WorldWideScience

Sample records for acceptors computational evidence

  1. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure, and...... gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting that the...

  2. Quantum computing with acceptor spins in silicon

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin–orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin–orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin–orbit induced dipole–dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin–orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin–orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  3. Theory and computational modeling: Medium reorganization and donor/acceptor coupling in electron transfer processes

    Newton, M.D.; Feldberg, S.W.; Smalley, J.F.

    1998-03-01

    The continuing goal is to convert the rapidly accumulating mechanistic information about electron transfer (et) kinetics (often representable in terms of simple rate constants) into precise tools for fine-tuned control of the kinetics and for design of molecular-based systems which meet specified et characteristics. The present treatment will be limited to the kinetic framework defined by the assumption of transition state theory (TST). The primary objective of this paper is to report recent advances in the theoretical formulation, calculation, and analysis of energetics and electronic coupling pertinent to et in complex molecular aggregates. The control of et kinetics (i.e., enhancing desired processes, while inhibiting others) involves, of course, both system energetics (especially reorganization energies (E{sub r}) and free energy changes ({Delta}G{sup 0})) and electronic coupling of local D and A sites, which for thermal processes is most directly relevant only after the system has reached the appropriate point (or region) along the reaction coordinate (i.e., the transition state). The authors first discuss TST rate constant models, emphasizing genetic features, but also noting some special features arising when metal electrodes are involved. They then turn to a consideration of detailed aspects of medium reorganization and donor/acceptor coupling. With these theoretical tools in hand, they examine the results of recent applications to complex molecular systems using the techniques of computational quantum chemistry and electrostatics, together with detailed analysis of the numerical results and comparison with recent electrochemical kinetic data.

  4. Benzo[c][1,2,5]thiadiazole Donor-Acceptor Dyes: A Synthetic, Spectroscopic, and Computational Study.

    Barnsley, Jonathan E; Shillito, Georgina E; Larsen, Christopher B; van der Salm, Holly; Wang, Lei E; Lucas, Nigel T; Gordon, Keith C

    2016-03-24

    The synthesis, optical characterization and computational modeling of seven benzo[c][1,2,5]thiadiazole (BTD) donor-acceptor dyes are reported. These dyes have been studied using electrochemical analysis, electronic absorption, emission, and Raman and resonance Raman spectroscopies coupled with various density functional theoretical approaches. Crystal structure geometries on a number of these compounds are also reported. The optical spectra are dominated by low energy charge-transfer states; this may be modulated by the coupling between donor and acceptor through variation in donor energy, variation of the donor-acceptor torsion angle, and incorporation of an insulating bridge. These modifications result in a perturbation of the excitation energy for this charge-transfer transition of up to ∼2000 cm(-1). Emission spectra exhibit significant solvatochromisim, with Lippert-Mataga analysis yielding Δμ between 8 and 33 D. Predicted λmax, ε, and Raman cross sections calculated by M06L, B3LYP, PBE0, M06, CAM-B3LYP, and ωB97XD DFT functionals were compared to experimental results and analyzed using multivariate analysis, which shows that hybrid functionals with 20-27% HF best predict ground state absorption, while long-range corrected functionals best predict molecular polarizabilities. PMID:26918584

  5. Evidence that bank vole PrP is a universal acceptor for prions.

    Joel C Watts

    2014-04-01

    Full Text Available Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP, we inoculated Tg(M109 and Tg(I109 mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109 and Tg(I109 mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD subtype MM1, into Tg(M109 mice gave incubation periods of ∼200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ∼250 days, which shortened to ∼150 days upon second passage in Tg(M109 mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109 mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates--including the size of proteinase K-resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability--were remarkably conserved upon serial passage in Tg(M109 mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions.

  6. Donor-Acceptor Complexes between Ammonia and Sulfur Trioxide: An FTIR and Computational Study.

    Haupa, Karolina; Bil, Andrzej; Mielke, Zofia

    2015-10-29

    The complexes of ammonia with sulfur trioxide have been studied using FTIR matrix isolation spectroscopy and DFT/B3LYP calculations with the aug-cc-pVTZ basis set. The NH3/SO3/Ar matrixes were prepared in two different ways. In one set of experiments the matrix was prepared by the simultaneous deposition of the NH3/Ar mixture and SO3 vapor from the thermal decomposition of K2S2O7. In the second set of experiments thermolysis products of sulfamic acid were trapped in an argon matrix. Both methods of matrix preparation led to the formation of the H3N·SO3 electron donor-acceptor complex that was characterized earlier. In the matrixes comprising thermolysis products of sulfamic acid, in addition to H3N·SO3, the H3N-SO3···NH3 complex (II(D)) was also identified. The identity of the complex was confirmed by comparison of the experimental and theoretical spectra of H3N-SO3···NH3 and D3N-SO3···ND3. The performed calculations show that in H3N-SO3···NH3 the two N atoms and the S atom are collinear; the two S-N bonds are nonequivalent, one is much shorter (2.230 Å) than the other one (2.852 Å). In the AIM topological analysis, the interaction energy decomposition and topological properties of the electron localizability indicator (ELI-D) allowed us to categorize the stronger N-S bond in the II(D) complex as a dative bond and to assume that the fragile N-S bond is a consequence of a weak electron-donor-acceptor interaction. The calculations indicate that the identified II(D) complex corresponds to a local minimum on the PES of the NH3/SO3 system of 2:1 stoichiometry. The (NH3)2SO3 complex, II(HB), corresponding to a global minimum is 7.95 kcal mol(-1) more stable than the II(D) complex. The reason that the II(D) complex is present in the matrix but not the II(HB) complex is discussed. PMID:26447490

  7. Evidence of assessing computational thinking

    Selby, Cynthia; Dorling, Mark; Woollard, John

    2014-01-01

    Computational thinking is at the heart of the new English national curriculum for computing. There is a range of academic and pedagogic interpretations of the concept of computational thinking, a lack of understanding of the concepts and a close association of the subject with writing computer code using a programming language. Teachers might focus on a small aspect of the programme of study, thereby neglecting the breadth of content and the broader aims. In addition, the level descriptors as...

  8. Metal quinolinolate-fullerene(s) donor-acceptor complexes: evidence for organic LED molecules acting as electron donors in photoinduced electron-transfer reactions.

    D'Souza, Francis; Maligaspe, Eranda; Zandler, Melvin E; Subbaiyan, Navaneetha K; Ohkubo, Kei; Fukuzumi, Shunichi

    2008-12-17

    Tris(quinolinolate)aluminum(III) (AlQ3) is the most widely used molecule in organic light-emitting devices. There exists a strong demand for understanding the photochemical and photophysical events originating from this class of molecules. This paper provides the first report on the electron donor ability of MQ(n) (M = Al or Zn for n = 3 or 2) complexes covalently connected to a well-known electron acceptor, fullerene. To accomplish this, fullerene was functionalized with 8-hydroxyquinoline at different ligand positions and their corresponding zinc(II) and aluminum(III) complexes were formed in situ. The weakly fluorescent metal quinolinolate-fullerene complexes formed a new class of donor-acceptor conjugates. The stoichiometry and structure of the newly formed metal quinolinolate-fullerene complexes were established from various spectroscopic methods including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and computational density functional theory studies. Electrochemical studies involving free-energy calculations suggested the possibility of photoinduced electron transfer from excited metal-quinolinolate complex to the appended fullerene entity. Femtosecond transient absorption studies confirmed such a claim and analysis of the kinetic data allowed us to establish the different photophysical events in sufficient detail. The novel features of this class of donor-acceptor conjugates include faster charge recombination compared to charge separation and decay of the charge-separated state to populate the low-lying fullerene triplet state in competition with direct charge recombination to the ground state. PMID:19053486

  9. Evidence on Anaerobic Methane Oxidation (AOM) in a boreal cultivated peatland with natural and added electron acceptors

    Dorodnikov, Maxim; Silvennoinen, Hanna; Martikainen, Pertti; Dörsch, Peter

    2015-04-01

    Anaerobic oxidation of methane (AOM) is a process of methane (CH4) consumption under anoxic conditions driven by microorganisms, which oxidize CH4 with various alternate electron acceptors (AEA): sulfate, nitrate, nitrite, metals-(Fe, Mn, Cu), organic compounds. AOM is common in marine ecosystems, where microbial sulfate reduction (SR) consumes most of the CH4 produced in sediments. Despite the global significance of AOM, the exact mechanisms and relevance of the process in terrestrial ecosystems are almost unknown. In the current study the occurrence of AOM was tested for two organic soil horizons (30 and 40 cm depth) and one mineral sub-soil (sand, 50 cm depth) of a cultivated boreal peatland (Linnansuo, Eastern Finland, energy crop Phalaris arundinacea - reed canarygrass) under controlled conditions with the addition of 13C-labeled CH4 and two common AEAs - SO4-2 and Fe+3. Concentrations of CH4, CO2 and O2 were continuously measured during 10 days of incubation and CO2 was sampled periodically under anaerobic conditions for stable 13C analysis. Oxygen dynamics revealed negligible O2 contamination during incubation and its trace amounts (0.05-0.8% from the atmospheric) were accounted in the net CH4 uptake. Application of 13C-enriched CH4 (4.9 atom%) allowed to track the label in CO2 as the end-product of AOM. The highest 13CO2 enrichment (up to 60‰) was observed in mineral sub-soil, however AOM was quantitatively more pronounced in the upper 30 cm horizon (2.1 vs. 0.2 μg CO2 g soil DW-1 in the 50 cm sub-soil). The highest AOM rate of 8.9 ng CO2 g soil DW-1 h-1 was estimated for the control treatment where no AEAs were added indicating sufficient amount of naturally available AEAs, likely organic compounds. This rate was 50 times more intensive (on the C basis) than the CH4 production potential of the same soil. In contrast, external AEAs decreased AOM rates but added Fe+3 stimulated decomposition of native SOM (as seen from the most depleted 13CO2 signatures

  10. Effect of the π Bridge and Acceptor on Intramolecular Charge Transfer in Push-Pull Cationic Chromophores: An Ultrafast Spectroscopic and TD-DFT Computational Study.

    Carlotti, Benedetta; Benassi, Enrico; Barone, Vincenzo; Consiglio, Giuseppe; Elisei, Fausto; Mazzoli, Alessandra; Spalletti, Anna

    2015-05-18

    Three (donor-π-acceptor)(+) systems with a methyl pyridinium or quinolinium as the electron-deficient group, a dimethyl amino as the electron-donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD-DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited-state optimized geometries (planar in low-polarity media and twisted in high-polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials. PMID:25728627

  11. Computational Evidence for the Smallest Boron Nanotube

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  12. Computational study of the effect of Al and In on the formation energies and acceptor levels of Mg and C dopants in GaN

    The effect of aluminium and indium on the formation energies and acceptor levels of magnesium and carbon dopants in GaN have been calculated using a density functional approach. Single aluminium and indium atoms are incorporated into the lattice at a minimal distance from the acceptor species. The formation energies are obtained as a function of the position of the Fermi level. In the absence of aluminium or indium, magnesium in a charge neutral state is found to have a formation energy of 1.1 eV, whereas carbon has a formation energy of 2.6 eV. In the presence of indium, the magnesium formation energy rises to 1.4 eV, whereas the addition of aluminium has no effect. For carbon, the presence of aluminium and indium increases the formation energy by 0.4 and 0.3 eV, respectively. Furthermore, the calculations predict that the magnesium acceptor level becomes more shallow by the addition of aluminium (from 0.14 to 0.01 eV above the valence band maximum), but is made deeper by indium (from 0.14 to 0.27 eV above the valence band maximum). The carbon acceptor level is found to remain approximately unchanged with aluminium and indium doping. These results are compared to experimental data and the effect of various approximations in the calculations is discussed. (author)

  13. Double Acceptor Interaction in Semimagnetic Quantum Dot

    A. Merwyn Jasper D. Reuben

    2011-01-01

    Full Text Available The effect of geometry of the semimagnetic Quantum Dot on the Interaction energy of a double acceptor is computed in the effective mass approximation using the variational principle. A peak is observed at the lower dot sizes as a magnetic field is increased which is attributed to the reduction in confinement.

  14. On computational and behavioral evidence regarding Hebbian transcortical cell assemblies.

    Spivey, M. J.; Andrews, M. W.; Richardson, D. C.

    1999-01-01

    Pulvermuller restricts himself to an unnecessarily narrow range of evidence to support his claims. Evidence from neural modeling and behavioral experiments provides further support for an account of words encoded as transcortical cell assemblies. A cognitive neuroscience of language must include a range of methodologies (e.g., neural, computational, and behavioral) and will need to focus on the on-line processes of real-time language processing in more natural contexts.

  15. Local computations in Dempster-Shafer theory of evidence

    Jiroušek, Radim

    2012-01-01

    Roč. 53, č. 8 (2012), s. 1155-1167. ISSN 0888-613X Grant ostatní: GA ČR(CZ) GAP403/12/2175 Institutional support: RVO:67985556 Keywords : Discrete belief functions * Dempster-Shafer theory * conditional independence * decomposable model Subject RIV: IN - Informatics, Computer Science Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/jirousek-local computations in dempster–shafer theory of evidence.pdf

  16. [Computer work and De Quervain's tenosynovitis: an evidence based approach].

    Gigante, M R; Martinotti, I; Cirla, P E

    2012-01-01

    The debate around the role of the work at personal computer as cause of De Quervain's Tenosynovitis was developed partially, without considering multidisciplinary available data. A systematic review of the literature, using an evidence-based approach, was performed. In disorders associated with the use of VDU, we must distinguish those at the upper limbs and among them those related to an overload. Experimental studies on the occurrence of De Quervain's Tenosynovitis are quite limited, as well as clinically are quite difficult to prove the professional etiology, considering the interference due to other activities of daily living or to the biological susceptibility (i.e. anatomical variability, sex, age, exercise). At present there is no evidence of any connection between De Quervain syndrome and time of use of the personal computer or keyboard, limited evidence of correlation is found with time using a mouse. No data are available regarding the use exclusively or predominantly for personal laptops or mobile "smart phone". PMID:23405595

  17. Data assimilation for computing model evidence: The attribution problem

    Carrassi, Alberto; Bocquet, Marc; Hannart, Alexis; Ghil, Michael

    2016-04-01

    A new approach potentially useful for near real time, systematic causal attribution of weather and climate-related events is described. The method is purposely designed to allow its operability at meteorological centers by synergizing causal attribution with Data Assimilation (DA) methods usually designed to deal with large nonlinear models. The concept of contextual model evidence is introduced and its link with causal attribution is stressed. It is then shown how contextual model evidence can be obtained as a side-product of the statistical inference performed for the assimilation of data. Three strategies are considered: DA-based ensemble forecasting, filtering and smoothing. The theoretical rationale of this approach is explained along with the advantages, drawbacks and limits of applicability of each strategy depending on the degree of instabilities of the underlying dynamics. The prominent features of a DA-based detection and attribution procedure are discussed. The proposal is illustrated numerically with low-order nonlinear models, and is compared with standard methods for detection and attribution showing promising performance. The convergence of the different DA-based estimates of the model evidence toward the unknown true value is explored numerically in some specific case. The method stresses on the concept of model evidence, and open questions on how to compute and interpret the response to forcing whose effects one wants to contrast with respect to model error and other source of uncertainties. Practical obstacles that need to be addressed to make the proposal readily operational within weather forecasting centers are finally laid out.

  18. Semantics guide infants' vowel learning: Computational and experimental evidence.

    Ter Schure, S M M; Junge, C M M; Boersma, P P G

    2016-05-01

    In their first year, infants' perceptual abilities zoom in on only those speech sound contrasts that are relevant for their language. Infants' lexicons do not yet contain sufficient minimal pairs to explain this phonetic categorization process. Therefore, researchers suggested a bottom-up learning mechanism: infants create categories aligned with the frequency distributions of sounds in their input. Recent evidence shows that this bottom-up mechanism may be complemented by the semantic context in which speech sounds occur, such as simultaneously present objects. To test this hypothesis, we investigated whether discrimination of a non-native vowel contrast improves when sounds from the contrast were paired consistently or randomly with two distinct visually presented objects, while the distribution of speech tokens suggested a single broad category. This was assessed in two ways: computationally, namely in a neural network simulation, and experimentally, namely in a group of 8-month-old infants. The neural network, trained with a large set of sound-meaning pairs, revealed that two categories emerge only if sounds are consistently paired with objects. A group of 49 real 8-month-old infants did not immediately show sensitivity to the pairing condition; a later test at 18 months with some of the same infants, however, showed that this sensitivity at 8 months interacted with their vocabulary size at 18 months. This interaction can be explained by the idea that infants with larger future vocabularies are more positively influenced by consistent training (and/or more negatively influenced by inconsistent training) than infants with smaller future vocabularies. This suggests that consistent pairing with distinct visual objects can help infants to discriminate speech sounds even when the auditory information does not signal a distinction. Together our results give computational as well as experimental support for the idea that semantic context plays a role in disambiguating

  19. Evidence Report: Risk of Inadequate Human-Computer Interaction

    Holden, Kritina; Ezer, Neta; Vos, Gordon

    2013-01-01

    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls.

  20. Computer-assisted learning: Evidence from a randomized experiment

    Abhijit Banerjee; Esther Duflo; Leigh Linden

    2003-01-01

    This note presents the results obtained after the first year of a two-year randomized evaluation of a computer assisted learning (CAL) program in Vadodara, India. The CAL program, implemented by a NGO, took advantage of the donation of four computers to each municipal primary school in Vadodara by the state government. The program provided each child in the fourth standard with two hours of shared computer time in which students played educational games that reinforced mathematics competencie...

  1. Hyperpolarizability studies of some nonconjugated twin donor–acceptor molecules

    Elizabeth Chirackal Varkey; Krishnapillai Sreekumar

    2011-07-01

    Extensive theoretical calculation on the effects of spacer length enhancement on the second-order NLO properties of twin donor acceptor molecules having two amide units bridged by the CH2 spacers was performed. The role of such aliphatic bridges on the Donor–Acceptor groups was computed by ZINDO/CV quantum chemical formalism. The odd-even effects were observed in twin donor acceptor systems (with two aliphatic units) linked by an alkyl spacer of varying length from = 1 to = 12. The system considered for the present study was ,'-alkane-(1, ) diyl bis-4-hydroxy hexanamides. For an odd number of CH2 spacers, the value was an order of magnitude higher than that for the even number of CH2 spacers. The origin for such oscillation is attributed to the similar oscillations in the dipole moment difference between the ground state and the dipole allowed state and to some extent on the variation in the oscillator strength.

  2. Do We Need Computer Skills to Use a Computer? Evidence from Britain

    Borghans, Lex; Ter Weel, Bas

    2003-01-01

    Using data from the 1997 Skills Survey of the Employed British Workforce, we examine the returns to computer skills in Britain. Many researchers, using information on computer use, have concluded that wage differentials between computer users and non-users might, among others, be due to differences in the embodiment of computer skills. Using unique information on the importance, level of sophistication and effectiveness of computer use, we show that computer skills do not yield significant la...

  3. Do we need computer skills to use a computer? Evidence from Britain

    Borghans, L.; ter Weel, B.J.

    2006-01-01

    Using data from the 1997 Skills Survey of the Employed British Workforce, we examine the returns to computer skills in Britain. Many researchers, using information on computer use, have concluded that wage differentials between computer users and non-users might, among others, be due to differences in the embodiment of computer skills. Using unique information on the importance, level of sophistication and effectiveness of computer use, we show that computer skills do not yield significant la...

  4. Platinum(II) Complexes of 2-(Dimethylamino)ethylselenolate-Donor-Acceptor Inter-Ligand Interactions as Evident from Experimental and TD-DFT Computational Analysis

    Dey, S.; Jain, V. K.; Knoedler, A.; Kaim, W.; Záliš, Stanislav

    č. 11 (2001), s. 2965-2973. ISSN 1434-1948 R&D Projects: GA MŠk ME 439 Institutional research plan: CEZ:AV0Z4040901 Keywords : platinum * selenium * NMR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.475, year: 2001

  5. A Systematic Literature Review of Empirical Evidence on Computer Games and Serious Games

    Connolly, Thomas M.; Boyle, Elizabeth A.; MacArthur, Ewan; Hainey, Thomas; Boyle, James M.

    2012-01-01

    This paper examines the literature on computer games and serious games in regard to the potential positive impacts of gaming on users aged 14 years or above, especially with respect to learning, skill enhancement and engagement. Search terms identified 129 papers reporting empirical evidence about the impacts and outcomes of computer games and…

  6. Syntheses, electrochemistry, and photodynamics of ferrocene-azadipyrromethane donor--acceptor dyads and triads.

    Amin, Anu N; El-Khouly, Mohamed E; Subbaiyan, Navaneetha K; Zandler, Melvin E; Supur, Mustafa; Fukuzumi, Shunichi; D'Souza, Francis

    2011-09-01

    A near-IR-emitting sensitizer, boron-chelated tetraarylazadipyrromethane, has been utilized as an electron acceptor to synthesize a series of dyads and triads linked with a well-known electron donor, ferrocene. The structural integrity of the newly synthesized dyads and triads was established by spectroscopic, electrochemical, and computational methods. The DFT calculations revealed a 'molecular clip'-type structure for the triads wherein the donor and acceptor entities were separated by about 14 Å. Differential pulse voltammetry combined with spectroelectrochemical studies have revealed the redox states and estimated the energies of the charge-separated states. Free-energy calculations revealed the charge separation from the covalently linked ferrocene to the singlet excited ADP to yield Fc(+)-ADP(•-) to be energetically favorable. Consequently, the steady-state emission studies revealed quantitative quenching of the ADP fluorescence in all of the investigated dyads and triads. Femtosecond laser flash photolysis studies provided concrete evidence for the occurrence of photoinduced electron transfer in these donor-acceptor systems by providing spectral proof for formation of ADP radical anion (ADP(•-)) which exhibits a diagnostic absorption band in the near-IR region. The kinetics of charge separation and charge recombination measured by monitoring the rise and decay of the ADP(•-) band revealed ultrafast charge separation in these molecular systems. The charge-separation performance of the triads with two ferrocenes and a fluorophenyl-modified ADP macrocycle was found to be superior. Nanosecond transient absorption studies revealed the charge-recombination process to populate the triplet ADP as well as the ground state. PMID:21793546

  7. Evidence for complex, collective dynamics and emergent, distributed computation in plants

    Peak, David; Jevin D West; Messinger, Susanna M.; Mott, Keith A.

    2004-01-01

    It has been suggested that some biological processes are equivalent to computation, but quantitative evidence for that view is weak. Plants must solve the problem of adjusting stomatal apertures to allow sufficient CO2 uptake for photosynthesis while preventing excessive water loss. Under some conditions, stomatal apertures become synchronized into patches that exhibit richly complicated dynamics, similar to behaviors found in cellular automata that perform computational tasks. Using sequence...

  8. Interface effects on acceptor qubits in silicon and germanium.

    Abadillo-Uriel, J C; Calderón, M J

    2016-01-15

    Dopant-based quantum computing implementations often require the dopants to be situated close to an interface to facilitate qubit manipulation with local gates. Interfaces not only modify the energies of the bound states but also affect their symmetry. Making use of the successful effective mass theory we study the energy spectra of acceptors in Si or Ge taking into account the quantum confinement, the dielectric mismatch and the central cell effects. The presence of an interface puts constraints to the allowed symmetries and leads to the splitting of the ground state in two Kramers doublets (Mol et al 2015 Appl. Phys. Lett. 106 203110). Inversion symmetry breaking also implies parity mixing which affects the allowed optical transitions. Consequences for acceptor qubits are discussed. PMID:26618443

  9. Gathering Empirical Evidence Concerning Links between Computer Aided Design (CAD) and Creativity

    Musta'amal, Aede Hatib; Norman, Eddie; Hodgson, Tony

    2009-01-01

    Discussion is often reported concerning potential links between computer-aided designing and creativity, but there is a lack of systematic enquiry to gather empirical evidence concerning such links. This paper reports an indication of findings from other research studies carried out in contexts beyond general education that have sought evidence…

  10. Computing the Bayesian Evidence from a Markov Chain Monte Carlo Simulation of the Posterior Distribution

    Weinberg, Martin D

    2009-01-01

    Computation of the marginal likelihood or "Bayesian Evidence" from a simulated posterior distribution is central to Bayesian model selection but is fraught with difficulty. The often-used harmonic mean approximation uses the posterior directly but is unstably sensitive to samples with anomalously small values of the likelihood and converges very slowly. The Laplace approximation is stable but makes strong, and often inappropriate, assumptions about the shape of the posterior distribution. It is useful, but not general. We need an algorithm that is general and easy to apply, like the harmonic mean approximation, but robust to sample size and multimodality. Here, I argue that the evidence can be stably computed from a posterior sample by careful attention to the numerics of the probability integral. Posing the expression for the Bayesian evidence as a Lebesgue integral, we may convert the evaluation of the sample statistic to a quadrature rule and show that the harmonic mean approximation suffers from enormous ...

  11. 浅议计算机证据的提取%Computer Evidence Extraction Study

    王勇

    2011-01-01

    In recent years,with the popularity of the rapid development of computer technology, computers have become the way people work,an indispensable part of life,at the same time,the use of computer crime after another.The use of computer-related crime in the investigation,evidence coUection,identification,and other links on the admissible are different from the traditional crime,justice workers are also facing new challenges.This is difficult to extract for the current computer crime,hard fixed the status of the common computer in the windows system to analyze the extraction of evidence,and to explore effective access to computer evidence.%近几年来,随着计算机技术的快速发展普及,计算机已成为人们工作、生活中不可缺少的部分,与此同时,利用计算机的犯罪层出不穷。对利用计算机的犯罪在侦查、取证、鉴定、采信等各个环节上都不同于传统犯罪,司法工作者也面临着新的挑战。本文针对当前计算机犯罪难提取、难固定的现状,对在windows系统中常见计算机证据的提取进行分析,并探讨有效获取计算机证据的方法。

  12. Evidence for complex, collective dynamics and emergent, distributed computation in plants.

    Peak, David; West, Jevin D; Messinger, Susanna M; Mott, Keith A

    2004-01-27

    It has been suggested that some biological processes are equivalent to computation, but quantitative evidence for that view is weak. Plants must solve the problem of adjusting stomatal apertures to allow sufficient CO(2) uptake for photosynthesis while preventing excessive water loss. Under some conditions, stomatal apertures become synchronized into patches that exhibit richly complicated dynamics, similar to behaviors found in cellular automata that perform computational tasks. Using sequences of chlorophyll fluorescence images from leaves of Xanthium strumarium L. (cocklebur), we quantified spatial and temporal correlations in stomatal dynamics. Our values are statistically indistinguishable from those of the same correlations found in the dynamics of automata that compute. These results are consistent with the proposition that a plant solves its optimal gas exchange problem through an emergent, distributed computation performed by its leaves. PMID:14732685

  13. Do company strategies and structures converge in global markets? Evidence from the computer industry.

    Duysters, Geert; Hagedoorn, John

    2001-01-01

    This note examines isomorphism and diversity in a global industry. We study how the ongoing internationalisation process has affected companies from various regions of the world. Empirical research is focussed on the international computer industry. We find that companies in this sector have become more divergent and that there is little evidence of a process of isomorphism.© 2001 JIBS. Journal of International Business Studies (2001) 32, 347–356

  14. Angry facial expressions bias gender categorization in children and adults: behavioral and computational evidence

    Bayet, Laurie; Pascalis, Olivier; Quinn, Paul C.; Lee, Kang; Gentaz, Édouard; Tanaka, James W.

    2015-01-01

    International audience Angry facial expressions bias gender categorization in children and adults: behavioral and computational evidence Angry faces are perceived as more masculine by adults. However, the developmental course and underlying mechanism (bottom-up stimulus driven or top-down belief driven) associated with the angry-male bias remain unclear. Here we report that anger biases face gender categorization toward " male " responding in children as young as 5–6 years. The bias is obs...

  15. A Note on Local Computations in Dempster-Shafer Theory of Evidence

    Jiroušek, Radim

    Innsbruck : STUDIA Universitatsverlag, 2011 - (Coolen, F.; de Cooman, G.; Fetz, T.; Oberguggenberger, M.), s. 219-227 ISBN 978-3-902652-40-9. [7th International Symposium on Imprecise Probability: Theories and Applications. Innsbruck (AT), 25.07.2011-28.07.2011] R&D Projects: GA MŠk 1M0572; GA ČR GA201/09/1891; GA ČR GEICC/08/E010 Institutional research plan: CEZ:AV0Z10750506 Keywords : belief function * conditional independence * multidimensional model * factorization * computational complexity Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2011/MTR/jirousek-a note on local computations in dempster-shafer theory of evidence.pdf

  16. Syntheses of donor-acceptor-functionalized dihydroazulenes

    Broman, Søren Lindbæk; Jevric, Martyn; Bond, Andrew;

    2014-01-01

    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine-tuning of opt...

  17. Sentence-based attentional mechanisms in word learning: evidence from a computational model.

    Alishahi, Afra; Fazly, Afsaneh; Koehne, Judith; Crocker, Matthew W

    2012-01-01

    When looking for the referents of novel nouns, adults and young children are sensitive to cross-situational statistics (Yu and Smith, 2007; Smith and Yu, 2008). In addition, the linguistic context that a word appears in has been shown to act as a powerful attention mechanism for guiding sentence processing and word learning (Landau and Gleitman, 1985; Altmann and Kamide, 1999; Kako and Trueswell, 2000). Koehne and Crocker (2010, 2011) investigate the interaction between cross-situational evidence and guidance from the sentential context in an adult language learning scenario. Their studies reveal that these learning mechanisms interact in a complex manner: they can be used in a complementary way when context helps reduce referential uncertainty; they influence word learning about equally strongly when cross-situational and contextual evidence are in conflict; and contextual cues block aspects of cross-situational learning when both mechanisms are independently applicable. To address this complex pattern of findings, we present a probabilistic computational model of word learning which extends a previous cross-situational model (Fazly et al., 2010) with an attention mechanism based on sentential cues. Our model uses a framework that seamlessly combines the two sources of evidence in order to study their emerging pattern of interaction during the process of word learning. Simulations of the experiments of (Koehne and Crocker, 2010, 2011) reveal an overall pattern of results that are in line with their findings. Importantly, we demonstrate that our model does not need to explicitly assign priority to either source of evidence in order to produce these results: learning patterns emerge as a result of a probabilistic interaction between the two clue types. Moreover, using a computational model allows us to examine the developmental trajectory of the differential roles of cross-situational and sentential cues in word learning. PMID:22783211

  18. Sentence-based attention mechanisms in word learning: Evidence from a computational model

    AfraAlishahi

    2012-07-01

    Full Text Available When looking for the referents of nouns, adults and young children are sensitive to cross- situational statistics (Yu & Smith, 2007; Smith & Yu, 2008. In addition, the linguistic context that a word appears in has been shown to act as a powerful attention mechanism for guiding sentence processing and word learning (Landau & Gleitman, 1985; Altmann & Kamide, 1999; Kako & Trueswell, 2000. Koehne & Crocker (2010, 2011 investigate the interaction between cross-situational evidence and guidance from the sentential context in an adult language learning scenario. Their studies reveal that these learning mechanisms interact in a complex manner: they can be used in a complementary way when context helps reduce referential uncertainty; they influence word learning about equally strongly when cross-situational and contextual evidence are in conflict; and contextual cues block aspects of cross-situational learning when both mechanisms are independently applicable. To address this complex pattern of findings, we present a probabilistic computational model of word learning which extends a previous cross-situational model (Fazly et al., 2010 with an attention mechanism based on sentential cues. Our model uses a framework that seamlessly combines the two sources of evidence in order to study their emerging pattern of interaction during the process of word learning. Simulations of the experiments of Koehne & Crocker (2010, 2011 reveal an overall patterns of results that are in line with their findings. Importantly, we demonstrate that our model does not need to explicitly assign priority to either source of evidence in order to produce these results: learning patterns emerge as a result of a probabilistic interaction between the two types of cues. Moreover, using a computational model allows us to examine the developmental trajectory of the differential roles of cross-situational and sentential cues in word learning.

  19. Further Evidence in Support of the Universal Nilpotent Grammatical Computational Paradigm of Quantum Physics

    Further evidence is presented in favour of the computational paradigm, conceived and constructed by Rowlands and Diaz, as detailed in Rowlands' book Zero to Infinity (2007), and in particular the authors' paper 'The Grammatical Universe: the Laws of Thermodynamics and Quantum Entanglement'. The paradigm, which has isomorphic group and algebraic quantum mechanical language interpretations, not only predicts the well-established facts of quantum physics, the periodic table, chemistry / valence and of molecular biology, whose understanding it extends; it also provides an elegant, simple solution to the unresolved quantum measurement problem. In this fundamental paradigm, all the computational constructs / predictions that emerge, follow from the simple fact, that, as in quantum mechanics, the wave function is defined only up to an arbitrary fixed phase. This fixed phase provides a simple physical understanding of the quantum vacuum in quantum field theory, where only relative phases, known to be able to encode 3+1 relativistic space-time geometries, can be measured. It is the arbitrary fixed measurement standard, against which everything that follows is to be measured, even though the standard itself cannot be, since nothing exists against which to measure it. The standard, as an arbitrary fixed reference phase, functions as the holographic basis for a self-organized universal quantum process of emergent novel fermion states of matter where, following each emergence, the arbitrary standard is re-fixed anew so as to provide a complete history / holographic record or hologram of the current fixed past, advancing an unending irreversible evolution, such as is the evidence of our senses. The fermion states, in accord with the Pauli exclusion principle, each correspond to a unique nilpotent symbol in the infinite alphabet (which specifies the grammar in this nilpotent universal computational rewrite system (NUCRS) paradigm); and the alphabet, as Hill and Rowlands

  20. Further Evidence in Support of the Universal Nilpotent Grammatical Computational Paradigm of Quantum Physics

    Marcer, Peter J.; Rowlands, Peter

    2010-12-01

    Further evidence is presented in favour of the computational paradigm, conceived and constructed by Rowlands and Diaz, as detailed in Rowlands' book Zero to Infinity (2007) [2], and in particular the authors' paper `The Grammatical Universe: the Laws of Thermodynamics and Quantum Entanglement' [1]. The paradigm, which has isomorphic group and algebraic quantum mechanical language interpretations, not only predicts the well-established facts of quantum physics, the periodic table, chemistry / valence and of molecular biology, whose understanding it extends; it also provides an elegant, simple solution to the unresolved quantum measurement problem. In this fundamental paradigm, all the computational constructs / predictions that emerge, follow from the simple fact, that, as in quantum mechanics, the wave function is defined only up to an arbitrary fixed phase. This fixed phase provides a simple physical understanding of the quantum vacuum in quantum field theory, where only relative phases, known to be able to encode 3+1 relativistic space-time geometries, can be measured. It is the arbitrary fixed measurement standard, against which everything that follows is to be measured, even though the standard itself cannot be, since nothing exists against which to measure it. The standard, as an arbitrary fixed reference phase, functions as the holographic basis for a self-organized universal quantum process of emergent novel fermion states of matter where, following each emergence, the arbitrary standard is re-fixed anew so as to provide a complete history / holographic record or hologram of the current fixed past, advancing an unending irreversible evolution, such as is the evidence of our senses. The fermion states, in accord with the Pauli exclusion principle, each correspond to a unique nilpotent symbol in the infinite alphabet (which specifies the grammar in this nilpotent universal computational rewrite system (NUCRS) paradigm); and the alphabet, as Hill and Rowlands

  1. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  2. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov–de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov–de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of

  3. Evident?

    Plant, Peter

    2012-01-01

    Quality assurance and evidence in career guidance in Europe are often seen as self-evident approaches, but particular interests lie behind......Quality assurance and evidence in career guidance in Europe are often seen as self-evident approaches, but particular interests lie behind...

  4. Influence of the local environment on Mn acceptors in GaAs

    As transistors continue to shrink toward nanoscale dimensions, their characteristics are increasingly dependent on the statistical variations of impurities in the semiconductor material. The scanning tunneling microscope (STM) can be used to not only study prototype devices with atomically precise placement of impurity atoms, but can also probe how the properties of these impurities depend on the local environment. Tunneling spectroscopy of Mn acceptors in GaAs indicates that surface-layer Mn act as a deep acceptor, with a hole binding energy that can be tuned by positioning charged defects nearby. Band bending induced by the tip or by these defects can also tune the ionization state of the acceptor complex, evident as a ring-like contrast in STM images. The interplay of these effects is explored over a wide range of defect distances, and understood using iterative simulations of tip-induced band bending. (paper)

  5. Influence of the local environment on Mn acceptors in GaAs.

    Lee, Donghun; Gohlke, David; Benjamin, Anne; Gupta, Jay A

    2015-04-22

    As transistors continue to shrink toward nanoscale dimensions, their characteristics are increasingly dependent on the statistical variations of impurities in the semiconductor material. The scanning tunneling microscope (STM) can be used to not only study prototype devices with atomically precise placement of impurity atoms, but can also probe how the properties of these impurities depend on the local environment. Tunneling spectroscopy of Mn acceptors in GaAs indicates that surface-layer Mn act as a deep acceptor, with a hole binding energy that can be tuned by positioning charged defects nearby. Band bending induced by the tip or by these defects can also tune the ionization state of the acceptor complex, evident as a ring-like contrast in STM images. The interplay of these effects is explored over a wide range of defect distances, and understood using iterative simulations of tip-induced band bending. PMID:25782688

  6. Changing the acceptor identity of a transfer RNA by altering nucleotides in a "variable pocket".

    McClain, W H; Foss, K

    1988-09-30

    The specificity of tRNA(Arg) (arginine transfer RNA) for aminoacylation (its acceptor identity) were first identified by computer analysis and then examined with amber suppressor tRNAs in Escherichia coli. On replacing two nucleotides in tRNA(Phe) (phenylalanine transfer RNA) with the corresponding nucleotides from tRNA(Arg), the acceptor identity of the resulting tRNA was changed to that of tRNA(Arg). The nucleotides used in the identity transformation occupy a "variable pocket" structure on the surface of the tRNA molecule where two single-stranded loop segments interact. The middle nucleotide in the anticodon also probably contributes to the interaction, since an amber suppressor of tRNA(Arg) had an acceptor identity for lysine as well as arginine. PMID:2459773

  7. Conductivity mechanisms in acceptor doped KTaO3 crystals

    This paper reports on the electrical conductivity of perovskite-structured KTaO3 crystals acceptor doped with Co, Cu or Fe investigated after treatments in oxidizing and reducing atmospheres under both wet and dry conditions. Isotope effect measurements (using H2O vs. D2O) show that, after treatments in wet gases of low P(O2), all the crystals are primarily protonic conductors, through a process of proton hopping with an activation energy close to 0.84 eV. Electron hole conduction dominates at high P(O2) in the case of Fe and Cu doping. For Co-doped crystals, the conductivity is independent of P(O2) up to 1 atm., indicating that ionic conduction predominates. There is no evidence of oxygen vacancy migration, leading to the conclusion that the activation energy for the process is relatively high

  8. Computer Assisted Audit Techniques and Audit Quality in Developing Countries: Evidence from Nigeria

    Omonuk JB

    2015-12-01

    Full Text Available Most business organizations world-over have computerized their accounting systems. Extant literature finds that the use of Computer Assisted Audit Techniques (CAATs is positively related to the quality of audit reports. CAATs are widely applied to audit financial statements in developed countries. However, there is a void in literature about the audit of computerized accounts in developing countries. We draw a sample from Nigeria to investigate the following questions, “Do auditors effectively audit computerized accounts and; Is there a positive relationship between the use of CAATs and audit quality?” Using descriptive statistics, correlation analysis and logistic multiple regression, we provide evidence that: (1 CAATs are effectively used, (2 there is a positive relationship between the use of CAATS and audit quality, and (3 in a sample that excludes the big 4 International audit firms, local Nigerian firms are not effective in applying CAATs, and so, do not produce quality audit reports.

  9. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface. PMID:27355877

  10. Anomalous surplus energy transfer observed with multiple FRET acceptors.

    Srinagesh V Koushik

    Full Text Available BACKGROUND: Förster resonance energy transfer (FRET is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (k(D-->A can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates. METHODOLOGY/PRINCIPAL FINDINGS: The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean and either two or three FRET acceptors (Venus. FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates. CONCLUSIONS/SIGNIFICANCE: We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is

  11. A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory.

    Johnson, J. D. (Prostat, Mesa, AZ); Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ); Storlie, Curtis B. (North Carolina State University, Raleigh, NC)

    2006-10-01

    Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.

  12. Angry facial expressions bias gender categorization in children and adults: behavioral and computational evidence.

    Bayet, Laurie; Pascalis, Olivier; Quinn, Paul C; Lee, Kang; Gentaz, Édouard; Tanaka, James W

    2015-01-01

    Angry faces are perceived as more masculine by adults. However, the developmental course and underlying mechanism (bottom-up stimulus driven or top-down belief driven) associated with the angry-male bias remain unclear. Here we report that anger biases face gender categorization toward "male" responding in children as young as 5-6 years. The bias is observed for both own- and other-race faces, and is remarkably unchanged across development (into adulthood) as revealed by signal detection analyses (Experiments 1-2). The developmental course of the angry-male bias, along with its extension to other-race faces, combine to suggest that it is not rooted in extensive experience, e.g., observing males engaging in aggressive acts during the school years. Based on several computational simulations of gender categorization (Experiment 3), we further conclude that (1) the angry-male bias results, at least partially, from a strategy of attending to facial features or their second-order relations when categorizing face gender, and (2) any single choice of computational representation (e.g., Principal Component Analysis) is insufficient to assess resemblances between face categories, as different representations of the very same faces suggest different bases for the angry-male bias. Our findings are thus consistent with stimulus-and stereotyped-belief driven accounts of the angry-male bias. Taken together, the evidence suggests considerable stability in the interaction between some facial dimensions in social categorization that is present prior to the onset of formal schooling. PMID:25859238

  13. Angry facial expressions bias gender categorization in children and adults: behavioral and computational evidence

    Laurie eBayet

    2015-03-01

    Full Text Available Angry faces are perceived as more masculine by adults. However, the developmental course and underlying mechanism (bottom-up stimulus driven or top-down belief driven associated with the angry-male bias remain unclear. Here we report that anger biases face gender categorization towards male responding in children as young as 5-6 years. The bias is observed for both own- and other-race faces, and is remarkably unchanged across development (into adulthood as revealed by signal detection analyses (Experiments 1-2. The developmental course of the angry-male bias, along with its extension to other-race faces, combine to suggest that it is not rooted in extensive experience, e.g. observing males engaging in aggressive acts during the school years. Based on several computational simulations of gender categorization (Experiment 3, we further conclude that (1 the angry-male bias results, at least partially, from a strategy of attending to facial features or their second-order relations when categorizing face gender, and (2 any single choice of computational representation (e.g., Principal Component Analysis is insufficient to assess resemblances between face categories, as different representations of the very same faces suggest different bases for the angry-male bias. Our findings are thus consistent with stimulus-and stereotyped-belief driven accounts of the angry-male bias. Taken together, the evidence suggests considerable stability in the interaction between some facial dimensions in social categorization that is present prior to the onset of formal schooling.

  14. Ubiquitous Computing Identity Authentication Mechanism Based on D-S Evidence Theory and Extended SPKI/SDSI

    SUN Dao-qing; CAO Qi-ying

    2008-01-01

    Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classification requirements of identity authentication, the requirement of trust transfer and cross identity authentication, the bi-directional identity authentication, the security delegation and the simple privacy protection etc are all these unsolved problems. In this paper, a new novel ubiquitous computing identity authentication mechanism, named UCIAMdess, is presented. It is based on D-S Evidence Theory and extended SPKI/SDSI. D-S Evidence Theory is used in UCIAMdess to compute the trust value from the ubiquitous computing environment to the principal or between the different ubiquitous computing environments. SPKI-based authorization is expanded by adding the trust certificate in UCIAMdess to solve above problems in the ubiquitous computing environments. The identity authentication mechanism and the algorithm of certificate reduction are given in the paper to solve the multi-levels trnst-correlative identity authentication problems. The performance analyses show that UCIAMdess is a suitable security mechanism in solving the complex ubiquitous computing problems.

  15. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  16. The effect of computer-assisted interviewing on data quality: a review of the evidence

    Leeuw, E.D. de

    2008-01-01

    Computer assisted telephone interviewing, and to a lesser degree, computer assisted face-to-face interviewing, are by now widely used in survey research. Recently, self-administered forms of computer-assisted data collection, such as web surveys, have become extremely popular. Advocates of computer

  17. Synthesis and characterization of a highly strained donor-acceptor nanohoop.

    Van Raden, J M; Darzi, E R; Zakharov, L N; Jasti, R

    2016-06-15

    A highly-strained, nitrogen-doped cycloparaphenylene (CPP), aza[6]CPP, was synthesized and then converted to a donor-acceptor nanohoop, N-methylaza[6]CPP, via alkylation of the nitrogen center. The energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) for both molecules were then probed by cyclic voltammetry (CV), which revealed that the donor-acceptor nanohoop had a significantly lower LUMO energy relative to [6]CPP and aza[6]CPP. Density functional theory (DFT) revealed that the donor-acceptor nanohoop underwent a redistribution of the frontier molecular orbital (FMO) density such that a significant portion of the LUMO density resided upon the electron-deficient nitrogen-containing ring. This localization of LUMO density caused a large lowering in the LUMO energy of nearly a full electron volt, while the HOMO energy was less affected due to a large centralization of the FMO on the electron-rich phenylene backbone. This ultimately resulted in a net lowering of the HOMO-LUMO energy gap which was observed both experimentally and computationally. In addition, N-methylaza[6]CPP has a significantly lower energy LUMO than N-methylaza[8]CPP, illustrating that the FMO levels of donor-acceptor nanohoops can be tuned by adjusting the hoop size. PMID:26881906

  18. Ultrafast photoinduced energy and electron transfer in multi-modular donor-acceptor conjugates.

    El-Khouly, Mohamed E; Wijesinghe, Channa A; Nesterov, Vladimir N; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2012-10-22

    New multi-modular donor-acceptor conjugates featuring zinc porphyrin (ZnP), catechol-chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C(60)), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction-center mimics. The X-ray structure of triphenylamine-BDP is also reported. The wide-band capturing polyad revealed ultrafast energy-transfer (k(ENT) =1.0 × 10(12) s(-1)) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA-BDP-ZnP triad through metal-ligand axial coordination resulted in electron donor-acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron-transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion-pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non-polar toluene were in the range of 5.0 × 10(9)-3.5 × 10(10) s(-1). Stabilization of the charge-separated state in these multi-modular donor-acceptor polyads is also observed to certain level. PMID:22996909

  19. The Effects of Home Computers on Educational Outcomes. Evidence from a Field Experiment with Schoolchildren

    Robert Fairlie; Jonathan Robinson

    2011-01-01

    Are home computers are an important input in the educational production function? To address this question, we conduct a field experiment involving the provision of free computers to schoolchildren for home use. Low-income children attending middle and high schools in 15 schools in California were randomly selected to receive free computers and followed over the school year. The results indicate that the experiment substantially increased computer ownership and total computer use among the sc...

  20. Photoinduced Intramolecular Charge Transfer in Donor-acceptor Dyad and Donor-bridge-acceptor Triad

    Yong Ding; Yuan-zuo Li; Feng-cai Ma

    2008-01-01

    The ground and excited state properties of the [60]fullerene,diphenylbenzothiadiazole-triphenylamine (PBTDP-TPA) dyad and fullerene-diphenylbenzothiadiazole-triphenylamine (fullerene-PBTDP-TPA) triad were investigated theoretically using density functional theory with B3LYP functional and 3-21G basis set and time-dependent density functional theory with B3LYP functional and STO-3G basis set as well as 2D and 3D real space analysis methods.The 2D site representation reveals the electron-hole coherence on exci- tation.The 3D transition density shows the orientation and strength of the transition dipole moment,and the 3D charge difference density gives the orientation and result of the intramolecular charge transfer.Also, photoinduced intermolecular charge transfer (ICT) in PBTDP-TPA-fullerene triad are identified with 2D and 3D representations,which reveals the mechanisms of ICT in donor-bridge-acceptor triad on excitation. Besides that we also found that the direct superexchange ICT from donor to acceptor (tunneling through the bridge) strongly promotes the ICT in the donor-bridge-acceptor triad.

  1. Aromatic donor-acceptor interactions in non-polar environments.

    Prentice, Giles M; Pascu, Sofia I; Filip, Sorin V; West, Kevin R; Pantoş, G Dan

    2015-05-14

    We have evaluated the strength of aromatic donor-acceptor interactions between dialkyl naphthalenediimide and dialkoxynaphthalene in non-polar environments. (1)H NMR, UV-vis spectroscopy and isothermal titration calorimetry were used to characterise this interaction. We concluded that the strength of donor-acceptor interactions in heptane is sufficient to drive supramolecular assemblies in this and other aliphatic solvents. PMID:25875729

  2. Deciding not to decide: computational and neural evidence for hidden behavior in sequential choice.

    Sebastian Gluth

    2013-10-01

    Full Text Available Understanding the cognitive and neural processes that underlie human decision making requires the successful prediction of how, but also of when, people choose. Sequential sampling models (SSMs have greatly advanced the decision sciences by assuming decisions to emerge from a bounded evidence accumulation process so that response times (RTs become predictable. Here, we demonstrate a difficulty of SSMs that occurs when people are not forced to respond at once but are allowed to sample information sequentially: The decision maker might decide to delay the choice and terminate the accumulation process temporarily, a scenario not accounted for by the standard SSM approach. We developed several SSMs for predicting RTs from two independent samples of an electroencephalography (EEG and a functional magnetic resonance imaging (fMRI study. In these studies, participants bought or rejected fictitious stocks based on sequentially presented cues and were free to respond at any time. Standard SSM implementations did not describe RT distributions adequately. However, by adding a mechanism for postponing decisions to the model we obtained an accurate fit to the data. Time-frequency analysis of EEG data revealed alternating states of de- and increasing oscillatory power in beta-band frequencies (14-30 Hz, indicating that responses were repeatedly prepared and inhibited and thus lending further support for the existence of a decision not to decide. Finally, the extended model accounted for the results of an adapted version of our paradigm in which participants had to press a button for sampling more information. Our results show how computational modeling of decisions and RTs support a deeper understanding of the hidden dynamics in cognition.

  3. An integrative computational analysis provides evidence for FBN1-associated network deregulation in trisomy 21

    Mireia Vilardell

    2013-06-01

    Although approximately 50% of Down Syndrome (DS patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS. The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS. Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%, such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.

  4. Computer simulation, rhetoric, and the scientific imagination how virtual evidence shapes science in the making and in the news

    Roundtree, Aimee Kendall

    2013-01-01

    Computer simulations help advance climatology, astrophysics, and other scientific disciplines. They are also at the crux of several high-profile cases of science in the news. How do simulation scientists, with little or no direct observations, make decisions about what to represent? What is the nature of simulated evidence, and how do we evaluate its strength? Aimee Kendall Roundtree suggests answers in Computer Simulation, Rhetoric, and the Scientific Imagination. She interprets simulations in the sciences by uncovering the argumentative strategies that underpin the production and disseminati

  5. Molecular insights into the terminal energy acceptor in cyanobacterial phycobilisome.

    Gao, Xiang; Wei, Tian-Di; Zhang, Nan; Xie, Bin-Bin; Su, Hai-Nan; Zhang, Xi-Ying; Chen, Xiu-Lan; Zhou, Bai-Cheng; Wang, Zhi-Xin; Wu, Jia-Wei; Zhang, Yu-Zhong

    2012-09-01

    The linker protein L(CM) (ApcE) is postulated as the major component of the phycobilisome terminal energy acceptor (TEA) transferring excitation energy from the phycobilisome to photosystem II. L(CM) is the only phycobilin-attached linker protein in the cyanobacterial phycobilisome through auto-chromophorylation. However, the underlying mechanism for the auto-chromophorylation of L(CM) and the detailed molecular architecture of TEA is still unclear. Here, we demonstrate that the N-terminal phycobiliprotein-like domain of L(CM) (Pfam00502, LP502) can specifically recognize phycocyanobilin (PCB) by itself. Biochemical assays indicated that PCB binds into the same pocket in LP502 as that in the allophycocyanin α-subunit and that Ser152 and Asp155 play a vital role in LP502 auto-chromophorylation. By carefully conducting computational simulations, we arrived at a rational model of the PCB-LP502 complex structure that was supported by extensive mutational studies. In the PCB-LP502 complex, PCB binds into a deep pocket of LP502 with a distorted conformation, and Ser152 and Asp155 form several hydrogen bonds to PCB fixing the PCB Ring A and Ring D. Finally, based on our results, the dipoles and dipole-dipole interactions in TEA are analysed and a molecular structure for TEA is proposed, which gives new insights into the energy transformation mechanism of cyanobacterial phycobilisome. PMID:22758351

  6. Efficacy of Individual Computer-Based Auditory Training for People with Hearing Loss: A Systematic Review of the Evidence

    Helen Henshaw; Ferguson, Melanie A.

    2013-01-01

    BACKGROUND: Auditory training involves active listening to auditory stimuli and aims to improve performance in auditory tasks. As such, auditory training is a potential intervention for the management of people with hearing loss. OBJECTIVE: This systematic review (PROSPERO 2011: CRD42011001406) evaluated the published evidence-base for the efficacy of individual computer-based auditory training to improve speech intelligibility, cognition and communication abilities in adults with hearing los...

  7. Efficacy of individual computer-based auditory training for people with hearing loss: a systematic review of the evidence.

    Helen Henshaw

    Full Text Available BACKGROUND: Auditory training involves active listening to auditory stimuli and aims to improve performance in auditory tasks. As such, auditory training is a potential intervention for the management of people with hearing loss. OBJECTIVE: This systematic review (PROSPERO 2011: CRD42011001406 evaluated the published evidence-base for the efficacy of individual computer-based auditory training to improve speech intelligibility, cognition and communication abilities in adults with hearing loss, with or without hearing aids or cochlear implants. METHODS: A systematic search of eight databases and key journals identified 229 articles published since 1996, 13 of which met the inclusion criteria. Data were independently extracted and reviewed by the two authors. Study quality was assessed using ten pre-defined scientific and intervention-specific measures. RESULTS: Auditory training resulted in improved performance for trained tasks in 9/10 articles that reported on-task outcomes. Although significant generalisation of learning was shown to untrained measures of speech intelligibility (11/13 articles, cognition (1/1 articles and self-reported hearing abilities (1/2 articles, improvements were small and not robust. Where reported, compliance with computer-based auditory training was high, and retention of learning was shown at post-training follow-ups. Published evidence was of very-low to moderate study quality. CONCLUSIONS: Our findings demonstrate that published evidence for the efficacy of individual computer-based auditory training for adults with hearing loss is not robust and therefore cannot be reliably used to guide intervention at this time. We identify a need for high-quality evidence to further examine the efficacy of computer-based auditory training for people with hearing loss.

  8. Measurement and Evidence of Computer-Based Task Switching and Multitasking by "Net Generation" Students

    Judd, Terry; Kennedy, Gregor

    2011-01-01

    Logs of on-campus computer and Internet usage were used to conduct a study of computer-based task switching and multitasking by undergraduate medical students. A detailed analysis of over 6000 individual sessions revealed that while a majority of students engaged in both task switching and multitasking behaviours, they did so less frequently than…

  9. Hydrogen-multivalent acceptor complexes in high-purity germanium

    Using copper (a fast diffusing, multivalent acceptor impurity in Ge) it was shown that hydrogen can form complexes with multivalent acceptors. Hydrogen is incorporated in the Ge single crystal during its growth from a melt in a H2 atmosphere. By analogy with the interaction between lithium and multivalent acceptors two acceptor like complexes (Cu-H and Cu-H2) were found. Using Photothermal Ionization Spectroscopy and Hall effect the following energy levels are assigned: Cu-H: E/sub V/ + 17.5 meV and E/sub V/ + 170 +- 20 meV and Cu-H2: E/sub V/ + 17.0 meV. According to the model the Cu-H3 complex is neutral. Consequences for the performance of large volume radiation detectors are discussed

  10. Donor-acceptor electron transport mediated by solitons

    Brizhik, L. S.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2014-11-01

    We study the long-range electron and energy transfer mediated by solitons in a quasi-one-dimensional molecular chain (conjugated polymer, alpha-helical macromolecule, etc.) weakly bound to a donor and an acceptor. We show that for certain sets of parameter values in such systems an electron, initially located at the donor molecule, can tunnel to the molecular chain, where it becomes self-trapped in a soliton state, and propagates to the opposite end of the chain practically without energy dissipation. Upon reaching the end, the electron can either bounce back and move in the opposite direction or, for suitable parameter values of the system, tunnel to the acceptor. We estimate the energy efficiency of the donor-acceptor electron transport depending on the parameter values. Our calculations show that the soliton mechanism works for the parameter values of polypeptide macromolecules and conjugated polymers. We also investigate the donor-acceptor electron transport in thermalized molecular chains.

  11. Development of Polymer Acceptors for Organic Photovoltaic Cells

    Yujeong Kim

    2014-02-01

    Full Text Available This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs. The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9’-dioctylfluorene-co-benzothiadiazole, and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene and poly(3-cyano-4-hexylthiophene have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review.

  12. Effects of halide ions on the acceptor phase in spontaneous chemical oscillations in donor/membrane/acceptor systems.

    Goto, Kazuma; Nomoto, Tomonori; Toyota, Taro; Fujinami, Masanori

    2016-01-15

    The effects of halide ions on the acceptor phase in the chemical oscillation in donor/membrane/acceptor systems were examined. The transfer of cetyltrimethylammonium (CTA(+)) ions from the donor phase and their adsorption and desorption at the membrane/acceptor interface led to spontaneous, nonlinear oscillations of the electric potential. Chloride ions stabilized the adsorption of CTA(+) ions and gave rise to a large-amplitude, long-interval, and a long relaxation-time constant. On the contrary, iodide ions, which are more hydrophobic than chloride ions, demonstrated opposite results. This mechanism was proposed based on the simultaneous time-resolved measurements of the interfacial tensions at both the donor/membrane and membrane/acceptor interfaces and observation of the convective flow due to Marangoni instability. PMID:26476873

  13. Perspectives on Games, Computers, and Mental Health: Questions about Paradoxes, Evidences, and Challenges.

    Desseilles, Martin

    2016-01-01

    In the field of mental health, games and computerized games present questions about paradoxes, evidences, and challenges. This perspective article offers perspectives and personal opinion about these questions, evidences, and challenges with an objective of presenting several ideas and issues in this rapidly developing field. First, games raise some questions in the sense of the paradox between a game and an issue, as well as the paradox of using an amusing game to treat a serious pathology. Second, games also present evidence in the sense that they involve relationships with others, as well as learning, communication, language, emotional regulation, and hedonism. Third, games present challenges, such as the risk of abuse, the critical temporal period that may be limited to childhood, their important influence on sociocognitive learning and the establishment of social norms, and the risk of misuse of games. PMID:27458390

  14. Tuning the Electron Acceptor in Phthalocyanine-Based Electron Donor-Acceptor Conjugates.

    Sekita, Michael; Jiménez, Ángel J; Marcos, M Luisa; Caballero, Esmeralda; Rodríguez-Morgade, M Salomé; Guldi, Dirk M; Torres, Tomás

    2015-12-21

    Zinc phthalocyanines (ZnPc) have been attached to the peri-position of a perylenemonoimide (PMI) and a perylenemonoanhydride (PMA), affording electron donor-acceptor conjugates 1 and 2, respectively. In addition, a perylene-monoimide-monoanhydride (PMIMA) has been connected to a ZnPc through its imido position to yield the ZnPc-PMIMA conjugate 10. The three conjugates have been studied for photoinduced electron transfer. For ZnPc-PMIMA 10, electron transfer occurs upon both ZnPc and PMIMA excitation, giving rise to a long-lived (340 ps) charge-separated state. For ZnPc-PMI 1 and ZnPc-PMA 2, stabilization of the radical ion pair states by using polar media is necessary. In THF, photoexcitation of either ZnPc or PMI/PMA produces charge-separated states with lifetimes of 375 and 163 ps, respectively. PMID:26593778

  15. Electronic spectra and hyperpolarizabilities of structurally similar donor-acceptor dyes. A density functional theory analysis

    Sarkar, Amrita; Das, Mousumi; Bagchi, Sanjib

    2015-12-01

    Studies with density functional theory (DFT) have been done to reinforce our previous experimental findings involving the solvatochromism and the effect of protonation and for three structurally similar donor-acceptor dyes exhibiting intramolecular charge transfer transition. These dyes have similar donor (indole N/amino N) site and similar carbonyl O as the acceptor centre. The dye with an amino N donor site and indanone O as the acceptor centre has the lowest value of the energy gap between HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) and highest percentage of charge transfer from the N to the O centre. Time dependent density functional theory (TDDFT) has been used to calculate the excitation energy to the lowest singlet excited dipole-allowed states of the dyes. Effect of solvation on excitation energy has been studied by the use of polarisable continuum model (PCM). Computational results indicate that the excitation energy of these dyes is sensitive to solvent polarity and exhibits a red shift as polarity increases. The calculated excitation energies are in good agreement with the values of absorption maximum of these dyes in different solvents obtained in experiment. Studies on protonation of the dyes show that the carbonyl O to be the most favourable site of protonation for all the three dyes. Calculations of linear and first hyperpolarizabilities indicate these dyes to be suitable candidates for possible non-linear optical application.

  16. Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence

    Gimeno-Blanes, Francisco J.; Blanco-Velasco, Manuel; Barquero-Pérez, Óscar; García-Alberola, Arcadi; Rojo-Álvarez, José L.

    2016-01-01

    Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG) analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indices, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indices in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indices which are tackled from the aforementioned viewpoints, namely, heart rate turbulence (HRT), heart rate variability (HRV), and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future. PMID:27014083

  17. Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence

    Francisco Javier eGimeno-Blanes

    2016-03-01

    Full Text Available Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indexes, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indexes in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indexes which are tackled from the aforementioned viewpoints, namely, heart rate turbulence, heart rate variability, and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future.

  18. DNA minor groove binding of small molecules: Experimental and computational evidence

    Prateek Pandya; Md Maidul Islam; G Suresh Kumar; B Jayaram; Surat Kumar

    2010-03-01

    Eight indole derivatives were studied for their DNA binding ability using fluorescence quenching and molecular docking methods. These indole compounds have structural moieties similar as in few indole alkaloids. Experimental and theoretical studies have suggested that indole derivatives bind in the minor groove of DNA. Thermodynamic profiles of DNA complexes of indole derivatives were obtained from computational methods. The complexes were largely stabilized by H-bonding and van der Waal’s forces with positive entropy values. Indole derivatives were found to possess some Purine (Pu) - Pyrimidine (Py) specificity with DNA sequences. The results obtained from experimental and computational methods showed good agreement with each other, supported by their correlation constant values.

  19. Anaerobic Mineralization of Toluene by Enriched Sediments with Quinones and Humus as Terminal Electron Acceptors

    Cervantes, Francisco J.; Dijksma, Wouter; Duong-Dac, Tuan; Ivanova, Anna; Lettinga, Gatze; Field, Jim A.

    2001-01-01

    The anaerobic microbial oxidation of toluene to CO2 coupled to humus respiration was demonstrated by use of enriched anaerobic sediments from the Amsterdam petroleum harbor (APH) and the Rhine River. Both highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound anthraquinone-2,6-disulfonate (AQDS) were utilized as terminal electron acceptors. After 2 weeks of incubation, 50 and 85% of added uniformly labeled [13C]toluene were recovered as 13CO2 in HPSHA- and AQDS-supplemented APH sediment enrichment cultures, respectively; negligible recovery occurred in unsupplemented cultures. The conversion of [13C]toluene agreed with the high level of recovery of electrons as reduced humus or as anthrahydroquinone-2,6-disulfonate. APH sediment was also able to use nitrate and amorphous manganese dioxide as terminal electron acceptors to support the anaerobic biodegradation of toluene. The addition of substoichiometric amounts of humic acids to bioassay reaction mixtures containing amorphous ferric oxyhydroxide as a terminal electron acceptor led to more than 65% conversion of toluene (1 mM) after 11 weeks of incubation, a result which paralleled the partial recovery of electron equivalents as acid-extractable Fe(II). Negligible conversion of toluene and reduction of Fe(III) occurred in these bioassay reaction mixtures when humic acids were omitted. The present study provides clear quantitative evidence for the mineralization of an aromatic hydrocarbon by humus-respiring microorganisms. The results indicate that humic substances may significantly contribute to the intrinsic bioremediation of anaerobic sites contaminated with priority pollutants by serving as terminal electron acceptors. PMID:11571145

  20. Evidence of Knowledge Acquisition in a Cognitive Flexibility-Based Computer Learning Environment

    Heath, Scott; Higgs, John; Ambruso, Daniel R.

    2009-01-01

    Background - A computer-based learning experience was developed using cognitive flexibility theory to overcome the pitfalls often encountered in existing medical education. An earlier study (not published) showed significant pretest-posttest increase in scores, as well as a significant posi­tive correlation between choosing to complete the module individually or in pairs. Method - This experience was presented as part of a second-year course in medical school with randomized assignment for s...

  1. An overview of molecular acceptors for organic solar cells

    Hudhomme Piétrick

    2013-07-01

    Full Text Available Organic solar cells (OSCs have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  2. Synthesis of three new donor-acceptor (4) dendralenes

    Three new donor - acceptor (4) dendralene compounds have been synthesized. Wittig reaction was used for the preparation of first two compounds and third one by Knoevehagel condensation. Their mass was calculated by APCI mass spectra which are in good agreement with theoretical data. UV-Vis data indicate the cross- conjugation in these systems due to the push-pull intra molecular charge transfer (CIT) sequence from electron donor to acceptor group. The 1H-NMR signals appear in aromatic region confirming the formation of trans (having pie- structures) isomers rather than cis may be due to the exposure of the compounds to ambient light. The dominating roll of electron acceptor nitro, methoxy and cyno benzene groups in conjugation is clearly shown. The 13C-NMR spectra which also supported the above analytical data and the number of carbons atoms obtained representing well the structures established. (author)

  3. Evidence for dysanapsis using computed tomographic imaging of the airways in older ex-smokers

    Sheel, A William; Jordan A. Guenette; Yuan, Ren; Holy, Lukas; Mayo, John R; McWilliams, Annette M.; Lam, Stephen; Coxson, Harvey O.

    2009-01-01

    We sought to determine the relationship between lung size and airway size in men and women of varying stature. We also asked if men and women matched for lung size would still have differences in airway size and if so where along the pulmonary airway tree would these differences exist. We used computed tomography to measure airway luminal areas of the large and central airways. We determined airway luminal areas in men (n = 25) and women (n = 25) who were matched for age, body mass index, smo...

  4. Vision therapy and computer orthoptics: evidence-based approach to use in your practice.

    Lambert, Jennifer

    2013-01-01

    Convergence insufficiency is a commonly seen disorder of the vergence system. Its clinical characteristics and symptoms have been well described by Duane and von Graefe. Laboratory studies have clarified the vergence pathway, which includes a bi-phasic response. Several recent randomized controlled trials show the effectiveness of common treatment modalities, including pencil pushups, computer orthoptics, and office-based therapy. More studies are needed to investigate the possibility that other treatments may treat convergence insufficiency in a more profound way by acting on other parts of the vergence system. PMID:24260806

  5. Evaluation of ESP textbooks: Evidence from ESP textbook of computer engineering major

    Maryam Danaye Tous

    2013-11-01

    Full Text Available The purpose of this study was to evaluate ESP textbook on “English for the students of computer engineering” taught at Payame Noor University in Astane (Guilan province, Iran. It was a mixed method research. The research instrument consisted of a researcher-made questionnaire which was designed on the basis of eight checklist references. Sample of this study consisted of 49 junior students majoring in computer engineering, who were selected through convenience sampling method. The textbook was evaluated in terms of six criteria of aims and approaches, design and organization, skills and strategies, topics, practical considerations and illustrations, language content and exercises. Data was collected through a five-point Likert scale questionnaire consisting of 22 items. Descriptive statistics including percentage, mean, and standard deviation were calculated for each item. Findings indicated that despite having pedagogical values, the textbook was not very good according to design and organization, language content and exercises, skills and strategies, practical considerations and illustrations. Finally, the pedagogical implication of findings for teaching grammatical items, listening materials, recycling and revision, writing activities and illustrations would be discussed.

  6. Tetrahydrothiophene 1-oxide as an electron acceptor for Escherichia coli.

    Meganathan, R; Schrementi, J

    1987-01-01

    Escherichia coli used tetrahydrothiophene 1-oxide (THTO) as an electron acceptor for anaerobic growth with glycerol as a carbon source; the THTO was reduced to tetrahydrothiophene. Cell extracts also reduced THTO to tetrahydrothiophene in the presence of a variety of electron donors. Chlorate-resistant (chl) mutants (chlA, chlB, chlD, and chlE) were unable to grow with THTO as the electron acceptor. However, growth and THTO reduction by the chlD mutant were restored by high concentrations of ...

  7. Acceptors in cadmium telluride. Identification and electronic structure

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined

  8. PHOTOINDUCED CHARGE TRANSFER POLYMERIZATION OF STYRENE INITIATED BY ELECTRON ACCEPTOR

    CAO Weixiao; ZHANG Peng; FENG Xinde

    1995-01-01

    Photoinduced charge transfer polymerization of styrene(St) with electron acceptor as initiator was investigated. In case of fumaronitrile (FN) or maleic anhydride (MA) as initiator the polymerization takes place regularly, whereas the tetrachloro-1, 4-benzenequinone (TCQ), 2, 3-dichloro-5, 6-dicyano-1, 4-benzenequinone (DDQ) . or tetracyano ethylene (TCNE) as initiator the polymerization proceeds reluctantly only after the photoaddition reaction. A mechanism was proposed that free radicals would be formed following the charge and proton transfer in the exciplex formed between St and electron acceptors.

  9. Sodium acceptor doping of ZnO crystals

    Parmar, Narendra S.; Joni, I. Made; Lynn, Kelvin G.

    2016-02-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion using sodium dispensers. Secondary-ion mass spectrometry measurement shows the diffusion of sodium with concentration ˜1×1018 cm-3 in near surface region. Photoluminescence (PL) measurements show donor acceptor pair (DAP) emission at 408 nm at room temperature which exhibits a blue-shift to 404 nm at 9 K. DC Hall measurements show the mixed conduction due to low Hall voltage in these samples. PL measurements and variable temperature resistivity measurements suggest that the sodium acceptor activation energy is ˜0.300 eV.

  10. Shifting the Spotlight of Attention: Evidence for Discrete Computations in Cognition

    Earl K Miller

    2010-11-01

    Full Text Available Our thoughts have a limited bandwidth; we can only fully process a few items in mind simultaneously. To compensate, the brain developed attention, the ability to select information relevant to the current task, while filtering out the rest. Therefore, by understanding the neural mechanisms of attention we hope to understand a core component of cognition. Here, we review our recent investigations of the neural mechanisms underlying the control of visual attention in frontal and parietal cortex. This includes the observation that the neural mechanisms that shift attention were synchronized to 25 Hz oscillatory brain rhythms, with each shift in attention falling within a single cycle of the oscillation. We generalize these findings to present a hypothesis that cognition relies on neural mechanisms that operate in discrete, periodic computations, as reflected in ongoing oscillations. We discuss the advantages of the model, experimental support, and make several testable hypotheses.

  11. Extending peripersonal space representation without tool-use: evidence from a combined behavioural-computational approach

    Andrea Serino

    2015-02-01

    Full Text Available Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e. peripersonal space (PPS. PPS dynamically modifies depending on experience, e.g. it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioural approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e. selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioural experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioural settings showed that asynchronous tactile and auditory inputs did not change PPS. We conclude by proposing a biological-plausible model to explain plasticity in PPS representation after tool-use, supported by computational and behavioural data.

  12. Synthesis and X-ray crystal structure of the first tetrathiafulvalene-based acceptor-donor-acceptor sandwich

    Simonsen, Klaus B.; Thorup, Niels; Cava, Michael P.; Becher, Jan

    The synthesis and characterization of a bis-macrocyclic A-D-A sandwich produced in a simple one-pot reaction is reported. Only one acceptor unit participates in charge-transfer interactions with the TTF unit in the solid state.......The synthesis and characterization of a bis-macrocyclic A-D-A sandwich produced in a simple one-pot reaction is reported. Only one acceptor unit participates in charge-transfer interactions with the TTF unit in the solid state....

  13. Understanding the charge-transfer phenomena between prototypical electron-donors and acceptors: TTF-TCNQ as an example

    Park, Changwon; Atalla, Viktor; Smith, Sean; Yoon, Mina

    2014-03-01

    It is widely accepted that the charge transfer between the conventional electron donor and acceptor molecules is independent of their relative configurations and electrons are always transferred from the molecule with the lower ionization potential, the electron-donor, to the high electron affinity molecule, the electron-acceptor. Conventional first-principles density functional theory (DFT) supports this conclusion. However, the computational results are dominated by a term in the DFT exchange-correlation functional, which often results in qualitatively and quantitatively wrong conclusion due to an artifact. In our study of prototypical electron donor-acceptor molecules, TTF-TCNQ, we show that the conventional electronic picture is not valid and the relative orientation between TTF and TCNQ is equally important as the electronic structure of the individual molecules. Our results show that the current understanding of the donor-acceptor interaction and charge transfer mechanism has to be modified. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  14. COMPUTING

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  15. ERP evidence for on-line syntactic computations in 2-year-olds.

    Brusini, Perrine; Dehaene-Lambertz, Ghislaine; Dutat, Michel; Goffinet, François; Christophe, Anne

    2016-06-01

    Syntax allows human beings to build an infinite number of sentences from a finite number of words. How this unique, productive power of human language unfolds over the course of language development is still hotly debated. When they listen to sentences comprising newly-learned words, do children generalize from their knowledge of the legal combinations of word categories or do they instead rely on strings of words stored in memory to detect syntactic errors? Using novel words taught in the lab, we recorded Evoked Response Potentials (ERPs) in two-year-olds and adults listening to grammatical and ungrammatical sentences containing syntactic contexts that had not been used during training. In toddlers, the ungrammatical use of words, even when they have been just learned, induced an early left anterior negativity (surfacing 100-400ms after target word onset) followed by a late posterior positivity (surfacing 700-900ms after target word onset) that was not observed in grammatical sentences. This late effect was remarkably similar to the P600 displayed by adults, suggesting that toddlers and adults perform similar syntactic computations. Our results thus show that toddlers build on-line expectations regarding the syntactic category of upcoming words in a sentence. PMID:27038839

  16. Seasonal variation in thoracic vessel calcifications: Evidence from a chest computed tomography study

    Background: Cardiovascular disease incidence and mortality exhibit a winter peak and a summer trough, a fact that could have radiological manifestations. Purpose: To identify possible seasonal trends in the occurrence of thoracic vessel calcifications. Material and Methods: 505 male construction workers (aged 39-80 years) were each imaged once with chest spiral computed tomography (CT) during a 2-year period. Based on visual assessment of calcified plaques (0=no, 1=slight, 2=moderate, 3=extensive calcification), sum scores of atherosclerosis in coronary arteries, in the thoracic aorta, in the pre-cervical artery bases, and overall were constructed. The scores were regressed on the annual rank number of the CT day. Results: By using the cubic regression model, seasonal variation in calcified plaques in coronary arteries (P=0.003), in pre-cervical artery origins (P=0.015), and in the overall sum score (P=0.004) was observed. The peak occurred in January-February and the nadir in August. Depending on the model, about 2-3% of the variation in atherosclerotic calcifications could be explained by the season of imaging. Conclusion: The observed seasonal trend in calcifications parallels with mortality reports. Seasonal variations should be considered in atherosclerosis treatment studies. Confirmatory studies using modern imaging technology are needed in different countries and geographical locations, preferably with repeat imaging of the same individuals

  17. Emotional competencies in geriatric nursing: empirical evidence from a computer based large scale assessment calibration study.

    Kaspar, Roman; Hartig, Johannes

    2016-03-01

    The care of older people was described as involving substantial emotion-related affordances. Scholars in vocational training and nursing disagree whether emotion-related skills could be conceptualized and assessed as a professional competence. Studies on emotion work and empathy regularly neglect the multidimensionality of these phenomena and their relation to the care process, and are rarely conclusive with respect to nursing behavior in practice. To test the status of emotion-related skills as a facet of client-directed geriatric nursing competence, 402 final-year nursing students from 24 German schools responded to a 62-item computer-based test. 14 items were developed to represent emotion-related affordances. Multi-dimensional IRT modeling was employed to assess a potential subdomain structure. Emotion-related test items did not form a separate subdomain, and were found to be discriminating across the whole competence continuum. Tasks concerning emotion work and empathy are reliable indicators for various levels of client-directed nursing competence. Claims for a distinct emotion-related competence in geriatric nursing, however, appear excessive with a process-oriented perspective. PMID:26108300

  18. Fine structure of the Mn acceptor in GaAs

    Krainov, I. V.; Debus, J.; Averkiev, N. S.; Dimitriev, G. S.; Sapega, V. F.; Lähderanta, E.

    2016-06-01

    We reveal the electronic level structure of the Mn acceptor, which consists of a valence-band hole bound to an Mn2 + ion, in presence of applied uniaxial stress and an external magnetic field in bulk GaAs. Resonant spin-flip Raman scattering is used to measure the g factor of the AMn0 center in the ground and excited states with the total angular momenta F =1 and F =2 and characterize the optical selection rules of the spin-flip transitions between these Mn-acceptor states. We determine the random stress fields near the Mn acceptor, the constant of the antiferromagnetic exchange interaction between the valence-band holes and the electrons of the inner Mn2 + shell as well as the deformation potential for the exchange energy. The p -d exchange energy, in particular, decreases significantly with increasing compressive stress. By combining the experimental Raman study with the developed theoretical model on the scattering efficiency, in which also the random local and external uniaxial stresses and magnetic field are considered, the fine structure of the Mn acceptor is determined in full detail.

  19. Donor-Acceptor Chromophores based on Acetylenic Scaffolds and Indenofluorenes

    Christensen, Mikkel Andreas

    The work described in this thesis has been focused on synthesizing donor-acceptor chromophores with conjugated π-bridges. It has also led to the development of an alternative synthetic tool for acetylenic scaffolding. The first chapter focuses on the nitrophenol D-π-A system – A phenol in...

  20. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  1. Covalent non-fused tetrathiafulvalene-acceptor systems.

    Pop, Flavia; Avarvari, Narcis

    2016-06-28

    Covalent donor-acceptor (D-A) systems have significantly contributed to the development of many organic materials and to molecular electronics. Tetrathiafulvalene (TTF) represents one of the most widely studied donor precursors and has been incorporated into the structure of many D-A derivatives with the objective of obtaining redox control and modulation of the intramolecular charge transfer (ICT), in order to address switchable emissive systems and to take advantage of its propensity to form regular stacks in the solid state. In this review, we focus on the main families of non-fused TTF-acceptors, which are classified according to the nature of the acceptor: nitrogen-containing heterocycles, BODIPY, perylenes and electron poor unsaturated hydrocarbons, as well as radical acceptors. We describe herein the most representative members of each family with a brief mention of their synthesis and a special focus on their D-A characteristics. Special attention is given to ICT and its modulation, fluorescence quenching and switching, photoconductivity, bistability and spin distribution by discussing and comparing spectroscopic and electrochemical features, photophysical properties, solid-state properties and theoretical calculations. PMID:27193500

  2. Fluorescence Resonance Energy Transfer Using Spiropyran and Diarylethene Photochromic Acceptors

    E. A. Jares-Erijman; Irie, M.; Jovin, T M; Song, L.; Macareno, J.; GIORDANO, L.

    2000-01-01

    We describe the preparation and photophysical characterization of two model compounds designed to test a new approach for the quantitative determination of Fluorescence Resonance Energy Transfer (FRET) in biological systems. The method enables modulation of FRET by exploiting the unique reversible spectral properties of photochromic diarylethenes and spiropyrans to create switchable energy acceptors.

  3. Racemic R,S-venlafaxine hydrochloride-DNA interaction: Experimental and computational evidence

    Shahabadi, Nahid; Hadidi, Saba; Ghasemian, Zeinab; Taherpour, Avat(Arman)

    2015-06-01

    The interaction of racemic R,S-venlafaxine hydrochloride (rac-VEN) drug with calf thymus deoxyribonucleic acid (ct-DNA) was studied using various physico-chemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The fluorescence study shows that ct-DNA interacted with rac-VEN and quenched its intrinsic fluorescence in a static quenching process. These results are further supported by UV-Vis spectra. The binding constant of rac-VEN with ct-DNA (0.57 × 104) obtained from the spectroscopic techniques, which is more in keeping with the groove binding with DNA. Furthermore, the competition experiment using Hoechst33258 indicated that rac-VEN may bind to ct-DNA by a minor groove binding mode. In addition, iodide quenching effect on the fluorescence of rac-VEN before and after the interaction with ct-DNA is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. Molecular simulation studies carried out by using the AutoDock4 and Spartan10 programs. From the best docking map, we found that R and S-isomers fit in the A6T7T8/T19A18A17 region in minor groove of B-DNA. Finally, these results indicated that the docking of S-VEN-B-DNA is more stable than R-VEN-B-DNA.

  4. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  5. COMPUTING

    P. McBride

    The Computing Project is preparing for a busy year where the primary emphasis of the project moves towards steady operations. Following the very successful completion of Computing Software and Analysis challenge, CSA06, last fall, we have reorganized and established four groups in computing area: Commissioning, User Support, Facility/Infrastructure Operations and Data Operations. These groups work closely together with groups from the Offline Project in planning for data processing and operations. Monte Carlo production has continued since CSA06, with about 30M events produced each month to be used for HLT studies and physics validation. Monte Carlo production will continue throughout the year in the preparation of large samples for physics and detector studies ramping to 50 M events/month for CSA07. Commissioning of the full CMS computing system is a major goal for 2007. Site monitoring is an important commissioning component and work is ongoing to devise CMS specific tests to be included in Service Availa...

  6. COMPUTING

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  7. COMPUTING

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  8. Evidenza informatica, computer forensics e best practices/Preuve informatique, investigation informatique et bonnes pratiques/Digital Evidence, Computer Forensics and Best Practices

    Tonellotto Maurizio

    2014-07-01

    Full Text Available La prova informatica negli ultimi anni ha assunto un ruolo sempre più rilevante non solo nell’ambito delle indagini digitali ma, più in generale, nella quasi totalità delle attività investigative, andando spesso a rivestire l’ingrato compito di prova principe nei vari procedimenti. Nell’articolo verranno evidenziate le peculiarità di questo nuovo elemento probatorio e saranno passati in rassegna i principali strumenti giuridici, anche in relazione alla recente ratifica della Convenzione di Budapest sui computer crimes,. Inoltre, saranno esaminati alcuni aspetti relativi ai protocolli operativi o alle best practices in uso a livello internazionale in un’ottica comparativa con la realtà nazionale. La preuve informatique a joué un rôle de plus en plus important au cours des dernières années, non seulement dans le domaine des investigations numériques mais, plus généralement, dans presque toutes les activités d’enquête, ayant souvent la tâche ingrate de preuve principale dans les différentes procédures judiciaires. L’auteur met brièvement en évidence les caractéristiques de cette nouvelle preuve, énumère les instruments juridiques, y compris la récente ratification de la Convention de Budapest sur la cybercriminalité et analyse les protocoles opérationnels et les bonnes pratiques au niveau international, dans une perspective comparative avec la réalité nationale. Digital evidence has taken an increasing role in recent years not only in the field of digital investigation but, more generally, in almost all investigative activities. It often plays the unpleasant role of main evidence in the judicial proceeding. This article will highlight the particularities of this new kind of evidence and review the main legal instruments related, not only but also, to the recent ratification by Italy of Budapest Convention on Cybercrime. It will also examine some aspects of operational protocols and best practices at

  9. COMPUTING

    I. Fisk

    2013-01-01

    Computing activity had ramped down after the completion of the reprocessing of the 2012 data and parked data, but is increasing with new simulation samples for analysis and upgrade studies. Much of the Computing effort is currently involved in activities to improve the computing system in preparation for 2015. Operations Office Since the beginning of 2013, the Computing Operations team successfully re-processed the 2012 data in record time, not only by using opportunistic resources like the San Diego Supercomputer Center which was accessible, to re-process the primary datasets HTMHT and MultiJet in Run2012D much earlier than planned. The Heavy-Ion data-taking period was successfully concluded in February collecting almost 500 T. Figure 3: Number of events per month (data) In LS1, our emphasis is to increase efficiency and flexibility of the infrastructure and operation. Computing Operations is working on separating disk and tape at the Tier-1 sites and the full implementation of the xrootd federation ...

  10. Necessary, yet dissociable contributions of the insular and ventromedial prefrontal cortices to norm adaptation: computational and lesion evidence in humans.

    Gu, Xiaosi; Wang, Xingchao; Hula, Andreas; Wang, Shiwei; Xu, Shuai; Lohrenz, Terry M; Knight, Robert T; Gao, Zhixian; Dayan, Peter; Montague, P Read

    2015-01-14

    Social norms and their enforcement are fundamental to human societies. The ability to detect deviations from norms and to adapt to norms in a changing environment is therefore important to individuals' normal social functioning. Previous neuroimaging studies have highlighted the involvement of the insular and ventromedial prefrontal (vmPFC) cortices in representing norms. However, the necessity and dissociability of their involvement remain unclear. Using model-based computational modeling and neuropsychological lesion approaches, we examined the contributions of the insula and vmPFC to norm adaptation in seven human patients with focal insula lesions and six patients with focal vmPFC lesions, in comparison with forty neurologically intact controls and six brain-damaged controls. There were three computational signals of interest as participants played a fairness game (ultimatum game): sensitivity to the fairness of offers, sensitivity to deviations from expected norms, and the speed at which people adapt to norms. Significant group differences were assessed using bootstrapping methods. Patients with insula lesions displayed abnormally low adaptation speed to norms, yet detected norm violations with greater sensitivity than controls. Patients with vmPFC lesions did not have such abnormalities, but displayed reduced sensitivity to fairness and were more likely to accept the most unfair offers. These findings provide compelling computational and lesion evidence supporting the necessary, yet dissociable roles of the insula and vmPFC in norm adaptation in humans: the insula is critical for learning to adapt when reality deviates from norm expectations, and that the vmPFC is important for valuation of fairness during social exchange. PMID:25589742

  11. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-01

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. PMID:25948273

  12. Computer

    Atkinson, Paul

    2011-01-01

    The pixelated rectangle we spend most of our day staring at in silence is not the television as many long feared, but the computer-the ubiquitous portal of work and personal lives. At this point, the computer is almost so common we don't notice it in our view. It's difficult to envision that not that long ago it was a gigantic, room-sized structure only to be accessed by a few inspiring as much awe and respect as fear and mystery. Now that the machine has decreased in size and increased in popular use, the computer has become a prosaic appliance, little-more noted than a toaster. These dramati

  13. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.

    Schreiber, M E; Carey, G R; Feinstein, D T; Bahr, J M

    2004-09-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum-contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  14. COMPUTING

    I. Fisk

    2010-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...

  15. COMPUTING

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  16. Defect Donor and Acceptor in GaN

    High-energy (0.7 endash 1MeV) electron irradiation in GaN grown on sapphire produces shallow donors and deep or shallow acceptors at equal rates, 1±0.2 cm-1. The data, in conjunction with theory, are consistent only with the shallow donor being the N vacancy, and the acceptor the N interstitial. The N-vacancy donor energy is 64±10 meV, much larger than the value of 18meV found for the residual donor (probably Si) in this material. The Hall-effect measurements also reveal a degenerate n -type layer at the GaN/sapphire interface which must be accounted for to get the proper donor activation energy. copyright 1997 The American Physical Society

  17. Positively charged phosphorus as a hydrogen bond acceptor

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    -stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges, as......Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular...... expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  18. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  19. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence

    Gerhard, Marina; Gehrig, Dominik; Howard, Ian A.; Arndt, Andreas P.; Bilal, Mühenad; Rahimi-Iman, Arash; Lemmer, Uli; Laquai, Frédéric; Koch, Martin

    2016-04-01

    In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified.

  20. Effect of anneal and quench on the nature of the dominant acceptors in ZnTe

    Anneal and quench studies on high purity ZnTe have shown the dominant role of impurities and their solubilities as functions of stoichiometrical conditions. The role of 'b' acceptor, related to lithium, 'g' acceptor, related to silver, and 'a' acceptor of unknown nature is reported

  1. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  2. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. COMPUTING

    I. Fisk

    2010-01-01

    Introduction The first data taking period of November produced a first scientific paper, and this is a very satisfactory step for Computing. It also gave the invaluable opportunity to learn and debrief from this first, intense period, and make the necessary adaptations. The alarm procedures between different groups (DAQ, Physics, T0 processing, Alignment/calibration, T1 and T2 communications) have been reinforced. A major effort has also been invested into remodeling and optimizing operator tasks in all activities in Computing, in parallel with the recruitment of new Cat A operators. The teams are being completed and by mid year the new tasks will have been assigned. CRB (Computing Resource Board) The Board met twice since last CMS week. In December it reviewed the experience of the November data-taking period and could measure the positive improvements made for the site readiness. It also reviewed the policy under which Tier-2 are associated with Physics Groups. Such associations are decided twice per ye...

  4. COMPUTING

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...

  5. COMPUTING

    I. Fisk

    2011-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...

  6. COMPUTING

    M. Kasemann

    Introduction During the past six months, Computing participated in the STEP09 exercise, had a major involvement in the October exercise and has been working with CMS sites on improving open issues relevant for data taking. At the same time operations for MC production, real data reconstruction and re-reconstructions and data transfers at large scales were performed. STEP09 was successfully conducted in June as a joint exercise with ATLAS and the other experiments. It gave good indication about the readiness of the WLCG infrastructure with the two major LHC experiments stressing the reading, writing and processing of physics data. The October Exercise, in contrast, was conducted as an all-CMS exercise, where Physics, Computing and Offline worked on a common plan to exercise all steps to efficiently access and analyze data. As one of the major results, the CMS Tier-2s demonstrated to be fully capable for performing data analysis. In recent weeks, efforts were devoted to CMS Computing readiness. All th...

  7. COMPUTING

    I. Fisk

    2012-01-01

    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...

  8. COMPUTING

    P. McBride

    It has been a very active year for the computing project with strong contributions from members of the global community. The project has focused on site preparation and Monte Carlo production. The operations group has begun processing data from P5 as part of the global data commissioning. Improvements in transfer rates and site availability have been seen as computing sites across the globe prepare for large scale production and analysis as part of CSA07. Preparations for the upcoming Computing Software and Analysis Challenge CSA07 are progressing. Ian Fisk and Neil Geddes have been appointed as coordinators for the challenge. CSA07 will include production tests of the Tier-0 production system, reprocessing at the Tier-1 sites and Monte Carlo production at the Tier-2 sites. At the same time there will be a large analysis exercise at the Tier-2 centres. Pre-production simulation of the Monte Carlo events for the challenge is beginning. Scale tests of the Tier-0 will begin in mid-July and the challenge it...

  9. COMPUTING

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...

  10. Design directed self-assembly of donor-acceptor polymers.

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements. PMID:27440174

  11. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells. PMID:24749413

  12. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  13. Brain circuits underlying visual stability across eye movements - converging evidence for a neuro-computational model of area LIP

    Arnold eZiesche

    2014-03-01

    Full Text Available The understanding of the subjective experience of a visually stable world despite the occurrence of an observer's eye movements has been the focus of extensive research for over 20 years. These studies have revealed fundamental mechanisms such as anticipatory receptive field shifts and the saccadic suppression of stimulus displacements, yet there currently exists no single explanatory framework for these observations. We show that a previously presented neuro-computational model of peri-saccadic mislocalization accounts for the phenomenon of predictive remapping and for the observation of saccadic suppression of displacement (SSD. This converging evidence allows us to identify the potential ingredients of perceptual stability that generalize beyond different data sets in a formal physiology-based model. In particular we propose that predictive remapping stabilizes the visual world across saccades by introducing a feedback loop and, as an emergent result, small displacements of stimuli are not noticed by the visual system. The model provides a link from neural dynamics, to neural mechanism and finally to behavior, and thus offers a testable comprehensive framework of visual stability.

  14. COMPUTING

    P. MacBride

    The Computing Software and Analysis Challenge CSA07 has been the main focus of the Computing Project for the past few months. Activities began over the summer with the preparation of the Monte Carlo data sets for the challenge and tests of the new production system at the Tier-0 at CERN. The pre-challenge Monte Carlo production was done in several steps: physics generation, detector simulation, digitization, conversion to RAW format and the samples were run through the High Level Trigger (HLT). The data was then merged into three "Soups": Chowder (ALPGEN), Stew (Filtered Pythia) and Gumbo (Pythia). The challenge officially started when the first Chowder events were reconstructed on the Tier-0 on October 3rd. The data operations teams were very busy during the the challenge period. The MC production teams continued with signal production and processing while the Tier-0 and Tier-1 teams worked on splitting the Soups into Primary Data Sets (PDS), reconstruction and skimming. The storage sys...

  15. COMPUTING

    Matthias Kasemann

    Overview The main focus during the summer was to handle data coming from the detector and to perform Monte Carlo production. The lessons learned during the CCRC and CSA08 challenges in May were addressed by dedicated PADA campaigns lead by the Integration team. Big improvements were achieved in the stability and reliability of the CMS Tier1 and Tier2 centres by regular and systematic follow-up of faults and errors with the help of the Savannah bug tracking system. In preparation for data taking the roles of a Computing Run Coordinator and regular computing shifts monitoring the services and infrastructure as well as interfacing to the data operations tasks are being defined. The shift plan until the end of 2008 is being put together. User support worked on documentation and organized several training sessions. The ECoM task force delivered the report on “Use Cases for Start-up of pp Data-Taking” with recommendations and a set of tests to be performed for trigger rates much higher than the ...

  16. COMPUTING

    M. Kasemann

    Introduction A large fraction of the effort was focused during the last period into the preparation and monitoring of the February tests of Common VO Computing Readiness Challenge 08. CCRC08 is being run by the WLCG collaboration in two phases, between the centres and all experiments. The February test is dedicated to functionality tests, while the May challenge will consist of running at all centres and with full workflows. For this first period, a number of functionality checks of the computing power, data repositories and archives as well as network links are planned. This will help assess the reliability of the systems under a variety of loads, and identifying possible bottlenecks. Many tests are scheduled together with other VOs, allowing the full scale stress test. The data rates (writing, accessing and transfer¬ring) are being checked under a variety of loads and operating conditions, as well as the reliability and transfer rates of the links between Tier-0 and Tier-1s. In addition, the capa...

  17. COMPUTING

    Contributions from I. Fisk

    2012-01-01

    Introduction The start of the 2012 run has been busy for Computing. We have reconstructed, archived, and served a larger sample of new data than in 2011, and we are in the process of producing an even larger new sample of simulations at 8 TeV. The running conditions and system performance are largely what was anticipated in the plan, thanks to the hard work and preparation of many people. Heavy ions Heavy Ions has been actively analysing data and preparing for conferences.  Operations Office Figure 6: Transfers from all sites in the last 90 days For ICHEP and the Upgrade efforts, we needed to produce and process record amounts of MC samples while supporting the very successful data-taking. This was a large burden, especially on the team members. Nevertheless the last three months were very successful and the total output was phenomenal, thanks to our dedicated site admins who keep the sites operational and the computing project members who spend countless hours nursing the...

  18. COMPUTING

    I. Fisk

    2012-01-01

      Introduction Computing activity has been running at a sustained, high rate as we collect data at high luminosity, process simulation, and begin to process the parked data. The system is functional, though a number of improvements are planned during LS1. Many of the changes will impact users, we hope only in positive ways. We are trying to improve the distributed analysis tools as well as the ability to access more data samples more transparently.  Operations Office Figure 2: Number of events per month, for 2012 Since the June CMS Week, Computing Operations teams successfully completed data re-reconstruction passes and finished the CMSSW_53X MC campaign with over three billion events available in AOD format. Recorded data was successfully processed in parallel, exceeding 1.2 billion raw physics events per month for the first time in October 2012 due to the increase in data-parking rate. In parallel, large efforts were dedicated to WMAgent development and integrati...

  19. COMPUTING

    I. Fisk

    2013-01-01

    Computing operation has been lower as the Run 1 samples are completing and smaller samples for upgrades and preparations are ramping up. Much of the computing activity is focusing on preparations for Run 2 and improvements in data access and flexibility of using resources. Operations Office Data processing was slow in the second half of 2013 with only the legacy re-reconstruction pass of 2011 data being processed at the sites.   Figure 1: MC production and processing was more in demand with a peak of over 750 Million GEN-SIM events in a single month.   Figure 2: The transfer system worked reliably and efficiently and transferred on average close to 520 TB per week with peaks at close to 1.2 PB.   Figure 3: The volume of data moved between CMS sites in the last six months   The tape utilisation was a focus for the operation teams with frequent deletion campaigns from deprecated 7 TeV MC GEN-SIM samples to INVALID datasets, which could be cleaned up...

  20. COMPUTING

    2010-01-01

    Introduction Just two months after the “LHC First Physics” event of 30th March, the analysis of the O(200) million 7 TeV collision events in CMS accumulated during the first 60 days is well under way. The consistency of the CMS computing model has been confirmed during these first weeks of data taking. This model is based on a hierarchy of use-cases deployed between the different tiers and, in particular, the distribution of RECO data to T1s, who then serve data on request to T2s, along a topology known as “fat tree”. Indeed, during this period this model was further extended by almost full “mesh” commissioning, meaning that RECO data were shipped to T2s whenever possible, enabling additional physics analyses compared with the “fat tree” model. Computing activities at the CMS Analysis Facility (CAF) have been marked by a good time response for a load almost evenly shared between ALCA (Alignment and Calibration tasks - highest p...

  1. The effect of intramolecular donor–acceptor moieties with donor–π-bridge–acceptor structure on the solar photovoltaic performance

    T. L. Wang

    2015-10-01

    Full Text Available A series of intramolecular donor–acceptor polymers containing different contents of (E-1-(2-ethylhexyl-6,9-dioctyl-2-(2-(thiophen-3-ylvinyl-1H-phenanthro[9,10-d]imidazole (thiophene-DOPI moiety and 4,4-diethylhexylcyclopenta[ 2,1-b:3,4-b']dithiophene (CPDT unit was synthesized via Grignard metathesis (GRIM polymerization. The synthesized random copolymers and homopolymer of thiophene-DOPI contain the donor–π-bridge–acceptor conjugated structure to tune the absorption spectra and energy levels of the resultant polymers. UV-vis spectra of the three polymer films exhibit panchromatic absorptions ranging from 300 to 1100 nm and low band gaps from 1.38 to 1.51 eV. It is found that more thiophene-DOPI moieties result in the decrease of band gap and lower the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO values of polymers. Photovoltaic performance results indicate that if the content of the intramolecular donor–acceptor moiety is high enough, the copolymer structure may be better than homopolymer due to more light-harvesting afforded by both monomer units.

  2. Dynamics of iron-acceptor-pair formation in co-doped silicon

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F. [Calisolar GmbH, Magnusstrasse 11, 12489 Berlin (Germany); Möller, C. [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Lauer, K. [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  3. Light-triggered assembly-disassembly of an ordered donor-acceptor π-stack using a photoresponsive dimethyldihydropyrene π-switch.

    Krishna, V Siva Rama; Samanta, Mousumi; Pal, Suman; Anurag, N P; Bandyopadhyay, Subhajit

    2016-06-28

    Self-organization of donor and acceptor π-systems forms alternate D-A stacks of the donor and acceptor molecules. Using a photochromic π-switch as a donor and an electron deficient acceptor dye such stacks were formed. Photomodulation of the donor unit with visible light led to a photoisomerized state having a non-planar structure with reduced donor ability, thereby causing destruction of the alternate D-A π-stacks. The formation and destruction of the stacks were studied by various spectroscopy methods. Both the stacks and the depleted stacks were studied by DLS and SEM experiments. The regeneration of the stacks occurred in solution with the reversal of the photoisomerization process with ultraviolet light. Computational and differential scanning calorimetric studies validated the thermodynamics of the formation of the stacks. This work presents a reversible assembly-disassembly of a donor-acceptor π system devoid of additional auxiliary non-covalent bonding motifs in the donor and acceptor molecules. PMID:26899505

  4. COMPUTING

    I. Fisk

    2011-01-01

    Introduction The Computing Team successfully completed the storage, initial processing, and distribution for analysis of proton-proton data in 2011. There are still a variety of activities ongoing to support winter conference activities and preparations for 2012. Heavy ions The heavy-ion run for 2011 started in early November and has already demonstrated good machine performance and success of some of the more advanced workflows planned for 2011. Data collection will continue until early December. Facilities and Infrastructure Operations Operational and deployment support for WMAgent and WorkQueue+Request Manager components, routinely used in production by Data Operations, are provided. The GlideInWMS and components installation are now deployed at CERN, which is added to the GlideInWMS factory placed in the US. There has been new operational collaboration between the CERN team and the UCSD GlideIn factory operators, covering each others time zones by monitoring/debugging pilot jobs sent from the facto...

  5. Noise-Assisted Quantum Electron Transfer in Multi-Level Donor-Acceptor System

    Gurvitz, Shmuel; Berman, Gennady P

    2014-01-01

    We analytically and numerically study noise-assisted quantum electron transfer (ET) in bio-complexes consisting of a single-level electron donor and an acceptor which is modeled by many electron energy levels. Interactions are included between the donor and the acceptor energy levels and with the protein environment, which is modeled by a diagonal classical noise acting on all donor and acceptor energy levels. Different regions of parameters characterizing (i) the number of the acceptor levels, (ii) the acceptor "band-width", and (iii) the amplitude of noise and its correlation time are considered. Under some conditions, we derive analytical expressions for the ET rate and efficiency, which reveal the coarse-grain features. We obtain equal occupation of all levels at large times, independently of the structure of the acceptor band. We discuss the multi-scale regime of the acceptor population, and the accompanying effect of quantum coherent oscillations, which are analogous to those observed in experiments on ...

  6. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules IV: Electron-Propagator Methods.

    Dolgounitcheva, O; Díaz-Tinoco, Manuel; Zakrzewski, V G; Richard, Ryan M; Marom, Noa; Sherrill, C David; Ortiz, J V

    2016-02-01

    Comparison of ab initio electron-propagator predictions of vertical ionization potentials and electron affinities of organic, acceptor molecules with benchmark calculations based on the basis set-extrapolated, coupled cluster single, double, and perturbative triple substitution method has enabled identification of self-energy approximations with mean, unsigned errors between 0.1 and 0.2 eV. Among the self-energy approximations that neglect off-diagonal elements in the canonical, Hartree-Fock orbital basis, the P3 method for electron affinities, and the P3+ method for ionization potentials provide the best combination of accuracy and computational efficiency. For approximations that consider the full self-energy matrix, the NR2 methods offer the best performance. The P3+ and NR2 methods successfully identify the correct symmetry label of the lowest cationic state in two cases, naphthalenedione and benzoquinone, where some other methods fail. PMID:26730459

  7. COMPUTING

    M. Kasemann

    CMS relies on a well functioning, distributed computing infrastructure. The Site Availability Monitoring (SAM) and the Job Robot submission have been very instrumental for site commissioning in order to increase availability of more sites such that they are available to participate in CSA07 and are ready to be used for analysis. The commissioning process has been further developed, including "lessons learned" documentation via the CMS twiki. Recently the visualization, presentation and summarizing of SAM tests for sites has been redesigned, it is now developed by the central ARDA project of WLCG. Work to test the new gLite Workload Management System was performed; a 4 times increase in throughput with respect to LCG Resource Broker is observed. CMS has designed and launched a new-generation traffic load generator called "LoadTest" to commission and to keep exercised all data transfer routes in the CMS PhE-DEx topology. Since mid-February, a transfer volume of about 12 P...

  8. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  9. Resonance acceptor states in single-axis deformed semiconductors

    Odnoblyudov, M A; Yassievich, I N

    2002-01-01

    The new approach is proposed to the resonance state parameters, making it possible to determine also the probabilities of the resonance scattering and capture probability into the resonance state. It is based on the application of the Fano configuration interaction method. Two different Hamiltonians of the zero approximation are applied for the continuum states and local priming state. The wave functions are plotted by the method, accepted in the common scattering theory. The detailed consideration and concrete calculations for the acceptor resonance states in the single-axis deformed germanium by the pressure along the axes [001] and [111] are carried out

  10. Microbial transglutaminase displays broad acyl-acceptor substrate specificity

    T. Gundersen, Maria; Keillor, Jeffrey W.; Pelletier, Joelle N.

    2013-01-01

    The great importance of amide bonds in industrial synthesis has encouraged the search for efficient catalysts of amide bond formation. Microbial transglutaminase (MTG) is heavily utilized in crosslinking proteins in the food and textile industries, where the side chain of a glutamine reacts with....... Importantly, very small amines carrying either the electron-rich azide or the alkyne groups required for click chemistry were highly reactive as acyl-acceptor substrates, providing a robust route to minimally modified, “clickable” peptides. These results demonstrate that MTG is tolerant to a variety of...

  11. Donor-acceptor electron transport mediated by solitons.

    Brizhik, L.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2014-01-01

    We study the long-range electron and energy transfer mediated by solitons in a quasi-one-dimensional molecular chain (conjugated polymer, alpha-helical macromolecule, etc.) weakly bound to a donor and an acceptor. We show that for certain sets of parameter values in such systems an electron, initially located at the donor molecule, can tunnel to the molecular chain, where it becomes self-trapped in a soliton state, and propagates to the opposite end of the chain practically without energy dis...

  12. Assessment of structural, optical and conduction properties of ZnO thin films in the presence of acceptor impurities

    Plugaru, R.; Plugaru, N.

    2016-06-01

    The structural, optical and electrical conduction properties of (Li/Cu,N):ZnO codoped thin films synthesized by the sol–gel method were investigated by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), transmission and absorption, photoluminescence (PL) and I–V measurements in order to bring evidence of the formation of acceptor centers by dual-acceptor codoping processes. The (Li 3%,N 5%):ZnO films consist of crystallites with average size of 15 nm, show 95% transmission in the visible region, and an optical band gap of 3.22 eV. The PL spectra show emission maxima at 3.21 and 2.96 eV which are related to the emission of acceptor centers and the presence of defects, respectively. Li occupies interstitial sites and may form Lii–N(O) defect complexes that act as acceptor centers. The (Cu 3%,N 5%):ZnO films consist of crystallites with average size of 12 nm, and exhibit 90% transmission in the visible region. The PL spectra reveal band edge emission at 3.23 eV and defect related emission at 2.74 eV. In the (Cu,N) codoped films, copper substitutes zinc and adopts mainly the Cu1+ state. A possible defect complex involving Cu and N determines the transition from n- to p-type conductivity. These findings are in agreement with results of electronic structure calculations at the GGA-PBE level.

  13. Assessment of structural, optical and conduction properties of ZnO thin films in the presence of acceptor impurities.

    Plugaru, R; Plugaru, N

    2016-06-01

    The structural, optical and electrical conduction properties of (Li/Cu,N):ZnO codoped thin films synthesized by the sol-gel method were investigated by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), transmission and absorption, photoluminescence (PL) and I-V measurements in order to bring evidence of the formation of acceptor centers by dual-acceptor codoping processes. The (Li 3%,N 5%):ZnO films consist of crystallites with average size of 15 nm, show 95% transmission in the visible region, and an optical band gap of 3.22 eV. The PL spectra show emission maxima at 3.21 and 2.96 eV which are related to the emission of acceptor centers and the presence of defects, respectively. Li occupies interstitial sites and may form Lii-N(O) defect complexes that act as acceptor centers. The (Cu 3%,N 5%):ZnO films consist of crystallites with average size of 12 nm, and exhibit 90% transmission in the visible region. The PL spectra reveal band edge emission at 3.23 eV and defect related emission at 2.74 eV. In the (Cu,N) codoped films, copper substitutes zinc and adopts mainly the Cu(1+) state. A possible defect complex involving Cu and N determines the transition from n- to p-type conductivity. These findings are in agreement with results of electronic structure calculations at the GGA-PBE level. PMID:26979467

  14. Tuning of Stepwise Neutral-Ionic Transitions by Acceptor Site Doping in Alternating Donor/Acceptor Chains.

    Nakabayashi, Keita; Nishio, Masaki; Miyasaka, Hitoshi

    2016-03-01

    The stepwise neutral-ionic (N-I) phase transition found in the alternating donor/acceptor (DA) chain [Ru2(2,3,5,6-F4PhCO2)4(DMDCNQI)]·2(p-xylene) (0; 2,3,5,6-F4PhCO2(-) = 2,3,5,6-tetrafluorobenzoate; DMDCNQI = 2,5-dimethyl-N,N'-dicyanoquinonediimine) was tuned by partly substituting the acceptor DMDCNQI with 2,5-dimethoxy-N,N'-dicyanoquinonediimine (DMeODCNQI), which displays a poorer electron affinity in an isostructural series. The site-doped series comprised [Ru2(2,3,5,6-F4PhCO2)4(DMDCNQI)1-x(DMeODCNQI)x]·2(p-xylene) for doping rates (x) = 0.05 (0.05-MeO), 0.10 (0.10-MeO), 0.15 (0.15-MeO), and 0.20 (0.20-MeO). The neutral chain [Ru2(2,3,5,6-F4PhCO2)4(DMeODCNQI)]·4(p-xylene) (1), which only contained DMeODCNQI, was also characterized. All site-doped compounds were isostructural to 0 except 1 despite their identical DA chain motif. Except at an x value of 0.20, they displayed a two-step N-I transition involving an intermediate phase. This transition occurred at high temperatures in 0 but shifted to lower temperatures in a parallel manner with increasing doping rate. Simultaneously, each transition broadened with increasing doping rate, leading to a convergence of two transitions at an x value approximating 0.2. Donor/acceptor-site-doping techniques present somewhat different impacts in terms of interchain Coulomb effects. PMID:26878151

  15. Positively Charged Phosphorus as a Hydrogen Bond Acceptor.

    Hansen, Anne S; Du, Lin; Kjaergaard, Henrik G

    2014-12-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular alcohol-trimethylphosphine complexes have been detected. Initially, the complexes were detected using matrix isolation spectroscopy, which favors complex formation. Subsequently, the fundamental OH-stretching vibration was observed in room-temperature gas-phase spectra. On the basis of our measured OH-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds. PMID:26278958

  16. Progress in ZnO Acceptor Doping: What Is the Best Strategy?

    Judith G. Reynolds

    2014-01-01

    Full Text Available This paper reviews the recent progress in acceptor doping of ZnO that has been achieved with a focus toward the optimum strategy. There are three main approaches for generating p-type ZnO: substitutional group IA elements on a zinc site, codoping of donors and acceptors, and substitution of group VA elements on an oxygen site. The relevant issues are whether there is sufficient incorporation of the appropriate dopant impurity species, does it reside on the appropriate lattice site, and lastly whether the acceptor ionization energy is sufficiently small to enable significant p-type conduction at room temperature. The potential of nitrogen doping and formation of the appropriate acceptor complexes is highlighted although theoretical calculations predict that nitrogen on an oxygen site is a deep acceptor. We show that an understanding of the growth and annealing steps to achieve the relevant acceptor defect complexes is crucial to meet requirements.

  17. The structure and bonding of iron-acceptor pairs in silicon

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  18. Stepwise charge transfer complexation of some pyrimidines with σ-acceptor iodine involving a new unconventional acceptor

    Rabie, Usama. M.; Mohamed, Ramadan. A.; Abou-El-Wafa, Moustafa. H.

    2007-11-01

    Interactions of some pyrimidine derivatives, 4-amino-2,6-dimethylpyrimidine, kyanmethin, (4AP), 2-amino-4,6-dimethylpyrimidine (2AP), 2-aminopyrimidine (AP), 2-amino-4-methylpyrimidine (AMP), 2-amino-4-methoxy-6-methylpyrimidine (AMMP), and 4-amino-5-chloro-2,6-dimethylpyrimidine (ACDP) as electron donors, with iodine (I 2), as a typical σ-electron acceptor, have been studied. Electronic absorption spectra of these interactions in several organic solvents of different polarities have performed instant appearance of clear charge transfer (CT) bands. Formation constants ( KCT), molar absorption coefficients ( ɛCT) and thermodynamic properties, Δ H, Δ S, and Δ G, of these interactions have been determined and discussed. Electronic absorption spectra of the solutions of the synthesized pyrimidines-iodine, P-I 2, CT complexes have shown the characteristic bands of the triiodide ion, I 3-. UV/vis spectral tracking of these interactions have shown that by lapse of time the first formed CT complex, P-I 2, is transformed to the corresponding triiodide complex, P +I.I 3-, then, the later interacts as a new unconventional acceptor and it forms a CT complex of the form (P).(P +I.I 3-). Elemental analyses of these solid complexes have indicated the stoichiometric ratio 2:2, or formally 1:1, P:I 2.

  19. Stepwise charge transfer complexation of some pyrimidines with sigma-acceptor iodine involving a new unconventional acceptor.

    Rabie, Usama M; Mohamed, Ramadan A; Abou-El-Wafa, Moustafa H

    2007-11-01

    Interactions of some pyrimidine derivatives, 4-amino-2,6-dimethylpyrimidine, kyanmethin, (4AP), 2-amino-4,6-dimethylpyrimidine (2AP), 2-aminopyrimidine (AP), 2-amino-4-methylpyrimidine (AMP), 2-amino-4-methoxy-6-methylpyrimidine (AMMP), and 4-amino-5-chloro-2,6-dimethylpyrimidine (ACDP) as electron donors, with iodine (I(2)), as a typical sigma-electron acceptor, have been studied. Electronic absorption spectra of these interactions in several organic solvents of different polarities have performed instant appearance of clear charge transfer (CT) bands. Formation constants (KCT), molar absorption coefficients (epsilonCT) and thermodynamic properties, DeltaH, DeltaS, and DeltaG, of these interactions have been determined and discussed. Electronic absorption spectra of the solutions of the synthesized pyrimidines-iodine, P-I2, CT complexes have shown the characteristic bands of the triiodide ion, I3*. UV/vis spectral tracking of these interactions have shown that by lapse of time the first formed CT complex, P-I2, is transformed to the corresponding triiodide complex, P(+)I.I3*, then, the later interacts as a new unconventional acceptor and it forms a CT complex of the form (P).(P+I.I3*). Elemental analyses of these solid complexes have indicated the stoichiometric ratio 2:2, or formally 1:1, P:I2. PMID:17317281

  20. Donor-Acceptor-Type Semiconducting Polymers Consisting of Benzothiadiazole Derivatives as Electron-Acceptor Units for Organic Photovoltaic Cells.

    Kim, Hee Su; Park, Jong Baek; Kim, Ji-Hoon; Hwang, Do-Hoon

    2015-11-01

    We synthesized two fused pentacyclic donor-acceptor structures, where the two different outer electron rich thiophene (DTPBT) and electron poor benzene (ICTh) moieties are covalently bonded to the central electron-deficient benzothiadiazole core by two nitrogen bridges. These new electron-acceptor DTPBT and ICTh building blocks were copolymerized with fluorene, as the electron donor group, via Suzuki coupling polymerization, to produce two new alternating copolymers, PFDTPBT and PFICTh, respectively. The average molecular weights of the synthesized polymers were determined by GPC. The number-average molecular weights of PFDTPBT and PFICTh were 19,000 (PDI = 2.5) and 20,000 (PDI = 4.0), respectively. The optical bandgap energies of the polymers were measured from their absorption onsets to be 2.15 and 2.55 eV, depending on the polymer structure. The HOMO energy levels of the polymers were determined, by measuring the oxidation onsets of the polymer films by cyclic voltammetry. The measured HOMO energy levels of PFDTPBT and PFICTh were -5.10 and -5.57 eV, respectively. When the polymers were blended with PC71BM, as the active layer for bulk-heterojunction photovoltaic devices, power conversion efficiencies were 2.08% and 0.34%, respectively, under AM 1.5 G (100 mW cm(-2)) conditions. PMID:26726610

  1. Measurement of FRET Efficiency and Ratio of Donor to Acceptor Concentration in Living Cells

    Chen, Huanmian; Puhl, Henry L.; Koushik, Srinagesh V.; Steven S Vogel; Ikeda, Stephen R.

    2006-01-01

    Measurement of fluorescence resonance energy transfer (FRET) efficiency and the relative concentration of donor and acceptor fluorophores in living cells using the three-filter cube approach requires the determination of two constants: 1), the ratio of sensitized acceptor emission to donor fluorescence quenching (G factor) and 2), the ratio of donor/acceptor fluorescence intensity for equimolar concentrations in the absence of FRET (k factor). We have developed a method to determine G and k t...

  2. Electric-Field Ionization of Gallium Acceptors in Germanium Induced by Single-cycle Terahertz Pulses

    Mukai, Y; Tanaka, K

    2013-01-01

    The electric field ionization of gallium acceptors in germanium was studied by using terahertz time-domain spectroscopy after single-cycle terahertz pulse excitation. As the peak electric field of the excitation pulse increases, the distinct absorptions due to acceptor transitions centered at 2.0 and 2.2 THz decrease, and simultaneously, absorption emerges in the lower frequency region. These behaviors clearly show that the terahertz pulse ionizes neutral acceptors. The electric field dependence of the released hole density is well reproduced by a model assuming direct field-assisted tunneling of acceptors.

  3. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules I. Reference Data at the CCSD(T) Complete Basis Set Limit.

    Richard, Ryan M; Marshall, Michael S; Dolgounitcheva, O; Ortiz, J V; Brédas, Jean-Luc; Marom, Noa; Sherrill, C David

    2016-02-01

    In designing organic materials for electronics applications, particularly for organic photovoltaics (OPV), the ionization potential (IP) of the donor and the electron affinity (EA) of the acceptor play key roles. This makes OPV design an appealing application for computational chemistry since IPs and EAs are readily calculable from most electronic structure methods. Unfortunately reliable, high-accuracy wave function methods, such as coupled cluster theory with single, double, and perturbative triples [CCSD(T)] in the complete basis set (CBS) limit are too expensive for routine applications to this problem for any but the smallest of systems. One solution is to calibrate approximate, less computationally expensive methods against a database of high-accuracy IP/EA values; however, to our knowledge, no such database exists for systems related to OPV design. The present work is the first of a multipart study whose overarching goal is to determine which computational methods can be used to reliably compute IPs and EAs of electron acceptors. This part introduces a database of 24 known organic electron acceptors and provides high-accuracy vertical IP and EA values expected to be within ±0.03 eV of the true non-relativistic, vertical CCSD(T)/CBS limit. Convergence of IP and EA values toward the CBS limit is studied systematically for the Hartree-Fock, MP2 correlation, and beyond-MP2 coupled cluster contributions to the focal point estimates. PMID:26731487

  4. Digit ratios by computer-assisted analysis confirm lack of anatomical evidence of prenatal androgen exposure in clinical phenotypes of polycystic ovary syndrome

    Lehotay Denis C

    2010-12-01

    Full Text Available Abstract Background We recently showed that women with four clinical phenotypes of polycystic ovary syndrome (PCOS do not demonstrate anatomical evidence of elevated prenatal androgen exposure as judged by a lower ratio of the index (2D to ring (4D finger. However, those findings conflicted with a previous study where women with PCOS had lower right hand 2D:4D compared to healthy female controls. Both these studies used Vernier calipers to measure finger lengths - a method recently shown to be less reliable at obtaining finger length measurements than computer-assisted analysis. Methods Ninety-six women diagnosed with PCOS according to the 2003 Rotterdam criteria had their finger lengths measured with computer-assisted analysis. Participants were categorized into four recognized phenotypes of PCOS and their 2D:4D compared to healthy female controls (n = 48 and men (n = 50. Results Digit ratios assessed by computer-assisted analysis in women with PCOS did not differ from female controls, but were significantly lower in men. When subjects were stratified by PCOS phenotype, 2D:4D did not differ among phenotypes or when compared to female controls. Conclusion Computer-assisted measurements validated that digit ratios of women with PCOS do not show anatomical evidence of increased prenatal androgen exposure.

  5. Empirical evidence that proves a serious game is an educationally effective tool for learning computer programming constructs at the computational thinking level

    Kazimoglu, Cagin

    2013-01-01

    Owing to their easy engagement and motivational nature, games predominantly in young age groups, have been omnipresent in education since ancient times. More recently, computer video games have become widely used, particularly in secondary and tertiary education, as a method of enhancing the understanding of some subject areas (especially in English language education, geography, history and health) and also used as an aid to attracting and retaining students. Many academics have proposed...

  6. Addition of electron acceptors stimulates methanogenesis from lipids by anaerobic sludge

    Guedes, Ana P.; Cavaleiro, A. J.; Silva, Sérgio; Alves, M.M.; Stams, A.J.M.; Sousa, D.Z.

    2013-01-01

    Incubation of anaerobic sludge with triolein or oleate in the presence of nitrate or sulphate led to an increased methane production, relatively to incubations without inorganic electron acceptor. Faster methane production was obtained in assays amended with nitrate. Methanogenesis occurred after the reduction of alternative electron acceptors.

  7. Life in the absence of oxygen: alterative electron acceptors for anaerobic microorganisms in a petroleum environment

    Balk, M.

    2007-01-01

    Anaerobic microorganisms derive energy by transferring electrons from an external source or donor to an external electron sink or terminal acceptor and often have the capacity to reduce 2 or more terminal electron acceptors. The well-known type of microbial respiration, in which oxygen serves as an

  8. Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently.

    Kiryu, Takaaki; Nakano, Hirofumi; Kiso, Taro; Murakami, Hiromi

    2008-03-01

    A carbohydrate:acceptor oxidoreductase from Paraconiothyrium sp. was purified and characterized. The enzyme efficiently oxidized beta-(1-->4) linked sugars, such as lactose, xylobiose, and cellooligosaccharides. The enzyme also oxidized maltooligosaccharides, D-glucose, D-xylose, D-galactose, L-arabinose, and 6-deoxy-D-glucose. It specifically oxidized the beta-anomer of lactose. Molecular oxygen and 2,6-dichlorophenol indophenol were reduced by the enzyme as electron acceptors. The Paraconiothyrium enzyme was identified as a carbohydrate:acceptor oxidoreductase according to its specificity for electron donors and acceptors, and its molecular properties, as well as the N-terminal amino acid sequence. Further comparison of the amino acid sequences of lactose oxidizing enzymes indicated that carbohydrate:acceptor oxidoreductases belong to the same group as glucooligosaccharide oxidase, while they differ from cellobiose dehydrogenases and cellobiose:quinone oxidoreductases. PMID:18323642

  9. Validating a Computer-Assisted Language Learning Attitude Instrument Used in Iranian EFL Context: An Evidence-Based Approach

    Aryadoust, Vahid; Mehran, Parisa; Alizadeh, Mehrasa

    2016-01-01

    A few computer-assisted language learning (CALL) instruments have been developed in Iran to measure EFL (English as a foreign language) learners' attitude toward CALL. However, these instruments have no solid validity argument and accordingly would be unable to provide a reliable measurement of attitude. The present study aimed to develop a CALL…

  10. Can Children Construct Inverse Relations in Arithmetic? Evidence for Individual Differences in the Development of Conceptual Understanding and Computational Skill

    Gilmore, Camilla K.; Bryant, Peter

    2008-01-01

    Understanding conceptual relationships is an important aspect of learning arithmetic. Most studies of arithmetic, however, do not distinguish between children's understanding of a concept and their ability to identify situations in which it might be relevant. We compared 8- to 9-year-old children's use of a computational shortcut based on the…

  11. Charge transfer complex of some nervous and brain drugs - Part 1: Synthesis, spectroscopic, analytical and biological studies on the reaction between haloperidol antipsychotic drugs with π-acceptors

    El-Habeeb, Abeer A.; Al-Saif, Foziah A.; Refat, Moamen S.

    2013-02-01

    Donor-acceptor interactions between the electron donor haloperidol (HPL) and π-acceptors like 7,7,8,8-tetracyanoquinodimethane (TCNQ) and picric acid (PA) have been studied spectrophotometrically in CH3OH solvent. The donor-acceptor (charge transfer complexes) were discussed in terms of formation constant (KCT), molar extinction coefficient (ɛCT), standard free energy (ΔGo), oscillator strength (ƒ), transition dipole moment (μ), resonance energy (RN) and ionization potential (ID). The stoichiometry of these complexes was found to be 1:1 M ratio and having the formulas [(HPL)(TCNQ)] and [(HPL)(PA)], respectively. The charge transfer interaction was successfully applied to determine of HPL drug using mentioned common π-acceptors also, the results obtained herein are satisfactory for estimation of HPL compound in the pharmaceutical form. The formed solid charge-transfer complexes were also isolated and characterized using elemental analysis, conductivity, (infrared, Raman, and 1H NMR) spectra and X-ray powder diffraction (XRD). The experimental data of elemental analyses are in agreement with calculated data. The infrared spectra of both HPL complexes are confirming the participation of sbnd OH of 4-hydroxy-1-piperidyl moiety in the donor-acceptor chelation. The morphological surface of the resulted charge transfer complexes were investigated using scanning electron microscopy (SEM). The thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about the thermal stability behavior of the synthesized charge transfer complexes. Thermodynamic parameters were computed from the thermal decomposition data. These complexes were also tested for their antimicrobial activity against six different microorganisms, and the results were compared with the parent drug.

  12. First dynamic computations of synchrotron emission from the cygnus a radio cavity: Evidence for electron pair plasma in cavity

    Cosmic rays, thermal gas and magnetic fields in FRII radio cavities are assumed to come entirely from winds flowing from just behind the jet shocks. Combining analytic and computational methods, it is shown that the computed radio-electron energy distribution and synchrotron emissivity spectra everywhere in the Cygnus A radio cavity agree with radio observations of the Cygnus A lobes. The magnetic field energy density is small everywhere and evolves passively in the post-shock wind. Most synchrotron emission arises in recent post-shock material as it flows back along the radio cavity wall. Because it experienced less adiabatic expansion, the magnetic field in this young backflow is larger than elsewhere in the radio lobe, explaining the observed radio synchrotron limb-brightening. The boundary backflow decelerates due to small cavity pressure gradients, causing large-scale fields perpendicular to the backflow (and synchrotron emission) to grow exponentially unlike observations. However, if the field is random on subgrid (sub-kpc) scales, the computed field reproduces both the magnitude and slowly decreasing radio synchrotron emissivity observed along the backflow. The radio synchrotron spectrum and image computed with a small-scale random field agree with Very Large Array observations. The total relativistic energy density in the post-jet shock region required in computations to inflate the radio cavity matches the energy density of relativistic electrons observed in the post-shock region of Cygnus A. This indicates that the component in the jet and cavity that dominates the dynamical evolution is a relativistic pair plasma.

  13. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-01

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts. PMID:25772403

  14. Potassium acceptor doping of ZnO crystals

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM) at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV

  15. Swift Electrofluorochromism of Donor-Acceptor Conjugated Polytriphenylamines.

    Sun, Jingwei; Liang, Ziqi

    2016-07-20

    Electrofluorochromic (EFC) materials, which exhibit electrochemically controllable fluorescence, hold great promise in optoelectronic devices and biological analysis. Here we design such donor-acceptor (D-A) conjugated polymers-P(TPACO) and P(TCEC)-that contain the same electron-rich and oxidizable polytriphenylamine (PTPA) as π-backbone, yet with different electron-deficient ketone and cyano units as pendant groups, respectively. They both exhibit solvatochromic effects due to intrinsic characteristics of intramolecular charge transfer (ICT). Compared to P(TPACO), P(TCEC) shows stronger ICT, which leads to higher electrochemical oxidation potential and lower ion diffusion coefficient. Moreover, both polymers present simultaneous electrochromic (EC) and EFC behaviors with multistate display and remarkably rapid fluorescence response. The response time of P(TPACO) is as short as 0.19 s, nearly 4-fold faster than that of P(TCEC) (0.92 s). Such rapid response is found to be determined by the ion diffusion coefficient which is associated with the ICT nature. Finally, the EFC display device based on P(TPACO) is successfully demonstrated, which shows green fluorescence ON/OFF switching upon applied potentials. This work has successfully demonstrated that swift EFCs can be achieved by rational modulation of the ICT effect in such D-A conjugated polymers. PMID:27347724

  16. Potassium acceptor doping of ZnO crystals

    Narendra S. Parmar

    2015-05-01

    Full Text Available ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  17. Evidence-based Trade Policy Decision Making in Australia and the Development of Computable General Equilibrium Modelling

    Peter B. Dixon

    2006-01-01

    This paper explains why evidence-based trade policy decision making is heavily reliant on results generated by CGE models and why the development and application of these modelling has been particularly active in Australia. The paper provides a short history of CGE modelling and describes the impetus to the field provided by two factors: (a) the failures of less theoretically formal approaches; and (b) the recognition of the ability of CGE modelling to handle policy-relevant detail. The paper...

  18. Brain circuits underlying visual stability across eye movements-converging evidence for a neuro-computational model of area LIP

    Arnold Ziesche; Hamker, Fred H.

    2014-01-01

    The understanding of the subjective experience of a visually stable world despite the occurrence of an observer's eye movements has been the focus of extensive research for over 20 years. These studies have revealed fundamental mechanisms such as anticipatory receptive field (RF) shifts and the saccadic suppression of stimulus displacements, yet there currently exists no single explanatory framework for these observations. We show that a previously presented neuro-computational model of peri-...

  19. Dissociation of response and feedback negativity in schizophrenia: Electrophysiological and computational evidence for a deficit in the representation of value

    Sarah E Morris

    2011-10-01

    Full Text Available Contrasting theories of schizophrenia propose that the disorder is characterized by a deficit in phasic changes in dopamine activity in response to ongoing events or, alternatively, by a weakness in the representation of the value of responses. Schizophrenia patients have reliably reduced brain activity following incorrect responses but other research suggests that they may have intact feedback-related potentials, indicating that the impairment may be specifically response-related. We used event-related brain potentials and computational modeling to examine this issue by comparing the neural response to outcomes with the neural response to behaviors that predict outcomes in patients with schizophrenia and psychiatrically healthy comparison subjects. We recorded feedback-related activity in a passive gambling task and a time estimation task and error-related activity in a flanker task. Patients’ brain activity following an erroneous response was reduced compared to comparison subjects but feedback-related activity did not differ between groups. Using computational modeling, we simulated the effects of an overall reduction in patients’ sensitivity to feedback, selective insensitivity to positive or negative feedback, reduced learning rate and a decreased representation of the value of the response given the stimulus on each trial. The results of the computational modeling suggest that schizophrenia patients exhibit weakened representation of response values, possibly due to failure of the basal ganglia to strongly associate stimuli with appropriate response alternatives.

  20. New organic donor-acceptor-π-acceptor sensitizers for efficient dye-sensitized solar cells and photocatalytic hydrogen evolution under visible-light irradiation.

    Li, Xing; Cui, Shicong; Wang, Dan; Zhou, Ying; Zhou, Hao; Hu, Yue; Liu, Jin-Gang; Long, Yitao; Wu, Wenjun; Hua, Jianli; Tian, He

    2014-10-01

    Two organic donor-acceptor-π-acceptor (D-A-π-A) sensitizers (AQ and AP), containing quinoxaline/pyrido[3,4-b]pyrazine as the auxiliary acceptor, have been. Through fine-tuning of the auxiliary acceptor, a higher designed and synthesized photoelectric conversion efficiency of 6.02% for the AQ-based dye-sensitized solar cells under standard global AM1.5 solar conditions was achieved. Also, it was found that AQ-Pt/TiO2 photocatalysts displayed a better rate of H2 evolution under visible-light irradiation (420 nm<λ<780 nm) because of the stability of the oxidized states and the lower rates of electron recombination. Importantly, sensitizers AQ and AP-Pt/TiO2 showed strong photocatalytic activity during continuous light soaking for 10 h with methanol as the sacrificial electron donor. Additionally, the processes of their intermolecular electron transfer were further investigated theoretically by using time-dependent DFT. The calculated results indicate that the auxiliary acceptor plays the role of an electron trap and results in broad spectral responses. PMID:25154958

  1. Thermodynamic properties of donor–acceptor complexes of tertiary amine with aryl ketones in hexane medium

    Highlights: ► Ultrasonic scan is carried out on ternary systems of aromatic tertiary amine and three aryl ketones. ► Formation of CT complexes is found between tertiary amine with aryl ketones. ► Stability constant values are computed by ultrasonic and spectral methods are compared. ► The trend in the ‘K’ suggests that substituents in ketones influence the stabilities of these complexes. ► The thermodynamic parameters suggest CT interaction is exothermic and the complexes are thermodynamically stable. - The thermodynamic stability of complexes formed between N,N-dimethylaniline (DMANI) and three ketones, namely, acetophenone (ACP), 4-chloroactophenone (ClACP) and 4-methylacetophenone (MACP) in n-hexane is extensively investigated by spectral and ultrasonic methods. The ultrasound scan was carried out in the temperature range 208.15–313.15 K and at atmospheric pressure on solutions containing equimolar concentrations of components ranging from 0.025 to 0.2 M. The existence of solute–solute interactions has also been confirmed through electronic absorption spectra analyzed with Benesi-Hildebrand theory at 303.15 K. The stability constants of the donor–acceptor complexes determined both by spectroscopic and ultrasonic methods are comparable and follow similar trends. The trend in the formation constants is discussed with structures of the components. The thermodynamic behavior of the systems was explained through the computed values of the free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) changes for complex formation are computed and discussed.

  2. Diversity of sugar acceptor of glycosyltransferase 1 from Bacillus cereus and its application for glucoside synthesis.

    Chiu, Hsi-Ho; Shen, Mo-Yuan; Liu, Yuan-Ting; Fu, Yu-Lieh; Chiu, Yu-An; Chen, Ya-Huei; Huang, Chin-Ping; Li, Yaw-Kuen

    2016-05-01

    Glycosyltransferase 1 from Bacillus cereus (BcGT1) catalyzes the transfer of a glucosyl moiety from uridine diphosphate glucose (UDP-glucose) to various acceptors; it was expressed and characterized. The specificity of acceptors was found to be broad: more than 20 compounds classified into O-, S-, and N-linkage glucosides can be prepared with BcGT1 catalysis. Based on this work, we conclude that the corresponding acceptors of these compounds must possess the following features: (1) the acceptors must contain at least one aromatic or fused-aromatic or heteroaromatic ring; (2) the reactive hydroxyl or sulfhydryl or amino group can attach either on the aromatic ring or on its aliphatic side chain; and (3) the acceptors can be a primary, secondary, or even a tertiary amine. Four representative acceptors-fluorescein methyl ester, 17-β-estradiol, 7-mercapto-4-methylcoumarin, and 6-benzylaminopurine-were chosen as a candidate acceptor for O-, S-, and N-glucosidation, respectively. These enzymatic products were purified and the structures were confirmed with mass and NMR spectra. As all isolated glucosides are β-anomers, BcGT1 is confirmed to be an inverting enzyme. This study not only demonstrates the substrate promiscuity of BcGT1 but also showed the great application prospect of this enzyme in bioconversion of valuable bioactive molecules. PMID:26795959

  3. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence

    Gerhard, Marina

    2016-04-27

    In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. New Type of Donor-Acceptor Through-Space Conjugated Polymer

    Lin Lin

    2010-01-01

    Full Text Available We report the synthesis and properties of a novel through-space conjugated polymer with a [2.2]paracyclophane skeleton. The obtained polymer possessed donor (fluorene and acceptor (2,1,3-benzothiadiazole segments that were alternately π-stacked in proximity via the [2.2]paracyclophane moieties. The good overlap between the emission peak of the donor unit (fluorene and the CT band of the acceptor unit (2,1,3-benzothiadiazole caused fluorescence resonance energy transfer, and the visible green light emission from the acceptor unit was observed.

  5. Group-II acceptors in wurtzite AlN: A screened hybrid density functional study

    Szabo, Aron; Tien Son, Ngyen; Janzén, Erik; Gali, Adam

    2010-01-01

    We systematically studied the group-II acceptors in wurtzite AlN by screened hybrid density functional calculations. We show that the shallowest isolated group-II substitutional defect is Mg, while codoping of Mg and O may yield even shallower acceptor level. Original Publication:Aron Szabo, Ngyen Tien Son, Erik Janzén and Adam Gali, Group-II acceptors in wurtzite AlN: A screened hybrid density functional study, 2010, APPLIED PHYSICS LETTERS, (96), 19, 192110.http://dx.doi.org/10.1063/1.3...

  6. Single-molecule interfacial electron transfer in donor-bridge-nanoparticle acceptor complexes.

    Jin, Shengye; Snoeberger, Robert C; Issac, Abey; Stockwell, David; Batista, Victor S; Lian, Tianquan

    2010-11-18

    Photoinduced interfacial electron transfer (IET) in sulforhodamine B (SRhB)-aminosilane-Tin oxide (SnO(2)) nanoparticle donor-bridge-acceptor complexes has been studied on a single molecule and ensemble average level. On both SnO(2) and ZrO(2), the sum of single molecule fluorescence decays agree with the ensemble average results, suggesting complete sampling of molecules under single molecule conditions. Shorter fluorescence lifetime on SnO(2) than on ZrO(2) is observed and attributed to IET from SRhB to SnO(2). Single molecule lifetimes fluctuate with time and vary among different molecules, suggesting both static and dynamic IET heterogeneity in this system. Computational modeling of the complexes shows a distribution of molecular conformation, leading to a distribution of electronic coupling strengths and ET rates. It is likely that the conversion between these conformations led to the fluctuation of ET rate and fluorescence lifetime on the single molecule level. PMID:20225886

  7. Quantifying charge transfer energies at donor–acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods

    Charge transfer states around the donor–acceptor interface in an organic solar cell determine the device performance in terms of the open circuit voltage. In the present work, we propose a computational scheme based on constrained density functional tight binding theory (c-DFTB) to assess the energy of the lowest charge transfer (CT) state in such systems. A comparison of the c-DFTB scheme with Hartree–Fock based configuration interaction of singles (CIS) and with time-dependent density functional theory (TD-DFT) using the hybrid functional B3LYP reveals that CIS and c-DFTB reproduce the correct Coulomb asymptotics between cationic donor and anionic acceptor configurations, whereas TD-DFT gives a qualitatively wrong excitation energy. Together with an embedding scheme accounting for the polarizable medium, this c-DFTB scheme is applied to several donor–acceptor combinations used in molecular solar cells. The external quantum efficiency of photovoltaic cells based on zinc phthalocyanine–C60 blends reveals a CT band remaining much narrower than the density of states of acceptor HOMO and donor LUMO, an observation which can be interpreted in a natural way in terms of Marcus transfer theory. A detailed comparison with c-DFTB calculations reveals an energy difference of 0.32 eV between calculated and observed absorption from the electronic ground state into the CT state. In a blend of a functionalized thiophene and C60, the photoluminescence spectra differ significantly from neat films, allowing again an assignment to CT states. The proposed computational scheme reproduces the observed trends of the observed open circuit voltages in photovoltaic devices relying on several donor–acceptor blends, finding an offset of 1.16 eV on average. This value is similar as in polymer–fullerene photovoltaic systems where it amounts to about 0.9 eV, indicating that the photophysics of CT states in molecular donor–acceptor blends and in polymer–fullerene blends are

  8. On the evidence of extra mixing in models of 8 M⊙ computed with the new solar abundances

    Scuflaire R.

    2013-03-01

    Full Text Available Stars more massive than about 3M⊙ are known to experience loops in the HR diagram during their core helium burning phase. Except for very massive stars the extent of their loops increases with the stellar mass. We show that a stellar evolution track for a 8M⊙ star computed with the new solar abundances [2] shows only a very tiny loop located near the red giant branch. An overshooting below the convective envelope is required to obtain a H-discontinuity located deep enough in the μ-gradient region and thus to allow the development of a loop in the HR diagram.

  9. Computational evidence for intramolecular hydrogen bonding and nonbonding X···O interactions in 2'-haloflavonols

    Tânia A. O. Fonseca

    2012-01-01

    Full Text Available The conformational isomerism and stereoelectronic interactions present in 2'-haloflavonols were computationally analyzed. On the basis of the quantum theory of atoms in molecules (QTAIM and natural bond orbital (NBO analysis, the conformer stabilities of 2'-haloflavonols were found to be dictated mainly by a C=O···H–O intramolecular hydrogen bond, but an unusual C–F···H–O hydrogen-bond and intramolecular C–X···O nonbonding interactions are also present in such compounds.

  10. Do mate preferences influence actual mating decisions? Evidence from computer simulations and three studies of mated couples.

    Conroy-Beam, Daniel; Buss, David M

    2016-07-01

    Evolutionary research continues to discover new features of human mate preferences, but the downstream consequences of these preferences for mate selection have been insufficiently explored. Some have inferred that stated preferences have few behavioral consequences given seemingly weak effects of preferences in predicting mating outcomes. Here we test this inference with data from simulated mating markets as well as from real-world couples. We generate a series of agent-based models in which preferences either do or do not drive mate selection. We compare these simulations with 3 empirical studies of real-world couples (Study 1, n = 214; Study 2, n = 259; Study 3, n = 294). Preference-driven agent based models produce several effects that emerge in real couples, but not within random simulations. These include low-magnitude correlations between stated preferences and the individual traits of chosen partners; the novel finding that people with high mate value leverage that value into securing partners with more desirable traits; and the finding that couples assort based on overall mate value. Moreover, real-world mate choices correspond strongly with preference-driven simulations, but not to simulations in which mate selection is random with respect to preferences. Finally, we provide evidence that these effects are due to the causal role of stated preferences, and are not better explained by people updating their mate preferences to match chosen mates. These results provide new evidence that stated mate preferences guide actual mate selections under real mating-market constraints. (PsycINFO Database Record PMID:27337140

  11. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (<2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation

  12. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    Mol, J. A. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Salfi, J.; Simmons, M. Y.; Rogge, S., E-mail: s.rogge@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Rahman, R.; Hsueh, Y.; Klimeck, G. [Purdue University, West Lafayette, Indiana 47906 (United States); Miwa, J. A. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C (Denmark)

    2015-05-18

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (<2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation.

  13. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    Mol, J. A.; Salfi, J.; Rahman, R.; Hsueh, Y.; Miwa, J. A.; Klimeck, G.; Simmons, M. Y.; Rogge, S.

    2015-05-01

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (<2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation.

  14. Explicitly Time-Dependent Electron Transfer in Donor-Bridge-Acceptor Systems

    Psiachos, Demetra

    2016-01-01

    We discuss electron transfer in benchmark donor-bridge-acceptor systems using time-dependent methods based on exact diagonalizations. For the small bridge sizes studied, the exact solution leads to results far different from perturbation theory. Notably, we do not obtain destructive interferences in the electron transfer for the arrangements of the bridge molecules which lead to this result using the perturbation theory. The calculated currents for various donor-bridge-acceptor configurations...

  15. review of the archaeological evidence for food plants from the British Isles: an example of the use of the Archaeobotanical Computer Database (ABCD

    Philippa Tomlinson

    1996-09-01

    Full Text Available The Archaeobotanical Computer Database is an electronic compilation of information about remains of plants from archaeological deposits throughout the British Isles. For the first time, this wealth of published data, much of it post-dating Godwin's (1975 History of the British Flora has been brought together in a form in which the user can explore the history of a particular species or group of plants, or investigate the flora and vegetation of a particular archaeological period or part of the British Isles. The database contains information about the sites, deposits and samples from which the remains in question have been recovered, together with details of the plant parts identified and their mode of preservation. It also provides some interpretative guidance concerning the integrity of contexts and the reliability of dating as an aid to judging the quality of the data available. In this paper the compilers of the ABCD make use of the database in order to review the archaeological evidence for food plants in the British Isles. The paper begins with a definition of its scope, examining the concept of a "food plant" and the taphonomy of plant remains on British archaeological sites. It then summarises the principal changes in food plants from the prehistoric period to post-medieval times. The body of the paper is a detailed discussion of the evidence for the use of berries, other fruits, vegetables, pulses, herbs and flavourings, oil plants, cereals and nuts. Finally, the paper compares the archaeological evidence with that known from documentary sources. Readers will be able to view the archaeological evidence as distribution maps and will be able to explore aspects of the database online, enabling queries by taxa, site or worker. Instructions on obtaining electronic copies of the database tables and registering as an ABCD user are also included.

  16. The evidence-policy divide: a ‘critical computational linguistics’ approach to the language of 18 health agency CEOs from 9 countries

    Bell Erica

    2012-10-01

    Full Text Available Abstract Background There is an emerging body of literature suggesting that the evidence-practice divide in health policy is complex and multi-factorial but less is known about the processes by which health policy-makers use evidence and their views about the specific features of useful evidence. This study aimed to contribute to understandings of how the most influential health policy-makers view useful evidence, in ways that help explore and question how the evidence-policy divide is understood and what research might be supported to help overcome this divide. Methods A purposeful sample of 18 national and state health agency CEOs from 9 countries was obtained. Participants were interviewed using open-ended questions that asked them to define specific features of useful evidence. The analysis involved two main approaches 1quantitative mapping of interview transcripts using Bayesian-based computational linguistics software 2qualitative critical discourse analysis to explore the nuances of language extracts so identified. Results The decision-making, conclusions-oriented world of policy-making is constructed separately, but not exclusively, by policy-makers from the world of research. Research is not so much devalued by them as described as too technical— yet at the same time not methodologically complex enough to engage with localised policy-making contexts. It is not that policy-makers are negative about academics or universities, it is that they struggle to find complexity-oriented methodologies for understanding their stakeholder communities and improving systems. They did not describe themselves as having a more positive role in solving this challenge than academics. Conclusions These interviews do not support simplistic definitions of policy-makers and researchers as coming from two irreconcilable worlds. They suggest that qualitative and quantitative research is valued by policy-makers but that to be policy-relevant health research may

  17. Uncertainty analysis using evidence theory - confronting level-1 and level-2 approaches with data availability and computational constraints

    Dempster-Shafer Theory of Evidence (DST), as an alternative or complementary approach to the representation of uncertainty, is gradually being explored with complex practical applications beyond purely algebraic examples. This paper reviews literature documenting such complex applications and studies its applicability from the point of view of the nature and amount of data that is typically available in industrial risk analysis: medium-size frequential observations for aleatory components, small noised datasets for model parameters and expert judgment for other components. On the basis of a simple flood model encoding typical risk analysis features, different approaches to quantify uncertainty in DST are reviewed and benchmarked in that perspective: (i) combining all sources of uncertainty under a single-level DST model; (ii) separating aleatory and epistemic uncertainties, respectively, modeled with a first probabilistic layer and a second one under DST. Methods for handling data in probabilistic studies such as Kolmogorov-Smirnov tests and quantile-quantile plots are transferred to the domain of DST. We illustrate how data availability guides the choice of the settings and how results and sensitivity analyses can be interpreted in the domain of DST, concluding with recommendations for industrial practice.

