WorldWideScience

Sample records for accelerometers

  1. Piezoelectric Accelerometers Development

    Liu, Bin; Bang, Lisbet Fogh

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient...

  2. Piezoelectric Accelerometers Development

    Liu, Bin; Bang, Lisbet Fogh

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...

  3. A microchip optomechanical accelerometer

    Krause, Alexander G; Blasius, Tim D; Lin, Qiang; Painter, Oskar

    2012-01-01

    The monitoring of accelerations is essential for a variety of applications ranging from inertial navigation to consumer electronics. The basic operation principle of an accelerometer is to measure the displacement of a flexibly mounted test mass; sensitive displacement measurement can be realized using capacitive, piezo-electric, tunnel-current, or optical methods. While optical readout provides superior displacement resolution and resilience to electromagnetic interference, current optical accelerometers either do not allow for chip-scale integration or require bulky test masses. Here we demonstrate an optomechanical accelerometer that employs ultra-sensitive all-optical displacement read-out using a planar photonic crystal cavity monolithically integrated with a nano-tethered test mass of high mechanical Q-factor. This device architecture allows for full on-chip integration and achieves a broadband acceleration resolution of 10 \\mu g/rt-Hz, a bandwidth greater than 20 kHz, and a dynamic range of 50 dB with ...

  4. Superconducting Rebalance Accelerometer

    Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.

    1996-01-01

    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.

  5. A microchip optomechanical accelerometer

    Krause, Alexander G.; Winger, Martin; Blasius, Tim D.; Lin, Qiang; Painter, Oskar

    2012-01-01

    The monitoring of accelerations is essential for a variety of applications ranging from inertial navigation to consumer electronics. The basic operation principle of an accelerometer is to measure the displacement of a flexibly mounted test mass; sensitive displacement measurement can be realized using capacitive, piezo-electric, tunnel-current, or optical methods. While optical readout provides superior displacement resolution and resilience to electromagnetic interference, current optical a...

  6. Capacitive Position Sensor For Accelerometer

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Capacitive position sensor measures displacement of proof mass in prototype accelerometer described in "Single-Crystal Springs for Accelerometers" (NPO-18795). Sensor is ultrasensitive, miniature device operating at ultra-high frequency and described in more detail in "Ultra-High-Frequency Capacitive Displacement Sensor," (NPO-18675). Advances in design and fabrication of prototype accelerometer also applicable to magnetometers and other sensors in which sensed quantities measured in terms of deflections of small springs.

  7. Piezoelectric accelerometers with integral electronics

    Levinzon, Felix

    2014-01-01

    This book provides an invaluable reference to Piezoelectric Accelerometers with Integral Electronics (IEPE). It describes the design and performance parameters of IEPE accelerometers and their key elements, PE transducers and FET-input amplifiers. Coverage includes recently designed, low-noise and high temperature IEPE accelerometers. Readers will benefit from the detailed noise analysis of the IEPE accelerometer, which enables estimation of its noise floor and noise limits. Other topics useful for designers of low-noise, high temperature silicon-based electronics include noise analysis of FET

  8. Optomechanical reference accelerometer

    Gerberding, Oliver; Melcher, John; Pratt, Jon; Taylor, Jacob

    2015-01-01

    We present an optomechanical accelerometer with high dynamic range, high bandwidth and read-out noise levels below 8 {\\mu}g/$\\sqrt{\\mathrm{Hz}}$. The straightforward assembly and low cost of our device make it a prime candidate for on-site reference calibrations and autonomous navigation. We present experimental data taken with a vacuum sealed, portable prototype and deduce the achieved bias stability and scale factor accuracy. Additionally, we present a comprehensive model of the device physics that we use to analyze the fundamental noise sources and accuracy limitations of such devices.

  9. Equating accelerometer estimates among youth

    Brazendale, Keith; Beets, Michael W; Bornstein, Daniel B;

    2016-01-01

    OBJECTIVES: Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across...

  10. Accelerometer for mobile robot positioning

    Liu, HS; Pang, GKH

    1999-01-01

    An evaluation of a low-cost, small sized solid state accelerometer is described in this paper. The sensor is intended for positioning of a mobile robot or platform. The acceleration signal outputted by the sensor is doubly integrated with time which yields the traveled distance. Bias offset drift exhibits in the acceleration signal is accumulative and the accuracy of the distance measurement deteriorates with time due to the integration. A Kalman filter is used to reduce errors caused by rand...

  11. Application of MEMS accelerometer to geophysics

    AIZAWA, Takao; Kimura, Toshinori; Matsuoka, Toshifumi; Takeda, Tetsuya; Asano, Youichi

    2008-01-01

    We developed several types of MEMS accelerometers using commercial MEMS elements for trial use in seismic surveys. Field experiments and earthquake observations were carried out for investigating the capabilities of the MEMS accelerometers. The results of these experiments and observations show that the properties of these MEMS accelerometers are similar and that they are about 1.5-3.0 times as sensitive as conventional geophones used in seismic surveys. The noise level of the MEMS 3-C accele...

  12. Accelerometer and strain gage evaluation

    This document describes the method developed by Sandia National Laboratories (SNL) to evaluate transducer used in the design certification testing of nuclear material shipping packages. This testing project was performed by SNL for the Office of Civilian Radioactive Waste Management (OCRWM). This evaluation is based on the results of tests conducted to measure ruggedness, failure frequency, repeatability, and manufacturers' calibration data under both field and laboratory conditions. The results of these tests are provided and discussed. The transducer were selected for testing by surveying cask contractors and testing facilities. Important insights relating to operational characteristics of accelerometer types were gained during field testing. 11 refs., 105 figs., 16 tabs

  13. A New Annular Shear Piezoelectric Accelerometer

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...

  14. High Temperature Endurable Fiber Optic Accelerometer

    Yeon-Gwan Lee

    2014-01-01

    Full Text Available This paper presents a low frequency fiber optic accelerometer for application in high temperature environments of civil engineering structures. The reflection-based extrinsic fiber optic accelerometer developed in this study consists of a transmissive grating panel, reflective mirror, and two optical fiber collimators as the transceiver whose function can be maintained up to 130°C. The dynamic characteristics of the sensor probe were investigated and the correlation between the natural frequency of the sensor probe and temperature variation was described and discussed. Furthermore, high temperature simulation equipment was designed for the verification test setup of the developed accelerometer for high temperature. This study was limited to consideration of 130°C applied temperature to the proposed fiber optic accelerometer due to an operational temperature limitation of commercial optical fiber collimator. The sinusoidal low frequency accelerations measured from the developed fiber optic accelerometer at 130°C demonstrated good agreement with that of an MEMS accelerometer measured at room temperature. The developed fiber optic accelerometer can be used in frequency ranges below 5.1 Hz up to 130°C with a margin of error that is less than 10% and a high sensitivity of 0.18 (m/s2/rad.

  15. Hybridizing matter-wave and classical accelerometers

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A., E-mail: arnaud.landragin@obspm.fr [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  16. Hybridizing matter-wave and classical accelerometers

    Lautier, Jean; Hardin, Thomas; Merlet, Sebastien; Santos, Franck Pereira Dos; Landragin, Arnaud

    2014-01-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performances without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely the dead times between consecutive measurements.

  17. A mechanical model of the smartphone's accelerometer

    Gallitto, Aurelio Agliolo

    2015-01-01

    To increase the attention of students, several physics experiments can be performed at school, as well at home, by using the smartphone as laboratory tools. In the paper we describe a mechanical model of the smartphone's accelerometer, which can be used in classroom to allow students to better understand the principle of the accelerometer even by students at the beginning of the study in physics.

  18. Step Counting Using Smartphone-Based Accelerometer

    Ms. Najme Zehra Naqvi

    2012-05-01

    Full Text Available This paper presents a method for counting the number of steps taken by a user, while walking at any variable speed, using smartphone-based accelerometer. For this purpose, the steps are detected based on a relation between frequency of step, which varies inversely with speed of motion, and the magnitude of accelerometer signal. The pattern of the forward acceleration was observed to arrive at the final relation.

  19. High Temperature Endurable Fiber Optic Accelerometer

    Yeon-Gwan Lee; Jin-Hyuk Kim; Chun-Gon Kim

    2014-01-01

    This paper presents a low frequency fiber optic accelerometer for application in high temperature environments of civil engineering structures. The reflection-based extrinsic fiber optic accelerometer developed in this study consists of a transmissive grating panel, reflective mirror, and two optical fiber collimators as the transceiver whose function can be maintained up to 130°C. The dynamic characteristics of the sensor probe were investigated and the correlation between the natural freque...

  20. The Development of Piezoelectric Accelerometers Using Finite Elemen Analysis

    Liu, Bin; Yao, Q.; Kriegbaum, B.

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...... can be effectively used to predict the specifications of the accelerometer, especially when modification of the accelerometer is required. The FE developing technology forms the bases of fast responsiveness and flexible customized design of piezoelectric accelerometers...

  1. The Development of Piezoelectric Accelerometers Using Finite Element Analysis

    Liu, Bin

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...... can be effectively used to predict the specifications of the accelerometer, especially when modification of the accelerometer is required. The FE developing technology forms the bases of fast responsiveness and flexible customized design of piezoelectric accelerometers....

  2. Detecting gunshots using wearable accelerometers.

    Charles E Loeffler

    Full Text Available Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  3. Optomechanical accelerometers and gravity gradiometers

    Guzman, Felipe

    2016-04-01

    Compact optical cavities can be combined with highly stable mechanical oscillators to yield accelerometers and gravity gradiometers of exquisite sensitivity, which are also traceable to the SI. We have incorporated Fabry-Pérot fiber-optic micro-cavities onto low-loss monolithic fused-silica mechanical oscillators for gradiometry, acceleration, and force sensing. These devices consist solely of a glass oscillator and fiber optics to inject and read out the coherent optical signal, making them very simple and compatible with space applications. We have demonstrated displacement sensitivities better than 200 am/√Hz with these fiber-optic micro-sensors. This translates into broadband acceleration noise floors below 100 nano-g/√Hz over a 10kHz, when combined with compact high frequency mechanical oscillators. Similarly, we have developed monolithic oscillators with resonance frequencies near and below 10 Hz, yielding measurement sensitivities better than 10‑9 m/s2. We will introduce our sensor concepts and present results on our fiber-optic displacement sensors and novel optomechanical devices.

  4. ISA accelerometer and Lunar science

    Iafolla, Valerio; Peron, Roberto; Lucchesi, David; Santoli, Francesco; Lefevre, Carlo; Fiorenza, Emiliano; Nozzoli, Sergio; Lucente, Marco; Magnafico, Carmelo; Milyukov, Vadim

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of the Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments: in fact a wide variety of them has been proposed to be conducted on the lunar surface. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its design it works on-ground with the same configuration developed for in-orbit applications. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been the subject of preliminary studies and has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. ISA-S (ISA-Seismometer) has a very high sensitivity, which has already been demonstrated with long time periods of usage on Earth. It features also a wide bandwidth, extended towards the low frequencies. After a description of the instrument, its use in the context of landing missions will be described and discussed, giving emphasis on its integration with the other components of the systems.

  5. CHAMP Tracking and Accelerometer Data Analysis Results

    Lemoine, Frank G.; Luthcke, S. B.; Rowlands, D. D.; Pavlis, D. E.; Colombo, O. L.; Ray, Richard D.; Thompson, B.; Nerem, R. S.; Williams, Teresa A.; Smith, David E. (Technical Monitor)

    2002-01-01

    The CHAMP (Challenging Minisatellite Payload) mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE (Gravity Recovery and Climate Experiment) to be launched in the later part of '01) that combine a new generation of GPS (Global Positioning System) receivers, a high precision three axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and SLR tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR (Satellite Laser Ranging) tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the surface forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies. Gravity field modeling status and plans will be discussed.

  6. Sensitivity improvement techniques for micromechanical vibrating accelerometers

    Vtorushin Sergey

    2016-01-01

    Full Text Available The paper presents the problems of detecting a desired signal generated by micromechanical vibrating accelerometer. Three detection methods, namely frequency, amplitude and phase are considered in this paper. These methods are used in micromechanical vibrating accelerometers that incorporate a force sensitive element which transforms measured acceleration into the output signal. Investigations are carried out using the ANSYS finite element program and MATLAB/Simulink support package. Investigation results include the comparative analysis of the output signal characteristics obtained by the different detection methods.

  7. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  8. Piezoelectric Accelerometers Modification Based on the Finite Element Method

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...

  9. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  10. Three-axis MEMS Accelerometer for Structural Inspection

    Barbin, E.; Koleda, A.; Nesterenko, T.; Vtorushin, S.

    2016-01-01

    Microelectromechanical system accelerometers are widely used for metrological measurements of acceleration, tilt, vibration, and shock in moving objects. The paper presents the analysis of MEMS accelerometer that can be used for the structural inspection. ANSYS Multiphysics platform is used to simulate the behavior of MEMS accelerometer by employing a finite element model and MATLAB/Simulink tools for modeling nonlinear dynamic systems.

  11. Fabrication and characterization of a piezoelectric accelerometer

    Reus, Roger De; Gulløv, Jens; Scheeper, Patrick

    1999-01-01

    Zinc oxide based piezoelectric accelerometers were fabricated by bulk micromachining. A high yield was obtained in a relatively simple process sequence. For two electrode configurations a direction selectivity better than 100 was obtained for acceleration in the vertical direction and a selectivity...

  12. Smartphone MEMS accelerometers and earthquake early warning

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  13. Accurate Telescope Mount Positioning with MEMS Accelerometers

    Mészáros, László; Pál, András; Csépány, Gergely

    2014-01-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the sub-arcminute range which is well smaller than the field-of-view of conventional imaging telescope systems. Here we present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  14. MGRA: Motion Gesture Recognition via Accelerometer

    Feng Hong

    2016-04-01

    Full Text Available Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  15. MGRA: Motion Gesture Recognition via Accelerometer.

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  16. Dark matter direct detection with accelerometers

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.

    2016-04-01

    The mass of the dark matter particle is unknown, and may be as low as ˜1 0-22 eV . The lighter part of this range, below ˜eV , is relatively unexplored both theoretically and experimentally but contains an array of natural dark matter candidates. An example is the relaxion, a light boson predicted by cosmological solutions to the hierarchy problem. One of the few generic signals such light dark matter can produce is a time-oscillating, equivalence-principle-violating force. We propose searches for this using accelerometers, and consider in detail the examples of torsion balances, atom interferometry, and pulsar timing. These approaches have the potential to probe large parts of unexplored parameter space in the next several years. Thus such accelerometers provide radically new avenues for the direct detection of dark matter.

  17. Multi-Axis Accelerometer Calibration System

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  18. Dark Matter Direct Detection with Accelerometers

    Graham, Peter W; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A

    2015-01-01

    The mass of the dark matter particle is unknown, and may be as low as ~$10^{-22}$ eV. The lighter part of this range, below ~eV, is relatively unexplored both theoretically and experimentally but contains an array of natural dark matter candidates. An example is the relaxion, a light boson predicted by cosmological solutions to the hierarchy problem. One of the few generic signals such light dark matter can produce is a time-oscillating, EP-violating force. We propose searches for this using accelerometers, and consider in detail the examples of torsion balances, atom interferometry, and pulsar timing. These approaches have the potential to probe large parts of unexplored parameter space in the next several years. Thus such accelerometers provide radically new avenues for the direct detection of dark matter.

  19. Standing stability evaluation using a triaxial accelerometer

    Mayagoitia, Ruth E.; Lotters, Joost C.; Veltink, Peter H.

    1996-01-01

    A triaxial accelerometer is placed at the back of the subject at the height of the center of mass. Force plate data are collected simultaneously. Subjects stand in a comfortable position with eyes open, eyes closed and doing cognitive tasks; and with feet together with eyes open and closed. The cognitive tasks are: mathematical, auditory Stroop and memory. The force plate data are processed to obtain the center of pressure and from it the parameters of: mean radius, speed and frequency, and b...

  20. High performance MEMS accelerometers for concrete SHM applications and comparison with COTS accelerometers

    Kavitha, S.; Joseph Daniel, R.; Sumangala, K.

    2016-01-01

    Accelerometers used for civil and huge mechanical structural health monitoring intend to measure the shift in the natural frequency of the monitored structures (<100 Hz) and such sensors should have large sensitivity and extremely low noise floor. Sensitivity of accelerometers is inversely proportional to the frequency squared. Commercial MEMS (Micro Electro-Mechanical System) accelerometers that are generally designed for large bandwidth (e.g 25 kHz in ADXL150) have poor sensor level sensitivity and therefore uses complex signal conditioning electronics to achieve large sensitivity and low noise floor which in turn results in higher cost. In this work, an attempt has been made to design MEMS capacitive and piezoresistive accelerometers for smaller bandwidth using IntelliSuite and CoventorWare MEMS tools respectively. The various performance metrics have been obtained using simulation experiments and the results show that these sensors have excellent voltage sensitivity, noise performance and high resolution at sensor level and are even superior to commercial MEMS accelerometers.

  1. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    Libin Huang

    2013-11-01

    Full Text Available The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.

