WorldWideScience

Sample records for accident consequence uncertainty

  1. Probabilistic accident consequence uncertainty analysis: Food chain uncertainty assessment. Volume 1: Main report

    Brown, J. [National Radiological Protection Board (United Kingdom); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)] [and others

    1997-06-01

    This volume is the first of a two-volume document that summarizes a joint project conducted by the US Nuclear Regulatory Commission and the European Commission to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This document reports on an ongoing project to assess uncertainty in the MACCS and COSYMA calculations for the offsite consequences of radionuclide releases by hypothetical nuclear power plant accidents. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain variables that affect calculations of offsite consequences. The expert judgment elicitation procedure and its outcomes are described in these volumes. Other panels were formed to consider uncertainty in other aspects of the codes. Their results are described in companion reports. Volume 1 contains background information and a complete description of the joint consequence uncertainty study. Volume 2 contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures for both panels, (3) the rationales and results for the panels on soil and plant transfer and animal transfer, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  2. Probabilistic accident consequence uncertainty analysis: Food chain uncertainty assessment. Volume 1: Main report

    This volume is the first of a two-volume document that summarizes a joint project conducted by the US Nuclear Regulatory Commission and the European Commission to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This document reports on an ongoing project to assess uncertainty in the MACCS and COSYMA calculations for the offsite consequences of radionuclide releases by hypothetical nuclear power plant accidents. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain variables that affect calculations of offsite consequences. The expert judgment elicitation procedure and its outcomes are described in these volumes. Other panels were formed to consider uncertainty in other aspects of the codes. Their results are described in companion reports. Volume 1 contains background information and a complete description of the joint consequence uncertainty study. Volume 2 contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures for both panels, (3) the rationales and results for the panels on soil and plant transfer and animal transfer, (4) short biographies of the experts, and (5) the aggregated results of their responses

  3. Probabilistic accident consequence uncertainty analysis -- Early health effects uncertainty assessment. Volume 1: Main report

    Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands); Grupa, J.B. [Netherlands Energy Research Foundation (Netherlands)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA early health effects models.

  4. Probabilistic accident consequence uncertainty analysis -- Late health effects uncertainty assessment. Volume 1: Main report

    Little, M.P.; Muirhead, C.R. [National Radiological Protection Board (United Kingdom); Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA late health effects models.

  5. Probabilistic accident consequence uncertainty analysis -- Early health effects uncertainty assessment. Volume 2: Appendices

    Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA early health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on early health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  6. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 2: Appendices

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  7. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  8. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, main report

    Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States); Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Goossens, L.H.J.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Paesler-Sauer, J. [Research Center, Karlsruhe (Germany); Helton, J.C. [and others

    1995-01-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The ultimate objective of the joint effort was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. Experts developed their distributions independently. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. To validate the distributions generated for the dispersion code input variables, samples from the distributions and propagated through the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the first of a three-volume document describing the project.

  9. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States); Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Goossens, L.H.J.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Paesler-Sauer, J. [Research Center, Karlsruhe (Germany); Helton, J.C. [and others

    1995-01-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project.

  10. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project

  11. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, main report

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The ultimate objective of the joint effort was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. Experts developed their distributions independently. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. To validate the distributions generated for the dispersion code input variables, samples from the distributions and propagated through the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the first of a three-volume document describing the project

  12. An Analysis of the Cumulative Uncertainty Associated with a Quantitative Consequence Assessment of a Major Accident

    JIRSA PAVEL

    2005-01-01

    The task of the article is to quantify the uncertainty of the possible results of the accident consequence assessment of the chemical production plant and to provide some description of potentional problems with literature references and examples to help to avoid the erroneous use of available formulas. Based on numbers presented in the article we may conclude, that the main source of uncertainty in the consequence analysis of chemical accident assessment is surprisingly not only the dispers...

  13. Probabilistic accident consequence uncertainty analysis: Food chain uncertainty assessment. Volume 2: Appendices

    Brown, J. [National Radiological Protection Board (United Kingdom); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)] [and others

    1997-06-01

    This volume is the second of a two-volume document that summarizes a joint project by the US Nuclear Regulatory and the Commission of European Communities to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This two-volume report, which examines mechanisms and uncertainties of transfer through the food chain, is the first in a series of five such reports. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain transfer that affect calculations of offsite radiological consequences. Seven of the experts reported on transfer into the food chain through soil and plants, nine reported on transfer via food products from animals, and two reported on both. The expert judgment elicitation procedure and its outcomes are described in these volumes. This volume contains seven appendices. Appendix A presents a brief discussion of the MAACS and COSYMA model codes. Appendix B is the structure document and elicitation questionnaire for the expert panel on soils and plants. Appendix C presents the rationales and responses of each of the members of the soils and plants expert panel. Appendix D is the structure document and elicitation questionnaire for the expert panel on animal transfer. The rationales and responses of each of the experts on animal transfer are given in Appendix E. Brief biographies of the food chain expert panel members are provided in Appendix F. Aggregated results of expert responses are presented in graph format in Appendix G.

  14. Probabilistic accident consequence uncertainty analysis: Food chain uncertainty assessment. Volume 2: Appendices

    This volume is the second of a two-volume document that summarizes a joint project by the US Nuclear Regulatory and the Commission of European Communities to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This two-volume report, which examines mechanisms and uncertainties of transfer through the food chain, is the first in a series of five such reports. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain transfer that affect calculations of offsite radiological consequences. Seven of the experts reported on transfer into the food chain through soil and plants, nine reported on transfer via food products from animals, and two reported on both. The expert judgment elicitation procedure and its outcomes are described in these volumes. This volume contains seven appendices. Appendix A presents a brief discussion of the MAACS and COSYMA model codes. Appendix B is the structure document and elicitation questionnaire for the expert panel on soils and plants. Appendix C presents the rationales and responses of each of the members of the soils and plants expert panel. Appendix D is the structure document and elicitation questionnaire for the expert panel on animal transfer. The rationales and responses of each of the experts on animal transfer are given in Appendix E. Brief biographies of the food chain expert panel members are provided in Appendix F. Aggregated results of expert responses are presented in graph format in Appendix G

  15. Techniques Applied in the COSYMA Accident Consequence Uncertainty Analysis (invited paper)

    Uncertainty and sensitivity analysis studies for the program package COSYMA for assessing the radiological consequences of nuclear accidents have been performed to obtain a deeper insight into the propagation of parameter uncertainties through different submodules and to quantify their contribution to uncertainty and sensitivity in a final overall uncertainty analysis of the complete program system COSYMA. Some strategies are given for performing uncertainty analysis runs for submodules and/or the complete complex program system COSYMA and guidelines explain how to post-process and to reduce the bulk of uncertainty and sensitivity analysis results. (author)

  16. Aspects of uncertainty analysis in accident consequence modeling

    Mathematical models are frequently used to determine probable dose to man from an accidental release of radionuclides by a nuclear facility. With increased emphasis on the accuracy of these models, the incorporation of uncertainty analysis has become one of the most crucial and sensitive components in evaluating the significance of model predictions. In the present paper, we address three aspects of uncertainty in models used to assess the radiological impact to humans: uncertainties resulting from the natural variability in human biological parameters; the propagation of parameter variability by mathematical models; and comparison of model predictions to observational data

  17. Probabilistic Accident Consequence Uncertainty Analysis of the Whole Program Package COSYMA (invited paper)

    The overall uncertainty analysis of the program package COSYMA for assessing the radiological consequences of nuclear accidents builds on the results of a series of individual uncertainty and sensitivity analyses of its submodules. A set of 186 model parameters was identified which contribute most to the uncertainties of endpoints. Probabilistic accident consequence assessments with 144 weather sequences were performed for each of 300 sample sets derived from the uncertainty distributions of these parameters by Latin hypercube sampling. The evaluation of the results provided confidence bounds for the complementary cumulative frequency distributions of endpoints for three different source terms covering a wide range of release fractions. Concluding sensitivity analyses identified the most important model parameters responsible for the uncertainties of endpoints. (author)

  18. Probabilistic Accident Consequence Uncertainty Analysis of the Dose Calculations Module in the COSYMA Package (invited paper)

    Uncertainty analysis of the dose calculation module of the COSYMA accident consequence assessment code has been undertaken, involving the following steps: (1) Expert judgement techniques were applied to assess uncertainties in measurable parameters determining external and internal doses. (2) The data obtained were used to calculate distributions on the dose quantities required as code input parameters. (3) The effect of uncertainties in dose quantities was analysed for a range of COSYMA end points, including the extent of countermeasures and incidences of early and late health effects, and the most important uncertainties were identified for inclusion in an overall uncertainty analysis of COSYMA. Parameters identified as making the largest contributions to uncertainty included external doses and location factors, residence times of materials on skin, breathing rates, and respiratory tract deposition and retention parameters, for the extent of countermeasures and early health effects, and caesium and iodine retention parameters for late effects. (author)

  19. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing-season dose, crop long-term dose, water ingestion dose, milk growing-season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meet, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of I-131 at which disposal of crops will be initiated due to accidents that occur during the growing season. Reducing the uncertainty in the preceding variables was found to substantially reduce the uncertainty in the

  20. Probabilistic accident consequence uncertainty analysis -- Late health effects uncertain assessment. Volume 2: Appendices

    Little, M.P.; Muirhead, C.R. [National Radiological Protection Board (United Kingdom); Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA late health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the expert panel on late health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  1. Uncertainty analysis with a view towards applications in accident consequence assessments

    Since the publication of the US-Reactor Safety Study WASH-1400 there has been an increasing interest to develop and apply methods which allow to quantify the uncertainty inherent in probabilistic risk assessments (PRAs) and accident consequence assessments (ACAs) for installations of the nuclear fuel cycle. Research and development in this area is forced by the fact that PRA and ACA are more and more used for comparative, decisive and fact finding studies initiated by industry and regulatory commissions. This report summarizes and reviews some of the main methods and gives some hints to do sensitivity and uncertainty analyses. Some first investigations aiming at the application of the method mentioned above to a submodel of the ACA-code UFOMOD (KfK) are presented. Sensitivity analyses and some uncertainty studies an important submodel of UFOMOD are carried out to identify the relevant parameters for subsequent uncertainty calculations. (orig./HP)

  2. Uncertainty and sensitivity analysis of early exposure results with the MACCS Reactor Accident Consequence Model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D. [GRAM, Inc., Albuquerque, NM (United States); McKay, M.D. [Los Alamos National Lab., NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the early health effects associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 34 imprecisely known input variables on the following reactor accident consequences are studied: number of early fatalities, number of cases of prodromal vomiting, population dose within 10 mi of the reactor, population dose within 1000 mi of the reactor, individual early fatality probability within 1 mi of the reactor, and maximum early fatality distance. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: scaling factor for horizontal dispersion, dry deposition velocity, inhalation protection factor for nonevacuees, groundshine shielding factor for nonevacuees, early fatality hazard function alpha value for bone marrow exposure, and scaling factor for vertical dispersion.

  3. Uncertainty and sensitivity analysis of early exposure results with the MACCS Reactor Accident Consequence Model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the early health effects associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 34 imprecisely known input variables on the following reactor accident consequences are studied: number of early fatalities, number of cases of prodromal vomiting, population dose within 10 mi of the reactor, population dose within 1000 mi of the reactor, individual early fatality probability within 1 mi of the reactor, and maximum early fatality distance. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: scaling factor for horizontal dispersion, dry deposition velocity, inhalation protection factor for nonevacuees, groundshine shielding factor for nonevacuees, early fatality hazard function alpha value for bone marrow exposure, and scaling factor for vertical dispersion

  4. Expert Judgement for a Probabilistic Accident Consequence Uncertainty Analysis (invited paper)

    The development of two probabilistic accident consequence codes sponsored by the European Commission and the United States Nuclear Regulatory Commission, COSYMA and MACCS respectively, was completed in 1990. These codes estimate the risks and other endpoints associated with accidents from hypothesised nuclear installations. In 1991, both Commissions sponsored a joint project for an uncertainty analysis of these two codes. The main objective of this joint project was systematically to derive credible and traceable probability distributions for the respective code input variables. These input distributions will subsequently be used in two uncertainty analyses for each code separately. A formal expert judgement elicitation and evacuation process was used as the best available technique to accomplish that objective. This paper shows the overall process and reports on experiences of elicitors and experts of the eight expert judgement exercises performed under the joint study. (author)

  5. Uncertainty and sensitivity analysis of food pathway results with the MACCS Reactor Accident Consequence Model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the food pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 87 imprecisely-known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, milk growing season dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, area dependent cost, crop disposal cost, milk disposal cost, condemnation area, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: fraction of cesium deposition on grain fields that is retained on plant surfaces and transferred directly to grain, maximum allowable ground concentrations of Cs-137 and Sr-90 for production of crops, ground concentrations of Cs-134, Cs-137 and I-131 at which the disposal of milk will be initiated due to accidents that occur during the growing season, ground concentrations of Cs-134, I-131 and Sr-90 at which the disposal of crops will be initiated due to accidents that occur during the growing season, rate of depletion of Cs-137 and Sr-90 from the root zone, transfer of Sr-90 from soil to legumes, transfer of Cs-137 from soil to pasture, transfer of cesium from animal feed to meat, and the transfer of cesium, iodine and strontium from animal feed to milk

  6. Uncertainty and sensitivity analysis of food pathway results with the MACCS Reactor Accident Consequence Model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D.; Rollstin, J.A. [GRAM, Inc., Albuquerque, NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the food pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 87 imprecisely-known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, milk growing season dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, area dependent cost, crop disposal cost, milk disposal cost, condemnation area, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: fraction of cesium deposition on grain fields that is retained on plant surfaces and transferred directly to grain, maximum allowable ground concentrations of Cs-137 and Sr-90 for production of crops, ground concentrations of Cs-134, Cs-137 and I-131 at which the disposal of milk will be initiated due to accidents that occur during the growing season, ground concentrations of Cs-134, I-131 and Sr-90 at which the disposal of crops will be initiated due to accidents that occur during the growing season, rate of depletion of Cs-137 and Sr-90 from the root zone, transfer of Sr-90 from soil to legumes, transfer of Cs-137 from soil to pasture, transfer of cesium from animal feed to meat, and the transfer of cesium, iodine and strontium from animal feed to milk.

  7. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season

  8. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D.; Rollstin, J.A. [Gram, Inc., Albuquerque, NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season.

  9. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment. Volume 3, Appendices C, D, E, F, and G

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the third of a three-volume document describing the project and contains descriptions of the probability assessment principles; the expert identification and selection process; the weighting methods used; the inverse modeling methods; case structures; and summaries of the consequence codes

  10. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment. Volume 3, Appendices C, D, E, F, and G

    Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1995-01-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the third of a three-volume document describing the project and contains descriptions of the probability assessment principles; the expert identification and selection process; the weighting methods used; the inverse modeling methods; case structures; and summaries of the consequence codes.

  11. Analysis of uncertainties caused by the atmospheric dispersion model in accident consequence assessments with UFOMOD

    Various techniques available for uncertainty analysis of large computer models are applied, described and selected as most appropriate for analyzing the uncertainty in the predictions of accident consequence assessments. The investigation refers to the atmospheric dispersion and deposition submodel (straight-line Gaussian plume model) of UFOMOD, whose most important input variables and parameters are linked with probability distributions derived from expert judgement. Uncertainty bands show how much variability exists, sensitivity measures determine what causes this variability in consequences. Results are presented as confidence bounds of complementary cumulative frequency distributions (CCFDs) of activity concentrations, organ doses and health effects, partially as a function of distance from the site. In addition the ranked influence of the uncertain parameters on the different consequence types is shown. For the estimation of confidence bounds it was sufficient to choose a model parameter sample size of n (n=59) equal to 1.5 times the number of uncertain model parameters. Different samples or an increase of sample size did not change the 5%-95% - confidence bands. To get statistically stable results of the sensitivity analysis, larger sample sizes are needed (n=100, 200). Random or Latin-hypercube sampling schemes as tools for uncertainty and sensitivity analyses led to comparable results. (orig.)

  12. Critique of and Limitations on the Use of Expert Judgements in Accident Consequence Uncertainty Analysis (invited paper)

    Accident consequence models are designed primarily to be used in support of siting and licensing decisions. To use these models, the analyst inevitably requires some input from experts. Equally, to understand the implication of the models, the analyst needs to explore their sensitivity to the inputs and uncertainty analysis is a key tool in doing this. In this paper, the interplay between these two aspects of the use of accident consequence models is considered, paying particular attention to issues and limitations that require further research in the coming years. (author)

  13. Probabilistic Accident Consequence Uncertainty Analysis of the Food Chain Module in the COSYMA Package (invited paper)

    This paper describes the uncertainty analysis of the food chain module of COSYMA and the uncertainty distributions on the input parameter values for the food chain model provided by the expert panels that were used for the analysis. Two expert panels were convened, covering the areas of soil and plant transfer processes and transfer to and through animals. The aggregated uncertainty distributions from the experts for the elicited variables were used in an uncertainty analysis of the food chain module of COSYMA. The main aim of the module analysis was to identify those parameters whose uncertainty makes large contributions to the overall uncertainty and so should be included in the overall analysis. (author)

  14. Uncertainties in offsite consequence analysis

    Young, M.L.; Harper, F.T.; Lui, C.H.

    1996-03-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequences from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the U.S. Nuclear Regulatory Commission and the European Commission began co-sponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables using a formal expert judgment elicitation and evaluation process. This paper focuses on the methods used in and results of this on-going joint effort.

  15. The Chernobyl accident consequences

    Five teen years later, Tchernobyl remains the symbol of the greater industrial nuclear accident. To take stock on this accident, this paper proposes a chronology of the events and presents the opinion of many international and national organizations. It provides also web sites references concerning the environmental and sanitary consequences of the Tchernobyl accident, the economic actions and propositions for the nuclear safety improvement in the East Europe. (A.L.B.)

  16. Accidents, risks and consequences

    Although the accident at Chernobyl can be considered as the worst accident in the world, it could have been worse. Other far worse situations are considered, such as a nuclear weapon hitting a nuclear reactor. Indeed the accident at Chernobyl is compared to a nuclear weapon. The consequences of Chernobyl in terms of radiation levels are discussed. Although it is believed that a similar accident could not occur in the United Kingdom, that possibility is considered. It is suggested that emergency plans should be made for just such an eventuality. Even if Chernobyl could not happen in the UK, the effects of accidents are international. The way in which nuclear reactor accidents happen is explored, taking the 1957 Windscale fire, Three Mile Island and Chernobyl as examples. Reactor designs and accident scenarios are considered. The different reactor designs are listed. As well as the Chernobyl RBMK design it is suggested that the light water reactors also have undesirable features from the point of view of safety. (U.K.)

  17. Lessons learnt from the EC/USNRC expert judgement study on probabilistic accident consequence codes applied in the COSYMA uncertainty analyses

    Two probabilistic accident consequence codes, COSYMA and MACCS respectively, estimate the risks and other endpoints associated with hypothetical accidents from nuclear installations. A joint EC/USNRC project for an uncertainty analysis of these two codes was initiated to systematically derive credible and traceable probability distributions for the respective code input variables. A formal expert judgement elicitation and evaluation process was used as the best available technique to accomplish that objective. These input distributions were used in an uncertainty analysis of the COSYMA package. This paper will show the overall process and highlights the lessons learnt from the projects. (author)

  18. Probabilistic Accident Consequence Uncertainty Analysis of the Early Health Effects Module in the COSYMA Package (invited paper)

    The accuracy of models that are used to calculate the risk from early health effects due to exposure to a large dose of radiation from radioactive materials has been investigated. Early health effects are radiation diseases that occur within six weeks after the exposure. The present investigation provides data needed for subsequent analysis of the accuracy of estimates of the risks from nuclear power plant accidents (accident consequence assessments). By means of a formal expert elicitation procedure, for a limited number of exposure cases, a set of data has been obtained that quantifies the accuracy of risk estimates for early health effects. These data have been implemented in the generic models for calculating the risk and the accuracy of the calculated risk. These generic models are currently applied in accident consequence assessments. (author)

  19. Accidents, probabilities and consequences

    Following brief discussion of the safety of wind-driven power plants and solar power plants, some aspects of the safety of fast breeder and thermonuclear power plants are presented. It is pointed out that no safety evaluation of breeders comparable to the Rasmussen investigation has been carried out and that discussion of the safety aspects of thermonuclear power is only just begun. Finally, as an illustration of the varying interpretations of risk and safety analyses, four examples are given of predicted probabilities and consequences in Copenhagen of the maximum credible accident at the Barsebaeck plant, under the most unfavourable meterological conditions. These are made by the Environment Commission, Risoe Research Establishment, REO (a pro-nuclear group) and OOA (an anti-nuclear group), and vary by a factor of over 1000. (JIW)

  20. Probabilistic Accident Consequence Uncertainty Analysis of the Atmospheric Dispersion and Deposition Module in the COSYMA Package (invited paper)

    The uncertainty analysis is described of the atmospheric dispersion and deposition module of COSYMA, describing both the methods of obtaining distributions on the input parameters and the results of the analysis. The uncertainty distributions on the input parameter values were obtained using formal techniques of expert judgement elicitation. The aim of the module analysis was to identify those parameters whose uncertainty makes major contributions to the overall uncertainty, and which should be included in the final analysis of the whole COSYMA system. (author)

  1. Probabilistic Accident Consequence Uncertainty Analysis of the Late Health Effects Module in the COSYMA Package (invited paper)

    The uncertainty analysis is described of the late health effects module of COSYMA, describing both the methods of obtaining distributions on the input parameters and the results of the analysis. The uncertainty distributions on the input parameter values were obtained using formal expert judgement elicitation techniques. The aim of the module analysis was to identify those parameters whose uncertainty makes major contributions to the overall uncertainty, and which should be included in the final analysis of the whole COSYMA package. (author)

  2. Accident consequence assessment code development

    This paper describes the new computer code system, OSCAAR developed for off-site consequence assessment of a potential nuclear accident. OSCAAR consists of several modules which have modeling capabilities in atmospheric transport, foodchain transport, dosimetry, emergency response and radiological health effects. The major modules of the consequence assessment code are described, highlighting the validation and verification of the models. (author)

  3. Consequences of the Chernobyl accident

    The techniques currently used in off-site consequence modelling are applied to the Chernobyl accident. Firstly, the time dependent spread of radioactive material across the European continent is considered, followed by a preliminary assessment of the dosimetric impact (in terms of collective and mean individual doses) on the various countries of Eastern and Western Europe. The consequences of the accident in the USSR are also discussed. Finally, the likely implications of the Chernobyl event on research in the field of environmental consequence assessment are outlined. (author)

  4. Health consequences [of the Chernobyl accident

    The World Health Organisation Conference on the Health Consequences of the Chernobyl and Other Radiological Accidents, held in Geneva last November, is reported. The lack of representation from the civil nuclear industry led often to one-sided debates instigated by the anti-nuclear lobbies present. Thyroid cancer in children as a result of the Chernobyl accident received particular attention. In Belarus, 400 cases have been noted, 220 in Ukraine and 60 in the Russian Federation. All have been treated with a high degree of success. The incidence of this cancer would be expected to follow the fallout path as the main exposure route was ingestion of contaminated foods and milk products. It was noted that the only way to confirm causality was if those children born since the accident failed to show the same increased incidence. Explanations were offered for the particular susceptibility of children to thyroid cancer following exposure to radiation. Another significant cause of concern was the health consequences to clean-up workers in radiological accidents. The main factor is psychological problems from the stress of knowing that they have received high radiation doses. A dramatic increase in psychological disorders has occurred in the Ukraine over the past ten years and this is attributed to stress generated by the Chernobyl accident, compounded by the inadequacy of the public advice offered at the time and the socio-economic uncertainties accompanying the breakup of the former USSR. (UK)

  5. Medical consequences of radiation accidents

    Since 1945, more than 1.8 x 1021 Bq of artificial radionuclides have been released into the atmosphere. Approximately 2.04 x 1018B, i.e. approx. 0.11%, are the result of accidents at nuclear industrial facilities. This percentage is causing increased interest among researchers. This is due to the fact that in the wake of accidental release radionuclides become distributed unevenly across the Earth's surface, and the associated exposures, fluctuating from background level to several grays, an induce both stochastic and deterministic effects in the irradiated population. A comparative analysis of the medical consequences of the twentieth century's most serious nuclear events, namely the authorized dumping of high level radioactive waste into the river Techa in 1950, the explosion of a storage tank containing long lived radioactive waste in the Southern Urals in 1957, the fire at Sellafield in 1957 and the accident at the Chernobyl nuclear power plant in 1986, has shown that when timely countermeasures are taken, the worst immediate and delayed medical consequences of an accident can be avoided. The consequences that have since been ascertained are a brief rise in the mortality rate during the first five years, with a dose in excess of 500 mSv; an increase in the incidence of leukaemia, with an absolute risk of up to 1.1. x 10-4 man·years/Gy; and increased mortality among children with external radiation doses of up to 1000 mSv, and internal doses of 99-190 mSv on the bone surfaces of neonates or 170-600 mSv on the bone surfaces of the mother. There is reliable evidence that, with external gamma radiation doses in excess of 520 mSv, the mortality rate for all malignant tumorous increases by 45-58% compared with the control level. There is also a significant increase in thyroid cancer frequency four to ten years after the incorporation of iodine isotopes by children aged up to 7 years, including an accumulation period in the womb. (author). 12 refs, 7 tabs

  6. Processing Expert Judgements in Accident Consequence Modelling (invited paper)

    In performing uncertainty analysis a distribution on the code input parameters is required. The construction of the distribution on the code input parameters for the joint CEC/USNRC Accident Consequence Code Uncertainty Analysis using Expert Judgement is discussed. An example from the food chain module is used to illustrate the construction. Different mathematical techniques have been developed to transform the expert judgements into the required format. Finally, the effect of taking account of correlations in performing uncertainty analysis is investigated. (author)

  7. Psychiatric consequences of road traffic accidents.

    Mayou, R; Bryant, B.; Duthie, R

    1993-01-01

    OBJECTIVE--To determine the psychiatric consequences of being a road traffic accident victim. DESIGN--Follow up study of road accident victims for up to one year. SETTING--Emergency department of the John Radcliffe Hospital, Oxford. SUBJECTS--188 consecutive road accident victims aged 18-70 with multiple injuries (motorcycle or car) or whiplash neck injury, who had not been unconscious for more than 15 minutes, and who lived in the catchment area. MAIN OUTCOME MEASURES--Present state examinat...

  8. Consequences of the Chernobyl accident

    A collection of three papers about the fallout in Austria from the 1986 Chernobyl reactor accident is given: 1. An overview of the research projects in Austria; 2. On the transfer into and uptake by crops and animal fodder; 3. On the reduction of cesium concentration in food. 18 tabs., 21 figs., 69 refs

  9. Chernobylsk accident (Causes and Consequences)- Part 2

    The causes and consequences of the nuclear accident at Chernobylsk-4 reactor are shortly described. The informations were provided by Russian during the specialist meeting, carried out at seat of IAEA. The Russian nuclear panorama; the site, nuclear power plant characteristics and sequence of events; the immediate measurements after accident; monitoring/radioactive releases; environmental contamination and ecological consequences; measurements of emergency; recommendations to increase the nuclear safety; and recommendations of work groups, are presented. (M.C.K.)

  10. Assessing economic consequences of radiation accidents

    This project reviewed the literature on the economic consequences of accidents to determine the availability of assessment methods and data and their applicability to the high-level radioactive waste (HLW) disposal system before closure; determined needs for expansion, revision, or adaptation of methods and data for modeling economic consequences of accidents of the scale projected for the disposal system; and gathered data that might be useful for the needed revisions. 8 refs., 1 tab

  11. Medical consequences of Chernobyl accident

    Galstyan I.A.

    2015-12-01

    Full Text Available Aim: to study the long-term effects of acute radiation syndrome (ARS, developed at the victims of the Chernobyl accident. Material and Methods. 237 people were exposed during the accident, 134 of them were diagnosed with ARS. Dynamic observation implies a thorough annual examination in a hospital. Results. In the first 1.5-2 years after the ARS mean group indices of peripheral blood have returned to normal. However, many patients had transient expressed moderate cytopenias. Granulocytopenia, thrombocytopenia, lymphopenia and erythropenia were the most frequently observed things during the first 5 years after the accident. After 5 years their occurences lowered. In 11 patients the radiation cataract was detected. A threshold dose for its development is a dose of 3.2 Gy Long-term effects of local radiation lesions (LRL range from mild skin figure smoothing to a distinct fibrous scarring, contractures, persistently recurrent late radiation ulcers. During all years of observation we found 8 solid tumors, including 2 thyroid cancers. 5 hematologic diseases were found. During 29 years 26 ARS survivors died of various causes. Conclusion. The health of ones with long-term ARS effects is determined by the evolution of the LRL effects on skin, radiation cataracts, hema-tological diseases and the accession of of various somatic diseases, not caused by radiation.

  12. The Chernobyl nuclear accident and its consequences

    An AAEC Task Group was set up shortly after the accident at the Chernobyl Nuclear Power Plant to monitor and evaluate initial reports and to assess the implications for Australia. The Task Group issued a preliminary report on 9 May 1986. On 25-29 August 1986, the USSR released details of the accident and its consequences and further information has become available from the Nuclear Energy Agency of OECD and the World Health Organisation. The Task Group now presents a revised report summarising this information and commenting on the consequences from the Australian viewpoint

  13. Health consequences of nuclear accidents

    The author first outlines that no exposure of mankind to environmental risks has been as exhaustively and continuously studied as that resulting from ionizing radiations. Apart from lethal effects, he describes non lethal cell lesions which are induced in tissues: mutations and modifications of gene expressions, either directly under the effect of radiation, or by water hydrolysis, or indirectly through a biochemical response to these initial events. Then, the author evokes the controversy about Chernobyl: according to scientists, there is no relationship between the health degradation (human morbidity and mortality) and fallouts whereas activist groups state that there is. The author then evokes that the WHO and the IAEA were accused to lie about the issue of victims and health consequences. He outlines that UNSCEAR reports are a reference for radio-biologists, and that the 2011 report confirmed the conclusions of the 2006 report. He comments some published data, notably those on the acute irradiation syndrome (ARS), on carcinogenic effects (essentially thyroid cancers for children, as there is no clear nor admitted relationship for other forms of cancer), on other pathologies. Finally, the author briefly discusses the issue of crisis management, the information about Fukushima, and the issue of Chernobyl fallouts in France

  14. Biological and medical consequences of nuclear accidents

    The study of the medical and biological consequences of the nuclear accidents is a vast program. The Chernobyl accident has caused some thirty deceases: Some of them were rapid and the others occurred after a certain time. The particularity of these deaths was that the irradiation has been associated to burns and traumatisms. The lesson learnt from the Chernobyl accident is to treat the burn and the traumatism before treating the irradiation. Contrary to what the research workers believe, the first wave of deaths has passed between 15 and 35 days and it has not been followed by any others. But the therapeutic lesson drawn from the accident confirm the research workers results; for example: the radioactive doses band that determines where the therapy could be efficacious or not. the medical cares dispensed to the irradiated people in the hospital of Moscow has confirmed that the biochemical equilibrium of proteinic elements of blood has to be maintained, and the transfusion of the purified elements are very important to restore a patient to health, and the sterilization of the medium (room, food, bedding,etc...) of the patient is indispensable. Therefore, it is necessary to establish an international cooperation for providing enough sterilized rooms and specialists in the irradiation treatment. The genetic consequences and cancers from the Chernobyl accident have been discussed. It is impossible to detect these consequences because of their negligible percentages. (author)

  15. Radiological consequences of the Chernobyl reactor accident

    The reactor accident at unit 4 of the Chernobyl nuclear power plant in Ukraine has deeply affected the living conditions of millions of people. Especially the health consequences have been of public concern up to the present and also been the subject of sometimes absurd claims. The current knowledge on the radiological consequences of the accident is reviewed. Though an increased hazard for some risk groups with high radiation exposure, e.g., liquidators, still cannot be totally excluded for the future, the majority of the population shows no statistically significant indication of radiation-induced illnesses. The contribution of the Research Center Juelich to the assessment of the post-accidental situation and psychological relief of the population is reported. The population groups still requiring special attention include, in particular, children growing up in highly contaminated regions and the liquidators of the years 1986 and 1987 deployed immediately after the accident. (author)

  16. Assessment of off-site consequences of nuclear accidents (MARIA)

    A brief report is given of a workshop held in Luxembourg in 1985 on methods for assessing the off-site radiological consequences of nuclear accidents (MARIA). The sessions included topics such as atmospheric dispersion; foodchain transfer; urban contamination; demographic and land use data; dosimetry, health effects, economic and countermeasures models; uncertainty analysis; and application of probabilistic risk assessment results as input to decision aids. (U.K.)

  17. Consequences in Guatemala of the Chernobyl accident

    Because of the long distance between Guatemala and Chernobyl, the country did not undergo direct consequences of radioactive contamination in the short term. However, the accident repercussions were evident in the medium and long-term, mainly in two sectors, the economic-political and the environmental sectors

  18. Consequences in Sweden of the Chernobyl accident

    It summarizes the consequences in Sweden of the Chernobyl accident, describes the emergency response, the basis for decisions and countermeasures, the measurement strategies, the activity levels and doses and countermeasures and action levels used. Past and remaining problems are discussed and the major investigations and improvements are given. (author)

  19. Real and mythical consequences of Chernobyl accident

    This presentation describes the public Unacceptance of Nuclear Power as a consequence of Chernobyl Accident, an accident which was a severest event in the history of the nuclear industry. It was a shock for everybody, who has been involved in nuclear power programs. But nobody could expect that it was also the end romantic page in the nuclear story. The scale of the detriment was a great, and it could be compared with other big technological man-made catastrophes. But immediately after an accident mass media and news agencies started to transmit an information with a great exaggerations of the consequences of the event. In a report on the Seminar The lessons of the Chernobyl - 1' in 1996 examples of such incorrect information, were cited. Particularly, in the mass media it was declared that consequences of the accident could be compared with a results of the second world war, the number of victims were more than hundred thousand people, more than million of children have the serious health detriments. Such and other cases of the misconstruction have been called as myths. The real consequences of Chernobyl disaster have been summed on the International Conference 'One decade after Chernobyl' - 2, in April 1996. A very important result of the Chernobyl accident was a dissemination of stable unacceptance of the everything connected with 'the atom'. A mystic horror from invisible mortal radiation has been inspired in the masses. And from such public attitude the Nuclear Power Programs in many countries have changed dramatically. A new more pragmatic and more careful atomic era started with a slogan: 'Kernkraftwerk ? Nein, danke'. No doubt, a Chernobyl accident was a serious technical catastrophe in atomic industry. The scale of detriment is connected with a number of involved peoples, not with a number of real victims. In comparison with Bhopal case, earthquakes, crashes of the airplanes, floods, traffic accidents and other risky events of our life - the Chernobyl is

  20. The Chernobyl accident consequences; Consequences de l'accident de Tchernobyl

    NONE

    2001-04-01

    Five teen years later, Tchernobyl remains the symbol of the greater industrial nuclear accident. To take stock on this accident, this paper proposes a chronology of the events and presents the opinion of many international and national organizations. It provides also web sites references concerning the environmental and sanitary consequences of the Tchernobyl accident, the economic actions and propositions for the nuclear safety improvement in the East Europe. (A.L.B.)

  1. Consequences and problems of the Chernobyl accident

    The data on epidemic situation in connection with the Chernobyl accident, based on the personal medical and dosimetric information on all the persons, subjected to radiation effect, and included in the Russian state medicodosimetric register, are presented. The consequences of the Chernobyl accident become the cause for origination of serious radiation injures by 134 persons (with lethal outcome by 37 patients) and also remote radiation stochastic effects by children (thyroid gland cancer) and by liquidators (thyroid gland leucosis and cancer). The permanent stress and other unfavorable factors conditioned aggravation of chronical and increase in somatic diseases and psychoneurotic disorders

  2. Environmental consequences of releases from nuclear accidents

    The primary purpose of this report is to present the results of a four-year Nordic cooperation program in the area of consequence assessment of nuclear accidents with large releases to the environment. This program was completed in 1989. Related information from other research programs has also been described, so that many chapters of the report reflect the current status in the respective areas, in addition to containing the results of the Nordic program. (author) 179 refs

  3. Procedures Guide for Structural Expert Judgement in Accident Consequence Modelling (invited paper)

    A protocol is outlined for using structured expert judgement to generate uncertainty data for uncertainty analyses. The use of performance based weighting as an instrument to enable optimisation of the aggregated experts' assessments is emphasised. Examples are shown from the EC/USNRC joint study on Probabilistic Accident Consequence Uncertainty Analysis. (author)

  4. Radiological consequences of the Chernobyl reactor accident

    Fifty years of peaceful utilization of nuclear power were interrupted by the reactor accident in unit 4 of the Chernobyl nuclear power station in Ukraine in 1986, a disruptive event whose consequences profoundly affected the way of life of millions of people, and which has moved the public to this day. Releases of radioactive materials contaminated large areas of Belarus, the Russian Federation, and Ukraine. Early damage in the form of radiation syndrome was suffered by a group of rescue workers and members of the reactor operating crew, in some cases with fatal consequences, while the population does not, until now, show a statistically significant increase in the rate of late damage due to ionizing radiation expect for thyroid diseases in children. In particular, no increases in the rates of solid tumors, leukaemia, genetic defects, and congenital defects were detected. For some risk groups exposed to high radiation doses (such as liquidators) the hazard may still be greater, but the large majority of the population need not live in fear of serious impacts on health. Nevertheless, the accident shows major negative social and psychological consequences reinforced by the breakdown of the Soviet Union. This may be one reason for the observed higher incidence of other diseases whose association with the effects of radiation as a cause has not so far been proven. The measurement campaign conducted by the federal government in 1991-1993 addressed these very concerns of the public in an effort to provide unbiased information about exposures detected, on the one hand, in order to alleviate the fears of the public and reduce stress and, on the other hand, to contribute to the scientific evaluation of the radiological situation in the regions most highly exposed. The groups of the population requiring special attention in the future include especially children growing up in highly contaminated regions, and the liquidators of 1986 and 1987 employed in the period immediately

  5. The consequences of the Chernobyl reactor accident

    After the decay of the iodine isotopes the measuring campaigns, in addition to the measuring of soil pollution and pollution of products, concentrated on the way of the cesium isotopes through the food chain, especially in crops, milk, meat and mother's milk. A special programme was developed for the analysis of foreign basic substances for teas, essences and tinctures. In connection with the incorporation measurements in the university hospital Eppendorf the measurement campaigns provided the data material in order to calculate with the aid of the computer program ECOSYS of the GSF the effective dose equivalent which the inhabitants of Hamburg additionally take up due to the accident of Chernobyl. Consequences with regard to measuring methods and social consequences are mentioned. (DG)

  6. Assessment methods and minimization of radiological consequences of nuclear accidents

    The uncertainty and sensitivity analyses with the program system COSYMA for assessing the radiological consequences of nuclear accidents, performed since 1997 in close co-operation with the University of Delft, NL, and the NRPB, UK, have been terminated and fully documented. Work on the real-time on-line decision support system RODOS for off-site emergency management after nuclear accidents has concentrated on the preparation of the operational version PV 4.0; it will be released by mid 2000. It has been developed and customised to the various regions of Europe in close co-operation with some 40 contract partners in East and West Europe. The operational use of the RODOS system at a central place in Germany and in emergency centres of other West and East European countries is in progress. (orig.)

  7. Cosyma a new programme package for accident consequence assessment

    This report gives details of a new programme package for accident consequence assessment, prepared under the CEC's Maria programme (Methods for assessing the radiological impact of accidents) initiated in 1982 to review and build on the nuclear accident consequence assessment methods in use within the European Community

  8. A general approach to critical infrastructure accident consequences analysis

    Bogalecka, Magda; Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    2016-06-01

    The probabilistic general model of critical infrastructure accident consequences including the process of the models of initiating events generated by its accident, the process of environment threats and the process of environment degradation is presented.

  9. Environmental consequences of releases from nuclear accidents

    The report presents the results of a four-year Nordic cooperation project (AKTU-200). The results have impact upon many facets of accident consequence assessment, ranging from new computational tools to recommendations concerning food preparation methods to be utilized in a fallout situation. Some of the subprojects have approached areas where little or no research has been performed previously, like the project on winter conditions, the project on the physico/chemical form of radionuclides in the Chernobyl fallout, and the project on resuspension. The conclusion from the first of these projects is that the impact of an accident or fallout situation occuring during winter may be considerable smaller than in a similar situation during summer conditions. The most important conclusion from the second of these projects is that bioavailability of radiocesium in soil is significantly lower than that of radiocesium in plant material taken up via the roots. In the third project is was found that the resuspension factor is several orders of magnitude lower than the values traditionally cited, and that resuspension is a local phenomenon in a majority of weather conditions. The development of large-scale testing of mitigating actions to prevent uptake of radiocesium in animals in a fallout situation is also one of the projects where new ground has been sucessfully broken. 189 refs., 89 figs., 55 tabs

  10. Chernobylsk accident (Causes and Consequences)-Part 1

    Facts, project data, hypothesis, calculations, evaluations, monitoring, standard requirements and several considerations, related to causes, effects and consequences of Chernobylsk-4 accident. (M.C.K.)

  11. Cost per severe accident as an index for severe accident consequence assessment and its applications

    The Fukushima Accident emphasizes the need to integrate the assessments of health effects, economic impacts, social impacts and environmental impacts, in order to perform a comprehensive consequence assessment of severe accidents in nuclear power plants. “Cost per severe accident” is introduced as an index for that purpose. The calculation methodology, including the consequence analysis using level 3 probabilistic risk assessment code OSCAAR and the calculation method of the cost per severe accident, is proposed. This methodology was applied to a virtual 1,100 MWe boiling water reactor. The breakdown of the cost per severe accident was provided. The radiation effect cost, the relocation cost and the decontamination cost were the three largest components. Sensitivity analyses were carried out, and parameters sensitive to cost per severe accident were specified. The cost per severe accident was compared with the amount of source terms, to demonstrate the performance of the cost per severe accident as an index to evaluate severe accident consequences. The ways to use the cost per severe accident for optimization of radiation protection countermeasures and for estimation of the effects of accident management strategies are discussed as its applications. - Highlights: • Cost per severe accident is used for severe accident consequence assessment. • Assessments of health, economic, social and environmental impacts are included. • Radiation effect, relocation and decontamination costs are important cost components. • Cost per severe accident can be used to optimize radiation protection measures. • Effects of accident management can be estimated using the cost per severe accident

  12. Consequences of the Fukushima accident: A preliminary assessment and discussion

    Tsunami due to the earthquake in East Japan Sea eventually leaded to a severe nuclear accident in Fukushima Dai-ichi nuclear power plant. This event immediately became the focus of the whole world. The work to roughly evaluate and predict the consequence of this nuclear accident is summarized in this paper and the work actually provides valuable information in predicting the scale and severity of the accident comparing to the published information on the accident thereafter. (authors)

  13. Medical consequences of a nuclear plant accident

    The report gives background information concerning radiation and the biological medical effects and damages caused by radiation. The report also discusses nuclear power plant accidents and efforts from the medical service in the case of a nuclear power plant accident. (L.F.)

  14. Uncertainty Principle Consequences at Thermal Equilibrium

    Pachon, Leonardo A; Zueco, David; Brumer, Paul

    2014-01-01

    Contrary to the conventional wisdom that deviations from standard thermodynamics originate from the strong coupling to the bath, it is shown that these deviations are intimately linked to the power spectrum of the thermal bath. Specifically, it is shown that the lower bound of the dispersion of the total energy of the system, imposed by the uncertainty principle, is dominated by the bath power spectrum and therefore, quantum mechanics inhibits the system thermal-equilibrium-state from being described by the canonical Boltzmann's distribution. This is in sharp contrast to the classical case, for which the thermal equilibrium distribution of a system interacting via central forces with pairwise-self-interacting environment, irrespective of the interaction strength, is shown to be \\emph{exactly} characterized by the canonical Boltzmann distribution. As a consequence of this analysis, we define an \\emph{effective coupling} to the environment that depends on all energy scales in the system and reservoir interactio...

  15. Informational uncertainties of risk assessment about accidents of chemicals

    2001-01-01

    An analysis system of informational uncertainties for accidental risk assessment of chemicals is introduced. Statistical test methods and fuzzy sets method can do the quantitative analysis of the input parameters. The uncertainties of the model can be used by quantitative compared method for the leakage accidents of chemicals. The estimation of the leaking time is important for discussing accidental source term. The uncertain analyses of the release accident for pipeline gas (CO) liquid chlorine and liquid propane gas (LPG) have been discussed.

  16. Fast detections of the accident. Radiological consequences

    This paper shows how the contamination due to the accident of Chernobylsk has been discovered in Sweden. The Swedish national Institute of radio-protection describes in detail the measurements done, and the decisions of radioprotection which have been taken

  17. The Chernobyl accident 20 years on: an assessment of the health consequences and the international response.

    Baverstock, Keith; Williams, Dillwyn

    2007-01-01

    Twenty years after the Chernobyl accident the WHO and the International Atomic Energy Authority issued a reassuring statement about the consequences. Our objectives in this study were to evaluate the health impact of the Chernobyl accident, assess the international response to the accident, and consider how to improve responses to future accidents. So far, radiation to the thyroid from radioisotopes of iodine has caused several thousand cases of thyroid cancer but very few deaths; exposed children were most susceptible. The focus on thyroid cancer has diverted attention from possible nonthyroid effects. The international response to the accident was inadequate and uncoordinated, and has been unjustifiably reassuring. Accurate assessment in future health effects is not currently possible in the light of dose uncertainties, current debates over radiation actions, and the lessons from the late consequences of atomic bomb exposure. Because of the uncertainties from and the consequences of the accident, it is essential that investigations of its effects should be broadened and supported for the long term. The United Nations should initiate an independent review of the actions and assignments of the agencies concerned, with recommendations for dealing with future international-scale accidents. These should involve independent scientists and ensure cooperation rather than rivalry. PMID:17680126

  18. Source term and radiological consequences of the Chernobyl accident

    This report presents the results of a study of the source term and radiological consequences of the Chernobyl accident. The results two parts. The first part was performed during the first 2 months following the accident and dealt with the evaluation of the source term and an estimate of individual doses in the European countries outside the Soviet Union. The second part was performed after August 25-29, 1986 when the Soviets presented in a IAEA Conference in Vienna detailed information about the accident, including source term and radiological consequences in the Soviet Union. The second part of the study reconfirms the source term evaluated in the first part and in addition deals with the radiological consequences in the Soviet Union. Source term and individual doses are calculated from measured post-accident data, reported by the Soviet Union and European countries, microcomputer program PEAR (Public Exposure from Accident Releases). 22 refs

  19. The consequences of the Chernobyl nuclear accident in Greece

    In this report the radioactive fallout on Greece from the Chernobyl nuclear accident is described. The flow pattern to Greece of the radioactive materials released, the measurements performed on environmental samples and samples of the food chain, as well as some estimations of the population doses and of the expected consequences of the accident are presented. The analysis has shown that the radiological impact of the accident in Greece can be considered minor. (J.K.)