  18. Charge Transport in 4 nm Molecular Wires with Interrupted Conjugation: Combined Experimental and Computational Evidence for Thermally Assisted Polaron Tunneling.

    Taherinia, Davood; Smith, Christopher E; Ghosh, Soumen; Odoh, Samuel O; Balhorn, Luke; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel

    2016-04-26

    We report the synthesis, transport measurements, and electronic structure of conjugation-broken oligophenyleneimine (CB-OPI 6) molecular wires with lengths of ∼4 nm. The wires were grown from Au surfaces using stepwise aryl imine condensation reactions between 1,4-diaminobenzene and terephthalaldehyde (1,4-benzenedicarbaldehyde). Saturated spacers (conjugation breakers) were introduced into the molecular backbone by replacing the aromatic diamine with trans-1,4-diaminocyclohexane at specific steps during the growth processes. FT-IR and ellipsometry were used to follow the imination reactions on Au surfaces. Surface coverages (∼4 molecules/nm(2)) and electronic structures of the wires were determined by cyclic voltammetry and UV-vis spectroscopy, respectively. The current-voltage (I-V) characteristics of the wires were acquired using conducting probe atomic force microscopy (CP-AFM) in which an Au-coated AFM probe was brought into contact with the wires to form metal-molecule-metal junctions with contact areas of ∼50 nm(2). The low bias resistance increased with the number of saturated spacers, but was not sensitive to the position of the spacer within the wire. Temperature dependent measurements of resistance were consistent with a localized charge (polaron) hopping mechanism in all of the wires. Activation energies were in the range of 0.18-0.26 eV (4.2-6.0 kcal/mol) with the highest belonging to the fully conjugated OPI 6 wire and the lowest to the CB3,5-OPI 6 wire (the wire with two saturated spacers). For the two other wires with a single conjugation breaker, CB3-OPI 6 and CB5-OPI 6, activation energies of 0.20 eV (4.6 kcal/mol) and 0.21 eV (4.8 kcal/mol) were found, respectively. Computational studies using density functional theory confirmed the polaronic nature of charge carriers but predicted that the semiclassical activation energy of hopping should be higher for CB-OPI molecular wires than for the OPI 6 wire. To reconcile the experimental and

  19. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that Km and Vmax values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  20. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors.

    Camejo, Pamela Y; Owen, Brian R; Martirano, Joseph; Ma, Juan; Kapoor, Vikram; Santo Domingo, Jorge; McMahon, Katherine D; Noguera, Daniel R

    2016-10-01

    Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphatis during the micro-aerobic stage was investigated. A complete clade-level characterization of Accumulibacter in both reactors was performed using newly designed qPCR primers targeting the polyphosphate kinase gene (ppk1). In the lab-scale reactor, limited-oxygen conditions led to an alternated dominance of Clade IID and IC over the other clades. Results from batch tests when Clade IC was dominant (i.e., >92% of Accumulibacter) showed that this clade was capable of using oxygen, nitrite and nitrate as electron acceptors for P uptake. A more heterogeneous distribution of clades was found in the pilot-scale system (Clades IIA, IIB, IIC, IID, IA, and IC), and in this reactor, oxygen, nitrite and nitrate were also used as electron acceptors coupled to phosphorus uptake. However, nitrite was not an efficient electron acceptor in either reactor, and nitrate allowed only partial P removal. The results from the Clade IC dominated reactor indicated that either organisms in this clade can simultaneously use multiple electron acceptors under micro-aerobic conditions, or that the use of multiple electron acceptors by Clade IC is due to significant microdiversity within the Accumulibacter clades defined using the ppk1 gene. PMID:27340814

  1. Interface-split Kramers doublets for acceptor-based qubits in silicon

    Mol, Jan; Salfi, Joseph; Rahman, Rajib; Rogge, Sven

    2013-03-01

    Single dopants in silicon form a particular attractive platform for hosting spin quantum bits (qubits). The effective spin-3/2 states of acceptor-bound holes in silicon can be used to store bits of quantum information for several μs. Strong coupling of spin and momentum in the silicon valence band allows for rapid electrical manipulation of the hole spin. Acceptors in silicon have a four-fold degenerate ground-state, reflecting character of the top of the valence band. Symmetry breaking, by an electric field, strain or confinement, lifts this degeneracy, resulting in two Kramers doublets. The states within these isolated Kramers doublets are protected against decoherence by time reversal symmetry and form the working levels of a hole spin qubit. Here we investigate the effect of the presence of an interface on the ground-state energy splitting of individual sub-surface acceptors, as a function of dopant depth, by means of low temperature scanning tunneling spectroscopy. The depth of individual acceptors is determined by probing the Coulomb potential of the ionized acceptor nuclei. Resonant tunneling through the localized acceptor states provides a direct measure of the excited state spectrum of single dopants.

  2. Striatal disorders dissociate mechanisms of enhanced and impaired response selection — Evidence from cognitive neurophysiology and computational modelling

    Christian Beste

    2014-01-01

    Full Text Available Paradoxically enhanced cognitive processes in neurological disorders provide vital clues to understanding neural function. However, what determines whether the neurological damage is impairing or enhancing is unclear. Here we use the performance of patients with two disorders of the striatum to dissociate mechanisms underlying cognitive enhancement and impairment resulting from damage to the same system. In a two-choice decision task, Huntington's disease patients were faster and less error prone than controls, yet a patient with the rare condition of benign hereditary chorea (BHC was both slower and more error prone. EEG recordings confirmed significant differences in neural processing between the groups. Analysis of a computational model revealed that the common loss of connectivity between striatal neurons in BHC and Huntington's disease impairs response selection, but the increased sensitivity of NMDA receptors in Huntington's disease potentially enhances response selection. Crucially the model shows that there is a critical threshold for increased sensitivity: below that threshold, impaired response selection results. Our data and model thus predict that specific striatal malfunctions can contribute to either impaired or enhanced selection, and provide clues to solving the paradox of how Huntington's disease can lead to both impaired and enhanced cognitive processes.

  3. Experimental and computational evidence of the intermolecular motifs in the crystal packing of luminescent pentacoordinated gallium(III) complexes.

    Crispini, Alessandra; Aiello, Iolinda; La Deda, Massimo; De Franco, Irene; Amati, Mario; Lelj, Francesco; Ghedini, Mauro

    2006-11-21

    This paper reports the synthesis, characterization, photophysical and structural properties of the homologous series of good emitting pentacoordinated GaQ'2L complexes 1-3, where Q' is 2-methyl-quinolin-8-olate and L is a phenolate substituted in para position with respect to the oxygen donor atom. A combined approach between the experimental structural analysis (i.e. the molecular fragments involved in intermolecular pi-pi interactions) and the computational study (i.e. the nature of the molecular orbitals residing therein) is discussed in order to compare the charge transport aptitude of complexes 1-3, in relation to the facing of their LUMO/LUMO, HOMO/HOMO and HOMO/LUMO arising from the molecular packing. The different phenolate ligands significantly change the packing characteristics of 1-3, with indirect effects on the electron hopping kinetics responsible for conduction in amorphous thin films. The observed preference for pyridyl-pyridyl stacking proves a faster electron conduction in comparison to hole conduction in the three complexes studied. PMID:17077885

  4. Donor–acceptor type neutral green polymers containing 2,3-di(5-methylfuran-2-yl) quinoxaline acceptor and different thiophene donors

    Graphical abstract: - Highlights: • Three novel donor-acceptor type polymers are synthesized and characterized. • Two polymers are shown to be neutral-state green polymeric materials with high optical contrasts. • Three polymers are shown paramount choices for the polymer electrochromic display applications. - Abstract: A series of donor–acceptor type π-conjugated monomers containing quinoxaline moiety in the backbone as the acceptor unit and thiophene derivatives as the donor unit have been synthesized by Stille coupling. The effects of different donor substituents on the polymer’ electrochemical and spectroelectrochemical properties were examined. 2,3-di(5-methylfuran-2-yl)-5,8-bis(2-(3,4-ethylenedioxythiophene)) quinoxaline (MFEQ) with strong electron-donating ethylenedioxy group has a lower oxidation potential than that of 2,3-di(5-methylfuran-2-yl)-5,8-bis(2-thienyl) quinoxaline (MFTQ) and 2,3-di(5-methylfuran-2-yl)-5,8-bis(2-(3-methoxythiophene)) quinoxaline (MFMQ). The optical properties of polymers are also tuned due to different strength of donor units. Both PMFEQ and PMFMQ exhibit a green color in the neutral state, while PMFTQ with two absorption bands at 360 nm and 558 nm is purple. As donor–acceptor type materials, all three polymers can be both p- and n-doped, with fast response time, narrow band gap and high optical contrast (ΔT%)

  5. Theoretical estimation of the rate of photoinduced charge transfer reactions in triphenylamine C60 donor-acceptor conjugate.

    Martínez, Juan Pablo; Solà, Miquel; Voityuk, Alexander A

    2016-06-01

    Fullerene-based molecular heterojunctions such as the [6,6]-pyrrolidine-C60 donor-acceptor conjugate containing triphenylamine (TPA) are potential materials for high-efficient dye-sensitized solar cells. In this work, we estimate the rate constants for the photoinduced charge separation and charge recombination processes in TPA-C60 using the unrestricted and time-dependent DFT methods. Different schemes are applied to evaluate excited state properties and electron transfer parameters (reorganization energies, electronic couplings, and Gibbs energies). The use of open-shell singlet or triplet states, several density functionals, and continuum solvation models is discussed. Strengths and limitations of the computational approaches are highlighted. The present benchmark study provides an overview of the expected performance of DFT-based methodologies in the description of photoinduced charge transfer reactions in fullerene heterojunctions. © 2016 Wiley Periodicals, Inc. PMID:26992355

  6. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  7. Computational quantum chemistry website

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  8. Structures and photoelectric properties of five benzotrithiophene isomers-based donor-acceptor copolymers

    Cheng, Na; Ma, Yuchen; Liu, Yongjun; Zhang, Changqiao; Liu, Chengbu

    2016-04-01

    In this paper, we have investigated the structures, electronic and optical properties of five conjugated copolymers (BTT1-BTz, BTT2-BTz, BTT3-BTz, BTT4-BTz and BTT5-BTz) featuring benzotrithiophene (BTT) isomers as donor units and benzothiadiazole (BTz) as acceptor units, linked through thiophene spacers, employing many-body perturbation theory (MBPT). We have explored the isomer effects by configuration of the sulfur atoms in BTT units, aimed to get insight into how the structural modifications to the conjugated backbone can influence the molecular structures and electronic properties of conjugated polymers. Using the trimer as the computational model, the calculated low and high energy absorption bands (660 and 413 nm) for BTT1-BTz agree well with the experimental ones (645 and 430 nm) with a small offset of ~ 15 nm. On the basis of our calculations, it is found that the backbones of these polymers display different coplanarities, with the dihedral angles between the two neighboring rings varying from 12.3° to 79.0°. Importantly, both BTT1-BTz and BTT2-BTz exhibit intense adsorption around 660 and 623 nm, indicating their promising application in solar cells, whereas BTT3-BTz and BTT4-BTz display the intense adsorption at 569 and 551 nm, which are also usable in the tandem solar cells. BTT5-BTz has narrow and weak adsorption in the visible and infrared region, implying it is not conducive to the sunlight absorption. The blue shift of about 150 nm from BTT1-BTz to BTT5-BTz is suggested to be originated from the shorter effective conjugation lengths.

  9. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    Nielsen, Christian B.

    2015-10-27

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers

  10. Non-fullerene electron acceptors for use in organic solar cells.

    Nielsen, Christian B; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J; McCulloch, Iain

    2015-11-17

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure-property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers with

  11. Donor–acceptor type co-crystals of arylthio-substituted tetrathiafulvalenes and fullerenes

    Xiaofeng Lu

    2015-06-01

    Full Text Available A series of donor–acceptor type co-crystals of fullerene (as the acceptor and arylthio-substituted tetrathiafulvalene derivatives (Ar-S-TTF, as the donor were prepared and their structural features were thoroughly investigated. The formation of co-crystals relies on the flexibility of Ar-S-TTF and the size matches between Ar-S-TTF and fullerene. Regarding their compositions, the studied co-crystals can be divided into two types, where types I and II have donor:acceptor ratios of 1:1 and 1:2, respectively. Multiple intermolecular interactions are observed between the donor and acceptor, which act to stabilize the structures of the resulting co-crystals. In the type I co-crystals, the fullerene molecule is surrounded by four Ar-S-TTF molecules, that is, two Ar-S-TTF molecules form a sandwich structure with one fullerene molecule and the other two Ar-S-TTF molecules interact with the fullerene molecule along their lateral axes. In the type II co-crystals, one fullerene molecule has the donor–acceptor mode similar to that in type I, whereas the other fullerene molecule is substantially surrounded by the aryl groups on Ar-S-TTF molecules and the solvent molecules.

  12. Donor-acceptor type co-crystals of arylthio-substituted tetrathiafulvalenes and fullerenes.

    Lu, Xiaofeng; Sun, Jibin; Zhang, Shangxi; Ma, Longfei; Liu, Lei; Qi, Hui; Shao, Yongliang; Shao, Xiangfeng

    2015-01-01

    A series of donor-acceptor type co-crystals of fullerene (as the acceptor) and arylthio-substituted tetrathiafulvalene derivatives (Ar-S-TTF, as the donor) were prepared and their structural features were thoroughly investigated. The formation of co-crystals relies on the flexibility of Ar-S-TTF and the size matches between Ar-S-TTF and fullerene. Regarding their compositions, the studied co-crystals can be divided into two types, where types I and II have donor:acceptor ratios of 1:1 and 1:2, respectively. Multiple intermolecular interactions are observed between the donor and acceptor, which act to stabilize the structures of the resulting co-crystals. In the type I co-crystals, the fullerene molecule is surrounded by four Ar-S-TTF molecules, that is, two Ar-S-TTF molecules form a sandwich structure with one fullerene molecule and the other two Ar-S-TTF molecules interact with the fullerene molecule along their lateral axes. In the type II co-crystals, one fullerene molecule has the donor-acceptor mode similar to that in type I, whereas the other fullerene molecule is substantially surrounded by the aryl groups on Ar-S-TTF molecules and the solvent molecules. PMID:26199659

  13. Electronic structure of sub-surface Boron acceptors in silicon for potential qubits

    Rahman, Rajib; Mol, Jan; Klimeck, Gerhard; Rogge, Sven

    2013-03-01

    Single acceptors in silicon are investigated as potential qubits. Due to the p-type nature of the valence band (VB), the acceptor states are less susceptible to the hyperfine interaction of the neighboring nuclear spins. The presence of a stronger spin-orbit coupling in the VB also enables the possibility of an all-electric qubit control. Whereas donor qubits exhibit exchange oscillation with separation distance due to conduction band valleys, Boron acceptors are expected to have smoother exchange curves. We investigate the electronic structure of single Boron acceptors in silicon in the presence of electric field, strain, magnetic field, and interfaces. Bulk Boron acceptors have a four-fold degenerate ground state 45 meV above the VB with angular momentum states of 3/2 and 1/2. An interface splits this manifold into Kramer's doublets. Application of E and B fields allow several possibilities for forming a two-level qubit driven by an ac electric field. We compare calculations from atomistic tight-binding theory to scanning tunneling microscope (STM) measurements and k.p calculations. The tight-binding method captures additional wavefunction symmetries due to the crystal that help to explain the STM measurements.

  14. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics

    Holliday, Sarah

    2015-01-21

    A novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.1%. Transient and steady state optical spectroscopies indicated efficient, ultrafast charge generation and efficient photocurrent generation from both donor and acceptor. Ultrafast transient absorption spectroscopy was used to investigate polaron generation efficiency as well as recombination dynamics. It was determined that the P3HT:FBR blend is highly intermixed, leading to increased charge generation relative to comparative devices with P3HT:PC60BM, but also faster recombination due to a nonideal morphology in which, in contrast to P3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM devices, used as control, demonstrating that this acceptor shows great promise for further optimization.

  15. Atomic scale images of acceptors in III-V semiconductors; band bending, tunneling paths and wave functions

    Loth, Sebastian

    2008-01-01

    This volume reports measurements of single dopant atoms in III-V semiconductors with low temperature scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). It studies the anisotropic spatial distribution of acceptor induced tunneling processes at the {110} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced spa...

  16. Ultrafast Photoinduced Electron Transfer and Charge Stabilization in Donor-Acceptor Dyads Capable of Harvesting Near-Infrared Light.

    Bandi, Venugopal; Gobeze, Habtom B; D'Souza, Francis

    2015-08-01

    To harvest energy from the near-infrared (near-IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near-IR and IR light-absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2-chelated azadipyrromethene (ADP; to extend absorption and emission into the near-IR region) and fullerene as electron-donor and electron-acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near-IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated-ADP and benzanulated thiophene-ADP in the respective dyads, and triplet state of C60 in the case of BF2 -chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near-IR region of the solar spectrum and for building fast-responding optoelectronic devices operating under near-IR radiation input. PMID:26130432

  17. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Kenny F. Chou

    2015-06-01

    Full Text Available Förster (or fluorescence resonance energy transfer amongst semiconductor quantum dots (QDs is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  18. Investigation of acceptor centers in semiconductors with diamond crystal structure by the μ-SR-method

    Residual polarization of negative muons has been studied in phosphorus [P : 1.6·1013 cm-3] and antimony [Sb : 2·1018 cm-3] doped silicon crystals. The measurements were carried out in the transverse magnetic field of 1000 Oe in the temperature region 4-300 K. The relaxation rate and the precession frequency shift in the phosphorus doped silicon sample were measured more precisely than earlier. For the antimony doped silicon the damped and undamped components of muon polarization were observed for the first time. The experimental data are interpreted in terms of spin-lattice relaxation of the acceptor center magnetic moment, acceptor-donor pair formation, and recombination of charge carriers on the acceptor. Preliminary measurements showed the non-zero residual polarization of negative muons in germanium

  19. Growth of strain SES-3 with arsenate and other diverse electron acceptors

    Laverman, A.M.; Blum, J.S.; Schaefer, J.K.; Phillips, E.J.P.; Lovley, D.R.; Oremland, R.S.

    1995-01-01

    The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors.

  20. Spectroscopic studies of charge transfer complexes between colchicine and some π acceptors

    Arslan, Mustafa; Duymus, Hulya

    2007-07-01

    Charge transfer complexes between colchicine as donor and π acceptors such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL) have been studied spectrophotometrically in dichloromethane at 21 °C. The stoichiometry of the complexes was found to be 1:1 ratio by the Job method between donor and acceptors with the maximum absorption band at a wavelength of 535, 585 and 515 nm. The equilibrium constant and thermodynamic parameters of the complexes were determined by Benesi-Hildebrand and van't Hoff equations. Colchicine in pure form and in dosage form was applied in this study. The formation constants for the complexes were shown to be dependent on the structure of the electron acceptors used.

  1. Donor-Acceptor Heterojunction Configurations Based on DNA-Multichromophore Arrays.

    Nakamura, Mitsunobu; Tsuto, Koji; Jomura, Ayumi; Takada, Tadao; Yamana, Kazushige

    2015-08-10

    Multichromophore arrays of bis(2-thienyl)diketopyrrolopyrrole (DPP) and naphthalenediimide (NDI) with two Zn(II) -cyclens were constructed using thymidine DNA as a scaffold through the binding of the Zn(II) -cyclens with thymine bases. We demonstrate photocurrent generation in a donor-acceptor heterojunction configuration consisting of the DPP (donor) and NDI (acceptor) arrays co-immobilized on an Au electrode. The co-immobilized electrode exhibited good photocurrent responses because of the efficient charge separation between the DPP and NDI arrays. In contrast, an immobilized electrode consisting of randomly assembled DPP-NDI arrays generated no photocurrent response because DPP formed ground-state charge-transfer complexes with NDI in the randomly assembled arrays. Therefore, our approach to generate donor-acceptor heterojunctions based on DNA-multichromophore arrays is a useful method to efficiently generate photocurrent. PMID:26179473

  2. Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells.

    Cnops, Kjell; Zango, German; Genoe, Jan; Heremans, Paul; Martinez-Diaz, M Victoria; Torres, Tomas; Cheyns, David

    2015-07-22

    The use of non-fullerene acceptors in organic photovoltaic (OPV) devices could lead to enhanced efficiencies due to increased open-circuit voltage (VOC) and improved absorption of solar light. Here we systematically investigate planar heterojunction devices comprising peripherally substituted subphthalocyanines as acceptors and correlate the device performance with the heterojunction energetics. As a result of a balance between VOC and the photocurrent, tuning of the interface energy gap is necessary to optimize the power conversion efficiency in these devices. In addition, we explore the role of the charge transport layers in the device architecture. It is found that non-fullerene acceptors require adjusted buffer layers with aligned electron transport levels to enable efficient charge extraction, while the insertion of an exciton-blocking layer at the anode interface further boosts photocurrent generation. These adjustments result in a planar-heterojunction OPV device with an efficiency of 6.9% and a VOC above 1 V. PMID:26104833

  3. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs. PMID:26901739

  4. Thiadiazolo[3,4-c]pyridine as an Acceptor toward Fast-Switching Green Donor-Acceptor-Type Electrochromic Polymer with Low Bandgap.

    Ming, Shouli; Zhen, Shijie; Lin, Kaiwen; Zhao, Li; Xu, Jingkun; Lu, Baoyang

    2015-06-01

    Thiadiazolo[3,4-c]pyridine (PT), an important analog of benzothiadiazole (BT), has most recently been explored as a novel electron acceptor. It exhibits more electron-accepting ability and other unique properties and potential advantages over BT, thus inspiring us to investigate PT-based donor-acceptor-type (D-A) conjugated polymer in electrochromics. Herein, PT was employed for the rational design of novel donor-acceptor-type systems to yield a neutral green electrochromic polymer poly(4,7-di(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-[1,2,5] thiadiazolo[3,4-c]pyridine) (PEPTE). PEPTE revealed a lower bandgap (Eg,ele=0.85 eV, Eg,opt=1.12 eV) than its BT analog and also favorable redox activity and stability. Furthermore, electrochromic kinetic studies demonstrated that PEPTE displayed higher coloration efficiency than BT analog, good optical memory, and very fast switching time (0.3 s at all three wavelengths), indicating that PT would probably be a promising choice for developing novel neutral green electrochromic polymers by matching with various donor units. PMID:25955881

  5. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model.

    Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu

    2016-02-14

    In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed. PMID:26799407

  6. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  7. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany); Goetting, Christian, E-mail: cgoetting@hdz-nrw.de [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany)

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  8. Characterization of phosphorus removal bacteria in (AO)2 SBR system by using different electron acceptors

    JIANG Yi-feng; WANG Lin; YU Ying; WANG Bao-zhen; LIU Shuo; SHEN Zheng

    2007-01-01

    Characteristics of phosphorus removal bacteria were investigated by using three different types of electron acceptors, as well as the positive role of nitrite in phosphorus removal process. An (AO)2 SBR (anaerobic-aerobic-anoxic-aerobic sequencing batch reactor) was thereby employed to enrich denitrifying phosphorus removal bacteria for simultaneously removing phosphorus and nitrogen via anoxic phosphorus uptake. Ammonium oxidation was controlled at the first phase of the nitrification process. Nitrite-inhibition batch tests illustrated that nitrite was not an inhibitor to phosphorus uptake process, but served as an alternative electron acceptor to nitrate and oxygen if the concentration was under the inhibition level of 40mg NO2 - N · L- 1. It implied that in addition to the two well-accepted groups of phosphorus removal bacterium ( one can only utilize oxygen as electron acceptor, P1, while the other can use both oxygen and nitrate as electron acceptor, P2 ), a new group of phosphorus removal bacterium P3, which could use oxygen, nitrate and nitrite as electron acceptor to take up phosphorus were identified in the test system. To understand (AO)2 SBR sludge better, the relative population of the different bacteria in this system, plus another A/O SBR sludge (seed sludge) were respectively estimated by the phosphorus uptake batch tests with either oxygen or nitrate or nitrite as electron acceptor. The results demonstrated that phosphorus removal capability of (AO)2 SBR sludge had a little degradation after A/O sludge was cultivated in the (AO)2 mode over a long period of time. However, denitrifying phosphorus removal bacteria ( P2 and P3 ) was significantly enriched showed by the relative population of the three types of bacteria,which implied that energy for aeration and COD consumption could be reduced in theory.

  9. Structural instability of N-acceptors in homo- and heteroepitaxially grown ZnO by MBE

    Ando, K.; Abe, T.; Taya, T.; Ishihara, Y.; Enomoto, K.; Yamazaki, Y.; Yoshikawa, J.; Fujino, K.; Nakamura, H.; Ohno, T.; Kasada, H. [Department of Information and Electronic Engineering, Graduate School of Engineering, Tottori University, 4-1-1 Koyama-Minami, Tottori 680-8550 (Japan)

    2010-06-15

    Unique properties of the N-acceptor in homo- and heteroepitaxially grown ZnO by molecular beam epitaxy (MBE) are studied by means of microproving of surface sheet-resistance, Hall-effect measurement, persistent photoconduction (PPC) and thermally stimulated current (TSC). Rapid postanneal of N-doped ZnO is found to induce the change in the conduction type from n-type (as-grown) to p/n-type mixed conduction, forming island structure, and these properties are related to a structural instability of the N-acceptor. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  11. A 4% efficient organic solar cell using a fluorinated fused subphthalocyanine dimer as an electron acceptor

    Verreet, Bregt; Heremans, Paul [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Rand, Barry P.; Cheyns, David; Hadipour, Afshin; Aernouts, Tom [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Medina, Anais; Claessens, Christian G. [Departamento de Quimica Organica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Torres, Tomas [Departamento de Quimica Organica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); IMDEA-Nanociencia, Facultad de Ciencias, Ciudad Universitaria de Cantoblanco, 28049 Madrid (Spain)

    2011-07-15

    Planar bilayer organic solar cells with a fluorinated fused subphthalocyanine dimer (FSubPcDimer) as an acceptor and chloroboron (III) subphthalocyanine (SubPc) as a donor obtain a 60% higher J{sub sc} compared to cells using C{sub 60} as an acceptor, resulting in a power conversion efficiency of 4%. This is obtained thanks to the important contribution to the photocurrent of the low-bandgap FSubPcDimer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Behaviour of a muonic atom as an acceptor centre in diamond

    Mamedov, T. N.; Baturin, A. S.; Gritsaj, K. I.; Maisuradze, A; Ralchenko, V. G.; Scheuermann, R.; Sedlak, K.; Stoykov, A. V.

    2013-01-01

    Polarized negative muons were used to study the behaviour of the boron acceptor centre in synthetic diamond produced by the chemical vapour deposition (CVD) method. The negative muon substitutes one of the electrons in a carbon atom, and this muonic atom imitates the boron acceptor impurity in diamond. The temperature dependence of the muon spin relaxation rate and spin precession frequency were measured in the range of 20 - 330 K in a transverse magnetic field of 14 kOe. For the first time a...

  13. Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors

    Schmid, Thibault E; Drissi-Amraoui, Sammy; Crévisy, Christophe; Baslé, Olivier

    2015-01-01

    Summary The copper-catalyzed asymmetric conjugate addition (ACA) of nucleophiles onto polyenic Michael acceptors represents an attractive and powerful methodology for the synthesis of relevant chiral molecules, as it enables in a straightforward manner the sequential generation of two or more stereogenic centers. In the last decade, various chiral copper-based catalysts were evaluated in combination with different nucleophiles and Michael acceptors, and have unambiguously demonstrated their usefulness in the control of the regio- and enantioselectivity of the addition. The aim of this review is to report recent breakthroughs achieved in this challenging field. PMID:26734090

  14. Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors

    Thibault E. Schmid

    2015-12-01

    Full Text Available The copper-catalyzed asymmetric conjugate addition (ACA of nucleophiles onto polyenic Michael acceptors represents an attractive and powerful methodology for the synthesis of relevant chiral molecules, as it enables in a straightforward manner the sequential generation of two or more stereogenic centers. In the last decade, various chiral copper-based catalysts were evaluated in combination with different nucleophiles and Michael acceptors, and have unambiguously demonstrated their usefulness in the control of the regio- and enantioselectivity of the addition. The aim of this review is to report recent breakthroughs achieved in this challenging field.

  15. Decimal representations are not distinct from natural number representations – Evidence from a combined eye-tracking and computational modelling approach

    Stefan Huber

    2014-04-01

    Full Text Available Decimal fractions comply with the base-10 notational system of natural Arabic numbers. Nevertheless, recent research suggested that decimal fractions may be represented differently than natural numbers because two number processing effects (i.e., semantic interference and compatibility effects differed in their size between decimal fractions and natural numbers. In the present study, we examined whether these differences indeed indicate that decimal fractions are represented differently from natural numbers. Therefore, we provided an alternative explanation for the semantic congruity effect, namely a string length congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal fractions compared to natural numbers was driven by differences in processing strategy (sequential vs. parallel.To evaluate this claim, we manipulated the tenth and hundredth digits in a magnitude comparison task with participants' eye movements recorded, while the unit digits remained identical. In addition, we evaluated whether our empirical findings could be simulated by an extended version of our computational model originally developed to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking study, we found evidence that participants processed decimal fractions more sequentially than natural numbers because of the identical leading digit. Importantly, our model was able to account for the smaller compatibility effect found for decimal fractions. Moreover, string length congruity was an alternative account for the prolonged reaction times for incongruent decimal pairs. Consequently, we suggest that representations of natural numbers and decimal fractions do not differ.

  16. Long-Range Electron Transport Donor-Acceptor in Nonlinear Lattices

    Alexander P. Chetverikov

    2016-03-01

    Full Text Available We study here several simple models of the electron transfer (ET in a one-dimensional nonlinear lattice between a donor and an acceptor and propose a new fast mechanism of electron surfing on soliton-like excitations along the lattice. The nonlinear lattice is modeled as a classical one-dimensional Morse chain and the dynamics of the electrons are considered in the tight-binding approximation. This model is applied to the processes along a covalent bridge connecting donors and acceptors. First, it is shown that the electron forms bound states with the solitonic excitations in the lattice. These so-called solectrons may move with supersonic speed. In a heated system, the electron transfer between a donor and an acceptor is modeled as a diffusion-like process. We study in detail the role of thermal factors on the electron transfer. Then, we develop a simple model based on the classical Smoluchowski–Chandrasekhar picture of diffusion-controlled reactions as stochastic processes with emitters and absorbers. Acceptors are modeled by an absorbing boundary. Finally, we compare the new ET mechanisms described here with known ET data. We conclude that electron surfing on solitons could be a special fast way for ET over quite long distances.

  17. Hydrogen bonding at C=Se acceptors in selenoureas, selenoamides and selones.

    Bibelayi, Dikima; Lundemba, Albert S; Allen, Frank H; Galek, Peter T A; Pradon, Juliette; Reilly, Anthony M; Groom, Colin R; Yav, Zéphyrin G

    2016-06-01

    In recent years there has been considerable interest in chalcogen and hydrogen bonding involving Se atoms, but a general understanding of their nature and behaviour has yet to emerge. In the present work, the hydrogen-bonding ability and nature of Se atoms in selenourea derivatives, selenoamides and selones has been explored using analysis of the Cambridge Structural Database and ab initio calculations. In the CSD there are 70 C=Se structures forming hydrogen bonds, all of them selenourea derivatives or selenoamides. Analysis of intramolecular geometries and ab initio partial charges show that this bonding stems from resonance-induced C(δ+)=Se(δ-) dipoles, much like hydrogen bonding to C=S acceptors. C=Se acceptors are in many respects similar to C=S acceptors, with similar vdW-normalized hydrogen-bond lengths and calculated interaction strengths. The similarity between the C=S and C=Se acceptors for hydrogen bonding should inform and guide the use of C=Se in crystal engineering. PMID:27240763

  18. Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes

    Zee, van der F.P.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A.

    2003-01-01

    The role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate is described. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant

  19. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    GUILFORD JONES; S ST

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  20. Tin-vacancy acceptor levels in electron-irradiated n-type silicon

    Larsen, A. Nylandsted; Goubet, J. J.; Mejlholm, P.;

    2000-01-01

    temperature, and the defect-introduction rate, it is concluded that these levels are the double and single acceptor levels, respectively, of the Sn-V pair. These conclusions are in agreement with electronic structure calculations carried out using a local spin-density functional theory, incorporating...

  1. Acetylenic dithiafulvene derived donor-pi-acceptor dyads: synthesis, electrochemistry and non-linear optical properties

    Nielsen, Mogens Brønsted; Petersen, Jan Conrad; Thorup, Niels;

    2005-01-01

    A selection of donor-acceptor chromophores containing the redox-active dithiafulvene unit about acetylenic and aryl scaffolds has been synthesized. The molecules were studied for their optical, redox and structural properties. Moreover, third-order non-linear optical properties were investigated ...

  2. Rise-time of FRET-acceptor fluorescence tracks protein folding

    Lindhoud, S.; Westphal, A.H.; Van Mierlo, C.P.M.; Visser, A.J.W.G.; Borst, J.W.

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no correspon

  3. Catalytic reaction of cytokinin dehydrogenase : preference for quinones as electron acceptors

    Frébortová, Jitka; Fraaije, Marco W.; Galuszka, Petr; Šebela, Marek; Peč, Pavel; Hrbáč, Jan; Novák, Ondřej; Bilyeu, Kristin D.; English, James T.; Frébort, Ivo; Sebela, M.; Pec, P.; Hrbac, J.; Frebort, [No Value

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that

  4. Exploiting donor-acceptor interactions in aqueous dynamic combinatorial libraries : exploratory studies of simple systems

    Au-Yeung, Ho Yu; Cougnon, Fabien B. L.; Otto, Sijbren; Pantos, G. Dan; Sanders, Jeremy K. M.; Pantoş, G. Dan

    2010-01-01

    The behaviour of aqueous dynamic combinatorial libraries (DCLs) containing either electron-rich donor building blocks based on dioxynaphthalene (DN), or electron-deficient acceptor building blocks based on naphthalenediimide (NDI) are described. The influence of concentration and ionic strength on l

  5. Discriminating a deep gallium antisite defect from shallow acceptors in GaAs using supercell calculations

    Schultz, Peter A.

    2016-03-01

    For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaA s is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BA s. This systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.

  6. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  7. Adsorption of Organic Electron Acceptors on Graphene-like Molecules: Quantum Chemical and Molecular Mechanical Study

    Haldar, Susanta; Kolář, Michal; Sedlák, Robert; Hobza, Pavel

    2012-01-01

    Roč. 116, č. 48 (2012), s. 25328-25336. ISSN 1932-7447 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : graphene * organic electron acceptors * interaction energies * base-pairs * hydrophobic association Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.814, year: 2012

  8. Calculation of the hyperpolarizabilities of silicon-based donor-acceptor compounds for nonlinear optics

    vanHutten, PF; Hadziioannou, G; Burst, R; Feil, D

    1996-01-01

    A substituted diphenyldisilane having a dimethylamino donor and a perfluoroalkylsulfonyl acceptor shows a moderate second-order nonlinear optical efficiency while being transparent in the visible spectrum. Semiempirical quantum chemical approaches (AM1, ZINDO) as well as an ab initio sum-over-orbita

  9. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of cha

  10. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  11. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Graphical abstract: Schemes of perchlorate reduction in ClO4−/ClO3−–NO3− e−acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO4− reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO3−, ClO4−and NO3−. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO4−–ClO3−, ClO4−–ClO3−–NO3−,and ClO4−–NO3− acceptor systems, while being completely inhibited by the additional O2 in the ClO4−–O2 acceptor system. The reduction proceeded as an order of ClO3−, ClO4−, and NO3− in the ClO4−–ClO3−–NO3− system. KS,vmax, and qmax obtained at different e− acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively

  12. In vitro synthesis and structural analysis of selected acceptor products of Weissella confusa VTT E-90392 dextransucrase

    Hou, Yaxi

    2014-01-01

    Non-digestible oligosaccharides possess important physicochemical and physiological properties. They have gained great attention because of their potential prebiotic properties. The oligosaccharides have wide food industrial applications as dietary fibers, sweeteners, humectants, and possible weight controlling agents. In this thesis, cloned Weissella confusa VTT E-90392 dextransucrase was used to catalyze the synthesis of oligosaccharides (acceptor products) by acceptor reaction, when su...

  13. Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis.

    Strauss, Gregory P; Thaler, Nicholas S; Matveeva, Tatyana M; Vogel, Sally J; Sutton, Griffin P; Lee, Bern G; Allen, Daniel N

    2015-08-01

    There is increasing evidence that schizophrenia (SZ) and bipolar disorder (BD) share a number of cognitive, neurobiological, and genetic markers. Shared features may be most prevalent among SZ and BD with a history of psychosis. This study extended this literature by examining reinforcement learning (RL) performance in individuals with SZ (n = 29), BD with a history of psychosis (BD+; n = 24), BD without a history of psychosis (BD-; n = 23), and healthy controls (HC; n = 24). RL was assessed through a probabilistic stimulus selection task with acquisition and test phases. Computational modeling evaluated competing accounts of the data. Each participant's trial-by-trial decision-making behavior was fit to 3 computational models of RL: (a) a standard actor-critic model simulating pure basal ganglia-dependent learning, (b) a pure Q-learning model simulating action selection as a function of learned expected reward value, and (c) a hybrid model where an actor-critic is "augmented" by a Q-learning component, meant to capture the top-down influence of orbitofrontal cortex value representations on the striatum. The SZ group demonstrated greater reinforcement learning impairments at acquisition and test phases than the BD+, BD-, and HC groups. The BD+ and BD- groups displayed comparable performance at acquisition and test phases. Collapsing across diagnostic categories, greater severity of current psychosis was associated with poorer acquisition of the most rewarding stimuli as well as poor go/no-go learning at test. Model fits revealed that reinforcement learning in SZ was best characterized by a pure actor-critic model where learning is driven by prediction error signaling alone. In contrast, BD-, BD+, and HC were best fit by a hybrid model where prediction errors are influenced by top-down expected value representations that guide decision making. These findings suggest that abnormalities in the reward system are more prominent in SZ than BD; however, current psychotic

  14. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    Lima, Igo T.

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  15. Realization of p-type conductivity in ZnO by (N, Ag) dual acceptor codoping: a first-principles study

    Xiong, Zhihua; Chen, Lanli; Wan, Qixin; Li, Dongmei

    2010-10-01

    Ag monodoped, N monodoped and (nN, Ag) codoped ZnO have been investigated by the first-principles calculations, where the formation energies and ionization energies of various complexes and the electronic structure for 3N-Ag complex are studied. The calculated results are that N prefers to substitute O site, and Ag substitutes Zn site under the most growth condition, which indicate NO and AgZn all act as acceptors. Meanwhile, it's shown that N-Ag, 2N-Ag complex contribute little to p-type conduction because of the relatively higher ionization energy. However, 3N-Ag complex may have the lowest ionization energy among various complexes, while the formation energy of 3N-Ag is lower than that of N monodoped, Ag monodoped, N-Ag and 2N-Ag complex under the Zn-rich condition, which indicates that 3N-Ag complex is energetically favorable for the formation of p-type ZnO. Furthermore, by studying the electronic structure of 3N-Ag complex, it may generate an additional impurity band above the valence band maximum of ZnO. It is found that NO generated holes around the top of the valence band, and at the same time, N 2p states hybridized with 4d states of AgZn at the Fermi energy, and the hybridization lowered the repulsive interaction between the two dual acceptors, which enhance the concentration of impurities and the stability of the system, indicating that the dual acceptors evidently improve p-type conductivity of ZnO. Thus, it is found that 3N-Ag complex is the better dopant configuration. That can gain a better quality p-type ZnO under the Zn-rich condition. Our theoretical results are consistent with the experiment results.

  16. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  17. Atomic scale images of acceptors in III-V semiconductors. Band bending, tunneling paths and wave functions

    Loth, S.

    2007-10-26

    This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)

  18. Crystal Structure of Vancosaminyltransferase GtfD from the Vancomycin Biosynthetic Pathway: Interactions with Acceptor and Nucleotide Ligands

    Mulichak, A.M.; Lu, W.; Losey, H.C.; Walsh, C.T.; Garavito, R.M. (Harvard-Med); (MSU)

    2010-03-08

    The TDP-vancosaminyltransferase GtfD catalyzes the attachment of L-vancosamine to a monoglucosylated heptapeptide intermediate during the final stage of vancomycin biosynthesis. Glycosyltransferases from this and similar antibiotic pathways are potential tools for the design of new compounds that are effective against vancomycin resistant bacterial strains. We have determined the X-ray crystal structure of GtfD as a complex with TDP and the natural glycopeptide substrate at 2.0 {angstrom} resolution. GtfD, a member of the bidomain GT-B glycosyltransferase superfamily, binds TDP in the interdomain cleft, while the aglycone acceptor binds in a deep crevice in the N-terminal domain. However, the two domains are more interdependent in terms of substrate binding and overall structure than was evident in the structures of closely related glycosyltransferases GtfA and GtfB. Structural and kinetic analyses support the identification of Asp13 as a catalytic general base, with a possible secondary role for Thr10. Several residues have also been identified as being involved in donor sugar binding and recognition.

  19. Synthesis, Characterization, Absorbance, Fluorescence and Non Linear Optical Properties of Some Donor Acceptor Chromophores

    Asiri, Abdullah M.; Khan, Salman A.; Alamry, Kalid A. [King Abdulaziz University, Jeddah (Saudi Arabia); Al-Amoudi, Muhammed S. [Taif University, Taif (Saudi Arabia)

    2012-06-15

    Three carbazole chromophores featuring dicyano, cyano, ethyl acetate and dimethyl acetate groups as an acceptor moiety with a {pi}-conjugated spacer and N-methyl dibenzo[b]pyrole as donor were synthesized by Knovenagel condensation and characterized by IR, {sup 1}HNMR, {sup 13}CNMR, UV-vis, fluorescence spectroscopy, electrochemistry and theoretical B3LYP/6-311G* level whilst NLO properties and spectroscopic quantities were calculated. Calculations showed remarkable trend with HOMO located on the donor moiety and LUMO on the acceptors dicyano methylene, cyano, ethyl acetate methylene and dimethyl acetate methylene. In agreement with the calculations, solvatochromic, behavior intramolecular charge transfer band was observed in the visible region

  20. Comparative evaluation of the acceptor properties of quinone derivatized polypyridinic ligands

    Norambuena, Ester [Departamento de Quimica, Facultad de Ciencias Basicas, Universidad Metropolitana de Ciencias de la Educacion, Santiago (Chile); Olea-Azar, Claudio [Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago (Chile); Delgadillo, Alvaro [Departamento de Quimica, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena (Chile); Barrera, Mauricio [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Loeb, Barbara, E-mail: bloeb@puc.cl [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile)

    2009-05-18

    The reduction properties of four acceptor polipyridyl ligands modified with quinones were studied by different experimental methods, as cyclic voltammetry and ESR spectroscopy, and by theoretical calculations. ESR spectra for the reduced ligands show different patterns among them, suggesting that the quinone moiety plays an important role in the delocalization of the received electron. The hyperfine coupling constants calculated for the magnetic nucleus were in good agreement with experimental data. The results were additionally interpreted with the help of two theoretical predictors: the electrophilicity index and the Fukui function obtained through the spin density. The results suggest that 12,17-dihydronaphtho-[2,3-h]dipyrido[3,2-a:2',3'-c]-phenazine-12,17-dione, Aqphen, shows the most promising behavior to be employed as an acceptor ligand in complexes with potential application in NLO devices.

  1. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review.

    He, Chuan-Shu; Mu, Zhe-Xuan; Yang, Hou-Yun; Wang, Ya-Zhou; Mu, Yang; Yu, Han-Qing

    2015-12-01

    Microbial fuel cells (MFCs) have gained tremendous global interest over the last decades as a device that uses bacteria to oxidize organic and inorganic matters in the anode with bioelectricity generation and even for purpose of bioremediation. However, this prospective technology has not yet been carried out in field in particular because of its low power yields and target compounds removal which can be largely influenced by electron acceptors contributing to overcome the potential losses existing on the cathode. This mini review summarizes various electron acceptors used in recent years in the categories of inorganic and organic compounds, identifies their merits and drawbacks, and compares their influences on performance of MFCs, as well as briefly discusses possible future research directions particularly from cathode aspect. PMID:25907762

  2. Alteration of the Donor/Acceptor Spectrum of the (S-Amine Transaminase from Vibrio fluvialis

    Maika Genz

    2015-11-01

    Full Text Available To alter the amine donor/acceptor spectrum of an (S-selective amine transaminase (ATA, a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417 was created. A 3DM-derived alignment comprising fold class I pyridoxal-5′-phosphate (PLP-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal, as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions.

  3. XeF(2) /fluoride acceptors as versatile one-electron oxidants.

    Poleschner, Helmut; Seppelt, Konrad

    2013-12-01

    No phlogiston but xenon is released when XeF2 /F(-) acceptors act as new one-electron oxidants. F(-) acceptors are Lewis acids BF3 , B(C6 F5 )3 , and Al{OC(CF3 )3 }3 , and silyl derivatives TfOSiMe3 , Tf2 NSiMe3 , Me3 Si(+)  B(C6 F5 )4 (-) , and Me3 Si(+)  CHB11 Cl11 (-) . The anions BF4 (-) , TfO(-) , Tf2 N(-) , FB(C6 F5 )3 (-) , FAl{OC(CF3 )3 }3 (-) , B(C6 F5 )4 (-) , or CHB11 Cl11 (-) can be introduced into oxidation products of R2 E2 (E=S, Se, Te), [FeCp2 ], [(FeCpS)4 ], tetrathiafulvalene, thianthrene, and (2,4-Br2 C6 H3 )3 N. PMID:24127390

  4. Electrostatic interaction of pi-acidic amides with hydrogen-bond acceptors.

    Li, Yi; Snyder, Lawrence B; Langley, David R

    2003-10-01

    Interactions between N-methylacetamide (NMA) and N-methylated derivatives of uracil, isocyanurate and barbituric acid have been studied using ab initio methods at the local MP2/6-31G** level of theory. The results were compared to similar interactions between the oxygen atom of NMA and the pi-clouds of perfluorobenzene, quinone and trimethyltriazine. The pi-acidic amides of isocyanurate and barbituric acid were found to interact with a hydrogen bond acceptor primarily through electrostatic attractions. These groups may be used as alternatives of a hydrogen bond donor to complement a hydrogen bond acceptor or an anion in molecular recognition and drug design. Examples of such interactions were identified through a search of the CSD database. PMID:12951105

  5. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... donor/acceptor interface is detected. As a less studied system, we examine here the interfacial charge transfer state recombination in DBP:C70 thin-films. The weak EL from the small molecule solar cell biased in the forward direction gives valuable information about the CT state recombination, from......-generated charges is a major limitation for the efficiency of the organic solar cells, a thorough understanding of this loss mechanism is crucial to improve the performance of the devices. Furthermore, examining this interfacial state is of great importance in order to maximize open-circuit voltage and photocurrent...

  6. Donor-acceptor-pair emission in fluorescent 4H-SiC grown by PVT method

    Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystal in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal

  7. Donor-acceptor-pair emission in fluorescent 4H-SiC grown by PVT method

    Liu, Xi; Zhuo, Shi-Yi; Gao, Pan; Huang, Wei; Yan, Cheng-Feng; Shi, Er-Wei

    2015-04-01

    Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystal in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal.

  8. Acceptor action of plastic bending in n-InSb single crystals

    Measured are the halvanomagnetic properties of the n-type InSb single crystals plastically bent up to different values of the dislocation density, so that the initial n-type crystals turned out to be recompensated into p-type crystals by plastic bending. It is shown that under the given conditions of deformation the plastic bending always results in an increase of acceptor effect in crystals studied both under α- and β bendings. The anisotropy of electric properties in bended crystals is absent. The effects observed may be explained by the influence of ionized point defects, appearing in the crystal in the process of the formation and movement of dislocations and dislocations diffused to nuclei. The position of the energy level of acceptor centers introduced is determined

  9. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    Baris Yilmaz; Josiah Bjorgaard; Zhenghuan Lin; Muhammet E. Köse

    2015-01-01

    Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been fou...

  10. Glycosyltransferase Mechanisms: Impact of a 5-Fluoro Substituent in Acceptor and Donor Substrates on Catalysis†

    Hartman, Matthew C. T.; Jiang, Songmin; Jeffrey S. Rush; Waechter, Charles J.; Coward, James K

    2007-01-01

    In glycosyltransferase-catalyzed reactions a new carbohydrate-carbohydrate bond is formed between a carbohydrate acceptor and the carbohydrate moiety of either a sugar nucleotide or lipid-linked saccharide donor. It is currently believed that most glycosyltransferase-catalyzed reactions occur via an electrophilic activation mechanism with the formation of an oxocarbenium ion-like transition state, a hypothesis that makes clear predictions regarding the charge development on the donor (strong ...

  11. Electron Donor-Acceptor Interaction of 8-Hydroxyquinoline with Citric Acid in Different Solvents: Spectroscopic Studies

    Demelash Jado; Khalid Siraj; Nathan Meka

    2014-01-01

    Charge transfer complex formation between 8-hydroxyquinoline as the electron donor and citric acid as the electron acceptor has been studied spectrophotometrically in ethanol and methanol solvents at room temperature. Absorption band due to charge transfer complex formation was observed near 320 and 325 nm in ethanol and methanol, respectively. The stoichiometric ratio of the complex has been found 3 : 1 by using Job’s and conductometric titration methods. Benesi-Hildebrand equation has been ...

  12. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-06-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, 15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications.

  13. Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors

    Sun, Yvonne; Gustavson, Ruth L.; Ali, Nadia; Weber, Karrie A.; Westphal, Lacey L.; Coates, John D.

    2009-01-01

    The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were ...

  14. Preparation and characterization of gold nanoparticles functionalized with electron donor and electron acceptor ligands

    Janoušek, Jiří; Bělohradský, Martin; Matějka, P.; Matějková, Stanislava; Hadravová, Romana; Stará, Irena G.; Starý, Ivo

    Praha : Czech Chemical Society, 2013. s. 97-97. [Liblice 2013. Advances in Organic, Bioorganic and Pharmaceutical Chemistry /48./. 01.11.2013-03.11.2013, Špindlerův Mlýn] R&D Projects: GA ČR GAP207/10/2214 Institutional support: RVO:61388963 Keywords : gold nanoparticles * electron donor ligands * electron acceptor ligands Subject RIV: CC - Organic Chemistry

  15. Limited cash flow on slot machines: Effects of prohibition of note acceptors on adolescent gambling behaviour

    Hansen, Marianne; Rossow, Ingeborg

    2009-01-01

    This study addresses the impact of prohibition of note acceptors on gambling behaviour and gambling problems among Norwegian adolescents. Data comprised school surveys at three time points; 2004 and 2005 (before intervention) and 2006 (after intervention). Net samples comprised 20.000 students aged 13 – 19 years at each data collection. Identical measures of gambling behaviour (gambling frequency and expenditures on slot machines) and indicators of problem gambling (SOGS-RA and Lie/Bet) were ...

  16. Slurry bioreactors with simultaneous electron acceptors for bio remediation of an agricultural soil polluted with lindane

    Robles-Gonzalez, I. V.; Rios-Leal, E.; Galindez-Mayer, J.; Sastre-conde, I.; Poggi-Varaldo, H. M.

    2009-07-01

    Lindane or {gamma}-hexachloro-cyclohexane (HCH) is a toxic and recalcitrant chlorinated insecticide widely used in developing countries, particularly in Mexico. So far, most applications of SB have been focused on aerobic operation. More recently, a few promising lab scale applications of anaerobic or anoxic SB with simultaneous electron acceptors (also known as SB with combined environments) particularly partially-aerated methanogenic (PAM) and methanogenic-sulfate reducing (M/SR) SB. (Author)

  17. Molecular assembly of amino acid interlinked, topologically symmetric, π-complementary donor-acceptor-donor triads.

    Avinash, M B; Sandeepa, K V; Govindaraju, T

    2013-01-01

    Amino acid interlinked pyrene and naphthalenediimide (NDI) based novel donor-acceptor-donor (D-A-D) triads are designed to exploit their topological symmetry and complementary π-character for facile charge-transfer complexation. Consequently, free-floating high-aspect-ratio supercoiled nanofibres and hierarchical helical bundles of triads are realized by modulating the chemical functionality of interlinking amino acids. PMID:23946856

  18. Dynamic combinatorial synthesis of a catenane based on donor–acceptor interactions in water

    Au-Yeung, Ho Yu; Pantoş, G. Dan; Sanders, Jeremy K. M.

    2009-01-01

    A new type of neutral donor–acceptor [2]-catenane, containing both complementary units in the same ring was synthesized from a dynamic combinatorial library in water. The yield of the water soluble [2]-catenane is enhanced by increasing either building-block concentrations or ionic strength, or by the addition of an electron-rich template. NMR spectroscopy demonstrates that the template is intercalated between the 2 electron-deficient naphthalenediimide units of the catenane. PMID:19171892

  19. Using nonfluorescent Förster resonance energy transfer acceptors in protein binding studies.

    Ruan, Qiaoqiao; Skinner, Joseph P; Tetin, Sergey Y

    2009-10-15

    The purpose of this article is to highlight the versatility of nonfluorescent Förster resonance energy transfer (FRET) acceptors in determination of protein equilibrium dissociation constants and kinetic rates. Using a nonfluorescent acceptor eliminates the necessity to spectrally isolate the donor fluorescence when performing binding titrations covering a broad range of reagent concentrations. Moreover, random distribution of the donor and acceptor chromophores on the surface of proteins increases the probability of FRET occurring on their interaction. Three high-affinity antibodies are presented in this study as characteristic protein systems. Monoclonal antibody (mAb) 106.3 binds brain natriuretic peptide (BNP)5-13(C10A) and full-length BNP1-32 with the dissociation constants 0.26+/-0.01 and 0.05+/-0.02 nM, respectively, which was confirmed by kinetic measurements. For anti-hCG (human chorionic gonadotropin) mAb 8F11, studied at two incorporation ratios (IRs=1.9 and 3.8) of the nonfluorescent FRET acceptor, K(D) values of 0.04+/-0.02 and 0.059(-0.004)(+0.006) nM, respectively, were obtained. Likewise, the binding of goat anti-hamster immunoglobulin G (IgG) antibody was not affected by conjugation and yielded K(D) values of 1.26+/-0.04, 1.25+/-0.05, and 1.14+/-0.04 nM at IRs of 1.7, 4.7, and 8.1, respectively. We conclude that this FRET-based method offers high sensitivity, practical simplicity, and versatility in protein binding studies. PMID:19563765

  20. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF2 bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF2) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended π conjugation.

  1. Slurry bioreactors with simultaneous electron acceptors for bio remediation of an agricultural soil polluted with lindane

    Lindane or γ-hexachloro-cyclohexane (HCH) is a toxic and recalcitrant chlorinated insecticide widely used in developing countries, particularly in Mexico. So far, most applications of SB have been focused on aerobic operation. More recently, a few promising lab scale applications of anaerobic or anoxic SB with simultaneous electron acceptors (also known as SB with combined environments) particularly partially-aerated methanogenic (PAM) and methanogenic-sulfate reducing (M/SR) SB. (Author)

  2. Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor

    Woo, Claire H.

    2010-03-09

    The solar cell performance of poly[3-(4-n-octyl)-phenylthiophene] (POPT) and poly(3hexylthiophene) (P3HT) are compared in devices using 4,7-bis(2-(l-(2-ethylhexyl)-4,5-dicyanoimidazol-2-yl)vinyi)benzo[c][l,2,5] -thiadiazole (EV-BT) as the electron acceptor. Despite their reduced light absorption, POPT:EV-BT devices generate higher photocurrents in both bilayer and bulk heterojunction (BHJ) architectures than analogous P3HT:EV-BT devices. Optimized POPT:EV-BT BHJ devices achieve 1.4% average efficiency, whereas the analogous P3HT devices only reach 1.1%. Morphology does not account for the large difference in performance as AFM studies of the active layer suggest, comparable levels of phase separation in the two systems. Reverse bias analysis demonstrates that P3HT devices have a higher maximum potential than POPT devices, but P3HT devices appear to be more severely limited by recombination losses under standard operating conditions. A possible explanation for the superior performance in POPT devices is that the pendant phenyl ring in POPT can twist out-of-plane and increase the separation distance with the acceptor molecule. A larger donor/acceptor separation distance can destabilize the geminate pair and lead to more efficient charge separation in POPT:EV-BT devices. Our results emphasize the importance of donor/acceptor pair interactions and its effect on charge separation, processes in polymer solar cells. © 2010 American Chemical Society.

  3. Spectroscopic Studies of Bridge Contributions to Electronic Coupling in a Donor-Bridge-Acceptor Biradical System

    Kirk, Martin L.; Shultz, David A.; Depperman, Ezra C.; Habel-Rodriguez, Diana; Schmidt, Robert D.

    2012-01-01

    Variable temperature electronic absorption and resonance Raman spectroscopies are used to probe the excited state electronic structure of TpCum,MeZn(SQ-Ph-NN) (1) – a donor-bridge-acceptor (D-B-A) biradical complex and a ground state analog of the charge-separated excited state formed in photoinduced electron transfer reactions. Strong ferromagnetic exchange coupling that is mediated by the para-phenylene bridge stabilizes the triplet ground state of this molecule. Detailed spectroscopic and ...

  4. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (hosts for the above experiments. For the first time, non-natural systems have been self-assembled which can capture donor-acceptor pairs and facilitate

  5. Synthesis, Structure, and Optical Studies of Donor-Acceptor-Type Near-Infrared (NIR) Aza-Boron-Dipyrromethene (BODIPY) Dyes.

    Balsukuri, Naresh; Lone, Mohsin Y; Jha, Prakash C; Mori, Shigeki; Gupta, Iti

    2016-05-20

    Six donor-acceptor-type near-infrared (NIR) aza-boron-dipyrromethene (BODIPY) dyes and their corresponding aza-dipyrrins were designed and synthesized. The donor moieties at the 1,7-positions of the aza-BODIPY core were varied from naphthyl to N-phenylcarbazole to N-butylcarbazole. The 3,5-positions were also substituted with phenyl or thienyl groups in the aza-BODIPYs. Photophysical, electrochemical, and computational studies were carried out. The absorption and emission spectra of aza-BODIPYs were significantly redshifted (≈100 nm) relative to the parent tetraphenylaza-BODIPY. Fluorescence studies suggested effective energy transfer (up to 93 %) from donor groups to the aza-BODIPY core in all of the compounds under study. Time-dependent (TD)-DFT studies indicated effective electronic interactions between energy donor groups and aza-dipyrrin unit in all the aza-BODIPYs studied. The HOMO-LUMO gap (ΔE) calculated from cyclic voltammetry data was found to be lower for six aza-BODIPYs relative to their corresponding aza-dipyrrins. PMID:26918806

  6. Theoretical Study of Donor - Spacer - Acceptor Structure Molecule for Molecular Rectifier

    Mizuseki, Hiroshi; Kenji, Niimura; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to establish a future nanoscale electronic devices. To realize this molecular device, unimolecular rectifiering function is one of the most important constituents in nanotechnology [C. Majumder, H. Mizuseki, and Y. Kawazoe, Molecular Scale Rectifier: Theoretical Study, J. Phys. Chem. A, 105 (2001) 9454-9459.]. In the present study, the geometric and electronic structure of alkyl derivative C37H50N4O4 (PNX) molecule, (donor - spacer - acceptor), a leading candidate of molecular rectifying device, has been investigated theoretically using ab initio quantum mechanical calculation. The results suggest that in such donor-acceptor molecular complexes, while the lowest unoccupied orbital concentrates on the acceptor subunit, the highest occupied molecular orbital is localized on the donor subunit. The approximate potential differences for optimized PNX molecule have been estimated at the B3PW91/6-311g++(d,p) level of theory, which achieves quite good agreement with experimentally reported results. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

  7. Metals as electron acceptors in single-chamber microbial fuel cells

    Li, Yan; Wu, Yining; Puranik, Sampada; Lei, Yu; Vadas, Timothy; Li, Baikun

    2014-12-01

    Two typical oxidized-status metals (Fe(III) and Cr(VI)) were studied as electron acceptors on cathodes in single chamber microbial fuel cells (SCMFCs) to explore novel sustainable technology for metal treatment. The batch-mode tests indicated that the voltages of SCMFCs steadily increased with Fe(III) concentrations (10, 30, and 50 mg L-1) and Cr(VI) concentrations (1, 3, and 10 mg L-1). The maximum power density was 658 ± 6 mW m-2 at 50 mg L-1 of Fe(III), and 419 ± 4 mW m-2 at 10 mg L-1 Cr(VI). The conversion efficiency of Cr(VI) and Fe(III) were high (>89%), and coulombic efficiency ranged 23-100%. Cr(VI) concentration of 10 mg L-1 started to irreversibly inhibit SCMFCs. The open circuit potentials (OCPs) well reflected the organic substrate removal in anode and metal reduction on cathode. Cathode liner sweep voltammetry (LSV) showed the electrochemical activity increased with metal concentrations, and the cathode of Fe(III) had better LSV performance than Cr(VI). Microbial community analysis of biofilms showed that the DNA band patterns of anode biofilms were similar, while cathode biofilms varied with electron acceptors. This study demonstrated the high power generation of SCMFCs with metals as electron acceptors, and revealed the great potential of expanding MFCs for diverse waste treatment.

  8. Electron acceptors based on alpha-position substituted PDI for OPV solar cells.

    Zhao, Donglin; Wu, Qinghe; Cai, Zhengxu; Zheng, T; Chen, Wei; Lu, Jessica; Yu, L

    2016-02-23

    The ortho-position functionalized perylene diimide derivatives (alphaPPID, alphaPBDT) were synthesized and used as the electron acceptors in nonfullerene organic photovoltaics. Due to the good planarity of ortho-position functionalized PDI, the alphaPPID and alphaPBDT show strong tendency to form aggregate because of their enhanced intermolecular pie-pie interaction. Moreover, they maintain the pure domains and the same packing order as in the pure film if they are blended with PBT7-TH and the SCLC measurement also shows the high electron mobility. The inverted OPVs employing alphaPDI-based compounds as acceptor and PBT7-TH as the donor give the highest PCE of 4.92 % for alphaPBDT based device and 3.61 % for alphaPPID based device, which is 39 % and 4 % higher than that for their counterpart betaPBDT and betaPPID. The charge separation study shows the more efficient exciton dissociation at interfaces between PDI based compounds and PBT7-TH. The results suggest that compared to beta-substituted ones, alpha-substituted PDI derivatives are more promising electron acceptors for OPV.

  9. Acceptor proteins for poly(ADP-ribose) in irradiated normal human and ataxia telangiectasia (AT) fibroblasts

    Poly(ADP-ribose) polymerase activity is stimulated by DNA strand breaks and may participate in DNA repair. Since treatment of cells with DNA damaging agents stimulated the poly(ADP-ribosylation) of a specific set of proteins, the authors have analyzed the acceptors in irradiated human fibroblasts from normal individuals and from patients with AT, a disease associated with a hypersensitivity to ionizing radiation. Cells were permeabilized and incubated with /sup 32/P-NAD, proteins were separated by polyacrylamide gel electrophoresis, and the poly (ADP-ribose) acceptors were detected by autoradiography. In all four strains, the major acceptor was the 116 kd auto-modified polymerase, while other prominent radioactive bands were at 2, 45, and 60 kd. Labeling of these bands was increased following irradiation of the cells with 3-30 Gy. Of interest was the detection of a poly (ADP-ribosylated) protein at 19 kd in the two normal strains but not in either AT strain. The results suggest that a defect in the ADP-ribosylation of the 19 kd protein is associated with AT and possible with the hypersensitivity of AT cells to ionizing radiation

  10. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  11. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells

  12. Positive role of nitrite as electron acceptor on anoxic denitrifying phosphorus removal process

    HUANG RongXin; LI Dong; LI XiangKun; BAO LinLin; JIANG AnXi; ZHANG Jie

    2007-01-01

    Literatures revealed that the electron acceptor-nitrite could be inhibitory or toxic in the denitrifying phosphorus removal process.Batch test experiments were used to investigate the inhibitory effect during the anoxic condition.The inoculated activated sludge was taken from a continuous double- sludge denitrifying phosphorus and nitrogen removal system.Nitrite was added at the anoxic stage.One time injection and sequencing batch injection were carried on in the denitrifying dephosphorus procedure.The results indicated that the nitrite concentration higher than 30 mg/L would inhibit the anoxic phosphate uptake severely, and the threshold inhibitory concentration was dependent on the characteristics of the activated sludge and the operating conditions; instead, lower than the inhibitory concentration would not be detrimental to anoxic phosphorus uptake, and it could act as good electron acceptor for the anoxic phosphate accumulated.Positive effects performed during the denitrifying biological dephosphorus all the time.The utility of nitrite as good electron acceptor would provide a new feasible way in the denitrifying phosphorus process.

  13. Transferase Activity of Lactobacillal and Bifidobacterial β-Galactosidases with Various Sugars as Galactosyl Acceptors.

    Arreola, Sheryl Lozel; Intanon, Montira; Wongputtisin, Pairote; Kosma, Paul; Haltrich, Dietmar; Nguyen, Thu-Ha

    2016-03-30

    The β-galactosidases from Lactobacillus reuteri L103 (Lreuβgal), Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (Lbulβgal), and Bifidobacterium breve DSM 20281 (Bbreβgal-I and Bbreβgal-II) were investigated in detail with respect to their propensity to transfer galactosyl moieties onto lactose, its hydrolysis products d-glucose and d-galactose, and certain sugar acceptors such as N-acetyl-d-glucosamine (GlcNAc), N-acetyl-d-galactosamine (GalNAc), and l-fucose (Fuc) under defined, initial velocity conditions. The rate constants or partitioning ratios (kNu/kwater) determined for these different acceptors (termed nucleophiles, Nu) were used as a measure for the ability of a certain substance to act as a galactosyl acceptor of these β-galactosidases. When using Lbulβgal or Bbreβgal-II, the galactosyl transfer to GlcNAc was 6 and 10 times higher than that to lactose, respectively. With lactose and GlcNAc used in equimolar substrate concentrations, Lbulβgal and Bbreβgal-II catalyzed the formation of N-acetyl-allolactosamine with the highest yields of 41 and 24%, respectively, as calculated from the initial GlcNAc concentration. PMID:26975338

  14. Closed-form expressions correlating exciton transport and interfacial charge carrier generation with the donor/acceptor morphology in organic bulk heterojunction solar cells

    Organic bulk heterojunction (BHJ) solar cells are frequently modeled with effective-medium device models; these models, however, do not resolve the relation between excitonic processes in the donor/acceptor (D/A) blend and the D/A morphology. In this context, we derive a simple analytical model to relate the interfacial exciton flux and the volumetric generation rate of interfacial electron–hole pairs with the morphological characteristics of a D/A blend. Our approach does not require explicit morphological information of the D/A blend, except for the specific interfacial area and the blending ratio between donor and acceptor materials, both of which can be assessed experimentally. The expressions are verified with numerical simulations based on randomly generated three-dimensional D/A morphologies – overall, good agreement is found. The analytical expressions developed in this paper can easily be integrated into existing effective-medium device models, allowing them to capture the effect of exciton transport and morphology on free charge carrier generation in more detail. These expressions potentially allow morphological features in a D/A blend to be optimized within a fast, 1D computational framework

  15. 云计算环境下的电子证据取证关键技术研究%Research of Key Technologies of Electronic Evidence Forensics Based on Cloud Computing Environment

    吴绍兵

    2012-01-01

    Cloud computing is a method of calculation which provides users with the computing capacity, storage capacity and service capabilities,according to need and the final purpose is user-friendly and greatly reduces the user's hardware and software procurement costs. Cloud computing forensics is a new battlefield,in order to better combat cybercrime in the battlefield,you must come up with some novel methods of investigation. Static electronic evidence, dynamic web-based electronic evidence, the cloud environment of electronic forensics related concepts,key technologies, etc. Are reviewed and the key technologies of the electronic evidence collection model in cloud computing environments are discussed. That cloud computing mode of thinking is proposed. It points out the cloud forensics technology development trends.%云计算是能为用户提供按需分配的计算能力、存储能力及应用服务能力,方便用户使用,大大降低用户软硬件采购费用的一种计算方式.云计算取证是一个新的战场,为了在这一战场中更好地打击网络犯罪,必须研究出一些新奇的调查方法.从静态的电子证据、动态的网络电子取证到云计算环境下的电子取证的相关概念、关键技术等进行了综述,探讨了云计算环境下的电子取证模型关键技术,提出了云计算思维模式,并指出了云取证技术的发展趋势和展望.

  16. Computer simulation of heterogeneous polymer photovoltaic devices

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13–26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures. (paper)

  17. Template Dimerization Promotes an Acceptor Invasion-Induced Transfer Mechanism during Human Immunodeficiency Virus Type 1 Minus-Strand Synthesis

    Balakrishnan, Mini; Roques, Bernard P.; Fay, Philip J.; Bambara, Robert A.

    2003-01-01

    The biochemical mechanism of template switching by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and the role of template dimerization were examined. Homologous donor-acceptor template pairs derived from the HIV-1 untranslated leader region and containing the wild-type and mutant dimerization initiation sequences (DIS) were used to examine the efficiency and distribution of transfers. Inhibiting donor-acceptor interaction was sufficient to reduce transfers in DIS-containin...

  18. Cascade Reaction of Donor-Acceptor Cyclopropanes: Mechanistic Studies on Cycloadditions with Nitrosoarenes and cis-Diazenes.

    Chidley, Tristan; Vemula, Naresh; Carson, Cheryl A; Kerr, Michael A; Pagenkopf, Brian L

    2016-06-17

    Tandem ring opening, elimination, and cycloaddition of donor-acceptor cyclopropanes were observed in Yb(OTf)3-catalyzed cycloaddition with nitrosoarenes. The reaction results in formation of tetrahydro-1,2-oxazine instead of the normal cycloadduct isoxazolidine via in situ nitrone formation. A similar cascade sequence was observed with cis-diazines. Mechanistic studies on this unique transformation offer an entirely new approach for reaction design with donor-acceptor cyclopropanes. PMID:27267360

  19. Extracting fluorescence signal due to direct excitation of the energy acceptor from quantum dot-based FRET

    An 'in situ' strategy for extracting the fluorescence signal of dye acceptors due to direct excitation from Qdot-based FRET systems has been reported. The relevant theory model was developed to describe the present strategy. This strategy involves selective control of the quantum yield of Qdot donors 'in situ', not only providing a straightforward approach to qualitatively confirm the FRET-based fluorescence enhancement but also allowing us to quantitatively separate the fluorescence signal of dye acceptors due to direct excitation and FRET enhancement from each other with high precision and convenient procedures. Different from existing method which was commonly used in literatures, our 'in situ' strategy does not involve complicated quantification of the dye acceptors conjugated on the surface of Qdots. Results indicated that the fraction of the emission from the dye acceptors due to FRET process decreases with the increase in the amount of dye acceptors on the Qdot surface. In addition, the relation between the quantum yield of Qdot donors and the FRET enhancement factor of the dye acceptors have also been explored for the first time by the present 'in situ' strategy.

  20. Relation between photovoltaic characteristics and acceptor concentration at the interface of indium oxide/indium phosphide heterojunction solar cell

    Photovoltaic characteristics of a heterojunction solar cell composed of reactively evaporated indium oxide (In2O3) film and single crystalline p-type indium phosphide (InP) was found to depend on acceptor concentration at the interface. The value of acceptor concentration was preferable to be high to obtain a high performance cell because larger open-circuit voltage can be obtained due to decrease of diode saturation current of the cell with the increase of the acceptor concentration. The acceptor concentration of the cell was increased by annealing during forming an ohmic contact. The increase of acceptor concentration by annealing thought to be able to explain in terms of out diffusion of the interstitial zinc atoms in InP bulk. Further, the value of acceptor concentration is modified by substrate heating during deposition of transparent and conductive In2O3 film. In order to produce a high performance cell, low substrate temperature (200 deg C) was preferable during deposition of In2O3 (Authors)

  1. Effect of different donors and a polymer environment on photophysical and energy transfer studies using C540 as the acceptor

    N Sesha Bamini; A Ramalingam; V S Gowri

    2012-12-01

    The dyes (C450, C480 and C540) and their dye mixtures (C450:C540 and C480:C540) were doped in polymer matrices (solid). Their photophysical studies were recorded. These results were analysed by comparing them with the data of the dyes and the dye mixtures in monomer compositions (liquid). The absorption and fluorescence spectral profiles of the dyes in the polymer matrix were found to be identical to those in the monomer compositions. The effect of different donors on the energy transfer technique using C540 as acceptor, in polymer matrix and monomer compositions, was studied in detail. The results obtained for the energy transfer technique in two binary dye mixtures containing different donors but same acceptor, in solid and liquid media, were intercompared. The gain of the acceptor without donor and with different donors was determined experimentally. The gain coefficient in the polymer matrix (solid) was less than that in the monomer medium (liquid). Also, the gain of the acceptor C540 was found to be more when C450 was used as the donor compared to that when C480 was used as the donor. Using nitrogen laser, the photobleaching effect in the two binary dye-doped polymer rods (with different donors but same acceptor) was studied. It was observed that photobleaching of the acceptor C540 in the presence of C450 as donor is slower than that in the presence of C480 as donor.

  2. Acceptor Concentration Effects on Photovoltaic Response in the La1_xSrxMnO3/SrNbyTi1_yO3 Heterojunction

    LIAO Leng; JIN Kui-Juan; HAN Peng; ZHANG Li-Li; L(U) Hui-Bin; GE Chen

    2009-01-01

    Photovoltaic response in the hereto junction of La1- x Srx Mn O3/SrNby Ti1-y O3 (LSMO/SNTO) is analyzed theoretically based on the drift-diffusion model. It is found that the decrease of acceptor concentration in the La1-xSrxMnO3 layer of heterojunction can increase the peak value of photovoltaic signal and the speed of photovoltaic response, whereas the changing of donor concentration in the SrNbyTi1-yO3 layer has no such evident effect. Furthermore, the result also indicates that the modulation of Sr doping in La1-xSrxMnO3 is an effective method to accommodate the sensitivity and the speed of photovoltaic response for LSMO/SNTO photoelectric devices.

  3. Electronic spectrum of non-tetrahedral acceptors in CdTe:Cl and CdTe:Bi,Cl single crystals

    The electronic spectra of complex acceptors in compensated CdTe:Cl, CdTe:Ag,Cl, and CdTe:Bi,Cl single crystals are studied using low-temperature photoluminescence (PL) measurements under both nonresonant and resonant excitation of distant donor–acceptor pairs (DAP). The wavelength modulation of the excitation source combined with the analysis of the differential PL signal is used to enhance narrow spectral features obscured because of inhomogeneous line broadening and/or excitation transfer for selectively excited DAPs. For the well-known tetrahedral (TD) AgCd acceptor, the energies of four excited states are measured, and the values obtained are shown to be in perfect agreement with the previous data. Moreover, splitting between the 2P3/2 (Γ8) and 2S3/2 (Γ8) states is clearly observed for AgCd centers located at a short distance (5–7 nm) from a hydrogen-like donor (ClTe). This splitting results from the reduction of the TD symmetry taking place when the acceptor is a member of a donor–acceptor pair. For the Cl-related complex acceptor with an activation energy of ∼121 meV (A-center), the energies of eight excited states are measured. It is shown that this defect produces low-symmetry central-cell correction responsible for the strong splitting of S-like TD shells. The energy spectrum of the Bi-related shallow acceptor with an activation energy of ∼36 meV is measured as well. The spectrum obtained differs drastically from the hydrogen-like set of levels, which indicates the existence of repulsive low-symmetry perturbation of the hydrogen-like Coulomb potential. It is also shown that the spectra of selectively excited PL recorded for a macroscopic ensemble of distant donor–acceptor pairs allow one to detect the low symmetry of acceptors of a given type caused by their complex nature or by the Jahn–Teller distortion. This method does not require any additional (external) field and is applicable to acceptors in diverse zinc-blende compound

  4. Electronic spectrum of non-tetrahedral acceptors in CdTe:Cl and CdTe:Bi,Cl single crystals

    Krivobok, V. S., E-mail: krivobok@lebedev.ru [P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region (Russian Federation); Nikolaev, S. N.; Bagaev, V. S.; Pruchkina, A. A.; Onishchenko, E. E.; Kolosov, S. A.; Klevkov, Yu. V.; Skorikov, M. L. [P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-02-07

    The electronic spectra of complex acceptors in compensated CdTe:Cl, CdTe:Ag,Cl, and CdTe:Bi,Cl single crystals are studied using low-temperature photoluminescence (PL) measurements under both nonresonant and resonant excitation of distant donor–acceptor pairs (DAP). The wavelength modulation of the excitation source combined with the analysis of the differential PL signal is used to enhance narrow spectral features obscured because of inhomogeneous line broadening and/or excitation transfer for selectively excited DAPs. For the well-known tetrahedral (T{sub D}) Ag{sub Cd} acceptor, the energies of four excited states are measured, and the values obtained are shown to be in perfect agreement with the previous data. Moreover, splitting between the 2P{sub 3/2} (Γ{sub 8}) and 2S{sub 3/2} (Γ{sub 8}) states is clearly observed for Ag{sub Cd} centers located at a short distance (5–7 nm) from a hydrogen-like donor (Cl{sub Te}). This splitting results from the reduction of the T{sub D} symmetry taking place when the acceptor is a member of a donor–acceptor pair. For the Cl-related complex acceptor with an activation energy of ∼121 meV (A-center), the energies of eight excited states are measured. It is shown that this defect produces low-symmetry central-cell correction responsible for the strong splitting of S-like T{sub D} shells. The energy spectrum of the Bi-related shallow acceptor with an activation energy of ∼36 meV is measured as well. The spectrum obtained differs drastically from the hydrogen-like set of levels, which indicates the existence of repulsive low-symmetry perturbation of the hydrogen-like Coulomb potential. It is also shown that the spectra of selectively excited PL recorded for a macroscopic ensemble of distant donor–acceptor pairs allow one to detect the low symmetry of acceptors of a given type caused by their complex nature or by the Jahn–Teller distortion. This method does not require any additional (external) field and is

  5. Proton Donor/acceptor Propensities of Ammonia: Rotational Studies of its Molecular Complexes with Organic Molecules

    Giuliano, Barbara M.; Maris, Assimo; Melandri, Sonia; Favero, Laura B.; Evangelisti, Luca; Caminati, Walther

    2009-06-01

    We studied the rotational spectra of the adducts of ammonia with several organic molecules, namely tert-butanol, glycidol, ethyl alcohol, anisol and 1,4-difluorobenzene. The adducts with glycidol and ethanol have been observed for both conformers of the substrate molecule. Based on the rotational and ^{14}N quadrupole coupling constants of the various complexes, we found a considerably different behaviour of ammonia, with respect to water, in its proton donor/acceptor double role. In the interaction with the three alcohol molecules, NH_{3} acts as a proton acceptor and the OH groups as a proton donor. However, in the case of glycidol-NH_{3}, a secundary N-H\\cdotsO interaction occurrs between ammonia and the ether oxygen. This interaction generates a sizable V_{3} barrier to the internal rotation of the NH_{3} moiety, while NH_{3} undergoes a free rotation in tert-butanol-NH_{3} and in ethanol-NH_{3}. As to the anisole-NH_{3} and 1,4-difluorobenzene-NH_{3} complexes, the NH_{3} group explicits its double proton donor/acceptor role, although through two weak (C_{Me}-H\\cdotsN and N-H\\cdotsπ) H-bonds. There is, however, an important difference between the two complexes, because in the first one NH_{3} lies out of the aromatic plane, while in the second one it is in the plane of the aromatic ring. B. M. Giuliano, M. C. Castrovilli, A. Maris, S. Melandri, W. Caminati and E. A. Cohen, Chem.Phys.Lett., 2008, 463, 330 B. M. Giuliano, S. Melandri, A. Maris, L. B. Favero and W. Caminati, Angew.Chem.Int.Ed., 2009, 48, 1102

  6. Exciton dissociation at organic small molecule donor-acceptor interfaces (Presentation Recording)

    Robey, Steven W.

    2015-08-01

    Exciton dissociation at organic semiconductor donor-acceptor (D-A) heterojunctions is critical for the performance of organic photovoltaic (OPV) structures. Interfacial charge separation and recombination processes control device efficiency. We have investigated these fundamental interfacial issues using time-resolved two-photon photoemission (TR-2PPE), coupled with the formation of well-controlled D-A structures by organic molecular beam epitaxy. The interfacial electronic and molecular structure of these model interfaces was well-characterized using scanning tunneling microscopy and ultraviolet photoemission. Exciton dissociation dynamics were investigated by using a sub-picosecond pump pulse to create Pc π-->π* transitions, producing a population of singlet (S1) Pc excitons. The subsequent decay dynamics of this population was monitored via photoemission with a time-delayed UV pulse. For CuPcC60 interfaces, S1 exciton population decay in the interfacial CuPc layer was much faster than decay in the bulk due to interfacial charge separation. The rate constant for exciton dissociation was found to be ≍ 7 x 10 12 sec-1 (≍ 140 fs). Excitons that lose energy via intersystem crossing (ISC) to triplet levels dissociate approximately 500 to 1000 times slower. The dependence of exciton dissociation on separation was also studied. Exciton dissociation falls of rapidly with distance from the interface. Dissociation from the 2nd, and subsequent, layers of H2Pc is reduced by at least a factor of 10 from that in the interfacial layer. Finally, investigations of the relative efficiency for interfacial exciton dissociation by alternative acceptors based on perylene cores, (perylene tetracarboxylic dianhydride, or PTCDA) compared to fullerene-based acceptors such as C60 will also be discussed.

  7. Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

    Anastasios Stergiou

    2014-09-01

    Full Text Available Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor–acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor–acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor–acceptor graphene-based hybrids, will be discussed.

  8. Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content.

    Wang, Kun; Guo, Bing; Xu, Zhuo; Guo, Xia; Zhang, Maojie; Li, Yongfang

    2015-11-11

    A new planar D2-A-D1-A-D2 structured organic molecule with bithienyl benzodithiophene (BDT) as central donor unit D1 and fluorine-substituted benzothiadiazole (BTF) as acceptor unit and alkyl-dithiophene as end group and donor unit D2, BDT-BTF, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDT-BTF shows a broad absorption in visible region, suitable highest occupied molecular orbital energy level of -5.20 eV, and high hole mobility of 1.07 × 10(-2) cm(2)/(V s), benefitted from its high coplanarity and strong crystallinity. The OSCs based on BDT-BTF as donor (D) and PC71BM as acceptor (A) at a D/A weight ratio of 3:1 without any extra treatment exhibit high photovoltaic performance with Voc of 0.85 V, Jsc of 10.48 mA/cm(2), FF of 0.66, and PCE of 5.88%. The morphological study by transmission electron microscopy reveals that the blend of BDT-BTF and PC71BM (3:1, w/w) possesses an appropriate interpenetrating D/A network for the exciton separation and charge carrier transport, which agrees well with the good device performance. The optimized D/A weight ratio of 3:1 is the lowest acceptor content in the active layer reported so far for the high-performance OSCs, and the organic molecules with the molecular structure like BDT-BTF could be promising high-performance donor materials in solution-processable OSCs. PMID:26492421

  9. Use of γ-hexachlorocyclohexane as a terminal electron acceptor by an anaerobic enrichment culture

    Highlights: ► Use of γ-hexachlorocyclohexane as a terminal electron acceptor was demonstrated. ► H2 served as the electron donor for an enrichment culture that dechlorinated γ-HCH. ► H2 consumption for acetogenesis and methanogenesis stopped in HEPES media. ► Addition of vancomycin significantly slowed the rate of γ-HCH dechlorination. ► Previously identified chlororespiring microbes were not detected in the enrichment. - Abstract: The use of γ-hexachlorocyclohexane (HCH) as a terminal electron acceptor via organohalide respiration was demonstrated for the first time with an enrichment culture grown in a sulfate-free HEPES-buffered anaerobic mineral salts medium. The enrichment culture was initially developed with soil and groundwater from an industrial site contaminated with HCH isomers, chlorinated benzenes, and chlorinated ethenes. When hydrogen served as the electron donor, 79–90% of the electron equivalents from hydrogen were used by the enrichment culture for reductive dechlorination of the γ-HCH, which was provided at a saturation concentration of approximately 10 mg/L. Benzene and chlorobenzene were the only volatile transformation products detected, accounting for 25% and 75% of the γ-HCH consumed (on a molar basis), respectively. The enrichment culture remained active with only hydrogen as the electron donor and γ-HCH as the electron acceptor through several transfers to fresh mineral salts medium for more than one year. Addition of vancomycin to the culture significantly slowed the rate of γ-HCH dechlorination, suggesting that a Gram-positive organism is responsible for the reduction of γ-HCH. Analysis of the γ-HCH dechlorinating enrichment culture did not detect any known chlororespiring genera, including Dehalobacter. In bicarbonate-buffered medium, reductive dechlorination of γ-HCH was accompanied by significant levels of acetogenesis as well as methanogenesis.

  10. Energy Spectra of Excitons Bound to a Neutral Acceptor in Quantum Dots

    XIE Wen-Fang

    2004-01-01

    The energy spectra of the ground state for an exciton (X) trapped by a neutral acceptor (A0) in a quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio σ by using the hyperspherical coordinates. We find that the (A0, X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy decreases with the increase of the electron-to-hole mass ratio.

  11. Low-temperature charge transport in Ga-acceptor nanowires implanted by focused-ion beams

    Schenkel, Thomas; Robinson, S.J.; Perkins, C.L.; Tucker, J.R.; Schenkel, T.; Wang, X.W.; Ma, T.P.; Shen, T.-C.

    2007-07-31

    Ga-acceptor nanowires were embedded in crystalline Si using focused-ion beams. The dc current-voltage characteristics of these wires after annealing are highly nonlinear at low temperatures, and a threshold voltage of less than 50 mV is observed independent of Ga+ dosage and implant beam overlap. These features suggest a Coulomb blockade transport mechanism presumably caused by a network of Ga precipitates in the substrate. This granular scenario is further supported by measurements of gated nanowires. Nanowires with metallic conductance at low temperatures could be achieved by reducing the current density of the focused-ion beams.

  12. Negative muon spin rotation study of acceptor centers in SiC

    Stoykov, A., E-mail: alexey.stoykov@psi.c [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Herlach, D.; Scheuermann, R.; Zimmermann, U. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Gritsay, K.; Mamedov, T. [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2009-04-15

    The project aims at studying aluminum and boron acceptor impurities in silicon carbide. These impurities are modeled by muonic atoms formed via negative muon capture by Si or C atoms of the host material. To distinguish between the signals from muons captured by Si and C atoms the energy of characteristic X-rays emitted during the muon transition to the 1s atomic state is measured and used for histogram routing (X-ray triggered muSR). The first experimental results with an n-type 4H-SiC are reported.

  13. Organic Light Emitting Diodes with an Organic Acceptor/Donor Interface Involved in Hole Injection

    CAO Guo-Hua; QIN Da-Shan; GUAN Min; CAO Jun-Song; ZENG Yi-Ping; LI Jin-Min

    2007-01-01

    Organic light emitting diodes with an interface of organic acceptor 3-,4-,9-,10-perylenetetracarboxylic dianhydride (PTCDA) and donor copper phthalocyanine (CuPc) involved in hole injection are fabricated. As compared to the conventional device using a 5nm CuPc hole injection layer, the device using an interface of 10 nm PTCDA and 5nm CuPc layers shows much lower operating voltage with an increase of about 46% in the maximum power efficiency. The enhanced device performance is attributed to the efficient hole generation at the PTCDA/CuPc interface. This study provides a new way of designing hole injection.

  14. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    Kronemeijer, Auke J.

    2012-02-20

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor.

    Mehboob, Farrakh; Junca, Howard; Schraa, Gosse; Alfons J. M. Stams

    2009-01-01

    Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1(T) grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1(T) al...

  16. Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor

    Mehboob, F.; Junca, H.; Schraa, G.; Stams, A.J.M.

    2009-01-01

    Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1(T) grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1(T) al...

  17. Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC

    Ou, Yiyu; Jokubavicius, Valdas; Kamiyama, Satoshi;

    2011-01-01

    In the present work, we investigated donor-acceptor-pair emission in N-B doped fluorescent 6H-SiC, by means of photoluminescence, Raman spectroscopy, and angle-resolved photoluminescence. The photoluminescence results were interpreted by using a band diagram with Fermi-Dirac statistics. It is sho...... intensity in a large emission angle range was achieved from angle-resolved photoluminescence. The results indicate N-B doped fluorescent SiC as a good wavelength converter in white LEDs applications....

  18. Comparative Study of APFO-3 Solar Cells Using Mono- and Bisadduct Fullerenes as Acceptor

    Hsu, Yu-Te

    2010-01-01

    The urgent need for new, sustainable energy source intrigues scientists to provide the solution by developing new technology. Polymer solar cell appears to be the most promising candidate for its low cost, flexibility, and massive producibility. Novel polymers have been constantly synthesized and investigated, while the use of PCBM as acceptor seems to be the universal choice. Here, we studied the use of four dierent fullerene derivatives - [60]PCBM, [70]PCBM, and their bisadduct analogues - ...

  19. Characterization of donor-acceptor-pair emission in fluorescent 6H-SiC

    Ou, Yiyu; Jokubavicius, Valdas; Linnarsson, Margareta; Yakimova, Rositza; Syväjärvi, Mikael; Ou, Haiyan

    Boron (B)- and nitrogen (N)-codoped 6H-SiC epilayer exhibits strong donor to acceptor pair (DAP) band luminescence which makes it a promising candidate for the white light emitting diode (LED) [1]. To investigate the optimized dopant concentrations, five samples with the same B concentration level...... DAP emission occurred in sample d with B and N concentration difference of 4.6 x 1018 cm-3. Despite the intensity difference, all the DAP emission spectra show the same peak wavelength at 584 nm and with a full width at half maximum (FWHM) of 120 nm. From Fig. 2, it is shown that the peak wavelength...

  20. First-principles Study of Hydrogen depassivation of Mg acceptor by Be in GaN

    Zhang, Qiming; Wang, Xiao; Wang, Chihsiang

    2010-03-01

    The process of hydrogen depassivation of the acceptor by can convert the as-grown high-resistivity -doped into a - conducting material. A first-principles study on the process will be presented. The formation energies of various complex of impurities and point defects have been calculated and compared. The diffusion barriers of the hydrogen atom in the doped GaN have been obtained by the Nudge-Elastic-Band method. The results explain successfully the experimental observation that the hole concentration has been significantly enhanced in a Be-implanted Mg-doped GaN.

  1. Synthesis of Donor-Acceptor Conjugated Polymers by "CLICK" Polymerization for OPV applications

    Brandt, Rasmus Guldbæk; Yu, Donghong

    The intent of this study was to utilize the Copper(I)-catalyzed Azide Alkyne Cycloaddition (CuAAC) as a polymerization technique (“Click” Polymerization) for synthesizing novel π-conjugated low band gap polymers for organic photovoltaic applications (OPV). The chosen approach was to synthesize an...... alternating electron donating (donor, D) and electron withdrawing (acceptor, A) co-polymer. The chosen monomers were well known units, and the novelty lies in using the monomer units with the click methodology. An insoluble alternating copolymer consisting of 2,7-diazido-9,9-dioctyl-9Hflourene and 1...

  2. The Effect of Using XO Computers on Students' Mathematics and Reading Abilities: Evidences from Learning Achievement Tests Conducted in Primary Education Schools in Mongolia

    Yamaguchi, Shinobu; Sukhbaatar, Javzan; Takada, Jun-ichi; Dayan-Ochir, Khishigbuyan

    2014-01-01

    In 2008, Mongolia took part in One Laptop per Child (OLPC) project. Since that time, over 10,000 students in grades 2-5 in 43 primary education schools are using XO computers. This paper presents the findings of a study conducted in 2012 to evaluate the impact of the OLPC initiatives on students' literacy and math skills. This study covered 14…

  3. Optimizing the Noticing of Recasts via Computer-Delivered Feedback: Evidence That Oral Input Enhancement and Working Memory Help Second Language Learning

    Sagarra, Nuria; Abbuhl, Rebekha

    2013-01-01

    This study investigates whether practice with computer-administered feedback in the absence of meaning-focused interaction can help second language learners notice the corrective intent of recasts and develop linguistic accuracy. A group of 218 beginning Anglophone learners of Spanish received 1 of 4 types of automated feedback (no feedback,…

  4. Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications

    Mondal, Rajib

    2010-01-01

    Thiophene enriched fused-aromatic thieno[3,4-b]pyrazine systems were designed and employed to produce low band gap polymers (Eg = 1.0-1.4 eV) when copolymerized with fluorene and cyclopentadithiophene. The copolymers are mainly investigated for organic thin film transistor and organic photovoltaic applications. Molecular packing in the thin films of these polymers was investigated using Grazing incidence X-ray Scattering. Although both fluorene and cyclopentadithiophene polymers follow similar face to face π-π stacking, the latter polymers show much smaller lamellar d-spacings due to side-chain interdigitation between the lamellae. This lead to the higher charge carrier mobilities in cyclopentadithiophene polymers (up to 0.044 cm2/V.s) compared to fluorene polymers (up to 8.1 × 10-3 cm2/V.s). Power conversion efficiency of 1.4% was achieved using fluorene copolymer in solar cells with a fullerene derivative as an acceptor. Although the cyclopentadithiophene polymers show lower band gaps with higher absorption coefficients compared to fluorene copolymers, but the power conversion efficiencies in solar cells of these polymers are low due to their low ionization potentials. © The Royal Society of Chemistry 2010.

  5. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively. PMID:26031087

  6. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    Ritesh Nandy

    2010-10-01

    Full Text Available Several 2-(phenylethynyltriphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN and strongly electron donating (–NMe2 substituents large Stokes shifts (up to 130 nm, 7828 cm−1 were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh, the largest Stokes shift (140 nm, 8163 cm−1 was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with ET(30 scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations.

  7. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  8. In situ generation of electron acceptor for photoelectrochemical biosensing via hemin-mediated catalytic reaction.

    Zang, Yang; Lei, Jianping; Zhang, Lei; Ju, Huangxian

    2014-12-16

    A novel photoelectrochemical sensing strategy is designed for DNA detection on the basis of in situ generation of an electron acceptor via the catalytic reaction of hemin toward H2O2. The photoelectrochemical platform was established by sequential assembly of near-infrared CdTe quantum dots, capture DNA, and a hemin-labeled DNA probe to form a triple-helix molecular beacon (THMB) structure on an indium tin oxide electrode. According to the highly catalytic capacity of hemin toward H2O2, a photoelectrochemical mechanism was then proposed, in which the electron acceptor of O2 was in situ-generated on the electrode surface, leading to the enhancement of the photocurrent response. The utilization of CdTe QDs can extend the absorption edge to the near-infrared band, resulting in an increase in the light-to-electricity efficiency. After introducing target DNA, the THMB structure is disassembled and releases hemin and, thus, quenches the photocurrent. Under optimized conditions, this biosensor shows high sensitivity with a linear range from 1 to 1000 pM and detection limit of 0.8 pM. Moreover, it exhibits good performance of excellent selectivity, high stability, and acceptable fabrication reproducibility. This present strategy opens an alternative avenue for photoelectrochemical signal transduction and expands the applications of hemin-based materials in photoelectrochemical biosensing and clinical diagnosis. PMID:25393151

  9. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors

    Díaz, Sebastián A.; Gillanders, Florencia; Jares-Erijman, Elizabeth A.; Jovin, Thomas M.

    2015-01-01

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  10. A charge carrier transport model for donor-acceptor blend layers

    Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian; Vandewal, Koen; Leo, Karl, E-mail: leo@iapp.de [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Kleemann, Hans [Novaled GmbH, Dresden (Germany); Tress, Wolfgang, E-mail: leo@iapp.de [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Laboratoire de Photonique et Interfaces, École polytechnique fédérale de Lausanne, 1015 Lausanne (Switzerland); Riede, Moritz [Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Physics Department, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for the characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.

  11. 1,8-Naphthalimide-Based Planar Small Molecular Acceptor for Organic Solar Cells.

    Zhang, Jicheng; Zhang, Xuejuan; Xiao, Hongmei; Li, Guangwu; Liu, Yahui; Li, Cuihong; Huang, Hui; Chen, Xuebo; Bo, Zhishan

    2016-03-01

    Four small molecular acceptors (SM1-4) comprising a central benzene core, two thiophene bridges and two 1,8-naphthalimide (NI) terminal groups were designed and synthesized by direct C-H activation. SM1 has a planar chemical structure and forms H-aggregation as films. By attachment of different substituents on the central benzene ring, the dihedral angles between the two NI end groups of SM1-4 gradually increased, leading to a gradual decrease of planarity. SM1-4 all possess a high-lying LUMO level, matching with wide band gap (WBG) polymer donors which usually have a high-lying LUMO level. When used in OSCs, devices based on SM1 and WBG donor PCDTBT-C12 gave higher electron mobility, superior film morphology and better photovoltaic performance. After optimization, a PCE of 2.78% with a Voc of 1.04 V was achieved for SM1 based devices, which is among the highest PCEs with a Voc higher than 1 V. Our results have demonstrated that NI based planar small molecules are potential acceptors for WBG polymer based OSCs. PMID:26845638

  12. Oligomeric Dithienopyrrole-Thienopyrroledione (DTP-TPD) Donor-Acceptor Copolymer for Organic Photovoltaics

    Hammond, S. R.; Braunecker, W.; Garcia, A.; Larsen, R.; Owczarczyk, Z.; Olson, D.; Ginley, D.