  2. Study of Piezoresistive Micro Electro-Mechanical Accelerometer Design Platform

    2005-01-01

    According to the inland micro electro-mechanical system (MEMS) process technique level, a design platform of piezoresistive micro electro-mechanical accelerometer is given. This platform is much more adaptable to the inland designer compared with the current MEMS CAD software. The design flow is presented in detail, and the key techique in the platform is analyzed amply. The structure design methodology is exemplified in the design of a piezoresistive accelerometer, and the accelerometer is the optimized structure for the given performance requirements. The accelerometer is now being manufactured.

  3. Measurement device for cmos-mems accelerometer

    Somasundaram, Namitha

    2014-01-01

    [ANGLÈS] This project reports the process of development of the Printed Circuit Board (PCB) - Zephyr for the experimental CMOS MEMS accelerometer testchip, Bailed II. The problem of capacitance mismatch at the input bridge is solved through a simple and innovative arrangement of resistors, jumpers and capacitors on the PCB. A filter is designed with the inductor capacitor pair to filter noise from the DC source. An amplifier with a gain of 10 is designed to amplify the output signals of the B...

  4. Real-time inclinometer using accelerometer MEMS

    Hanto, D; Hermanto, B; Puranto, P; Handoko, L T

    2011-01-01

    A preliminary design of inclinometer for real-time monitoring system of soil displacement is proposed. The system is developed using accelerometer sensor with microelectromechanical system (MEMS) device. The main apparatus consists of a single MEMS sensor attached to a solid pipe and stucked pependicularly far away below the soil surface. The system utilizes small fractions of electrical signals from MEMS sensor induced by the pipe inclination due to soil displacements below the surface. It is argued that the system is accurate enough to detect soil displacements responsible for landslides, and then realizes a simple and low cost landslide early warning system.

  5. Analysis of MEMS Accelerometer for Optimized Sensitivity

    Khairun Nisa Khamil

    2014-12-01

    Full Text Available Sensitivity is an important element of a sensing process, and it is part of the open-loop gain of the sensor. This makes it a strong inverse relationship between sensitivity and bandwidth for any class of sensors. The geometrical of the accelerometer, mass width, beam (length and width of the device and its sensitivity are analyzed theoretically and also using finite element analysis software, COMSOL Multiphysics®. Hence, the optimization analysis concluded that desired sensitivity can be achieved by adding number of fingers and adjusting the length of the beam. Preliminary results show that the sensitivity of the device increases by significantly by 38%.

  6. Studying and Modeling Vibration Transducers and Accelerometers

    Katalin Ágoston

    2010-12-01

    Full Text Available This paper presents types and operating mode of vibration sensors. Piezoelectric sensing elements are often used in accelerometers. It will be investigate the structure and transfer function of the seismic mass type sensing element. The article presents how the piezoelectric sensing element works and how can be modeled with an electronic circuit. The transfer functions of the electronic circuit models are studied in Matlab and the results are presented. It will be presented the influence of the seismic mass on the accelerometer’s working frequency domain.

  7. Calibrating Accelerometers Using an Electromagnetic Launcher

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  8. MEMS Accelerometer with Screen Printed Piezoelectric Thick Film

    Hindrichsen, Christian Carstensen; Lau-Moeller, R.; Bove, T.;

    2006-01-01

    A bulk-micromachined piezoelectric MEMS accelerometer with screen printed piezoelectric Pb(ZrxTil )O3(PZT) thick film (TF) as the sensing material has been fabricated and characterized. The accelerometer has a four beam structure with a central seismic mass (3600x3600x500 pm3) and a total chip size...

  9. High sensitivity optical waveguide accelerometer based on Fano resonance.

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  10. ACCELEROMETER BASED GESTURE CONTROLLED ROBOT USING ARDUINO

    SwarnaPrabha Jena

    2015-04-01

    Full Text Available Generally, robots are programmed to perform specific tasks which humans cannot. To increase the use of robots where conditions are not certain such as fire fighting or rescue operations, robots can be made which follow the instruction of human operator and perform the task. In this way decisions are taken according to the working conditions by the operator and the task is performed by the robots. Thus, we can use these robots to perform those tasks that may be harmful for humans. This paper describes about the gesture control robot which can be controlled by your normal hand gesture. It consists of mainly two parts, one is transmitter part and another is receiver part. The transmitter will transmit the signal according to the position of accelerometer and your hand gesture and the receiver will receive the signal and make the robot move in respective direction. Here, the program is designed by using Arduino IDE.

  11. A high performance, variable capacitance accelerometer

    Wilner, L. Bruce

    1988-12-01

    A variable capacitance acceleration sensor is described. Manufactured using silicon microfabrication techniques, the sensor uses a midplane, flat plate suspension, gas damping, and overrange stops. The sensor is assembled from three silicon wafers, using anodic bonds to inlays of borosilicate glass. Typical sensor properties are 7-pF active capacitance, 3-pF tare capacitance, a response of 0.05 pF/G, a resonance frequency of 3.4 kHz, and damping 0.7 critical. It is concluded that this sensor, with appropriate electronics, forms an accelerometer with an order-of-magnitude greater sensitivity-bandwidth product than a comparable piezoresistive acclerometer, and with extraordinary shock resistance.

  12. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  13. Recent Results from CHAMP Tracking and Accelerometer Data Analysis

    Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Nerem, R. S.; Thompson, B.; Pavlis, E.; Williams, T. A.; Colombo, O. L.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    The CHAMP mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE to be launched in the early part of 02') that combine a new generation of Global Positioning System (GPS) receivers, a high precision three-axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and Satellite Laser Ranging (SLR) tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the non-gravitational forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three-axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies.

  14. Adaptive integrated navigation filtering based on accelerometer calibration

    Qifan Zhou

    2012-11-01

    Full Text Available In this paper, a novel GPS (Global Positioning System and DR (Dead Reckoning system which was based on the accelerometer and gyroscope integrated system was designed and implemented. In this system, the odometer used in traditional DR system was replaced by a MEMS tri-axis accelerometer in order to decrease the cost and the volume of the system. The system was integrated by the Kalman filter and a new mathematical model was introduced. In order to reasonably use the GPS information, an adaptive algorithm based on single measurement system which could estimate the measurement noise covariance was obtained. On the purpose of reducing the effect of the accumulated error caused by drift and bias of accelerometer, the accelerometer was calibrated online when GPS performed well. In this way, the integrated system could not only obtain the high-precision positioning in real time, but also perform stably in practice.

  15. High sensitivity accelerometers for high performance seismic attenuators

    We present concepts and features of a new horizontal accelerometer whose mechanical design and machining process aim to improve the sensitivity in the frequency region between 10 mHz and 1 Hz. The expected sensitivity, less than 10-11 m/s2/√(Hz) around 100 mHz, is a couple of orders of magnitude below the state of art limits. This accelerometer could be integrated in the active control of the LIGO II mirror seismic isolators

  16. Accelerometers for Measuring Physical Activity Behavior in Indian Children

    Krishnaveni, G V; Mills, I C; Veena, S. R.; Wootton, S A; Wills, A K; Coakley, P. J.; Fisher, D. J.; Shobha, S.; Karat, S. C.; Fall, C H D

    2009-01-01

    Objective: To examine the validity of accelerometers for characterizing habitual physical activity patterns in Indian children.Design: Cohort study.Setting: Holdsworth Memorial Hospital, Mysore.Subjects: Children (N=103, mean age 6.6 years) selected from an ongoing birth cohort study.Methods: Physical activity was measured over 7 days using accelerometers (MTI Actigraph) and concurrent parent-maintained activity diaries. Actigraph counts per minute representing sedentary (

  17. Input-output stability for accelerometer control systems

    Banks, H. T.; Morris, K. A.

    1991-01-01

    It is shown that, although accelerometer control systems are not well-posed in the sense of Salamon, a well-defined input-output relation exists. It is established that the output of an accelerometer control system can be described by the convolution of the input and a distribution. This distribution is Laplace transformable, and the Laplace transform of the distribution is the transfer function of the system.

  18. Isolation of a piezoresistive accelerometer used in high acceleration tests

    Bateman, V. I.; Brown, F. A.; Davie, N. T.

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of -50 to +186 F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of -50 to 70 F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer's operational limits of -30 and +150 F, required the calibration of accelerometers at high shock levels and at the temperature extremes of -50 and +160 F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 - 15,000 g for the temperature extremes of -50 and +160 F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is +\\-5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  19. Intelligent seismic sensor with double three component MEMS accelerometers

    Fu, Jihua; Wang, Jianjun; Li, Zhitao; Liu, Xiaoxi; Wang, Zhongyu

    2010-08-01

    To better understand the response and damage characteristics of structures under earthquakes, a great number of intelligent seismic sensors with high performance were needed to be installed distributed in the whole country. The intelligent seismic sensor was a cost-sensitive application because of its large number of usages. For this reason, a low cost intelligent seismic sensor was put forward in this paper. This kind of intelligent seismic sensor cut down the cost without sacrificing performance by introducing two three component MEMS accelerometers. It was composed by a microprocessor, two three component MEMS accelerometers, an A/D converter, a flash memory, etc. The MEMS accelerometer has better structure and frequency response characteristics than the conventional geophones'. But one MEMS accelerometer tended to be unreliable and have no enough dynamic range for precision measurement. Therefore two three component MEMS accelerometers were symmetrically mounted on both sides of the circuit board. And their measuring values were composed to describe the ground motion or structure response. The composed value was the in-phase stacking of the two accelerometers' measuring values, which enhanced the signal noise ratio of the sensor and broadened its dynamic range. Through the preliminary theory and experiment analysis, the low cost intelligent seismic sensor could measure the acceleration in accuracy.

  20. Strong Motion Seismograph Based On MEMS Accelerometer

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  1. The ISA accelerometer and Lunar science

    Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Massimo Lucchesi, David; Lucente, Marco; Magnafico, Carmelo; Milyukov, Vadim; Nozzoli, Sergio; Peron, Roberto; Santoli, Francesco

    2014-05-01

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments: in fact a wide variety of them has been proposed to be conducted on the lunar surface. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one-dimensional sensors assembled in a composite structure) it works both in-orbit and on-ground, with the same configuration. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been the subject of preliminary studies and has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. ISA-S (ISA-Seismometer) has a very high sensitivity, which has already been demonstrated with long time periods of usage on Earth. After a description of the instrument, its use in the context of landing missions will be described and discussed, giving emphasis on its integration with the other components of the systems.

  2. Prediction of Gap Asymmetry in Differential Micro Accelerometers

    Xiaoping He

    2012-05-01

    Full Text Available Gap asymmetry in differential capacitors is the primary source of the zero bias output of force-balanced micro accelerometers. It is also used to evaluate the applicability of differential structures in MEMS manufacturing. Therefore, determining the asymmetry level has considerable significance for the design of MEMS devices. This paper proposes an experimental-theoretical method for predicting gap asymmetry in differential sensing capacitors of micro accelerometers. The method involves three processes: first, bi-directional measurement, which can sharply reduce the influence of the feedback circuit on bias output, is proposed. Experiments are then carried out on a centrifuge to obtain the input and output data of an accelerometer. Second, the analytical input-output relationship of the accelerometer with gap asymmetry and circuit error is theoretically derived. Finally, the prediction methodology combines the measurement results and analytical derivation to identify the asymmetric error of 30 accelerometers fabricated by DRIE. Results indicate that the level of asymmetry induced by fabrication uncertainty is about ±5 × 10−2, and that the absolute error is about ±0.2 µm under a 4 µm gap.

  3. One testing method of dynamic linearity of an accelerometer

    Lei Jing-Yu

    2015-01-01

    Full Text Available To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half –sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  4. One testing method of dynamic linearity of an accelerometer

    Lei, Jing-Yu; Guo, Wei-Guo; Tan, Xue-Ming; Shi, Yun-Bo

    2015-09-01

    To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube) are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half -sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  5. An Electromagnetically Excited Silicon Nitride Beam Resonant Accelerometer

    2009-02-01

    Full Text Available A resonant microbeam accelerometer of a novel highly symmetric structure based on MEMS bulk-silicon technology is proposed and some numerical modeling results for this scheme are presented. The accelerometer consists of two proof masses, four supporting hinges, two anchors, and a vibrating triple beam, which is clamped at both ends to the two proof masses. LPCVD silicon rich nitride is chosen as the resonant triple beam material, and parameter optimization of the triple-beam structure has been performed. The triple beam is excited and sensed electromagnetically by film electrodes located on the upper surface of the beam. Both simulation and experimental results show that the novel structure increases the scale factor of the resonant accelerometer, and ameliorates other performance issues such as cross axis sensitivity of insensitive input acceleration, etc.

  6. Damage detection by mixed measurements using accelerometers and strain gages

    This work investigates the relationship between the FRFs (frequency response functions) measured by accelerometers and strain gages utilized widely for investigating structural performance. Modifying the GDM (global-deviation method), this study examines the possibility of damage detection in utilizing both sensors together. The experimental results on the mixed utilization of two sensors show that the SFRF (strain frequency response function) data measured by strain gages in the neighborhood of end supports are more practical in establishing the baseline curve than the DFRF (displacement frequency response function) data measured by accelerometers. It is shown that the modified GDM can be effectively utilized in detecting damage based on the mixed measurements of accelerometers and strain gages. (paper)

  7. Isolation of a piezoresistive accelerometer used in high acceleration tests

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1992-12-31

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of {minus}50{degree}F to 70{degree}F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer`s operational limits of {minus}30{degree}F and +150{degree}F, required the calibration of accelerometers at high shock levels and at the temperature extremes of {minus}50{degree}F and +160{degree}F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 g - 15,000 g for the temperature extremes of {minus}50{degree}F and +160{degree}F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is {plus_minus}5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  8. Validation of different accelerometers to determine mechanical loading in children

    Meyer, Ursina; Ernst, Dominique; Schott, Silvia; Riera, Claudia; Hattendorf, Jan; Romkes, Jacqueline; Granacher, Urs; Goepfert, Beat; Kriemler, Susi

    2015-01-01

    The purpose of this study was to assess the validity of accelerometers using force plates (i.e., ground reaction force (GRF)) during the performance of different tasks of daily physical activity in children. Thirteen children (10.1 (range 5.4–15.7) years, 3 girls) wore two accelerometers (ActiGraph GT3X+ (ACT), GENEA (GEN)) at the hip that provide raw acceleration signals at 100 Hz. Participants completed different tasks (walking, jogging, running, landings from boxes of different height, rop...

  9. An Improved SPICE Model for MEMS Based Capacitive Accelerometers

    C. Kavitha

    2013-05-01

    Full Text Available An improved electrical equivalent circuit for a capacitive MEMS accelerometer, incorporating temperature, pressure and squeezed film effects is reported. The circuit model corresponds to a single degree of freedom (SDOF vibrating system, including dominant micro physical mechanisms. Static, transient and frequency response analysis are carried out at temperature and pressure ranges of 100 K to 400 K and 30 to 3000 Pa respectively. The effect of these parameters on the resonance frequency, peak displacement and settling time of the accelerometer are determined. Simulations are performed using PSpice® circuit simulator.

  10. Adaptive integrated navigation filtering based on accelerometer calibration

    Qifan Zhou; Hai Zhang; Yanran Wang

    2012-01-01

    In this paper, a novel GPS (Global Positioning System) and DR (Dead Reckoning) system which was based on the accelerometer and gyroscope integrated system was designed and implemented. In this system, the odometer used in traditional DR system was replaced by a MEMS tri-axis accelerometer in order to decrease the cost and the volume of the system. The system was integrated by the Kalman filter and a new mathematical model was introduced. In order to reasonably use the GPS information, an adap...

  11. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  12. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole;

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  13. Circular Piezoelectric Accelerometer for High Band Width Application

    Hindrichsen, Christian Carstensen; Larsen, Jack; Lou-Møller, Rasmus;

    2009-01-01

    An uniaxial bulk-micromachined piezoelectric MEMS accelerometer intended for high bandwidth application is fabricated and characterized. A circular seismic mass (radius = 1200 ¿m) is suspended by a 20 ¿m thick annular silicon membrane (radius = 1800 ¿m). A 24 ¿m PZT screen printed thick film...

  14. Systematic characterisation of silicon-embedded accelerometers for mechanomyography.

    Silva, J; Chau, T; Naumann, S; Heim, W

    2003-05-01

    Silicon soft suction sockets (roll-on sleeves) currently used in passive prostheses for below-elbow amputees could also be used in externally powered prostheses, enhancing their functionality and comfort. However, as it is extremely difficult to hold currently used electromyography (EMG) sensors in place reliably within a silicon socket, an alternative measurement of muscular activity as the control input is necessary. Mechanomyography (MMG) is the epidermal measurement of the low-frequency vibrations produced by a contracting muscle. MMG sensors do not have to be in direct contact with the skin. Moreover, the embedding of sensors in the roll-on sleeve may also solve attachment issues, making sensor placement flexible. Therefore the objective was to determine the feasibility of recording MMG signals using silicon-embedded, micro-machined accelerometers. Fifteen embedded accelerometers were excited with predefined vibration patterns. The signal-to-noise ratio (SNR) and frequency response of each sample were measured and compared with those of non-embedded accelerometers. The SNR of embedded samples (approximately equal to 19 dB) was significantly higher than that of non-embedded samples (approximately equal to 12 dB), owing to the considerable mechanical damping effect of the silicon in the 300-900 Hz bandwidth (p=0.0028). This has implications for the application of silicon-embedded accelerometers for externally powered prosthesis control. PMID:12803293

  15. Predicting human movement with multiple accelerometers using movelets

    He, Bing; Bai, Jiawei; Zipunnikov, Vadim V;

    2014-01-01

    activity, the prediction accuracy at the second-level temporal resolution was very high for lying, standing, normal/fast walking, and standing up from a chair (the median prediction accuracy ranged from 88.2% to 99.9% on the basis of the single-accelerometer movelet approach). For these activities, wrist...

  16. Joint angle estimation with accelerometers for dynamic postural analysis.

    Ma, Jianting; Kharboutly, Haissam; Benali, Abderraouf; Benamar, Faïz; Bouzit, Mourad

    2015-10-15

    This paper presents a new accelerometer based method for estimating the posture of a subject standing on a dynamic perturbation platform. The induced perturbation is used to study the control mechanisms as well as the balance requirements that regulate the upright standing. These perturbations are translated into different intensity levels of speed and acceleration along longitudinal and lateral directions of motion. In our method, the human posture is modeled by a tridimensional, three-segment inverted pendulum which simultaneously takes into account both the anterior-posterior and medio-lateral strategies of hip and ankle. Four tri-axial accelerometers are used her, one accelerometer is placed on the platform, and the other three are attached to a human subject. Based on the results, the joint angle estimated compare closely to measurements from magnetic encoders placed on an articulated arm joint. The results were also comparable to those found when using a high-end optical motion capture system coupled with advanced biomechanical simulation software. This paper presents the comparisons of our accelerometer-based method with encoder and optical marker based method of the estimated joint angles under different dynamics perturbations. PMID:26338097

  17. Design and Evaluation of Accelerometer based Motional Feedback

    Schneider, Henrik; Pranjic, Emilio; Agerkvist, Finn T.;

    2015-01-01

    and enable radical design changes in the loudspeaker which can lead to efficiency improvements. In combination this has motivated a revisit of the accelerometer based motional feedback technique. Experimental results on a 8 inch subwoofer show that the total harmonic distortion can be significantly...

  18. The MICROSTAR electrostatic accelerometer for the GRASP Mission

    Foulon, Bernard; Christophe, Bruno; Liorzou, Francoise; Huynh, Phuong-Anh; Perrot, Eddy

    2015-04-01

    The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept dedicated to the enhancement of all the space geodetic techniques, and promising revolutionary improvements to the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). The integration of an ultra sensitive accelerometer at the Center of mass of the satellite can provide not only improvement of the Precise Orbit Determination (POD) by the accurate measurement of the non-gravitational force acting on the surface of the satellite but also by the possibility to calibrate with an accuracy better than 100 µm the change in the position of the Satellite Center of Mass as it is performed in the GRACE mission and to determine the precise motion of the antennas assuming some rigid structure between them and the accelerometer as it is done between the star sensor, the optical cube assembly of satellite laser ranging system and the accelerometer in the GRACE-Follow On mission. The proposed accelerometer is miniaturized version of the electrostatic accelerometers developed for the Earth gravity missions CHAMP, GRACE, GOCE and GRACE-FO. He has 3 sensitive axes thanks to a cubic proof-mass and provides the 3 linear accelerations and the 3 angular accelerations about its 3 orthogonal axes. He is called MICROSTAR and its foreseen performance is a linear acceleration noise lower than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz.

  19. Design of MEMS accelerometer based acceleration measurement system for automobiles

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  20. DEPTracker – Sleep Pattern Tracking with Accelerometer Technology

    Grode, Jesper Nicolai Riis; Havn, Ib; Svane Hansen, Lars;

    2015-01-01

    REM (Rapid Eye Movement) sleep pattern changes are known to be an early indicator of effective medical treatment of patients with a depression diagnosis. Existing methods to detect REM sleep pattern changes are known to be inaccurate, costly, or otherwise inadequate in normal settings of this...... patient group. In this paper, we demonstrate DEPTracker, a system capable of detecting sleep patterns, and in particular REM sleep. We show that DEPTracker is an accurate, cost-effective and suitable approach for sleep pattern detection in general. Details of the technology used, combining accelerometer...... technology with digital signal analysis is given and illustrates that the system is able to successfully detect REM sleep. The project demonstrates that accelerometers can be mounted on an eye lid and eye movements can be detected, sampled and stored in a database for online real-time analysis or post-sleep...

  1. A simple intensity modulation based fiber-optic accelerometer

    Guozhen, Yao; Yongqian, Li; Zhi, Yang

    2016-05-01

    A fiber-optic accelerometer with simple structure and high performance based on intensity modulation is proposed. Using only a length of single mode fiber compressed by a cantilever, the intensity of reflected light is modulated by the vibration acceleration applied to it. The effects of the fiber location, the dimension parameters of the cantilever on frequency response and sensitivity are investigated. The experimental results demonstrate that the accelerometer has a flat frequency response over a 4700 Hz bandwidth and a sensitivity of 21.24 mV/g with a cantilever dimension of 30 × 8 × 1.6 mm3 and a distance of 5 mm between the fiber location and the suspended cantilever end; the coefficient of determination is better than 0.999. In addition, the effect of temperature and the stability of the sensing system are investigated.

  2. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  3. Fibre Bragg grating based accelerometer with extended bandwidth

    Basumallick, Nandini; Biswas, Palas; Chakraborty, Rajib; Chakraborty, Sushanta; Dasgupta, Kamal; Bandyopadhyay, Somnath

    2016-03-01

    We have shown experimentally that the operable bandwidth of a fibre Bragg grating (FBG) based accelerometer can be extended significantly, without compromising its sensitivity, using a post-signal processing technique which involves frequency domain weighting. It has been demonstrated that using the above technique acceleration can be correctly interpreted even when the operating frequency encroaches on the region where the frequency response of the sensor is non-uniform. Two different excitation signals, which we often encounter in structural health monitoring applications, e.g. (i) a signal composed of multi-frequency components and (ii) a sinusoidal excitation with a frequency sweep, have been considered in our experiment. The results obtained have been compared with a piezo accelerometer.

  4. An Improved Wavelet Correction for Zero Shifted Accelerometer Data

    Timothy S. Edwards

    2003-01-01

    Full Text Available Accelerometer data from shock measurements often contains a spurious DC drifting phenomenon known as zero shifting. This erroneous signal can be caused by a variety of sources. The most conservative approach when dealing with such data is to discard it and collect a different set with steps taken to prevent the zero shifting. This approach is rarely practical, however. The test article may have been destroyed or it may be impossible or prohibitively costly to recreate the test. A method has been proposed by which wavelets may be used to correct the acceleration data. By comparing the corrected accelerometer data to an independent measurement of the acceleration from a laser vibrometer this paper shows that the corrected data, in the cases presented, accurately represents the shock. A method is presented by which the analyst may accurately choose the wavelet correction parameters. The comparisons are made in the time and frequency domains, as well as with the shock response spectrum.

  5. Geometric anti-spring vertical accelerometers for seismic monitoring

    A new low-frequency, very-low noise, vertical accelerometer is presented. The sensor has been designed to be part of an array of few hundred such devices to be used to predict local gravity fluctuations. These fluctuations, acting on the mirrors of gravitational wave interferometers, are a fundamental source of noise that can only be subtracted from the recorded signal. The motion of a 36 g mass supported by loaded springs is monitored by a high-resolution capacitance sensor; a feedback force actuator keeps the mass in the equilibrium position. The feedback signal is proportional to the acceleration in the frequency range 0-150 Hz. The accelerometer spectral sensitivity is better than 10-9 m/√Hz in the same band, with a dynamic range exceeding 150 dB

  6. Accelerometer-Based Event Detector for Low-Power Applications

    József Smidla; Gyula Simon

    2013-01-01

    In this paper, an adaptive, autocovariance-based event detection algorithm is proposed, which can be used with micro-electro-mechanical systems (MEMS) accelerometer sensors to build inexpensive and power efficient event detectors. The algorithm works well with low signal-to-noise ratio input signals, and its computational complexity is very low, allowing its utilization on inexpensive low-end embedded sensor devices. The proposed algorithm decreases its energy consumption by lowering its duty...

  7. An Improved SPICE Model for MEMS Based Capacitive Accelerometers

    C. Kavitha; M. Ganesh Madhan

    2013-01-01

    An improved electrical equivalent circuit for a capacitive MEMS accelerometer, incorporating temperature, pressure and squeezed film effects is reported. The circuit model corresponds to a single degree of freedom (SDOF) vibrating system, including dominant micro physical mechanisms. Static, transient and frequency response analysis are carried out at temperature and pressure ranges of 100 K to 400 K and 30 to 3000 Pa respectively. The effect of these parameters on the resonance frequency, pe...

  8. Analysis of animal accelerometer data using hidden Markov models

    Leos-Barajas, Vianey; Photopoulou, Theoni; Langrock, Roland; Patterson, Toby A; Watanabe, Yuuki; Murgatroyd, Megan; Papastamatiou, Yannis P.

    2016-01-01

    Use of accelerometers is now widespread within animal biotelemetry as they provide a means of measuring an animal's activity in a meaningful and quantitative way where direct observation is not possible. In sequential acceleration data there is a natural dependence between observations of movement or behaviour, a fact that has been largely ignored in most analyses. Analyses of acceleration data where serial dependence has been explicitly modelled have largely relied on hidden Markov models (H...

  9. Travel Behavior Characterization Using Raw Accelerometer Data Collected from Smartphones

    Ferrer López, Sheila; Ruiz Sánchez, Tomás

    2014-01-01

    In this paper, we compare different algorithms for the recognition of transportation modes based on features extracted from the accelerometer data. The performance and effectiveness of the transportation mode classifiers presented is evaluated and their accuracy is discussed. The data set used for training and testing algorithms was collected by a group of volunteers in the city of Valencia in 2013; an Android application designed for the recording of trips and transportation modes applicatio...

  10. Monitoring feeding behaviour of dairy cows using accelerometers

    Gabriele Mattachini

    2016-03-01

    Full Text Available Monitoring cow behaviour has become increasingly important in understanding the nutrition, production, management of the well being, and overall health of dairy cows. Methods of assessing behavioural activity have changed in recent years, favouring automatic recording techniques. Traditional methods to measure behaviour, such as direct observation or time-lapse video, are labour-intensive and time-consuming. Automated recording devices have become increasingly common to measure behaviour accurately. Thus, the development of automated monitoring systems that can continuously and accurately quantify feeding behaviour are required for efficient monitoring and control of modern and automated dairy farms. The aim of this study was to evaluate the possible use of a 3D accelerometer to record feeding behaviour of dairy cows. Feeding behaviour (feeding time and number of visits to the manger of 12 lactating dairy cows was recorded for approximately 3 h with 3D-accelerometer data loggers (HOBO Pendant G logger. The sensors were positioned in the high part of the neck to monitor head movements. Behaviour was simultaneously recorded using visual observation as a reference. Linear regression analysis between the measurement methods showed that the recorded feeding time (R2=0.90, n=12, P<0.001 was closely related to visual observations. In contrast, the number of visits was inadequately recorded by the 3D-accelerometer, showing a poor relationship with visual observations (R2=0.31, n=12, P<0.06. Results suggest that the use of accelerometer sensors can be a reliable and suitable technology for monitoring feeding behaviour of individual dairy cows in free stall housing. However, further research is necessary to develop an appropriate device able to detect and recognise the movements connected with the head movement during feeding. Such a device could be part of an automatic livestock management tool for the efficient monitoring and control of comfort and

  11. Modeling and non-linear responses of MEMS capacitive accelerometer

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  12. High resolution interface circuit for closed-loop accelerometer*

    Yin Liang; Liu Xiaowei; Chen Weiping; Zhou Zhiping

    2011-01-01

    This paper reports a low noise switched-capacitor CMOS interface circuit for the closed-loop operation of a capacitive accelerometer. The time division multiplexing of the same electrode is adopted to avoid the strong feedthrough between capacitance sensing and electrostatic force feedback. A PID controller is designed to ensure the stability and dynamic response o fa high Q closed-loop accelerometer with a vacuum package. The architecture only requires single ended operational amplifiers, transmission gates and capacitors. Test results show that a full scale acceleration of ±3 g, non-linearity of 0.05% and signal bandwidth of 1000 Hz are achieved. The complete module operates from a ±5 V supply and has a measured sensitivity of 1.2 V/g with a noise of floor of 0.8μg/√(Hz) in closed-loop. The chip is fabricated in the 2 μm two-metal and two-poly n-well CMOS process with an area of 15.2 mm2. These results prove that this circuit is suitable for high performance micro-accelerometer applications like seismic detection and oil exploration.

  13. Optical Readout of Micro-Accelerometer Code Features

    Dickey, Fred M.; Holswade, Scott C.; Polosky, Marc A.; Shagam, Richard N.; Sullivan, Charles T.

    1999-07-08

    Micromachine accelerometers offer a way to enable critical functions only when a system encounters a particular acceleration environment. This paper describes the optical readout of a surface micromachine accelerometer containing a unique 24-bit code. The readout uses waveguide-based optics, which are implemented as a photonic integrated circuit (PIC). The PIC is flip-chip bonded over the micromachine, for a compact package. The shuttle moves 500 {micro}m during readout, and each code element is 17 {micro}m wide. The particular readout scheme makes use of backscattered radiation from etched features in the accelerometer shuttle. The features are etched to create corner reflectors that return radiation back toward the source for a one bit. For a zero bit, the shuttle is not etched, and the radiation scatters forward, away from the detector. This arrangement provides a large signal difference between a one and zero signal, since the zero signal returns virtually no signal to the detector. It is thus superior to schemes that interrogate the code vertically, which have a limited contrast between a one and a zero. Experimental results are presented for mock shuttle features etched into a silicon substrate. To simulate the shuttle moving under a fixed PIC, a commercially available waveguide source was scanned over the mock code.

  14. Denoising and Trend Terms Elimination Algorithm of Accelerometer Signals

    Peng Zhang

    2016-01-01

    Full Text Available Acceleration-based displacement measurement approach is often used to measure the polish rod displacement in the oilfield pumping well. Random noises and trend terms of the accelerometer signals are the main factors that affect the measuring accuracy. In this paper, an efficient online learning algorithm is proposed to improve the measurement precision of polish rod displacement in the oilfield pumping well. To remove the random noises and eliminate the trend term of accelerometer signals, the ARIMA model and its parameters are firstly derived by using the obtained data of time series of acceleration sensor signals. Secondly, the period of the accelerometer signals is estimated through the Rife-Jane frequency estimation approach based on Fast Fourier Transform. With the obtained model and parameters, the random noises are removed by employing the Kalman filtering algorithm. The quadratic integration of the period is calculated to obtain the polish rod displacement. Moreover, the windowed recursive least squares algorithm is implemented to eliminate the trend terms. The simulation results demonstrate that the proposed online learning algorithm is able to remove the random noises and trend terms effectively and greatly improves the measurement accuracy of the displacement.

  15. Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring

    Chih-Yung Huang

    2016-07-01

    Full Text Available With the development of intelligent machine tools, monitoring the vibration by the accelerometer is an important issue. Accelerometers used for measuring vibration signals during milling processes require the characteristics of high sensitivity, high resolution, and high bandwidth. A commonly used accelerometer is the lead zirconate titanate (PZT type; however, integrating it into intelligent modules is excessively expensive and difficult. Therefore, the micro electro mechanical systems (MEMS accelerometer is an alternative with the advantages of lower price and superior integration. In the present study, we integrated two MEMS accelerometer chips into a low-pass filter and housing to develop a low-cost dual-axis accelerometer with a bandwidth of 5 kHz and a full scale range of ±50 g for measuring machine tool vibration. In addition, a platform for measuring the linearity, cross-axis sensitivity and frequency response of the MEMS accelerometer by using the back-to-back calibration method was also developed. Finally, cutting experiments with steady and chatter cutting were performed to verify the results of comparing the MEMS accelerometer with the PZT accelerometer in the time and frequency domains. The results demonstrated that the dual-axis MEMS accelerometer is suitable for monitoring the vibration of machine tools at low cost.

  16. Quality control methods in accelerometer data processing: identifying extreme counts.

    Carly Rich

    Full Text Available BACKGROUND: Accelerometers are designed to measure plausible human activity, however extremely high count values (EHCV have been recorded in large-scale studies. Using population data, we develop methodological principles for establishing an EHCV threshold, propose a threshold to define EHCV in the ActiGraph GT1M, determine occurrences of EHCV in a large-scale study, identify device-specific error values, and investigate the influence of varying EHCV thresholds on daily vigorous PA (VPA. METHODS: We estimated quantiles to analyse the distribution of all accelerometer positive count values obtained from 9005 seven-year old children participating in the UK Millennium Cohort Study. A threshold to identify EHCV was derived by differentiating the quantile function. Data were screened for device-specific error count values and EHCV, and a sensitivity analysis conducted to compare daily VPA estimates using three approaches to accounting for EHCV. RESULTS: Using our proposed threshold of ≥ 11,715 counts/minute to identify EHCV, we found that only 0.7% of all non-zero counts measured in MCS children were EHCV; in 99.7% of these children, EHCV comprised < 1% of total non-zero counts. Only 11 MCS children (0.12% of sample returned accelerometers that contained negative counts; out of 237 such values, 211 counts were equal to -32,768 in one child. The medians of daily minutes spent in VPA obtained without excluding EHCV, and when using a higher threshold (≥19,442 counts/minute were, respectively, 6.2% and 4.6% higher than when using our threshold (6.5 minutes; p<0.0001. CONCLUSIONS: Quality control processes should be undertaken during accelerometer fieldwork and prior to analysing data to identify monitors recording error values and EHCV. The proposed threshold will improve the validity of VPA estimates in children's studies using the ActiGraph GT1M by ensuring only plausible data are analysed. These methods can be applied to define appropriate EHCV

  17. The Impact of Gait Disability on the Calibration of Accelerometer Output in Adults with Multiple Sclerosis

    Weikert, Madeline; Dlugonski, Deirdre; Suh, Yoojin; Fernhall, Bo; Motl, Robert W.

    2011-01-01

    Accelerometer activity counts have been correlated with energy expenditure during treadmill walking among ambulatory adults with multiple sclerosis (MS). This study examined the effects of gait disability on 1) the association between rates of energy expenditure and accelerometer output in overground walking and 2) the calibration of accelerometer output for quantifying time spent in moderate-to-vigorous physical activity (MVPA) in people with MS. The sample consisted of 24 individuals with M...

  18. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.

  19. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between ±150G with ±0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices

  20. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    Jingcheng Liu; Min Li; Lan Qin; Jun Liu

    2013-01-01

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for ...

  1. Exploring the possibilities for star-tracker assisted calibration of the six individual GOCE accelerometers

    Visser, P N A M

    2008-01-01

    A method has been developed and tested for estimating calibration parameters for the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations. These six accelerometers are part of the gradiometer, which is the prime instrument on board GOCE. It will be shown that by taking appropriate combinations of observations collected by the accelerometers, by modeling acceleration terms caused by gravity gradients from an a priori lo...

  2. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  3. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s2 to 500 m/s2. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  4. Triaxial MEMS accelerometer with screen printed PZT thick film

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard;

    2010-01-01

    Piezoelectric thick films have increasing interest due to the potential high sensitivity and actuation force for MEMS sensors and actuators. The screen printing technique is a promising deposition technique for realizing piezoelectric thick films in the thickness range from 10-100 mu m. In this...... work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction and...

  5. Characterisation of a highly symmetrical miniature capacitive triaxial accelerometer

    Lotters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P.

    1997-01-01

    A highly symmetrical cubic capacitive triaxial accelerometer for biomedical applications has been designed, realised and tested. The sensors are available in two outer dimensions, namely 2×2×2 and 5×5×5 mm3. The devices are mounted on a standard IC package for easy testing. Features of the sensor are a highly symmetrical cubic structure, capacitive coupling of the high frequency input voltage to the seismic mass and the use of the polymers polydimethylsiloxane (PDMS) as spring material betwee...

  6. Polysilicon MEMS accelerometers exposed to shocks: numerical–experimental investigation

    In this work the response of a commercial polysilicon MEMS accelerometer subject to shocks in the range 90–5500 g (g being the gravity acceleration) is studied. In situ measurements are compared with results of numerical simulations, obtained via a two-degrees-of-freedom model of sensor dynamics. It is shown that, despite several sources of nonlinearities, the numerical model can capture the main features of the MEMS transient response. The tested devices did not show malfunctioning, even when subject to acceleration peaks 100 times greater than those characterizing the working regime

  7. Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers

    Szucs, Z; Hodossy, S; Rencz, M; Poppe, A

    2008-01-01

    In this paper vibration combined high temperature cycle tests for packaged capacitive SOI-MEMS accelerometers are presented. The aim of these tests is to provide useful Design for Reliability information for MEMS designers. A high temperature test chamber and a chopper-stabilized read-out circuitry were designed and realized at BME - DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue Vibration Test has been carried out on 5 samples. Statistical evaluation of the test results showed that degradation has started in 3 out of the 5 samples.

  8. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-01-01

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge. PMID:26907287

  9. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers

    Hidehiko Sekiya

    2016-02-01

    Full Text Available In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge.

  10. Micromachined magnetometer-accelerometer for a navigation system

    Cho, Ji-Man; Kim, Kyung S.; An, Seungdo; Park, HoJoon; Hahm, Ghun

    2002-11-01

    A new type of magnetometer-accelerometer is developed with a silicon micromachining. The operation principle of the sensor is based on the well known Lorentz force caused by the interaction of a current and an external magnetic field on a suspended conducting beam. To realize a new resonant micro sensor detecting both acceleration and the geomagnetic field simultaneously, a conducting line is formed on a spring part of a silicon accelerometer having two mass plates. And a new Samsung MEMS fabrication process is developed for this sensor. The process uses a silicon-on-glass (SOG) wafer, an inverted SOG wafer, and a gold-silicon eutectic bonding for the wafer-level hermetic packaging. To operate the sensor, an ac current of its mechanical resonant frequency is driven through the conducting line. Totally 1 mW is consumed in the current driving element. This newly developed sensor is enough for the 10 degree electronic display of the orientation angle and can be used in a portable navigator such as SmartPhones and PDAs that need a small, low cost and low power electronic compass.

  11. Physical activity in adolescents – Accelerometer data reduction criteria

    Toftager, Mette; Breum, Lars; Kristensen, Peter Lund;

    PA outcomes (mean cpm). The following parameters in the data reduction analyses were fixed: 30sec epoch, 24h duration, first registration accepted after 4h, maximum value 20,000cpm, and two activity epochs permitted in blocks of non-wear. Results: Accelerometer data were obtained from a total of 1...... resulted in a higher percentage of participants included. In general we found the most substantial differences in compliance when looking at 10–12h (daily wear time), and 5–7days (number of valid days). Only 4.2% of participants had 7 valid days of 12h wear time, whereas 98.8% of participants had at least...... compared to 570 cpm using 90min non-wear. No systematic differences in PA outcomes were found when comparing the range of days and hours. Discussion: We used a systematic approach to illustrate that even small inconsistencies in accelerometer data reduction can have substantial impact on compliance and PA...

  12. Accelerometer data reduction: A comparison of four reduction algorithms on select outcome variables

    PURPOSE: Accelerometers are recognized as a valid and objective tool to assess free-living physical activity. Despite the widespread use of accelerometers, there is no standardized way to process and summarize data from them, which limits our ability to compare results across studies. This paper a) ...

  13. Exploring the possibilities for star-tracker assisted calibration of the six individual GOCE accelerometers

    Visser, P.N.A.M.

    2008-01-01

    A method has been developed and tested for estimating calibration parameters for the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations. These six accelerometers are part of the gradiometer, which is the prime instrument on

  14. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    Bateman, V.I.; Brown, F.A.; Davie, N.T. [and others

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  15. Influence of allowable interruption period on estimates of accelerometer wear time and sedentary time in older adults

    Mailey, Emily L; Gothe, Neha P.; Wójcicki, Thomas R.; Szabo, Amanda N.; Olson, Erin A.; Mullen, Sean P.; Fanning, Jason T.; Motl, Robert W.; McAuley, Edward

    2013-01-01

    The criteria one uses to reduce accelerometer data can profoundly influence the interpretation of research outcomes. The purpose of this study was to examine the influence of three different interruption periods (i.e., 20, 30, and 60 minutes) on the amount of data retained for analyses and estimates of sedentary time among older adults. Older adults (N=311; Mage=71.1) wore an accelerometer for seven days and reported wear time on an accelerometer log. Accelerometer data were downloaded and sc...

  16. Accelerometer-Based Event Detector for Low-Power Applications

    József Smidla

    2013-10-01

    Full Text Available In this paper, an adaptive, autocovariance-based event detection algorithm is proposed, which can be used with micro-electro-mechanical systems (MEMS accelerometer sensors to build inexpensive and power efficient event detectors. The algorithm works well with low signal-to-noise ratio input signals, and its computational complexity is very low, allowing its utilization on inexpensive low-end embedded sensor devices. The proposed algorithm decreases its energy consumption by lowering its duty cycle, as much as the event to be detected allows it. The performance of the algorithm is tested and compared to the conventional filter-based approach. The comparison was performed in an application where illegal entering of vehicles into restricted areas was detected.

  17. Accelerometer recorder and display system for ambulatory patients

    Berka, Martin; Żyliński, Marek; Niewiadomski, Wiktor; Cybulski, Gerard

    2015-09-01

    This paper presents the design of a compact, wearable, rechargeable acceleration recorder to support long-term monitoring of ambulatory patients with motor disorders, and of software to display and analyze its output. The device consists of a microcontroller, operational amplifier, accelerometer, SD card, indicator LED, rechargeable battery, and associated minor components. It can operate for over a day without charging and can continuously collect data for three weeks without downloading to an outside system, as currently configured. With slight modifications, this period could be extended to several months. The accompanying software provides flexible visualization of the acceleration data over long periods, basic file operations and compression for easier archiving, annotation of segments of interest, and functions for calculation of various parameters and detection of immobility and vibration frequencies. Applications in analysis of gait and other movements are discussed.

  18. Physical activity and energy expenditure measurements using accelerometers in older adults.

    Garatachea, N; Torres Luque, G; González Gallego, J

    2010-01-01

    The purpose of this review is to address methodological issues related to accelerometer-based assessments of physical activity (PA) in older individuals. Special interest is also put on recently updated technology. No definitive evidence exists currently to indicate which are the more valid and reliable accelerometer models for use with older people. When it comes to selecting an accelerometer, issues of affordability, product reliability, monitor size, technical support, and comparability with other studies may be equally as important as the relative validity and reliability of an instrument. The accelerometer should be attached as close as possible to the body's center of mass, and in the case of elders using walking aids, it should be placed on the same body side. Variability due to positioning can be reduced with careful training and supervision. Typically, the sampling period is between 3 and 7 days and it is not yet clear if variability exists between weekdays and weekend in the elderly. It is possible that aging effects on physical and cognitive health may limit the ability of an older adult to be compliant with an accelerometer protocol; in this line many methods have been suggested for increasing compliance to protocols for research studies. Accelerometers can provide reliable information on mobility and objective measurement of PA. These activity monitors have significant advantages when compared with other quantitative methods for measurement of energy expenditure. Accelerometers are currently used mainly in a research setting; however, with recent advances, incorporation into clinical and fitness practice is possible and increasing. PMID:20449530

  19. Triaxial Accelerometer Error Coefficients Identification with a Novel Artificial Fish Swarm Algorithm

    Yanbin Gao

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is one of the state-of-the-art swarm intelligence techniques, which is widely utilized for optimization purposes. Triaxial accelerometer error coefficients are relatively unstable with the environmental disturbances and aging of the instrument. Therefore, identifying triaxial accelerometer error coefficients accurately and being with lower costs are of great importance to improve the overall performance of triaxial accelerometer-based strapdown inertial navigation system (SINS. In this study, a novel artificial fish swarm algorithm (NAFSA that eliminated the demerits (lack of using artificial fishes’ previous experiences, lack of existing balance between exploration and exploitation, and high computational cost of AFSA is introduced at first. In NAFSA, functional behaviors and overall procedure of AFSA have been improved with some parameters variations. Second, a hybrid accelerometer error coefficients identification algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS approaches. This combination leads to maximum utilization of the involved approaches for triaxial accelerometer error coefficients identification. Furthermore, the NAFSA-identified coefficients are testified with 24-position verification experiment and triaxial accelerometer-based SINS navigation experiment. The priorities of MCS-NAFSA are compared with that of conventional calibration method and optimal AFSA. Finally, both experiments results demonstrate high efficiency of MCS-NAFSA on triaxial accelerometer error coefficients identification.

  20. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  1. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration. (paper)

  2. The effect of accelerometer location on the classification of single-site forearm mechanomyograms

    Sejdić Ervin

    2010-06-01

    Full Text Available Abstract Background Recently, pattern recognition methods have been deployed in the classification of multiple activation states from mechanomyogram (MMG signals for the purpose of controlling switching interfaces. Given the propagative properties of MMG signals, it has been suggested that MMG classification should be robust to changes in sensor placement. Nonetheless, this purported robustness remains speculative to date. This study sought to quantify the change in classification accuracy, if any, when a classifier trained with MMG signals from the muscle belly, is subsequently tested with MMG signals from a nearby location. Methods An arrangement of 5 accelerometers was attached to the flexor carpi radialis muscle of 12 able-bodied participants; a reference accelerometer was located over the muscle belly, two peripheral accelerometers were positioned along the muscle's transverse axis and two more were aligned to the muscle's longitudinal axis. Participants performed three classes of muscle activity: wrist flexion, wrist extension and semi-pronation. A collection of time, frequency and time-frequency features were considered and reduced by genetic feature selection. The classifier, trained using features from the reference accelerometer, was tested with signals from the longitudinally and transversally displaced accelerometers. Results Classification degradation due to accelerometer displacement was significant for all participants, and showed no consistent trend with the direction of displacement. Further, the displaced accelerometer signals showed task-dependent de-correlations with respect to the reference accelerometer. Conclusions These results indicate that MMG signal features vary with spatial location and that accelerometer displacements of only 1-2 cm cause sufficient feature drift to significantly diminish classification accuracy. This finding emphasizes the importance of consistent sensor placement between MMG classifier training

  3. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    Jingcheng Liu

    2013-08-01

    Full Text Available A signal mass piezoelectric six-degrees-of-freedom (six-DOF accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.

  4. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  5. A state-the-art report on the development of the piezoelectric accelerometer sensor

    Park, Jee Yun; Oh, Suk Jin; Kim, Kyung Hoh; Kim, Sun Jae; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    A state-of-the art surveys on the application and the manufacturing technology of a piezoelectric accelerometer sensor. An accelerometer sensor is applied to the monitoring of acoustic leak, reactor coolant pump vibration and loose parts in the reactor, and the measurement of vibration and stress of large equipments such as pump, tubes, etc.. The performance of an accelerometer consisted of piezoelectric ceramic, mass, base, case and cable is depend on the characteristics of each component and the assembling method. Sensitivity, linearity and dynamic range, transverse sensitivity, phase response, transient temperature response, frequency response, base strain sensitivity, magnetic sensitivity, acoustic sensitivity, humidity effect and radiation effect must be measured and evaluated for conforming quality of the developed accelerometer sensor. 35 figs., 29 tabs., 38 refs. (Author).

  6. A state-the-art report on the development of the piezoelectric accelerometer sensor

    A state-of-the art surveys on the application and the manufacturing technology of a piezoelectric accelerometer sensor. An accelerometer sensor is applied to the monitoring of acoustic leak, reactor coolant pump vibration and loose parts in the reactor, and the measurement of vibration and stress of large equipments such as pump, tubes, etc.. The performance of an accelerometer consisted of piezoelectric ceramic, mass, base, case and cable is depend on the characteristics of each component and the assembling method. Sensitivity, linearity and dynamic range, transverse sensitivity, phase response, transient temperature response, frequency response, base strain sensitivity, magnetic sensitivity, acoustic sensitivity, humidity effect and radiation effect must be measured and evaluated for conforming quality of the developed accelerometer sensor. 35 figs., 29 tabs., 38 refs. (Author)

  7. Electrostatic accelerometer with bias rejection for Gravitation and Solar System physics

    Lenoir, Benjamin; Foulon, Bernard; Christophe, Bruno; Lamine, Brahim; Reynaud, Serge

    2010-01-01

    Radio tracking of interplanetary probes is an important tool for navigation purposes as well as for testing the laws of physics or exploring planetary environments. The addition of an accelerometer on board a spacecraft provides orbit determination specialists and physicists with an additional observable of great interest: it measures the value of the non-gravitational acceleration acting on the spacecraft, i.e. the departure of the probe from geodesic motion. This technology is now routinely used for geodesy missions in Earth orbits with electrostatic accelerometers. This article proposes a technological evolution which consists in adding a subsystem to remove the bias of an electrostatic accelerometer. It aims at enhancing the scientific return of interplanetary missions in the Solar System, from the point of view of fundamental physics as well as Solar System physics. The main part of the instrument is an electrostatic accelerometer called MicroSTAR, which inherits mature technologies based on ONERA's expe...

  8. CMOS-MEMS Microgravity Accelerometer with High-Precision DC Response Project

    National Aeronautics and Space Administration — This Phase I SBIR effort initiates development of a high-sensitivity low-noise all-silicon CMOS-MEMS accelerometer for quasi-steady measurements of accelerations at...

  9. CMOS-MEMS Microgravity Accelerometer with High-Precision DC Response Project

    National Aeronautics and Space Administration — In this Phase II SBIR project a high-sensitivity low-noise all-silicon CMOS-MEMS accelerometer for quasi-steady measurements of accelerations at sub 1 micro-g...

  10. A Novel Digital Closed Loop MEMS Accelerometer Utilizing a Charge Pump

    Yixing Chu

    2016-03-01

    Full Text Available This paper presents a novel digital closed loop microelectromechanical system (MEMS accelerometer with the architecture and experimental evaluation. The complicated timing diagram or complex power supply in published articles are circumvented by using a charge pump system of adjustable output voltage fabricated in a 2P4M 0.35 µm complementary metal-oxide semiconductor (CMOS process, therefore making it possible for interface circuits of MEMS accelerometers to be integrated on a single die on a large scale. The output bitstream of the sigma delta modulator is boosted by the charge pump system and then applied on the feedback comb fingers to form electrostatic forces so that the MEMS accelerometer can operate in a closed loop state. Test results agree with the theoretical formula nicely. The nonlinearity of the accelerometer within ±1 g is 0.222% and the long-term stability is about 774 µg.

  11. Characteristics of a piezoresistive accelerometer in shock environments up to 150,000 G

    Bateman, V.I.; Davie, N.T.; Brown, F.A.

    1995-03-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our undemanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. Two different Hopkinson bar materials are being used: Titanium and beryllium The in-axis performance of the piezoresistive accelerometer for frequencies of dc-10 kHz and shock magnitudes of up to 150,000 g as determined from measurements with a titanium Hopkinson bar are presented. The beryllium Hopkinson bar configuration is described. Preliminary in-axis characteristics of the piezoresistive accelerometer at a nominal shock level of 50,000 g for a frequency range of DC-30 kHz determined from the beryllium bar are presented.

  12. The use of a beryllium Hopkinson bar to characterize a piezoresistive accelerometer in shock environments

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1996-03-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. In this paper, the beryllium Hopkinson bar configuration with a laser doppler vibrometer as the reference measurement is described. The in-axis performance of the piezoresistive accelerometer for frequencies of dc-50 kHz and shock magnitudes of up to 70,000 g as determined from measurements with a beryllium Hopkinson bar are presented. Preliminary results of characterizations of the accelerometers subjected to cross-axis shocks in a split beryllium Hopkinson bar configuration are presented.

  13. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    National Aeronautics and Space Administration — We propose to design a compact, high-precision, single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Our...

  14. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer

    Matsushima, Akira; Yoshida, Kunihiro; Genno, Hirokazu; Murata, Asuka; Matsuzawa, Setsuko; Nakamura, Katsuya; Nakamura, Akinori; Ikeda, Shu-ichi

    2015-01-01

    Background The aim of this study was to investigate the usefulness of a triaxial accelerometer for the clinical assessment of standing and gait impairment in ataxic patients quantitatively. Fifty-one patients with spinocerebellar ataxia (SCA) or multiple system atrophy with predominant cerebellar ataxia (MSA-C) and 56 healthy control subjects were enrolled. The subjects, with a triaxial accelerometer on their back, were indicated to stand for 30 s in four different conditions (eyes opened or ...

  15. Detection of cavitation behavior using accelerometer and microphone outside of piping at orifice

    Cavitation induced vibration and the consequent erosion of pipes are one aspect of the potential damaging factors in the piping system. In order to prevent such trouble, it is needed to develop a detection method of cavitation. Especially, in a plant system such as nuclear power plants, it is preferable to detect them by measuring outside of pipes during plant operation. In this paper, the detection methods of cavitation using an accelerometer and a microphone were experimentally examined and compared each other. As a result: (1) Output of the accelerometer varied with the cavitation number, and it output voltage increased with development of cavitation. When cavitation occurred, a pulse shaped signal, which might be a shockwave by collapse of cavitation bubbles, was clearly detected. (2) Output distribution of the accelerometer in the flow direction became large where cavitation bubbles collapsed, and output voltage of the accelerometer downstream of the orifice was larger than that of the accelerometer upstream of the orifice. (3) The measurement results with the microphone were similar to those of the accelerometer qualitatively, pulse-shape signals were detected, and difference of output voltages between microphones upstream and downstream of the orifice were measured. In the simultaneous measurements by the accelerometer and the microphone, both sensors detected the shockwave considered to be generated at the same time with a time delay of the microphone. The sound velocity evaluated from the time delay agreed well with the sound velocity in the air. Using the characteristics of the measurement results, cavitation using a microphone without contacting pipes could be performed like an accelerometer mounted on the pipe surface, and cavitation could be detected from the distribution of output voltages in the flow direction even in pipings of a plant without data base to compare. (author)

  16. Feasibility and validity of accelerometer measurements to assess physical activity in toddlers

    De Bourdeaudhuij Ilse

    2011-06-01

    Full Text Available Abstract Background Accelerometers are considered to be the most promising tool for measuring physical activity (PA in free-living young children. So far, no studies have examined the feasibility and validity of accelerometer measurements in children under 3 years of age. Therefore, the purpose of the present study was to examine the feasibility and validity of accelerometer measurements in toddlers (1- to 3-year olds. Methods Forty-seven toddlers (25 boys; 20 ± 4 months wore a GT1M ActiGraph accelerometer for 6 consecutive days and parental perceptions of the acceptability of wearing the monitor were assessed to examine feasibility. To investigate the validity of the ActiGraph and the predictive validity of three ActiGraph cut points, accelerometer measurements of 31 toddlers (17 boys; 20 ± 4 months during free play at child care were compared to directly observed PA, using the Observational System for Recording Physical Activity in Children-Preschool (OSRAC-P. Validity was assessed using Pearson and Spearman correlations and predictive validity using area under the Receiver Operating Characteristic curve (ROC-AUC. Results The feasibility examination indicated that accelerometer measurements of 30 toddlers (63.8% could be included with a mean registration time of 564 ± 62 min during weekdays and 595 ± 83 min during weekend days. According to the parental reports, 83% perceived wearing the accelerometer as 'not unpleasant and not pleasant' and none as 'unpleasant'. The validity evaluation showed that mean ActiGraph activity counts were significantly and positively associated with mean OSRAC-P activity intensity (r = 0.66; p Conclusions The present findings suggest that ActiGraph accelerometer measurements are feasible and valid for quantifying PA in toddlers. However, further research is needed to accurately identify PA intensities in toddlers using accelerometry.

  17. Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms

    Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline

    2014-01-01

    Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. Methods: We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants follow...

  18. Identifying active travel behaviors in challenging environments using GPS, accelerometers and machine learning algorithms

    Katherine eEllis; Suneeta eGodbole; Simon eMarshall; Gert eLanckriet; John eStaudenmayer; Jacqueline eKerr

    2014-01-01

    Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper we present a supervised machine learning method for transportation mode prediction from GPS and accelerometer data. Methods: We collected a dataset of about 150 hours of GPS and accelerometer data from two research assistants following a protocol of prescribe...

  19. Optimal sensor placement for measuring physical activity with a 3D accelerometer

    Boerema, Simone T.; Lex van Velsen; Leendert Schaake; Thijs M. Tönis; Hermens, Hermie J

    2014-01-01

    Accelerometer-based activity monitors are popular for monitoring physical activity. In this study, we investigated optimal sensor placement for increasing the quality of studies that utilize accelerometer data to assess physical activity. We performed a two-staged study, focused on sensor location and type of mounting. Ten subjects walked at various walking speeds on a treadmill, performed a deskwork protocol, and walked on level ground, while simultaneously wearing five ProMove2 sensors wit...

  20. Validation of the Actical Accelerometer in Multiethnic Preschoolers: The Children's Healthy Living (CHL) Program

    Ettienne, Reynolette; Nigg, Claudio R.; Li, Fenfang; Su, Yuhua; McGlone, Katalina; Luick, Bret; Tachibana, Alvin; Carran, Christina; Mercado, Jobel; Novotny, Rachel

    2016-01-01

    This study aimed to determine the validity and reliability of the Actical accelerometer for measuring physical activity (PA) in preschool children of mixed ethnicity, compared with direct observation via a modified System for Observing Fitness Instruction Time (SOFIT) protocol and proxy parental reports (PA Logs). Fifty children in Hawai‘i wore wrist-mounted accelerometers for two 7-day periods with a washout period between each week. Thirty children were concurrently observed using SOFIT. Pa...

  1. Using accelerometers to remotely and automatically characterize behavior in small animals.

    Hammond, Talisin T; Springthorpe, Dwight; Walsh, Rachel E; Berg-Kirkpatrick, Taylor

    2016-06-01

    Activity budgets in wild animals are challenging to measure via direct observation because data collection is time consuming and observer effects are potentially confounding. Although tri-axial accelerometers are increasingly employed for this purpose, their application in small-bodied animals has been limited by weight restrictions. Additionally, accelerometers engender novel complications, as a system is needed to reliably map acceleration to behaviors. In this study, we describe newly developed, tiny acceleration-logging devices (1.5-2.5 g) and use them to characterize behavior in two chipmunk species. We collected paired accelerometer readings and behavioral observations from captive individuals. We then employed techniques from machine learning to develop an automatic system for coding accelerometer readings into behavioral categories. Finally, we deployed and recovered accelerometers from free-living, wild chipmunks. This is the first time to our knowledge that accelerometers have been used to generate behavioral data for small-bodied (<100 g), free-living mammals. PMID:26994177

  2. Use of a Wireless Network of Accelerometers for Improved Measurement of Human Energy Expenditure

    Alexander H. Montoye

    2014-04-01

    Full Text Available Single, hip-mounted accelerometers can provide accurate measurements of energy expenditure (EE in some settings, but are unable to accurately estimate the energy cost of many non-ambulatory activities. A multi-sensor network may be able to overcome the limitations of a single accelerometer. Thus, the purpose of our study was to compare the abilities of a wireless network of accelerometers and a hip-mounted accelerometer for the prediction of EE. Thirty adult participants engaged in 14 different sedentary, ambulatory, lifestyle and exercise activities for five minutes each while wearing a portable metabolic analyzer, a hip-mounted accelerometer (AG and a wireless network of three accelerometers (WN worn on the right wrist, thigh and ankle. Artificial neural networks (ANNs were created separately for the AG and WN for the EE prediction. Pearson correlations (r and the root mean square error (RMSE were calculated to compare criterion-measured EE to predicted EE from the ANNs. Overall, correlations were higher (r = 0.95 vs. r = 0.88, p < 0.0001 and RMSE was lower (1.34 vs. 1.97 metabolic equivalents (METs, p < 0.0001 for the WN than the AG. In conclusion, the WN outperformed the AG for measuring EE, providing evidence that the WN can provide highly accurate estimates of EE in adults participating in a wide range of activities.

  3. Linearity enhancement of scale factor in an optical interrogated micromechanical accelerometer.

    Zhang, Yu; Feng, Lishuang; Wang, Xiao; Wang, Yang

    2016-08-01

    A method to reduce the residual stress of support arms in an optical interrogated micromechanical accelerometer is proposed in order to enhance the linearity of the scale factor of the accelerometer. First, the behavior of residual stress in support arms is analyzed in detail, and the simulation of shape curvature caused by residual stress in aluminum-made support arms is completed using finite element analysis. Then, by comparing two different materials of support arms (aluminum-made and silicon-made support arms), a modified fabrication is introduced in order to reduce the unexpected residual stress in support arms. Finally, based on contrast experiments, the linearity of the scale factor of accelerometers with aluminum-made and silicon-made support arms is measured using the force feedback test system, respectively. Results show that the linearity of the scale factor of the accelerometer with silicon-made support arms is 0.85%, which is reduced about an order of magnitude compared to that of the accelerometer with aluminum-made support arms with the linearity of scale factor of 7.48%; linearity enhancement of the scale factor is validated. This allows accuracy improvement of the optical interrogated micromechanical accelerometer in the application of inertial navigation and positioning. PMID:27505396

  4. Synthesis of the System Modeling and Signal Detecting Circuit of a Novel Vacuum Microelectronic Accelerometer

    Zhengguo Shang

    2009-05-01

    Full Text Available A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %.

  5. Movement prediction using accelerometers in a human population.

    Xiao, Luo; He, Bing; Koster, Annemarie; Caserotti, Paolo; Lange-Maia, Brittney; Glynn, Nancy W; Harris, Tamara B; Crainiceanu, Ciprian M

    2016-06-01

    We introduce statistical methods for predicting the types of human activity at sub-second resolution using triaxial accelerometry data. The major innovation is that we use labeled activity data from some subjects to predict the activity labels of other subjects. To achieve this, we normalize the data across subjects by matching the standing up and lying down portions of triaxial accelerometry data. This is necessary to account for differences between the variability in the position of the device relative to gravity, which are induced by body shape and size as well as by the ambiguous definition of device placement. We also normalize the data at the device level to ensure that the magnitude of the signal at rest is similar across devices. After normalization we use overlapping movelets (segments of triaxial accelerometry time series) extracted from some of the subjects to predict the movement type of the other subjects. The problem was motivated by and is applied to a laboratory study of 20 older participants who performed different activities while wearing accelerometers at the hip. Prediction results based on other people's labeled dictionaries of activity performed almost as well as those obtained using their own labeled dictionaries. These findings indicate that prediction of activity types for data collected during natural activities of daily living may actually be possible. PMID:26288278

  6. Detection of rail corrugation based on fiber laser accelerometers

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong–Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation. (paper)

  7. Detection of rail corrugation based on fiber laser accelerometers

    Huang, Wenzhu; Zhang, Wentao; Du, Yanliang; Sun, Baochen; Ma, Huaixiang; Li, Fang

    2013-09-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong-Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation.

  8. Motion analysis of sun salutation using magnetometer and accelerometer

    Omkar S

    2009-01-01

    Full Text Available Background: Sun salutation is a part of yoga. It consists of a sequence of postures done with synchronized breathing. The practice of few cycles of sun salutation is known to help in maintaining good health and vigor. The practice of sun salutation does not need any extra gadgets. Also it is very much aerobic and invigorates the body and the mind. sun salutation, which comprises 10 postures, involves most of the joints of the body. Understanding the transition phase during motion is a challenging task, and thus, new convenient methods need to be employed. Aims: The purpose of this study was to get an insight into the motion analysis of sun salutation during the transition from each of the 10 postures. Materials and Methods: A device MicroStrain sensor 3DM-GX1, which is a combination of magnetometers, accelerometers, and gyroscopes was used to measure the inclination and the acceleration of the body along the three axes. The acceleration obtained was then separated into gravitational and kinematic components. Results and Conclusions: The value of the gravitational component helps us to understand the position of the body and the kinematic component helps us to analyze the grace of the motion.

  9. Optimising Performance of a Cantilever-type Micro Accelerometer Sensor

    B.P. Joshi

    2007-05-01

    Full Text Available A technique for optimising performance of cantilever-type micro acceleration sensor hasbeen developed. Performance of a sensor is judged mainly by its sensitivity and bandwidth.Maximising product of these two important parameters of inertial sensors helps to optimise thesensor performance. It is observed that placement of a lumped mass (add-mass on the sensor'sproof-mass helps to control both sensitivity and the first resonant frequency of the cantileverstructure to the designer's choice. Simulation and modelling of various dimensions of rectangularstructures for acceleration sensor with this novel add-mass technique are discussed. CoventorwareMEMSCAD has been used to model, simulate, and carry out FEM analysis. A simple analyticalmodel is discussed to elaborate the mechanics of cantilever-type micro accelerometer. Thecomparison of the results obtained from analytical model and the finite element simulations revealthese to be in good agreement. The advantages of this technique for choosing the two mostimportant sensor parameters (i.e., sensitivity and bandwidth of an inertial sensor are brought out.

  10. Classification of knee arthropathy with accelerometer-based vibroarthrography.

    Moreira, Dinis; Silva, Joana; Correia, Miguel V; Massada, Marta

    2016-01-01

    One of the most common knee joint disorders is known as osteoarthritis which results from the progressive degeneration of cartilage and subchondral bone over time, affecting essentially elderly adults. Current evaluation techniques are either complex, expensive, invasive or simply fails into detection of small and progressive changes that occur within the knee. Vibroarthrography appeared as a new solution where the mechanical vibratory signals arising from the knee are recorded recurring only to an accelerometer and posteriorly analyzed enabling the differentiation between a healthy and an arthritic joint. In this study, a vibration-based classification system was created using a dataset with 92 healthy and 120 arthritic segments of knee joint signals collected from 19 healthy and 20 arthritic volunteers, evaluated with k-nearest neighbors and support vector machine classifiers. The best classification was obtained using the k-nearest neighbors classifier with only 6 time-frequency features with an overall accuracy of 89.8% and with a precision, recall and f-measure of 88.3%, 92.4% and 90.1%, respectively. Preliminary results showed that vibroarthrography can be a promising, non-invasive and low cost tool that could be used for screening purposes. Despite this encouraging results, several upgrades in the data collection process and analysis can be further implemented. PMID:27225550

  11. BepiColombo ISA accelerometer: ready for launch

    Francesco, Santoli; Valerio, Iafolla; Emiliano, Fiorenza; Carlo, Lefevre; Lucchesi David, M.; Marco, Lucente; Carmelo, Magnafico; Sergio, Nozzoli; Roberto, Peron

    2016-04-01

    To be launched in 2017, ESA mission BepiColombo will perform a thorough study of the planet Mercury and its environment. Among the wide range of its scientific objectives, an important set is constituted by the so-called Radio Science Experiments (RSE), which will study the gravitational field and rotation of the planet, and will perform very precise tests of general relativity theory. The fulfilment of these scientific objectives will be made possible by a precise orbit determination of the Mercury Planetary Orbiter (MPO), at the same time estimating a number of relevant parameters. In order to reach the required level of accuracy in recovering these parameters, the data coming from the high-sensitivity ISA (Italian Spring Accelerometer) instrument onboard the MPO probe will be used: the first time for a deep-space probe. After a long path of design and development, the instrument is now ready for integration into MPO. Following a brief description of the RSE in the context of the mission, the instrument and its capabilities will be reviewed. Emphasis will be given to the foreseen strategies for its operation in the various phases of the mission, along with the manifold calibration possibilities.

  12. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.

    Dustin J Tracy

    Full Text Available Recent interest in sedentary behavior and technological advances expanded use of watch-size accelerometers for continuous monitoring of physical activity (PA over extended periods (e.g., 24 h/day for 1 week in studies conducted in natural living environment. This approach necessitates the development of new methods separating bedtime rest and activity periods from the accelerometer recordings. The goal of this study was to develop a decision tree with acceptable accuracy for separating bedtime rest from activity in youth using accelerometer placed on waist or wrist. Minute-by-minute accelerometry data were collected from 81 youth (10-18 years old, 47 females during a monitored 24-h stay in a whole-room indirect calorimeter equipped with a force platform covering the floor to detect movement. Receiver Operating Characteristic (ROC curve analysis was used to determine the accelerometer cut points for rest and activity. To examine the classification differences, the accelerometer bedtime rest and activity classified by the algorithm in the development group (n = 41 were compared with actual bedtime rest and activity classification obtained from the room calorimeter-measured metabolic rate and movement data. The selected optimal bedtime rest cut points were 20 and 250 counts/min for the waist- and the wrist-worn accelerometer, respectively. The selected optimal activity cut points were 500 and 3,000 counts/min for waist and wrist-worn accelerometers, respectively. Bedtime rest and activity were correctly classified by the algorithm in the validation group (n = 40 by both waist- (sensitivity: 0.983, specificity: 0.946, area under ROC curve: 0. 872 and wrist-worn (0.999, 0.980 and 0.943 accelerometers. The decision tree classified bedtime rest correctly with higher accuracy than commonly used automated algorithm for both waist- and wrist-warn accelerometer (all p<0.001. We concluded that cut points developed and validated for waist- and wrist

  13. Validation of a novel smartphone accelerometer-based knee goniometer.

    Ockendon, Matthew; Gilbert, Robin E

    2012-09-01

    Loss of full knee extension following anterior cruciate ligament surgery has been shown to impair knee function. However, there can be significant difficulties in accurately and reproducibly measuring a fixed flexion of the knee. We studied the interobserver and the intraobserver reliabilities of a novel, smartphone accelerometer-based, knee goniometer and compared it with a long-armed conventional goniometer for the assessment of fixed flexion knee deformity. Five healthy male volunteers (age range 30 to 40 years) were studied. Measurements of knee flexion angle were made with a telescopic-armed goniometer (Lafayette Instrument, Lafayette, IN) and compared with measurements using the smartphone (iPhone 3GS, Apple Inc., Cupertino, CA) knee goniometer using a novel trigonometric technique based on tibial inclination. Bland-Altman analysis of validity and reliability including statistical analysis of correlation by Pearson's method was undertaken. The iPhone goniometer had an interobserver correlation (r) of 0.994 compared with 0.952 for the Lafayette. The intraobserver correlation was r = 0.982 for the iPhone (compared with 0.927). The datasets from the two instruments correlate closely (r = 0.947) are proportional and have mean difference of only -0.4 degrees (SD 3.86 degrees). The Lafayette goniometer had an intraobserver reliability +/- 9.6 degrees. The interobserver reliability was +/- 8.4 degrees. By comparison the iPhone had an interobserver reliability +/- 2.7 degrees and an intraobserver reliability +/- 4.6 degrees. We found the iPhone goniometer to be a reliable tool for the measurement of subtle knee flexion in the clinic setting. PMID:23150162

  14. A Low-Noise DC Seismic Accelerometer Based on a Combination of MET/MEMS Sensors

    Alexander Neeshpapa

    2014-12-01

    Full Text Available Molecular-electronic transducers (MET have a high conversion coefficient and low power consumption, and do not require precision mechanical components thus allowing the construction of cost- and power-efficient seismic accelerometers. Whereas the instrumental resolution of a MET accelerometer within the 0.1–100 Hz frequency range surpasses that of the best Micro-Electro Mechanical Systems (MEMS and even some force-balanced accelerometers, the fundamental inability to register gravity or, in other words, zero frequency acceleration, significantly constrains the further spread of MET-based accelerometers. Ways of obviating this inherent zero frequency insensitivity within MET technology have so far, not been found. This article explores a possible approach to the construction of a hybrid seismic accelerometer combining the superb performance of a MET sensor in the middle and high frequency range with a conventional on chip MEMS accelerometer covering the lower frequencies and gravity. Though the frequency separation of a signal is widely used in various applications, the opposite task, i.e., the combining of two signals with different bandwidths is less common. Based on theoretical research and the analysis of actual sensors’ performance, the authors determined optimal parameters for building a hybrid sensor. Description and results for implementation of the hybrid sensor are given in the Experimental section of the article. Completing a MET sensor with a cost-effective MEMS permitted the construction of a low noise DC accelerometer preserving the noise performance of a MET sensing element. The work presented herein may prove useful in designing other combined sensors based on different technologies.

  15. Temperature insensitive all-fiber accelerometer using a photonic crystal fiber long-period grating interferometer

    Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar

    2012-04-01

    Fiber-optic accelerometers have attracted great attention in recent years due to the fact that they have many advantages over electrical counterparts because all-fiber accelerometers have the capabilities for multiplexing to reduce cabling and to transmit signals over a long distance. They are also immune to electromagnetic interference. We propose and develop a compact and robust photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) that can be implemented as an accelerometer for measurements of vibration and displacement. To excite core mode to couple out with cladding modes, two long-period gratings (LPGs) with identical transmission spectra are needed to be written in an endless single-mode PCF using a CO2 laser. The first LPG can couple a part of core mode to several cladding modes. After the light beams travel at different speeds over a certain length of the core and cladding, the cladding modes will be recoupled back to the core when they meet the second LPG, resulting in interference between the core mode and cladding modes. Dynamic strain is introduced to the PCF-MZI fiber segment that is bonded onto a spring-mass system. The shift of interference fringe can be measured by a photodetector, and the transformed analog voltage signal is proportional to the acceleration of the sensor head. Based on simulations of the PCF-MZI accelerometer, we can get a sensitivity of ~ 0.08 nm/g which is comparable with fiber Bragg grating (FBG) accelerometers. The proposed accelerometer has a capability of temperature insensitivity; therefore, no thermal-compensation scheme is required. Experimental results indicate that the PCF-MZI accelerometer may be a good candidate sensor for applications in civil engineering infrastructure and aeronautical platforms.

  16. Does a waist-worn ActiGraph accelerometer quantify community ambulation in persons with multiple sclerosis?

    Jacob J. Sosnoff, PhD; Michael J. Socie, MS; Morgan K. Boes, MS; Brian M. Sandroff, MS; Robert W. Motl, PhD

    2012-01-01

    Accelerometry has been recognized as a method of objectively measuring community ambulation in persons with multiple sclerosis (MS). However, the assumption that walking itself serves as a major contributor to the accelerometer signal has yet to be tested. This study examined the assumption that community-based walking is a primary contributor to accelerometer output in MS. Ambulatory persons (5 males/17 females; 13 without aid/9 with aid) with MS wore a triaxial accelerometer (ActiGraph GT3X...

  17. Pyroshock data acquisition-recent developments using P/R and P/E accelerometers and isolators

    Bateman, Vesta I.

    2002-05-01

    Mechanical isolators have been developed for piezoresistive and piezoelectric accelerometers to mitigate high frequency shocks before they reach the accelerometer because the high frequency pyroshocks may cause the accelerometer to resonate and/or break. Several commercial mechanically isolated accelerometers are available to the general public and their characteristics have been studied using Hopkinson bar test techniques. The in-axis response of these devices will be compared. Cross-axis response will be presented for one device. Additionally, pyroshock and ballistic shock measurements, performed by international organizations, will be presented for several isolators.

  18. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  19. Utility of Accelerometers to Measure Physical Activity in Children Attending an Obesity Treatment Intervention

    Wendy Robertson

    2011-01-01

    Full Text Available Objectives. To investigate the use of accelerometers to monitor change in physical activity in a childhood obesity treatment intervention. Methods. 28 children aged 7–13 taking part in “Families for Health” were asked to wear an accelerometer (Actigraph for 7-days, and complete an accompanying activity diary, at baseline, 3-months and 9-months. Interviews with 12 parents asked about research measurements. Results. Over 90% of children provided 4 days of accelerometer data, and around half of children provided 7 days. Adequately completed diaries were collected from 60% of children. Children partake in a wide range of physical activity which uniaxial monitors may undermonitor (cycling, nonmotorised scootering or overmonitor (trampolining. Two different cutoffs (4 METS or 3200 counts⋅min-1 for minutes spent in moderate and vigorous physical activity (MVPA yielded very different results, although reached the same conclusion regarding a lack of change in MVPA after the intervention. Some children were unwilling to wear accelerometers at school and during sport because they felt they put them at risk of stigma and bullying. Conclusion. Accelerometers are acceptable to a majority of children, although their use at school is problematic for some, but they may underestimate children's physical activity.

  20. Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer

    马铭骏; 金仲和; 刘义冬; 马铁英

    2015-01-01

    The noise of closed loop micro-electromechanical systems (MEMS) capacitive accelerometer is treated as one of the significant performance specifications. Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise, but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied, especially their behaviors with different electronic parameters. In this work, a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop, and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points, such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape. The bias instability changes as a consequence. With appropriate parameters settings, the 670 Hz resonant frequency accelerometer can reach resolution of 2.6μg/Hz at 2 Hz and 6 µg bias instability, and 1300 Hz accelerometer can achieve 5μg/Hz at 2 Hz and 31 µg bias instability. Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.

  1. A novel sandwich capacitive accelerometer with a symmetrical structure fabricated from a D-SOI wafer

    This paper presents a novel sandwich capacitance accelerometer with a symmetrical double-sided beam-mass structure. The symmetrical beam-mass structure is fabricated from a double-device-layer silicon-on-insulate (D-SOI) wafer. The proof mass is suspended by eight beams at the corners on both sides. The beams are fabricated at the device layers of the SOI wafer; the cross-section of the beams is a standard trapezoid. The thickness of the beams can be well controlled because it is determined by the thickness of the device layer in the SOI wafer, and there is no dry etching process in the accelerometer fabrication. The resonance frequency of the developed accelerometer is measured in an open-loop system by a network analyzer. The quality factor and the resonant frequency are 18 and 812 Hz, respectively. The accelerometer has an opened-loop capacitance sensitivity of 8.7 pF g−1, a closed-loop sensitivity of 1.39 V g−1 and a nonlinearity of 0.49% over the range of 1 g. The measured input, referred to as the noise floor of the accelerometers, with an interface circuit is 2.4 µg (√Hz)−1 (0–100 Hz). (paper)

  2. Characteristics of a piezoresistive accelerometer in high frequency, high shock environments

    Bateman, V.I.; Davie, N.T.; Brown, F.A.

    1993-12-31

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer with and without mechanical isolation in the high frequency, high shock environments where measurements are being made. Two different Hopkinson bar materials are being used: titanium and beryllium. The characteristics of the piezoresistive accelerometer for frequencies of DC-10 kHz and shock magnitudes of up to 4,000 g as determined from measurements with a titanium Hopkinson bar are presented. The SNL uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. These characteristics have been verified by the calibration of the Hopkinson bar used for accelerometer testing. The beryllium Hopkinson bar configuration is described. Preliminary characteristics of the piezoresistive accelerometer at a nominal shock level of 17,000 g for a frequency range of DC-50 kHz are presented.

  3. A novel micro-accelerometer with adjustable sensitivity based on resonant tunnelling diodes

    Resonant tunnelling diodes (RTDs) have negative differential resistance effect, and the current-voltage characteristics change as a function of external stress, which is regarded as meso-piezoresistance effect of RTDs. In this paper, a novel micro-accelerometer based on AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs RTDs is designed and fabricated to be a four-beam-mass structure, and an RTD-Wheatstone bridge measurement system is established to test the basic properties of this novel accelerometer. According to the experimental results, the sensitivity of the RTD based micro-accelerometer is adjustable within a range of 3 orders when the bias voltage of the sensor changes. The largest sensitivity of this RTD based micro-accelerometer is 560.2025 mV/g which is about 10 times larger than that of silicon based micro piezoresistive accelerometer, while the smallest one is 1.49135 mV/g. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. A novel micro-accelerometer with adjustable sensitivity based on resonant tunnelling diodes

    Xiong Ji-Jun; Mao Hai-Yang; Zhang Wen-Dong; Wang Kai-Qun

    2009-01-01

    Resonant tunnelling diodes (RTDs) have negative differential resistance effect, and the current-voltage charac-teristics change as a function of external stress, which is regarded as meso-piezoresistance effect of RTDs. In this paper, a novel micro-accelerometer based on AlAs/GaAs/Ino.1Gao.9As/GaAs/AlAs RTDs is designed and fabricated to be a four-beam-mass structure, and an RTD-Wheatstone bridge measurement system is established to test the ba-sic properties of this novel accelerometer. According to the experimental results, the sensitivity of the RTD based micro-accelerometer is adjustable within a range of 3 orders when the bias voltage of the sensor changes. The largest sensitivity of this RTD based micro-accelerometer is 560.2025 mV/g which is about 10 times larger than that of silicon based micro piezoresistive accelerometer, while the smallest one is 1.49135 mV/g.

  5. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  6. Theoretical analysis and concept demonstration of a novel MOEMS accelerometer based on Raman-Nath diffraction

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2012-01-01

    The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman-Nath diffraction are presented.The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers.The fundamental theories and principles of the device are discussed in detail,a 3D finite element simulation of the flexural plate wave delay line oscillator is provided,and the operation frequency around 40 MHz is calculated.Finally,a lecture experiment is performed to demonstrate the feasibility of the device.This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation,and has great potential for various applications.

  7. Theoretical natural frequency of the CTN-10-3/92 accelerometer

    The compression CTN-10-3/92 accelerometer model from ISCTN was design in 1992 and constructed in 1994. Its electrochemical characteristics was defined experimentally and reported in 1995-96 publications. The accelerometer answer has been compare with industrial models of the B and K Danish firm, with successful results, and has been used in measuring practices,also with successful results on validation, by the GDVM working group of the ISCTN The natural frequency of the CTN-10-3/92 accelerometer model calculations are essentially executed for uses requirements satisfaction, consistent in specifying the working tool to rectify and improve the design. The work involve a discussion of the transducer general elastic system and the design. The work involve a discussion of transducer general elastic system and the determination of it resonance frequency

  8. Suitability of Using the Accelerometer for Impulse Measurement of a Pulse Combustion Tube

    Wahid, Mazlan A.; Ujir, Mohd Haffis; Afifi, Hishamuddin; Mohd Sies, Mohsin

    2010-06-01

    An experimental study of impulse produced by a pulse combustion tube was done to compare between the methods of pendulum and accelerometer for impulse measurement. Stoichiometric mixtures of methane and propane were studied with varying dilution percentages of Nitrogen. Without obstacles, all mixtures exhibit deflagration. To induce detonation, obstacles were used. Detonation occurred for dilution percentage of 42% and lower. From the results, pendulum method always gives higher impulse measurement in deflagration regime while the accelerometer method gives higher results for detonation. The accelerometer method is not suitable for deflagration due to inaccuracies in determining pressure peaks from the measurement. However, it is suitable for studying individual pulses in detonation due to the presence of distinct pressure peaks.

  9. Application of Novel Rotation Angular Model for 3D Mouse System Based on MEMS Accelerometers

    QIAN Li; CHEN Wen-yuan; XU Guo-ping

    2009-01-01

    A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems (MEMS) accelerometers (instead of gyroscope), which is employed in 3D mouse system. To sense 3D angular motion, the static property of MEMS accelerometer, sensitive to gravity acceleration, is exploited. With the three outputs of configured accelerometers, the proposed model is implemented to get the rotary motion of the rigid object. In order to validate the effectiveness of the proposed model, an input device is developed with the configuration of the scheme. Experimental results show that a simulated 3D cube can accurately track the rotation of the input device. The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.

  10. Note: A balloon-borne accelerometer technique for measuring atmospheric turbulence

    Marlton, Graeme J.; Giles Harrison, R.; Nicoll, Keri A.; Williams, Paul D.

    2015-01-01

    A weather balloon and its suspended instrument package behave like a pendulum with a moving pivot. This dynamical system is exploited here for the detection of atmospheric turbulence. By adding an accelerometer to the instrument package, the size of the swings induced by atmospheric turbulence can be measured. In test flights, strong turbulence has induced accelerations greater than 5g, where g = 9.81 m s-2. Calibration of the accelerometer data with a vertically orientated lidar has allowed eddy dissipation rate values of between 10-3 and 10-2 m2 s-3 to be derived from the accelerometer data. The novel use of a whole weather balloon and its adapted instrument package can be used as a new instrument to make standardized in situ measurements of turbulence.

  11. Measuring the needle lift and return timing of a CRDI injector using an accelerometer

    Choong Hoon Lee

    2014-10-01

    Full Text Available The needle lift and return timing of a CRDI (common rail direct injection injector were investigated using an accelerometer and the Bosch injection rate measurement method. The Bosch method was used to measure the fuel injection rate shape when fuel was injected with several patterns. An accelerometer was mounted on the outside of the injector to catch the needle lift and return timing of the injector according to the switching signal of the injector driving voltage. The accelerometer accurately caught the timing of the injector needle lift and return for a single-injection pattern, but it could not for the second or third injection when multiple injections occurred. Only the first needle lift timing of the injector was caught with the injection rate shape obtained from the Bosch method, however, this method cannot identify any other lift or return timing values after the first lift timing.

  12. Cable force monitoring system of cable stayed bridges using accelerometers inside mobile smart phone

    Zhao, Xuefeng; Yu, Yan; Hu, Weitong; Jiao, Dong; Han, Ruicong; Mao, Xingquan; Li, Mingchu; Ou, Jinping

    2015-03-01

    Cable force is one of the most important parameters in structural health monitoring system integrated on cable stayed bridges for safety evaluation. In this paper, one kind of cable force monitoring system scheme was proposed. Accelerometers inside mobile smart phones were utilized for the acceleration monitoring of cable vibration. Firstly, comparative tests were conducted in the lab. The test results showed that the accelerometers inside smartphones can detect the cable vibration, and then the cable force can be obtained. Furthermore, there is good agreement between the monitoring results of different kinds of accelerometers. Finally, the proposed cable force monitoring system was applied on one cable strayed bridge structure, the monitoring result verified the feasibility of the monitoring system.

  13. Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers.

    Lu, Qianbo; Wang, Chen; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang; Liu, Dong; Yang, Yongying

    2016-04-18

    Cross-axis sensitivity of single-axis optomechanical accelerometers, mainly caused by the asymmetric structural design, is an essential issue primarily for high performance applications, which has not been systematically researched. This paper investigates the generating mechanism and detrimental effects of the cross-axis sensitivity of a high resoluion single-axis optomechanical accelerometer, which is composed of a grating-based cavity and an acceleration sensing chip consisting of four crab-shaped cantilevers and a proof mass. The modified design has been proposed and a prototype setup has been built based on the model of cross-axis sensitivity in optomechanical accelerometers. The characterization of the cross-axis sensitivity of a specific optomechanical accelerometer is quantitatively discussed for both mechanical and optical components by numerical simulation and theoretical analysis in this work. The analysis indicates that the cross-axis sensitivity decreases the contrast ratio of the interference signal and the acceleration sensitivity, as well as giving rise to an additional optical path difference, which would impact the accuracy of the accelerometer. The improved mechanical design is achieved by double side etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer to move the center of the proof mass to the support plane. The experimental results demonstrate that the modified design with highly symmetrical structure can suppress the cross-axis sensitivity significantly without compromising the sensitivity and resolution. The cross-axis sensitivity defined by the contrast ratio of the output signal drops to 2.19% /0.1g from 28.28%/0.1g under the premise that the acceleration sensitivity of this single-axis optomechanical accelerometer remains 1162.45V/g and the resolution remains 1.325μg. PMID:27137337

  14. RAPID COMMUNICATION: Effect of noise on accelerometer vector measurement in an ideal tri-axial system

    De Freitas, J. M.

    2010-04-01

    A new probability density function which is the direct extension of the Maxwell distribution has been given. The distribution describes the effect of signal plus noise in a tri-axial system of accelerometers. It is shown that an excitation along one axis of a perfectly aligned orthogonal system of accelerometers leads to an apparent angular misalignment in the measured signal when there is random noise in the other two axes. The amplitude distribution with no signal in two axes is the direct analogue of the Rice distribution. The mean and variance of the new distribution are provided.

  15. Compact FBG diaphragm accelerometer based on L-shaped rigid cantilever beam

    Yinyan Weng; Xueguang Qiao; Zhongyao Feng; Manli Hu; Jinghua Zhang; YangYang

    2011-01-01

    A compact fiber Bragg grating (FBG) diaphragm accelerometer based on L-shaped rigid cantilever beam is proposed and experimentally demonstrated. The sensing system is based on the integration of a flat diaphragm and an L-shaped rigid cantilever beam. The FBG is pre-tensioned and the two side points are fixed, efficiently avoiding the unwanted chirp effect of grating. Dynamic vibration measurement shows that the proposed FBG diaphragm accelerometer provides a wide frequency response range (0-110 Hz) and an extremely high sensitivity (106.5 pm/g), indemnifying it as a good candidate for embedding structural health monitoring and seismic wave measurement.%A compact fiber Bragg grating (FBG) diaphragm accelerometer based on L-shaped rigid cantilever beam is proposed and experimentally demonstrated.The sensing system is based on the integration of a flat diaphragm and an L-shaped rigid cantilever beam.The FBG is pre-tensioned and the two side points are fixed,efficiently avoiding the unwanted chirp effect of grating.Dynamic vibration measurement shows that the proposed FBG diaphragm accelerometer provides a wide frequency response range (0-110 Hz) and an extremely high sensitivity (106.5 pm/g),indentifying it as a good candidate for embedding structural health monitoring and seismic wave measurement.In the past few decades,accelerometers based on fiber Bragg grating (FBG) have attracted a great deal of interest from researchers and engineers because they play a vital role in vibration measurements.In recent years,FBG accelerometers have been more and more applied in structural health monitoring[1-3) and seismic wave measurement[4-6].This study concerns about the development of geophones composed of FBG accelerometers in seismic exploration.The main frequency of geophones in seismic wave measurement of oil and gas exploration is usually below 100 Hz.An FBG-based accelerometer consisting of a mass resting on a layer of compliant material supported by a rigid base plate

  16. An Accelerometer Based Instrumentation of the Golf Club: Measurement and Signal Analysis

    Grober, Robert D.

    2010-01-01

    Two accelerometers are used to measure the motion of the golf club. The accelerometers are mounted in the shaft of the golf club. Each measures the acceleration along the axis of the shaft of the golf club. Interpreting the measurement with the context of the double pendulum model of the golf swing, it is useful to resolve the resulting signals into differential and common mode components. The differential mode is a measure of the rotational kinetic energy of the golf club, and this can be us...

  17. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements

    Wang, Yiwei; Nickel, Barry; Rutishauser, Matthew; Bryce, Caleb M; Williams, Terrie M; Elkaim, Gabriel; Wilmers, Christopher C.

    2015-01-01

    Background Accelerometers are useful tools for biologists seeking to gain a deeper understanding of the daily behavior of cryptic species. We describe how we used GPS and tri-axial accelerometer (sampling at 64 Hz) collars to monitor behaviors of free-ranging pumas (Puma concolor), which are difficult or impossible to observe in the wild. We attached collars to twelve pumas in the Santa Cruz Mountains, CA from 2010-2012. By implementing Random Forest models, we classified behaviors in wild pu...

  18. Tracking of Physical Activity with Accelerometers Over a Two-year Time Period

    Dencker, Magnus; Tanha, Tina; Wollmer, Per;

    2013-01-01

    BACKGROUND: Limited data exists of tracking and changes in accelerometer measured physical activity in children. METHODS: Physical activity was assessed by accelerometers for four days in 167 children (boys n=90, girls n=77), aged 9.8±0.6 years. Follow-up measurement was made 2.0±0.1 yrs later...... (range 1.9-2.1 yrs). General physical activity (GPA) was defined as mean count/minute. Minutes of inactivity, light- moderate- and vigorous physical activity (LMVPA), moderate and vigorous physical activity (MVPA) and vigorous physical activity (VPA) per day were calculated both as absolute values and as...

  19. Development of multiple performance indices and system parameter study for the design of a MEMS accelerometer

    For the design of a MEMS accelerometer, proper performance indices should be defined and employed. Performance indices are obtained using either an experimental method or a numerical method. In the present study, a vibration analysis model of a MEMS accelerometer is introduced to calculate three performance indices: sensitivity, measurable acceleration range, and measurable frequency range. The accuracy of the vibration analysis model is first validated by comparing its modal and transient results with those of a commercial finite element code. Measurable acceleration and frequency ranges versus allowable errors for electrical and mechanical sensitivities are obtained and the effects of system parameter variations on the three performance indices are investigated

  20. GOCE gradiometer: estimation of biases and scale factors of all six individual accelerometers by precise orbit determination

    Visser, P.N.A.M.

    2008-01-01

    A method has been implemented and tested for estimating bias and scale factor parameters for all six individual accelerometers that will fly on-board of GOCE and together form the so-called gradiometer. The method is based on inclusion of the individual accelerometer observations in precise orbit de

  1. Identification of Capacitive MEMS Accelerometer Structure Parameters for Human Body Dynamics Measurements

    Vincas Benevicius

    2013-08-01

    Full Text Available Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model’s response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.

  2. A novel class of MEMS accelerometers for guidance and control of gun-fired munitions

    Rastegar, Jahangir; Feng, Dake; Pereira, Carlos M.

    2015-05-01

    The state of art in shock resistant MEMS accelerometer design is to reduce the size of the proof-mass, thereby reducing the generated forces and moments due to shock loading. Physical stops are also provided to limit proof-mass motion to prevent damage to various moving components. The reduction of the proof-mass size reduces the sensor sensitivity. In addition, to increase the sensor dynamic response, proof-mass motion needs to be minimally damped, resulting in a significant sensor settling time after experiencing a high shock loading such as those experienced by gun-fired munitions during firing. The settling time is particularly important for accelerometers that are used in gun-fired munitions and mortars for navigation and guidance. This paper describes the development of a novel class of accelerometers that are provided with the means of locking the sensor proof-mass in its "null" position when subjected to acceleration levels above prescribed thresholds, thereby protecting the moving parts of the accelerometer. In munitions applications, the proof-mass is thereby locked in its null position during the firing and released during the flight to begin to measure flight acceleration with minimal settling time. Details of the design and operation of the developed sensors and results of their prototyping and testing are presented. The application of the developed technology to other types of inertial sensors and devices is discussed.

  3. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life

    Alessandro Tognetti

    2015-11-01

    Full Text Available Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities. The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively. In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints.

  4. Comparison of Yamax pedometer and GT3X accelerometer steps in a free-living sample

    Our objective was to compare steps detected by the Yamax pedometer (PEDO) versus the GT3X accelerometer (ACCEL) in free-living adults. Daily PEDO and ACCEL steps were collected from a sample of 23 overweight and obese participants (18 females; mean +/- sd: age = 52.6 +/- 8.4 yr.; body mass index = 3...

  5. Validation of two accelerometers to determine mechanical loading of physical activities in children.

    Meyer, Ursina; Ernst, Dominique; Schott, Silvia; Riera, Claudia; Hattendorf, Jan; Romkes, Jacqueline; Granacher, Urs; Göpfert, Beat; Kriemler, Susi

    2015-01-01

    The purpose of this study was to assess the validity of accelerometers using force plates (i.e., ground reaction force (GRF)) during the performance of different tasks of daily physical activity in children. Thirteen children (10.1 (range 5.4-15.7) years, 3 girls) wore two accelerometers (ActiGraph GT3X+ (ACT), GENEA (GEN)) at the hip that provide raw acceleration signals at 100 Hz. Participants completed different tasks (walking, jogging, running, landings from boxes of different height, rope skipping, dancing) on a force plate. GRF was collected for one step per trial (10 trials) for ambulatory movements and for all landings (10 trials), rope skips and dance procedures. Accelerometer outputs as peak loading (g) per activity were averaged. ANOVA, correlation analyses and Bland-Altman plots were computed to determine validity of accelerometers using GRF. There was a main effect of task with increasing acceleration values in tasks with increasing locomotion speed and landing height (P children, although they systematically overestimate GRF. PMID:25620031

  6. A novel class of MEMS accelerometers for very high-G munitions environment

    Rastegar, Jahangir; Feng, Dake

    2016-05-01

    The state of art in shock resistant MEMS accelerometer design is to reduce the size of the proof-mass, thereby reducing the generated forces and moments due to shock loading. Physical stops are also provided to limit proof-mass motion to prevent damage to various moving components. The reduction of the proof-mass size reduces the sensor sensitivity. In addition, to increase the sensor dynamic response, proof-mass motion needs to be minimally damped, resulting in a significant sensor settling time after experiencing a high shock loading such as those experienced by gun-fired munitions during firing. The settling time is particularly important for accelerometers that are used in gun-fired munitions and mortars for navigation and guidance. This paper describes the development of a novel class of accelerometers that are provided with the means of locking the sensor proof-mass in its "null" position when subjected to acceleration levels above a prescribed threshold, thereby protecting the moving parts of the accelerometer. In munitions applications, the proof-mass is thereby locked in its null position during the firing and is released during the flight to measure flight acceleration with minimal settling time. Details of the design and operation of the developed sensors and results of their prototyping and testing are presented. The application of the developed technology to other types of inertial sensors and devices is discussed.

  7. Using an inertial navigation algorithm and accelerometer to monitor chest compression depth during cardiopulmonary resuscitation.

    Boussen, Salah; Ibouanga-Kipoutou, Harold; Fournier, Nathalie; Raboutet, Yves Godio; Llari, Maxime; Bruder, Nicolas; Arnoux, Pierre Jean; Behr, Michel

    2016-09-01

    We present an original method using a low cost accelerometer and a Kalman-filter based algorithm to monitor cardiopulmonary resuscitation chest compressions (CC) depth. A three-axis accelerometer connected to a computer was used during CC. A Kalman filter was used to retrieve speed and position from acceleration data. We first tested the algorithm for its accuracy and stability on surrogate data. The device was implemented for CC performed on a manikin. Different accelerometer locations were tested. We used a classical inertial navigation algorithm to reconstruct CPR depth and frequency. The device was found accurate enough to monitor CPR depth and its stability was checked for half an hour without any drift. Average error on displacement was ±0.5mm. We showed that depth measurement was dependent on the device location on the patient or the rescuer. The accuracy and stability of this small low-cost accelerometer coupled to a Kalman-filter based algorithm to reconstruct CC depth and frequency, was found well adapted and could be easily implemented. PMID:27246666

  8. Molecular dynamics simulation study on capacitive nano-accelerometers based on telescoping carbon nanotubes

    We investigated the characteristics of a capacitive nano-accelerometer based on a telescoping carbon nanotube by means of classical molecular dynamics simulations. The position of the telescoping nanotube was controlled by an externally applied force, and feedback sensing was based on the capacitance change. The capacitance variations, which were almost linearly proportional to the applied acceleration, were monitored within an error tolerance

  9. Development of a tri-axial optical accelerometer using two DVD pick-up heads

    Chu, Chih-Liang; Liao, Hong-Wei

    2008-12-01

    This study develops a low-cost, highly-sensitive, three-dimensional optical accelerometer in which the seismic mass comprises four rectangular blocks attached to the ends of a cross-form aluminum structure suspended on four thin steel strips. It is shown through ANSYS finite element (FE) simulations that the thin-strip suspension system restricts the seismic mass to just three degrees of motional freedom, namely one translational motion in the vertical direction and two rotational motions. These displacements are detected using two novel optical sensors based on commercial DVD optical pick-up heads. When the accelerometer experiences a vibrational force, the relative motion between the seismic mass and the base results in a change in the distribution of the reflected light spots on the surfaces of the four-quadrant photodetectors within the two pick-up heads. The resulting changes in the output voltage signals of the two pick-up heads are then used to calculate the corresponding acceleration of the base. The experimental results indicate that the resonance frequencies of the accelerometer in the X, Y and Z-axis directions are 130.51 Hz, 130.63 Hz and 130.90 Hz, respectively. Meanwhile, the sensitivities of the accelerometer in the X, Y and Z-axis directions are 21.28 V/g, 22.94 V/g and 22.75 V/g, respectively.

  10. Temperature compensated, humidity insensitive, high-Tg TOPAS FBGs for accelerometers and microphones

    Stefani, Alessio; Yuan, W.; Markos, C.; Rasmussen, Henrik K.; Andresen, S.; Guastavino, R.; Nielsen, F. K.; Rose, B.; Jespersen, O.; Herholdt-Rasmussen, N.; Bang, Ole

    2012-01-01

    In this paper we present our latest work on Fiber Bragg Gratings (FBGs) in microstructured polymer optical fibers (mPOFs) and their application as strain sensing transducers in devices, such as accelerometers and microphones. We demonstrate how the cross-sensitivity of the FBG to temperature is...

  11. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  12. Physical activity, cognitive performance, and academic achievement: an observational study in Dutch adolescents using accelerometers

    Van Dijk, Martin; De Groot, Renate; Savelberg, Hans; Van Acker, Frederik; Kirschner, Paul A.

    2013-01-01

    Van Dijk, M. L., De Groot, R. H. M., Savelberg, H. C. M., Van Acker, F. H. M., & Kirschner, P. A. (2013, 7 November). Physical activity, cognitive performance, and academic achievement: an observational study in Dutch adolescents using accelerometers. Paper presentation at ICO National Fall School 2

  13. Physical activity, cognitive performance, and academic achievement: an observational study in Dutch adolescents using accelerometers

    Van Dijk, Martin; De Groot, Renate; Savelberg, Hans; Van Acker, Frederik; Kirschner, Paul A.

    2013-01-01

    Van Dijk, M. L., De Groot, R. H. M., Savelberg, H. C. M., Van Acker, F. H. M., & Kirschner, P. A. (2013, 7 November). Physical activity, cognitive performance, and academic achievement: an observational study in Dutch adolescents using accelerometers. Paper presentation at ICO National Fall School 2013, Maastricht, The Netherlands.

  14. Modelling fat mass as a function of weekly physical activity profiles measured by Actigraph accelerometers

    We show results on the Avon longitudinal study of parents and children (ALSPAC) using a new approach for modelling the relationship between health outcomes and physical activity assessed by accelerometers. The key feature of the model is that it uses the histogram of physical activity counts as a predictor function, rather than scalar summary measures such as average daily moderate to vigorous physical activity (MVPA). Three models are fitted: (1a) A regression of fat mass at age 12 (N = 4164) onto the histogram of accelerometer counts at age 12; (1b) A regression of fat mass at age 14 (N = 2403) onto the histogram of accelerometer counts at age 12 and (1c) a regression of fat mass at age 14 (N = 2413) onto the accelerometer counts at age 14. All three models significantly improve on models including MVPA instead of the histogram and improve the goodness of fit of models (2a), (2b) and (2c) from R2 = 0.267, 0.248 and 0.230 to R2 = 0.292, 0.263 and 0.258 for models (1a), (1b) and (1c) respectively. The proportion of time spent in sedentary and very light activity (corresponding to slow walking and similar activities) has a positive contribution towards fat mass and time spent in moderate to vigorous activity has a negative contribution towards fat mass. (paper)

  15. Measuring Height of an Object using Accelerometer and Camera in iOS and Android Devices

    Anmole Dewan; Abhijeet Sharma; Tanupriya Choudhary; Vasudha Vashisht

    2014-01-01

    The height of object can be determined by using inch tapes, angles of elevation and basic trigonometry. Everything listed can be replaced by using standard smart phones having accelerometer, GPS receiver, network connectivity and camera. The research deals with calculation of height of an object by converting data received from the sensors.

  16. IEEE802.15.6 -based multi-accelerometer WBAN system for monitoring Parkinson's disease.

    Keränen, Niina; Särestöniemi, Mariella; Partala, Juha; Hämäläinen, Matti; Reponen, Jarmo; Seppänen, Tapio; Iinatti, Jari; Jämsä, Timo

    2013-01-01

    In this paper we present a detailed example of a wireless body area network (WBAN) scenario utilizing the recent IEEE802.15.6 standard as applied to a multi-accelerometer system for monitoring Parkinson's disease and fall detection. Ultra wideband physical layer and standard security protocols are applied to meet application requirements for data rate and security. PMID:24110022

  17. Optimal Methods of RTK-GPS/Accelerometer Integration to Monitor the Displacement of Structures

    Sungnam Hong

    2012-01-01

    Full Text Available The accurate measurement of diverse displacements of structures is an important index for the evaluation of a structure’s safety. In this study, a comparative analysis was conducted to determine the integrated RTK-GPS/accelerometer method that can provide the most precise structure displacement measurements. For this purpose, three methods of calculating the dynamic displacements from the acceleration data were comparatively analyzed. In addition, two methods of determining dynamic, static, and quasi-static displacements by integrating the displacements measured from the RTK-GPS system and the accelerometer were also comparatively analyzed. To ensure precise comparison results, a cantilever beam was manufactured onto which diverse types of displacements were generated to evaluate the measurement accuracy by method. Linear variable differential transformer (LVDT measurements were used as references for the evaluation to ensure accuracy. The study results showed that the most suitable method of measuring the dynamic displacement with the accelerometer was to calculate the displacement by filtering and double-integrating the acceleration data using the FIR band-pass filter. The integration method that uses frequency-based displacement extraction was most appropriate for the integrated RTK-GPS/accelerometer method of comprehensively measuring the dynamic, static, and quasi-static displacements.

  18. Evaluation of Accelerometer Mechanical Filters on Submerged Cylinders Near an Underwater Explosion

    G. Yiannakopoulos

    1998-01-01

    Full Text Available An accelerometer, mounted to a structure near an explosion to measure elasto-plastic deformation, can be excited at its resonant frequency by impulsive stresses transmitted within the structure. This results in spurious high peak acceleration levels that can be much higher than acceleration levels from the explosion itself. The spurious signals also have higher frequencies than the underlying signal from the explosion and can be removed by a low pass filter. This report assesses the performance of four accelerometer and filter assemblies. The assessment involves measurements of the response of a mild steel cylinder to an underwater explosion, in which each assembly is mounted onto the interior surface of the cylinder. Three assemblies utilise a piezoresistive accelerometer in which isolation is provided mechanically. In the fourth assembly, a piezoelectric accelerometer, with a built-in filter, incorporates both mechanical and electronic filtering. This assembly is found to be more suitable because of its secure mounting arrangement, ease of use, robustness and noise free results.

  19. Identification of children's activity type with accelerometer-based neural networks

    Vries, S.I. de; Engels, M.; Garre, F.G.

    2011-01-01

    Purpose: The study's purpose was to identify children's physical activity type using artificial neural network (ANN) models based on uniaxial or triaxial accelerometer data from the hip or the ankle. Methods: Fifty-eight children (31 boys and 27 girls, age range = 9-12 yr) performed the following ac

  20. The microcontroller processing of signals in precision digital accelerometer with the fiber-optical sensor

    A. O. Dubikovsky

    2007-10-01

    Full Text Available Features, a principle and operating modes of the three-coordinate fiber-optical sensor are considered. The block diagram and algorithm of processing of a signal precision digital accelerometer with the fiber-optical sensor is offered, expected sizes of key parameters are resulted.

  1. Measurement of six degree-of-freedom ground motion by using eight accelerometers

    Yang Zhenyu; Shen Yi; Liu Zhiyan

    2005-01-01

    A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual translational acceleration components without gyroscopes. In the proposed measuring system, the relationship between the output from eight force-balance accelerometer and the six DOF motion of the measuring system under an earthquake are described by differential equations. These equations are derived from the positions and directions of the eight force-balance accelerometers in the measuring system. The third-order Runge-Kutta algorithm is used to guarantee the accuracy of the numerical calculation. All the algorithms used to compute the six DOF components of the ground motion are implemented in a real-time in Digital Signal Processor (DSP). The distortion of the measured results caused by position and direction errors of the accelerometers in the measuring system are reduced by multiplying a compensation coefficient C to the output and subtracting static zero drift from the measured results, respectively.

  2. Is there a Sex Difference in Accelerometer Counts During Walking in Older Adults?

    Van Domelen, Dane R; Caserotti, Paolo; Brychta, Robert J; Harris, Tamara B; Patel, Kushang V; Chen, Kong Y; Arnardóttir, Nanna Ýr; Eirikdottir, Gudny; Launer, Lenore J; Gudnason, Vilmundur; Sveinsson, Thórarinn; Jóhannsson, Erlingur; Koster, Annemarie

    2014-01-01

    Accelerometers have emerged as a useful tool for measuring free-living physical activity in epidemiological studies. Validity of activity estimates depends on the assumption that measurements are equivalent for males and females while performing activities of the same intensity. The primary purpose...

  3. A method to deal with installation errors of wearable accelerometers for human activity recognition

    Human activity recognition (HAR) by using wearable accelerometers has gained significant interest in recent years in a range of healthcare areas, including inferring metabolic energy expenditure, predicting falls, measuring gait parameters and monitoring daily activities. The implementation of HAR relies heavily on the correctness of sensor fixation. The installation errors of wearable accelerometers may dramatically decrease the accuracy of HAR. In this paper, a method is proposed to improve the robustness of HAR to the installation errors of accelerometers. The method first calculates a transformation matrix by using Gram–Schmidt orthonormalization in order to eliminate the sensor's orientation error and then employs a low-pass filter with a cut-off frequency of 10 Hz to eliminate the main effect of the sensor's misplacement. The experimental results showed that the proposed method obtained a satisfactory performance for HAR. The average accuracy rate from ten subjects was 95.1% when there were no installation errors, and was 91.9% when installation errors were involved in wearable accelerometers

  4. Validation of the Actical Accelerometer in Multiethnic Preschoolers: The Children's Healthy Living (CHL) Program.

    Ettienne, Reynolette; Nigg, Claudio R; Li, Fenfang; Su, Yuhua; McGlone, Katalina; Luick, Bret; Tachibana, Alvin; Carran, Christina; Mercado, Jobel; Novotny, Rachel

    2016-04-01

    This study aimed to determine the validity and reliability of the Actical accelerometer for measuring physical activity (PA) in preschool children of mixed ethnicity, compared with direct observation via a modified System for Observing Fitness Instruction Time (SOFIT) protocol and proxy parental reports (PA Logs). Fifty children in Hawai'i wore wrist-mounted accelerometers for two 7-day periods with a washout period between each week. Thirty children were concurrently observed using SOFIT. Parents completed PA Logs for three days. Reliability and validity were measured by intra-class correlation coefficient and proportions of agreement concurrently. There was slight agreement (proportion of agreement: 82%; weighted Kappa=.17, P SOFIT as well as between the accelerometer and the PA Logs (proportions of agreement: 40%; weighted Kappa=0.15, P <.001). PA logs underestimated the PA levels of the children, while the Actical was found to be valid and reliable for estimating PA levels of multiethnic, mixed ethnicity preschoolers. These findings suggest that accelerometers can be objective, valid, and accurate physical activity assessment tools compared to conventional PA logs and subjective reports of activity for preschool children of mixed ethnicity. PMID:27099804

  5. Fiber Optic 3-D Space Piezoelectric Accelerometer and its Antinoise Technology

    2001-01-01

    The mechanical structure of piezoelectric accelerometer is designed, and the operation equations on X-, Y-, and Z-axes are deduced. The test results of 3-D frequency response are given. Noise disturbances are effectively eliminated by using fiber optic transmission and synchronous detection.

  6. Quasi-Real Time Estimation of Angular Kinematics Using Single-Axis Accelerometers

    Angelo Cappello

    2013-01-01

    Full Text Available In human movement modeling, the problem of multi-link kinematics estimation by means of inertial measurement units has been investigated by several authors through efficient sensor fusion algorithms. In this perspective a single inertial measurement unit per link is required. This set-up is not cost-effective compared with a solution in which a single-axis accelerometer per link is used. In this paper, a novel fast technique is presented for the estimation of the sway angle in a multi-link chain by using a single-axis accelerometer per segment and by setting the boundary conditions through an ad hoc algorithm. The technique, based on the windowing of the accelerometer output, was firstly tested on a mechanical arm equipped with a single-axis accelerometer and a reference encoder. The technique is then tested on a subject performing a squat task for the knee flexion-extension angle evaluation by using two single-axis accelerometers placed on the thigh and shank segments, respectively. A stereo-photogrammetric system was used for validation. RMSEs (mean ± std are 0.40 ± 0.02° (mean peak-to-peak range of 147.2 ± 4.9° for the mechanical inverted pendulum and 1.01 ± 0.11° (mean peak-to-peak range of 59.29 ± 2.02° for the knee flexion-extension angle. Results obtained in terms of RMSE were successfully compared with an Extended Kalman Filter applied to an inertial measurement unit. These results suggest the usability of the proposed algorithm in several fields, from automatic control to biomechanics, and open new opportunities to increase the accuracy of the existing tools for orientation evaluation.

  7. High Shock, High Frequency Characteristics of a Mechanical Isolator for a Piezoresistive Accelerometer, the ENDEVCO 7270AM6*

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; NUSSER,MICHAEL A.

    2000-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories (SNL). An Extended Technical Assistance Program (ETAP) with the accelerometer manufacturer has resulted in a commercial mechanically isolated accelerometer that is available to the general public, the ENDEVCO 7270AM6*, for three shock acceleration ranges of 6,000 g, 20,000 g, and 60,000 g. The in-axis response shown in this report has acceptable frequency domain performance from DC to 10 kHz and 10(XO)over a temperature range of {minus}65 F to +185 F. Comparisons with other isolated accelerometers show that the ENDEVCO 7270AM6 has ten times the bandwidth of any other commercial isolator. ENDEVCO 7270AM6 cross-axis response is shown in this report.

  8. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers

    Wrist accelerometers are being used in population level surveillance of physical activity (PA) but more research is needed to evaluate their validity for correctly classifying types of PA behavior and predicting energy expenditure (EE). In this study we compare accelerometers worn on the wrist and hip, and the added value of heart rate (HR) data, for predicting PA type and EE using machine learning. Forty adults performed locomotion and household activities in a lab setting while wearing three ActiGraph GT3X+ accelerometers (left hip, right hip, non-dominant wrist) and a HR monitor (Polar RS400). Participants also wore a portable indirect calorimeter (COSMED K4b2), from which EE and metabolic equivalents (METs) were computed for each minute. We developed two predictive models: a random forest classifier to predict activity type and a random forest of regression trees to estimate METs. Predictions were evaluated using leave-one-user-out cross-validation. The hip accelerometer obtained an average accuracy of 92.3% in predicting four activity types (household, stairs, walking, running), while the wrist accelerometer obtained an average accuracy of 87.5%. Across all 8 activities combined (laundry, window washing, dusting, dishes, sweeping, stairs, walking, running), the hip and wrist accelerometers obtained average accuracies of 70.2% and 80.2% respectively. Predicting METs using the hip or wrist devices alone obtained root mean square errors (rMSE) of 1.09 and 1.00 METs per 6 min bout, respectively. Including HR data improved MET estimation, but did not significantly improve activity type classification. These results demonstrate the validity of random forest classification and regression forests for PA type and MET prediction using accelerometers. The wrist accelerometer proved more useful in predicting activities with significant arm movement, while the hip accelerometer was superior for predicting locomotion and estimating EE. (paper)

  9. Development of an optical accelerometer for low-frequency vibration using the voice coil on a DVD pickup head

    In this paper, an economical and highly sensitive optical accelerometer using a commercial optical pickup head is proposed. In the proposed design, the moving part of a voice coil motor (VCM) built in the DVD pickup head is used as the seismic mass which combines with the optical system of the DVD pickup to form an accelerometer. This system not only reduces the design complexity and the manufacturing process but also obtains good measurement effect. Experimental results have shown that the accelerometer at low frequency has a sensitivity of 24.362 V/g

  10. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer

    A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is −116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5 × 2.5 mm2 and the current is 3.5 mA. (semiconductor integrated circuits)

  11. Gait Characteristic Analysis and Identification Based on the iPhone’s Accelerometer and Gyrometer

    Bing Sun

    2014-09-01

    Full Text Available Gait identification is a valuable approach to identify humans at a distance. In thispaper, gait characteristics are analyzed based on an iPhone’s accelerometer and gyrometer,and a new approach is proposed for gait identification. Specifically, gait datasets are collectedby the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets areprocessed to extract gait characteristic parameters which include gait frequency, symmetrycoefficient, dynamic range and similarity coefficient of characteristic curves. Finally, aweighted voting scheme dependent upon the gait characteristic parameters is proposed forgait identification. Four experiments are implemented to validate the proposed scheme. Theattitude and acceleration solutions are verified by simulation. Then the gait characteristicsare analyzed by comparing two sets of actual data, and the performance of the weightedvoting identification scheme is verified by 40 datasets of 10 subjects.

  12. Accelerometer-assessed daily physical activity in relation to pain cognition in juvenile idiopathic arthritis

    Nørgaard, Mette; Lomholt, J J; Thastum, M;

    2016-01-01

    , emphasizing the need to explore pain more deeply. The aim of this study was to examine accelerometer-assessed PA in relation to pain cognition in children with JIA. METHOD: Data gathered included disease activity, functional ability, and pain cognition. PA was monitored with a GT1M Actigraph accelerometer...... functional ability, pain intensity, coping strategies, or other pain beliefs. When isolated, disease activity (measured by the 27-joint count Juvenile Arthritis Disease Activity Score, JADAS-27) contributed significantly to the variance in accelerometry, while 'Control' could not significantly explain a...... unique part of the variance. CONCLUSIONS: Objectively measured PA was negatively correlated to disease activity but not to pain intensity. The only pain cognition measurement to reach higher levels of PA was to be in control of pain....

  13. Fiber optic gyro/silicon accelerometer inertial measurement unit, test results

    Matthews, A.; