMI accident demonstrated that the fusion of the reactor's core could actually hoppen. It was also realized that the safety of nuclear power plants depended on accurate research programs, also extended to factors beyond dimensional analysis

  3. Radionuclides from the Fukushima accident in the air over Lithuania: measurement and modelling approaches

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples in Vilnius, Lithuania after the Fukushima accident during the period of March–April, 2011. The activity concentrations of 131I and 137Cs ranged from 12 μBq/m3 and 1.4 μBq/m3 to 3700 μBq/m3 and 1040 μBq/m3, respectively. The activity concentration of 239,240Pu in one aerosol sample collected from 23 March to 15 April, 2011 was found to be 44.5 nBq/m3. The two maxima found in radionuclide concentrations were related to complicated long-range air mass transport from Japan across the Pacific, the North America and the Atlantic Ocean to Central Europe as indicated by modelling. HYSPLIT backward trajectories and meteorological data were applied for interpretation of activity variations of measured radionuclides observed at the site of investigation. 7Be and 212Pb activity concentrations and their ratios were used as tracers of vertical transport of air masses. Fukushima data were compared with the data obtained during the Chernobyl accident and in the post Chernobyl period. The activity concentrations of 131I and 137Cs were found to be by 4 orders of magnitude lower as compared to the Chernobyl accident. The activity ratio of 134Cs/137Cs was around 1 with small variations only. The activity ratio of 238Pu/239,240Pu in the aerosol sample was 1.2, indicating a presence of the spent fuel of different origin than that of the Chernobyl accident. - Highlights: ► Two observed maxima in radionuclide concentrations were related to air mass transport. ► HYSPLIT backward trajectories were applied for data interpretation. ► 7Be and 212Pb were used to study a vertical transport of air masses. ► The 134Cs/137Cs activity ratio was around 1. ► 238Pu/239,240Pu ratio was different from global fallout and Chernobyl accident.

  4. Modeling of postulated accident release of 99MoO3 powder from ETRR-2 Stack

    The postulated accident modeled in this study simulates the release of 99MoO3 powder, activated by neutrons, to the environment through the ventilation system of the universal cell of ETRR-2 (Egyptian second nuclear research reactor). The simulation was carried out in both the normal and abnormal situation cases. The 98MoO3 powder was contained in an ampoule of quartz surrounded with a tight Aluminum can. The can is purposed to be irradiated in the ETRR-2 irradiation grid with a neutron flux of 1.4 x 1014 n/cm2 s to produce 99MoO3. The Aluminum can was delivered after irradiation to the universal cell to remove the quartz ampoule to the outside the Aluminum can. During the process of removing the quartz ampoule from the Aluminum can, the ampoule may be broken due to a human error and the 99MoO3 powder released in the universal cell that is connected to the hot cell ventilation system. The postulated radiation doses to the public at various downwind distances were calculated using the health physics computer code HotSpot 2.06 developed at the Lawrence Livermore National Laboratory, USA. This study is a complementary study for 99MoO3 production safety document. The results indicated that the persons who are within downwind distances for all metrological conditions (A-F classes) would receive a committed effective dose (CED) less than the permissible dose for both the normal and abnormal cases.

  5. ACCIDENT PREDICTION METHODOLOGY USING CONFLICT ZONE METHOD FOR “TRANSIT TRANSPORT-PEDESTRIAN” CONFLICT SITUATION AND MODELS OF TRAFFIC FLOWS AT CONTROLLED INTERSECTION

    D. V. Kapsky; P. A. Pegin

    2015-01-01

    Accidents are considered as the most significant cost of road traffic. Therefore any measures for road traffic management should be evaluated according to a minimization  criterion of accident losses. In order to develop a method for evaluation of the accident losses it is necessary to prepare a methodology for cost estimate of road accidents of various severity with due account of their consequences and prediction (economic assessment) and severity level of their consequences (quantitative r...

  6. Accident knowledge and emergency management

    Rasmussen, B.; Groenberg, C.D.

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs.

  7. Accident knowledge and emergency management

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs

  8. Application of transient ignition model to multi-canister (MCO) accident analysis

    The potential for ignition of spent nuclear fuel in a Multi-Canister Overpack (MCO) is examined. A transient model is applied to calculate the highest ambient gas temperature outside an MCO wall tube or shipping cask for which a stable temperature condition exists. This integral analysis couples reaction kinetics with a description of the MCO configuration, heat and mass transfer, and fission product phenomena. It thereby allows ignition theory to be applied to various complex scenarios, including MCO water loss accidents and dry MCO air ingression

  9. Modelling Validation of Transients and Initial Phase of Accident Scenarios for Sodium Fast Reactors

    Physical phenomena are presented being of importance in case of transients and / or initial phases of severe accidents in Sodium-cooled Fast Reactors. The CABRI-programmes provided experimental data being characteristic for the physical phenomena and providing information to validate models and parameters used in theoretical simulations. Results of post irradiation examination (PIE), post test examination (PTE) and measurements performed during the experimental tests are presented for transient overpower (TOP), transient undercooling overpower (TUCOP), loss-of-flow tests (LOF) and slow power ramps. (author)

  10. Modelling of cladding oxidation by air under severe accident conditions with the MAAP 4 code

    In a nuclear power plant, air ingress into the vessel is a potential risk in some low probable situations of severe accidents. Air is a highly oxidizing atmosphere that can lead to an enhanced core oxidation and degradation affecting the release of FP. This is particularly true speaking about ruthenium release, which can be significantly increased in the presence of air. This is a key issue due to the high radio-toxicity of ruthenium and its ability to form highly volatile oxides. The oxygen affinity is decreasing in priority from the Zircaloy cladding, to fuel and ruthenium inclusions. It is consequently of great need to understand the phenomena governing cladding oxidation by air as a prerequisite for the source term issues in such scenarios. As a first step, a phenomenological study has been carried out to characterize nitriding of the Zircaloy claddings. In summary, nitriding occurs preferentially when the oxygen has been consumed locally or in case of total oxygen starvation and when the cladding was slightly pre-oxidized. Just like oxidation, nitriding can be modeled in a simplified form as a cladding weight gain in terms of thickness. The model implemented in MAAP takes this into account as well as re-oxidation of the nitrides, in the case where oxygen is available again (especially during a reflood). Several correlations were thus integrated and a new one, called “KIT-EDF”, was developed, based on KIT separate-effect tests. The model has been implemented and validated against QUENCH-16 and QUENCH-10 experiments, studying the oxidation in air atmosphere of an assembly pre-oxidized in steam and finally quenched with water. The simulations give encouraging results since the modeling of nitriding effects has increased hydrogen production during reflood, as experimentally observed. The results of this study lead us to identify a number of perspectives for the future, namely taking into account the changes in the structure of the oxide layer during a

  11. On the application of near accident data to risk analysis of major accidents

    Major accidents are low frequency high consequence events which are not well supported by conventional statistical methods due to data scarcity. In the absence or shortage of major accident direct data, the use of partially related data of near accidentsaccident precursor data – has drawn much attention. In the present work, a methodology has been proposed based on hierarchical Bayesian analysis and accident precursor data to risk analysis of major accidents. While hierarchical Bayesian analysis facilitates incorporation of generic data into the analysis, the dependency and interaction between accident and near accident data can be encoded via a multinomial likelihood function. We applied the proposed methodology to risk analysis of offshore blowouts and demonstrated its outperformance compared to conventional approaches. - Highlights: • Probabilistic risk analysis is applied to model major accidents. • Two-stage Bayesian updating is used to generate informative distributions. • Accident precursor data are used to develop likelihood function. • A multinomial likelihood function is introduced to model dependencies among data

  12. Low-power and shutdown models for the accident sequence precursor (ASP) program

    Sattison, M.B.; Thatcher, T.A.; Knudsen, J.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1997-02-01

    The US Nuclear Regulatory Commission (NRC) has been using full-power. Level 1, limited-scope risk models for the Accident Sequence Precursor (ASP) program for over fifteen years. These models have evolved and matured over the years, as have probabilistic risk assessment (PRA) and computer technologies. Significant upgrading activities have been undertaken over the past three years, with involvement from the Offices of Nuclear Reactor Regulation (NRR), Analysis and Evaluation of Operational Data (AEOD), and Nuclear Regulatory Research (RES), and several national laboratories. Part of these activities was an RES-sponsored feasibility study investigating the ability to extend the ASP models to include contributors to core damage from events initiated with the reactor at low power or shutdown (LP/SD), both internal events and external events. This paper presents only the LP/SD internal event modeling efforts.

  13. Atmospheric modeling of radioactive material dispersion and health risk in Fukushima Daiichi nuclear power plants accident

    Highlights: ► The radioactive concentrations are treated as dynamical values. ► A possible nuclear accident is simulated for the prediction of atmospheric contaminations. ► The dangerous situations caused by radioisotope release could be announced to the public. ► In the future studies, some other variables are can be considered. - Abstract: The radioactive material dispersion is investigated in terms of the radioactive concentrations. The risk of the radioactive hazard material is important with respect to the public health. The prevailing westerlies region is modeled for the dynamical consequences, whereby the Fukushima nuclear disaster in Japan is modeled. The multiplications effects of the wind values and plume concentrations are obtained. Monte Carlo calculations are performed for wind speed and direction. In Seoul and Pusan, Korea, the Cs-137 has the highest value among the chemical radioactive materials Cs-137, I-131, and Sr-90. The time for highest concentration is shown to be around 48th hour in Seoul and 12th hour in Pusan. Cesium has the highest value in both cities, and iodine has the lowest value in both cities. The wind is assumed to determine the direction of movement. Therefore, the real values are believed to be lower than the calculated results. This modeling could be used for other industrial accident cases in chemical plants

  14. Modeling the consequences of hypothetical accidents for the Titan II system

    Calculations have been made with the Atmospheric Release Advisory Capability (ARAC) suite of three-dimensional transport and diffusion codes MATHEW/ADPIC to assess the consequences of severe, hypothetical accident scenarios. One set of calculations develops the integrated dose and surface deposition patterns for a non-nuclear, high explosive detonation and dispersal of material. A second set of calculations depicts the time integrated dose and instantaneous concentration patterns for a substantial, continuous leak of the missile fuel oxidizer converted to nitrogen dioxide (NO2). The areas affected and some of the implications for emergency response management are discussed

  15. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations.

    Lin, Lei; Wang, Qian; Sadek, Adel W

    2016-06-01

    The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean

  16. Analytical support for SAMG development as a part of accident management

    The decision to built up and implement a comprehensive Accident Management Program applying best world-wide knowledge made during last year at Temelin. A small group of engineers dedicated to Accident Management was formed at Temelin NPP as a part of the plant organisation scheme. A short summary of these activities performed by this group is presented. (author)

  17. Modelling trends in road accident frequency - Bayesian inference for rates with uncertain exposure

    Lloyd, Louise

    2013-01-01

    Several thousand people die as a result of a road accident each year in Great Britain and the trend in the number of fatal accidents is monitored closely to understand increases and reductions in the number of deaths. Results from analysis of these data directly influence Government road safety policy and ensure theintroduction of effective safety interventions across the country. Overall accident numbers are important, but when disaggregating into various characteristics, accident risk (def...

  18. The effect of Chernobyl accident on the development of non malignant diseases

    The early medical complications of Chernobyl accident include post radiation disease, which were diagnosed in 134 subjects affected by ionizing radiation. 28 persons died during the first 100 days after the event. The increase occurrence of coronary heart disease, endocrine, haematological, dermatological and other diseases were observed after disaster in the contaminated territories. We also discussed the impact of ionizing radiation from Chernobyl accident on pregnancy and congenital defects occurrence. Changes following the Chernobyl accident, as the inhabitants migration from contaminated regions, political and economic conversions, led to depression, anxiety, and even to '' epidemic '' of mental diseases. Increased suicide rate, car accidents, alcohol and drug abuse have been observed in this population. Nowadays vegetative neurosis is more often diagnosed in Ukrainian children. Epidemiological studies were conducted on the ionising radiation effect on the health and on the dose of received radiation after Chernobyl accident face numerous problems as the absence of reliable data regarding diseases in the contaminated territories.(authors)

  19. Dosimetric reconstruction of radiological accident by numerical simulations by means associating an anthropomorphic model and a Monte Carlo computation code

    After a description of the context of radiological accidents (definition, history, context, exposure types, associated clinic symptoms of irradiation and contamination, medical treatment, return on experience) and a presentation of dose assessment in the case of external exposure (clinic, biological and physical dosimetry), this research thesis describes the principles of numerical reconstruction of a radiological accident, presents some computation codes (Monte Carlo code, MCNPX code) and the SESAME tool, and reports an application to an actual case (an accident which occurred in Equator in April 2009). The next part reports the developments performed to modify the posture of voxelized phantoms and the experimental and numerical validations. The last part reports a feasibility study for the reconstruction of radiological accidents occurring in external radiotherapy. This work is based on a Monte Carlo simulation of a linear accelerator, with the aim of identifying the most relevant parameters to be implemented in SESAME in the case of external radiotherapy

  20. Framework for accident management

    Accident management is an essential element of the Nuclear Regulatory Commission (NRC) Integration Plan for the closure of severe accident issues. This element will consolidate the results from other key elements; such as the Individual Plant Examination (IPE), the Containment Performance Improvement, and the Severe Accident Research Programs, in a form that can be used to enhance the safety programs for nuclear power plants. The NRC is currently conducting an Accident Management Program that is intended to aid in defining the scope and attributes of an accident management program for nuclear power plants. The accident management plan will ensure that a plant specific program is developed and implemented to promote the most effective use of available utility resources (people and hardware) to prevent and mitigate severe accidents. Hardware changes or other plant modifications to reduce the frequency of severe accidents are not a central aim of this program. To accomplish the outlined objectives, the NRC has developed an accident management framework that is comprised of five elements: (1) accident management strategies, (2) training, (3) guidance and computational aids, (4) instrumentation, and (5) delineation of decision making responsibilities. A process for the development of an accident management program has been identified using these NRC framework elements

  1. Investigations of the potential for accident mitigation of the conceptical design for a core retention device developed in SR 209

    The potential for accident mitigation of the conceptual design for the core retention device developed in SR 209, was estimated by core meltdown and containment analyses. Such a device should prevent late fission product release especially due to failure of the containment by overpressurization (according to release categories 5 and 6 of the German Risk Study, Phase A). Assuming ideal operation of the device, the long term course of a meltdown accident can be influenced in a positive sense including the prevention of overpressurization. However, functional operation of the design seems to be highly uncertain for several reasons, i.g. due to uncertainties in the behaviour of the melt in the retention device. The design does not or only insufficiently cover accident scenarios with high pressure in vessel melt, that means for sequences relevant for their high contribution to core melt frequency. The design may have strong negative impacts on the course of meltdown accidents, LOCA's, constructive details and operation of a plant. Implementation of the measure is expected to need extreme effort, without making sense from the technical point of view. The measure at all seems not to be recommendable for accident mitigation. (orig./HP)

  2. TASAC a computer program for thermal analysis of severe accident conditions. Version 3/01, Dec 1991. Model description and user`s guide

    Stempniewicz, M.; Marks, P.; Salwa, K.

    1992-06-01

    TASAC (Thermal Analysis of Severe Accident Conditions) is computer code developed in the Institute of Atomic Energy written in FORTRAN 77 for the digital computer analysis of PWR rod bundle behaviour during severe accident conditions. The code has the ability to model an early stage of core degradation including heat transfer inside the rods, convective and radiative heat exchange as well as cladding interactions with coolant and fuel, hydrogen generation, melting, relocations and refreezing of fuel rod materials with dissolution of UO{sub 2} and ZrO{sub 2} in liquid phase. The code was applied for the simulation of International Standard Problem number 28, performed on PHEBUS test facility. This report contains the program physical models description, detailed description of input data requirements and results of code verification. The main directions for future TASAC code development are formulated. (author). 20 refs, 39 figs, 4 tabs.

  3. Inversion method of source term in nuclear accident based on Gaussian puff model

    The inverse problem of source terms information estimation in nuclear accident is important for emergency response. In this study a review of data assimilation applied on atmospheric dispersion is given. For the atmospheric dispersion model is nonlinear and with model errors, ensemble Kalman filter is adopted for data assimilation. The dispersion consequences is described by Gaussian puff model, and the source term emission rate and release height is estimated real-time. To determine the best first guess parameters' value and errors, more than 10 twin experiments have been carried on. The results show that the ensemble Kalman filter can be applied successfully to estimate the source term information when there are one or two unknown parameters, the estimated accuracy is related to first guess value, and is impacted by the standard deviation of perturbation. To reduce the estimation error, first guess value setting to the half to two times of true value is recommended. (author)

  4. Mathematical modeling of ignition of woodlands resulted from accident on the pipeline

    Perminov, V. A.; Loboda, E. L.; Reyno, V. V.

    2014-11-01

    Accidents occurring at the sites of pipelines, accompanied by environmental damage, economic loss, and sometimes loss of life. In this paper we calculated the sizes of the possible ignition zones in emergency situations on pipelines located close to the forest, accompanied by the appearance of fireballs. In this paper, using the method of mathematical modeling calculates the maximum size of the ignition zones of vegetation as a result of accidental releases of flammable substances. The paper suggested in the context of the general mathematical model of forest fires give a new mathematical setting and method of numerical solution of a problem of a forest fire modeling. The boundary-value problem is solved numerically using the method of splitting according to physical processes. The dependences of the size of the forest fuel for different amounts of leaked flammable substances and moisture content of vegetation.

  5. Development and first application of a new tool for the simulation of the initiating phase of a severe accident on SFR

    Guyot, M.; Gubernatis, P.; Suteau, C.

    2014-06-01

    In order to improve the safety level of Sodium Fast Reactors, low probability events such as Hypothetical Core Disruptive Accident (HCDA) are analyzed for their potential consequences. The initiating phase of such accidents is of particular interest both for the prevention and the mitigation of routes leading to a large core disruption and recriticalities. Up to now, analysis of the initiating phase of HCDA has been performed with the SAS4A code. The SAS4A accident calculations are based on a multiple-channel approach, which requires that subassemblies or groups of similar subassemblies be represented together as independent channels. The SAS4A severe accident calculation scheme resorts to a simplified treatment in which an average pin is used to represent a channel. A point kinetics model coupled with a feedback reactivity model is also used to provide an estimate of the reactor power level. Both to increase the accuracy and decrease the uncertainties in the prediction of reactor safety margins, a new computational tool is currently under development at CEA Cadarache. The main features of this tool are the ability to provide a detailed sub-channel meshing of the sub-assembly as well as three-dimensional kinetics during severe accident conditions. To fulfill these goals, the fluid-dynamics SIMMER-III code has been coupled to the SNATCH solver using a MPI environment. This coupling allows both to compute the multi-phase and multi-component flows encountered in severe accident conditions and to model the power shape variation during voiding and melting of the different reactor materials. This new calculation scheme relies on a SAS-like multiple-channel treatment, where channel-to-channel heat and momentum exchanges are neglected. In this paper, an overview of the SIMMER-III/SNATCH coupled tool capabilities is provided. A first application of this new tool is also performed and compared with a SAS4A reference calculation. The new SIMMER-III/SNATCH tool proved to be

  6. Development of mechanistic entrainment correlation in accident of evaporation to dryness by boiling of reprocessed high-level liquid waste

    An accident of evaporation to dryness by boiling of high-level liquid waste (HLLW) is postulated to be one of the severe accidents that may occur as a result of the loss of cooling function at a fuel reprocessing plant. In this case, some amount of nonvolatile fission products (FPs) will be transferred in the form of mist to the vapor phase in the tank, and could be released to the environment. Therefore, the quantitative estimation of the transfer rate is one of the key issues in the assessment of the accident consequences. To resolve this issue, a mechanistic correlation of the entrainment rate with upward vapor flow has been developed based on the data obtained from the experiments using simulated and actual HLLW. (author)

  7. Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident

    The Fukushima accident dispersed significant amounts of radioactive cesium (Cs) in the landscape. Our research investigated, from June 2011 to November 2013, the mobility of leachable Cs in forests canopies. In particular, 137Cs and 134Cs activity concentrations were measured in rainfall, throughfall, and stemflow in broad-leaf and cedar forests in an area located 40 km from the power plant. Leachable 137Cs loss was modeled by a double exponential (DE) model. This model could not reproduce the variation in activity concentration observed. In order to refine the DE model, the main physical measurable parameters (rainfall intensity, wind velocity, and snowfall occurrence) were assessed, and rainfall was identified as the dominant factor controlling observed variation. A corrective factor was then developed to incorporate rainfall intensity in an improved DE model. With the original DE model, we estimated total 137Cs loss by leaching from canopies to be 72 ± 4%, 67 ± 4%, and 48 ± 2% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. In contrast, with the improved DE model, the total 137Cs loss by leaching was estimated to be 34 ± 2%, 34 ± 2%, and 16 ± 1% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. The improved DE model corresponds better to observed data in literature. Understanding 137Cs and 134Cs forest dynamics is important for forecasting future contamination of forest soils around the FDNPP. It also provides a basis for understanding forest transfers in future potential nuclear disasters. - Highlights: • A double exponential model was used to model leachable cesium loss from canopies. • The model could not reproduce variation observed. • Rainfall was identified as the dominant factor controlling the variation. • A rainfall parameter was used to develop an improved double exponential model. • The improved model gives a better estimation of

  8. Framework for accident management

    A program is being conducted to establish those attributes of a severe accident management plan which are necessary to assure effective response to all credible severe accidents and to develop guidance for their incorporation in a plant's Accident Management Plan. This program is one part of the Accident Management Research Program being conducted by the U. S. Nuclear Regulatory Commission (NRC). The approach used in establishing attributes and developing guidance includes three steps. In the first step the general attributes of an accident management plan were identified based on: (1) the objectives established for the NRC accident management program, (2) the elements of an accident management framework identified by the NRC, and (3) a review of the processes used in developing the currently used approach for classifying and analyzing accidents. For the second step, a process was defined that uses the general attributes identified from the first step to develop an accident management plan. The third step applied the process defined in the second step at a nuclear power plant to refine and develop it into a benchmark accident management plan. Step one is completed, step two is underway and step three has not yet begun

  9. Application of PCTRAN-3/U to studying accident management during PWR severe accident

    In order to improve the safety of nuclear power plant, operator action should be taken into account during a severe accident. While it takes a long time to simulate the plant transient behavior under a severe accident in comparison with the design based accident, a transient simulator should have both high speed calculation capability and interactive functions to model the operating procedures. PCTRAN has been developing to be a simple simulator by using a personal computer to simulate plant behavior under an accident condition. While currently available means usually take relatively long time to simulate plant behavior, using a current high-powered personal computer (PC), PCTRAN-3/U code is designed to operate at a speed significantly faster than real-time. The author describes some results of PCTRAN application in studying the efficiency of accident management for a pressurized water reactor (PWR) during an severe accident

  10. Development of Highly Survivable Power and Communication System for NPP Instruments under Severe Accident

    According to the detail report from the Fukushima nuclear accident, the failure of conventional instruments is mainly due to the following reasons. 1) Insufficient backup battery capacity after the station black out (SBO) 2) The malfunction or damage of instruments due to the extremely harsh ambient condition after the severe accident 3) The cut-off of power and communication cable due to the physical shocks of hydrogen explosion after the severe accident Since the current equipment qualification (EQ) for the NPP instruments is based on the design basis accident such as loss of coolant accident (LOCA), conventional instruments, which are examined under EQ condition, cannot guarantee their normal operation during the severe accident. A 7m-long-distance wireless power transfer and a radio frequency (RF) communication were introduced with conventional wired system to increase a redundancy. A heat isolation box and a harness are adopted to provide a protection from the expected physical shocks such as missiles and drastic increase of ambient temperature and pressure. A detail design principle of the highly survivable power and communication system, which has 4 sub-systems of a DCRS wireless power transfer, a Zigbee wireless communication, a GFRP harness, and a passive type router with a fly back regulator, has been presented in this paper. Each sub-system has been designed to have a robust operation characteristic regardless of the estimated physical shocks after the severe accident

  11. The Chernobyl reactor accident source term: Development of a consensus view

    In August 1986, scientists from the former Soviet Union provided the nuclear safety community with an impressively detailed account of what was then known about the Chernobyl accident. This included assessments of the magnitudes, rates, and compositions of radionuclide releases during the ten days following initiation of the accident. A summary report based on the Soviet report, the oral presentations, and the discussions with scientists from various countries was issued by the International Atomic Energy Agency shortly thereafter. Ten years have elapsed since the reactor accident at Chernobyl. A great deal more data is now available concerning the events, phenomena, and processes that took place. The purpose of this document is to examine what is known about the radioactive materials released during the accident. The accident was peculiar in the sense that radioactive materials were released, at least initially, in an exceptionally energetic plume and were transported far from the reactor site. Release of radioactivity from the plant continued for about ten days. A number of more recent publications and results from scientists in Russia and elsewhere have significantly improved our understanding of the Chernobyl source term. Because of the special features of the reactor design and the pecularities of the Chernobyl accident, the source term for the Chernobyl accident is of limited applicability of the safety analysis of other types of reactors

  12. Development of Highly Survivable Power and Communication System for NPP Instruments under Severe Accident

    Yoo, Seung J.; Gu, Beom W.; Nguyen, Duy T.; Choi, Bo H.; Rim, Chun T. [KAIST, Daejeon (Korea, Republic of); Lee, So I. [KHNP CRI, Daejeon (Korea, Republic of)

    2014-10-15

    According to the detail report from the Fukushima nuclear accident, the failure of conventional instruments is mainly due to the following reasons. 1) Insufficient backup battery capacity after the station black out (SBO) 2) The malfunction or damage of instruments due to the extremely harsh ambient condition after the severe accident 3) The cut-off of power and communication cable due to the physical shocks of hydrogen explosion after the severe accident Since the current equipment qualification (EQ) for the NPP instruments is based on the design basis accident such as loss of coolant accident (LOCA), conventional instruments, which are examined under EQ condition, cannot guarantee their normal operation during the severe accident. A 7m-long-distance wireless power transfer and a radio frequency (RF) communication were introduced with conventional wired system to increase a redundancy. A heat isolation box and a harness are adopted to provide a protection from the expected physical shocks such as missiles and drastic increase of ambient temperature and pressure. A detail design principle of the highly survivable power and communication system, which has 4 sub-systems of a DCRS wireless power transfer, a Zigbee wireless communication, a GFRP harness, and a passive type router with a fly back regulator, has been presented in this paper. Each sub-system has been designed to have a robust operation characteristic regardless of the estimated physical shocks after the severe accident.

  13. The Chernobyl reactor accident source term: development of a consensus view

    Ten years after the reactor accident at Chernobyl, a great deal more data is available concerning the events, phenomena, and processes that took place. The purpose of this document is to examine what is known about the radioactive materials released during the accident, a task that is substantially more difficult than it might first appear to be. The Chernobyl station, like other nuclear power plants, was not instrumented to characterize a disastrous accident. The accident was peculiar in the sense that radioactive materials were released, at least initially, in an exceptionally energetic plume and were transported far from the reactor site. Release of radioactivity from the plant continued for several days. Characterization of the contamination caused by the releases of radioactivity has had a much lower priority than remediation of the contamination. Consequently, an assessment of the Chernobyl accident source term must rely to a significant extent on inferential evidence. The assessment presented here begins with an examination of the core inventories of radioactive materials. In subsequent sections of the report, the magnitude and timing of the releases of radioactivity are described. Then, the composition, chemical forms, and physical forms of the releases are discussed. A number of more recent publications and results from scientists in Russia and elsewhere have significantly improved the understanding of the Chernobyl source term. Because of the special features of the reactor design and the peculiarities of the Chernobyl accident, the source term for the Chernobyl accident is of limited applicability to the safety analysis of other types of reactors

  14. Preliminary design report for modeling of hydrogen uptake in fuel rod cladding during severe accidents

    Preliminary designs are described for models of the interaction of Zircaloy and hydrogen and the consequences of this interaction on the behavior of fuel rod cladding during severe accidents. The modeling of this interaction and its consequences involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer at the cladding external surface, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental and theoretical results are presented that show the uptake of hydrogen in the event of dissolution of the oxide layer occurs rapidly and that show the release of hydrogen in the event of cracking of the cladding occurs rapidly. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for Zr-H interaction into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the Zr-H interaction models on the calculated behavior of fuel rods in severe accident conditions

  15. Preliminary design report for modeling of hydrogen uptake in fuel rod cladding during severe accidents

    Siefken, L.J.

    1998-08-01

    Preliminary designs are described for models of the interaction of Zircaloy and hydrogen and the consequences of this interaction on the behavior of fuel rod cladding during severe accidents. The modeling of this interaction and its consequences involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer at the cladding external surface, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental and theoretical results are presented that show the uptake of hydrogen in the event of dissolution of the oxide layer occurs rapidly and that show the release of hydrogen in the event of cracking of the cladding occurs rapidly. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert`s law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for Zr-H interaction into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the Zr-H interaction models on the calculated behavior of fuel rods in severe accident conditions.

  16. Severe accident simulation at Olkiuoto

    Tirkkonen, H.; Saarenpaeae, T. [Teollisuuden Voima Oy (TVO), Olkiluoto (Finland); Cliff Po, L.C. [Micro-Simulation Technology, Montville, NJ (United States)

    1995-09-01

    A personal computer-based simulator was developed for the Olkiluoto nuclear plant in Finland for training in severe accident management. The generic software PCTRAN was expanded to model the plant-specific features of the ABB Atom designed BWR including its containment over-pressure protection and filtered vent systems. Scenarios including core heat-up, hydrogen generation, core melt and vessel penetration were developed in this work. Radiation leakage paths and dose rate distribution are presented graphically for operator use in diagnosis and mitigation of accidents. Operating on an graphically for operator use in diagnosis and mitigation of accidents. Operating on an 486 DX2-66, PCTRAN-TVO achieves a speed about 15 times faster than real-time. A convenient and user-friendly graphic interface allows full interactive control. In this paper a review of the component models and verification runs are presented.

  17. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model

    This is the second in a series of five papers describing the information, decision, and action in crew context (IDAC) model for human reliability analysis. An example application of this modeling technique is also discussed in this series. The model is developed to probabilistically predict the responses of the nuclear power plant control room operating crew in accident conditions. The operator response spectrum includes cognitive, psychological, and physical activities during the course of an accident. This paper identifies the IDAC set of performance influencing factors (PIFs), providing their definitions and causal organization in the form of a modular influence diagram. Fifty PIFs are identified to support the IDAC model to be implemented in a computer simulation environment. They are classified into eleven hierarchically structured groups. The PIFs within each group are independent to each other; however, dependencies may exist between PIFs within different groups. The supporting evidence for the selection and organization of the influence paths based on psychological literature, observations, and various human reliability analysis methodologies is also indicated

  18. Description of steam flow and structural heat-up during a hypothetic core meltdown accident by a modular computer model

    The assumption of a reactor core left alone without any cooling facility leads to the hypothetical core meltdown accident. Within the scope of a modular system of computer codes for description by calculation of the relevant heat-up and failure phenomena within the reactor pressure vessel there is established a model for simulating the interaction between partly flooded reactor vessel including internals and dried out region of the active core, this model being applied in the two code units KOCH and UMGEB. By KOCH the time and space dependant steam supply in the core is specified, by UMGEB heating of the support structure relevant for the accident sequence is coupled to the active core region. Both code units together with the other modules of the system allow a flexible simulation of the core meltdown accident. This is demonstrated for a 1000 MWe model reactor by means of the two examples 'flooded core' and 'dry core'. (orig.)

  19. Review of the chronic exposure pathways models in MACCS [MELCOR Accident Consequence Code System] and several other well-known probabilistic risk assessment models

    The purpose of this report is to document the results of the work performed by the author in connection with the following task, performed for US Nuclear Regulatory Commission, (USNRC) Office of Nuclear Regulatory Research, Division of Systems Research: MACCS Chronic Exposure Pathway Models: Review the chronic exposure pathway models implemented in the MELCOR Accident Consequence Code System (MACCS) and compare those models to the chronic exposure pathway models implemented in similar codes developed in countries that are members of the OECD. The chronic exposures concerned are via: the terrestrial food pathways, the water pathways, the long-term groundshine pathway, and the inhalation of resuspended radionuclides pathway. The USNRC has indicated during discussions of the task that the major effort should be spent on the terrestrial food pathways. There is one chapter for each of the categories of chronic exposure pathways listed above

  20. Modeling ampersand analysis of core debris recriticality during hypothetical severe accidents in the Advanced Neutron Source Reactor

    This paper discusses salient aspects of severe-accident-related recriticality modeling and analysis in the Advanced Neutron Source (ANS) reactor. The development of an analytical capability using the KEN05A-SCALE system is described including evaluation of suitable nuclear cross-section sets to account for the effects of system geometry, mixture temperature, material dispersion and other thermal-hydraulic conditions. Benchmarking and validation efforts conducted with KEN05-SCALE and other neutronic codes against critical experiment data are described. Potential deviations and biases resulting from use of the 16-group Hansen-Roach library are shown. A comprehensive test matrix of calculations to evaluate the threat of a criticality event in the ANS is described. Strong dependencies on geometry, material constituents, and thermal-hydraulic conditions are described. The introduction of designed mitigative features are described

  1. modeling of a total loss pool water accident in mtr reactor

    in this study , it is intended to analyze early phases of a protected loss of coolant accident (LOCA)for MTR reactor. and to show the applicability of the presented model to the other similar types of research reactors. the transient situation since the time when coolant is beginning to be lost throughout one or more of the main coolant pipes which were supposed to be broken guillotine-like to the time when the core is totally uncovered is investigated. the modeling of the problem was separated into two phases; in the first phase when the water level of the pool is being decreased in a pre-estimated time -dependent way calculated by using modified Bernoulli equation, the conservation equation are solved by using shooting method. the later phase, when water level reaches the top level of fuel plates and begins to decrease until bottom of the core, and the fuel plates are being cooled by air.

  2. Ruthenium release modelling in air under severe accident conditions using the MAAP4 code

    Beuzet, E.; Lamy, J.S. [EDF R and D, 1 avenue du General de Gaulle, F-92140 Clamart (France); Perron, H. [EDF R and D, Avenue des Renardieres, Ecuelles, F-77818 Moret sur Loing (France); Simoni, E. [Institut de Physique Nucleaire, Universite de Paris Sud XI, F-91406 Orsay (France)

    2010-07-01

    In a nuclear power plant (NPP), in some situations of low probability of severe accidents, an air ingress into the vessel occurs. Air is a highly oxidizing atmosphere that can lead to an enhanced core degradation affecting the release of Fission Products (FPs) to the environment (source term). Indeed, Zircaloy-4 cladding oxidation by air yields 85% more heat than by steam. Besides, UO{sub 2} can be oxidised to UO{sub 2+x} and mixed with Zr, which may lead to a decrease of the fuel melting temperature. Finally, air atmosphere can enhance the FPs release, noticeably that of ruthenium. Ruthenium is of particular interest for two main reasons: first, its high radiotoxicity due to its short and long half-life isotopes ({sup 103}Ru and {sup 106}Ru respectively) and second, its ability to form highly volatile compounds such as ruthenium gaseous tetra-oxide (RuO{sub 4}). Considering that the oxygen affinity decreases between cladding, fuel and ruthenium inclusions, it is of great need to understand the phenomena governing fuel oxidation by air and ruthenium release as prerequisites for the source term issues. A review of existing data on ruthenium release, controlled by fuel oxidation, leads us to implement a new model in the EDF version of MAAP4 severe accident code (Modular Accident Analysis Program). This model takes into account the fuel stoichiometric deviation and the oxygen partial pressure evolution inside the fuel to simulate its oxidation by air. Ruthenium is then oxidised. Its oxides are released by volatilisation above the fuel. All the different ruthenium oxides formed and released are taken into consideration in the model, in terms of their particular reaction constants. In this way, partial pressures of ruthenium oxides are given in the atmosphere so that it is possible to know the fraction of ruthenium released in the atmosphere. This new model has been assessed against an analytical test of FPs release in air atmosphere performed at CEA (VERCORS RT8). The

  3. Modelling the release of volatile fission product cesium from CANDU fuel under severe accident conditions using artificial neural networks

    An artificial neural network (ANN) model has been developed to predict the release of volatile fission products from CANDU fuel under severe accident conditions. The model was based on data for the release Of 134Cs measured during three annealing experiments (Hot Cell Experiments 1 and 2, or HCE- 1, HCE-2 and Metallurgical Cell Experiment 1, or MCE- 1) at Chalk River Laboratories. These experiments were comprised of a total of 30 separate tests. The ANN established a correlation among 14 separate input variables and predicted the cumulative fractional release for a set of 386 data points drawn from 29 tests to a normalized error, En, of 0.104 and an average absolute error, Eabs, of 0.064. Predictions for a blind validation set (test HCE2-CM6) had an En of 0.064 and an Eabs of 0.054. A methodology is presented for deploying the ANN model by providing the connection weights. Finally, the performance of an ANN model was compared to a fuel oxidation model developed by Lewis et al. and to the U.S. Nuclear Regulatory Commission's CORSOR-M. (author)

  4. Food safety after nuclear accidents. A Nordic model for national response

    The Nordic model for the management of food supplies and food safety after nuclear accidents addresses production distribution, sale, and consumption of food and drink. The model contains specific recommendations on intervention levels for distribution and consumption. The overriding aim is to keep the radiation dose to the population as low as reasonably achievable by the optimization of countermeasures. Upper levels of radiation doses which should not be exceeded are termed Primary Intervention Levels. A reasonable maximum dose level resulting from intake of food over a one-year period would be 1 mSv, and this level has been chosen as the starting point for the Nordic model. Maximum levels of radioactive substances in foodstuffs, are termed Derived Intervention Levels (DILs). DILs are established on the basis of the Primary Intervention Levels. A conservative approach is taken which involves additional precautionary assumptions and an extra margin of safety. Provided the DILs are adhered to, the actual radiation dose to which the population is exposed will constitute only a small fraction of the Primary Intervention Levels. The need may arise for specific dietary advise for certain types of food consumed by special population groups. The intervention levels must be adjusted if they cause adverse effects which are unacceptable to the population in general, for instance unfavourable socio-economic impacts. In extreme nuclear accident situations, it may become necessary to suspend the use of intervention levels for a period of time. The full report with scientific annexes was adopted by AeK-LIVS in April 1991, and published as report no. 1991:546 in the Nordic seminar series. In November 1991 the Nordic Council of Ministers requested that the model should be implemented by the national authorities in each of the Nordic countries. The publication contains an abbreviated version of the report. (EG)

  5. A synergistic use of CFD, experiments and effective convectivity model to reduce uncertainty in BWR severe accident analysis

    In a previous work we presented an analysis approach developed to effectively and accurately assess thermal loads on vessel and structures in a Boiling Water Reactor (BWR) lower head during a severe accident. Central to the assessment is the Effective Convectivity Model (ECM) that makes use of experimental heat transfer correlations to capture the effect of turbulent natural convection in a volumetrically heated liquid pool, while retaining the pool three-dimensional energy splitting and ability to represent local heat transfer effects. Thanking to its features, the ECM is unique in enabling calculations of complex heat transfer phenomena during long severe accident transients that would not be otherwise feasible using higher-fidelity methods such as Computational Fluid Dynamics (CFD). Efficiency notwithstanding, the natural questions are: (i) how good are those ECM-calculated results, and, (ii) if required, what can be done (with the highest return-on-investment) to improve the quality of ECM prediction results. The approach refers to experiments and CFD simulations as the main resources to address (i) and (ii). However, validation of ECM against simulant-fluid experiments by itself does not reveal deficiencies (due to non-prototypicality factors). In the present work we focus on the use of CFD-based numerical 'experiments' to identify and quantify source of epistemic uncertainty in the calculated thermal loads due to modeling assumptions in ECM. Specifically, heat transfer correlations that underlie the ECM are obtained as surface-averaged (even though implemented as spatially distributed) and derived from experiments conducted at different geometries and using fluids that are not reactor prototypical (molten corium in the present case of severe accident). The CFD simulations exhibit so-called fluid Prandtl number effect on local peaking of the pool's downward heat flux for corium as working fluid. The main premise is a synergistic use of a fast-running model

  6. Quality improvements of thermodynamic data applied to corium interactions for severe accident modelling in SARNET2

    Highlights: • MCCI research in SARNET2 consisted of large and small-scale testing and modelling. • Heavy (U,Zr)O2 melt interacts with light concrete oxide to produce multiple, mixed phases. • Anisotropic concrete erosion of high SiO2 concrete by melts may be linked with crust stability. • Understanding this anisotropy is important for reliable 3-D modelling. • Precise measures of refractory oxide data greatly improve phase diagram accuracy. - Abstract: In a severe accident transient, corium composition and its properties determine its behaviour and its potential interactions both with the reactor vessel and in the later phases with the concrete basemat. This, in turn, requires a detailed knowledge of the phases present at temperature and how they are formed. Because it implies mainly the investigation of chemical systems at high temperature, these data are often difficult to obtain or are uncertain if it already exists. Therefore more data are required both to complete the thermodynamic databanks (such as NUCLEA) and to construct accurate equilibrium phase diagrams and to finally contribute to the improvement of the codes simulating these severe accident conditions. The MCCI work package (WP6) of the SARNET 2 Network of Excellence has been addressing these problems. In this framework in large facilities such as VULCANO tests have been performed on the interactions and ablation of UO2-containing melts with concrete. They have been completed by large scale MCCI testing such EPICOR on vessel steel corrosion. In parallel in major EU-funded ISTC projects co-ordinated with national institutes, such as the CORPHAD and PRECOS, smaller, single effect tests have been carried out on the more difficult phase diagrams. These have produced data that can be directly used by databanks and for modelling improvement/validation. From these data significant advances in the melt chemistry and pool behaviour have been made. A selection of experiments from participating

  7. Explaining and predicting workplace accidents using data-mining techniques

    Rivas, T., E-mail: trivas@uvigo.e [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Paz, M., E-mail: mpaz.minas@gmail.co [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Martin, J.E., E-mail: jmartin@cippinternacional.co [CIPP International, S.L. Parque Tecnologico de Asturias, Parcela 43, Oficina 11, 33428 Llanera (Spain); Matias, J.M., E-mail: jmmatias@uvigo.e [Dpto. Estadistica e Investigacion Operativa, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain); Garcia, J.F., E-mail: jgarcia@cippinternacional.co [CIPP International, S.L. Parque Tecnologico de Asturias, Parcela 43, Oficina 11, 33428 Llanera (Spain); Taboada, J., E-mail: jtaboada@uvigo.e [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente, E.T.S.I. Minas, University of Vigo, Campus Lagoas, 36310 Vigo (Spain)

    2011-07-15

    Current research into workplace risk is mainly conducted using conventional descriptive statistics, which, however, fail to properly identify cause-effect relationships and are unable to construct models that could predict accidents. The authors of the present study modelled incidents and accidents in two companies in the mining and construction sectors in order to identify the most important causes of accidents and develop predictive models. Data-mining techniques (decision rules, Bayesian networks, support vector machines and classification trees) were used to model accident and incident data compiled from the mining and construction sectors and obtained in interviews conducted soon after an incident/accident occurred. The results were compared with those for a classical statistical techniques (logistic regression), revealing the superiority of decision rules, classification trees and Bayesian networks in predicting and identifying the factors underlying accidents/incidents.

  8. Explaining and predicting workplace accidents using data-mining techniques

    Current research into workplace risk is mainly conducted using conventional descriptive statistics, which, however, fail to properly identify cause-effect relationships and are unable to construct models that could predict accidents. The authors of the present study modelled incidents and accidents in two companies in the mining and construction sectors in order to identify the most important causes of accidents and develop predictive models. Data-mining techniques (decision rules, Bayesian networks, support vector machines and classification trees) were used to model accident and incident data compiled from the mining and construction sectors and obtained in interviews conducted soon after an incident/accident occurred. The results were compared with those for a classical statistical techniques (logistic regression), revealing the superiority of decision rules, classification trees and Bayesian networks in predicting and identifying the factors underlying accidents/incidents.

  9. The radiological accident of Goiania and its consequences for the development of law

    The radiological accident of Goiania and its repercussions caused intense debate in Brazilian society, which extended to the legislative sphere. One of the principal outcomes of this debate was the inclusion in the new Brazilian Constitutional Charter of legal provisions covering the control of nuclear energy and of radiation sources. Internationally, the 1986 Vienna Convention on Early Notification of a Nuclear Accident and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency were invoked following the accident and proved to be effective in facilitating international co-operation and solidarity to deal with the aftermath of the accident. A number of international treaties on assistance in the event of nuclear accidents, the management of radioactive waste and the management of spent fuel are currently in force. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste, adopted in 1997, is the most recent treaty promoting the sustainability of nuclear activities. Looking ahead, an international legal framework is needed to build upon and improve the principles of a culture of radiation safety. (author)

  10. A probabilistic dispersion model applied to the long-range transport of radionuclides from the Chernobyl accident

    Lauritzen, B.; Mikkelsen, T.

    1999-01-01

    Long-range atmospheric transport of radionuclides from the Chernobyl accident is modelled as an Eulerian diffusion process. From observations of the gross deposition pattern of particulate radiocaesium an effective long-range Eddy diffusivity K of the order of 10(6) m(2) s(-1) is inferred. A corr...... method is proposed for the long-range radiological consequences of nuclear accidents. (C) 1999 Elsevier Science Ltd. All rights reserved.......Long-range atmospheric transport of radionuclides from the Chernobyl accident is modelled as an Eulerian diffusion process. From observations of the gross deposition pattern of particulate radiocaesium an effective long-range Eddy diffusivity K of the order of 10(6) m(2) s(-1) is inferred. A...

  11. Radioactive materials transport accident analysis

    Over the last 25 years, one of the major issues raised regarding radioactive material transportation has been the risk of severe accidents. While numerous studies have shown that traffic fatalities dominate the risk, modeling the risk of severe accidents has remained one of the most difficult analysis problems. This paper will show how models that were developed for nuclear spent fuel transport accident analysis can be adopted to obtain estimates of release fractions for other types of radioactive material such as vitrified highlevel radioactive waste. The paper will also show how some experimental results from fire experiments involving low level waste packaging can be used in modeling transport accident analysis with this waste form. The results of the analysis enable an analyst to clearly show the differences in the release fractions as a function of accident severity. The paper will also show that by placing the data in a database such as ACCESS trademark, it is possible to obtain risk measures for transporting the waste forms along proposed routes from the generator site to potential final disposal sites

  12. Modeling operator actions during a small break loss-of-coolant accident in a Babcock and Wilcox nuclear power plant

    A small break loss-of-accident (SBLOCA) in a typical Babcock and Wilcox (B ampersand W) nuclear power plant was modeled using RELAP5/MOD3. This work was performed as part of the United States Regulatory Commission's (USNRC) Code, Scaling, Applicability and Uncertainty (CSAU) study. The break was initiated by severing one high pressure injection (HPI) line at the cold leg. Thus, the small break was further aggravated by reduced HPI flow. Comparisons between scoping runs with minimal operator action, and full operator action, clearly showed that the operator plays a key role in recovering the plant. Operator actions were modeled based on the emergency operating procedures (EOPs) and the Technical Bases Document for the EOPs. The sequence of operator actions modeled here is only one of several possibilities. Different sequences of operator actions are possible for a given accident because of the subjective decisions the operator must make when determining the status of the plant, hence, which branch of the EOP to follow. To assess the credibility of the modeled operator actions, these actions and results of the simulated accident scenario were presented to operator examiners who are familiar with B ampersand W nuclear power plants. They agreed that, in general, the modeled operator actions conform to the requirements set forth in the EOPs and are therefore plausible. This paper presents the method for modeling the operator actions and discusses the simulated accident scenario from the viewpoint of operator actions