    2011-01-01

    A new donor-acceptor copolymer system based upon a dithienopyrrole (DTP) donor moiety and a thienopyrrolodione (TPD) accepting moiety has been designed and synthesized for organic photovoltaic (OPV) applications. The TPD accepting moiety has recently gained significant attention in the OPV community and is being incorporated into a number of different polymer systems. In contrast, the DTP donor moiety has received only limited attention, likely due in part to synthetic difficulties relating to the monomer. In our hands, the bis(trimethyltin)-DTP monomer was indelibly contaminated with {approx}5% of the mono-destannylated DTP, which limited the Stille polymerization with the dibromo-TPD monomer (>;99% pure) to produce material with M{sub n} {approx} 4130 g/mol (PDI = 1.10), corresponding to around eight repeat units. Despite this limitation, UV-visible absorption spectroscopy demonstrates strong absorption for this material with a band gap of {approx}1.6 eV. Cyclic voltammetry indicates a highest occupied molecular orbital (HOMO) energy level of -5.3 eV, which is much lower than calculations predicted. Initial bulk heterojunction OPV devices fabricated with the fullerene acceptor phenyl C61 butyric acid methyl ester (PCBM) exhibit V{sub oc} {approx} 700 mV, which supports the deep HOMO value obtained from CV. These results suggest the promise of this copolymer system.

  13. Oligomeric Dithienopyrrole-Thienopyrrolodione (DTP-TPD) Donor-Acceptor Copolymer for Organic Photovoltaics: Preprint

    Hammond, S. R.; Braunecker, W.; Garcia, A.; Larsen, R.; Owczarczyk, Z.; Olson, D.; Ginley, D.

    2011-07-01

    A new donor-acceptor copolymer system based upon a dithienopyrrole (DTP) donor moiety and a thienopyrrolodione (TPD) accepting moiety has been designed and synthesized for organic photovoltaic (OPV) applications. The TPD accepting moiety has recently gained significant attention in the OPV community and is being incorporated into a number of different polymer systems. In contrast, the DTP donor moiety has received only limited attention, likely due in part to synthetic difficulties relating to the monomer. In our hands, the bis(trimethyltin)-DTP monomer was indelibly contaminated with ~5% of the mono-destannylated DTP, which limited the Stille polymerization with the dibromo-TPD monomer (>99% pure) to produce material with Mn ~ 4130 g/mol (PDI = 1.10), corresponding to around eight repeat units. Despite this limitation, UV-visible absorption spectroscopy demonstrates strong absorption for this material with a band gap of ~1.6 eV. Cyclic voltammetry indicates a highest occupied molecular orbital (HOMO) energy level of -5.3 eV, which is much lower than calculations predicted. Initial bulk heterojunction OPV devices fabricated with the fullerene acceptor phenyl C61 butyric acid methyl ester (PCBM) exhibit Voc ~ 700 mV, which supports the deep HOMO value obtained from CV. These results suggest the promise of this copolymer system.

  14. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin, E-mail: bhu@utk.edu [Department of Materials Science and Engineering, University of Tennessee Knoxville, Tennessee 37996 (United States)

    2014-07-14

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field < 10 mT) and spin-exchange (at high field > 10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  15. Biosynthetic Pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source.

    Bronder, M; Mell, H; Stupperich, E; Kröger, A

    1982-05-01

    1. With fumarate as the terminal electron acceptor and either H2 or formate as donor, Vibrio succinogenes could grow anaerobically in a mineral medium using fumarate as the sole carbon source. Both the growth rate and the cell yield were increased when glutamate was also present in the medium. 2. Glutamate was incorporated only into the amino acids of the glutamate family (glutamate, glutamine, proline and arginine) of the protein. The residual cell constituents were synthesized from fumarate. 3. Pyruvate and phosphoenolpyruvate, as the central intermediates of most of the cell constituents, were formed through the action of malic enzyme and phosphoenolpyruvate synthetase. Fructose-1,6-bisphosphate aldolase was present in the bacterium suggesting that this enzyme is involved in carbohydrate synthesis. 4. In the absence of added glutamate the amino acids of the glutamate family were synthesized from fumarate via citrate. The enzymes involved in glutamate synthesis were present. 5. During growth in the presence of glutamate, net reducing equivalents were needed for cell synthesis. Glutamate and not H2 or formate was used as the source of these reducing equivalents. For this purpose part of the glutamate was oxidized to yield succinate and CO2. 6. The alpha-ketoglutarate dehydrogenase involved in this reaction was found to use ferredoxin as the electron acceptor. The ferredoxin of the bacterium was reoxidized by means of a NADP-ferredoxin oxidoreductase. Enzymes catalyzing the reduction of NAD, NADP or ferredoxin by H2 or formate were not detected in the bacterium. PMID:7103660

  16. Partial least squares prediction of the first hyperpolarizabilities of donor-acceptor polyenic derivatives

    Graphical abstract: PLS regression equations predicts quite well static β values for a large set of donor-acceptor organic molecules, in close agreement with the available experimental data. Display Omitted Highlights: → PLS regression predicts static β values of 35 push-pull organic molecules. → PLS equations show correlation of β with structural-electronic parameters. → PLS regression selects best components of push-bridge-pull nonlinear compounds. → PLS analyses can be routinely used to select novel second-order materials. - Abstract: A partial least squares regression analysis of a large set of donor-acceptor organic molecules was performed to predict the magnitude of their static first hyperpolarizabilities (β's). Polyenes, phenylpolyenes and biphenylpolyenes with augmented chain lengths displayed large β values, in agreement with the available experimental data. The regressors used were the HOMO-LUMO energy gap, the ground-state dipole moment, the HOMO energy AM1 values and the number of π-electrons. The regression equation predicts quite well the static β values for the molecules investigated and can be used to model new organic-based materials with enhanced nonlinear responses.

  17. A charge carrier transport model for donor-acceptor blend layers

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C60 in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for the characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (Et = 0.14 eV, Nt = 1.2 × 1018 cm−3) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer

  18. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field  10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  19. Intra- and intermolecular electron transfer reactions in covalently linked donor-acceptor molecules

    We synthesized a homologous series of molecules (MVnn'Q) where a methylviologen (MV2+) and an amino-chloronaphthoquinone (Q) are linked to each other via a flexible chain. Using the electron pulse radiolysis technique, we have measured time-resolved spectra and determined rate constants for intra- and intermolecular electron transfer (ET) between donor and acceptor site of the MVnn'Q molecules in water and in sodium dodecyl sulfate (SDS) micellar solution. For comparison, we also irradiated a solution containing a 1:1 mixture of methylviologen and amino-chloronaphthoquinone and measured spectra and intermolecular ET reactions between the separated electron donor and acceptor molecules. We found a remarkably slow intramolecular electron transfer from the reduced methylviologen moiety to the quinone site of all MVnn'Q molecules both in water and in aqueous SDS micellar suspensions. The intramolecular rate constants measured in water increase with the number of intervening bonds, leading to the conclusion that electron transfer occurs by a through-space rather than through-bond mechanism. The intramolecular rate constants virtually lose their chain length dependence in SDS suspensions where, because of an extended configuration of the micellized MVnn'Q molecules, through-space interaction is not favored. (orig.)

  20. Práticas cirúrgicas baseadas em evidências: tomografia computadorizada helicoidal no diagnóstico da apendicite aguda Evidence-based surgical practices: helical computed tomography in acute appendicitis diagnosis

    Carlos Alberto Guimarães

    2008-08-01

    Full Text Available Os cirurgiões são instados a não somente ler os artigos dos periódicos, mas também a compreendê-los e analisá-los criticamente quanto à validade. Eles cuidam melhor dos seus pacientes se são capazes de analisar criticamente a literatura e aplicar os resultados a sua prática. Este é o segundo artigo de uma série - Práticas Cirúrgicas Baseadas em Evidência - que tem por objetivo apresentar a avaliação crítica de um teste diagnóstico.Surgeons are told that they need not only read journal articles, but also understand them and make a critical appraisal of their validity. They offer better care if they are able to appraise critically the original literature and apply the results to their practice. This is the second article of a series - Evidence-Based Surgical Practices - which focus on critical appraisal of a diagnostic test.

  1. Computational universes

    Svozil, Karl

    2003-01-01

    Suspicions that the world might be some sort of a machine or algorithm existing ``in the mind'' of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science have lent support to the thesis, but empirical evidence is needed before it can begin to replace our contemporary world view.

  2. Establishment of transgenic acceptor and transformation of barnase gene by particle gun in maize inbred line 18-599(white)

    Qingquan SUN; Ying ZHANG; Tingzhao RONG; Shuting DONG; Dengchao MA; Chunqing ZHANG

    2008-01-01

    The efficient acceptors for maize transgenic engineering are currently insufficient in China. Seed production by male sterility is the best method for advancing the authenticity of maize hybrid. Maize inbred line 18-599 (white) is an antivirus high-quality maize inbred line in China, which has been used for lots of maize hybrid cultivars. The establishment of high efficiency transgenic acceptors is necessary for advancing the transgenic efficiency in maize transformation work. In this study, the efficient transgenic acceptors were optimized and established. 18-599 (white) was studied in state, types of culture mediums, times of callus regen-eration and concentration of the screening reagent, Basta. The results showed that N6-4 medium was the best in 8 types of mediums for the immature embryo of 18-599 (white), 1.6 mm length was the feasible length of immature embryos for tissue culture in establishing the transgenic acceptor system, and it was within 5 times for suitable callus subculture. With the optimized transgenic acceptors, barnase gene was translated successfully into 18-599 (white) by a particle gun using bar as a marker gene. Basta was used as the screening reagent, its lethal callus regeneration, respectively. In this work, a trans-genic plant with male sterility was obtained through molecule detection and observation in the field. The result has an important significance for the creation of new male sterility inbred lines in maize in the future.

  3. The Impact of Population Ageing on the Labour Market: Evidence from Overlapping Generations Computable General Equilibrium (OLG-CGE) Model of Scotland

    Lisenkova, Katerina; Mérette, Marcel; Wright, Robert

    2012-01-01

    This paper presents a dynamic Overlapping Generations Computable General Equilibrium (OLG-CGE) model of Scotland. The model is used to examine the impact of population ageing on the labour market. More specifically, it is used to evaluate the effects of labour force decline and labour force ageing on key macro-economic variables. The second effect is assumed to operate through age-specific productivity and labour force participation. In the analysis, particular attention is paid to how popula...

  4. Got technology? The impact of computers and cell phones on productivity in a difficult business climate ; evidence from firms with female owners in Kenya

    Menon, Nidhiya

    2011-01-01

    Firms in Kenya rely on technologies such as computers, cell-phones, and generators to overcome constraints associated with regulations, infrastructure, security, workforce, corruption, and finance. This study shows that such reliance has significant positive impacts on productivity as measured by value-added per worker, especially for firms with female principal owners. The exogenous component of technology ownership is isolated by using information on the regional presence of missionary scho...

  5. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    Heredia, Daniel; Otero, Luis [Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal 3, X5804BYA (Argentina); Gervaldo, Miguel, E-mail: mgervaldo@exa.unrc.edu.ar [Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal 3, X5804BYA (Argentina); Fungo, Fernando [Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal 3, X5804BYA (Argentina); Dittrich, Thomas [Helmholtz Centre Berlin for Materials and Energy, Berlin, Hahn-Meitner-Platz 1, D-14109 (Germany); Lin, Chih-Yen; Chi, Liang-Chen; Fang, Fu-Chuan [Department of Chemistry, National Taiwan University, Taiwan, Taipei 106, Taiwan (China); Wong, Ken-Tsung, E-mail: kenwong@ntu.edu.tw [Department of Chemistry, National Taiwan University, Taiwan, Taipei 106, Taiwan (China)

    2013-01-01

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions.

  6. π-Conjugated Donor-Acceptor Systems as Metal-Free Sensitizers for Dye-Sensitized Solar Cell Applications

    Zakeeruddin S. M.

    2013-03-01

    Full Text Available High extinction coefficients and easily tunable spectral properties of π- conjugated donor-acceptor dyes are of superior advantage for the design of new metalfree organic sensitizers for applications in dye-sensitized solar cells. Ultrafast transient absorption spectroscopy on the femtosecond and nanosecond time scales provided deep insights into the dependence of charge carrier dynamics in fully organic dye/TiO2 systems on i the donor-acceptor distance, ii the π-conjugation length, and iii the coupling to TiO2 by different anchoring groups. Importantly, the observed differences in charge transfer dynamics justify the variations of photovoltaic performances of the dyes as applied in solar cell devices. This leads to the conclusion that the photoconversion efficiencies strongly depend on a delicate interplay between the dyes’ building blocks, i.e. the donor, the π-conjugated spacer and the anchor/acceptor moieties, and may easily be tuned by molecular design.

  7. An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory

    E.R. Bittner

    2016-03-01

    Full Text Available We present here a formally exact model for electronic transitions between an initial (donor and final (acceptor states linked by an intermediate (bridge state. Our model incorporates a common set of vibrational modes that are coupled to the donor, bridge, and acceptor states and serves as a dissipative bath that destroys quantum coherence between the donor and acceptor. Taking the memory time of the bath as a free parameter, we calculate transition rates for a heuristic 3-state/2 mode Hamiltonian system parameterized to represent the energetics and couplings in a typical organic photovoltaic system. Our results indicate that if the memory time of the bath is of the order of 10-100 fs, a two-state kinetic (i.e., incoherent hopping model will grossly underestimate overall transition rate.

  8. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions

  9. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors

    It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an α-(1-6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached α-(1-6) to d-glucose, d-mannose, d-galactose, and methyl α-d-glucopyranoside. With d-fructopyranose and d-xylopyranose, PTS was linked α-(1-5) and α-(1-4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of α-(1-3) and/or α-(1-4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked α-(1-4) to the glucose residue. α,α-Trehalose gave two major products with PTS linked α-(1-6) and α-(1-4). Maltitol gave two major products with PTS linked α-(1-6) and α-(1-4) to the glucopyranose residue. Raffinose gave two major products with PTS linked α-(1-6) and α-(1-4) to the d-galactopyranose residue. Maltotriose gave two major products with PTS linked α-(1-6) and α-(1-4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked α-(1-5) as the major product and d-glucitol gave PTS linked α-(1-6) as the only product. The structures of the transfer products were determined using thin layer-chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and 13C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was d-glucitol. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate

    Kieft, T. L. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States); Fredrickson, J. K. [Pacific Northwest National Lab., Richland, WA (United States); Onstott, T. C. [Princeton Univ., NJ (United States). Dept. of Geological and Geophysical Sciences; Gorby, Y. A. [Pacific Northwest National Lab., Richland, WA (United States); Kostandarithes, H. M. [Pacific Northwest National Lab., Richland, WA (United States); Bailey, T. J. [Pacific Northwest National Lab., Richland, WA (United States); Kennedy, D. W. [Pacific Northwest National Lab., Richland, WA (United States); Li, S. W. [Pacific Northwest National Lab., Richland, WA (United States); Plymale, A. E. [Pacific Northwest National Lab., Richland, WA (United States); Spadoni, C. M. [Pacific Northwest National Lab., Richland, WA (United States); Gray, M. S. [Pacific Northwest National Lab., Richland, WA (United States)

    1995-10-25

    A thermophilic bacterium that could use O{sub 2}, NO{sub 3}{sup -}, Fe(III), or S{sup o} as terminal electron acceptors for growth was isolated from groundwater sampled at 3.2 km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rDNA gene sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors, whereas Thermus aquaticus (ATCC 25104) and Thermus filiformis (ATCC 43280) did not reduce NO{sub 3}{sup -} or Fe(III). Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could only reduce relatively small quantities (0.5 mM) of hydrous ferric oxide (HFO) except when the humic acid analog 2,6-anthraquinone disulfonate (AQDS) was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II), was coupled to the oxidation of lactate, and could support growth through three consecutive transfers. Suspensions of Thermus SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and AQDS. Mn(IV)-oxide was reduced in the presence of either lactate or H{sub 2}. Both strains were also able to mineralize NTA to CO{sub 2} and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus SA-01 and NMX2 A.1 is approximately 65 C; optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn or S.

  11. Hole-transfer induced energy transfer in perylene diimide dyads with a donor-spacer-acceptor motif.

    Kölle, Patrick; Pugliesi, Igor; Langhals, Heinz; Wilcken, Roland; Esterbauer, Andreas J; de Vivie-Riedle, Regina; Riedle, Eberhard

    2015-10-14

    We investigate the photoinduced dynamics of perylene diimide dyads based on a donor-spacer-acceptor motif with polyyne spacers of varying length by pump-probe spectroscopy, time resolved fluorescence, chemical variation and quantum chemistry. While the dyads with pyridine based polyyne spacers undergo energy transfer with near-unity quantum efficiency, in the dyads with phenyl based polyyne spacers the energy transfer efficiency drops below 50%. This suggests the presence of a competing electron transfer process from the spacer to the energy donor as the excitation sink. Transient absorption spectra, however, reveal that the spacer actually mediates the energy transfer dynamics. The ground state bleach features of the polyyne spacers appear due to the electron transfer decay with the same time constant present in the rise of the ground state bleach and stimulated emission of the perylene energy acceptor. Although the electron transfer process initially quenches the fluorescence of the donor it does not inhibit energy transfer to the perylene energy acceptor. The transient signatures reveal that electron and energy transfer processes are sequential and indicate that the donor-spacer electron transfer state itself is responsible for the energy transfer. Through the introduction of a Dexter blocker unit into the spacer we can clearly exclude any through bond Dexter-type energy transfer. Ab initio calculations on the donor-spacer and the donor-spacer-acceptor systems reveal the existence of a bright charge transfer state that is close in energy to the locally excited state of the acceptor. Multipole-multipole interactions between the bright charge transfer state and the acceptor state enable the energy transfer. We term this mechanism coupled hole-transfer FRET. These dyads represent a first example that shows how electron transfer can be connected to energy transfer for use in novel photovoltaic and optoelectronic devices. PMID:26347443

  12. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dependence of GaAs ion-implanted layer characteristics on substrate resistivity and residual acceptor concentration

    The properties of ion-implanted layers in undoped semi-insulating GaAs substrates have been studied and found to be correlated to the initial bulk resistivity of the wafers, which in turn is determined by the content of residual shallow acceptors. With decreasing resistivity from > approx 108 Ωcm to 7 Ωcm the implanted layer sheet resistance decreases, the pinch-off voltage increases and the carrier profiles become broader. High purity material with very low background acceptor concentration shows highest carrier activation and superior reproducibility and appears to be favourable for ion-implantation applications. (author)

  14. Dependence of GaAs ion-implanted layer characteristics on substrate resistivity and residual acceptor concentration

    Baumgartner, M.; Loehnert, K. (Wacker-Chemitronic G.m.b.H., Burghausen (Germany, F.R.))

    1990-01-01

    The properties of ion-implanted layers in undoped semi-insulating GaAs substrates have been studied and found to be correlated to the initial bulk resistivity of the wafers, which in turn is determined by the content of residual shallow acceptors. With decreasing resistivity from > approx 10{sup 8} {Omega}cm to < approx 10{sup 7} {Omega}cm the implanted layer sheet resistance decreases, the pinch-off voltage increases and the carrier profiles become broader. High purity material with very low background acceptor concentration shows highest carrier activation and superior reproducibility and appears to be favourable for ion-implantation applications. (author).

  15. Tailorable acceptor C(60-n)B(n) and donor C(60-m)N(m) pairs for molecular electronics.

    Xie, Rui-Hua; Bryant, Garnett W; Zhao, Jijun; Smith, Vedene H; Di Carlo, Aldo; Pecchia, Alessandro

    2003-05-23

    Our first-principles calculations demonstrate that C(60-n)B(n) and C(60-m)N(m) can be engineered as the acceptors and donors, respectively, needed for molecular electronics by properly controlling the dopant number n and m in C60. We show that acceptor C48B12 and donor C48N12 are promising components for molecular rectifiers, carbon nanotube-based n-p-n (p-n-p) transistors, and p-n junctions. PMID:12785911

  16. Fabrication and photoelectrochemical properties of electron donor-acceptor assemblies via titanium oxide interlayers

    Nitahara, Satoshi; Terasaki, Nao; Akiyama, Tsuyoshi; Yamada, Sunao

    2003-08-22

    Ultrathin molecular films consisting of electron donor (D)-acceptor (A) pairs via titanium oxide coordinative bonding have been fabricated on an indium-tinoxide electrode, by using the techniques of self-assembly and surface sol-gel process. Porphyrin and tris (2,2'-bipyridine) ruthenium (II) were used as D, while viologen as A, respectively. The degree of assembling of D and A were characterized by electrochemical and absorption measurements. In the case of the porphyrin-viologen pair, photocurrent generation based on photoinduced electron-transfer was realized, and multilayer formation of porphyrin increased the photocurrents. On the other hand, the ruthenium (II) complex-viologen pair showed very poor photocurrent responses, probably due to much poorer light absorptivity as compared with porphyrin.

  17. Fabrication and photoelectrochemical properties of electron donor-acceptor assemblies via titanium oxide interlayers

    Ultrathin molecular films consisting of electron donor (D)-acceptor (A) pairs via titanium oxide coordinative bonding have been fabricated on an indium-tinoxide electrode, by using the techniques of self-assembly and surface sol-gel process. Porphyrin and tris (2,2'-bipyridine) ruthenium (II) were used as D, while viologen as A, respectively. The degree of assembling of D and A were characterized by electrochemical and absorption measurements. In the case of the porphyrin-viologen pair, photocurrent generation based on photoinduced electron-transfer was realized, and multilayer formation of porphyrin increased the photocurrents. On the other hand, the ruthenium (II) complex-viologen pair showed very poor photocurrent responses, probably due to much poorer light absorptivity as compared with porphyrin

  18. Thermally stable and efficient polymer solar cells based on a novel donor-acceptor copolymer

    Synooka, O.; Eberhardt, K.-R.; Balko, J.; Thurn-Albrecht, T.; Gobsch, G.; Mitchell, W.; Berny, S.; Carrasco-Orozco, M.; Hoppe, H.

    2016-06-01

    We report high photovoltaic performance of a novel donor-acceptor (D-A) conjugated polymer poly[2,6[4,8-bis(2-ethyl-hexyl)benzo[1,2-b4,5-b‧]dithiophene-co-2,5-thiophene-co-4,7[5,6-bis-octyloxy-benzo[1,2,5]thiadiazole]-co-2,5-thiophene] (PBDTTBTZT) in bulk heterojunctions with [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM). A power conversion efficiency (PCE) of more than 7% is obtained for optimized charge-extracting electrodes. Upon application of thermal stress via annealing, a superior thermal stability is demonstrated as compared to poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (PCDTBT).

  19. Complexes due to donor-acceptor-type transitions in GaAs

    A sharp line transition at 1.51385 eV has been observed in the photoluminescence spectra of an epitaxially grown crystal of GaAs. A Si3N4 cap was applied by plasma deposition and the crystal was then annealed at 850 0C for 15 min. The sharp emission line was observed after annealing. This transition was analyzed in perturbing magnetic and strain fields and is shown to result from a donor-acceptor-type complex. Three additional sharp line transitions are reported and the behavior of all of these transitions is compared with the behavior of similar transitions reported in the literature. Models for the complexes involved are re-examined and components of the complexes are suggested. All of the sharp line transitions were introduced in the growing process with the exception of the 1.51385-eV line which was introduced in the capping and annealing process

  20. Superposition of two tRNASer acceptor stem crystal structures: Comparison of structure, ligands and hydration

    We solved the X-ray structures of two Escherichia coli tRNASer acceptor stem microhelices. As both tRNAs are aminoacylated by the same seryl-tRNA-synthetase, we performed a comparative structure analysis of both duplexes to investigate the helical conformation, the hydration patterns and magnesium binding sites. It is well accepted, that the hydration of RNA plays an important role in RNA-protein interactions and that the extensive solvent content of the minor groove has a special function in RNA. The detailed comparison of both tRNASer microhelices provides insights into the structural arrangement of the isoacceptor tRNA aminoacyl stems with respect to the surrounding water molecules and may eventually help us to understand their biological function at atomic resolution.

  1. Random Laser Emission at Dual Wavelengths in a Donor-Acceptor Dye Mixture Solution

    Kedia, Sunita

    2016-01-01

    The work was aimed to generate random laser emissions simultaneously at two wavelengths in a weakly scattering system containing mixture of binary dyes, rhodamine-B (Rh-B) and oxazine-170 (O-170) dispersed with ZnO nano-particles served as scattering centres. Random lasing performances for individual Rh-B dye were extensively studied for varying small signal gain/scatterer density and found lasing threshold significantly depend upon number density of dispersed nano-particles. In spite of inefficient pumping, we demonstrated possibility of random lasing in O-170 dye solution on account of resonance energy transfer from Rh-B dye served as donor. At optimum concentrations of fluorophores and scatterer in dye mixture solution, incoherent random lasing was effectively attained simultaneously at two wavelengths centered 90 nm apart. Dual-emission intensities, lasing thresholds and rate of amplifications were found to be equivalent for both donor and acceptor in dye mixture solution.

  2. Mg acceptor level in InN epilayers probed by photoluminescence

    Khan, N.; Nepal, N.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2007-07-01

    Mg-doped InN epilayers were grown on sapphire substrates by metal organic chemical vapor deposition. Effects of Mg concentration on the photoluminescence (PL) emission properties have been investigated. An emission line at ˜0.76eV, which was absent in undoped InN epilayers and was about 60meV below the band-to-band emission peak at ˜0.82eV, was observed to be the dominant emission in Mg-doped InN epilayers. The PL spectral peak position and the temperature dependent emission intensity corroborated each other and suggested that the Mg acceptor level in InN is about 60meV above the valance band maximum.

  3. Exoemission and the donor-acceptor properties of zirconium dioxide modified by yttrium oxide

    Influence of alloying component Y2O3 on adsorption properties of ZrO2 was studied by the methods of exoemission and IR spectroscopy. Radiation resistance of the ZrO2-Y2O3 system samples under β-radiation (90Sr/90Y) at a dose of 20 rad was determined. Correlation between concentration of the Lewis acid centers and emissivity of alloyed samples in the range of low concentrations of Y2O3 was found. The nature of exoemission and adsorption centers due to donor-acceptor character of active centers on the surface of samples of the system studied was discussed. It is shown that initially high radiation resistance of ZrO2 decreases, when it is modified by yttrium oxide, meanwhile pure yttrium oxide features moderate enough radiation resistance of the surface

  4. Donor-acceptor pair recombination luminescence from monoclinic Cu2SnS3 thin film

    The defect levels in Cu2SnS3 (CTS) were investigated using photoluminescence (PL) spectroscopy. A CTS thin film was prepared on a soda-lime glass/molybdenum substrate by thermal co-evaporation and sulfurization. The crystal structure was determined to be monoclinic, and the compositional ratios of Cu/Sn and S/Metal were determined to be 1.8 and 1.2, respectively. The photon energy of the PL spectra observed from the CTS thin film was lower than that previously reported. All fitted PL peaks were associated with defect related luminescence. The PL peaks observed at 0.843 and 0.867 eV were assigned to donor-acceptor pair recombination luminescence, the thermal activation energies of which were determined to be 22.9 and 24.8 meV, respectively

  5. Thermal activation of nitrogen acceptors in ZnO thin films grown by MOCVD

    Dangbegnon, J.K.; Talla, K.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth (South Africa)

    2010-06-15

    Nitrogen doping in ZnO is inhibited by spontaneous formation of compensating defects. Perfect control of the nitrogen doping concentration is required, since a high concentration of nitrogen could induce the formation of donor defects involving nitrogen. In this work, the effect of post-growth annealing in oxygen ambient on ZnO thin films grown by Metalorganic Chemical Vapor Deposition, using NO as both oxidant and nitrogen dopant, is studied. After annealing at 700 C and above, low-temperature photoluminescence shows the appearance of a transition at {proportional_to}3.23 eV which is interpreted as pair emission involving a nitrogen acceptor. A second transition at {proportional_to}3.15 eV is also discussed. This work suggests annealing as a potential means for p-type doping using nitrogen (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Positron Spur Reactions with Excess Electrons and Anions in Liquid Organic Mixtures of Electron Acceptors

    Lévay, B.; Mogensen, O. E.

    1980-01-01

    cyclohexane, but did not appear in the aromatic benzene. This might be explained by the weak electron acceptor property of aromatics. In the Ps yield versus SF6 concentration curve in hexane a similar minimum appeared as in the CS2 case, probably by the same reason. By adding 0.8 M CS2 to the system the...... minimum was shifted towards the lower concentrations, which might be explained by some overlap of the energy levels on CS2 and SF6. Antiinhibition effect of C6F6 and CS2 was studied in 0.05 M CCl4/hexane solutions. In the CS2 case first a small minimum appeared in the Ps yield versus CS2 concentration...

  7. A New Acceptor (N-type) Polyphenylenevinylene Building Block: SF-PPV-I

    Wang, Yiqing; Fan, Zhen; Taft, Charles; Sun, Sam-Shajing

    2002-01-01

    A new sulfone derivatized acceptor (n-type) polyphenylenevinylene "SF-PPV" with nano meter sizes and functional terminals has been synthesized and characterized. The SF-PPV-I that contains hydrocarbon alkyl-sulfone moieties has a strong photoluminescence in both solution and in solid thin film states. In dichloromethane, the 5-10 nm sized SF-PPV has a maximum emission at about 530 nm with excitation maximum at about 490 nm. UV-VIS shows a absorption peak onsite at about 500 nm. Optical spectroscopy and electrochemical studies revealed that the SF-PPV-I has an LUMO level at about -3.6 eV (relative to vacuum), and an HOMO level at about -6.1 eV. The average size (length) of SF-PPV-I can be controlled on the nano meter scale via synthetic means. The SF-PPV has the potential in developing polymer based supramolecular opto-electronic semiconductor devices.

  8. Controlled ultraviolet resonance energy transfer between bovine serum albumin donors and cadmium sulfide quantum dots acceptors

    Ghali, Mohsen; El-Kemary, Maged; Ramadan, Mahmoud

    2015-08-01

    We report on Förester resonance nergy transfer (FRET) within a bioconjugated system composed of cadmium sulfide (CdS) quantum dots (QDs) and transport protein bovine serum albumin (BSA). The optical properties of these two elements of the bioconjugate were exploited to produce FRET in the ultraviolet (UV) region with a maximum efficiency of 22% from BSA donors to QD acceptors. In contrast to previous studies, which were limited to FRET in the visible light, we used 2.6 nm CdS QDs because they emit light with a shorter wavelength (∼370 nm) that facilitates the UV-FRET process. UV-FRET was controlled by tuning the spectral overlap between BSA and CdS QDs.

  9. Activating Mg acceptors in AlN by oxygen: first principles calculations

    Wu, R Q

    2007-01-01

    First principles calculations based on density functional theory (DFT) are performed to study the electronic properties of Mg acceptors in AlN at the presence of oxygen. It is found that Mg and O tend to form complexes like Mg-O, Mg$_2$-O, Mg$_3$-O and Mg$_4$-O which have activation energies about 0.23 eV lower than that of Mg (except of the passive Mg-O). The lower activation energies originate from the extra states over valence band top of AlN induced by the passive Mg-O. By comparing to the well-established case of GaN, it is possible to fabricate Mg and O codoped AlN without MgO precipitate. These results suggest the possibility of achieving higher hole concentration in AlN by Mg and O codoping.

  10. Effect of limited supply of assimilates on the relationships between their sources and acceptors

    Z. Starck

    2015-05-01

    Full Text Available Sink activity in young sunflower and bean plants was determined mainly by their growth rate. The organ with higher RGR (stem in sunflower and apical part with expanded trifoliate leaf- in bean plant was the dominant acceptor even in conditions of limited supply of assimilates.Specific activity of root - donor of phosphorus, depends on the roofs metabolic and physiological activity only in the case, when supply of P to the aerial parts is not a factor limiting photosynthesis. If the activity of the whole root system is relatively low (like in preshaded series of sunflower the photosynthetic compensation observed in plants replaced into better conditions coincides with compensation of P-absorption (both calculated per g of dry matter. It may explain the existence of a functional balance between shoot and root activity in the case of a changed proportion between their sizes.

  11. Bioaccesibility Extraction of Hydrophobic Pollutants: Benefits of Separating Leaching Agent and Acceptor Medium

    Cocovi-Solberg, D. J.; Miro, M.; Loibner, A. P.;

    2015-01-01

    can lead to underestimation of bioaccessibility. Therefore, several studies have proposed to add a sink to the extraction medium, including the so called contaminant trap, the silicon rod based sorptive bioaccessibility extraction and tenax beads-assisted extractions. While these methods certainly are...... a step forward, they also lead to challenges related to the separation of sink and matrix and/or the subsequent quantification of the bioaccessible fraction. The present study aimed at developing a new approach for (1) enhancing the sink capacity of bioaccessibility extractions, (2) improving phase...... separation and (3) facilitating the measurement of the bioaccessible fraction. Cyclodextrin was used as leaching agent, ethanol as acceptor medium and a semipermeable membrane for separating these two phases. Various physical formats of this configuration were developed and tested, and the simplest and...

  12. Styrylquinolinium borates as donor-acceptor initiators for sensitized photopolymerization of TMPTA

    Jedrzejewska, Beata, E-mail: beata@utp.edu.pl [University of Technology and Life Sciences, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz (Poland); Marcin, Tur; Paczkowski, Jerzy [University of Technology and Life Sciences, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz (Poland)

    2009-10-15

    Several photoredox pairs containing mono- and bicationic hemicyanine dyes have been evaluated as photoinitiators for free radical polymerization induced with an argon-ion laser irradiation. The tested photoredox couples are the pairs composed of the hemicyanine dye cations acting as electron acceptors and n-butyltriphenyl borate anions being the electron donors. The photoinitiating abilities of the series of monochromophoric stilbazolium borates, 4-(p-N,N-dialkylaminostyryl)quinolinium n-butyltriphenylborate, were compared to the photochemistry of structurally related, bicationic styrylquinolinium borates. The obtained results clearly documented that the dicationic photoinitiators exhibit a marked increase in the photoinitiation ability compared to the initiators consisting of a single charged hemicyanine dye. Our studies revealed also that the rate of photopolymerization depends on {Delta}G{sub el} of electron transfer between borate anion and styrylquinolinium cation. The relationship between the rate of polymerization and the free energy of activation shows the dependence predicted by the classical theory of electron transfer.

  13. Styrylquinolinium borates as donor-acceptor initiators for sensitized photopolymerization of TMPTA

    Several photoredox pairs containing mono- and bicationic hemicyanine dyes have been evaluated as photoinitiators for free radical polymerization induced with an argon-ion laser irradiation. The tested photoredox couples are the pairs composed of the hemicyanine dye cations acting as electron acceptors and n-butyltriphenyl borate anions being the electron donors. The photoinitiating abilities of the series of monochromophoric stilbazolium borates, 4-(p-N,N-dialkylaminostyryl)quinolinium n-butyltriphenylborate, were compared to the photochemistry of structurally related, bicationic styrylquinolinium borates. The obtained results clearly documented that the dicationic photoinitiators exhibit a marked increase in the photoinitiation ability compared to the initiators consisting of a single charged hemicyanine dye. Our studies revealed also that the rate of photopolymerization depends on ΔGel of electron transfer between borate anion and styrylquinolinium cation. The relationship between the rate of polymerization and the free energy of activation shows the dependence predicted by the classical theory of electron transfer.

  14. Protein-protein interactions in the plant Golgi apparatus, studied with FRET acceptor photobleaching technique

    Poulsen, Christian Peter

    The focus of this Ph.D. study has primarily been to utilize and adapt the acceptor photobleaching technique for measuring of Förster resonance energy transfer (FRET) to tudy proteinprotein interactions (PPIs) among glycosyltranseferases (GTs) and nucleotide ugar transporters (NSTs) localized to the...... plant Golgi apparatus and involved mainly in arabinogalactan protein (AGP) biosynthesis. Co-expression analysis identified 4 GTs and 4 NSTs possibly involved in AGP biosynthesis. As part of the method development, the cytoskeleton-acting agent Cytochalasin D was tested as an inhibitor of the......GALT31A, which remarkably enhanced the nzymatic activity specifically towards the β-(1→6)-galactan side chain elongation of AGP. No interaction was found between AtGALT31A and AtGlcAT14A. In addition, the interaction between the putative arabinosyltransferases, ARAD1 and ARAD2, involved in...

  15. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes

    de Wit, Heidi; Walter, Alexander M; Milosevic, Ira; Gulyás-Kovács, Attila; Riedel, Dietmar; Sørensen, Jakob B; Verhage, Matthijs

    2009-01-01

    the minimal docking machinery. Moreover, we show that the requirement for Munc18-1 in docking, but not fusion, can be overcome by stabilizing syntaxin/SNAP-25 acceptor complexes. These findings, together with cross-rescue, double-knockout, and electrophysiological data, lead us to propose that......Docking, the initial association of secretory vesicles with the plasma membrane, precedes formation of the SNARE complex, which drives membrane fusion. For many years, the molecular identity of the docked state, and especially the vesicular docking protein, has been unknown, as has the link to...... SNARE complex assembly. Here, using adrenal chromaffin cells, we identify the vesicular docking partner as synaptotagmin-1, the calcium sensor for exocytosis, and SNAP-25 as an essential plasma membrane docking factor, which, together with the previously known docking factors Munc18-1 and syntaxin, form...

  16. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor–Acceptor Conjugated Polymers

    Ayzner, Alexander L.

    2015-12-30

    © 2015 American Chemical Society. Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  17. Hopping ladder and power relaxation due to donor-acceptor pairs

    Hopping between donor-acceptor pairs leads to peculiar temperature dependence of the conductivity and the photoconductivity under subband gap illumination in the form of non-linear activation energies ladder. The correlated and uncorrelated distributions of pairs are considered and the conditions for the ladder existence are determined. The relaxation of the carrier concentration fluctuations is studied and power type decay is found. The temperature dependence of the exponent is calculated in agreement with the non-exponential decay of the pulse excited luminescence observed by Dean et al. The temperature dependence of the luminescence intensity also shows variable activation energy as found here. The exponent value α=1.316 is also in agreement with the data for crystalline and amorphous materials. (author)

  18. Acceptor extraction of uranyl salts with mixtures of organophosphoric acids with neutral additives

    Uranium solvent extraction by mixtures of organophosphoric acids (HX) with neutral additives (L) (phosphine oxides, sulfoxides, tbp) excibits, along with the widely known synergic effect at low HX saturation with uranium, a new synergic effect occurring after complete HX saturation. Three types of isotherms of uranyl salt extraction by benzene solutions of HX and mixtures of HX with L were revealed. Their forms depend on superposition of cation-exchange and noncation-exchange synergic effects. Similarity of synergic effect of acid and neutral mixture components during solvent extraction from diluted and concentrated solutions of uranyl salts testified to the same nature of these two effects; both of them are determined by acceptor properties of uranium atom in monomeric UO2(HX2)2 and polymeric (UO2X2)p complexes. The established reqularities were confirmed, when studying uranyl sulfate extraction by UO2X2 mixture with L

  19. Polaronic contributions to oxidation and hole conductivity in acceptor-doped BaZrO3

    Lindman, Anders; Erhart, Paul; Wahnström, Göran

    2016-08-01

    Acceptor-doped perovskite oxides like BaZrO3 are showing great potential as materials for renewable energy technologies where hydrogen acts an energy carrier, such as solid oxide fuel cells and hydrogen separation membranes. While ionic transport in these materials has been investigated intensively, the electronic counterpart has received much less attention and further exploration in this field is required. Here, we use density functional theory (DFT) to study hole polarons and their impact on hole conductivity in Y-doped BaZrO3. Three different approaches have been used to remedy the self-interaction error of local and semilocal exchange-correlation functionals: DFT +U , pSIC-DFT, and hybrid functionals. Self-trapped holes are found to be energetically favorable by about -0.1 eV and the presence of yttrium results in further stabilization. Polaron migration is predicted to occur through intraoctahedral transfer and polaron rotational processes, which are associated with adiabatic barriers of about 0.1 eV. However, the rather small energies associated with polaron formation and migration suggest that the hole becomes delocalized and bandlike at elevated temperatures. These results together with an endothermic oxidation reaction [A. Lindman, P. Erhart, and G. Wahnström, Phys. Rev. B 91, 245114 (2015), 10.1103/PhysRevB.91.245114] yield a picture that is consistent with experimental data for the hole conductivity. The results we present here provide new insight into hole transport in acceptor-doped BaZrO3 and similar materials, which will be of value in the future development of sustainable technologies.

  20. Effects of annealing on the polymer solar cells based on CdSe–PVK electron acceptor

    Highlights: ► At annealing temperature of 150 °C/30 min, the device demonstrated an optimal efficiency. ► Thermal annealing enhanced PV cell performance by optimizing both the donor/acceptor morphology. ► The improved nanoscale morphology is responsible for the enhancement of the device efficiency. - Abstract: CdSe–poly(N-vinylcarbazole) (CdSe–PVK) nanocomposite was synthesized and utilized as the electron acceptor in the active layer of polymer solar cells. The photovoltaic properties of the polymer solar cells based on poly(3-hexylthiophene) (P3HT):CdSe–PVK as the active layer were investigated in detail. The effects of annealing temperature (100–200 °C) and time (5–60 min) on the device performance were studied. At annealing temperature of 150 °C for 30 min, the device demonstrated an optimal efficiency of 0.235% under AM 1.5 (100 mW cm−2) solar simulated light irradiation. The improved efficiency under the optimal conditions was confirmed by the highest light harvest in UV–vis spectra due to the increased crystallinity of P3HT after thermal annealing. Photoluminescence of these devices also exhibited that the quench effect increases with the increasing of annealing temperature, indicating that the charge separation between electron-donating (P3HT) and electron-accepting (CdSe–PVK) molecules was increased after heat treatment. Atomic force microscopy (AFM) images showed that the phase segregation and 3D interpenetrating networks of P3HT:CdSe–PVK were responsible for the enhancement of the device efficiency.

  1. Simple indoline based donor–acceptor dye for high efficiency dye-sensitized solar cells

    A simple metal-free donor–acceptor type sensitizer U01, bearing strong electron donor indoline-triphenylamine was synthesized for panchromatic sensitization of TiO2 nanocrystalline film. Photovoltaic properties of U01 showed remarkably enhanced light harvesting due to the presence of strong electron donor and robust structure. The new U01 sensitized solar cell exhibited a photovoltaic performance: a short-circuit photocurrent density (Jsc) of 10.70 mA cm−2, an open-circuit photovoltage (Voc) of 0.758 V and a fill factor (FF) of 0.74, corresponding to an overall conversion efficiency of 6.01% under standard global AM 1.5 solar light condition. Our results suggest that indoline-triphenylamine based robust D–A molecular architecture is a highly promising class of panchromatic sensitizers for improvement of the performance of dye-sensitized solar cells (DSCs). - Graphical abstract: A new donor–acceptor type sensitizer, U01 has been synthesized for panchromatic TiO2 sensitization. The photovoltaic properties of U01 showed higher light harvesting compared to D-1 due to the presence of strong electron donor indoline-triphenylamine moiety and compact molecular structure, which translated into a high total conversion efficiency of 6.01%. - Highlights: • A simple and robust indoline-triphenylamine based sensitizer for DSCs. • An overall conversion efficiency of 6.01% was obtained. • Strong electron donor triphenylamine unit extends absorption spectrum. • Simple and robust molecular design is a promising class of sensitizers

  2. Simple indoline based donor–acceptor dye for high efficiency dye-sensitized solar cells

    Akhtaruzzaman, Md., E-mail: akhtar.brces@gmail.com [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Ekramul Mahmud, H.N.M. [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Islam, Ashraful, E-mail: ISLAM.Ashraful@nims.go.jp [Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ei Shafei, Ahmed [Polymer and Color Chemistry Program, North Carolina State University 1000 Main Campus Dr., Raleigh, NC 27695 (United States); Karim, Mohammed Rezaul [Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Sopian, Kamaruzzaman [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Han, Liyuan [Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Yoshinori [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577 (Japan); State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China)

    2013-10-01

    A simple metal-free donor–acceptor type sensitizer U01, bearing strong electron donor indoline-triphenylamine was synthesized for panchromatic sensitization of TiO{sub 2} nanocrystalline film. Photovoltaic properties of U01 showed remarkably enhanced light harvesting due to the presence of strong electron donor and robust structure. The new U01 sensitized solar cell exhibited a photovoltaic performance: a short-circuit photocurrent density (J{sub sc}) of 10.70 mA cm{sup −2}, an open-circuit photovoltage (V{sub oc}) of 0.758 V and a fill factor (FF) of 0.74, corresponding to an overall conversion efficiency of 6.01% under standard global AM 1.5 solar light condition. Our results suggest that indoline-triphenylamine based robust D–A molecular architecture is a highly promising class of panchromatic sensitizers for improvement of the performance of dye-sensitized solar cells (DSCs). - Graphical abstract: A new donor–acceptor type sensitizer, U01 has been synthesized for panchromatic TiO{sub 2} sensitization. The photovoltaic properties of U01 showed higher light harvesting compared to D-1 due to the presence of strong electron donor indoline-triphenylamine moiety and compact molecular structure, which translated into a high total conversion efficiency of 6.01%. - Highlights: • A simple and robust indoline-triphenylamine based sensitizer for DSCs. • An overall conversion efficiency of 6.01% was obtained. • Strong electron donor triphenylamine unit extends absorption spectrum. • Simple and robust molecular design is a promising class of sensitizers.

  3. Combined oral contraceptive pills: Profile of acceptors in a tertiary hospital in South-South Nigeria

    A M Abasiattai

    2011-01-01

    Full Text Available Background: Combined oral contraceptive pills were the first contraceptive method to provide sexual freedom of choice for women through reliable, personal and private control of fertility. They are the most widely used hormonal contraceptives and also the most popular non-surgical method of contraception. Objective: To review the profile of acceptors of combined oral contraceptive pills at the University of Uyo Teaching Hospital, Uyo. Methodology: An 8 year review of all clients that accepted combined oral contraceptive pills in the family planning clinic. Results: There were 1,146 new contraceptive acceptors during the period of study out of which 309 (27.9% accepted the pills. Majority of the clients were between 20 and 29 years of age (54.0%, were multiparous (72.8%, Christians (99.7% and 61.2% had tertiary level education. Two hundred and fifty-five women (82.5% desired to use combined oral contraceptive pills to space births while 7.8% wanted to limit child bearing. There was a high discontinuation rate among the women (45.0% and out of these 87.9% of the clients changed to other contraceptive methods. All the clients commenced their pills within seven days of menstruation and only the low dose monophasic preparations were available in the family planning unit and thus were given to the clients. Conclusion: Women who accept to initiate combined oral contraceptive pills in our center are young, well educated, multiparous women who want to space their pregnancies. However, due to the high discontinuation rate among the clients, there is need for further studies evaluating reasons for the high discontinuation rate, exploring interactions between clients and providers′ and also providers′ attitude towards combined pills in our environment.

  4. Identification of rhenium donors and sulfur vacancy acceptors in layered MoS2 bulk samples

    Brandão, F. D.; Ribeiro, G. M.; Vaz, P. H.; González, J. C.; Krambrock, K.

    2016-06-01

    MoS2 monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS2 shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers are mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS2 monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS2 with a corresponding donor concentration of about 108-12 defects/cm2 for MoS2 monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 1015 cm-3, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 1019 cm-3 and net acceptor concentration of 5 × 1018 cm-3 related to sulfur vacancies.

  5. Anaerobic biodegradation of benzene series compounds by mixed cultures based on optional electronic acceptors

    2007-01-01

    A series of batch experiments were performed using mixed bacterial consortia to investigate biodegradation performance of benzene,toluene,ethylbenzene and three xylene isomers (BTEX) under nitrate,sulfate and ferric iron reducing conditions.The results showed that toluene,ethylbenzeoe,m-xylene and o-xylene could be degraded independently by the mixed cultures coupled to nitrate,sulfate and ferric iron reduction.Under ferric iron reducing conditions the biodegradation of benzene and p-xylene could be occurred only in the presence of other alkylbenzenes.Alkylbenzenes can serve as the primary substrates to stimulate the transformation of benzene and p-xylene under anaerobic conditions.Benzene and p-xylene are more toxic than toluene and ethylbenzene,under the three terminal electron acceptors conditions,the degradation rates decreased with toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene.Nitrate was a more favorable electron acceptor compared to sulfate and ferric iron.The ratio between sulfate consumed and the loss of benzene,toluene,ethylbenzene,o-xylene,m-xylene,p-xylene was 4.44,4.51,4.42,4.32,4.37 and 4.23,respectively;the ratio between nitrate consumed and the loss of these substrates was 7.53,6.24,6.49,7.28,7.81,7.61,respectively;the ratio between the consumption of ferric iron and the loss of toluene,ethylbenzene,o-xylene,m-xylenewas 17.99,18.04,18.07,17.97,respectively.

  6. 基于证据理论的云计算信任模型研究%EVIDENCE THEORY BASED CLOUD COMPUTING TRUST MODEL RESEARCH

    方恩光; 吴卿

    2012-01-01

    信任模型是研究云计算中信任机制的重要问题,其研究结果可应用于云计算数据安全、服务安全,平台安全等研究.为了解决信任的量化和不确定问题,利用证据理论对信任及信任行为进行建模,并认为信任由直接的服务行为结果和间接的第三方推荐组成.提出信任的传递和聚合方式,并将建立的信任模型通过传递方式和聚合方式进行实验;结果显示该信任模型在聚合和信任行为结果纪录情况下,有利于抑制信任的不确定.%Trust model is an important issue in trust mechanism research in cloud computing. The researching achievements can be applied to researches on cloud computing' s data security, service security, platform security and so on. In order to solve the quantization and uncertainty problems about trust, this paper uses evidential theory to model trust and trust behaviors and assumes that trust consists of direct service behavior results and indirect third party recommendations. Here it proposes trust transition and aggregation methods, which are tested upon an established trust model via transition and aggregation methods. Test results reveal that the trust model, under the condition of aggregation method used and trust behavior results recorded, helps inhibit trust uncertainty.

  7. Tris(2,2'-bipyridine)ruthenium Derivatives with Multiple Viologen Acceptors: Quadratic Dependence of Photocatalytic H2 Evolution Rate on the Local Concentration of the Acceptor Site.

    Kitamoto, Kyoji; Sakai, Ken

    2016-08-22

    Three Ru(bpy)3 (2+) derivatives tethered to multiple viologen acceptors, [Ru(bpy)2 (4,4'-MV2)](6+) , [Ru(bpy)2 (4,4'-MV4)](10+) , and [Ru(bpy)(4,4'-MV4)2 ](18+) [bpy=2,2'-bipyridine, 4,4'-MV2=4-ethoxycarbonyl-4'-(N-G1 -carbamoyl)-2,2'-bipyridine, and 4,4'-MV4=4,4'-bis(N-G1 -carbamoyl)-2,2'-bipyridine, where G1 =Asp(NHG2 )-NHG2 and G2 =-(CH2 )2 -N(+) C5 H4 -C5 H4 N(+) -CH3 ] were prepared as "photo-charge separators (PCSs)". Photoirradiation of these complexes in the presence of a sacrificial electron donor (EDTA) results in storage of electrons per PCS values of 1.3, 2.7, and 4.6, respectively. Their applications in the photochemical H2 evolution from water in the presence of a colloidal Pt H2 -evolving catalyst were investigated, and are discussed along with those reported for [Ru(bpy)2 (5,5'-MV4)](10+) , [Ru(4,4'-MV4)3 ](26+) , and [Ru(5,5'-MV4)3 ](26+) (Inorg. Chem. Front. 2016, 3, 671-680). The PCSs with high dimerization constants (Kd =10(5) -10(6)  m(-1) ) are superior in driving H2 evolution at pH 5.0, whereas those with lower Kd values (10(3) -10(4)  m(-1) ) are superior at pH 7.0, where Kd =[(MV(+) )2 ]/[MV(+) (.) ](2) . The (MV(+) )2 site can drive H2 evolution only at pH 5.0 as a result of its 0.15 eV lower driving force for H2 evolution relative to MV(+) (.) , whereas the PCSs with lower Kd values exhibit higher performance at pH 7.0 owing to the higher population of free MV(+) (.) . Importantly, the rate of electron charging over the PCSs is linear to the apparent H2 evolution rate, and shows an intriguing quadratic dependence on the number of MV(2+) units per PCS. PMID:27434613

  8. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  9. Morphological study on small molecule acceptor-based organic solar cells with efficiencies beyond 7% (Presentation Recording)

    Ma, Wei; Yan, He

    2015-10-01

    Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.

  10. The optimum composition of pH-sensitive acceptor solution for membrane separation in flow injection analysis

    Linden, van der, P.

    1983-01-01

    Gas diffusion membranes are frequently used to transfer volatile protolytes from a donor to an acceptor solution. This transfer is attended by a change in [H+] or [OH− and an absorbance change of the acid-base indicator present. Conditions determining the linearity and the sensitivity of the calibration graphs are discussed.

  11. Anaerobic α-Amylase Production and Secretion with Fumarate as the Final Electron Acceptor in Saccharomyces cerevisiae

    Liu, Zihe; Österlund, Tobias; Hou, Jin;

    2013-01-01

    In this study, we focus on production of heterologous α-amylase in the yeast Saccharomyces cerevisiae under anaerobic conditions. We compare the metabolic fluxes and transcriptional regulation under aerobic and anaerobic conditions, with the objective of identifying the final electron acceptor fo...

  12. Resonant and non-resonant components of the rate of a population transfer in hybrid donor-acceptor systems

    Menšík, Miroslav; Král, Karel

    2013-01-01

    Roč. 5, č. 6 (2013), s. 565-568. ISSN 2164-6627 R&D Projects: GA MŠk(CZ) OC10007; GA MŠk LH12186; GA ČR(CZ) GAP205/10/2280 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : energy transfer * hybrid donor-acceptor system Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. The relation of the number of hydrogen-bond acceptors with recoveries of immunosuppressants in DBS analysis

    Koster, Remco A.; Alffenaar, Jan-Willem C.; Botma, Rixt; Greijdanus, Ben; Uges, Donald R. A.; Kosterink, Jos G. W.; Touw, Daan J.

    2015-01-01

    BACKGROUND: We investigated the influence of the number of hydrogen-bond acceptors on the recovery of immunosuppressant drugs and their structural analogs. This hypothesis was tested by evaluation of the extraction recoveries of tacrolimus, ascomycin, sirolimus, everolimus and temsirolimus with 12,

  14. The synthesis and evaluation of near-infrared probes with barbituric acid acceptors for in vivo detection of amyloid plaques.

    Zhou, Kaixiang; Fu, Hualong; Feng, Liang; Cui, Mengchao; Dai, Jiapei; Liu, Boli

    2015-07-25

    A new array of near-infrared probes containing barbituric acid acceptors has been developed as Aβ imaging agents. These probes displayed long-emission wavelengths and large Stokes shifts, as well as high affinities for Aβ aggregates. In vivo and ex vivo studies demonstrated that BBTOM-3 could intensely label Aβ plaques in the brains of transgenic mice. PMID:26103205

  15. Electronic structure and conduction mechanism of donor-bridge-acceptor systems where PPV acts as a molecular wire

    p-Phenylenevinylene (PPV) oligomers behave as molecular wires, although in different ways in different experiments. The donor-bridge-acceptor systems of Davis et al., where a tetracene (TET) donor and a pyromellitimide (PI) acceptor are linked by PPV oligomers of varying lengths, have revealed an unusual donor-acceptor distance dependence in the rate constant for photo-induced electron transfer (ET). Sikes et al. in an electrochemical experiment have found fast tunneling over 28 Angst through PPV oligomers. In the present paper, we have applied density functional theory and other quantum chemical methods to study the electronic structure of PPV-systems and used these data to make conclusions regarding the conduction mechanisms. Consistent with the earlier interpretations we find that the PPV bridges act as a tunneling medium for ET in the thermal case and for the shorter bridges in the photo-induced case. In the three longer molecules the photo-induced ET is coherent to the bridge molecule, and is followed by fast draining to the acceptor. The electron transfer does not appear to be connected to torsional activation of bridge plane or side groups

  16. Roll-coating fabrication of ITO-free flexible solar cells based on a non-fullerene small molecule acceptor

    Liu, Wenqing; Shi, Hangqi; Andersen, Thomas Rieks;

    2015-01-01

    We report organic solar cells (OSCs) with non-fullerene small molecule acceptors (SMAs) prepared in large area via a roll coating process. We employ all solution-processed indium tin oxide (ITO)-free flexible substrates for inverted solar cells with a new SMA of F(DPP)(2)B-2. By utilizing poly(3...

  17. Triggering Gel Formation and Luminescence through Donor-Acceptor Interactions in a C3 -Symmetric Tris(pyrene) System.

    Lai, Thanh-Loan; Pop, Flavia; Melan, Caroline; Canevet, David; Sallé, Marc; Avarvari, Narcis

    2016-04-18

    Straightforward modulation of the gelation, absorption and luminescent properties of a tris(pyrene) organogelator containing a C3 -symmetric benzene-1,3,5-tricarboxamide central unit functionalized by three 3,3'-diamino-2,2'-bipyridine fragments is achieved through donor-acceptor interactions in the presence of tetracyanoquinodimethane. PMID:26864120

  18. Effect of donor (I) or acceptor (N) co-doping on Cr doped (ZnTe)12 clusters

    We report a first principles density functional theory in the local spin density approximation study of the energetics and the magnetism of (ZnTe)12 clusters, doped with the transition metal Cr along with impurities of either acceptor or donor types, and their effect on the energetics and local as well as global magnetism in the clusters.

  19. Structural and optical properties of langmuir-blodgett films of the electron acceptor 2-octadecylthio-1,4-benzoquinone

    Bjørnholm, T.; Larsen, N. B.; Christensen, Finn Erland;

    1993-01-01

    The electron acceptor 2-octadecylthio-1,4-benzoquinone forms stable monolayers at air/water interfaces. Transfer to hydrophobic substrates yields Y-type Langmuir-Blodgett films. By studies of multilayers using X-ray diffraction and spectroscopy with polarized light a structure model is obtained...

  20. Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon

    Stübner, R.; Scheffler, L.; Kolkovsky, Vl.; Weber, J.

    2016-05-01

    In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are EC-0.06 eV (E42) and EC-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier for electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH1AB configuration, where one H atom is directly bound to carbon in the anti-bonding position.

  1. Knowledge and attitude towards family planning practices among non-acceptors in a rural area in Bangalore, India

    Hemavarneshwari S.

    2015-12-01

    Conclusions: Most common reason for non-acceptance of family planning was male child preference (26.8%. There is a need for behaviour change communication for eligible couples regarding family planning adoption among the non-acceptors highlighting the importance of small family, happy family. [Int J Res Med Sci 2015; 3(12.000: 3611-3613

  2. Imidazole as a Donor/Acceptor Unit in Charge-Transfer Chromophores with Extended pi-Linkers

    Kulhánek, J.; Bureš, F.; Pytela, O.; Mikysek, T.; Ludvík, Jiří

    2011-01-01

    Roč. 6, č. 6 (2011), s. 1604-1612. ISSN 1861-4728 Institutional research plan: CEZ:AV0Z40400503 Keywords : charge transfer * conjugation * donor-acceptor systems Subject RIV: CG - Electrochemistry Impact factor: 4.500, year: 2011

  3. Study Phase Separation of Donor: Acceptor in Ink jet Printed Thin Films of Bulk Heterojunction Organic Solar Cells Using AFM Phase Imaging

    In recent years, the organic solar cells have been intensively developed due to the ease and low cost fabrication process. The main component of organic solar cells is an active layer consisting of electron donor and acceptor materials. In bulk heterojunction structure, donor and acceptor are mixed and deposited as one layer [1,2]. (author)

  4. An N-ethylated barbituric acid end-capped bithiophene as an electron-acceptor material in fullerene-free organic photovoltaics.

    Sullivan, Paul; Collis, Gavin E; Rochford, Luke A; Arantes, Junior Ferreira; Kemppinen, Peter; Jones, Tim S; Winzenberg, Kevin N

    2015-04-11

    A new evaporable electron acceptor material for organic photovoltaics based on N-ethyl barbituric acid bithiophene (EBB) has been demonstrated. Bilayer devices fabricated with this non-fullerene acceptor and boron subphthalocyanine chloride (SubPc) donor produce power conversion efficiencies as high as 2.6% with an extremely large open-circuit voltage approaching 1.4 V. PMID:25761144

  5. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar Cells.

    Long, Xiaojing; Ding, Zicheng; Dou, Chuandong; Zhang, Jidong; Liu, Jun; Wang, Lixiang

    2016-08-01

    A novel polymer acceptor based on the double B←N bridged bipyridine building block is reported. All-polymer solar cells based on the new polymer acceptor show a power conversion efficiency of as high as 6.26% at a photon energy loss of only 0.51 eV. PMID:27167123

  6. Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers

    Yue, Wei; Larsen-Olsen, Thue Trofod; Hu, Xiaolian;

    2013-01-01

    A series of donor-acceptor low band gap polymers composed of alternating dithienopyrrole or its derivative as donors and phthalimide or thieno[3,4-c]pyrrole-4,6-dione as acceptors (P1-P4) are synthesized by Stille coupling polymerization. All polymers show strong absorption in the visible region...

  7. The Sex and Race Specific Relationship between Anthropometry and Body Fat Composition Determined from Computed Tomography: Evidence from the Multi-Ethnic Study of Atherosclerosis.

    Morgana Mongraw-Chaffin

    Full Text Available Few studies have investigated the relationship of anthropometric measurements with computed tomography (CT body fat composition, and even fewer determined if these relationships differ by sex and race.CT scans from 1,851 participants in the population based Multi-Ethnic Study of Atherosclerosis were assessed for visceral and subcutaneous fat areas by semi-automated segmentation of body compartments. Regression models were used to investigate relationships for anthropometry with visceral and subcutaneous fat separately by sex and race/ethnicity.Participants were 50% female, 41% Caucasian, 13% Asian, 21% African American, and 25% Hispanic. For visceral fat, the positive relationship with weight (p = 0.028, waist circumference (p<0.001, waist to hip ratio (p<0.001, and waist to height ratio (p = 0.05 differed by sex, with a steeper slope for men. That is, across the range of these anthropometric measures the rise in visceral fat is faster for men than for women. Additionally, there were differences by race/ethnicity in the relationship with height (p<0.001, weight (p<0.001, waist circumference (p<0.001, hip circumference (p = 0.006, and waist to hip ratio (p = 0.001 with the Hispanic group having shallower slopes. For subcutaneous fat, interaction by sex was found for all anthropometric indices at p<0.05, but not for race/ethnicity.The relationship between anthropometry and underlying adiposity differs by sex and race/ethnicity. When anthropometry is used as a proxy for visceral fat in research, sex-specific models should be used.

  8. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics

    Bartynski, Andrew N.

    2015-04-29

    © 2015 American Chemical Society. Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between ECT and qVOC of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices.

  9. Symmetry-breaking charge transfer in a zinc chlorodipyrrin acceptor for high open circuit voltage organic photovoltaics.

    Bartynski, Andrew N; Gruber, Mark; Das, Saptaparna; Rangan, Sylvie; Mollinger, Sonya; Trinh, Cong; Bradforth, Stephen E; Vandewal, Koen; Salleo, Alberto; Bartynski, Robert A; Bruetting, Wolfgang; Thompson, Mark E

    2015-04-29

    Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between E(CT) and qV(OC) of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices. PMID:25826321

  10. Lactose- and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase.

    Shi, Qiao; Juvonen, Minna; Hou, Yaxi; Kajala, Ilkka; Nyyssölä, Antti; Maina, Ndegwa Henry; Maaheimo, Hannu; Virkki, Liisa; Tenkanen, Maija

    2016-01-01

    Dextran-producing Weissella have received significant attention. However, except for maltose, the acceptor reactions of Weissella dextransucrases with different sugars have not been investigated. The action of recombinant Weissella confusa VTT E-90392 dextransucrase was tested with several potential acceptors, particularly, analogs lactose and cellobiose. The major acceptor products of both disaccharides were identified as branched trisaccharides, with a glucosyl residue α-(1 → 2)-linked to the acceptor's reducing end. An additional product, isomelezitose (6(Fru)-α-Glcp-sucrose), was also produced when using lactose as an acceptor. This is the first report of the synthesis of isomelezitose by a dextransucrase. The NMR spectra of the three trisaccharides were fully assigned, and their structures were confirmed by selective enzymatic hydrolysis. The trisaccharides prepared from (13)C6(glc) sucrose and lactose were analyzed by ESI-MS(n), and the fragmentation patterns of these compounds were characterized. PMID:26212965

  11. Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance

    Tromholt, Thomas; Vesterager Madsen, Morten; Carlé, Jon Eggert;

    2012-01-01

    Photochemical degradation at 1 sun under AM1.5G illumination was performed on six conjugated polymers and five different electron acceptors. Additionally, the respective polymer:PC60BM and P3HT:electron acceptor blends were studied, and all degradations were resolved in terms of film thickness and...... within each material group were found to vary for both the pure polymers and the blends. The stability ranking between the materials of the pure polymers was found to be similar to the ranking for their respective blends, implying that the photochemical stability of a pure polymer is a good measure of...... its associated blend stability. Different electron acceptors were found to stabilize P3HT decreasingly with decreasing donor–acceptor LUMO–LUMO gap. Destabilization of P3HT was observed in the case of the electron acceptor ICBA. Additionally, the decreased stabilization of P3HT by high LUMO electron...

  12. Tuning the Optoelectronic Properties of Vinylene-Linked Donor−Acceptor Copolymers for Organic Photovoltaics

    Ko, Sangwon

    2010-08-24

    Five new donor-acceptor copolymers containing the electron acceptor benzothiadiazole (BTZ) linked to the electron donors fluorene (FL) or cyclopentadithiophene (CPDT) via vinylene units were synthesized to study polymer structure-property relationships in organic photovoltaic devices. Both alternating (P) and random copolymers (P1-P4) were prepared via Suzuki and Stille polycondensations, respectively. The cyclopentadithiophene copolymers (P2 and P4) have smaller electrochemical band gaps (1.79 and 1.64 eV) compared to the fluorene-containing copolymers (2.08 and 1.95 eV for P1 and P3). However, the presence of CPDT raises the electrochemical HOMO energy levels (-4.83 and-4.91 eV for P2 and P4) compared to the FL copolymers (-5.06 and-5.15 eV for P1 and P3) leading to small open circuit voltages (Voc) in solar cells. The primary solution and thin-film UV-vis absorption peaks of P3 and P4, which do not contain alkylated thiophenes appended to the BTZ unit, are at lower energy and have larger absorption coefficients than their P1 and P2 counterparts. Detailed theoretical analyses of the geometric structure, electronic structure, and excited-state vertical transitions using density functional theory provide direct insight into the interplay between the structural modifications and resulting electronic and optical changes. A high molecular weight (Mn = 25 kg/mol) polymer with a large degree of polymerization (DPn = 21) was easily achieved for the random copolymer P1, leading to thin films with both a larger absorption coefficient and a larger hole mobility compared to the analogous alternating polymer P (Mn = 22 kg/mol, DPn = 18). An improved short circuit current and a power conversion efficiency up to 1.42% (Jsc = 5.82 mA/cm2, Voc = 0.765 V, and FF = 0.32) were achieved in bulk heterojunction solar cells based on P1. © 2010 American Chemical Society.

  13. A role for prenylated rab acceptor 1 in vertebrate photoreceptor development

    Dickison Virginia M

    2012-12-01

    Full Text Available Abstract Background The rd1 mouse retina is a well-studied model of retinal degeneration where rod photoreceptors undergo cell death beginning at postnatal day (P 10 until P21. This period coincides with photoreceptor terminal differentiation in a normal retina. We have used the rd1 retina as a model to investigate early molecular defects in developing rod photoreceptors prior to the onset of degeneration. Results Using a microarray approach, we performed gene profiling comparing rd1 and wild type (wt retinas at four time points starting at P2, prior to any obvious biochemical or morphological differences, and concluding at P8, prior to the initiation of cell death. Of the 143 identified differentially expressed genes, we focused on Rab acceptor 1 (Rabac1, which codes for the protein Prenylated rab acceptor 1 (PRA1 and plays an important role in vesicular trafficking. Quantitative RT-PCR analysis confirmed reduced expression of PRA1 in rd1 retina at all time points examined. Immunohistochemical observation showed that PRA1-like immunoreactivity (LIR co-localized with the cis-Golgi marker GM-130 in the photoreceptor as the Golgi translocated from the perikarya to the inner segment during photoreceptor differentiation in wt retinas. Diffuse PRA1-LIR, distinct from the Golgi marker, was seen in the distal inner segment of wt photoreceptors starting at P8. Both plexiform layers contained PRA1 positive punctae independent of GM-130 staining during postnatal development. In the inner retina, PRA1-LIR also colocalized with the Golgi marker in the perinuclear region of most cells. A similar pattern was seen in the rd1 mouse inner retina. However, punctate and significantly reduced PRA1-LIR was present throughout the developing rd1 inner segment, consistent with delayed photoreceptor development and abnormalities in Golgi sorting and vesicular trafficking. Conclusions We have identified genes that are differentially regulated in the rd1 retina at early

  14. Endogenous RNAs Modulate MicroRNA Sorting to Exosomes and Transfer to Acceptor Cells

    Mario Leonardo Squadrito

    2014-09-01

    Full Text Available MicroRNA (miRNA transfer via exosomes may mediate cell-to-cell communication. Interestingly, specific miRNAs are enriched in exosomes in a cell-type-dependent fashion. However, the mechanisms whereby miRNAs are sorted to exosomes and the significance of miRNA transfer to acceptor cells are unclear. We used macrophages and endothelial cells (ECs as a model of heterotypic cell communication in order to investigate both processes. RNA profiling of macrophages and their exosomes shows that miRNA sorting to exosomes is modulated by cell-activation-dependent changes of miRNA target levels in the producer cells. Genetically perturbing the expression of individual miRNAs or their targeted transcripts promotes bidirectional miRNA relocation from the cell cytoplasm/P bodies (sites of miRNA activity to multivesicular bodies (sites of exosome biogenesis and controls miRNA sorting to exosomes. Furthermore, the use of Dicer-deficient cells and reporter lentiviral vectors (LVs for miRNA activity shows that exosomal miRNAs are transferred from macrophages to ECs to detectably repress targeted sequences.

  15. Utilization of toxic and vapors as alternate electron acceptors in biofilters

    Lee, B.D.; Apel, W.A.; Walton, M.R.

    1997-08-01

    Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolic process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.

  16. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments

    Klüpfel, Laura; Piepenbrock, Annette; Kappler, Andreas; Sander, Michael

    2014-03-01

    Humic substances form through the degradation of microbial and plant precursors, and make up a significant fraction of natural organic matter in terrestrial and aquatic environments. Humic substances are redox-active and can act as terminal electron acceptors in anaerobic microbial respiration. Reduced humic substances may become re-oxidized during aeration of temporarily anoxic systems, such as wetlands, sediments and many soils. If the transfer of electrons from anaerobic respiration through humic substances to oxygen is sustained over many redox cycles, it may competitively suppress electron transfer to carbon dioxide, and thereby lower the formation of methane in temporarily anoxic systems. Here, we monitor changes in the redox states of four chemically distinct dissolved humic substances over successive cycles of reduction by the bacterium Shewanella oneidensis MR-1 and oxidation by oxygen, in a series of laboratory experiments. We show that electron transfer to and from these substances is fully reversible and sustainable over successive redox cycles. We suggest that redox cycling of humic substances may largely suppress methane production in temporarily anoxic systems.

  17. Optical Excitation in Donor-Pt-Acceptor Complexes: Role of the Structure.

    Gong, Zu-Yong; Duan, Sai; Tian, Guangjun; Zhang, Guozhen; Jiang, Jun; Luo, Yi

    2016-05-26

    The optical properties of the Pt complexes in the form of donor-metal-acceptor (D-M-A) were studied at the first-principles level. Calculated results show that for the frontier molecular orbitals (MOs) of a D-M-A structure the energies of unoccupied frontier MO can be mainly determined by the interaction between M and A, whereas the M-A and M-D interactions both determine the energies of occupied frontier MO. By developing a straightforward transition dipole decomposition method, we found that not only the local excitations in D but also those in A can significantly contribute to the charge-transfer (CT) excitation. Furthermore, the calculations also demonstrate that by tuning the dihedral angle between D and A the transition probability can be precisely controlled so as to broaden the spectrum region of photoabsorption. For the D-M-A molecule with a delocalized π system in A, the CT excitation barely affects the electronic structures of metal, suggesting that the oxidation state of the metal can be kept during the excitation. These understandings for the optical properties of the D-M-A molecule would be useful for the design of dye-sensitized solar cells, photocatalysis, and luminescence systems. PMID:27135840

  18. Charge Transfer States in Dilute Donor-Acceptor Blend Organic Heterojunctions.

    Liu, Xiao; Ding, Kan; Panda, Anurag; Forrest, Stephen R

    2016-08-23

    We study the charge transfer (CT) states in small-molecule blend heterojunctions comprising the nonpolar donor, tetraphenyldibenzoperiflanthene (DBP), and the acceptor, C70, using electroluminescence and steady-state and time-resolved photoluminescence spectroscopy along with density functional theory calculations. We find that the CT exciton energy blue shifts as the C70 concentration in the blend is either decreased or increased away from 50 vol %. At 20 K, the increase in CT state lifetime is correlated with the increasing diameter of C70 nanocrystallites in the blends. A quantum confinement model is used to quantitatively describe the dependence of both CT energy and lifetime on the C70 or DBP domain size. Two discrete CT emission peaks are observed for blends whose C70 concentration is >65%, at which point C70 nanocrystallites with diameters >4 nm appear in high-resolution transmission electron micrographs. The presence of two CT states is attributed to coexistence of crystalline C70 and amorphous phases in the blends. Furthermore, analysis of CT dissociation efficiency versus photon energy suggests that the >90% dissociation efficiency of delocalized CT2 states from the crystalline phase significantly contributes to surprisingly efficient photogeneration in highly dilute (>80% C70) DBP/C70 heterojunctions. PMID:27487403

  19. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    Baris Yilmaz

    2015-08-01

    Full Text Available Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been found to be good candidates for individually dispersing nanotubes in solution. In order to identify the dispersed nanotube species, 2D excitation-emission map and Raman spectroscopy have been performed. Molecular dynamics modelling has been utilized to reveal the binding energies of dispersants with the nanotube surface and the simulation results have been compared with the experimental findings. Both experimental and theoretical results imply the presence of a complex mechanism that governs the extent of dispersion capacity and selectivity of each conjugated polymeric dispersant in solubilizing carbon nanotubes.

  20. Giant spatially-resolved self-assembled donor-acceptor molecular heterojunctions

    Guest, Jeffrey R.; Smerdon, Joseph A.; Giebink, Noel C.; Guisinger, Nathan P.; Darancet, Pierre

    Despite theoretical models predicting that rectification ratios (RR) >1000 should be achievable in molecular rectifiers, demonstrations of this have been rare. It has also been extremely challenging to unravel the structure-function relationships on the nanometer length scales that determine their behavior. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we show that RRs >1000 at biases molecule limit for self-assembled donor-acceptor bilayers of pentacene on C60 on Cu. We show that the system behaves as a molecular analog to a Schottky diode due to strong electronic coupling of C60 to the metallic substrate, and electronic transport is dominated by sequential tunneling from semiconducting pentacene to metallic C60. Furthermore, we demonstrate the extreme sensitivity of the low-bias I (V) characteristics to the molecularly-resolved structure of the heterojunction (HJ), which leads to negative differential resistance and ~ 100 × variation in the rectification ratio within 2 nm of the edge of the molecular HJ. Support was provided by the Department of Energy Office of Basic Energy Sciences (SISGR Grant DE-FG02-09ER16109).

  1. Acceptor levels in ZnMgO:N probed by deep level optical spectroscopy

    Kurtz, A.; Hierro, A., E-mail: adrian.hierro@upm.es; Muñoz, E. [ISOM and Dpto. Ingeniería Electrónica, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Mohanta, S. K.; Nakamura, A.; Temmyo, J. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2014-02-24

    A combination of deep level optical spectroscopy and lighted capacitance voltage profiling has been used to analyze the effect of N into the energy levels close to the valence band of Zn{sub 0.9}Mg{sub 0.1}O. Three energy levels at E{sub V} + 0.47 eV, E{sub V} + 0.35 eV, and E{sub V} + 0.16 eV are observed in all films with concentrations in the range of 10{sup 15}–10{sup 18} cm{sup −3}. The two shallowest traps at E{sub V} + 0.35 eV and E{sub V} + 0.16 eV have very large concentrations that scale with the N exposure and are thus potential acceptor levels. In order to correctly quantify the deep level concentrations, a metal-insulator-semiconductor model has been invoked, explaining well the resulting capacitance-voltage curves.

  2. Effect of distance between acceptor and donor on optical properties of composite semiconducting polymer films

    Kong Fan, E-mail: kongfan@nju.org.c [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Liu Jing; Zhang Xueqin [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); An Yan; Li Xiaofeng [Institute of Marine Materials and Engineering, Shanghai Maritime University, Shanghai 200135 (China); Lin Baoping [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Qiu Teng [Department of Physics, Southeast University, Nanjing 211189 (China)

    2011-04-15

    The excitation energy transfer from poly(N-vinylcarbazole) (PVK) to tris(8-hydroxyquinoline) aluminum (Alq{sub 3}) in composite films was investigated by adding an inert polymer, poly(methyl methacrylate) (PMMA). The energy transfer efficiency calculated from the photoluminescence (PL) excitation spectra is consistent with that from the time-resolved PL decay data of the composite films. We have found a linear relationship between the two kinds of the distances, which are calculated according to volume density and the Foerster theory. Experimental results and analyses provide a facile method to infer the energy transfer efficiency and the distance between the donor and the acceptor molecules in the composite films. - Research highlights: A facile method to calculate the energy transfer efficiency is proposed. The linear relationship between the r{sub F} and the r{sub vd} means the dopant aggregation. The dopant aggregation makes the energy transfer deviate from the Foerster theory. Controlling the dopant aggregation is important to improve resonance energy transfer.

  3. Decolorization of kraft bleaching effluent by advanced oxidation processes using copper (II) as electron acceptor.

    Yeber, María C; Oñate, Katherine P; Vidal, Gladys

    2007-04-01

    Two advanced oxidation processes (AOPs), TiO2/UV/O2 and TiO2/UV/Cu (II), were used to remove color from a Kraft bleaching effluent. The optimal decoloration rate was determined by multivariate analysis, obtaining a mathematical model to evaluate the effect among variables. TiO2 and Cu (II) concentrations and the reaction times were optimized. The experimental design resulted in a quadratic matrix of 30 experiments. Additionally, the pH influence on the color removal was determined by multivariate analysis. Results indicate that color removal was 94% at acidic pH (3.0) in the presence of Cu (11) as an electron acceptor. Under this condition, the biodegradation of the effluent increased from 0.3 to 0.6. Moreover, 70% of COD (chemical oxygen demand) was removed, and the ecotoxicity, measured by Daphnia magna, was reduced. Photocatalytic oxidation to remove the color contained in the Kraft mill bleaching effluent was effective under the following conditions: short reaction time, acidic pH values, and without the addition of oxygen due to the presence of Cu (II) in the effluent. Moreover, residual Cu (II) was a minimum (0.05.mg L(-1)) and was not toxic to the next biological stage. The experimental design methodology indicated that a quadratic polynomial model may be used to representthe efficiencyfor degradation of the Kraft bleach pulp effluent by a photocatalytic process. PMID:17438808

  4. Theory of doping properties of Ag acceptors in ZnO

    Volnianska, O.; Boguslawski, P.; Kaczkowski, J.; Jakubas, P.; Jezierski, A.; Kaminska, E.

    2009-12-01

    Doping properties of Ag in ZnO were analyzed by first-principles calculations within both the local-density and generalized gradient approximations. The ionization energy of AgZn , about 0.2 eV, is comparable to that of the commonly used group-V acceptors, and is lower than that of two other IB species, Cu and Au. Formation energy of Ag in the favorable O-rich conditions is 0.85 eV, which corresponds to the solubility limit of about 1018cm-3 at 700°C . Formation of Ag-rich second phases is predicted for high Ag concentrations. Energetics of the onset of this process is analyzed and AgZn display a tendency to form aggregates of AgO with the wurtzite structure. Formation of such nanoinclusions is shown to affect the lattice constant of ZnO:Ag. Two “wrong” incorporation channels, i.e., at the interstitial sites and at the oxygen sites as AgO , are predicted to be nonefficient due to the high formation energies. The calculated magnetic coupling between Ag ion reveals an unexpected dependence on the Ag-Ag distance; the interaction between the nearest-neighbor AgZn pair vanishes while that for the more distant pairs is weakly ferromagnetic.

  5. Density of states determination in organic donor-acceptor blend layers enabled by molecular doping

    Fischer, Janine; Ray, Debdutta; Kleemann, Hans; Pahner, Paul; Schwarze, Martin; Koerner, Christian; Vandewal, Koen; Leo, Karl

    2015-06-01

    Charge carrier transport is a key parameter determining the efficiency of organic solar cells, and is closely related to the density of free and trapped states. For trap characterization, impedance spectroscopy is a suitable, non-invasive method, applicable to complete organic semiconductor devices. In order to contribute to the capacitive signal, the traps must be filled with charge carriers. Typically, trap filling is achieved by illuminating the device or by injecting charge carriers through application of a forward bias voltage. However, in both cases, the exact number of charge carriers in the device is not known and depends strongly on the measurement conditions. Here, hole trap states of the model blend layer ZnPc:C60 are filled by weak p-doping, enabling trap characterization in a blend layer at a controlled hole density. We evaluate impedance spectra at different temperatures in order to determine the density of occupied states (DOOS) directly from the capacitance-frequency spectra by assuming a simple energy diagram. The reconstructed DOOS distribution is analyzed at different doping concentrations and device thicknesses and compared to thermally stimulated current measurements performed on the same devices. In both methods, a pronounced Gaussian peak at about 0.4 eV below the transport level is found as well as deep, exponential tail states, providing a deeper insight into the density of states distribution of this donor-acceptor blend layer. Additionally, the effect of doping-induced trap filling on the solar cell characteristics is studied in these devices.

  6. Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors.

    Sun, Yvonne; Gustavson, Ruth L; Ali, Nadia; Weber, Karrie A; Westphal, Lacey L; Coates, John D

    2009-10-01

    The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly. PMID:19533120

  7. An MFC capable of regenerating the cathodic electron acceptor under sunlight

    2010-01-01

    A renewable MFC (microbial fuel cell) cathode was used in this study because the iodide ion could react with oxygen to generate triiodide under natural sunlight.The feasibility of the regeneration of triiodide ion under natural sunlight and the effect of the regenerated triiodide ion concentration on the MFC performance were studied.The results showed that the power density of the MFC using triiodide ion as cathodic electron acceptor was significantly higher than that of using ferricyanate,and that the iodide ion can be oxidized to triiodide ion by oxygen in air at the expense of natural sunlight.In addition,it was obvious from the experimental results that the MFC performance was improved with the increase of the triiodide concentration,indicating that the concentration of triiodide ion had a critical effect on the MFC performance.The linear sweep voltammetry (LSV) curves for the electro-reduction of triiodide ion on the carbon paper were obtained and the results suggested that the diffusion process of triiodide ions to cathode was the control factor for the MFC performance.

  8. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods.

    Knight, Joseph W; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, J Vincent; Rinke, Patrick; Körzdörfer, Thomas; Marom, Noa

    2016-02-01

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a "beyond GW" second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments. PMID:26731609

  9. Design of Bicontinuous Donor/Acceptor Morphologies for Use as Organic Solar Cell Active Layers

    Kipp, Dylan; Mok, Jorge; Verduzco, Rafael; Ganesan, Venkat

    Two of the primary challenges limiting the marketability of organic solar cells are i) the smaller device efficiency of the organic solar cell relative to the conventional silicon-based solar cell and ii) the long term thermal instability of the device active layer. The achievement of equilibrium donor/acceptor morphologies with the characteristics believed to yield high device performance characteristics could address each of these two challenges. In this work, we present the results of a combined simulations and experiments-based approach to investigate if a conjugated BCP additive can be used to control the self-assembled morphologies taken on by conjugated polymer/PCBM mixtures. First, we use single chain in mean field Monte Carlo simulations to identify regions within the conjugated polymer/PCBM composition space in which addition of copolymers can lead to bicontinuous equilibrium morphologies with high interfacial areas and nanoscale dimensions. Second, we conduct experiments as directed by the simulations to achieve such morphologies in the PTB7 + PTB7- b-PNDI + PCBM model blend. We characterize the results of our experiments via a combination of transmission electron microscopy and X-ray scattering techniques and demonstrate that the morphologies from experiments agree with those predicted in simulations. Accordingly, these results indicate that the approach utilized represents a promising approach to intelligently design the morphologies taken on by organic solar cell active layers.

  10. Powder lemon juice containing oligosaccharides obtained by dextransucrase acceptor reaction synthesis and dehydrated in sprouted bed.

    Coelho, Raquel Macedo Dantas; Araújo, Antônia Daiana Andrade; Fontes, Cláudia Patrícia Mourão Lima; da Silva, Ana Raquel Araujo; da Costa, José Maria Correia; Rodrigues, Sueli

    2015-09-01

    Oligosaccharides can be synthesized using the sugars present in the fruit juices through the dextransucrase acceptor reaction. In the present work, the effect of reducing sugar and sucrose concentration on oligosaccharide formation in lemon juice was evaluated through response surface methodology. The oligosaccharide formation in lemon juice was favored at high concentrations of sucrose (75 g/L) and reducing sugar (75 g/L). At this synthesis conditions, an oligosaccharide concentration of 94.81 g/L was obtained with a conversion of 63.21% of the initial sugars into the target product. Oligosaccharides with degree of polymerization up to 11 were obtained. The lemon juice was dehydrated in spouted bed using maltodextrin as drying adjuvant. The powder obtained at 60°C with 20 % maltodextrin presented low moisture (2.24 %), low water activity (Aw = 0.18) and the lowest reconstitution time (~46 s). The results showed that lemon juice is suitable for oligosaccharides enzyme synthesis and can be dehydrated in spouted bed. PMID:26345014

  11. Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors

    吴双红; 李文连; 陈志; 李世彬; 王晓晖; 魏雄邦

    2015-01-01

    We choose 8-hydroxyquinoline derivative-metal complexes (Beq, Mgq, and Znq) as the acceptors (A) and 4,4’,4”-tri-(2-methylphenyl phenylamino) triphenylaine (m-MTDATA) as the donor (D) respectively to study the existing energy transfer process in organic ultraviolet (UV) photodetector (PD) which has an important infl uence on the sensitivity of PD. Energy transfer process from D to A without exciplex formation is discussed, differing from the working mechanism of previous PD with Gaq [Zisheng Su, Wenlian Li, Bei Chu, Tianle Li, Jianzhuo Zhu, Guang Zhang, Fei Yan, Xiao Li, Yiren Chen and Chun-Sing Lee 2008 Appl. Phys. Lett. 93 103309)] and REq [J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, F. Yan, H. H. Liu, C. S. Lee 2010 Org. Electron. 11 1301] used as A material. Under 365-nm UV irradiation with an intensity of 1.2 mW/cm2, the m-MTDATA:Beq blend device with a weight ratio of 1:1 shows a response of 192 mA/W with a detectivity of 6.5×1011 Jones, which exceeds those of PDs based on Mgq (146 mA/W) and Znq (182 mA/W) due to better energy level alignment between m-MTDATA/Beq and lower radiative decay. More photophysics processes of the PDs involved are discussed in detail.

  12. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-11-01

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis.

  13. Theoretical study of the interaction of electron donor and acceptor molecules with monolayer WS2

    With the aim of understanding recent experimental data concerning molecular doping in WS2-based FET gas sensors, we have investigated the interaction of NH3 and H2O molecules with monolayer WS2, by means of first-principles calculations. The structural relaxations and total energy calculations are performed to determine the preferential binding configurations and it is found that both NH3 and H2O molecules are physisorbed on monolayer WS2. The Bader analysis combined with the plane-averaged differential charge density results indicate that NH3 acts as the electron donor, while H2O acts as the electron acceptor, leading to n- and p-type doping of WS2, respectively. The charge transfer mechanism is discussed in light of the mixing of the molecular highest occupied molecular orbital and lowest unoccupied molecular orbital with the underlying WS2 orbitals. In addition, the modification of the work function is found to be almost linearly dependent on the total charge transfer. The modification of the work function and the carrier concentration can be obtained by tuning the molecule coverages, without destroying the band structure of monolayer WS2. The electrical sensitivities to the gas adsorption make WS2 a gas sensor that promises wide-ranging applications. (paper)

  14. Influence of substitution of the proton donor and proton acceptor abilities of molecules. 1. The development method of definition proton donor and proton acceptor abilities A-H containing molecules

    The influence of nature of the assistant is investigated in work, it is quantity and a site on proton donor and proton acceptor abilities. A-H containing organic connections and ways, of definition of these abilities are developed by the method, of IR spectroscopy. It is developed model and it offered a technique of definition of these abilities. It is shown that the proton donor and proton acceptor is abilities of molecules as constants, are one of individual physical and chemical characteristics A-H of containing organic connections. These sizes determine the abilities of molecules, to form the intermolecular hydrogen connections, disabilities of the H-complexes formed in condensed, environments concerning to the non replaced molecule

  15. A new family of donor-acceptor systems comprising tin(IV) porphyrin and anthracene subunits: Synthesis, spectroscopy and energy transfer studies

    A Ashok Kumar; L Giribabu; Bhaskar G Maiya

    2002-12-01

    A new family of covalently linked `Sn(IV) porphyrin-anthracene’ diad (1), triad (2) and tetrad (3) donor-acceptor (D-A) systems have been designed and synthesized in good-to-moderate yields. While diad 1 possesses one anthracene subunit at the peripheral (meso) position of the tin(IV) porphyrin scaffold, triad 2 possesses two trans axial anthracene subunits at the tin(IV) centre. On the other hand, tetrad 3 is endowed with both the peripheral and axial anthracene subunits in its architecture. These D-A systems have been fully characterised by elemental analysis, FAB-MS, UV-Vis, 1H and 13C NMR and electrochemical methods. UV-Vis, NMR and redox data suggest the absence of intramolecular - interaction between the porphyrin and the anthracene/s in 1-3. Fluorescence from the anthracene subunit in 1 and 3 is found to be quenched in comparison with the fluorescence of free anthracene in four different solvents. This is not the case with compound 2. Excitation spectral data provides evidence for an intramolecular excitation energy transfer (EET) from the singlet anthracene to the porphyrin in 1 and 3. The energy transfer efficiency is in the order: 2 (almost negligible) < 3 (∼ 30%) < 1 (nearly quantitative), with the peripheral anthracene → porphyrin pathway being largely favoured. This orientation dependence of EET could be analysed using Forster’s dipole dipole mechanism.

  16. Optical determination of phosphorus acceptor binding energy in bulk wide-gap II-VI semimagnetic semiconductors

    Zn1-xMnxTe and Cd1-xMnxTe semimagnetic semiconductors doped with phosphorus have been investigated by means of the resistivity, Hall effect, photoluminescence and reflectance measurements. The high p-type doping level of these materials was achieved using Zn3P2 and CdP2 as the sources of P-impurities. By applying a unique technology of high-pressure annealing we were able to overcome a self-compensation in Zn1-xMnxTe:P. As a result, the sample with high and controllable concentration of electrical active acceptors were produced. The ground state binding energy of phosphorus acceptors in both Zn1-xMnxTe and Cd1-xMnxTe as well as its variation with the phosphorus doping level were optically determined. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. A Microplate Format Assay for Real-Time Screening for New Aldolases that Accept Aryl-Substituted Acceptor Substrates.

    Ma, Huan; Enugala, Thilak Reddy; Widersten, Mikael

    2015-12-01

    Aldolases are potentially important biocatalysts for asymmetric synthesis of polyhydroxylated compounds. Fructose 6-phosphate aldolase (FSA) is of particular interest by virtue of its unusually relaxed dependency on phosphorylated substrates. FSA has been reported to be a promising catalyst of aldol addition involving aryl-substituted acceptors such as phenylacetaldehyde that can react with donor ketones such as hydroxyacetone. Improvement of the low intrinsic activity with bulky acceptor substrates of this type is of great interest but has been hampered by the lack of powerful screening protocols applicable in directed evolution strategies. Here we present a new screen allowing for direct spectrophotometric recording of retro-aldol cleavage. The assay utilizes an aldehyde reductase produced in vitro by directed evolution; it reduces the aldehyde product formed after cleavage of the aldol by FSA. The assay is suitable both for steady-state enzyme kinetics and for real-time activity screening in a 96-well format. PMID:26449620

  18. Boron(III)-Containing Donor-Acceptor Compound with Goldlike Reflective Behavior for Organic Resistive Memory Devices.

    Poon, Chun-Ting; Wu, Di; Yam, Vivian Wing-Wah

    2016-03-01

    A small-molecule-based boron(III)-containing donor-acceptor compound has been designed and synthesized. Interesting goldlike reflective behavior was observed in the neat thin-film sample from simple spin-coating preparation, which can serve as a potential organic thin-film optical reflector. The small thickness in nanometer range and the relatively smooth surface morphology, together with simple preparation and easy solution processability, are attractive features for opening up new avenues for the fabrication of reflective coatings. Moreover, this donor-acceptor compound has been employed in the fabrication of organic resistive memory device, which exhibited good performance with low turn-on voltage, small operating bias, large ON/OFF ratio, and long retention time. PMID:26879606

  19. Anaerobic α-Amylase Production and Secretion with Fumarate as the Final Electron Acceptor in Saccharomyces cerevisiae

    Liu, Zihe; Österlund, Tobias; Hou, Jin; Petranovic, Dina; Nielsen, Jens

    2013-01-01

    In this study, we focus on production of heterologous α-amylase in the yeast Saccharomyces cerevisiae under anaerobic conditions. We compare the metabolic fluxes and transcriptional regulation under aerobic and anaerobic conditions, with the objective of identifying the final electron acceptor for...... protein folding under anaerobic conditions. We find that yeast produces more amylase under anaerobic conditions than under aerobic conditions, and we propose a model for electron transfer under anaerobic conditions. According to our model, during protein folding the electrons from the endoplasmic...... reticulum are transferred to fumarate as the final electron acceptor. This model is supported by findings that the addition of fumarate under anaerobic (but not aerobic) conditions improves cell growth, specifically in the α-amylase-producing strain, in which it is not used as a carbon source. Our results...

  20. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  1. Lithium Salt of NH2-substituted Graphene Nanoribbon with Twofold Donor-acceptor Framework: Large Nonlinear Optical Property

    ZHOU Zhong-jun; LI Zhi-ru; HUANG Xu-ri; SUN Chia-chung

    2011-01-01

    Based on graphene, a new class of second-order nonlinear optical(NLO) material, the lithium salt of NH2-substituted graphene nanoribbon with the twofold donor(D)/acceptor(A) mode, was reported. Eight stable 2Li-2NH2-GNR lithium salts, especially cis lithium salts, display considerably large ,β0 values. The combination of NH2-substituting and cis Li-doping makes β0 greatly increased from 0(GNR) to 1.2×105-2.9×105 a.u.(cis-2Li2NH2-GNRs). Our largest β0 value(2.9× l05 a.u.) for cis-2Li-1,3-2NH2-AGNR is comparable to the record value of 1.7× l05 a.u. for a long donor-acceptor polyene.

  2. Depth profile of donor-acceptor pair transition revealing its effect on the efficiency of green LEDs

    GaInN/GaN light emitting diodes are the primary choice for efficient green light emitters, yet their performance limiting factors have yet to be identified. Here we perform a low-temperature luminescence study in depth-resolved cathodoluminescence. A series of LEDs with a combination of blue and green light emitting quantum wells exhibiting low and high electroluminescence output power were compared. In all samples, a band of donor-acceptor pair recombination was identified at 77 K. In the samples with lowest performance, such transitions located within the active region of the quantum wells had a particular strong contribution to the spectrum. In LEDs of higher performance, such luminescence was substantially suppressed within those layers. We argue that the higher performance of LEDs without such donor acceptor transition bands may be associated with the absence of corresponding dopant impurities and indicate a higher epitaxial perfection within the active quantum well region.

  3. Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product.

    Jones, H. M.; Gunsalus, R P

    1987-01-01

    The fumarate reductase enzyme complex, encoded by the frdABCD operon, allows Escherichia coli to utilize fumarate as a terminal electron acceptor for anaerobic oxidative phosphorylation. To analyze the expression of fumarate reductase, protein and operon fusions were constructed between the frdA and the lacZ genes and introduced onto the E. coli chromosome at the lambda attachment site. Expression of beta-galactosidase from either fusion was increased 10-fold during anaerobic versus aerobic c...

  4. Investigations of morphology and optical properties of thin films of TiOPc/PTCDA donor acceptor couple

    J. Weszka a,b; P. Jarka; B. Hajduk; M. Chwastek-Ogierman

    2012-01-01

    Purpose: The aim of this work is studying surface topography and optical properties of organic thin films of TiOPc and PTCDA blends deposited by thermal vacuum evaporation.Design/methodology/approach: Thin films of blends of organic materials are provided as donor/acceptor couples in bulk heterojunction based organic solar cells. Thin films of TiOPc - PTCDA mixture have been deposited by thermal vacuum evaporation from one source with various ratios of blends components and deposition rates u...

  5. Proteomic dataset of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor.

    Schiffmann, Christian L; Otto, Wolfgang; Hansen, Rasmus; Nielsen, Per Halkjær; Adrian, Lorenz; Seifert, Jana; von Bergen, Martin; Jehmlich, Nico

    2016-06-01

    The proteome of the anaerobic organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 was analyzed by nano liquid chromatography coupled to mass spectrometry (LC-MS/MS). Two different preparation methods, (i) in-solution and (ii) in-gel proteolytic digestion were assessed to elucidate the core and the functional proteome of bacterial cultures grown in synthetic anaerobic medium with hexachlorobenzene as sole electron acceptor. A detailed analysis of the data presented is available (Schiffmann et al., 2014) [1]. PMID:26958645

  6. Dielectric switching of the nature of excited singlet state in a donor-acceptor-type polyfluorene copolymer

    The spectral evolution of an intrachain neutral singlet exciton toward a charge-transfer (CT) state in solvents of increasing polarity has been monitored by time-resolved photoluminescence and ultrafast transient-absorption spectroscopy in a model conjugated random copolymer composed of electron donor and electron acceptor units. In polar solvents, a charge-like absorption superimposes the region of stimulated emission and leads to a dramatic reduction in gain implying that CT states can be detrimental for light amplification and lasing.

  7. Researches of topography and optical properties of the thin films NiPc/PTCDA donor acceptor couple

    J. Weszka

    2012-08-01

    Full Text Available Purpose: The aim of this work consists of researches of surface topography and optical properties of organic thin films of NiPc : PTCDA blends deposited by thermal evaporation from one source. Thin films of organic materials are provided as donor/acceptor couple in heterojuction solar cells.Design/methodology/approach: Films consisting of NiPc and PTCDA mixture were deposited by thermal evaporation from one source. By using blends with different PTCDA to NiPc ratios and steering the temperature of the sources and hence deposition rate different properties of layers are obtained.Findings: Both the chemical composition and technological parameters of deposition process has appeared to influence on optical properties and surface morphology of thin films. These parameters were found to influence surface morphology and UV-Vis absorption spectra.Research limitations/implications: The paper shows the methodology of deposition NiPc/PTCDA donor/acceptor blends and the influence of evaporation parameters on properties of thin films. That can be used for the research of the planar heterojunction solar cells based on NiPc/PTCDA heterojunction donor–acceptor couple active layers.Practical implications: Results of researches suggest that blends of NiPc and PTCDA can be useful materials in organic photovoltaic device. However right deposition parameters and the blends proportions determine the properties of NiPc/PTCDA donor/acceptor thin films.Originality/value: The goal of this paper is to definie the surface topography and optical properties of thin films NiPc/PTCDA blends prepared with different proportions of components and parameters of evaporation process.

  8. Correlation between LUMO offset of donor/acceptor molecules to an open circuit voltage in bulk heterojunction solar cell

    The correlation between the open circuit voltage and the LUMO offset of the donor and acceptor polymers in the bulkheterojunction solar cell was studied for three different thiophene derivatives. The HOMO levels of all the polymers in this investigation were chosen to be similar which results in close values of ΔEDA=EHOMOD−ELUMOA. However, the measured Voc was found to be increasing with decreasing value of the LUMO offset that exists between the donor polymer and fullerene.

  9. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics

    Li, Yan; Hu, Yue; Zhao, Yang; Qu, Liangti [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing 100081 (China); Shi, Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Deng, Lier; Hou, Yanbing [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2011-02-08

    Green-luminescent functional graphene quantum dots (GQDs) are prepared by a facile electrochemical approach. The GQDs are rich in oxygen-containing functional groups and soluble in aqueous or organic media, facilitating further functionalization and various applications. Polymer photovoltaic devices using GQDs as a new type of electron-acceptor material are also demonstrated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. A Novel Forensic Computing Model

    XU Yunfeng; LU Yansheng

    2006-01-01

    According to the requirement of computer forensic and network forensic, a novel forensic computing model is presented, which exploits XML/OEM/RM data model, Data fusion technology, forensic knowledgebase, inference mechanism of expert system and evidence mining engine. This model takes advantage of flexility and openness, so it can be widely used in mining evidence.

  11. Enhanced biological phosphorus removal. Carbon sources, nitrate as electron acceptor, and characterization of the sludge community

    Christensson, M.

    1997-10-01

    Enhanced biological phosphorus removal (EBPR) was studied in laboratory scale experiments as well as in a full scale EBPR process. The studies were focused on carbon source transformations, the use of nitrate as an electron acceptor and characterisation of the microflora. A continuous anaerobic/aerobic laboratory system was operated on synthetic wastewater with acetate as sole carbon source. An efficient EBPR was obtained and mass balances over the anaerobic reactor showed a production of 1.45 g poly-{beta}-hydroxyalcanoic acids (PHA), measured as chemical oxygen demand (COD), per g of acetic acid (as COD) taken up. Furthermore, phosphate was released in the anaerobic reactor in a ratio of 0.33 g phosphorus (P) per g PHA (COD) formed and 0.64 g of glycogen (COD) was consumed per g of acetic acid (COD) taken up. Microscopic investigations revealed a high amount of polyphosphate accumulating organisms (PAO) in the sludge. Isolation and characterisation of bacteria indicated Acinetobacter spp. to be abundant in the sludge, while sequencing of clones obtained in a 16S rDNA clone library showed a large part of the bacteria to be related to the high mole % G+C Gram-positive bacteria and only a minor fraction to be related to the gamma-subclass of proteobacteria to which Acinetobacter belongs. Operation of a similar anaerobic/aerobic laboratory system with ethanol as sole carbon source showed that a high EBPR can be achieved with this compound as carbon source. However, a prolonged detention time in the anaerobic reactor was required. PHA were produced in the anaerobic reactor in an amount of 1.24 g COD per g of soluble DOC taken up, phosphate was released in an amount of 0.4-0.6 g P per g PHA (COD) produced and 0.46 g glycogen (COD) was consumed per g of soluble COD taken up. Studies of the EBPR in the UCT process at the sewage treatment plant in Helsingborg, Sweden, showed the amount of volatile fatty acids (VFA) available to the PAO in the anaerobic stage to be

  12. Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis.

    Werlé, Christophe; Goddard, Richard; Philipps, Petra; Farès, Christophe; Fürstner, Alois

    2016-03-23

    Owing to its tremendous preparative importance, rhodium carbene chemistry has been studied extensively during past decades. The invoked intermediates have, however, so far proved too reactive for direct inspection, and reliable experimental information has been extremely limited. A series of X-ray structures of pertinent intermediates of this type, together with supporting spectroscopic data, now closes this gap and provides a detailed picture of the constitution and conformation of such species. All complexes were prepared by decomposition of a diazoalkane precursor with an appropriate rhodium source; they belong to either the dirhodium(II) tetracarboxylate carbene series that enjoys widespread preparative use, or to the class of mononuclear half-sandwich carbenes of Rh(III), which show considerable potential. The experimental data correct or refine previous computational studies but corroborate the currently favored model for the prediction of the stereochemical course of rhodium catalyzed cyclopropanations, which is likely also applicable to other reactions. Emphasis is put on stereoelectronic rather than steric arguments, with the dipole of the acceptor substituent flanking the carbene center being the major selectivity determining factor. Moreover, the very subtle influence exerted by the anionic ligands on a Rh(III) center on the chemical character of the resulting carbenes species is documented by the structures of a homologous series of halide complexes. Finally, the isolation of a N-bonded Rh(II) diazoalkane complex showcases that steric hindrance represents an inherent limitation of the chosen methodology. PMID:26910883

  13. The reduction of artificial electron acceptors at sub-zero temperatures by chloroplasts suspended in fluid media.

    Cox, R P

    1975-06-17

    1. Chloroplasts can be suspended in aqueous/organic mixtures which are liquid at sub-zero temperatures with a good retention of the ability to reduce artificial electron acceptors. The reduction of ferricyanide and 2,6-dichlorophenolindophenol at temperatures above 0 degrees C is about 50% inhibited by 50% (v/v) ethylene glycol. Higher concentrations cause more extensive inhibition. 2. Different solvents were compared on the basis of their ability to cause a given depression of the freezing point of an aqueous solution. Ethylene glycol caused less inhibition of electron transport than glycerol, which in turn was found to be superior to methanol. 3. The reduction of oxidised 2,3,5,6-tetramethyl-p-phenylenediamine could be measured at -25 degrees C in 40% (v/v) ethylene glycol. Using an acceptor with a high extinction coefficient, methyl purple (a derivative of 2,6-dichlorophenolindophenol) it was possible to observe electron flow at temperatures as low as -40 degrees C in 50% (v/v) ethylene glycol. 4. From studies of the effects of the inhibitors 3(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone it is suggested that electron flow from the donor side of Photosystem II to the acceptor side of Photosystem I can occur at temperatures at least as low as -25 degrees C. The ultimate electron donor is presumably water but it was not possible to demonstrate this directly. PMID:1138892

  14. Construction of an Artificial Ferrimagnetic Lattice by Lithium Ion Insertion into a Neutral Donor/Acceptor Metal-Organic Framework.

    Taniguchi, Kouji; Narushima, Keisuke; Mahin, Julien; Kosaka, Wataru; Miyasaka, Hitoshi

    2016-04-18

    Construction of a molecular system in which the magnetic lattice exhibits long-range order is one of the fundamental goals in materials science. In this study, we demonstrate the artificial construction of a ferrimagnetic lattice by doping electrons into acceptor sites of a neutral donor/acceptor metal-organic framework (D/A-MOF). This doping was achieved by the insertion of Li-ions into the D/A-MOF, which was used as the cathode of a Li-ion battery cell. The neutral D/A-MOF is a layered system composed of a carboxylate-bridged paddlewheel-type diruthenium(II,II) complex as the donor and a TCNQ derivative as the acceptor. The ground state of the neutral form was a magnetically disordered paramagnetic state. Upon discharge of the cell, spontaneous magnetization was induced; the transition temperature was variable. The stability of the magnetically ordered lattice depended on the equilibrium electric potential of the D/A-MOF cathode, which reflected the electron-filling level. PMID:26990927

  15. High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor.

    Meng, Dong; Sun, Dan; Zhong, Chengmei; Liu, Tao; Fan, Bingbing; Huo, Lijun; Li, Yan; Jiang, Wei; Choi, Hyosung; Kim, Taehyo; Kim, Jin Young; Sun, Yanming; Wang, Zhaohui; Heeger, Alan J

    2016-01-13

    Non-fullerene acceptors have recently attracted tremendous interest because of their potential as alternatives to fullerene derivatives in bulk heterojunction organic solar cells. However, the power conversion efficiencies (PCEs) have lagged far behind those of the polymer/fullerene system, mainly because of the low fill factor (FF) and photocurrent. Here we report a novel perylene bisimide (PBI) acceptor, SdiPBI-Se, in which selenium atoms were introduced into the perylene core. With a well-established wide-band-gap polymer (PDBT-T1) as the donor, a high efficiency of 8.4% with an unprecedented high FF of 70.2% is achieved for solution-processed non-fullerene organic solar cells. Efficient photon absorption, high and balanced charge carrier mobility, and ultrafast charge generation processes in PDBT-T1:SdiPBI-Se films account for the high photovoltaic performance. Our results suggest that non-fullerene acceptors have enormous potential to rival or even surpass the performance of their fullerene counterparts. PMID:26652276

  16. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source. PMID:26783836

  17. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    Gehrig, Dominik W.

    2015-04-07

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  18. Features of conduction mechanisms in n-HfNiSn semiconductor heavily doped with a Rh acceptor impurity

    The crystal structure and electron-density distribution, as well as the energy, kinetic, and magnetic characteristics of n-HfNiSn intermetallic semiconductor heavily doped with a Rh acceptor impurity in the temperature range T = 80–400 K, in the acceptor-concentration range NARh ≈ 9.5 × 1019−1.9 × 1021 cm−3 (x = 0.005–0.10), and in magnetic fields H ≤ 10 kG are investigated. It is established that doping is accompanied by a simultaneous decrease in concentration, the elimination of donor-type structural defects (to x ≈ 0.02), and an increase in the concentration of acceptor-type structural defects (0 1−xRhxSn is proposed, and the results of calculating the electron structure based on this model agree with the results of investigations of the kinetic and magnetic characteristics of the semiconductor. The results are discussed within the context of the Shklovskii-Efros model for a heavily doped and compensated semiconductor

  19. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena

    2016-01-01

    Summary Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level. PMID:27335768

  20. Interaction of 2-aminopyrimidine with σ- and π-acceptors involving chemical reactions via initial charge transfer complexation

    Rabie, U. M.; Abou-El-Wafa, M. H.; Mohamed, R. A.

    2007-12-01

    Interaction of 2-aminopyrimidine (AP) with iodine as a typical σ-type acceptor and with a typical π-type acceptor, 2,3,5,6-tetrachloro-1,4-benzoquinone, p-chloranil (CHL) have been studied spectrophotometrically. Electronic absorption spectra of the system AP-I 2 in several organic solvents of different polarities have performed clear charge transfer (CT) band(s). Formation constants ( KCT) and molar absorption coefficients ( ɛCT) and thermodynamic properties, Δ H, Δ S, and Δ G, of this system in various organic solvents were determined and discussed. Interaction of AP with the π-acceptor has shown unique behaviors. Chemical reaction has occurred via prior or initial formation of the outer-sphere CT complex followed by formation of the corresponding anion radicals, CHL rad - , as intermediates. UV-vis, 1H NMR, Mass, and FT-IR spectra in addition to the elemental analysis were used to confirm the proposed occurrence of the chemical reaction and to investigate the synthesized solid products.

  1. Structural effects on the photoelectrochemical properties of new push-pull dyes based on vinazene acceptor triphenylamine donor

    Arcos, Wilmmer A.; Guimarães, Robson R.; Insuasty, Braulio; Araki, Koiti; Ortiz, Alejandro

    2016-05-01

    The push-pull behavior of novel dyes, based on vinazene electron-acceptor groups linked to arrays of triphenylamine (TPA) electron-donor group, was studied by electronic absorption and emission spectroscopy, as well as by cyclic voltammetry. The most stable ground state structure and their electronic properties were modeled by density functional theory (DFT) calculations using the B3LYP functional and 6-31G++ basis set, whereas the electronic properties in the excited states were calculated by TD-DFT, under the same functional and basis set, using SCF and PCM methods. The theoretical calculations matched well with experimental data, showing that λmax of the lowest energy absorption band can be assigned to an intramolecular charge transfer transition. In fact, the HOMO and LUMO are respectively localized on the TPA donor and the dicyanomethylene acceptor moiety confirming a remarkable push-pull character. Photoelectrochemical cells parameters were correlated with dyes structural properties showing to be consistent with the anchoring through the nitrogen atoms of CN groups. The nature of the donor-acceptor groups, conformation and number of anchoring CN groups (2 seems to be the best) strongly influenced the overall efficiency of dye sensitized solar cells.

  2. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study.

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-01

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage. PMID:27258685

  3. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH4) emission resulting from rice cultivation. In laboratory incubations, CH4 production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt-1), while observed CO2 production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH4 emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha-1) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha-1 application level of the amendments, total seasonal CH4 emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH4 production rates as well as total seasonal CH4 flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity.

  4. Organic donor-acceptor thin film systems. Towards optimized growth conditions

    Keller, Kerstin Andrea

    2009-06-30

    In this work the preparation of organic donor-acceptor thin films was studied. A chamber for organic molecular beam deposition was designed and integrated into an existing deposition system for metallic thin films. Furthermore, the deposition system was extended by a load-lock with integrated bake-out function, a chamber for the deposition of metallic contacts via stencil mask technique and a sputtering chamber. For the sublimation of the organic compounds several effusion cells were designed. The evaporation characteristic and the temperature profile within the cells was studied. Additionally, a simulation program was developed, which calculates the evaporation characteristics of different cell types. The following processes were integrated: evaporation of particles, migration on the cell walls and collisions in the gas phase. It is also possible to consider a temperature gradient within the cell. All processes can be studied separately and their relative strength can be varied. To verify the simulation results several evaporation experiments with different cell types were employed. The thickness profile of the prepared thin films was measured position-dependently. The results are in good agreement with the simulation. Furthermore, the simulation program was extended to the field of electron beam induced deposition (EBID). The second part of this work deals with the preparation and characterization of organic thin films. The focus hereby lies on the charge transfer salt (BEDT-TTF)(TCNQ), which has three known structure variants. Thin films were prepared by different methods of co-evaporation and were studied with optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy (EDX).The formation of the monoclinic phase of (BEDT-TTF)(TCNQ) could be shown. As a last part tunnel structures were prepared as first thin film devices and measured in a He{sub 4} cryostat. (orig.)

  5. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L-1, linked to the reduction of 619 ± 81 μEq L-1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  6. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition.

    Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul

    2015-12-01

    Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density. PMID:26263882

  7. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  8. Synthesis and Photovoltaic Properties of Non-fullerene Solution Processable Small Molecule Acceptors

    LI Hui; LIU Zhao-yang; ZHANG Xiao-yu; YAO Shi-yu; WEN Shan-peng; TIAN Wen-jing

    2013-01-01

    Two non-fullerene small molecules,BT-C6 and BT-C12,based on the vinylene-linked benzothiadiazolethiophene(BT) moiety flanked with 2-(3,5,5-trimethylcyclohex-2-en-l-ylidene)malononitrile have been synthesized and characterized by solution/thin film UV-Vis absorption,photoluminescence(PL),and cyclic voltammetry(CV) measurements.The two molecules show intense absorption bands in a wide range from 300 nm to 700 nm and low optical bandgaps for BT-C6(1.60 eV) and for BT-C12(1.67 eV).The lowest unoccupied molecular orbital(LUMO) levels of both the molecules are relatively higher than that of [6,6]-phenyl C61 butyric acid methyl ester(PCBM),promising high open circuit voltage(Voc) for photovoltaic application.Bulk heterojunction(BHJ) solar cells with poly(3-hexylthiophene)(P3HT) as the electron donor and the two molecules as the acceptors were fabricated.Under 100 mW/cm2 AM 1.5 G illumination,the devices based on P3HT∶BT-C6(1∶1,mass ratio) show a power conversion efficiency(PCE) of 0.67%,a short-circuit current(Jsc) of 1.63 mA/cm2,an open circuit voltage(Voc) of 0.74 V,and a fill factor(FF) of 0.56.

  9. Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors

    Wu, Shuang-Hong; Li, Wen-Lian; Chen, Zhi; Li, Shi-Bin; Wang, Xiao-Hui; Wei, Xiong-Bang

    2015-02-01

    We choose 8-hydroxyquinoline derivative-metal complexes (Beq, Mgq, and Znq) as the acceptors (A) and 4,4',4”-tri-(2-methylphenyl phenylamino) triphenylaine (m-MTDATA) as the donor (D) respectively to study the existing energy transfer process in the organic ultraviolet (UV) photodetector (PD), which has an important influence on the sensitivity of PDs. The energy transfer process from D to A without exciplex formation is discussed, differing from the working mechanism of previous PDs with Gaq [Zisheng Su, Wenlian Li, Bei Chu, Tianle Li, Jianzhuo Zhu, Guang Zhang, Fei Yan, Xiao Li, Yiren Chen and Chun-Sing Lee 2008 Appl. Phys. Lett. 93 103309)] and REq [J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, F. Yan, H. H. Liu, C. S. Lee 2010 Org. Electron. 11 1301] used as an A material. Under 365-nm UV irradiation with an intensity of 1.2 mW/cm2, the m-MTDATA:Beq blend device with a weight ratio of 1:1 shows a response of 192 mA/W with a detectivity of 6.5× 1011 Jones, which exceeds those of PDs based on Mgq (146 mA/W) and Znq (182 mA/W) due to better energy level alignment between m-MTDATA/Beq and lower radiative decay. More photophysics processes of the PDs involved are discussed in detail. Project supported by the National Natural Science Foundation of China (Grant Nos. 61371046, 61405026, 61474016, and 61421002) and China Postdoctoral Science Foundation (Grant No. 2014M552330).

  10. 2010 Electron Donor-Acceptor Interactions Gordon Research Conference, August 8 - 13, 2010.

    Gerald Meyer

    2010-08-18

    The Gordon Research Conference on Electron Donor Acceptor Interactions (GRC EDAI) presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer Processes and Energy Conversion. The fundamental concepts underpinning the field of electron transfer and charge transport phenomena are understood, but fascinating experimental discoveries and novel applications based on charge transfer processes are expanding the discipline. Simultaneously, global challenges for development of viable and economical alternative energy resources, on which many researchers in the field focus their efforts, are now the subject of daily news headlines. Enduring themes of this conference relate to photosynthesis, both natural and artificial, and solar energy conversion. More recent developments include molecular electronics, optical switches, and nanoscale charge transport structures of both natural (biological) and man-made origin. The GRC EDAI is one of the major international meetings advancing this field, and is one of the few scientific meetings where fundamental research in solar energy conversion has a leading voice. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices. In addition to disseminating the latest advances in the field of electron transfer processes, the conference is an excellent forum for scientists from different disciplines to meet and initiate new directions; for scientists from different countries to make contacts; for young scientists to network and establish personal contacts with other young scientists and with established scientists who, otherwise, might not have the time to meet young people. The EDAI GRC also features an interactive atmosphere with lively poster sessions, a few of which are selected for oral presentations.

  11. Dynamic electromembrane extraction: Automated movement of donor and acceptor phases to improve extraction efficiency.

    Asl, Yousef Abdossalami; Yamini, Yadollah; Seidi, Shahram; Amanzadeh, Hatam

    2015-11-01

    In the present research, dynamic electromembrane extraction (DEME) was introduced for the first time for extraction and determination of ionizable species from different biological matrices. The setup proposed for DEME provides an efficient, stable, and reproducible method to increase extraction efficiency. This setup consists of a piece of hollow fiber mounted inside a glass flow cell by means of two plastics connector tubes. In this dynamic system, an organic solvent is impregnated into the pores of hollow fiber as supported liquid membrane (SLM); an aqueous acceptor solution is repeatedly pumped into the lumen of hollow fiber by a syringe pump whereas a peristaltic pump is used to move sample solution around the mounted hollow fiber into the flow cell. Two platinum electrodes connected to a power supply are used during extractions which are located into the lumen of the hollow fiber and glass flow cell, respectively. The method was applied for extraction of amitriptyline (AMI) and nortriptyline (NOR) as model analytes from biological fluids. Effective parameters on DEME of the model analytes were investigated and optimized. Under optimized conditions, the calibration curves were linear in the range of 2.0-100μgL(-1) with coefficient of determination (r(2)) more than 0.9902 for both of the analytes. The relative standard deviations (RSD %) were less than 8.4% based on four replicate measurements. LODs less than 1.0μgL(-1) were obtained for both AMI and NOR. The preconcentration factors higher than 83-fold were obtained for the extraction of AMI and NOR in various biological samples. PMID:26455283

  12. Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors

    We choose 8-hydroxyquinoline derivative-metal complexes (Beq, Mgq, and Znq) as the acceptors (A) and 4,4',4”-tri-(2-methylphenyl phenylamino) triphenylaine (m-MTDATA) as the donor (D) respectively to study the existing energy transfer process in the organic ultraviolet (UV) photodetector (PD), which has an important influence on the sensitivity of PDs. The energy transfer process from D to A without exciplex formation is discussed, differing from the working mechanism of previous PDs with Gaq [Zisheng Su, Wenlian Li, Bei Chu, Tianle Li, Jianzhuo Zhu, Guang Zhang, Fei Yan, Xiao Li, Yiren Chen and Chun-Sing Lee 2008 Appl. Phys. Lett. 93 103309)] and REq [J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, F. Yan, H. H. Liu, C. S. Lee 2010 Org. Electron. 11 1301] used as an A material. Under 365-nm UV irradiation with an intensity of 1.2 mW/cm2, the m-MTDATA:Beq blend device with a weight ratio of 1:1 shows a response of 192 mA/W with a detectivity of 6.5× 1011 Jones, which exceeds those of PDs based on Mgq (146 mA/W) and Znq (182 mA/W) due to better energy level alignment between m-MTDATA/Beq and lower radiative decay. More photophysics processes of the PDs involved are discussed in detail. (paper)

  13. Thiophene-based donor-acceptor conjugated polymer as potential optoelectronic and photonic material

    Maluvadi G Murali; Udayakumar Dalimba; Vandana Yadav; Ritu Srivastava; K Safakath

    2013-03-01

    In this paper, we report the synthesis, characterization and optical properties of a donor-acceptor conjugated polymer, PTh-CN, containing 3,4-didodecyloxythiophene and cyanovinylene units. The polymer possesses a low band gap of 1.75 eV as calculated from the onset absorption edge. From the electrochemical study, the HOMO and LUMO energy levels of the polymer are figured out to be −5.52 eV and −3.52 eV, respectively. Polymer light-emitting diodes are fabricated using PTh-CN as the emissive layer with a device configuration of ITO/PEDOT:PSS/PTh-CN/Al. The device showed stable saturated red electroluminescence with CIE coordinate values (0.65, 0.32) at 12 V, which are very close to the values for standard red demanded by the NTSC. In addition, the device showed good colour stability under different bias voltages and the threshold voltage of the PLED device is found to be as low as 3.1 V. Further, a nanocomposite of the polymer and TiO2 nanoparticles is prepared by the dispersion method. The nonlinear optical properties of PTh-CN and PTh-CN/TiO2 nanocomposite are studied using z-scan technique. The polymer solution, polymer film and polymer/TiO2 nanocomposite film show a strong saturable absorption behaviour. The value of saturation intensity (Is) is found to be of the order 1011-1012 W/m2, indicating that the materials are useful candidates for photonic applications.

  14. Hydrogen Bonding to Alkanes: Computational Evidence

    Hammerum, Steen; Olesen, Solveig Gaarn

    2009-01-01

    The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in [D-H+ H-alkyl] adducts contributes to a significant degree to the interactions between the two components, which is...... substantiated by NBO and AIM results. The hydrogen bonds manifest themselves in the same manner as conventional hydrogen bonds, D-H bond elongation, D-H vibrational stretching frequency red shift and intensity increase, and adduct stabilization. The alkane adducts also exhibit elongation of the C-H bonds...... involved and a concurrent red shift, which is rationalized in terms of charge-transfer interactions that cause simultaneous weakening of both the O-H and C-H bonds. Like other dihydrogen-bonded adducts, the adducts possess a bent structure and asymmetric bifurcated hydrogen bonds. The hydrogen bonds are...

  15. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  16. Programming in Biomolecular Computation:

    Hartmann, Lars; Jones, Neil; Simonsen, Jakob Grue;

    2011-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem...... conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined...... by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways...

  17. Computability theory an introduction

    Jones, Neil D

    1973-01-01

    Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church-Turing thesis.Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decida

  18. Stabilising the lowest energy charge-separated state in a {metal chromophore – fullerene} assembly: a tuneable panchromatic absorbing donor–acceptor triad

    Lebedeva, MA; Chamberlain, TW; Scattergood, PA; Delor, M; Sazanovich, IV; Davies, ES; Suyetin, M.; Besley, E; Schroder, M.; Weinstein, J; Khlobystov, AN

    2016-01-01

    Photoreduction of fullerene and the consequent stabilisation of a charge-separated state in a donor–acceptor assembly have been achieved, overcoming the common problem of a fullerene-based triplet state being an energy sink that prevents charge-separation. A route to incorporate a C60-fullerene electron acceptor moiety into a catecholate-Pt(II)-diimine photoactive dyad, which contains an unusually strong electron donor, 3,5-di-tert-butylcatecholate, has been developed. The synthetic methodolo...

  19. Design, synthesis and characterization of the electrochemical, nonlinear optical properties and theoretical studies of novel thienylpyrrole azo dyes bearing benzothiazole acceptor groups

    Raposo, M. Manuela M.; Castro, M. Cidália R.; Fonseca, A. Maurício C.; Schellenberg, Peter Michael; Belsley, M.

    2011-01-01

    Two series of related donor-acceptor conjugated heterocyclic azo dyes based on the thienylpyrrole system, functionalized with benzothiazol-2-yl (5-6) or benzothiazol-6-yl acceptor groups (7) through an N=N bridge, have been synthesized by azo coupling using 1-alkyl(aryl)thienylpyrroles (1) and benzothiazolyl diazonium salts (2-4) as coupling components. Their optical (linear and first hyperpolarizability), electrochemical and thermal properties have been examined. Optimized ground-state molec...

  20. Melanin Production and Use as a Soluble Electron Shuttle for Fe(III) Oxide Reduction and as a Terminal Electron Acceptor by Shewanella algae BrY†

    Turick, Charles E.; Tisa, Louis S.; Caccavo, Jr., Frank

    2002-01-01

    Dissimilatory metal-reducing bacteria (DMRB) utilize numerous compounds as terminal electron acceptors, including insoluble iron oxides. The mechanism(s) of insoluble-mineral reduction by DMRB is not well understood. Here we report that extracellular melanin is produced by Shewanella algae BrY. The extracted melanin served as the sole terminal electron acceptor. Upon reduction the reduced, soluble melanin reduced insoluble hydrous ferric oxide in the absence of bacteria, thus demonstrating th...

  1. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors.

    Zhao, He-Ping; Ontiveros-Valencia, Aura; Tang, Youneng; Kim, Bi-O; Vanginkel, Steven; Friese, David; Overstreet, Ryan; Smith, Jennifer; Evans, Patrick; Krajmalnik-Brown, Rosa; Rittmann, Bruce

    2014-05-01

    We studied the performance of a pilot-scale membrane biofilm reactor (MBfR) treating groundwater containing four electron acceptors: nitrate (NO3(-)), perchlorate (ClO4(-)), sulfate (SO4(2-)), and oxygen (O2). The treatment goal was to remove ClO4(-) from ∼200 μg/L to less than 6 μg/L. The pilot system was operated as two MBfRs in series, and the positions of the lead and lag MBfRs were switched regularly. The lead MBfR removed at least 99% of the O2 and 63-88% of NO3(-), depending on loading conditions. The lag MBfR was where most of the ClO4(-) reduction occurred, and the effluent ClO4(-) concentration was driven to as low as 4 μg/L, with most concentrations ≤10 μg/L. However, SO4(2-) reduction occurred in the lag MBfR when its NO3(-) + O2 flux was smaller than ∼0.18 g H2/m(2)-d, and this was accompanied by a lower ClO4(-) flux. We were able to suppress SO4(2-) reduction by lowering the H2 pressure and increasing the NO3(-) + O2 flux. We also monitored the microbial community using the quantitative polymerase chain reaction targeting characteristic reductase genes. Due to regular position switching, the lead and lag MBfRs had similar microbial communities. Denitrifying bacteria dominated the biofilm when the NO3(-) + O2 fluxes were highest, but sulfate-reducing bacteria became more important when SO4(2-) reduction was enhanced in the lag MBfR due to low NO3(-) + O2 flux. The practical two-stage strategy to achieve complete ClO4(-) and NO3(-) reduction while suppressing SO4(2-) reduction involved controlling the NO3(-) + O2 surface loading between 0.18 and 0.34 g H2/m(2)-d and using a low H2 pressure in the lag MBfR. PMID:24565802

  2. Application of time release electron donors and electron acceptors for accelerated bioremediation

    Currently, there are limited options for cost effective approaches to soil and groundwater contamination. One technology that has proven its potential involves the use of time release electron acceptors to accelerate the natural bioattenuation of aerobically degradable compounds and time release electron donors to accelerate the natural bioattenuation of anaerobic compounds. This technology enjoys its reputations as a sensible strategy for engineering accelerated bioattenuation, because it delivers results while 1) limiting or eliminating design, capital and management costs and 2) allowing for the engineering of a low-impact application and a subsequently invisible remediation process. Oxygen Release Compound (ORC ) is proprietary formulation of intercalated magnesium peroxide that releases oxygen slowly, for about a year, and facilitates the aerobic degradation of a range of environmental contaminants including petroleum hydrocarbons, certain chlorinated hydrocarbons, ether oxygenates and nitroaromatics. The history of ORC's introduction and acceptance represents a model for the evolution of an innovative technology. This statement comes by virtue of the fact that since 1994 ORC has been used on over 7000 sites worldwide and has been the subject of an extensive body of literature. Hydrogen Release Compound (HRC) is also a proprietary polylactate ester that is food grade and, upon being deposited into the aquifer, is slowly hydrolyzed to release lactic acid and other organic acid derivatives for about one to two years. The organic acids are fermented to hydrogen, which in turn donates electrons that drive reductive bioattenuation processes. This is primarily directed at a wide range of chlorinated hydrocarbons, but can be applied to the remediation of metals by redox induced precipitation. HRC has now been used on over 220 sites, which we believe make it the most widely used electron donor for accelerating bioattenuation. ORC and HRC can be configured as a

  3. Investigation of Donor and Acceptor Ion Implantation in AlN

    Osinsky, Andrei [Agnitron Technology Inc., Eden Prairie, MN (United States)

    2015-09-16

    AlGaN alloys with high Al composition and AlN based electronic devices are attractive for high voltage, high temperature applications, including microwave power sources, power switches and communication systems. AlN is of particular interest because of its wide bandgap of ~6.1eV which is ideal for power electronic device applications in extreme environments which requires high dose ion implantation. One of the major challenges that need to be addressed to achieve full utilization of AlN for opto and microelectronic applications is the development of a doping strategy for both donors and acceptors. Ion implantation is a particularly attractive approach since it allows for selected-area doping of semiconductors due to its high spatial and dose control and its high throughput capability. Active layers in the semiconductor are created by implanting a dopant species followed by very high temperature annealing to reduce defects and thereby activate the dopants. Recovery of implant damage in AlN requires excessively high temperature. In this SBIR program we began the investigation by simulation of ion beam implantation profiles for Mg, Ge and Si in AlN over wide dose and energy ranges. Si and Ge are implanted to achieve the n-type doping, Mg is investigated as a p-type doping. The simulation of implantation profiles were performed in collaboration between NRL and Agnitron using a commercial software known as Stopping and Range of Ions in Matter (SRIM). The simulation results were then used as the basis for ion implantation of AlN samples. The implanted samples were annealed by an innovative technique under different conditions and evaluated along the way. Raman spectroscopy and XRD were used to determine the crystal quality of the implanted samples, demonstrating the effectiveness of annealing in removing implant induced damage. Additionally, SIMS was used to verify that a nearly uniform doping profile was achieved near the sample surface. The electrical characteristics

  4. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers.

    Barrejón, Myriam; Gobeze, Habtom B; Gómez-Escalonilla, María J; Fierro, José Luis G; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-21

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices. PMID:27305145

  5. Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells--a DFT study.

    Mohajeri, Afshan; Omidvar, Akbar

    2015-09-14

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer solar cells (PSCs) hold promise for their potential to be used as low-cost and efficient solar energy converters. PSCs have been commonly made from bicontinuous polymer:fullerene composites or so-called bulk heterojunctions. The conjugated polymer donors and the fullerene derivative acceptors are the key materials for high performance PSCs. In the present study, we have performed density functional theory calculations to investigate the electronic structures and magnetic properties of several representative C60 fullerene derivatives, seeking ways to improve their efficiency as acceptors of photovoltaic devices. In our survey, we have successfully correlated the LUMO energy level as well as chemical hardness, hyper-hardness, nucleus-independent chemical shift, and static dipole polarizability of PC60BM-like fullerene derivative acceptors with the experimental open circuit voltage of the photovoltaic device based on the P3HT:fullerene blend. The obtained structure-property correlations allow finding the best fullerene acceptor match for the P3HT donor. For this purpose, four new fullerene derivatives are proposed and the output parameters for the corresponding P3HT-based devices are predicted. It is found that the proposed fullerene derivatives exhibit better photovoltaic properties than the traditional PC60BM acceptor. The present study opens the way for manipulating fullerene derivatives and developing promising acceptors for solar cell applications. PMID:26248255

  6. π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells

    Wang, Kai

    2016-02-25

    Molecular acceptors are promising alternatives to fullerenes (e.g. PC61/71BM) in the fabrication of high-efficiency bulk-heterojunction (BHJ) solar cells. While solution-processed polymer-fullerene BHJ devices have recently met the 10% efficiency threshold, molecular acceptors have yet to prove comparably efficient with polymer donors. At this point in time, it is important to forge a better understanding of the design parameters that directly impact small-molecule (SM) acceptor performance in BHJ solar cells. In this report, we show that 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile (BM)-terminated SM acceptors can achieve efficiencies as high as 5.3% in BHJ solar cells with the polymer donor PCE10. Through systematic device optimization and characterization studies, we find that the nonfull-erene analogues (FBM, CBM and CDTBM) all perform comparably well, independent of the molecular structure and electronics of the π-bridge that links the two electron-deficient BM end groups. With estimated electron affinities within range of those of common fullerenes (4.0-4.3 eV), and a wider range of ionization potentials (6.2-5.6 eV), the SM acceptors absorb in the visible spectrum and effectively contribute to the BHJ device photocurrent. BM-substituted SM acceptors are promising alterna-tives to fullerenes in solution-processed BHJ solar cells.

  7. Cloud Computing Vs. Grid Computing

    Seyyed Mohsen Hashemi; Amid Khatibi Bardsiri

    2012-01-01

    Cloud computing emerges as one of the hottest topic in field of information technology. Cloud computing is based on several other computing research areas such as HPC, virtualization, utility computing and grid computing. In order to make clear the essential of cloud computing, we propose the characteristics of this area which make cloud computing being cloud computing and distinguish it from other research areas. The service oriented, loose coupling, strong fault tolerant, business model and...

  8. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions.

    Kubáň, Pavel; Boček, Petr

    2016-02-18

    Micro-electromembrane extractions (μ-EMEs) across free liquid membranes (FLMs) were applied to simultaneous extractions of anions and cations. A transparent narrow-bore polymeric tubing was filled with adjacent plugs of μL volumes of aqueous and organic solutions, which formed a stable five-phase μ-EME system. For the simultaneous μ-EMEs of anions and cations, aqueous donor solution was the central phase, which was sandwiched between two organic FLMs and two aqueous acceptor solutions. On application of electric potential, anions and cations in the donor solution migrated across the two FLMs and into the two peripheral acceptor solutions in the direction of anode and cathode, respectively. Visual monitoring of anionic (tartrazine) and cationic (phenosafranine) dye confirmed their simultaneous μ-EMEs and their rapid (in less than 5 min) transfers into anolyte and catholyte, respectively. The concept of simultaneous μ-EMEs was further examined with selected model analytes; KClO4 was used for μ-EMEs of inorganic anions and cations and ibuprofen and procaine for μ-EMEs of acidic and basic drugs. Quantitative analyses of the resulting acceptor solutions were carried out by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D). Good extraction recoveries (91-94%) and repeatability of peak areas (≤6.3%) were achieved for 5 min μ-EMEs of K(+) and ClO4(-). Extraction recoveries and repeatability of peak areas for 5 min μ-EMEs of ibuprofen and procaine were also satisfactory and ranged from 35 to 63% and 7.6 to 11.3%, respectively. Suitability of the presented micro-extraction procedure was further demonstrated on simultaneous μ-EMEs with subsequent CE-C(4)D of ibuprofen and procaine from undiluted human urine samples. PMID:26826693

  9. Investigations of morphology and optical properties of thin films of TiOPc/PTCDA donor acceptor couple

    J. Weszka a,b

    2012-12-01

    Full Text Available Purpose: The aim of this work is studying surface topography and optical properties of organic thin films of TiOPc and PTCDA blends deposited by thermal vacuum evaporation.Design/methodology/approach: Thin films of blends of organic materials are provided as donor/acceptor couples in bulk heterojunction based organic solar cells. Thin films of TiOPc - PTCDA mixture have been deposited by thermal vacuum evaporation from one source with various ratios of blends components and deposition rates used. Both the chemical composition and technological parameters of the deposition process have appeared to influence on optical properties, UV-Vis absorption spectra in particular, and surface morphology of the as-prepared thin films. The paper reveals the methodology of deposition thin films of TiPc-PTCDA donor/acceptor blends and the influence of deposition parameters on their properties.Findings: Thin films of such blends can be used for the research on the planar heterojunction solar cells based on donor–acceptor couple active layers. Results of these investigations suggest that blends of TiOPc and PTCDA can be suitable materials for preparing organic photovoltaic devices.Research limitations/implications: Deposition parameters and proportions of the blend components used determine the properties of TiOPc/PTCDA thin films.Originality/value: The goal of this paper is also to define relations connecting the surface morphology and optical properties of thin films of TiOPc-PTCDA blend prepared with their composition and parameters of the evaporation process.

  10. Dual acceptor doping and aging effect of p-ZnO:(Na, N) nanorod thin films by spray pyrolysis

    Swapna, R., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu; Amiruddin, R., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu; Santhosh Kumar, M. C., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli-620 015 (India)

    2014-01-28

    An attempt has been made to realize p-type ZnO by dual acceptor doping (Na-N) into ZnO thin films. Na and N doped ZnO thin films of different concentrations (0 to 8 at.%) have been grown by spray pyrolysis at 623 K. The grown films on glass substrate have been characterized by X-ray diffraction (XRD), Hall measurement, UV-Vis spectrophotometer, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. The surface morphology and roughness of the ZnO:(Na, N) films are studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Hall measurement shows that all the films exhibit p-type conductivity except for 0 at.% Na-N doped ZnO film. The obtained resistivity (5.60×10{sup −2} Ω cm) and hole concentration (3.15×10{sup 18} cm{sup −3}) for the best dual acceptor doped film is 6 at.%. It has been predicted that (Na{sub Zn}−N{sub O}) acceptor complex is responsible for the p-type conduction. The p-type conductivity of the ZnO:(Na, N) films is stable even after 6 months. The crystallinity of the films has been studied by XRD. Energy dispersive spectroscopy (EDS) confirms the presence of Na and N in 6 at.% ZnO:(Na, N) film. Photoluminescence (PL) spectra of ZnO:(Na, N) films show NBE and deep level emissions in the UV and visible regions, respectively. The ZnO:(Na, N) films exhibit a high transmittance about 90% in the visible region.

  11. Thiol-Activatable Triplet-Triplet Annihilation Upconversion with Maleimide-Perylene as the Caged Triplet Acceptor/Emitter.

    Mahmood, Zafar; Zhao, Jianzhang

    2016-01-15

    Efficient thiol-activated triplet-triplet annihilation (TTA) upconversion system was devised with maleimide-caged perylene (Py-M) as the thiol-activatable triplet acceptor/emitter and with diiodoBodipy as the triplet photosensitizer. The photophysical processes were studied with steady-state UV-vis absorption spectroscopy, fluorescence spectroscopy, electrochemical properties, and nanosecond transient absorption spectroscopy. The triplet acceptor/emitter Py-M shows week fluorescence (ΦF = 0.8%), and no upconversion (ΦUC = 0%) was observed. The quenching of fluorescence of Py-M is due to photoinduced electron-transfer (PET) process from perylene to maleimide-caging unit, which quenches the singlet excited state of perylene. The fluorescence of Py-M was enhanced by 200-fold (ΦF = 97%) upon addition of thiols such as 2-mercaptoethanol, and the ΦUC was increased to 5.9%. The unique feature of this thiol-activated TTA upconversion is that the activation is based on addition reaction of the thiols with the caged acceptor/emitter, and no side products were formed. The previously reported cleavage approach gives side products which are detrimental to the TTA upconversion. With nanosecond transient absorption spectroscopy, we found that the triplet excited state of Py-M was not quenched by any PET process, which is different from singlet excited state (fluorescence) of Py-M. The results are useful for study of the triplet excited states of organic chromophores and for activatable TTA upconversion. PMID:26694534

  12. Dual acceptor doping and aging effect of p-ZnO:(Na, N) nanorod thin films by spray pyrolysis

    Swapna, R.; Amiruddin, R.; Santhosh Kumar, M. C.

    2014-01-01

    An attempt has been made to realize p-type ZnO by dual acceptor doping (Na-N) into ZnO thin films. Na and N doped ZnO thin films of different concentrations (0 to 8 at.%) have been grown by spray pyrolysis at 623 K. The grown films on glass substrate have been characterized by X-ray diffraction (XRD), Hall measurement, UV-Vis spectrophotometer, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. The surface morphology and roughness of the ZnO:(Na, N) films are studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Hall measurement shows that all the films exhibit p-type conductivity except for 0 at.% Na-N doped ZnO film. The obtained resistivity (5.60×10-2 Ω cm) and hole concentration (3.15×1018 cm-3) for the best dual acceptor doped film is 6 at.%. It has been predicted that (NaZn-NO) acceptor complex is responsible for the p-type conduction. The p-type conductivity of the ZnO:(Na, N) films is stable even after 6 months. The crystallinity of the films has been studied by XRD. Energy dispersive spectroscopy (EDS) confirms the presence of Na and N in 6 at.% ZnO:(Na, N) film. Photoluminescence (PL) spectra of ZnO:(Na, N) films show NBE and deep level emissions in the UV and visible regions, respectively. The ZnO:(Na, N) films exhibit a high transmittance about 90% in the visible region.

  13. Synthesis and electrochemical properties of novel, donor–acceptor pyrrole derivatives with 1,8-naphthalimide units and their polymers

    A new class of bipolar monomers with pyrrole or thiophene–pyrrole–thiophene as electron donor and 1,8-naphthalimide as electron acceptor unit is reported. Donor–acceptor conjugated polymers were generated electrochemically. The synthesis of monomers, optical, electrochemical and spectroelectrochemical properties supported by theoretical calculations are presented. 1,8-naphthalimide units were attached directly to pyrrole in compounds 1a and 2a or by different bridges in the case of 1b and 2b. Intra-molecular donor–acceptor interactions of the monomers and its polymers were investigated using cyclic voltammetry, in-situ UV–Vis-NIR, electron spin resonance (ESR) spectroelectrochemistry and fluorescence spectroscopy. Studied compounds present large discrepancy (up to 1.31 eV for 2a) between energy gap values determined through electrochemical and optical measurements. The Time-dependent density functional theory (TDDFT) calculations help to explain this discrepancy. This is caused by weak HOMO to LUMO transition, 2000 times weaker than HOMO−2 to LUMO or HOMO to LUMO+1 transition. Altering the structure of monomers yields different stability and properties of obtained polymers. The p- and n-doping processes are separated. Anions are localized mainly on 1,8-naphthalimide units. Cations are localized mainly on pyrrole or thiophene–pyrrole–thiophene moiety and their polymer chains. Attachment of the additional thiophene units decreases the oxidation potential of the monomer and reduces the influence of the steric hindrance between 1,8-naphthalimide moiety and polymer/oligomers chain. This new class of model compounds is promising for use as a material with enhanced charge separation for wide range of optoelectronic, electrochromic and photovoltaic applications

  14. Programming in Biomolecular Computation

    Hartmann, Lars; Jones, Neil; Simonsen, Jakob Grue

    2010-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We introduce a model of computation that is evidently programmable......, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only...... in a strong sense: a universal algorithm exists, that is able to execute any program, and is not asymptotically inefficient. A prototype model has been implemented (for now in silico on a conventional computer). This work opens new perspectives on just how computation may be specified at the biological level....

  15. Identification of OprF as a Complement Component C3 Binding Acceptor Molecule on the Surface of Pseudomonas aeruginosa

    Mishra, Meenu; Ressler, Adam; Schlesinger, Larry S.; Wozniak, Daniel J.

    2015-01-01

    Pseudomonas aeruginosa is a versatile opportunistic pathogen that can cause devastating persistent infections. Complement is a highly conserved pathway of the innate immune system, and its role in the first line of defense against pathogens is widely appreciated. One of the earliest events in the complement cascade is the conversion of C3 to C3a and C3b, the latter typically binds to one or more acceptor molecules on the pathogen surface. We previously demonstrated that complement C3b binding...

  16. Researches of topography and optical properties of the thin films NiPc/PTCDA donor acceptor couple

    J. Weszka; P. Jarka; M. Chwastek-Ogierman; B. Hajduk

    2012-01-01

    Purpose: The aim of this work consists of researches of surface topography and optical properties of organic thin films of NiPc : PTCDA blends deposited by thermal evaporation from one source. Thin films of organic materials are provided as donor/acceptor couple in heterojuction solar cells.Design/methodology/approach: Films consisting of NiPc and PTCDA mixture were deposited by thermal evaporation from one source. By using blends with different PTCDA to NiPc ratios and steering the temperat...

  17. Selective and non-extractive spectrophotometric determination of cefdinir in formulations based on donor-acceptor complex formation

    Babita K. Singh

    2010-01-01

    Full Text Available Cefdinir has broad spectrum of activity and high prescription rates, hence its counterfeiting seems imminent. We have proposed a simple, fast, selective and non-extractive spectrophotometric method for the content assay of cefdinir in formulations. The method is based on complexation of cefdinir and Fe under reducing condition in a buffered medium (pH 11 to form a magenta colored donor-acceptor complex (λ max = 550 nm; apparent molar absorptivity = 3720 L mol-1 cm-1. No other cephalosporins, penicillins and common excipients interfere under the test conditions. The Beer's law is followed in the concentration range 8-160 µg mL-1.

  18. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

    Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J

    2016-02-01

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer

  19. Covalently Bound Clusters of Alpha-Substituted PDI-Rival Electron Acceptors to Fullerene for Organic Solar Cells.

    Wu, Qinghe; Zhao, Donglin; Schneider, Alexander M; Chen, Wei; Yu, Luping

    2016-06-15

    A cluster type of electron acceptor, TPB, bearing four α-perylenediimides (PDIs), was developed, in which the four PDIs form a cross-like molecular conformation while still partially conjugated with the BDT-Th core. The blend TPB:PTB7-Th films show favorable morphology and efficient charge dissociation. The inverted solar cells exhibited the highest PCE of 8.47% with the extraordinarily high Jsc values (>18 mA/cm(2)), comparable with those of the corresponding PC71BM/PTB7-Th-based solar cells. PMID:27219665

  20. Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells

    Filippo Nisic

    2014-01-01

    Full Text Available Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.