  20. Consequences of the Chernobyl accident in Lithuania

    After the Chernobyl accident of 26 April, 1986, population dose assessment favours the view that the radiation risk of population effected by the early fallout would be different from that in regions contaminated later. Taking into account the short half-time of the most important radioactive iodine isotopes, thyroid disorders would be expected mainly to follow the early fallout distribution. At the time of accident at Unite 4 of the Chernobyl NPP, surface winds were from the Southeast. The initial explosions and heat carried volatile radioactive materials to the 1,5 km height, from where they were transported over the Western part of Belarus, Southern and Western part of Lithuania toward Scandinavian countries. Thus the volatile radioiodine and some other radionuclides were detected in Lithuania on the very first days after the accident. The main task of the work - to conduct short Half-time radioiodine and long half-time radiocesium dose assessment of Lithuanian inhabitants a result of the early Chernobyl accident fallout

  1. Severe Accident Progression and Consequence Assessment Methodology Upgrades in ISAAC for Wolsong CANDU6

    Amongst the applications of integrated severe accident analysis codes like ISAAC, the principal are to a) help develop an understanding of the severe accident progression and its consequences; b) support the design of mitigation measures by providing for them the state of the reactor following an accident; and c) to provide a training platform for accident management actions. After Fukushima accident there is an increased awareness of the need to implement effective and appropriate mitigation measures and empower the operators with training and understanding about severe accident progression and control opportunities. An updated code with reduced uncertainties can better serve these needs of the utility making decisions about mitigation measures and corrective actions. Optimal deployment of systems such as PARS and filtered containment venting require information on reactor transients for a number of critical parameters. Thus there is a greater consensus now for a demonstrated ability to perform accident progression and consequence assessment analyses with reduced uncertainties. Analyses must now provide source term transients that represent the best in available understanding and so meaningfully support mitigation measures. This requires removal of known simplifications and inclusion of all quantifiable and risk significant phenomena. Advances in understanding of CANDU6 severe accident progression reflected in the severe accident integrated code ROSHNI are being incorporated into ISAAC using CANDU specific component and system models developed and verified for Wolsong CANDU 6 reactors. A significant and comprehensive upgrade of core behavior models is being implemented in ISAAC to properly reflect the large variability amongst fuel channels in feeder geometry, fuel thermal powers and burnup. The paper summarizes the models that have been added and provides some results to illustrate code capabilities. ISAAC is being updated to meet the current requirements and

  2. Method for consequence calculations for severe accidents

    This report was commissioned by the Swedish State Power Board. The report contains a calculation of radiation doses in the surroundings caused by a theoretical core meltdown accident at Ringhals reactor No 3/4. The accident sequence chosen for the calcualtions was a release caused by total power failure. The calculations were made by means of the PLUCON4 code. A decontamination factor of 500 is used to account for the scrubber effect. Meteorological data for two years from the Ringhals meteorological tower were analysed to find representative weather situations. As typical weather, Pasquill D, was chosen with a wind speed of 10 m/s, and as extreme weather, Pasquill E, with a wind speed of 2 m/s. 19 refs. (author)

  3. Appearing consequences of the Chernobyl accident

    Full text: Chernobyl is the greatest world's tragedy after Chirosima. Global results of this tragedy is already being seen. They are the people who have received radiation dose. the first type of cancer 5 years after Chernobyl accident was the thyroid gland cancer, the reason of it, large quantities of radioactive iodine in the air, food products, milk of cattle and finally their collection in the thyroid gland cancer entering the human body. Period all of a sudden after 10 years completed the next latent type of cancer was leykoz. Giving rise to this type of cancer more sensitive to radiation of the body - a violation of the spinal brain function. After 20 years passing from the accident in the first generation one ill child must be born cause of undergoing to radiation father or mother from each three days in Belarus, Russia and Ukraine

  4. Medical demographic consequences of the Chernobyl accident

    A demographic study was made of the population evacuated from the 30-km zone around the nuclear power plant and of the population living in areas over which the radioactive cloud passed and over which the plume was formed. For the farmers evacuated from 11,655 homes in the Chernobyl region, 7,000 new houses, built in the Kiev region, had already been provided within 5 months of the accident, and by the summer of 1987 another 5,000 houses were available. A study of the resettlement of the population carried out a year after the accident showed that more than 60% of those evacuated continued to live in the regions from which the evacuation had taken place; about 5% were resettled in other republics, and 20% within their own republic. (author). 7 figs, 2 tabs

  5. Estimation of cost per severe accident for improvement of accident protection and consequence mitigation strategies

    To assess the complex situations regarding the severe accidents such as what observed in Fukushima Accident, not only radiation protection aspects but also relevant aspects: health, environmental, economic and societal aspects; must be all included into the consequence assessment. In this study, the authors introduce the “cost per severe accident” as an index to analyze the consequences of severe accidents comprehensively. The cost per severe accident consists of various costs and consequences converted into monetary values. For the purpose of improvement of the accident protection and consequence mitigation strategies, the costs needed to introduce the protective actions, and health and psychological consequences are included in the present study. The evaluations of these costs and consequences were made based on the systematic consequence analysis using level 2 and 3 probabilistic safety assessment (PSA) codes. The accident sequences used in this analysis were taken from the results of level 2 seismic PSA of a virtual 1,100 MWe BWR-5. The doses to the public and the number of people affected were calculated using the level 3 PSA code OSCAAR of Japan Atomic Energy Agency (JAEA). The calculations have been made for 248 meteorological sequences, and the outputs are given as expectation values for various meteorological conditions. Using these outputs, the cost per severe accident is calculated based on the open documents on the Fukushima Accident regarding the cost of protective actions and compensations for psychological harms. Finally, optimized accident protection and consequence mitigation strategies are recommended taking into account the various aspects comprehensively using the cost per severe accident. The authors must emphasize that the aim is not to estimate the accident cost itself but to extend the scope of “risk-informed decision making” for continuous safety improvements of nuclear energy. (author)

  6. Information on economic and social consequences of the Chernobyl accident

    This ''Information on economic and social consequences of the Chernobyl accident'' was presented to the July 1990 session of the Economic and Social Council of the United Nations by the delegations of the Union of Soviet Socialist Republics, the Byelorussian Soviet Socialist Republic and the Ukrainian Soviet Socialist Republic. It presents the radiation situation, the medical aspects of the accident, the evacuation of the inhabitants from areas affected by radioactive contamination and their social welfare, the agro-industrial production and forestry in these areas, the decontamination operations, the scientific back-up for the work dealing with the consequences of the accident and the expenditure and losses resulting from the Chernobyl disaster

  7. Cassini Spacecraft Uncertainty Analysis Data and Methodology Review and Update/Volume 1: Updated Parameter Uncertainty Models for the Consequence Analysis

    WHEELER, TIMOTHY A.; WYSS, GREGORY D.; HARPER, FREDERICK T.

    2000-11-01

    Uncertainty distributions for specific parameters of the Cassini General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) Final Safety Analysis Report consequence risk analysis were revised and updated. The revisions and updates were done for all consequence parameters for which relevant information exists from the joint project on Probabilistic Accident Consequence Uncertainty Analysis by the United States Nuclear Regulatory Commission and the Commission of European Communities.

  8. Thyroid consequences of the Chernobyl nuclear accident.

    Pacini, F; Vorontsova, T; Molinaro, E; Shavrova, E; Agate, L; Kuchinskaya, E; Elisei, R; Demidchik, E P; Pinchera, A

    1999-12-01

    It is well recognized that the use of external irradiation of the head and neck to treat patients with various non-thyroid disorders increases their risk of developing papillary thyroid carcinoma years after radiation exposure. An increased risk of thyroid cancer has also been reported in survivors of the atomic bombs in Japan, as well as in Marshall Island residents exposed to radiation during the testing of hydrogen bombs. More recently, exposure to radioactive fallout as a result of the Chernobyl nuclear reactor accident has clearly caused an enormous increase in the incidence of childhood thyroid carcinoma in Belarus, Ukraine, and, to a lesser extent, in the Russian Federation, starting in 1990. When clinical and epidemiological features of thyroid carcinomas diagnosed in Belarus after the Chernobyl accident are compared with those of naturally occurring thyroid carcinomas in patients of the same age group in Italy and France, it becomes apparent that the post-Chernobyl thyroid carcinomas were much less influenced by gender, virtually always papillary (solid and follicular variants), more aggressive at presentation and more frequently associated with thyroid autoimmunity. Gene mutations involving the RET proto-oncogene, and less frequently TRK, have been shown to be causative events specific for papillary cancer. RET activation was found in nearly 70% of the patients who developed papillary thyroid carcinomas following the Chernobyl accident. In addition to thyroid cancer, radiation-induced thyroid diseases include benign thyroid nodules, hypothyroidism and autoimmune thyroiditis, with or without thyroid insufficiency, as observed in populations after environmental exposure to radioisotopes of iodine and in the survivors of atomic bomb explosions. On this basis, the authors evaluated thyroid autoimmune phenomena in normal children exposed to radiation after the Chernobyl accident. The results demonstrated an increased prevalence of circulating thyroid

  9. Radiological attacks and accidents. Medical consequences

    Probability of the occurrence of radiological attacks appears to be elevated after the terrorist attacks against the United States on September 11 in 2001. There are a lot of scenarios of radiological attack: simple radiological device, radiological disperse device (RDD or dirty bomb), attacks against nuclear reactor, improvised nuclear device, and nuclear weapons. Of these, RDD attack is the most probable scenario, because it can be easily made and can generate enormous psychological and economic damages. Radiological incidents are occurring to and fro in the world, including several cases of theft to nuclear facilities and unsuccessful terrorist attacks against them. Recently, a former Russian spy has allegedly been killed using polonium-210. In addition, serious radiological accidents have occurred in Chernobyl, Goiania, and Tokai-mura. Planning, preparation, education, and training exercise appear to be essential factors to cope with radiological attacks and accidents effectively without feeling much anxiety. Triage and psychological first aid are prerequisite to manage and provide effective medial care for mass casualties without inducing panic. (author)

  10. Method for consequence calculations for severe accidents

    This report was commissioned by the Swedish State Power Board. The report contains a calculation of radiation doses in the surroundings caused by a theoretical core meltdown accident at Forsmark reactor No 3. The assumption used for the calculations were a 0.06% release of iodine and cesium corresponding to a 0.1% release through the FILTRA plant at Barsebaeck. The calculations were made by means of the PLUCON4 code. Meteorological data for two years from the Forsmark meteorological tower were analysed to find representative weather situations. As typical weather pasquill D was chosen with wind speed 5 m/s, and as extreme weather, Pasquill F with wind speed 2 m/s. 23 tabs., 36 ills., 21 refs. (author)

  11. Consequence of potential accidents in heavy water plants

    Heavy water plants realize the primary isotopic concentrations of water using H2O-H2S chemical exchange and they are chemical plants. As these plants are handling and spreading large quantities of hydrogen sulphide (high toxic, corrosive, flammable and explosive as) maintained in the process at relative high temperatures and pressures, it is required an assessing of risks associated with the potential accidents. The H2S released in atmosphere as a result of an accident will have negative consequences to property, population and environment. This paper presents a model of consequences quantitative assessment and its outcome for the most dangerous accident in heavy water plants. Several states of the art risk based methods were modified and linked together to form a proper model for this analyse. Five basic steps to identify the risks involved in operating the plants are followed: hazard identification, accident sequence development, H2S emissions calculus, dispersion analyses and consequences determination. A brief description of each step and some information of analysis results are provided. The accident proportions, the atmospheric conditions and the population density in the respective area were accounted for consequences calculus. The specific results of the consequences analysis allow to develop the plant's operating safety requirements so that the risk remain at an acceptable level. (authors)

  12. Offsite Radiological Consequence Analysis for the Bounding Flammable Gas Accident

    Carro, C A

    2003-01-01

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a single-shell tank The calculation applies reasonably conservation input parameters in accordance with DOE-STD-3009, Appendix A, guidance. Revision 1 incorporates comments received from Office of River Protection.

  13. MELCOR Accident Consequence Code System (MACCS)

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs

  14. MELCOR Accident Consequence Code System (MACCS)

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems

  15. MELCOR Accident Consequence Code System (MACCS)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  16. MELCOR Accident Consequence Code System (MACCS)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  17. Consequences of the Chernobyl accident in Styria

    We present results which document the contamination of Styria (Southern part of Austria) immediately after and in the years following the Chernobyl accident. The radioactivity and distribution of radionuclides in aerosols, rain water, soil, vegetation, animals and various samples of food are described in great detail. One of the key results is that the highest levels of contamination were found in two districts (Liezen, Deutschlandsberg), and the deposition rates for Cs-137 were determined to be in the range from 3 to about 80 kBq/m2. Of particular interest are studies concerning the migration and distribution of radionuclides in soil, the uptake of radiocesium by the aquatic vegetation and the existence of radionuclides in the natural ecosystem up to this day. Effective dose equivalents due to incorporated radiocesium was estimated to be 252.2 μSv for the adult population of Graz (capital of Styria) over the four years follwing the fallout. (authors) 17 papers are presented and are of INIS scope

  18. MELCOR Accident Consequence Code System (MACCS)

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management

  19. Radioecological and dosimetric consequences of Chernobyl accident in France

    After ten years and the taking in account of numerous data, it can be affirmed that the dosimetric consequences of Chernobyl accident will have been limited in France. for the period 1986-2046, the individual middle efficient dose commitment, for the area the most reached by depositing is inferior to 1500 μSv, that represents about 1% of middle natural exposure in the same time. but mountains and forests can have more important surface activities than in plain. Everywhere else, it can be considered that the effects of Chernobyl accident are disappearing. the levels of cesium 137 are now often inferior to what they were before the accident. (N.C.)

  20. The Fukushima accident: radiological consequences and first lessons. Proceedings

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about the Fukushima accident, its radiological consequences and the first lessons learnt. Sixteen presentations (slides) are compiled in this document and deal with: 1 - Accident progress and first actions (Thierry Charles, IRSN); 2 - Conditions and health monitoring of the Japanese intervention teams (Bernard Le Guen, EDF); 3 - The Intra Group action after the Fukushima accident (Michel Chevallier, Groupe Intra; Frederic Mariotte, CEA); 4 - Processing of effluents (Georges Pagis, Areva); 5 - Fukushima accident: impact on the terrestrial environment in Japan (Didier Champion, IRSN); 6 - Consequences of the Fukushima accident on the marine environment (Dominique Boust, IRSN); 7 - Territories decontamination perspectives (Pierre Chagvardieff, CEA); 8 - Actions undertaken by Japanese authorities (Florence Gallay, ASN); 9 - Japanese population monitoring and health stakes (Philippe Pirard, InVS); 10 - Citizen oversight actions implemented in Japan (David Boilley, ACRO); 11 - Implementation of ICRP's (International Commission on Radiological Protection) recommendations by Japanese authorities: first analysis (Jacques Lochard, CIPR); 12 - Control of Japan imported food stuff (David Brouque, DGAL); 13 - Questions asked by populations in France and in Germany (Florence-Nathalie Sentuc, GRS; Pascale Monti, IRSN); 14 - Labour law applicable to French workers working abroad (Thierry Lahaye, DGT); 15 - Protection of French workers working in Japan, Areva's experience (Patrick Devin, Areva); 16 - Fukushima accident experience feedback and post-accident nuclear doctrine (Jean-Luc Godet, ASN)

  1. First international workshop on severe accidents and their consequences. [Chernobyl Accident

    1989-07-01

    An international workshop on past severe nuclear accidents and their consequences was held in Dagomys region of Sochi, USSR on October 30--November 3, 1989. The plan of this meeting was approved by the USSR Academy of Sciences and by the USSR State Committee of the Utilization of Atomic Energy. The meeting was held under the umbrella of the ANS-SNS agreement of cooperation. Topics covered include analysis of the Chernobyl accident, safety measures for RBMK type reactors and consequences of the Chernobyl accident including analysis of the ecological, genetic and psycho-social factors. Separate reports are processed separately for the data bases. (CBS)

  2. OFFSITE RADIOLOGICAL CONSEQUENCE ANALYSIS FOR THE BOUNDING FLAMMABLE GAS ACCIDENT

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a SST. The calculation applies reasonably conservative input parameters in accordance with guidance in DOE-STD-3009, Appendix A. The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety-class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST). A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. A detonation in an SST versus a double-shell tank (DST) was selected as the bounding accident because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes

  3. Joint CEC/OECD(NEA) workshop on recent advances in reactor accident consequence assessment

    The workshop on probabilistic accident consequence assessment techniques and their applications aims at a review of the present knowledge of all the work in this field. This includes the atmospheric dispersion and deposition modelling, with comparison of the different approaches, the exposure pathways with emphasis on post-deposition processes, the health effects with emphasis on the consequences of the Hiroshima and Nagasaki data re-evaluation, the countermeasures and their economic consequences, the uncertainty analysis of the models and finally the applications of these models as aids to decision making

  4. The Chernobyl reactor accident - provisional results and consequences

    Those involved at present in the analysis and estimation of consequences of the Chernobyl reactor accident are in a dilemma: While a worried and uncertain Western German public is calling for information the Soviet Union was practicing a rigorously restrictive information policy. Both the severity of the reactor accident and the complexity of events do urgently require the acquisition and evaluation of facts which will provide the basis for an objective factual discussion of issues and possible measures. The paper abstracted is trying to assess the alleged causes of the accident and estimate possible consequences. However, all attempts of that kind are based but on incomplete and dubious information as of May 21st, 1986. (orig.)

  5. Remote medical consequences of Chernobyl NPP accident in Armenia

    In result of global radio-ecological disaster at the Chernobyl NPP in Armenia there has appeared a great 'risk group' of persons, who had participated in liquidation of the accident consequences. The results of medical observation of this cohort carried out in dynamics in Scientific Center of Radiation Medicine and Burns during 25 years are brought in the work

  6. Hanford Waste Tank Bump Accident and Consequence Analysis

    BRATZEL, D.R.

    2000-06-20

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

  7. Hanford Waste Tank Bump Accident and Consequence Analysis

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks

  8. Radioecological and dosimetric consequences of the Chernobyl accident in France

    This study has as objective a survey of the radioecological and dosimetric consequences of the Chernobyl accident in France, as well as a prognosis for the years to come. It was requested by the Direction of Nuclear Installation Safety (DSIN) in relation to different organisms which effected measurements after this accident. It is based on the use of combined results of measurements and modelling by means of the code ASTRAL developed at IPSN. Various measurements obtained from five authorities and institutions, were made available, such as: activity of air and water, soil, processed food, agricultural and natural products. However, to achieve the survey still a modelling is needed. ASTRAL is a code for evaluating the ecological consequences of an accident. It allows establishing the correspondence between the soil Remnant Surface Activities (RSA, in Bq.m-2), the activity concentration of the agricultural production and the individual and collective doses resulting from external and internal exposures (due to inhalation and ingestion of contaminated nurture). The results of principal synthesis documents on the Chernobyl accident and its consequences were also used. The report is structured in nine sections, as follows: 1.Introduction; 2.Objective and methodology; 3.Characterization of radioactive depositions; 4;Remnant surface activities; 5.Contamination of agricultural products and foods; 6.Contamination of natural, semi-natural products and of drinking water; 7.Dosimetric evaluations; 8.Proposals for the environmental surveillance; 9.Conclusion. Finally, after ten years, one concludes that at present the dosimetric consequences of the Chernobyl accident in France were rather limited. For the period 1986-2046 the average individual effective dose estimated for the most struck zone is lower than 1500 μSv, which represents almost 1% of the average natural exposure for the same period. At present, the cesium 137 levels are at often inferior to those recorded before

  9. Consequences of Chernobyl accident in Europe

    ,000 'liquidators' ranged between 170 mSv in 1986 and 15 mSv in 1989. Among the >100,000 evacuees the average whole body dose prior to evacuation was 15 mSv. The average lifetime Chernobyl whole body doses in European countries outside the former Soviet Union range from 0.006 mSv in Portugal to 2.4 mSv in Bulgaria. In the Northern Hemisphere the average Chernobyl lifetime dose is 0.14 mSv, i.e. about 0.08% of the natural dose. The average global whole body dose of natural radiation during 70 years is about 170 mSv, and 700 mSv in typically high background areas. Epidemiological studies from Hiroshima and Nagasaki suggest that no increase in cancer mortality should be expected at a single whole body dose (in addition to natural background radiation) of <200 mSv, delivered during a fraction of a second. Doses of about 200 mSv accumulated over tens of years of exposure would be even less effective. Ten years after the Chernobyl catastrophe the total radiation death toll is 31 - 38 persons, among them 3 persons were the members of the public. The total expected number of thyroid cancer deaths is about 500. In Poland, a country closest to Chernobyl outside the former Soviet Union, during two days, starting on the second day after arrival of radioactive cloud, 18.5 million persons were administered a prophylactic dose of stable iodine in form of 'Lugol solution', to block the uptake of radioiodine by the thyroid. This caused a thyroid dose reduction by a factor of up to 5, without any intra-thyroid side effects. Economic loses related to necessary and unnecessary remedial measures are estimated to reach in Belarus between 1986 and 2015 US$ 191.7 billion, of which US$ 86.32 billion are costs of financial and other compensation ('privileges') for peoples living at contaminated regions. It is estimated that in Ukraine in regions where 'Chernobyl radiation dose' is less than 1 mSv/year about 1.73 million persons receives the 'privileges'. Psychosomatic consequences of radiophobia induced by

  10. The Fukushima accident and its consequences. Facts, explanations and comments

    This document proposes an overview of the present situation in the different reactors of the Fukushima power station and discusses its control by the operator. It also describes what went on, the causes of the accident, and what occurred on the accident day (earthquake, tsunami, flooding). It discusses whether some mistakes regarding the design and the protection of reactors could explain the accident. It presents the various measures which have been immediately implemented to protect the populations and to confine the accident. It proposes an assessment of damages for the ground and marine environment in terms of contamination. It addresses the consequences of the released radioactivity on population health and on personnel intervening within the site. It discusses the restoration perspectives for contaminated areas and the possible return of evacuated population. Then, it describes the different phases for the station dismantling. It evokes the issue of fallouts beyond Japan and in Europe, outlines some lessons learned from the accident and new safety measures to be implemented in France. It discusses how nuclear risk management is organised in France and its efficiency. It addresses the consequences for the development of nuclear energy in the world

  11. Validation and verification of accident consequence assessment models

    Homma, T.; Togawa, O. [Japan Atomic Energy Research Inst., Tokyo (Japan); Takahashi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Arkhipov, A.N. [Chernobyl Science and Technology Centre for International Research (Ukraine)

    2001-03-01

    An accident consequence assessment code, OSCAAR, primarily designed by Japan Atomic Energy Research Institute (JAERI) for use in probabilistic safety assessment (PSA) of nuclear reactors in Japan, was applied to use for siting, emergency planning, and development of design criteria, and in the comparative risk studies of different energy systems. After verifying the code system through the international code comparison organized by CEC and OECD/NEA, the validation and improvements of the individual models and the verification of the whole OSCAAR code system were made. The cooperative research between Chernobyl Science and Technology Center for International Research (CHESCIR) and JAERI provided a valuable opportunity to test the performance of the accident consequence assessment models by comparing the model predictions with data obtained in the Chernobyl accidents. The predictive capabilities of OSCAAR were demonstrated using the accident source term and meteorological data for estimating the early exposure to the public occurred during and shortly after plume passage. The calculations indicated that ground-shine dose and inhalation dose, particularly from large nonvolatile particulates were the main contributors in the early stage of the accident. (S. Ohno)

  12. Reducing the consequences of reactor accidents with a green belt

    Considerable attention is being paid to reducing the consequences of low-probability accidents in nuclear power plants. A scheme based on the pollution absorption properties of trees is proposed to reduce early and continued mortalities among the general public due to an accident in a nuclear power plant. The consequences of a hypothetical case in which a large, cold, ground-level release of radionuclides into the atmosphere takes place have been analyzed in the absence and in the presence of a green belt (rows of trees). The results show that in the presence of a suitably designed green belt around a nuclear power plant, the consequences in terms of early and continued mortality as well as an interdiction area, involving relocation of population and supply of food stuff from an uncontaminated region, can be reduced by orders of magnitude. This could also help in substantially reducing the magnitude of emergency preparedness in the public domain

  13. A simplified model for calculating early offsite consequences from nuclear reactor accidents

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1988-07-01

    A personal computer-based model, SMART, has been developed that uses an integral approach for calculating early offsite consequences from nuclear reactor accidents. The solution procedure uses simplified meteorology and involves direct analytic integration of air concentration equations over time and position. This is different from the discretization approach currently used in the CRAC2 and MACCS codes. The SMART code is fast-running, thereby providing a valuable tool for sensitivity and uncertainty studies. The code was benchmarked against both MACCS version 1.4 and CRAC2. Results of benchmarking and detailed sensitivity/uncertainty analyses using SMART are presented. 34 refs., 21 figs., 24 tabs.

  14. Accident consequence calculations for project W-058 safety analysis

    This document describes the calculations performed to determine the accident consequences for the W-058 safety analysis. Project W-058 is the replacement cross site transfer system (RCSTS), which is designed to transort liquid waste between the 200 W and 200 E areas. Calculations for RCSTS safety analyses used the same methods as the calculations for the Tank Waste Remediation System (TWRS) Basis for Interim Operation (BIO) and its supporting calculation notes. Revised analyses were performed for the spray and pool leak accidents since the RCSTS flows and pressures differ from those assumed in the TWRS BIO. Revision 1 of the document incorporates review comments

  15. The Influence of Seasonal Characteristics on the Accident Consequences Analysis

    In order to examine the influence of seasonal characteristics on accident consequences, we defined a limited number of basic spectra based on the relative importance of source term release parameters and meteorological conditions on offsite health effects and economic impacts. We then investigated the variation in numbers and frequency of early health effects and economic impacts resulting from the severe accidents of the YGN 3 and 4 nuclear power plants from spectrum to spectrum by using MACCS code. These investigations were for meteorological conditions defined as typical on an annual basis. Also, we investigated the variation in numbers and frequency of early health effects and economic impacts for the same standard spectra for meteorological conditions defined as typical on a seasonal basis recognizing that there are four seasons with distinct meteorological characteristics. Results show that there are large differences in consequences from spectrum to spectrum, although an equal amount and mix of radioactive material is released to the atmosphere in each case. Therefore, release parameters and meteorological data have to be well characterized in order to estimate accident consequences resulting from an accident accurately. Also, there are large differences in the estimated number of health effects and economic impacts from season to season due to distinct seasonal variations in meteorological conditions in Korea. In fall, the early fatalities and early fatality risk show minimum values due to enhanced dispersion arising from increased atmospheric instability, and the early fatalities show maximum value in summer due to a large rainfall rate. On the contrast, the economic cost shows maximum value in fall and minimum in summer due to different atmospheric dispersion and rainfall rate. Therefore, it is necessary to consider seasonal characteristics in developing emergency response strategies for reducing offsite early health risks in the event of a severe

  16. Consequences and experiences - ten years after the Chernobyl accident

    On 26 April 1986. the most serious accident in the history of the nuclear industry occurred at the Chernobyl nuclear power plant in the former Soviet Union, near the present borders of Ukraine, Belarus and Russia.Material released into the atmosphere dispersed and eventually deposited back on the surface of the earth,were it was measurable over the whole northern hemisphere. Millions of people and all segments of life and economy have been affected by the accident. Radioactive contamination has reached several tens of MBq/m2 in the area of 30 km diameter around the reactor in 1986., and plants and animals have been exposed to short lived radionuclides up to external doses of several tens of Gy. In the early phase after the accident, 237 persons were suspected to have acute radiation syndrome as a consequence of the Chernobyl accident, but diagnoses has been confirmed in 134 cases. In that phase 28 person have died as a consequence of exposure. There are significant non - related health disorders and symptoms, such as anxiety, depression and various psychosomatic disorders attributable to mental stress among the population in the region

  17. Estimated consequences from severe spent nuclear fuel transportation accidents

    The RISKIND software package is used to estimate radiological consequences of severe accident scenarios involving the transportation of spent nuclear fuel. Radiological risks are estimated for both a collective population and a maximally exposed individual based on representative truck and rail cask designs described in the U.S. Nuclear Regulatory Commission (NRC) modal study. The estimate of collective population risk considers all possible environmental pathways, including acute and long-term exposures, and is presented in terms of the 50-y committed effective dose equivalent. Radiological risks to a maximally exposed individual from acute exposure are estimated and presented in terms of the first year and 50-y committed effective dose equivalent. Consequences are estimated for accidents occurring in rural and urban population areas. The modeled pathways include inhalation during initial passing of the radioactive cloud, external exposure from a reduction of the cask shielding, long-term external exposure. from ground deposition, and ingestion from contaminated food (rural only). The major pathways and contributing radionuclides are identified, and the effects of possible mitigative actions are discussed. The cask accident responses and the radionuclide release fractions are modeled as described in the NRC modal study. Estimates of severe accident probabilities are presented for both truck and rail modes of transport. The assumptions made in this study tend to be conservative; however, a set of multiplicative factors are identified that can be applied to estimate more realistic conditions

  18. Nuclear installations abroad the accident risks and their potential consequences

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of 'tolerable' risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid

  19. Consequences and effectiveness of relocation after nuclear accidents

    Extensive parameter studies have been performed with the program package COSYMA for probabilistic accident consequence assessments to quantify by means of PRA methods the interdependence of those quantities, which influence the extent, the duration, the efficiency and the monetary costs of relocation. As most important quantities, the amount of radionuclides released, the dose intervention levels for relocation, the (avoided) radiation doses in the population and the associated costs have been identified. Decontamination measures have also been included in the investigations, since they reduce the duration of relocation. The expression of all relevant accident consequences in monetary units allowed to investigate the applicability of cost/benefit analysis for deriving the most favourable intervention levels. It could be shown that weighting with different factors of collective doses calculated from different individual dose bands, and thus incorporating subjective judgements, significantly extends and improves the method. (orig./HP)

  20. Genetic consequences of the Chernobyl accident for Belarus republic

    various uncertainties. Only direct methods, which count the final effect, with all their drawbacks, can provide accurate information on genetic losses. We have estimated possible genetic consequences for the residents of Belarus Republic due to the Chernobyl accident by studying malformations found in legal medical abortuses and by counting congenital anomalies in fetuses and newborns. (J.P.N.)

  1. Health consequences of the Chernobyl accident: a review

    Full text of publication follows: on April 26, 1996, the accident at Chernobyl nuclear power plant led to the release into the atmosphere of considerable quantities of radionuclides. Most contaminated regions were in the southern Belarus, northern Ukraine and Bryansk and Kaluga regions of Russia. Main population groups exposed to the radioactivity released during the accident were the personnel at the Chernobyl plant and the rescue teams present on-site during the first hours, the cleanup workers (numbering about 600000) who participated in the decontamination and cleaning operations in the 30 km zone around the site, the residents of the same zone who were evacuated (numbering about 115000) and the inhabitants of contaminated zones (≥1 Ci/km2). Dose and dose rate levels as well as exposure pathways differ from one population group to another. A review of scientific articles published in the international literature till 1998 has been carried out. Apart the 28 deaths due to acute radiation sickness which occurred in the personnel of the plant and rescue teams within several days or weeks after the accident, two main public health consequences of the Chernobyl accident have been observed. First an unprecedented epidemic of thyroid cancers was detected in children first in 1992 in Belarus then in the Ukraine and to a lesser extent in Bryansk region. The spontaneous incidence of these tumours was multiplied by 100 in most contaminated regions. Although the role of the accident in this epidemic is now recognised, questions are raised regarding the respective role of radioactive agents and other environmental or genetic factors, and its evolution in the future. Regarding other kinds of solid cancers and leukemia, no excess has been clearly demonstrated in the residents of contaminated areas nor in liquidators. Second, results of available epidemiological investigations show an increased risk of psychological distress in residents of highly contaminated areas

  2. Tank Bump Accident Potential and Consequences During Waste Retrieval

    BRATZEL, D.R.

    2000-09-27

    This report provides an evaluation of Hanford tank bump accident potential and consequences during waste retrieval operations. The purpose of this report is to consider the best available new information to support recommendations for safety controls. A new tank bump accident analysis for safe storage (Epstein et al. 2000) is extended for this purpose. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. Tank bump scenarios, physical models, and frequency and consequence methods are fully described in Epstein et al. (2000). The analysis scope is waste retrieval from double-shell tanks (DSTs) including operation of equipment such as mixer pumps and air lift circulators. The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential during retrieval, application of the criteria to the DSTs, evaluation of bump frequency, and consequence analysis of a bump. The result of the consequence analysis is the mass of waste released from tanks; radiological dose is calculated using standard methods (Cowley et al. 2000).

  3. Evaluation of severe accident risks: Methodology for the containment, source term, consequence, and risk integration analyses; Volume 1, Revision 1

    Gorham, E.D.; Breeding, R.J.; Brown, T.D.; Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Murfin, W.B. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Hora, S.C. [Hawaii Univ., Hilo, HI (United States)

    1993-12-01

    NUREG-1150 examines the risk to the public from five nuclear power plants. The NUREG-1150 plant studies are Level III probabilistic risk assessments (PRAs) and, as such, they consist of four analysis components: accident frequency analysis, accident progression analysis, source term analysis, and consequence analysis. This volume summarizes the methods utilized in performing the last three components and the assembly of these analyses into an overall risk assessment. The NUREG-1150 analysis approach is based on the following ideas: (1) general and relatively fast-running models for the individual analysis components, (2) well-defined interfaces between the individual analysis components, (3) use of Monte Carlo techniques together with an efficient sampling procedure to propagate uncertainties, (4) use of expert panels to develop distributions for important phenomenological issues, and (5) automation of the overall analysis. Many features of the new analysis procedures were adopted to facilitate a comprehensive treatment of uncertainty in the complete risk analysis. Uncertainties in the accident frequency, accident progression and source term analyses were included in the overall uncertainty assessment. The uncertainties in the consequence analysis were not included in this assessment. A large effort was devoted to the development of procedures for obtaining expert opinion and the execution of these procedures to quantify parameters and phenomena for which there is large uncertainty and divergent opinions in the reactor safety community.

  4. Evaluation of severe accident risks: Methodology for the containment, source term, consequence, and risk integration analyses. Volume 1, Revision 1

    NUREG-1150 examines the risk to the public from five nuclear power plants. The NUREG-1150 plant studies are Level III probabilistic risk assessments (PRAs) and, as such, they consist of four analysis components: accident frequency analysis, accident progression analysis, source term analysis, and consequence analysis. This volume summarizes the methods utilized in performing the last three components and the assembly of these analyses into an overall risk assessment. The NUREG-1150 analysis approach is based on the following ideas: (1) general and relatively fast-running models for the individual analysis components, (2) well-defined interfaces between the individual analysis components, (3) use of Monte Carlo techniques together with an efficient sampling procedure to propagate uncertainties, (4) use of expert panels to develop distributions for important phenomenological issues, and (5) automation of the overall analysis. Many features of the new analysis procedures were adopted to facilitate a comprehensive treatment of uncertainty in the complete risk analysis. Uncertainties in the accident frequency, accident progression and source term analyses were included in the overall uncertainty assessment. The uncertainties in the consequence analysis were not included in this assessment. A large effort was devoted to the development of procedures for obtaining expert opinion and the execution of these procedures to quantify parameters and phenomena for which there is large uncertainty and divergent opinions in the reactor safety community

  5. Evaluation of nuclear accidents consequences. Risk assessment methodologies, current status and applications

    General description of the structure and process of the probabilistic methods of assessment the external consequences in the event of nuclear accidents is presented. attention is paid in the interface with Probabilistic Safety Analysis level 3 results (source term evaluation) Also are described key issues in accident consequence evaluation as: effects evaluated (early and late health effects and economic effects due to countermeasures), presentation of accident consequences results, computer codes. Briefly are presented some relevant areas for the applications of Accident Consequence Evaluation

  6. Offsite radiological consequence analysis for the bounding flammable gas accident

    The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST). A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. As will be shown, the consequences of a detonation in either an SST or a double-shell tank (DST) are approximately equal. A detonation in an SST was selected as the bounding condition because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are generally greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes

  7. Applications of probabilistic accident consequence evaluation in Cuba

    Are presented the approaches and results of the application of Accident Consequence Evaluation methodologies in on emergency in the Juragua Nuclear Power Plant site and a population evaluation of a planned NPP site in the east of the country Findings on population sector weighing and assessment of effectiveness of primary countermeasures in the event of sever accidents (SST1 and PWR4 source terms) in Juragua NPP site are discussed Results on comparative risk-based evaluation of the population predicted evolution (in 3 temporal horizons: base year, 2005 year and 2050 year) for the planned site are described. Evaluation also included sector risk weighing, risk importance of small towns in the nearby of the effects on risk of population freezing and relocation of these villages

  8. Chernobyl victims: realistic evaluation of medical consequences of Chernobyl accident

    Objective assessment of early and delayed medical consequence of the Chernobyl accident is presented. Mortality of people due to acute radiation disease, burns and mechanical injuries are attributed to the early effects. Oncological and genetic diseases are considered as the delayed effects. Delayed radiation effects on the residents of contaminated territories were estimated by epidemiologic examination taking into account the dose due to radioactive fallout. Certain regions of Belarus, Russia and Ukraine were mostly exposed to contamination. Contamination density by 137Cs is considered and radiation doses due to natural sources and Chernobyl accident are compared. Disease incidence is analysed for carcinoma and genetic diseases. Health hazard caused by non-radiation accidental factors (psychological stress, victim psychology thrusting, groundless evacuation) is assessed

  9. Reports of the Chernobyl accident consequences in Brazilian newspapers

    The public perception of the risks associated with nuclear power plants was profoundly influenced by the accidents at Three Mile Island and Chernobyl Power Plants which also served to exacerbate in the last decades the growing mistrust on the 'nuclear industry'. Part of the mistrust had its origin in the arrogance of nuclear spokesmen and in the secretiveness of nuclear programs. However, press agencies have an important role in shaping and upsizing the public awareness against nuclear energy. In this paper we present the results of a survey in reports of some Brazilian popular newspapers on Chernobyl consequences, as measured by the total death toll of the accident, to show the up and down dance of large numbers without any serious judgment. (author)

  10. Environmental radiological consequences of a loss of coolant accident

    The elaboration of a calculation model to determine safety areas, named Exclusion Zone and Low Population Zone for nuclear power plants, is dealt with. These areas are determined from a radioactive doses calculation for the population living around the NPP after occurence of a postulated ' Maximum Credible Accident' (MCA). The MCA is defined as an accident with complete loss of primary coolant and consequent fusion of a substantial portion of the reactor core. In the calculations carried out, data from NPP Angra I were used and the assumptions made were conservative, to be compatible with licensing requirements. Under the most pessimistic assumption (no filters) the values of 410m and 1000m were obtained for the Exclusion Zone and Low Population Zone radii, respectivily. (Author)

  11. Radiological consequences of the Three Mile Island accident

    The radiological consequences of the Three Mile Island (TMI) nuclear accident are discussed in detail. The nature, quantity and timing of the radioactive materials released to the atmosphere are established; mainly radioactive noble gases were emitted. A description is given of the radiological monitoring that occurred and the measured levels both inside and outside the plant are given as a function of time from the accident. In particular, the radioiodine release and its subsequent detection in milk analysis is described. The methods of establishing the population dosage are discussed; it is concluded that the collective dose equivalent is in the range 1600-3300 person rems. This implies a projected cancer (fatal and non-fatal) incidence of less than 1.5 in the offsite population within the 50 miles of the TMI site; the expected occurrence in this population is 541,000 cancers. The exposure of workers to radiation levels within the plant is also reported. (U.K.)

  12. The accident consequence model of the German safety study

    The accident consequence model essentially describes a) the diffusion in the atmosphere and deposition on the soil of radioactive material released from the reactor into the atmosphere; b) the irradiation exposure and health consequences of persons affected. It is used to calculate c) the number of persons suffering from acute or late damage, taking into account possible counteractions such as relocation or evacuation, and d) the total risk to the population from the various types of accident. The model, the underlying parameters and assumptions are described. The bone marrow dose distribution is shown for the case of late overpressure containment failure, which is discussed in the paper of Heuser/Kotthoff, combined with four typical weather conditions. The probability distribution functions for acute mortality, late incidence of cancer and genetic damage are evaluated, assuming a characteristic population distribution. The aim of these calculations is first the presentation of some results of the consequence model as an example, in second the identification of problems, which need possibly in a second phase of study to be evaluated in more detail. (orig.)

  13. Thyroid Consequences of the Fukushima Nuclear Reactor Accident

    Nagataki, Shigenobu

    2012-01-01

    Background A special report, ‘The Fukushima Accident’, was delivered at the 35th Annual Meeting of the European Thyroid Association in Krakow on September 11, 2011, and this study is the follow-up of the special report. Objectives To present a preliminary review of potential thyroid consequences of the 2011 Fukushima nuclear reactor accident. Methods Numerous new data have been presented in Japanese, and most of them are available on the website from each research institute and/or from each m...

  14. Primary disability of the Chernobyl Accident consequences liquidators

    The structure of courses of the primary invalidism of the Chernobyl accident consequences liquidators is studies. The main reasons of the loss of a capacity for work are blood circulation diseases (41.9%), neoplasms (19.9%), diseases of the nervous system and sense organs (9.7%), mental disorders (5.9%) and endocrine diseases (5.5%). The invalids distribution in the different regions and in different age groups according to the disease forms is analysed. The average durations of the diseases resulting in the primary invalidism are about 2.8 years. In average the illnesses began in the 3.1 years. 6 refs

  15. Demonstration uncertainty/sensitivity analysis using the health and economic consequence model CRAC2

    This paper summarizes a demonstration uncertainty/sensitivity analysis performed on the reactor accident consequence model CRAC2. The study was performed with uncertainty/sensitivity analysis techniques compiled as part of the MELCOR program. The principal objectives of the study were: 1) to demonstrate the use of the uncertainty/sensitivity analysis techniques on a health and economic consequence model, 2) to test the computer models which implement the techniques, 3) to identify possible difficulties in performing such an analysis, and 4) to explore alternative means of analyzing, displaying, and describing the results. Demonstration of the applicability of the techniques was the motivation for performing this study; thus, the results should not be taken as a definitive uncertainty analysis of health and economic consequences. Nevertheless, significant insights on health and economic consequence analysis can be drawn from the results of this type of study. Latin hypercube sampling (LHS), a modified Monte Carlo technique, was used in this study. LHS generates a multivariate input structure in which all the variables of interest are varied simultaneously and desired correlations between variables are preserved. LHS has been shown to produce estimates of output distribution functions that are comparable with results of larger random samples

  16. PERSPECTIVES ON A DOE CONSEQUENCE INPUTS FOR ACCIDENT ANALYSIS APPLICATIONS

    (NOEMAIL), K; Jonathan Lowrie, J; David Thoman (NOEMAIL), D; Austin Keller (NOEMAIL), A

    2008-07-30

    Department of Energy (DOE) accident analysis for establishing the required control sets for nuclear facility safety applies a series of simplifying, reasonably conservative assumptions regarding inputs and methodologies for quantifying dose consequences. Most of the analytical practices are conservative, have a technical basis, and are based on regulatory precedent. However, others are judgmental and based on older understanding of phenomenology. The latter type of practices can be found in modeling hypothetical releases into the atmosphere and the subsequent exposure. Often the judgments applied are not based on current technical understanding but on work that has been superseded. The objective of this paper is to review the technical basis for the major inputs and assumptions in the quantification of consequence estimates supporting DOE accident analysis, and to identify those that could be reassessed in light of current understanding of atmospheric dispersion and radiological exposure. Inputs and assumptions of interest include: Meteorological data basis; Breathing rate; and Inhalation dose conversion factor. A simple dose calculation is provided to show the relative difference achieved by improving the technical bases.

  17. Degraded core accidents for the Sizewell PWR A sensitivity analysis of the radiological consequences

    Kelly, G N; Clarke, R H; Ferguson, L; Haywood, S M; Hemming, C R; Jones, J A

    1982-01-01

    The radiological impact of degraded core accidents postulated for the Sizewell PWR was assessed in an earlier study. In this report the sensitivity of the predicted consequences to variation in the values of a number of important parameters is investigated for one of the postulated accidental releases. The parameters subjected to sensitivity analyses are the dose-mortality relationship for bone marrow irradiation, the energy content of the release, the warning time before the release to the environment, and the dry deposition velocity for airborne material. These parameters were identified as among the more important in determining the uncertainty in the results obtained in the initial study. With a few exceptions the predicted consequences were found to be not very sensitive to the parameter values investigated, the range of variation in the consequences for the limiting values of each parameter rarely exceeded a factor of a few and in many cases was considerably less. The conclusions reached are, however, p...

  18. Health effects models for nuclear power plant accident consequence analysis

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model

  19. Relevant scenarios and uncertainty analysis of severe accidents in the U.S. EPR

    As part of U.S. EPR design certification activities, AREVA has prepared analyses to support the US NRC's regulatory expectation with regard to the resolution of several severe accident safety issues identified in SECY 93-087. To address the large uncertainties associated with severe accident progression, AREVA NP has developed and applied a best-estimate plus uncertainty methodology to the analysis of severe accidents. The uncertainty methodology considers a broad spectrum of phenomenological and process uncertainties. Unique among the uncertainty parameters considered is the sampling of event sequence (i.e., scenario type). (authors)

  20. Methods and codes for assessing the off-site Consequences of nuclear accidents. Volume 2

    The Commission of the European Communities, within the framework of its 1980-84 radiation protection research programme, initiated a two-year project in 1983 entitled methods for assessing the radiological impact of accidents (Maria). This project was continued in a substantially enlarged form within the 1985-89 research programme. The main objectives of the project were, firstly, to develop a new probabilistic accident consequence code that was modular, incorporated the best features of those codes already in use, could be readily modified to take account of new data and model developments and would be broadly applicable within the EC; secondly, to acquire a better understanding of the limitations of current models and to develop more rigorous approaches where necessary; and, thirdly, to quantify the uncertainties associated with the model predictions. This research led to the development of the accident consequence code Cosyma (COde System from MAria), which will be made generally available later in 1990. The numerous and diverse studies that have been undertaken in support of this development are summarized in this paper, together with indications of where further effort might be most profitably directed. Consideration is also given to related research directed towards the development of real-time decision support systems for use in off-site emergency management

  1. Guide for licensing evaluations using CRAC2: A computer program for calculating reactor accident consequences

    A version of the CRAC2 computer code applicable for use in analyses of consequences and risks of reactor accidents in case work for environmental statements has been implemented for use on the Nuclear Regulatory Commission Data General MV/8000 computer system. Input preparation is facilitated through the use of an interactive computer program which operates on an IBM personal computer. The resulting CRAC2 input deck is transmitted to the MV/8000 by using an error-free file transfer mechanism. To facilitate the use of CRAC2 at NRC, relevant background material on input requirements and model descriptions has been extracted from four reports - ''Calculations of Reactor Accident Consequences,'' Version 2, NUREG/CR-2326 (SAND81-1994) and ''CRAC2 Model Descriptions,'' NUREG/CR-2552 (SAND82-0342), ''CRAC Calculations for Accident Sections of Environmental Statements, '' NUREG/CR-2901 (SAND82-1693), and ''Sensitivity and Uncertainty Studies of the CRAC2 Computer Code,'' NUREG/CR-4038 (ORNL-6114). When this background information is combined with instructions on the input processor, this report provides a self-contained guide for preparing CRAC2 input data with a specific orientation toward applications on the MV/8000. 8 refs., 11 figs., 10 tabs

  2. Consequences of the nuclear power plant accident at Chernobyl

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion

  3. Consequences of the nuclear power plant accident at Chernobyl

    Ginzburg, H.M.; Reis, E. (Health Resources and Services Administration, Rockville, MD (USA))

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion.

  4. Health effects models for nuclear power plant accident consequence analysis

    This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other''. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk

  5. Offsite radiological consequence analysis for the bounding aircraft crash accident

    The purpose of this calculation note is to quantitatively analyze a bounding aircraft crash accident for comparison to the DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', Appendix A, Evaluation Guideline of 25 rem. The potential of aircraft impacting a facility was evaluated using the approach given in DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities''. The following aircraft crash FR-equencies were determined for the Tank Farms in RPP-11736, ''Assessment Of Aircraft Crash FR-equency For The Hanford Site 200 Area Tank Farms'': (1) The total aircraft crash FR-equency is ''extremely unlikely.'' (2) The general aviation crash FR-equency is ''extremely unlikely.'' (3) The helicopter crash FR-equency is ''beyond extremely unlikely.'' (4) For the Hanford Site 200 Areas, other aircraft type, commercial or military, each above ground facility, and any other type of underground facility is ''beyond extremely unlikely.'' As the potential of aircraft crash into the 200 Area tank farms is more FR-equent than ''beyond extremely unlikely,'' consequence analysis of the aircraft crash is required

  6. Health effects estimation code development for accident consequence analysis

    As part of a computer code system for nuclear reactor accident consequence analysis, two computer codes have been developed for estimating health effects expected to occur following an accident. Health effects models used in the codes are based on the models of NUREG/CR-4214 and are revised for the Japanese population on the basis of the data from the reassessment of the radiation dosimetry and information derived from epidemiological studies on atomic bomb survivors of Hiroshima and Nagasaki. The health effects models include early and continuing effects, late somatic effects and genetic effects. The values of some model parameters are revised for early mortality. The models are modified for predicting late somatic effects such as leukemia and various kinds of cancers. The models for genetic effects are the same as those of NUREG. In order to test the performance of one of these codes, it is applied to the U.S. and Japanese populations. This paper provides descriptions of health effects models used in the two codes and gives comparisons of the mortality risks from each type of cancer for the two populations. (author)

  7. Accident consequence calculations for project W-058 safety analysis

    Accident consequence analyses have been performed for Project W-058, the Replacement Cross Site Transfer System. using the assumption and analysis techniques developed for the Tank Remediation Waste system Basis for Interim Operation. most potential accident involving the FISTS are bounded by the TWRS BIO analysis. However, the spray leak and pool leak scenarios require revised analyses since the RCSTS design utilizes larger diameter pipe and higher pressures than those analyzed in the TWRS BIO. Also the volume of diversion box and vent station are larger than that assumed for the valve pits in the TWRS BIO, which effects results of sprays or spills into the pits. the revised analysis for the spray leak is presented in Section 2, for the above ground spill in Section 3, for the presented in Section 2, for the above ground spill in Section 3, for the subsurface spill forming a pool in Section 4, and for the subsurface pool remaining subsurface in Section 5. The conclusion from these sections are summarized below

  8. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    The safety challenges associated with sodium-cooled fast reactors have been recognized since the beginning of nuclear power and include the high power density in the core, the need for a reactor coolant and heat transfer system with high heat removal capability, the variation of power across the core requiring the use of ducted assemblies, and the condition that the fuel is not in the most neutronically reactive configuration during normal operation such that relocation can result in positive reactivity excursions, even possibly exceeding prompt critical conditions and energetic events. The potential for accidents with such severe consequences has been a negative factor with respect to the use of the sodium-cooled fast reactor. With the development of inherent safety principles, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, it is possible to greatly increase the level of safety, to the point where it is highly unlikely, or perhaps even not possible, for accidents to result in releases of hghly radioactive materials to the containment or the surrounding environment. (author)

  9. Towards more realistic assessment of reactor accident consequences

    The purpose of the Nordic project described in the report has been to improve the data base used in accident consequence assessments, and also to improve the assessment models in use in the Nordic countries. The following data related questions have been dealt with: Terrestrial transfer factors, the freshwater pathways, comparison of dynamic and static calculation models for fish, and the shielding effect of buildings. The work on terrestrial transfer factors has resulted in the generation of a Nordic fallout data bank. The following experimental investigations have been performed: Natural decontamination of roofs under summer and winter conditions, deposition in urban areas, and the filter effect of buildings. Various aspects of mitigating actions have also been examined

  10. Accident consequence assessments with different atmospheric dispersion models

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.)

  11. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    Sprung, J.L.; Jow, H-N (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Helton, J.C. (Arizona State Univ., Tempe, AZ (USA))

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.

  12. Evaluation of severe accident risks: Quantification of major input parameters: MAACS [MELCOR Accident Consequence Code System] input

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs

  13. PSYCHIATRIC CONSEQUENCES OF STRESS AFTER A VEHICLE ACCIDENT

    Dickov, Aleksandra; Martinović-Mitrović, Sladjana; Vučković, Nikola; Siladji-Mladenović, Djendji; Mitrović, Dragan; Jovičević, Mirjana; Mišić-Pavkov, Gordana

    2009-01-01

    Background: Vehicle accidents are a common cause of disease and death among people over 30 years of age. Essentially, reaction to stress due to the vehicle accident does not differ from the reaction to other stress factors. There are still no uniform viewpoints about the kind of sequels and their percentage representation after vehicle accidents. Subjects and methods: The research was provided as a prospective study, included 150 subjects who had vehicle accident minimum 2 years prior to t...

  14. A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology

    This paper describes a systematic framework for characterizing important phenomena and quantifying the degree of contribution of each parameter to the output in severe accident uncertainty assessment. The proposed methodology comprises qualitative as well as quantitative phases. The qualitative part so called Modified PIRT, being a robust process of PIRT for more precise quantification of uncertainties, is a two step process for identifying and ranking based on uncertainty importance in severe accident phenomena. In this process identified severe accident phenomena are ranked according to their effect on the figure of merit and their level of knowledge. Analytical Hierarchical Process (AHP) serves here as a systematic approach for severe accident phenomena ranking. Formal uncertainty importance technique is used to estimate the degree of credibility of the severe accident model(s) used to represent the important phenomena. The methodology uses subjective justification by evaluating available information and data from experiments, and code predictions for this step. The quantitative part utilizes uncertainty importance measures for the quantification of the effect of each input parameter to the output uncertainty. A response surface fitting approach is proposed for estimating associated uncertainties with less calculation cost. The quantitative results are used to plan in reducing epistemic uncertainty in the output variable(s). The application of the proposed methodology is demonstrated for the ACRR MP-2 severe accident test facility. - Highlights: • A two stage framework for severe accident uncertainty analysis is proposed. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • Uncertainty importance measure quantitatively calculates effect of each uncertainty source. • Methodology is applied successfully on ACRR MP-2 severe accident test facility

  15. Process criticality accident likelihoods, consequences, and emergency planning

    Evaluation of criticality accident risks in the processing of significant quantities of fissile materials is both complex and subjective, largely due to the lack of accident statistics. Thus, complying with standards such as ISO 7753 which mandates that the need for an alarm system be evaluated, is also subjective. A review of guidance found in the literature on potential accident magnitudes is presented for different material forms and arrangements. Reasoned arguments are also presented concerning accident prevention and accident likelihoods for these material forms and arrangements. 13 refs., 1 fig., 1 tab

  16. Evaluation of uncertainties in relation to severe accidents and level-2 probabilistic safety analysis

    Uncertainties of various natures have to be taken into account in severe accident analysis, in particular those related to level-2 probabilistic safety analysis (PSA). However, the extension and application of uncertainty methods to severe accidents is more difficult than for design-basis accidents because of the considerable differences in the availability of experimental data and the level of development and validation of computer codes. Best-estimate approaches used in severe accidents require an assessment of related uncertainties. Besides the evaluation of experimental data scatter, expert judgement is usually needed to assess physical parameter uncertainties, which have to be propagated to results using different techniques. Moreover, the relation between uncertainties and stochastic probabilities (concerning for instance equipment failure and human error), remains an open question, in particular in the framework of level-2 PSAs. The workshop aimed to exchange information about the state of the art in this field and to facilitate the development of a coherent approach to uncertainties in relation to severe accidents. It also provides recommendations for future NEA work in this field. These proceedings gather twenty-four articles shared into four sessions dealing with: 1 - methods for uncertainty assessment, 2 - applications to uncertainty assessment on severe accident physical phenomena, 3 - applications to uncertainty assessment in level 2 PSA, and, 4 - general discussion, conclusions and recommendations

  17. The aftermath of nuclear accidents on mental health; Consequences des accidents radiologiques sur la sante mentale

    Pirard, Ph.; Brenot, J.; Verger, P. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1998-10-01

    Technological disasters bring about psychological effects in exposed populations of various durability and intensity. This article reviews the epidemiological studies which assess psychological and psychiatric consequences of the Three Mile Island, Goieanna and Chernobyl accidents. It shows, in different accidental and cultural contexts, a statistically significant and durable increase of psychological symptoms in various exposed population groups, which points out an actual psychological distress. Diagnosed psychiatric effects are less constant, but much less studied. Most affected groups are mothers of young children, relocated persons, persons with less social support or in financial trouble. The psychological distress can further psychiatric disorders and give rise to behavioural changes towards health. More research is necessary to delineate the nature and the determinants of the observed symptoms and disorders. It implies to design better tools for the assessment of individual exposure and the diagnosis of mental health effects. (authors)

  18. The primal application research of figure assimilation theory in the nuclear accident consequence forecast

    The deepgoing research of figure assimilation theory promotes many subjects' rapid development. This article outlooks the application of figure assimilation technique in the nuclear accident consequence forecast. The nuclear accident consequence forecast is a complicated system which needs rapidity and precision, so it is quiet difficult. but after the insertion of figure assimilation, it pushes on one step about the question. (authors)

  19. Radiological consequences of the Three Mile Island accident

    The Three Mile Island Accident is described. The pathway and quantity of radioactive materials released, the radiological monitoring results and health effects are discussed. It was concluded that while radiological releases were small in view of the magnitude of fuel damage, the accident indicated that better health physics instrumentation and personnel training is required. (H.K.)

  20. Immediate medical consequences of nuclear accidents: lessons from Chernobyl

    The immediate medical response to the nuclear accident at the Chernobyl nuclear power station involved containment of the radioactivity and evacuation of the nearby population. The next step consisted of assessment of the radiation dose received by individuals, based on biological dosimetry, and treatment of those exposed. Medical care involved treatment of skin burns; measures to support bone marrow failure, gastrointestinal tract injury, and other organ damage (i.e., infection prophylaxis and transfusions) for those with lower radiation dose exposure; and bone marrow transplantation for those exposed to a high dose of radiation. At Chernobyl, two victims died immediately and 29 died of radiation or thermal injuries in the next three months. The remaining victims of the accident are currently well. A nuclear accident anywhere is a nuclear accident everywhere. Prevention and cooperation in response to these accidents are essential goals

  1. A comparison of the consequences of the design basis accident of the Greek Research Reactor with those of a serious realistic accident

    An analysis of the radiological consequences of the design basis and the coolant flow blockage accidents of the Greek Research Reactor is presented. The results indicate that the consequences of the coolant flow blockage accident are practically trivial being 1-2 orders of magnitude lower than the corresponding consequences of the design basis accident. (author)

  2. A study of uncertainties in radiological consequence modeling

    Predicting radiological consequences to humans from radionuclide releases to the environment requires the use of computer models that usually involve a large number of model parameters. Most environmental model parameters, which include the values that quantify the relationships between various media such as the transfer of radionuclides between air, water, soil, vegetation, food, and human tissues, are not readily available on a site-specific basis. Even when they are available, because the values of these parameters vary from location to location and change with changing environmental conditions, the data cannot be precisely determined. In most present-day assessment situations, conservative assumptions are generally used in selecting model parameters. However, with the trend toward lowered regulatory dose/risk limits, the costs associated with this conservatism could be enormous. Concern for unnecessary cost burdens leads naturally to the need for a more accurate representation of the modeling results with the best estimates of the distributions, including the uncertainties of doses likely to be received by humans. This paper presents the results of a study that examined these uncertainties

  3. The role of quantitative uncertainty in the safety analysis of flammable gas accidents in Hanford waste tanks

    Following a 1990 investigation into flammable gas generation, retention, and release mechanisms within the Hanford Site high-level waste tanks, personnel concluded that the existing Authorization Basis documentation did not adequately evaluate flammable gas hazards. The US Department of Energy Headquarters subsequently declared the flammable gas hazard as an unresolved safety issue. Although work scope has been focused on resolution of the issue, it has yet to be resolved due to considerable uncertainty regarding essential technical parameters and associated risk. Resolution of the Flammable Gas Safety Issue will include the identification of a set of controls for the Authorization Basis for the tanks which will require a safety analysis of flammable gas accidents. A traditional nuclear facility safety analysis is based primarily on the analysis of a set of bounding accidents to represent the risks of the possible accidents and hazardous conditions at a facility. While this approach may provide some indication of the bounding consequences of accidents for facilities, it does not provide a satisfactory basis for identification of facility risk or safety controls when there is considerable uncertainty associated with accident phenomena and/or data as is the case with potential flammable gas accidents at the Hanford Site. This is due to the difficulties in identifying the bounding case and reaching consensus among safety analysts, facility operations and engineering, and the regulator on the implications of the safety analysis results. In addition, the bounding cases are frequently based on simplifying assumptions that make the analysis results insensitive to variations among facilities or the impact of alternative safety control strategies. The existing safety analysis of flammable gas accidents for the Tank Waste Remediation system (TWRS) at the Hanford Site has these difficulties. However, Hanford Site personnel are developing a refined safety analysis approach

  4. The consequences from liquid pathways after a reactor meltdown accident

    The potential radiological impact of a core-melt accident on the human population has been investigated. In particular, the radiation dose received from radioactivity which could reach the population via liquid pathways has been considered. Radioactivity could be released directly to the hydrosphere after a core-melt accident as a result of melt-through of the containment basemat followed by any of three processes: (1) leaching of the melt debris; 2 escape of sumpwater through the hole formed by the melt (or from passage out of the containment by an alternate route); and 3) depressurization of the containment atmosphere through the melt hole. The three types of releases would differ primarily in their rates, their magnitudes and their radioactive compositions. Both the containment atmosphere and the sumpwater releases would occur relatively rapidly. However, most of the radionuclides present in these two releases in substantial quantities would be expected to be rather short-lived. Therefore, such releases could have a significant impact at a specific site only if the travel times of the important radionuclides to the human population were small. In contrast, leaching of radionuclides from the melt debris would be expected to occur relatively slowly. Most of the long-lived isotopes would be expected to be found primarily in the melt debris. Consequently, even though this release occurred relatively slowly, the impact could still be significant. In contrast to the situation for releases to the atmosphere, accidents corresponding to the most probable RSS (Reactor Safety Study) meltdown categories would result in the largest releases to the hydrosphere. Furthermore, substantial amounts of radioactivity would generally be expected to be released to the hydrosphere during any meltdown accident involving complete melt-through of the containment basemat. On the basis of subsurface hydrologies alone, sites range from those that essentially preclude any impacts to the human

  5. Prevention of the causes and consequences of a criticality accident - measures adopted in France

    The question of safety in regard to criticality accident risks has two aspects: prevention of the cause and limitation of the consequences. These two aspects are closely connected. The effort devoted to prevention of the causes depends on the seriousness of the possible human psychologic and economic consequences of the accident. The criticality accidents which have occurred in the nuclear industry, though few in number, do reveal the imperfect nature of the techniques adopted to prevent the causes, and also constitute the only available realistic basis for evaluating the consequences and developing measures to limit them. The authors give a analysis of the known causes and consequences of past criticality accidents and on this basis make a number of comments concerning: the validity of traditional safety criteria, the probability of accidents for different types of operations, characteristic accidents which can serve as models, and the extent of possible radiological consequences. The measures adopted in France to limit the consequences of a possible criticality accident under the headings: location, design and lay-out of the installations, accident detection, and dosimetry for the exposed personnel, are briefly described after a short account of the criteria used in deciding on them. (author)

  6. Prevention of "simple accidents at work" with major consequences

    Jørgensen, Kirsten

    2016-01-01

    prevention or safety methodologies and procedures established for major accidents are applicable to simple accidents. The article goes back to basics about accidents causes, to review the nature of successful prevention techniques and to analyze what have been constraints to getting this knowledge used more...... broadly. This review identifies gaps in the prevention of simple accidents, relating to safety barriers for risk control and the management processes that need to be in place to deliver those risk controls in a continuingly effective state. The article introduces the ‘‘INFO cards’’ as a tool for the...... systematic observation of hazard sources in order to ascertain whether safety barriers and management deliveries are present. Safety management and safety culture, together with the INFO cards are important factors in the prevention process. The conclusion is that we must look at safety as a part of being a...

  7. Consequences of the nuclear power plant accident at Chernobyl.

    Ginzburg, H M; Reis, E.

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to m...

  8. Radioecological and dosimetric consequences of Chernobyl accident in France; Consequences radioecologiques et dosimetriques de l`accident de Tchernobyl en France

    Renaud, Ph.; Beaugelin, K.; Maubert, H.; Ledenvic, Ph

    1997-12-31

    After ten years and the taking in account of numerous data, it can be affirmed that the dosimetric consequences of Chernobyl accident will have been limited in France. for the period 1986-2046, the individual middle efficient dose commitment, for the area the most reached by depositing is inferior to 1500 {mu}Sv, that represents about 1% of middle natural exposure in the same time. but mountains and forests can have more important surface activities than in plain. Everywhere else, it can be considered that the effects of Chernobyl accident are disappearing. the levels of cesium 137 are now often inferior to what they were before the accident. (N.C.)

  9. Phenomenological uncertainties in the suspended radionuclide concentrations in containment during severe LWR accidents

    CONTAIN, a code for integrated analysis of containment phenomenologies in complex LWR sever accident sequences, is being applied in a program for evaluating the uncertainties in USNRC-sponsored efforts to better define LWR accident source terms. The Surry TMLB sequence is studied in detail. Aerosol agglomeration uncertainties are found to contribute about an order of magnitude to the overall uncertainty in suspended radionuclides (almost entirely downward uncertainty; i.e., downward with respect to current base case estimates such as BMI-2104). Containment compartmentalization effects contribute substantial uncertainties in either direction, while effects due to complex multicomponent aerosol compositions contribute lesser, but still potentially significant uncertainties (mostly downward). Incomplete treatment of radionuclide decay chains can contribute factor-of-two upward uncertainties

  10. Phenomenological uncertainties in the suspended radionuclide concentrations in containment during severe LWR accidents

    CONTAIN, a code for integrated analysis of containment phenomenologies in complex LWR severe accident sequences, is being applied in a program for evaluating the uncertainties in USNRC-sponsored efforts to better define LWR accident source terms. The Surry TMLB sequence was studied in detail. Aerosol agglomeration uncertainties were found to contribute about an order of magnitude to the overall uncertainty in suspended radionuclides (almost entirely downward uncertainty; i.e., downward with respect to current base case estimates such as BMI-2104). Containment compartmentalization effects contribute substantial uncertainties in either direction, while effects due to complex multicomponent aerosol compositions contribute lesser, but still potentially significant uncertainties (mostly downward). Incomplete treatment of radionuclide decay chains can contribute factor-of-two upward uncertainties

  11. Setup uncertainties: consequences for multi-isocentre stereotactic radiotherapy

    Full text: Beam data for use in dose calculations by planning systems is generally measured under static and controlled conditions. Yet, patient motion and setup uncertainties will effectively blur the resulting dose distributions leading to a discrepancy between planned and delivered dose distributions. This is particularly so for stereotactic radiotherapy where small well-defined fields are used. When multiple isocentres are used (possibly for larger irregular lesions), relative motion of isocentres due to setup variations may have deleterious effects on the intended radiation delivery. The influence of setup uncertainties was examined by performing a three-dimensional convolution of measured off-axis ratio (OAR) data with a Maxwellian distribution, with standard deviations representing several feasible levels of inaccuracy in patient setup. A sample of patient plans (predominantly multi-isocentre plans) were then considered using original (measured) OAR data, and then modified data in order to observe the resulting effect. The effect of systematic localisation error was also considered by examining resulting DVHs as isocentres were shifted by fixed amounts. In all cases considered, the maximum dose varied quite minimally with increase in setup error with the variation decreasing with increasing high-dose volume. The minimum dose however varied more significantly, and this has serious consequences for dose prescription as the minimum dose can be the controlling factor in treatment efficacy. For multi-isocentre plans, the degree of non-uniformity generated by setup error was not as significant as originally expected. This is in part due to the non-uniformity already present in such plans to begin with. Through incorporation of the effect of setup error into planning data, the influence of setup variations on dose distributions for multi-isocentre treatments has been determined. This influence should be considered when creating plans based on the level of spatial

  12. The new program system UFOMOD to assess the consequences of nuclear accidents

    The program system UFOMOD is a completely new accident consequence assessment (ACA) code. Its structure and modelling is based on the experience gained from applications of the old UFOMOD code during and after the German Risk Study - Phase A, the results of scientific investigations performed within both the ongoing Phase B and the CEC-Project MARIA, and the requirements resulting from the extended use of ACAs to help in decision making. One of the most important improvements is the introduction of different trajectory models for describing atmospheric dispersion in the near range and at larger distances. Protective actions and countermeasures modelling takes into account recommendations of international commissions. The dosimetric models contain completely new age-, sex- and time-dependent data of dose-conversion factors for external and internal radiation; the ingestion pathway is modelled to consider seasonal dependencies. New dose-risk-relationships for stochastic and non-stochastic health effects are implemented; a special algorithm developed for ACA codes allows individual and collective leukemia and cancer risks to be presented as a function of time after the accident. According to the modular structure of the new UFOMOD program system, an easy access to parameter values and the results of the various submodels exists what facilitates sensitivity and uncertainty analyses

  13. The program system UFOMOD for assessing the consequences of nuclear accidents

    The programm system UFOMOD is a completely new accident consequence assessment (ACA) code. Its structure and modelling is based on the experience gained from applications of the old UFOMOD code during and after the German Risk Study - Phase A, the results of scientific investigations performed within the ongoing Phase B and the CEC-project MARIA, and the requirements resulting from the extended use of ACAs to help in decision-making. One of the most important improvements is the introduction of different trajecotry models for describing atmospheric dispersion in the near range and at larger distances. Emergency actions and countermeasures modelling takes into account recommendations of international commissions. The dosimetric models contain completely new age-, sex- and time-dependent data of dose-conversion factors for external and internal radiation; the ingestion pathway is modelled to consider seasonal dependencies. New dose-risk-relationships for stochastic and non-stochastic health effects are implemented; a special algorithm developed for ACA codes allows individual and collective leukemia and cancer risks to be presented as a function of time after the accident. According to the modular structure of the new program system UFOMOD, an easy access to parameter values and the results of the various submodels exists what facilitates sensitivity and uncertainty analyses. (orig.)

  14. Parameterization of the driving time in the evacuation or fast relocation model of an accident consequence code

    The model of protective measures in the accident consequence code system UFOMOD of the German Risk Study, Phase B, requires the driving times of the population to be evacuated for the evaluation of the dose received during the evacuation. The parameter values are derived from evacuation simulations carried out with the code EVAS for 36 sectors from various sites. The simulations indicated that the driving time strongly depends on the population density, whereas other influences are less important. It was decided to use different driving times in the consequence code for each of four population density classes as well as for each of three or four fractions of the population in a sector. The variability between sectors of a class was estimated from the 36 sectors, in order to derive subjective probability distributions that are to model the uncertainty in the parameter value to be used for any of the fractions in a particular sector for which an EVAS simulation has not yet been performed. To this end also the impact of the uncertainties in the parameters and modelling assumptions of EVAS on the simulated times was quantified using expert judgement. The distributions permit the derivation of a set of driving times to be used as so-called ''best estimate'' or reference values in the accident consequence code. Additionally they are directly applicable in an uncertainty and sensitivity analysis

  15. The consequences of the Chernobyl nuclear accident in Greece - Report No. 2

    In this report a realistic estimate of the radioactive fallout on Greece from the Chernobyl nuclear accident is described. The measurements performed on environmental samples and samples of the food chain, as well as some realistic estimations for the population doses and the expected consequences of the accident are presented. The analysis has shown that the radiological impact of the accident in Greece can be considered minor. (J.K.)

  16. Radiation-biological consequences of the Chernobyl accident

    The paper points out essential aspects of the actual or potential impact of the Chernobyl reactor accident on human health in the areas immediately affected. In particular, radiation-induced diseases in the population are pointed out, which were caused by radioactive iodine. Epidemiological studies try to establish an increased incidence of leukaemia, lymphomas, and thyroid gland tumours. (DG)

  17. Radiological consequence of Chernobyl nuclear power accident in Japan

    Two years have elapsed since the accident in Chernobyl nuclear power station shocked those concerned with nuclear power generation. The effect that this accident exerted on human environment has still continued directly and indirectly, and the reports on the effect have been made in various countries and by international organizations. In Japan, about the exposure dose of Japanese people due to this accident, the Nuclear Safety Commission and Japan Atomic Energy Research Institute issued the reports. In this report, the available data concerning the envrionmental radioactivity level in Japan due to the Chernobyl accident are collected, and the evaluation of exposure dose which seems most appropriate from the present day scientific viewpoint was attempted by the detailed analysis in the National Institute of Radiological Sciences. The enormous number of the data observed in various parts of Japan were different in sampling, locality, time and measuring method, so difficulty arose frequently. The maximum concentration of I-131 in floating dust was 2.5 Bq/m3 observed in Fukui, and the same kinds of radioactive nuclides as those in Europe were detected. (Kako, I.)

  18. Benefits, Consequences, and Uncertainties of Conventional (Exercise) Countermeasure Approaches

    Ploutz-Snyder, Lori

    2013-01-01

    This presentation will review the pros, cons, and uncertainties of using exercise countermeasures in hypothetical long duration exploration missions. The use of artificial gravity and exercise will be briefly discussed. One benefit to continued use of exercise is related to our extensive experience with spaceflight exercise hardware and programming. Exercise has been a part of each space mission dating back to the 1960's when simple isometric and bungee exercises were performed in the Gemini capsule. Over the next 50 years, exercise hardware improved cumulating in today's ISS suite of exercise equipment: Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), Treadmill (T2) and Advanced Resistive Exercise Device (ARED). Today's exercise equipment is the most robust ever to be flown in space and allows the variety and intensity of exercise that might reasonably be expected to maintain muscle mass and function, bone density and cardiovascular fitness. A second benefit is related to the large body of research literature on exercise training. There is a considerable body of supporting research literature including >40,000 peer reviewed research articles on exercise training in humans. A third benefit of exercise is its effectiveness. With the addition of T2 and ARED to our ISS exercise suite, crew member outcomes on standard medical tests have improved. Additionally exercise has other positive side effects such as stress relief, possible improvement of immune function, improved sleep, etc. Exercise is not without its consequences. The major cons to performance of in-flight exercise are the time and equipment required. Currently crew are scheduled 2.5 hrs/day for exercise and there is considerable cost to develop, fly and maintain exercise hardware. While no major injuries have been reported on ISS, there is always some risk of injury with any form of exercise There are several uncertainties going forward; these relate mostly to the development of

  19. The Chernobyl Accident 20 Years On: An Assessment of the Health Consequences and the International Response

    Baverstock, Keith; Williams, Dillwyn

    2006-01-01

    Background The Chernobyl accident in 1986 caused widespread radioactive contamination and enormous concern. Twenty years later, the World Health Organization and the International Atomic Energy Authority issued a generally reassuring statement about the consequences. Accurate assessment of the consequences is important to the current debate on nuclear power. Objectives Our objectives in this study were to evaluate the health impact of the Chernobyl accident, assess the international response ...

  20. The international conference ''one decade after Chernobyl: Summing up the consequences of the accident''

    An International Conference entitled ''One decade after Chernobyl: Summing up the consequences of the accident'' was held at the Austria Center Vienna from 8 to 12 April 1996, the aim being to seek a common and conclusive understanding of the nature and magnitude of the consequences of the Chernobyl accident. The Conference was attended by 845 participants and observers from 71 countries and 20 organizations and covered by 208 journalists from 31 countries and two organizations

  1. Radioecological and dosimetric consequences of the Chernobyl accident in France; Consequences radioecologiques et dosimetriques de l'accident de Tchernobyl en France

    Renaud, Ph.; Beaugelin, K.; Maubert, H.; Ledenvic, Ph. [Inst. de Protection et de Surete Nucleaire, CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (France)

    1997-11-01

    This study has as objective a survey of the radioecological and dosimetric consequences of the Chernobyl accident in France, as well as a prognosis for the years to come. It was requested by the Direction of Nuclear Installation Safety (DSIN) in relation to different organisms which effected measurements after this accident. It is based on the use of combined results of measurements and modelling by means of the code ASTRAL developed at IPSN. Various measurements obtained from five authorities and institutions, were made available, such as: activity of air and water, soil, processed food, agricultural and natural products. However, to achieve the survey still a modelling is needed. ASTRAL is a code for evaluating the ecological consequences of an accident. It allows establishing the correspondence between the soil Remnant Surface Activities (RSA, in Bq.m{sup -2}), the activity concentration of the agricultural production and the individual and collective doses resulting from external and internal exposures (due to inhalation and ingestion of contaminated nurture). The results of principal synthesis documents on the Chernobyl accident and its consequences were also used. The report is structured in nine sections, as follows: 1.Introduction; 2.Objective and methodology; 3.Characterization of radioactive depositions; 4;Remnant surface activities; 5.Contamination of agricultural products and foods; 6.Contamination of natural, semi-natural products and of drinking water; 7.Dosimetric evaluations; 8.Proposals for the environmental surveillance; 9.Conclusion. Finally, after ten years, one concludes that at presentthe dosimetric consequences of the Chernobyl accident in France were rather limited. For the period 1986-2046 the average individual effective dose estimated for the most struck zone is lower than 1500 {mu}Sv, which represents almost 1% of the average natural exposure for the same period. At present, the cesium 137 levels are at often inferior to those recorded

  2. Degraded core accidents for the Sizewell PWR: A sensitivity analysis of the radiological consequences

    The radiological impact of degraded core accidents postulated for the Sizewell PWR was assessed in an earlier study. In this report the sensitivity of the predicted consequences to variation in the values of a number of important parameters is investigated for one of the postulated accidental releases. The parameters subjected to sensitivity analyses are the dose-mortality relationship for bone marrow irradiation, the energy content of the release, the warning time before the release to the environment, and the dry deposition velocity for airborne material. These parameters were identified as among the more important in determining the uncertainty in the results obtained in the initial study. With a few exceptions the predicted consequences were found to be not very sensitive to the parameter values investigated, the range of variation in the consequences for the limiting values of each parameter rarely exceeded a factor of a few and in many cases was considerably less. The conclusions reached are, however, particular to the releases analysed from Sizewell; for different releases from different locations the sensitivity may change significantly. In the earlier study and analysis was undertaken of the impact on the predicted consequences of potential overestimates in the release fractions of radionuclides. Since the results of that study were published some relatively minor numerical errors have been identified. While none of these affects the conclusions reached in that study the opportunity has been taken in this report to present revised values for those results known to be in error. This revised text and results are presented as an appendix to this report and they replace the corresponding material in the earlier study. (author)

  3. Russian National Chernobyl Register as information and and analytical for Chernobyl accident medical consequences estimation

    The paper is devoted to using of the National Radiation and Epidemiology Register basic part, namely the Russian State Medical-Dosimetric Register of the people affected by the Chernobyl accident, to estimate the medical consequences of the accident. First part of article presents the common description and current state of Register. The estimation of medical consequences of the accident for clean-up workers is given in second part. The prognosis of radiation effects and definition of basic epidemiology factors to propose optimal medicalrehabilitation measures is discussed

  4. One decade after Chernobyl. Summing up the consequences of the accident. Proceedings of an international conference

    The consequences attributed to the disastrous accident that occurred at the Chernobyl nuclear power plant on 26 April 1986 have been subjected to extensive scientific examination; however, they are still viewed with widely differing perspectives. It is fitting then that, ten years after the accident, the European Commission (EC), the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) should jointly sponsor an international conference to review the consequences of the accident and to seek a common and conclusive understanding of their nature and magnitude. The International Conference on One Decade after Chernobyl: Summing up the Consequences of the Accident was held at the Austria Center, Vienna, on 8-12 April 1996. Refs, figs, tabs

  5. Cancer consequences of the Chernobyl accident: 20 years on

    Cardis, Elisabeth [International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08 (France); Howe, Geoffrey [Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1104, New York, NY 10032 (United States); Ron, Elaine [Radiation Epidemiology Branch, Division of Epidemiology and Genetics, National Cancer Institute, Building EPS, MS 7238, Rockville, MD 20852 (United States)] (and others)

    2006-06-15

    26 April 2006 marks the 20th anniversary of the Chernobyl accident. On this occasion, the World Health Organization (WHO), within the UN Chernobyl Forum initiative, convened an Expert Group to evaluate the health impacts of Chernobyl. This paper summarises the findings relating to cancer. A dramatic increase in the incidence of thyroid cancer has been observed among those exposed to radioactive iodines in childhood and adolescence in the most contaminated territories. Iodine deficiency may have increased the risk of developing thyroid cancer following exposure to radioactive iodines, while prolonged stable iodine supplementation in the years after exposure may reduce this risk. Although increases in rates of other cancers have been reported, much of these increases appear to be due to other factors, including improvements in registration, reporting and diagnosis. Studies are few, however, and have methodological limitations. Further, because most radiation-related solid cancers continue to occur decades after exposure and because only 20 years have passed since the accident, it is too early to evaluate the full radiological impact of the accident. Apart from the large increase in thyroid cancer incidence in young people, there are at present no clearly demonstrated radiation-related increases in cancer risk. This should not, however, be interpreted to mean that no increase has in fact occurred: based on the experience of other populations exposed to ionising radiation, a small increase in the relative risk of cancer is expected, even at the low to moderate doses received. Although it is expected that epidemiological studies will have difficulty identifying such a risk, it may nevertheless translate into a substantial number of radiation-related cancer cases in the future, given the very large number of individuals exposed. (rev0009i.

  6. The radioecological consequences of Chernobyl accident for fish

    The estimate of dynamics of radionuclides concentration in muscles of some game-fish from Kiev reservoir and likes in Bryansk region for period after Chernobyl accident was carried out. The concentration of 137Cs in fish has not exceeded the admissible concentration (600 Bq/kg ww) since 1993. The exceptions are the cooling-pond of Chernobyl NPP and Kozlanovskoe Lake where the concentration of 137Cs in fish's muscles exceeded the admissible level more than 5-6 times even in 1995. It was concluded that chronic irradiation of game-fish in water bodies outside 30-km zone would not affect the volume of fishing

  7. Consequences of the Chernobyl accident in France. Thematic sheets; Les consequences de l'accident de Tchernobyl en France. Fiches thematiques

    NONE

    2006-07-01

    This document proposes a set of commented maps, graphs and drawings which illustrate and describe various consequences of the Chernobyl accident in France, such as air contamination (scattering of radioactive particles emitted by the reactor explosion by the wind over thousands of kilometres, evolution of air contamination between April 30 and May 5 1986), ground deposits (influence of rain, heterogeneity of these deposits), contamination of farm products (relationship between the accident date and the deposit characteristics, variable decrease rate of contamination, faster decrease of farm product contamination that caesium radioactive decay since 1987, particular cases of some more sensitive products), health effects (low doses received by the French population, concerns about thyroid cancers)

  8. Uncertainty analysis for fission products transport in CANDU primary heat transport during a severe accident

    Apostol, Mindora; Constantin, Marin [Institute for Nuclear Research, Pitesti (Romania); Leca, Aureliu [Univ. ' Politehnica' of Bucharest (UPB) (Romania)

    2010-08-15

    The work realized under the Severe Accident Research Network of excellence (SARNET) project has shown that the SOPHAEROS module, part of Accident Source Term Evaluation Code (ASTEC) can be fully used to simulate the fission products transport and deposition phenomena in the CANDU Primary Heat Transport (PHT) system. This paper presents an uncertainty analysis for the fission products transport in the CANDU PHT system during a severe accident to obtain the domains of the output parameters, for this study masses of Caesium, Strontium and Iodine deposited in the PHT system and its nodes, taking into account the associated input parameters uncertainties. Five uncertain parameters, the starting time for the releasing process, the duration of the releasing process, the releasing fractions for Cs, Sr and I have been chosen. To generate aleatory values for the uncertain parameters, a method and software have been developed and Monte Carlo simulations to determine uncertainties propagation through the SOPHAEROS module has been carried out. (orig.)

  9. Accident at the Chernobyl nuclear power plant and its consequences

    In the early morning of April 26, 1986, as the culmination of an almost incredible series of errors that began 24 hours earlier, Unit 4 of the Chernobyl nuclear complex, a so-called RBMK-1000 reactor, suffered the worst accident in the history of commercial nuclear power. There was an uncontrolled nuclear excursion, release of a large amount of energy, possibly comparable to hundreds of pounds of TNT, blowing the top off the reactor. There was no containment, in the traditional American sense, so the roof of the building was blown out, an unprecedented amount of radioactivity was released to the biosphere, and a graphite fire was ignited, which burned for days. The radiation that was released spread through Eastern Europe (the world first learned of it through Swedish observations), bringing with it both official and unofficial protests that the Soviet Union had made no announcement of the radiation release until they were, in effect, caught. In fact, after a few days, the Soviets seemed to recognize that nuclear safety is a matter of international concern, and became quite open in their search for cooperation. They invited officials of the International Atomic Energy Agency (IAEA) to visit the area and to fly over the plant, and agreed, in the end, to make a complete disclosure of the details of the accident at a special meeting of IAEA in Vienna, August 25 to 29, 1986. In preparation for that meeting they distributed a lengthy (400 pages) report on the event. This paper reviews this report

  10. Phenomenological uncertainty analysis of containment building pressure load caused by severe accident sequences

    Highlights: • Phenomenological uncertainty analysis has been applied to level 2 PSA. • The methodology provides an alternative to simple deterministic analyses and sensitivity studies. • A realistic evaluation provides a more complete characterization of risks. • Uncertain parameters of MAAP code for the early containment failure were identified. - Abstract: This paper illustrates an application of a severe accident analysis code, MAAP, to the uncertainty evaluation of early containment failure scenarios employed in the containment event tree (CET) model of a reference plant. An uncertainty analysis of containment pressure behavior during severe accidents has been performed for an optimum assessment of an early containment failure model. The present application is mainly focused on determining an estimate of the containment building pressure load caused by severe accident sequences of a nuclear power plant. Key modeling parameters and phenomenological models employed for the present uncertainty analysis are closely related to the in-vessel hydrogen generation, direct containment heating, and gas combustion. The basic approach of this methodology is to (1) develop severe accident scenarios for which containment pressure loads should be performed based on a level 2 PSA, (2) identify severe accident phenomena relevant to an early containment failure, (3) identify the MAAP input parameters, sensitivity coefficients, and modeling options that describe or influence the early containment failure phenomena, (4) prescribe the likelihood descriptions of the potential range of these parameters, and (5) evaluate the code predictions using a number of random combinations of parameter inputs sampled from the likelihood distributions

  11. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.

    Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

    2010-03-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  12. Consequences in Norway after a hypothetical accident at Sellafield - Predicted impacts on the environment.

    Thoerring, H.; Liland, A.

    2010-12-15

    This report deals with the environmental consequences in Norway after a hypothetical accident at Sellafield. The investigation is limited to the terrestrial environment, and focus on animals grazing natural pastures, plus wild berries and fungi. Only 137Cs is considered. The predicted consequences are severe, in particular for mutton and goat milk production. (Author)

  13. Consequences in Norway after a hypothetical accident at Sellafield - Predicted impacts on the environment

    This report deals with the environmental consequences in Norway after a hypothetical accident at Sellafield. The investigation is limited to the terrestrial environment, and focus on animals grazing natural pastures, plus wild berries and fungi. Only 137Cs is considered. The predicted consequences are severe - in particular for mutton and goat milk production. (Author)

  14. Small chances - great consequences or the consequences of a large-scale accident in a nuclear power plant

    This report is a sequel to the previous Boerderijcahier (no. 7502) which discussed long-term effects of soil contamination in case of a nuclear power plant accident. In this report the short-term health effects are discussed. Models describing the local consequences of a severe accident are developed, taking into account the possible weather conditions (meteorological model), the evacuation possibilities and the inhabitability of certain areas. In each case long-term and short-term effects are discussed. The safety studies by various departments of the Netherlands' government and the Rasmussen report are commented on

  15. Analysis for relocation strategy using the method of probabilistic accident consequence assessment

    Relocation is one of the long-term protective actions in case of nuclear emergency to mitigate the consequences of an accidental release of radionuclides. The strategy of relocation is characterized by its protective benefit, cost and the corresponding residual dose in planning. This paper describes the application of a probabilistic accident consequence assessment model to the calculation of these quantities and the planning of relocation. Calculations of the consequence have been made of a postulated accident with source terms derived from a generic level 2 PSA. The results provided the insights for the development optimum dose criteria for introducing and terminating relocation. (author)

  16. Health and environmental consequences of the Chernobyl nuclear power plant accident

    An assessment of the impact of the Chernobyl accident on the Northern Hemisphere is presented in this report. It relies heavily on the USSR report presented to the International Atomic Energy Agency. There are gaps in present knowledge and, in some areas, uncertainties may never be completely resolved. What is clearly apparent at this time, however, is that on a large regional scale, the estimates of collective dose have a reasonable level of confidence. The associated potential health impacts have also been projected, together with a range of estimates. A brief description of the tragic consequences to the heroic firefighting and rescue personnel is also provided, and valuable insights regarding acute exposures are developed. Much early effort was expended on estimation of the source term, especially for radiocesium and radioiodine. Several independent analyses are presented that are in reasonable agreement. Atmospheric transport of the radioactive material and its subsequent deposition provide a documented ''umbrella'' of the distributions that form the basic integration of this assessment. The estimates of radiological doses to selected Northern Hemisphere populations were employed in developing an integrated risk assessment of potential latent health effects using the most current models, parameters and risk coefficients. The estimates presented include lower- and upper-bound values, as well as the ''best'' or most realistic ranges. While many scientists believe that minuscule increases in risks to large populations are impossible to prove, it is essential that the magnitude of these possible risks be presented, if only to put an upper limit on the situation. It must be emphasized that while these are ''potential'' health effects, the values presented represent our best current assessment of the health and environmental detriment caused by the Chernobyl accident. 72 refs., 37 figs., 91 tabs

  17. The consequences of the Kyshtym accident for Flora and Fauna

    Flora and fauna irradiated in areas radioactively contaminated by the Kyshtym accident accumulated the bulk of their dose more or less in the first year, with the irradiation being at its most intensive in autumn 1957 and the winter of 1957/58, when plants and many animal species were in the physically dormant state. During the ''acute'' phase the maximum doses absorbed (at a contamination level of 4 000 Ci 90 Sr/km2) were as follows (in krad): mouse-type rodents and fish 4, birch bud meristems 20, pine bud meristems 40, pine needles 80, dormant leaf buds and gramineae seeds on the soil surface 160. The main radiobiological effects appeared in the spring of 1958 and were observed for several years after; subsequently, in the presence of chronic irradiation at a low dose rate, predominantly genetic effects were observed, conifers being the most radiosensitive among the plants. Changes in the structure of herbaceous communities occurred at doses over 20 krad (1 500 Ci 90Sr/km2). In subsequent years we observed changes in the structure and numbers of fish and mouse-type rodent populations. The radioactive contamination caused an increase in the rate of mutational processes in plant and animal populations. However, for populations as a whole the increased frequency observed for most mutations (chromosome aberrations, chemical mutations) did not play a major role, since they were speedily eliminated by natural selection. No deformities of a genetic nature were found on the contaminated territory. In the 30 years since the accident the biological characteristics of the contaminated area have not differed (except for coniferous forests) from those of the surrounding regions. Natural ecosystems are very radioresistant, and extremely high doses are needed to damage them seriously and irreversibly. (author)

  18. Development of evaluation method for economic consequences of severe accident at NPP

    A nuclear power plant accident has onsite and/or offsite consequences. A common framework into which many of the consequences of an accident may be translated is their economic cost. Though there are some consequence analysis codes, these are limited only to estimate only offsite consequence. In this study, economic losses are estimated for the case of onsite and offsite consequences for the sample PWR plant at Yong-Gwang site. For the estimation of offsite consequence, economic database unique to Korean economic structure is utilized as many as possible. By grouping of various cost components, each cost groups are compared each other. For the detailed estimation of offsite decontamination cost, offsite surface around the plant is divided into five types of surface. This division of surface types is agricultural field, wooded land, roof surface for representing house, asphalt road and water surface. But on the water surface, it is assumed that no decontamination operation is required. The comparison shows that at the severe accident, offsite consequences are more severe than onsite consequences. And in agricultural growing season, the consequence even becomes more severe. It also turned out that the importance and selection of much appropriate criteria will play a major role, because the economic consequences are widely varying depending on how the criteria was chosen

  19. About some regularities consequences of accidents at NPP

    In the article are considered the principal reasons of differences in observed and calculation frequencies of emergency events in complex technological systems, including NPP. Analyzed simplification inherent in the probabilistic model of work of the reactor. The results of application of power-law probability distribution are presented for the estimation of consequences of catastrophes in complex and dangerous technologies

  20. Experience with psychological consequences of the Chernobyl nuclear plant accident

    The paper describes the image of radiation menance. Basic differences in image parameters are revealed for some population groups. The psychological levels of the image are regarded as psychological phenomena. Some specific psychological consequences of mental regression are outlined in the paper

  1. One decade after Chernobyl: Summing up the consequences of the accident. Poster presentations

    The consequences attributed to the disastrous accident that occurred at the Chernobyl nuclear power plant on 26 April 1986 have been subjected to extensive scientific examination; however, they are still viewed with widely differing perspectives. It is fitting then that, ten years after the accident, the European Commission (EC), the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) should jointly sponsor an international conference to review the consequences of the accident and to seek a common and conclusive understanding of their nature and magnitude. The International Conference on One Decade after Chernobyl: Summing up the Consequences of the Accident was held at the Austria Center, Vienna, on 8-12 April 1996. To facilitate the discussions of the Conference, background papers were prepared for the Technical Symposium by teams of scientists from around the world, who collaborated over a period of months to ascertain, consolidate and present the current state of knowledge in six key areas: clinically observed effects; thyroid effects; long term health effects; other health related effects; consequences for the environment; and the consequences in perspective: prognosis for the future. A background paper on the social, economic, institutional and political impact of the accident was prepared by Belarus, the Russian Federation and Ukraine. The conclusions of the Forum on Nuclear Safety Aspects served as a background paper on this topic

  2. One decade after Chernobyl: Summing up the consequences of the accident. Poster presentations

    The consequences attributed to the disastrous accident that occurred at the Chernobyl nuclear power plant on 26 April 1986 have been subjected to extensive scientific examination; however, they are still viewed with widely differing perspectives. It is fitting then that, ten years after the accident, the European commission (EC), the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) should jointly sponsor an international conference to review the consequences of the accident and to seek a common and conclusive understanding of their nature and magnitude. The International Conference on One Decade after Chernobyl: Summing up the Consequences of the Accident was held at the Austria Center, Vienna, on 8-12 April 1996. To facilitate the discussions of the Conference, background papers were prepared for the Technical Symposium by teams of scientists from a round the world, who collaborated over a period of months to ascertain, consolidate and present the current state of knowledge in six key areas: clinically observed effects; thyroid effects; long term health effects; other health related effects; consequences for the environment; and the consequences in perspective: prognosis for the future. A background paper on the social, economic, institutional and political impact of the accident was prepared by Belarus, the Russian Federation and Ukraine. The conclusions of the Forum on Nuclear Safety Aspects served as a background paper on this topic. Refs, figs, tabs

  3. Help guides for post-accident consequence management: farm activities and exiting the emergency phase

    After having recalled the main actions foreseen in the PPIs (plans particuliers d'intervention, intervention specific plans) in case of radionuclide release in the environment after a nuclear accident, i.e. sheltering and ingestion of steady iodine, and also indicated the different phases of consequence management (preparation, emergency and post-accident phases), this report describes and comments the contents of two guides published by the IRSN (the French Radioprotection and Nuclear Safety Institute) and dealing with the management of post-accident consequences. The first one is a guide to aid to decision-making for the management of the agricultural sector in case of nuclear accident, and the second one is a guide for the preparation of the end of the emergency phase in which actions to be performed during the first week after the end of accidental releases are described

  4. The influence of seasonal conditions on the radiological consequences of a nuclear accident

    The impact of an accidental release of radioactivity to the environment can be strongly influenced by prevailing environmental conditions. Thus, potential variations in accident consequences caused by variable seasonal, meteorological or climatic conditions are of significance to the development and application of protective measures and emergency response plans. These proceedings present the results of a workshop organized by the NEA to examine such aspects of emergency response to a nuclear accident

  5. Consequences of tractor accidents in the agriculture in Republic of Macedonia

    Dimitrovski, Zoran

    2008-01-01

    In this paper are the results from the research of the consequences of tractor accidents in the agriculture in Republic of Macedonia. During the research from 1999 till 2003, 610 people have been injured in Republic of Macedonia in agricultural production, and the tractors have been the main reason. 544 people have been injured in tractor traffic accidents and 66 have been injured during tractor operating in agricultural condition. From the total number, 101 people have died during this perio...

  6. OFFSITE RADIOLOGICAL CONSEQUENCE CALCULATION FOR THE BOUNDING MIXING OF INCOMPATIBLE MATERIALS ACCIDENT

    This document quantifies the offsite radiological consequence of the bounding mixing of incompatible materials accident for comparison with the 25 rem Evaluation Guideline established in Appendix A of DOE-STD-3009. The bounding accident is an inadvertent addition of acid to a waste tank. The calculated offsite dose does not challenge the Evaluation Guideline. Revision 4 updates the analysis to consider bulk chemical additions to single shell tanks (SSTs)

  7. Accident on the Chernobyl nuclear power plant. Getting over the consequences and lessons learned

    The book is devoted to the 20 anniversary of the accident on the 4th Power Unit of the Chernobyl NPP. The power plant construction history, accident reasons, its consequences, the measures on its liquidation are represented. The current state of activity on the Chernobyl power unit decommission, the 'Shelter' object conversion into the ecologically safe system is described. The future of the Chernobyl NPP site and disposal zone is discussed

  8. Proceedings of the Seminar on Methods and Codes for Assessing the off-site consequences of nuclear accidents. Volume 1

    The Commission of the European Communities, within the framework of its 1980-84 radiation protection research programme, initiated a two-year project in 1983 entitled 'methods for assessing the radiological impact of accidents' (Maria). This project was continued in a substantially enlarged form within the 1985-89 research programme. The main objectives of the project were, firstly, to develop a new probabilistic accident consequence code that was modular, incorporated the best features of those codes already in use, could be readily modified to take account of new data and model developments and would be broadly applicable within the EC; secondly, to acquire a better understanding of the limitations of current models and to develop more rigorous approaches where necessary; and, thirdly, to quantify the uncertainties associated with the model predictions. This research led to the development of the accident consequence code Cosyma (COde System from MAria), which will be made generally available later in 1990. The numerous and diverse studies that have been undertaken in support of this development are summarized in this paper, together with indications of where further effort might be most profitably directed. Consideration is also given to related research directed towards the development of real-time decision support systems for use in off-site emergency management

  9. Consequences of the Chernobyl accident for reindeer husbandry in Sweden

    Gustaf Åhman

    1990-09-01

    Full Text Available Large parts of the reindeer hearding area in Sweden were contaminated with radioactive caesium from the Chernobyl fallout. During the first year after the accident no food with activity concentrations exceeding 300 Bq/kg was allowed to be sold in Sweden. This meant that about 75% of all reindeer meat produced in Sweden during the autumn and winter 1986/87 were rejected because of too high caesium activités. In May 1987 the maximum level for Cs-137 in reindeer, game and fresh-water fish was raised to 1500 Bq/kg. During the last two year, 1987/88 and 1988/89, about 25% of the slaughtered reindeer has had activities exceeding this limit. The effective long-time halflife or radiocaesium in reindeer after the nuclear weapon tests in the sixties was about 7 years. If this halflife is correct also for the Chernobyl fallout it will take about 35 years before most of the reinder in Sweden are below the current limit 1500 Bq/kg in the winter. However, by feeding the animals uncontaminated food for about two months, many reindeer can be saved for human consumption.

  10. Reactor accident at the Chernobyl nuclear power plant-Block 4. Effects, countermeasures and consequences

    The findings of the Summary Report on the Chernobyl accident issued by IAEA in September 1986 (International Nuclear Safety Advisory Group (INSAG): Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident. Safety Series No. 78-INSAG-1 Vienna, International Atomic Energy Agency (IAEA). Sept. 1986) are updated, reviewing more recent publications providing more complete information on the events both within and outside the plant. The available information on the resulting radioactive pollution of agriculture and the food chain is discussed considering also the consequences for the future in comparison with the other sources of radioactivity in the environment. 21 refs.; 3 figs.; 3 tabs

  11. ASSESSMENT OF THE FUKUSIMA NUCLEAR POWER PLANT ACCIDENT CONSEQUENCES BY THE POPULATION IN THE FAR EAST

    G. V. Arkhangelskaya

    2012-01-01

    Full Text Available The article analyzes the attitude of the population in the five regions of the Far East to the consequences of the accident at the Fukushimai nuclear power plant, as well as the issues of informing about the accident. The analysis of public opinion is based on the data obtained by anonymous questionnaire survey performed in November 2011. In spite of the rather active informing and objective information on the absence of the contamination, most of the population of the Russian Far East believes that radioactive contamination is presented in the areas of their residence, and the main cause of this contamination is the nuclear accident in Japan.

  12. Assessment of radiation consequences of cabins in a nuclear accident of the nuclear ship

    The author discussed about the spread routes of radioactive nuclides from reactor cabin to other cabins and their distributions in these cabins. Methods and formulas to estimate radioactivities of nuclides and doses received by crews in cabins were established. The radiation consequences of cabins in a nuclear accident was quantified and evaluated. The assessments indicates that the consequences of cabins is light and the doses to the staff will not exceed the dose limits prescribed in standards in a design basis accident, and the consequences of cabins is serious and the doses to the staff will exceed the dose limits prescribed in standards in serious accident. Some suggestions on emergency management and radiation protection were given

  13. Estimates of the financial consequences of nuclear-power-reactor accidents

    This report develops preliminary techniques for estimating the financial consequences of potential nuclear power reactor accidents. Offsite cost estimates are based on CRAC2 calculations. Costs are assigned to health effects as well as property damage. Onsite costs are estimated for worker health effects, replacement power, and cleanup costs. Several classes of costs are not included, such as indirect costs, socio-economic costs, and health care costs. Present value discounting is explained and then used to calculate the life cycle cost of the risks of potential reactor accidents. Results of the financial consequence estimates for 156 reactor-site combinations are summarized, and detailed estimates are provided in an appendix. The results indicate that, in general, onsite costs dominate the consequences of potential accidents

  14. RADIOLOGICAL AND MEDICAL CONSEQUENCES OF THE CHERNOBYL ACCIDENT

    V. G. Bebeshko

    2012-01-01

    Full Text Available From the position of a 25-years’ experience to overcome the health effects of Chernobyl the dynamics of the radiation environment, the first summarizing at the international level (1988, the results of completed research and practical monitoring are analyzed. Cohort of acute radiation syndrome (ARS survivors under medical observation at the S.I. "Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" is the largest. Within the 25 years the functional state of the major organs and body systems, and metabolic homeostasis for this category of persons were studied, a comprehensive assessment of their health, mental and physical performance were given, and risk factors and peculiarities of stochastic and non-stochastic pathology courses were identified, as well as a system of rehabilitation patients after ARS was developed. ARS survivors are suffering from chronic diseases of internal organs and systems (from 5-7 to 10-12 diagnoses at the same time. A correlation between acute radiation effects and specific HLA phenotypes were revealed. The dynamics of the immune system recovery after irradiation was studied. The role and prognostic value of telomere length and programmed cell death of lymphocytes in the formation of the cellular effects of ionizing radiation were determined for the first time. Differences between spontaneous and radiation-induced acute myeloid leukemias were found. Dose-dependent neuropsychiatric, neurophysiological, neuropsychological and neuroimaging deviations were identified after irradiation at doses above 0.3 Sv. It was shown that the lymphocytes of Chernobyl clean-up workers with doses 350 – 690 mGy can induce "the bystander effect" in the non-irradiated cells even after 19 years after exposure. The rates of cancer incidence and mortality of victims, the lessons and key problems to be solved in the third decade after the Chernobyl accident are considered.

  15. Economic consequences of major accidents in the industrial plants: The case of a nuclear power plant

    These last years, newspapers head-lines have reported various accidents (Mexico City, Bhopal, Chernobyl, ...) which have drawn attention to the fact that the major technological risk is now a reality and that, undoubtedly, industrial decision-makers ought to integrate it into their preoccupations. In addition to the sometimes considerable human problems such accidents engender, their economic consequences may be such that they become significant on a national or even international scale. The aim of the present paper is to analyse these economic effects by using the particular context of a nuclear power plant. The author has deliberately limited his subject to the consequences of a major accident, that is to say a sudden event, theoretically unforeseen and beyond man's control. The qualification major means an accident of which the consequences extend far beyond the industrial plant itself. The direct and indirect economic consequences are analysed from the responsibility point of view as well as from the national and international community's point of view. A paragraph explains how the coverage of the costs can rely on the cooperation of a number of parties: responsible company, state, insurers, customers, etc. The study is broadly based on the experience resulting from the two major accidents which happened in the nuclear industry these last years (Three Mile Island in 1979 and Chernobyl in 1986) and makes use of more theoretical considerations, for example in the field of the economic evaluation of human life. (author). 58 refs, 2 figs, 12 tabs

  16. Uncertainty and sensitivity analysis of TMI-2 accident scenario using simulation based techniques

    The Three Mile Island Unit 2 (TMI-2) accident has been studied extensively, as part of both post-accident technical assessment and follow-up computer code calculations. The models used in computer codes for severe accidents have improved significantly over the years due to better understanding. It was decided to reanalyze the severe accident scenario using current state of the art codes and methodologies. This reanalysis was adopted as a part of the joint standard problem exercise for the Atomic Energy Regulatory Board (AERB) - United States Regulatory Commission (USNRC) bilateral safety meet. The accident scenario was divided into four phases for analysis viz., Phase 1 covers from the accident initiation to the shutdown of the last Reactor Coolant Pumps (RCPs) (0 to 100 min), Phase 2 covers initial fuel heat up and core degradation (100 to 174 min), Phase 3 is the period of recovery of the core water level by operating the reactor coolant pump, and the core reheat that followed (174 to 200 min) and Phase 4 covers refilling of the core by high pressure injection (200 to 300 min). The base case analysis was carried out for all four phases. The majority of the predicted parameters are in good agreement with the observed data. However, some parameters have significant deviations compared to the observed data. These discrepancies have arisen from uncertainties in boundary conditions, such as makeup flow, flow during the RCP 2B transient (Phase 3), models used in the code, the adopted nodalisation schemes, etc. In view of this, uncertainty and sensitivity analyses are carried out using simulation based techniques. The paper deals with uncertainty and sensitivity analyses carried out for the first three phases of the accident scenario.

  17. Uncertainty quantification for accident management using ACE surrogates

    The alternating conditional expectation (ACE) regression method is used to generate RELAP5 surrogates which are then used to determine the distribution of the peak clad temperature (PCT) during the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed (F and B) operation in the Zion-1 nuclear power plant. The construction of the surrogates assumes conditional independence relations among key reactor parameters. The choice of parameters to model is based on the macroscopic balance statements governing the behavior of the reactor. The peak clad temperature is calculated based on the independent variables that are known to be important in determining the success of the F and B operation. The relationship between these independent variables and the plant parameters such as coolant pressure and temperature is represented by surrogates that are constructed based on 45 RELAP5 cases. The time-dependent PCT for different values of F and B parameters is calculated by sampling the independent variables from their probability distributions and propagating the information through two layers of surrogates. The results of our analysis show that the ACE surrogates are able to satisfactorily reproduce the behavior of the plant parameters even though a quasi-static assumption is primarily used in their construction. The PCT is found to be lower in cases where the F and B operation is initiated, compared to the case without F and B, regardless of the F and B parameters used. (authors)

  18. Uncertainty Analysis of the Potential Hazard of MCCI during Severe Accidents for the CANDU6 Plant

    Sooyong Park

    2015-01-01

    Full Text Available This paper illustrates the application of a severe accident analysis computer program to the uncertainty analysis of molten corium-concrete interaction (MCCI phenomena in cases of severe accidents in CANDU6 type plant. The potential hazard of MCCI is a failure of the reactor building owing to the possibility of a calandria vault floor melt-through even though the containment filtered vent system is operated. Meanwhile, the MCCI still has large uncertainties in several phenomena such as a melt spreading area and the extent of water ingression into a continuous debris layer. The purpose of this study is to evaluate the MCCI in the calandria vault floor via an uncertainty analysis using the ISAAC program for the CANDU6.

  19. Cohort formation for epidemiological study of medical consequences of the Chernobyl accident

    Belarus State Registry of the Chernobyl-affected population contains information about 276 000 residents of the Republic of Belarus exposed due to the Chernobyl NPP accident. Evidently, the population who lived in the evacuation zone was exposed mostly to radiation and also people participating in the liquidation of the Chernobyl accident consequences (emergency workers) within this zone in early post accident period of the catastrophe. Taking into account this criterion, we singled out the group out of all data files including all people who stayed in the evacuation zone not later than on May 31, 1986. The total number of the group made up 39 548 people including 4251 people who were under 18 at the moment of the accident. By preliminary estimation the number of person-years taking into account the deceased and left out of observation made up at the beginning of 2007- 735 600. During the period since 1986 there was detected 2671 cases of malignant tumors in the cohort and among people who were children and adolescents in 1986 there was registered 106 cases of malignant tumors (82% -thyroid cancer). Among 7483 of the deceased, malignant tumors is the cause of death at 1260 people. At present the real number of alive and remained subjects under observation makes up 25359 people including 2321 people who were under 18 at the moment of the accident. This group will form the base for further prospective research aiming at assessment of medical consequences of the Chernobyl NPP accident. (author)

  20. Formation of decontamination cost calculation model for severe accident consequence assessment

    In previous studies, the authors developed an index “cost per severe accident” to perform a severe accident consequence assessment that can cover various kinds of accident consequences, namely health effects, economic, social and environmental impacts. Though decontamination cost was identified as a major component, it was taken into account using simple and conservative assumptions, which make it difficult to have further discussions. The decontamination cost calculation model was therefore reconsidered. 99 parameters were selected to take into account all decontamination-related issues, and the decontamination cost calculation model was formed. The distributions of all parameters were determined. A sensitivity analysis using the Morris method was performed in order to identify important parameters that have large influence on the cost per severe accident and large extent of interactions with other parameters. We identified 25 important parameters, and fixed most negligible parameters to the median of their distributions to form a simplified decontamination cost calculation model. Calculations of cost per severe accident with the full model (all parameters distributed), and with the simplified model were performed and compared. The differences of the cost per severe accident and its components were not significant, which ensure the validity of the simplified model. The simplified model is used to perform a full scope calculation of the cost per severe accident and compared with the previous study. The decontamination cost increased its importance significantly. (author)

  1. An assessment of the consequences of a research reactor credible accident release

    An analysis of the consequences of a serious credible accident, a coolant flow blockage accident (CFBA) of the Greek research reactor (GRR) is presented. GRR, a 5 MW swimming pool type reactor, is located within Athens the largest population centre of Greece concentrating 32% of its population. To estimate the source term 31 isotopes are taken into consideration and conservative figures of fission product release are adopted. To estimate the CFBA consequences a CRAC2 consequence model version is used. Doses and individual cancer risk from exposure to the passing radioactive cloud are estimated up to a distance of 20km from the reactor site. Collective exposure and latent health effects due to initial exposure and chronic exposure from inhalation of resuspended radionuclides and exposure to groundshine from contaminated ground are estimated for the total Athens area of 3081000 inhabitants. The results of the analysis suggest that the CFBA consequences are not significant. 10 refs., 9 figs., 2 tabs. (Author)

  2. Critical analysis of accident scenario and consequences modelling applied to light-water reactor power plants for accident categories beyond the design basis accident (DBA)

    A critical analysis and sensitivity study of the modelling of accident scenarios and environmental consequences are presented, for light-water reactor accident categories beyond the standard design-basis-accident category. The first chapter, on ''source term'' deals with the release of fission products from a damaged core inventory and their migration within the primary circuit and the reactor containment. Particular attention is given to the influence of engineering safeguards intervention and of the chemical forms of the released fission products. The second chapter deals with their release to the atmosphere, transport and wet or dry deposition, outlining relevant partial effects and confronting short-duration or prolonged releases. The third chapter presents a variability analysis, for environmental contamination levels, for two extreme hypothetical scenarios, evidencing the importance of plume rise. A numerical plume rise model is outlined

  3. Sensitivity and uncertainty analysis for Ignalina NPP confinement in case of loss of coolant accident

    At present the best-estimate approach in the safety analysis of nuclear power plants is widely used around the world. The application of such approach requires to estimate the uncertainty of the calculated results. Various methodologies are applied in order to determine the uncertainty with the required accuracy. One of them is the statistical methodology developed at GRS mbH in Germany and integrated into the SUSA tool, which was applied for the sensitivity and uncertainty analysis of the thermal-hydraulic parameters inside the confinement (Accident Localisation System) of Ignalina NPP with RBMK-1500 reactor in case of Maximum Design Basis Accident (break of 900 mm diameter pipe). Several parameters that could potentially influence the calculated results were selected for the analysis. A set of input data with different initial values of the selected parameters was generated. In order to receive the results with 95 % probability and 95 % accuracy, 100 runs were performed with COCOSYS code developed at GRS mbH. The calculated results were processed with SUSA tool. The performed analysis showed a rather low dispersion of the results and only in the initial period of the accident. Besides, the analysis showed that there is no threat to the building structures of Ignalina NPP confinement in case of the considered accident scenario. (author)

  4. Accident consequence studies for large fast breeder reactor containments built of concrete or steel

    A numerical analysis of accident consequences in a fast breeder reactor of commercial size after complete loss-of-heat-sink was performed, using the CONTAIN code. Two containment types were studied, which differ in the material used for shielding, support and confinement structures. It was found that the replacement of concrete as principal construction material by steel offers a significant potential for consequence mitigation in terms of thermal and pressure loads and of retention capability

  5. Probabilistic safety assessment (PSA) for serious accident consequences of nuclear power plant

    An analysis method for the PSA of the serious accident consequences of nuclear power plant was introduced and the operation rules, i.e. U5 rules on avoiding the containment failure of the nuclear power plant was put forward by the France. When the nuclear power plant happened core meltdown accident and caused the raising of internal pressure due to the spray failure of the containment, the U5 rules will make the gas inside the containment releasing to the environment through sand-bed filter, then the pressure in the containment will be relieved. The practical calculation was based on the being built nuclear power plant as the chief source. The effect of U5 rules on the serious accident consequences of the nuclear power plant was analysed. In conclusion, some valuable results were given

  6. Application of GIS in prediction and assessment system of off-site accident consequence for NPP

    The assessment and prediction software system of off-site accident consequence for Guangdong Nuclear Power Plant (GNARD2.0) is a GIS-based software system. The spatial analysis of radioactive materials and doses with geographic information is available in this system. The structure and functions of the GNARD system and the method of applying ArcView GIS are presented

  7. Consequences of Chernobyl accident for Poland: Retrospective assessment after 10 years

    The regional contamination in Poland after Chernobyl accident has been presented. On this base the biological and medical consequences have been discussed. The neonatal mortality as well as cancer frequency for selected regional population in Poland have been analysed during the last decade. 10 figs, 20 tabs

  8. Environmental decision support system on base of geoinformational technologies for the analysis of nuclear accident consequences

    The report deals with description of the concept and prototype of environmental decision support system (EDSS) for the analysis of late off-site consequences of severe nuclear accidents and analysis, processing and presentation of spatially distributed radioecological data. General description of the available software, use of modem achievements of geostatistics and stochastic simulations for the analysis of spatial data are presented and discussed

  9. Patterns and consequences of inadequate sleep in college students: substance use and motor vehicle accidents.

    Taylor, Daniel J; Bramoweth, Adam D

    2010-06-01

    We examined college sleep patterns and consequences using a cross-sectional design. We found that students get insufficient sleep and frequently use medication and alcohol as sleep aids, use stimulants as alertness aids, and fall asleep at the wheel, or have motor vehicle accidents due to sleepiness. Future studies should focus on effective interventions for sleep in college students. PMID:20472221

  10. The Role of Countermeasures in Mitigating the Radiological Consequences of Nuclear Power Plant Accidents

    During the Fukushima accident the mitigation actions played an important role to decrease the consequences of the accident. The countermeasures are the actions that should be taken after the occurrence of a nuclear accident to protect the public against the associated risk. The actions may be represented by sheltering, evacuation, distribution of stable iodine tablets and/or relocation. This study represents a comprehensive probabilistic study to investigate the role of the adoption of the countermeasures in case of a hypothetical accident of type LOCA for a nuclear power plant of PWR (1000 Mw) type. This work was achieved through running of the PC COSYMA(1) code. The effective doses in different organs, short and long term health effects, and the associated risks were calculated with and without countermeasures. In addition, the overall costs of the accident and the costs of countermeasures are estimated which represent our first trials to know how much the postulated accident costs. The source term of a hypothetical accident is determined by knowing the activity of the core inventory. The meteorological conditions around the site in addition to the population distribution were utilized as input parameters. The stability conditions and the height of atmospheric boundary layers ABL of the concerned site were determined by developing a computer program utilizing Pasquill-Gifford atmospheric stability conditions. The results showed that, the area around the site requires early and late countermeasures actions after the accident especially in the downwind sectors. For late countermeasures, the duration of relocation ranged from about two to 10 years. The adoption of the countermeasures increases the costs of emergency planning by 40% but reduces the risk associated with the accident. (author)

  11. European expert network for the reduction of uncertainties in severe accident safety issues (EURSAFE)

    EURSAFE thematic network was a concerted action in the sixth framework programme of the European Commission. It established a large consensus among the main actors in nuclear safety on the severe accident issues where large uncertainties still subsist. The conclusions were derived from a first-of-kind phenomena identification and ranking tables (PIRT) on all aspects of severe accident also realised in the frame of the project. Starting from a list of all severe accident phenomena containing approximately 1000 entries and established by the twenty partner organisations, 106 phenomena were retained eventually as both important for safety and still lacking sufficient knowledge. Ultimately, 21 research areas for addressing these phenomena regrouped according to their similarities were identified. A networking structure for implementing and executing the necessary research was proposed, which promotes integration and harmonisation of the different national programmes. A severe accident database structure was proposed to ensure preservation of experimental data and enhanced communication for data exchange and use for severe accident codes assessment. The final product, named EURSAFE, is a website network, http://asa2.jrc.it/eursafe, connecting nodes located at partner sites. As the result of an action involving R and D governmental institutions, regulatory bodies, nuclear industry, utilities and universities from six EU Member States (Finland, France, Germany, Spain, Sweden, UK) plus JRC, three European third countries (Czech Republic, Hungary, Switzerland), and USA, EURSAFE represents a significant step towards harmonisation and credibility of the approaches, and resolution of the remaining severe accident issues

  12. The Fukushima Daiichi Accident. Technical Volume 4/5. Radiological Consequences. Annexes

    The Fukushima Daiichi Accident consists of a Report by the IAEA Director General and five technical volumes. It is the result of an extensive international collaborative effort involving five working groups with about 180 experts from 42 Member States with and without nuclear power programmes and several international bodies. It provides a description of the accident and its causes, evolution and consequences, based on the evaluation of data and information from a large number of sources available at the time of writing. The Fukushima Daiichi Accident will be of use to national authorities, international organizations, nuclear regulatory bodies, nuclear power plant operating organizations, designers of nuclear facilities and other experts in matters relating to nuclear power, as well as the wider public. The set contains six printed parts and five supplementary CD-ROMs. Contents: Report by the Director General; Technical Volume 1/5, Description and Context of the Accident; Technical Volume 2/5, Safety Assessment; Technical Volume 3/5, Emergency Preparedness and Response; Technical Volume 4/5, Radiological Consequences; Technical Volume 5/5, Post-accident Recovery; Annexes. The Report by the Director General is available separately in Arabic, Chinese, English, French, Russian, Spanish and Japanese

  13. The accident at the Chernobyl' nuclear power plant and its consequences

    The material is taken from the conclusions of the Government Commission on the causes of the accident at the fourth unit of the Chernobyl' nuclear power plant and was prepared by a team of experts appointed by the USSR State Committee on the Utilization of Atomic Energy. It contains general material describing the accident, its causes, the action taken to contain the accident and to alleviate its consequences, the radioactive contamination and health of the population and some recommendations for improving nuclear power safety. 7 annexes are devoted to the following topics: water-graphite channel reactors and operating experience with RBMK reactors, design of the reactor plant, elimination of the consequences of the accident and decontamination, estimate of the amount, composition and dynamics of the discharge of radioactive substances from the damaged reactor, atmospheric transport and radioactive contamination of the atmosphere and of the ground, expert evaluation and prediction of the radioecological state of the environment in the area of the radiation plume from the Chernobyl' nuclear power station, medical-biological problems. A separate abstract was prepared for each of these annexes. The slides presented at the post-accident review meeting are grouped in two separate volumes

  14. Overview of Sandia National Laboratories and Khlopin Radium Institute collaborative radiological accident consequence analysis efforts

    In January, 1995 a collaborative effort to improve radiological consequence analysis methods and tools was initiated between the V.G. Khlopin Institute (KRI) and Sandia National Laboratories (SNL). The purpose of the collaborative effort was to transfer SNL's consequence analysis methods to KRI and identify opportunities for collaborative efforts to solve mutual problems relating to the safety of radiochemical facilities. A second purpose was to improve SNL's consequence analysis methods by incorporating the radiological accident field experience of KRI scientists (e.g. the Chernobyl and Kyshtym accidents). The initial collaborative effort focused on the identification of: safety criteria that radiochemical facilities in Russia must meet; analyses/measures required to demonstrate that safety criteria have been met; and data required to complete the analyses/measures identified to demonstrate the safety basis of a facility

  15. The accident at the Chernobyl' nuclear power plant and its consequences. Pt. 1. General material

    The report contains a presentation of the Chernobyl' nuclear power station and of the RBMK-1000 reactor, including its principal physical characteristics, the safety systems and a description of the site and of the surrounding region. After a chronological account of the events which led to the accident and an analysis of the accident using a mathematical model it is concluded that the prime cause of the accident was an extremely improbable combination of violations of instructions and operating rules committed by the staff of the unit. Technical and organizational measures for improving the safety of nuclear power plants with RBMK reactors have been taken. A detailed description of the actions taken to contain the accident and to alleviate its consequences is given and includes the fire fighting at the nuclear power station, the evaluation of the state of the fuel after the accident, the actions taken to limit the consequences of the accident in the core, the measures taken at units 1, 2 and 3 of the nuclear power station, the monitoring and diagnosis of the state of the damaged unit, the decontamination of the site and of the 30 km zone and the long-term entombment of the damaged unit. The measures taken for environmental radioactive contamination monitoring, starting by the assessment of the quantity, composition and dynamics of fission products release from the damaged reactor are described, including the main characteristics of the radioactive contamination of the atmosphere and of the ground, the possible ecological consequences and data on the exposure of plant and emergency service personnel and of the population in the 30 km zone around the plant. The last part of the report presents some recommendations for improving nuclear power safety, including scientific, technical and organizational aspects and international measures. Finally, an overview of the development of nuclear power in the USSR is given

  16. Proceedings of the first international conference 'The radiological consequences of the Chernobyl accident'

    Five main objectives were assigned to the EC/CIS scientific collaborative programme: improvement of the knowledge of the relationship between doses and radiation-induced health effects; updating of the arrangements for off-site emergency management response (shot- and medium term)in the even of a future nuclear accident; assisting the relevant CIS Ministries alleviate the consequences of the Chernobyl accident, in particular in the field of restoration of contaminated territories; elaboration of a scientific basis to definite the content of Community assistance programmes; updating of the local technical infrastructure, and implementation of a large programme of exchange of scientists between both Communities. The topics addressed during the Conference mainly reflect the content of the joint collaborative programme: environmental transfer and decontamination, risk assessment and management, health related issues including dosimetry. The main aims of the Conference are to present the major achievements of the joint EC/CIS collaborative research programme (1992-1995) of the consequences of the Chernobyl accident, and to promote an objective evaluation of them by the international scientific community. The Conference is taking place close to the 10th anniversary of the accident and we hope it will contribute to more objective communication of the health and environmental consequences of the Chernobyl accident, and how these may be mitigated in future. The Conference is expected to be an important milestone in the series of meetings which will take place internationally around the 10th anniversary of the nuclear accident. It also provides a major opportunity for all participants to become acquainted with software developed within the framework of the collaborative programme, namely: Geographical Information Systems displaying contamination levels and dose-commitments; Decision Support Systems for the management of contaminated territories; Decision Support Systems for

  17. Uncertainty analysis for control rod ejection accidents simulated by KIKO3D/TRABCO code system

    Recently, considerable conservatism must be applied in the traditional safety analyses for taking into account the uncertainties originating from the input parameters, approximations in the models, due to the safety reserves, etc. The extreme values for all of the input parameters are supposed in the traditional safety analysis at the same time. Additionally it must be mentioned that the selection of the input parameter values leading to conservative results often is not easy. The main goal of this paper is to present a more realistic methodology for the case of control rod ejection accidents. The applied consistent statistical approach leads to conservative results also, but avoids the unnecessary cumulative conservatism. A method based on a mathematical model ('Two-Sided Statistical Tolerance Intervals', [1-2]) was chosen for the realization of uncertainty analyses of Reactivity Initiated Accidents (RIA). (author)

  18. Advanced Approach to Consider Aleatory and Epistemic Uncertainties for Integral Accident Simulations

    The use of best-estimate codes together with realistic input data generally requires that all potentially important epistemic uncertainties which may affect the code prediction are considered in order to get an adequate quantification of the epistemic uncertainty of the prediction as an expression of the existing imprecise knowledge. To facilitate the performance of the required epistemic uncertainty analyses, methods and corresponding software tools are available like, for instance, the GRS-tool SUSA (Software for Uncertainty and Sensitivity Analysis). However, for risk-informed decision-making, the restriction on epistemic uncertainties alone is not enough. Transients and accident scenarios are also affected by aleatory uncertainties which are due to the unpredictable nature of phenomena. It is essential that aleatory uncertainties are taken into account as well, not only in a simplified and supposedly conservative way but as realistic as possible. The additional consideration of aleatory uncertainties, for instance, on the behavior of the technical system, the performance of plant operators, or on the behavior of the physical process provides a quantification of probabilistically significant accident sequences. Only if a safety analysis is able to account for both epistemic and aleatory uncertainties in a realistic manner, it can provide a well-founded risk-informed answer for decision-making. At GRS, an advanced probabilistic dynamics method was developed to address this problem and to provide a more realistic modeling and assessment of transients and accident scenarios. This method allows for an integral simulation of complex dynamic processes particularly taking into account interactions between the plant dynamics as simulated by a best-estimate code, the dynamics of operator actions and the influence of epistemic and aleatory uncertainties. In this paper, the GRS method MCDET (Monte Carlo Dynamic Event Tree) for probabilistic dynamics analysis is explained

  19. Level of health of cleaners taking part in the Chernobyl accident consequences

    During the period of 1986-1988 about 3,000 Moldova citizens took part in Chernobyl NPP accident consequences elimination. In this article the level of morbidity, disability and mortality among Chernobyl accident consequences liquidation participants is analyzed. As a result of analysis of medical documentation and statistical data was revealed that the sickness rate among disaster fighters 2,3 times higher than general sickness rate of the population in Moldova. Disability in this category is at average of 73 per cent as opposed to the overall index for the population of Moldova - 4,4%, this means it is 17 times higher. Mortality among the participants of the accident at Chernobyl NPP is 6 times higher of general data. The participants of the breakdown elimination of Chernobyl accident consequences are equal in their right with the participants and invalids of war and with the disabled workers. Medical and social security of this group is regulated by the legislation of the Republic of Moldova

  20. Severe accident modeling and offsite dose consequence evaluations for nuclear power plant emergency planning

    We have investigated the roles of Firewater Addition System and Passive Flooder in ABWR severe accidents, such as LOCA and SBO. The results are apparent that Firewater System is vital in the highly unlikely situation where all AC are lost. Also in this paper, we present EPZDose, an effective and faster-than-real time code for offsite dose consequences predictions and evaluations. Illustrations with the release from our severe accident scenario show friendly and informative user's interface for supporting decision makings in nuclear emergency situations. (author)

  1. V.A. Baraboj. Chernobyl: ten years later. Medical consequences of radiation accidents

    Review of the book - Chernobyl: ten years later. Medical consequences of radiation accidents (Kiev, Chernobylinterinform, 1996) by V.A. Baraboj - is presented. The book is based on experimental data obtained by author and available data of other scientists. It is shown that experiments on rats irradiation demonstrate the same combination of symptoms as persons participated in Chernobyl accident response. Attention is paid to the dosimetric, genetic, phenotypic features of exposed persons. Contributions of chemical hazardous pollutants and psychoemotional stress to the general pattern were also accounted. The importance of the book for specialists and public is accentuated

  2. Radiation health consequences after the accident of Chernobyl Nuclear Power Plant

    The sources of divergences in health consequences assessment after Chernobyl accident have been discussed. The average data about the cancer incidence in Poland have been presented. On that background the frequency of thyroid cancer, being considered as a result of iodine radionuclides exposure after Chernobyl accident in May 1986, have been performed. The great geographic differences in cancer incidence have been underlined. The observed differences between the selected group of people of different age and sex have been also discussed. 14 refs, 11 tabs, 3 figs

  3. RADIATION-HYGIENIC AND MEDICAL CONSEQUENCES OF THE СHERNOBYL ACCIDENT: RESULTS AND PROGNOSIS

    G. G. Onischenko

    2011-01-01

    Full Text Available An article is devoted to the analysis of the radiation situation in the dynamics during the years since the accident at the Chernobyl nuclear power plant in 1986. Data on the scope of activities fulfilled for the assessment of the territories radioactive contamination levels and foodstuffs contamination levels, on the values of the exposure doses for the population living on the contaminated territories, on the medical and socio-psychological consequences of the Chernobyl accident is presented. Basic norms and principles, used during the protective measures development and introduction, are considered, their effectiveness is demonstrated. Mistakes emerged during protective measures implementation are analyzed, the prognosis of the population exposure dose values for the 70-year period since the accident and main directions of activities for the contaminated territories remediation and normal life conditions restoration for the population at these territories are presented.

  4. Evaluation of nuclear accident consequences at INR / Nuclear Fuel Plant at Pitesti site

    In the last years, and especially after the Chernobyl accident, considerable efforts have been devoted to develop computer codes for evaluating the radiological impact of nuclear accident and gathering information on alternative counter measures implementing corresponding to different stages of an accident. One of the most important computer codes developed to this aim is COSYMA for radiological and economical consequences evaluations of accidental release of radioactive contaminants in the atmosphere. The paper presents the results obtained with COSYMA computer code for the case of a serious core damage of TRIGA nuclear reactor from INR / Nuclear Fuel Plant at Pitesti site. The specific meteorological conditions at this site, and data on the distribution of population, agricultural production distribution for risk area were taken into account. Short- and long-term doses to the public in the surrounding area, the contribution of different isotopes and exposure pathways, health effects and air and ground concentrations, are also presented. (authors)

  5. Development of information resources package for the Chernobyl accident and its consequences by INIS

    The Chernobyl accident was a global catastrophe that captured global attention and as such literature on the Chernobyl accident and its consequences is an important subject covered by the International Nuclear Information System (INIS) Database. The INIS Database contains about 21000 bibliographic records and 9000 full text documents on this subject from 1986 up to August 2006. Based on these extensive resources INIS released a DVD that contained bibliographic references and full text documents as well a bibliometric study of the Chernobyl references on the occasion of the International Conference entitled 'Chernobyl: Looking Back to Go Forwards' held in Vienna on 6 and 7 September 2005. Subsequently, INIS decided to release Revision 1 of the DVD in August 2006 for the twentieth anniversary of the Chernobyl accident with additional value added information sources. This paper briefly discusses the bibliometric parameters of the references, the contents of DVD and the activities undertaken to produce the Chernobyl information resources package

  6. The ASN and the consequences of the Fukushima-Daiichi nuclear accident

    This Power Point document first recalls the sources of exposure to radiations for the French population, the effects of radiation, and some data on the Chernobyl accident. It presents the ASN, its organisation, its means, its missions. It presents the different French nuclear sites, indicates the mean age of nuclear reactors in the World. It describes the licence renewal process, the safety re-examination process. Then, it addresses the Fukushima accident and more particularly the main challenges after the accident: to restore a safe status for the installations, to manage the contamination of the environment. It addresses the consequences for France, i.e mainly safety additional assessment process which has been launched, and the ASN opinion. It indicates the installations located in the Rhone-Alpes region to be assessed in priority, describes the ASN approach for the next months

  7. Two decades of radiological accidents direct causes, roots causes and consequences

    Rozental Jose de Julio

    2002-01-01

    Full Text Available Practically all Countries utilize radioisotopes in medicine, industry, agriculture and research. The extent to which ionizing radiation practices are employed varies considerably, depending largely upon social and economic conditions and the level of technical skills available in the country. An overview of the majority of practices and the associated hazards will be found in the Table IV to VII of this document. The practices in normal and abnormal operating conditions should follow the basic principles of radiation protection and the Safety of Radiation Sources, considering the IAEA Radiation Protection and the Safety of Radiation Sources, Safety Series 120 and the IAEA Recommendation of the Basic Safety Standards for Radiation Protection, Safety Series Nº 115. The Standards themselves underline the necessity to be able to predict the radiological consequences of emergency conditions and the investigations that should need to be done. This paper describes the major accidents that had happened in the last two decades, provides a methodology for analyses and gives a collection of lessons learned. This will help the Regulatory Authority to review the reasons of vulnerabilities, and to start a Radiation safety and Security Programme to introduce measurescapable to avoid the recurrence of similar events. Although a number of accidents with fatalities have caught the attention of the public in recent year, a safety record has accompanied the widespread use of radiation sources. However, the fact that accidents are uncommon should not give grounds for complacency. No radiological accident is acceptable. From a radiation safety and security of the sources standpoint, accident investigation is necessary to determine what happened, why, when, where and how it occurred and who was (were involved and responsible. The investigation conclusion is an important process toward alertness and feedback to avoid careless attitudes by improving the comprehension

  8. Two decades of radiological accidents direct causes, roots causes and consequences

    Practically all countries utilize radioisotopes in medicine, industry, agriculture and research. The extent to which ionizing radiation practices are employed varies considerably, depending largely upon social and economic conditions and the level of technical skills available in the country. An overview of the majority of practices and the associated hazards will be found in the Table IV to VII of this document.The practices in normal and abnormal operating conditions should follow the basic principles of radiation protection and the Safety of Radiation Sources, considering the IAEA Radiation Protection and the Safety of Radiation Sources, Safety Series 120 and the IAEA Recommendation of the Basic Safety Standards for Radiation Protection, Safety Series 115. The Standards themselves underline the necessity to be able to predict the radiological consequences of emergency conditions and the investigations that should need to be done. This paper describes the major accidents that had happened in the last two decades, provides a methodology for analyses and gives a collection of lessons learned. This will help the Regulatory Authority to review the reasons of vulnerabilities, and to start a Radiation Safety and Security Programme to introduce measures capable to avoid the recurrence of similar events. Although a number of accidents with fatalities have caught the attention of the public in recent year, a safety record has accompanied the widespread use of radiation sources. However, the fact that accidents are uncommon should not give grounds for complacency. No radiological accident is acceptable. From a radiation safety and security of the sources standpoint, accident investigation is necessary to determine what happened, why, when, where, and how it occurred and who was (were) involved and responsible. The investigation conclusion is an important process toward alertness and feedback to avoid careless attitudes by improving the comprehension of Safety Performance

  9. Concept and validation studies of the real-time reactor-accident consequences assessment model ECOSYS

    The Chernobyl accident has demonstrated the urgent need for computer programs for real-time assessment of potential radiological consequences of major reactor accidents and for timely recommendations of useful and cost-efficient counter measures. During the past decade the dynamic radioecological program ECOSYS has been developed for nuclear accident consequence assessment with high resolution in space, time and exposure pathways. The Chernobyl reactor accident leading to relatively high contamination of Southern Germany provided excellent conditions for realistic validation studies of concept, sub-models and parameters of ECOSYS. To this purpose more than 7000 low level and in-situ gamma spectroscopy measurements were performed to study experimentally the behaviour of radionuclides in foodchains and in the urban environment and to compare the results to theoretical predictions of ECOSYS. The results show good agreement in the contamination levels of important food stuffs and in external exposure dose rates from a given surface contamination. Improvements were necessary in the assumptions regarding the food consumption habits which changed considerably - and in the functions describing the weathering off from urban and plant surfaces. The results of this validation study and the concept of the improved computerised model, which has subsequently been converted into a real-time code, are discussed in detail

  10. Evaluation of radiological and economic consequences associated with an accident in a fusion power plant

    Schneider, T. E-mail: schneider@cepn.asso.fr; Lepicard, S.; Saez, R.M.; Cabal, H.; Lechon, Y.; Ward, D.; Hamacher, T.; Aquilonius, K.; Hallberg, B.; Korhonen, R

    2001-11-01

    The evaluation of the external costs associated with an accident in a fusion power plant points out that the consequences of such an event, as far as health and environmental impacts are concerned, remain rather limited. This paper presents the main components of the evaluation on accident, performed in the framework of the Studies on Socio-Economic Research on Fusion SERF under the EURATOM agreement. This evaluation, limited to the health and environmental impacts, shows that the external costs of the fusion accident is in the range of 10{sup -5}-10{sup -4} mEURO/kW h while the total external costs for fusion are estimated in the range of a few mEURO per kilowatt hour. It should be noted that even with the integration of risk aversion, the external cost associated with the accident scenario for fusion power plant still remains quite limited due to the low radiological impacts that would have to support the populations surrounding the power plant if an accident occurred, especially the absence of evacuation and relocation of the population and the very limited constraints on food products.