  13. Applying hierarchical loglinear models to nonfatal underground coal mine accidents for safety management.

    Onder, Mustafa; Onder, Seyhan; Adiguzel, Erhan

    2014-01-01

    Underground mining is considered to be one of the most dangerous industries and mining remains the most hazardous occupation. Categorical analysis of accident records may present valuable information for preventing accidents. In this study, hierarchical loglinear analysis was applied to occupational injuries that occurred in an underground coal mine. The main factors affecting the accidents were defined as occupation, area, reason, accident time and part of body affected. By considering subfactors of the main factors, multiway contingency tables were prepared and, thus, the probabilities that might affect nonfatal injuries were investigated. At the end of the study, important accident risk factors and job groups with a high probability of being exposed to those risk factors were determined. This article presents important information on decreasing the number accidents in underground coal mines. PMID:24934420

  14. Development of an Anthropomorphous, Remote-Controlled Machine for Handling Radiation Accidents

    In handling radiation accidents personnel should be kept outside dangerous radiation fields wherever possible. It is obvious that human beings should generally be replaced by machines, which should possess the universal attributes of man. but be insensitive to high radiation activities. The master-slave system appears especially suitable. In this sytem the master is a human being who stays away from the radiation field in a safe room equipped with the necessary information and telecommand devices, and controls and watches the work of the slave from there. The master represents the brain of the machine. The slave is the actual machine and to a certain extent the executive motor part of the human being. It is equipped with limb-like devices, some sense organs such as stereo-television eyes, stereo-microphones, and, by means of power force meters, possesses a certain sense of touch. Further development towards a biped walking machine is outlined. The machine must be given human dimensions as existing atomic plants are made for human operation. (author)

  15. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  16. Role of Laws and Regulations For Nuclear Energy Installation in Developing Safety Measures Against Accident

    The energy industry has been considered as an economic development driver. The fundamental safety policy for nuclear facilities is to protect health and safety of the public and the site personnel against undue risks associated with radiation and radioactive materials resulting from normal operation and abnormal conditions. This policy is implemented, based on the as low as reasonably achievable (ALARA) principle for normal operation and the defense-in-depth principle (prevention of the occurrence of anomalies, prevention of the escalation of anomalies into accidents, and prevention of excessive release of radioactive materials into the environment), through establishment of safety guides and standards. More over the consideration of suitable site selection and safety design, verification by safety evaluation, quality assurance for manufacturing, construction and operation, periodic testing and inspection, confirmation by regulatory bodies, and reflection of experienced troubles to safety countermeasures. Are of these paramount importance concepts are applied variety of nuclear facilities, which is, nuclear reactors, uranium enrichment plants, fuel conversion/fabrication plants, reprocessing plants, radioactive waste management facilities, and so on, considering unique features of each facility.

  17. Visualization of Traffic Accidents

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  18. MIDAS/PK code development using point kinetics model

    In this study, a MIDAS/PK code has been developed for analyzing the ATWS (Anticipated Transients Without Scram) which can be one of severe accident initiating events. The MIDAS is an integrated computer code based on the MELCOR code to develop a severe accident risk reduction strategy by Korea Atomic Energy Research Institute. In the mean time, the Chexal-Layman correlation in the current MELCOR, which was developed under a BWR condition, is appeared to be inappropriate for a PWR. So as to provide ATWS analysis capability to the MIDAS code, a point kinetics module, PKINETIC, has first been developed as a stand-alone code whose reference model was selected from the current accident analysis codes. In the next step, the MIDAS/PK code has been developed via coupling PKINETIC with the MIDAS code by inter-connecting several thermal hydraulic parameters between the two codes. Since the major concern in the ATWS analysis is the primary peak pressure during the early few minutes into the accident, the peak pressure from the PKINETIC module and the MIDAS/PK are compared with the RETRAN calculations showing a good agreement between them. The MIDAS/PK code is considered to be valuable for analyzing the plant response during ATWS deterministically, especially for the early domestic Westinghouse plants which rely on the operator procedure instead of an AMSAC (ATWS Mitigating System Actuation Circuitry) against ATWS. This capability of ATWS analysis is also important from the view point of accident management and mitigation

  19. MIDAS/PK code development using point kinetics model

    Song, Y. M.; Park, S. H. [KAERI, Taejon (Korea, Republic of)

    1999-05-01

    In this study, a MIDAS/PK code has been developed for analyzing the ATWS (Anticipated Transients Without Scram) which can be one of severe accident initiating events. The MIDAS is an integrated computer code based on the MELCOR code to develop a severe accident risk reduction strategy by Korea Atomic Energy Research Institute. In the mean time, the Chexal-Layman correlation in the current MELCOR, which was developed under a BWR condition, is appeared to be inappropriate for a PWR. So as to provide ATWS analysis capability to the MIDAS code, a point kinetics module, PKINETIC, has first been developed as a stand-alone code whose reference model was selected from the current accident analysis codes. In the next step, the MIDAS/PK code has been developed via coupling PKINETIC with the MIDAS code by inter-connecting several thermal hydraulic parameters between the two codes. Since the major concern in the ATWS analysis is the primary peak pressure during the early few minutes into the accident, the peak pressure from the PKINETIC module and the MIDAS/PK are compared with the RETRAN calculations showing a good agreement between them. The MIDAS/PK code is considered to be valuable for analyzing the plant response during ATWS deterministically, especially for the early domestic Westinghouse plants which rely on the operator procedure instead of an AMSAC (ATWS Mitigating System Actuation Circuitry) against ATWS. This capability of ATWS analysis is also important from the view point of accident management and mitigation.

  20. Structural stability of the market model after the Three Mile Island accident

    This article examines the stability of alpha and beta in the market model resulting from the Three Mile Island accident. The data consist of weekly returns on 70 utility stocks. Both a dummy variable test and the Fisher F statistics are utilized to test for stability. In addition to the individual stocks, the 70 utilities are partioned into two portfolios for the test: nuclear and non-nuclear. The main conclusions are: for the non-nuclear portfolio, no change is observed; for the nuclear portfolio, alpha fell and beta rose (the impact, however, is transitory and insignificant); and the behavior of the residuals suggests that the result is consistent with an efficient market. 17 references, 3 tables

  1. Progresses in tritium accident modelling in the frame of IAEA EMRAS II

    The assessment of the environmental impact of tritium release from nuclear facilities is a topic of interest in many countries. In the IAEA's Environmental Modelling for Radiation Safety (EMRAS I) programme, progresses for routine releases were done and in the EMRAS II programme a dedicated working group (WG 7 - Tritium Accidents) focused on the potential accidental releases (liquid and atmospheric pathways). The progresses achieved in WG 7 were included in a complex report - a technical document of IAEA covering both liquid and atmospheric accidental release consequences. A brief description of the progresses achieved in the frame of EMRAS II WG 7 is presented. Important results have been obtained concerning washout rate, the deposition on the soil of HTO and HT, the HTO uptake by leaves and the subsequent conversion to OBT (organically bound tritium) during daylight. Further needs of the processes understanding and the experimental efforts are emphasised

  2. SOURCE 2.0 model development: UO2 thermal properties

    During analysis of CANDU postulated accidents, the reactor fuel is estimated to experience large temperature variations and to be exposed to a variety of environments from highly oxidized to mildly reducing. The exposure of CANDU fuel to these environments and temperatures may affect fission product releases from the fuel and cause degradation of the fuel thermal properties. The SOURCE 2.0 project is a safety analysis code which will model the necessary mechanisms required to calculate fission product release for a variety of accident scenarios, including large break loss of coolant accidents (LOCAs) with or without emergency core cooling. The goal of the model development is to generate models which are consistent with each other and phenomenologically based, insofar as that is possible given the state of theoretical understanding

  3. Temporal-spatial Analysis Model of Traffic Accident Severity Based on Cumulative Logistic Model%基于累积Logistic模型的交通事故严重程度时空分析

    马壮林; 邵春福; 董春娇; 王抢

    2011-01-01

    交通事故的发生具有随机性和偶然性,为尽可能地降低交通事故的伤害程度,根据某高速公路典型事故多发段的交通事故统计资料,以交通事故严重程度为因变量,从时间、道路空间结构和交通运行环境等因素中初步选择12个候选自变量,采用混合逐步选择法分析候选自变量与因变量是否显著相关.采用累积Logistic模型建立交通事故严重程度时空分析模型,并从成比例检验、拟合优度检验和预测准确度检验3个方面对模型进行检验.研究结果表明:事故发生时段、季节因素、发生地点、道路线形、坡度、事故涉及车辆数和日标准交通量与年平均日交通量之比与交通事故严重程度显著相关.%The occurrence of traffic accidents has the randomicity and contingency, this article attempts to make a research on the rules of traffic accidents to minimize the severity of traffic accidents. Firstly, according to the statistical data of a typical accident-prone section, accident severity was selected as the dependent variable, and twelve factors from the three aspects of time, road spatial structure and traffic environment were selected as the candidate independent variables. Then, the combined stepwise method was used to analyze the significant correlation between dependent variable and independent variables, and a temporal-spatial analysis model of traffic accident based on cumulative Logistic model was built. The developed model was tested from three aspects, which are score test for the proportional odds assumption, goodness of fit and predictive accuracy. The results show that seven independent variables, which are accident time, seasonal factors, accident location, road alignment, gradient, the number of vehicles involved in accidents and the ratio of daily traffic to annual average daily traffic, are significantly associated with the dependent variable.

  4. PRYMA-TO: A model of radionuclide transfer from air into food stuff. Test with data from the Chernobyl accident

    Garcia-Olivares, A.; Carrasco, E.; Suanez, A.; Josep, L.

    1994-07-01

    This report describes a dynamical model developed in the Environmental Institute of the CIEMAT. Its aims are the calculation of the integrated as well as time-dependent concentrations of ''131l and ''137Cs over time in soils, in forage pasture (or other vegetation species), and in milk and meat. The source contamination is assumed to come from a radioactive cloud confined in the atmospheric mixing layer. Data monitored in different locations the days following the Chernobyl accident have been used. The model was tested against post-Chernobyl data from 13 locations around the world, in the framework of the A4 exercise from the BIOMOVS program (Biospheric Models Validation Studies). The performance of the model is illustrated in 9 scenarios which have been chosen of these 13 because they have more information or they are better described. Default Probability Density Functions for the main parameters used by the model have been obtained by statistical processing of some post-Chernobyl evidence. (Author) 30 refs.

  5. PRYMA-TO: A model of radionuclide transfer from air into foodstuff. Test with data from the Chernobyl accident

    This report describes a dynamical model developed in the Environmental Institute of the CIEMAT. Its aims are the calculation of the integrated as well as time-dependent concentrations of ''131 I and ''137 Cs over time in soils, in forage pasture (or other vegetation species), and in milk and meat. The source contamination is assumed to come from a radioactive cloud confined in the atmospheric mixing layer. Data monitored in different locations the days following the Chernobyl accident have been used. The model was tested against post-Chernobyl data from 13 locations around the world, in the framework of the A4 exercise from the BIOMOVS program (Biospheric Models Validation Studies). The performance of the model is illustrated in 9 scenarios which have been chosen of these 13 because they have more information or they are better described. Default Probability Density Functions for the main parameters used by the model have been obtained by statistical processing of some post-Chernobyl evidence

  6. PRYMA-TO: A model of radionuclide transfer from air into food stuff. Test with data from the Chernobyl accident

    This report describes a dynamical model developed in the Environmental Institute of the CIEMAT. Its aims are the calculation of the integrated as well as time-dependent concentrations of ''131l and ''137Cs over time in soils, in forage pasture (or other vegetation species), and in milk and meat. The source contamination is assumed to come from a radioactive cloud confined in the atmospheric mixing layer. Data monitored in different locations the days following the Chernobyl accident have been used. The model was tested against post-Chernobyl data from 13 locations around the world, in the framework of the A4 exercise from the BIOMOVS program (Biospheric Models Validation Studies). The performance of the model is illustrated in 9 scenarios which have been chosen of these 13 because they have more information or they are better described. Default Probability Density Functions for the main parameters used by the model have been obtained by statistical processing of some post-Chernobyl evidence. (Author) 30 refs

  7. Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code

    Highlights: ► We developed a new modelling of fuel oxidation and ruthenium release in the EDF version of the MAAP4 code. ► We validated this model against some VERCORS experiments. ► Ruthenium release prediction quantitatively and qualitatively well reproduced under air and steam atmospheres. - Abstract: In a nuclear power plant (NPP), a severe accident is a low probability sequence that can lead to core fusion and fission product (FP) release to the environment (source term). For instance during a loss-of-coolant accident, water vaporization and core uncovery can occur due to decay heat. These phenomena enhance core degradation and, subsequently, molten materials can relocate to the lower head of the vessel. Heat exchange between the debris and the vessel may cause its rupture and air ingress. After lower head failure, steam and air entering in the vessel can lead to degradation and oxidation of materials that are still intact in the core. Indeed, Zircaloy-4 cladding oxidation is very exothermic and fuel interaction with the cladding material can decrease its melting temperature by several hundred of Kelvin. FP release can thus be increased, noticeably that of ruthenium under oxidizing conditions. Ruthenium is of particular interest because of its high radio-toxicity due to 103Ru and 106Ru isotopes and its ability to form highly volatile compounds, even at room temperature, such as gaseous ruthenium tetra-oxide (RuO4). It is consequently of great need to understand phenomena governing steam and air oxidation of the fuel and ruthenium release as prerequisites for the source term issues. A review of existing data on these phenomena shows relatively good understanding. In terms of oxygen affinity, the fuel is oxidized before ruthenium, from UO2 to UO2+x. Its oxidation is a rate-controlling surface exchange reaction with the atmosphere, so that the stoichiometric deviation and oxygen partial pressure increase. High temperatures combined with the presence of

  8. Development of a taxonomy of performance influencing factors for human reliability assessment of accident management tasks and its application

    In this study, a new PIF taxonomy for HRA of the tasks during emergency operation and accident management situations. We collected the existing PIF taxonomies as many as possible. Then, we analyzed the trend in the selection of PIFs, the frequency of use between PIFs in HRA methods, and the level of definition of PIFs, in order to reflect these characteristics into the development of a new PIF taxonomy. Next, we analyzed the principal task context during accident management to draw the context specific PIFs. Afterwards, we established several criteria for the selection of the appropriate PIFs for HRA under emergency operation and accident management situations. Finally, the final PIF taxonomy containing the subitems for assessing each PIF was constructed based on the results of the previous steps and the selection criteria. The final result of this study is the new PIF taxonomy for HRA of the tasks during emergency operation and accident management situations. The selected 11 PIFs in the study are as follows: training and experience, availability and quality of information, status and trend of critical parameters, status of safety system/component, time pressure, working environment features, team cooperation and communication, plant policy and safety culture. (author). 35 refs., 23 tabs

  9. Development of a taxonomy of performance influencing factors for human reliability assessment of accident management tasks and its application

    Kim, Jae Whan; Jung, Won Dae; Kang, Dae Il; Ha, Jae Joo

    1999-06-01

    In this study, a new PIF taxonomy for HRA of the tasks during emergency operation and accident management situations. We collected the existing PIF taxonomies as many as possible. Then, we analyzed the trend in the selection of PIFs, the frequency of use between PIFs in HRA methods, and the level of definition of PIFs, in order to reflect these characteristics into the development of a new PIF taxonomy. Next, we analyzed the principal task context during accident management to draw the context specific PIFs. Afterwards, we established several criteria for the selection of the appropriate PIFs for HRA under emergency operation and accident management situations. Finally, the final PIF taxonomy containing the subitems for assessing each PIF was constructed based on the results of the previous steps and the selection criteria. The final result ofthis study is the new PIF taxonomy for HRA of the tasks during emergency operation and accident management situations. The selected 11 PIFs in the study are as follows: training and experience, availability and quality of information, status and trend of critical parameters, status of safety system/component, time pressure, working environment features, team cooperation and communication, plant policy and safety culture. (author). 35 refs., 23 tabs.

  10. On report of natrium flowing out accident in the high speed breeding reactor 'Monju', the Power Reactor and Nuclear Fuel Development Corporation

    On December 8th, 1995, a natrium flowing out accident of the 2nd cooling system was occurred in the high speed breeding reactor 'Monju' of the Power Reactor and Nuclear Fuel Development Corporation. The Science and Technology Agency determined to set 'A task force to survey and investigate the natrium flowing out accident of Monju' in the Atomic Energy Safety Bureau to promote at first thorough following its cause at joining some specialists on December 10th, to set it on December 11th. The Atomic Energy Safety Bureau conducted an in-situ inspection and survey after December 20th according to Act 68, Item 1, of Law on Regulation of the Nuclear Raw Materials, the Nuclear Fuels and the Reactor. This report shows results of surveys and investigations till then, points to be reconsidered in the Science and Technology Agency, and some response and improvemental methods on a base of teachings of this accident as well as contents of 'A surveying report of the natrium flowing out accident' dated on February 9th, since considerable understanding of cause elucidation of thermometer breakdown formed this accident and other items. This book contains the following contents as outline of this accident, reason of the accident, protection of enlargement after flowing out, effect of natrium flowing out, response to the outsiders at accident occurring by the Corporation, response to outsiders at accident occurring by the Bureau, and so forth. (G.K.)

  11. Development of a shell finite element. Application to the thermo-viscoplastic behaviour of a PWR vessel during a severe accident

    The aim of this study is to develop a model for the thermo-viscoplastic behaviour of he power water reactor lower head during a severe accident, so as to implement it in codes representing the whole accident progress (scenario codes). So it has to give a precise solution in a short cpu-time. The main loadings are the internal pressure and the strong longitudinal and transverse thermal gradients. To deal with this problem, the idea is to develop a new shell element with variable mechanical parameters with the temperature. This is possible in taking advantage of the properties of the bending center line, called neutral fiber. Besides, this new shell element has the particularity to be able to melt without modifying the initial dimensions of the structure. Then, we have developed a complete program to study the mechanical resistance of the vessel. The visco-plastic behaviour is considered as a loading (so it is placed in the second member of the system to be solved) and represented by a Norton law whose parameters depend on the temperature, the law is integrated explicitly which necessitates the introduction of criteria limiting the time step. The rupture criterion by creep is defined by a damage law whereas the rupture criterion by plasticity is based on the exceeding of the mean limit stress in the thickness. Then the model was validated by comparing the results with those of a Castem 2000 volume mesh (finite element code). Finally the model was coupled with the scenario codes ICARE2 and MAAP4 and tested on two typical severe accidents. The results are very satisfactory both on accuracy and cpu-time execution. (author)

  12. Application of Gray Markov SCGM1,1c Model to Prediction of Accidents Deaths in Coal Mining

    Lan, Jian-yi; Zhou, Ying

    2014-01-01

    The prediction of mine accident is the basis of aviation safety assessment and decision making. Gray prediction is suitable for such kinds of system objects with few data, short time, and little fluctuation, and Markov chain theory is just suitable for forecasting stochastic fluctuating dynamic process. Analyzing the coal mine accident human error cause, combining the advantages of both Gray prediction and Markov theory, an amended Gray Markov SCGM1,1c model is proposed. The gray SCGM1,1c mod...

  13. A model of the operator cognitive behaviors during the steam generator tube rupture accident at a nuclear power plant

    An integrated framework of modeling the human operator cognitive behavior during nuclear power plant accident scenarios is presented. It incorporates both plant and operator models. The basic structure of the operator model is similar to that of existing cognitive models, however, this model differs from those existing ones largely in two aspects. First, using frame and membership function, the pattern matching behavior, which is identified as the dominant cognitive process of operators responding to an accident sequence, is explicitly implemented in this model. Second, the non-task-related human cognitive activities like effects of stress and cognitive biases such as confirmation bias and availability bias, are also considered. A computer code, OPEC is assembled to simulate this framework and is actually applied to an SGTR sequence, and the resultant simulated behaviors of operator are obtained. 28 refs., 4 figs., 6 tabs. (author)

  14. Analysis of uncertainties caused by the atmospheric dispersion model in accident consequence assessments with UFOMOD

    Various techniques available for uncertainty analysis of large computer models are applied, described and selected as most appropriate for analyzing the uncertainty in the predictions of accident consequence assessments. The investigation refers to the atmospheric dispersion and deposition submodel (straight-line Gaussian plume model) of UFOMOD, whose most important input variables and parameters are linked with probability distributions derived from expert judgement. Uncertainty bands show how much variability exists, sensitivity measures determine what causes this variability in consequences. Results are presented as confidence bounds of complementary cumulative frequency distributions (CCFDs) of activity concentrations, organ doses and health effects, partially as a function of distance from the site. In addition the ranked influence of the uncertain parameters on the different consequence types is shown. For the estimation of confidence bounds it was sufficient to choose a model parameter sample size of n (n=59) equal to 1.5 times the number of uncertain model parameters. Different samples or an increase of sample size did not change the 5%-95% - confidence bands. To get statistically stable results of the sensitivity analysis, larger sample sizes are needed (n=100, 200). Random or Latin-hypercube sampling schemes as tools for uncertainty and sensitivity analyses led to comparable results. (orig.)

  15. Development of information resources package for the Chernobyl accident and its consequences by INIS

    The Chernobyl accident was a global catastrophe that captured global attention and as such literature on the Chernobyl accident and its consequences is an important subject covered by the International Nuclear Information System (INIS) Database. The INIS Database contains about 21000 bibliographic records and 9000 full text documents on this subject from 1986 up to August 2006. Based on these extensive resources INIS released a DVD that contained bibliographic references and full text documents as well a bibliometric study of the Chernobyl references on the occasion of the International Conference entitled 'Chernobyl: Looking Back to Go Forwards' held in Vienna on 6 and 7 September 2005. Subsequently, INIS decided to release Revision 1 of the DVD in August 2006 for the twentieth anniversary of the Chernobyl accident with additional value added information sources. This paper briefly discusses the bibliometric parameters of the references, the contents of DVD and the activities undertaken to produce the Chernobyl information resources package

  16. NRC action plan developed as a result of the TMI-2 accident. Volume 2

    The Action Plan provides a comprehensive and integrated plan for all actions judged necessary by the Nuclear Regulatory Commission to correct or improve the regulation and operation of nuclear facilities based on the experience from the accident at the Three Mile Island, Unit 2, nuclear facility and the official studies and investigations of the accident. The tables included in this volume list the recommendations from the various organizations and task forces investigating the accident at Three Mile Island. The tables are annotated to provide easy references to the associated parts of the Action Plan in Volume 1. The tables are also annotated to provide a shorthand indication of how the various recommendations are treated in the Action Plan

  17. Sensitivity study of the wet deposition schemes in the modelling of the Fukushima accident.

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne; Kajino, Mizuo; Sekiyama, Thomas; Adachi, Kouji; Didier, Damien; Igarashi, Yasuhito

    2016-04-01

    The Fukushima-Daiichi release of radioactivity is a relevant event to study the atmospheric dispersion modelling of radionuclides. Actually, the atmospheric deposition onto the ground may be studied through the map of measured Cs-137 established consecutively to the accident. The limits of detection were low enough to make the measurements possible as far as 250km from the nuclear power plant. This large scale deposition has been modelled with the Eulerian model ldX. However, several weeks of emissions in multiple weather conditions make it a real challenge. Besides, these measurements are accumulated deposition of Cs-137 over the whole period and do not inform of deposition mechanisms involved: in-cloud, below-cloud, dry deposition. A comprehensive sensitivity analysis is performed in order to understand wet deposition mechanisms. It has been shown in a previous study (Quérel et al, 2016) that the choice of the wet deposition scheme has a strong impact on the assessment of the deposition patterns. Nevertheless, a "best" scheme could not be highlighted as it depends on the selected criteria: the ranking differs according to the statistical indicators considered (correlation, figure of merit in space and factor 2). A possibility to explain the difficulty to discriminate between several schemes was the uncertainties in the modelling, resulting from the meteorological data for instance. Since the move of the plume is not properly modelled, the deposition processes are applied with an inaccurate activity in the air. In the framework of the SAKURA project, an MRI-IRSN collaboration, new meteorological fields at higher resolution (Sekiyama et al., 2013) were provided and allows to reconsider the previous study. An updated study including these new meteorology data is presented. In addition, a focus on several releases causing deposition in located areas during known period was done. This helps to better understand the mechanisms of deposition involved following the

  18. Development of the evaluation methodology for the material relocation behavior in the core disruptive accident of sodium cooled fast reactors

    The in-vessel retention (IVR) of core disruptive accident (CDA) is of prime importance in enhancing safety characteristics of sodium-cooled fast reactors (SFRs). In the CDA of SFRs, molten core material relocates to the lower plenum of reactor vessel and may impose significant thermal load on the structures, resulting in the melt through of the reactor vessel. In order to enable the assessment of this relocation process and prove that IVR of core material is the most probable consequence of the CDA in SFRs, a research program to develop the evaluation methodology for the material relocation behavior in the CDA of SFRs has been conducted. This program consists of three developmental studies, namely the development of the analysis method of molten material discharge from the core region, the development of evaluation methodology of molten material penetration into sodium pool, and the development of the simulation tool of debris bed behavior. The analysis method of molten material discharge was developed based on the computer code SIMMER-III since this code is designed to simulate the multi-phase, multi-component fluid dynamics with phase changes involved in the discharge process. Several experiments simulating the molten material discharge through duct using simulant materials were utilized as the basis of validation study of the physical models in this code. It was shown that SIMMER-III with improved physical models could simulate the molten material discharge behavior including the momentum exchange with duct wall and thermal interaction with coolant. In order to develop evaluation methodology of molten material penetration into sodium pool, a series of experiments simulating jet penetration behavior into sodium pool in SFR thermal condition were performed. These experiments revealed that the molten jet was fragmented in significantly shorter penetration length than the prediction by existing correlation for light water reactor conditions, due to the direct

  19. Development of a decision support system for off-site emergency management in the early phase of a nuclear accident

    Full text: Experience gained after the Chernobyl accident clearly demonstrated the importance of improving administrative, organizational and technical emergency management arrangements in India. The more important areas where technical improvements were needed were early warning monitoring, communication networks for the rapid and reliable exchange of radiological and other information and decision support systems for off-site emergency management. A PC based artificial intelligent software has been developed to have a decision support system that can easily implement to manage off-site nuclear emergency and subsequently analyze the off-site consequences of the nuclear accident. A decision support tool, STEPS (source term estimate based on plant status), that provides desired input to the present software was developed. The tool STEPS facilitates meta knowledge of the system. The paper describes the details of the design of the software, functions of various modules, tuning of respective knowledge base and overall its scope in real sense in nuclear emergency preparedness and response

  20. Transportation accidents

    Predicting the possible consequences of transportation accidents provides a severe challenge to an analyst who must make a judgment of the likely consequences of a release event at an unpredictable time and place. Since it is impractical to try to obtain detailed knowledge of the meteorology and terrain for every potential accident location on a route or to obtain accurate descriptions of population distributions or sensitive property to be protected (data which are more likely to be more readily available when one deals with fixed-site problems), he is constrained to make conservative assumptions in response to a demanding public audience. These conservative assumptions are frequently offset by very small source terms (relative to a fixed site) created when a transport vehicle is involved in an accident. For radioactive materials, which are the principal interest of the authors, only the most elementary models have been used for assessing the consequences of release of these materials in the transportation setting. Risk analysis and environmental impact statements frequently have used the Pasquill-Gifford/gaussian techniques for releases of short duration, which are both simple and easy to apply and require a minimum amount of detailed information. However, after deciding to use such a model, the problem of selecting what specific parameters to use in specific transportation situations still presents itself. Additional complications arise because source terms are not well characterized, release rates can be variable over short and long time periods, and mechanisms by which source aerosols become entrained in air are not always obvious. Some approaches that have been used to address these problems will be reviewed with emphasis on guidelines to avoid the Worst-Case Scenario Syndrome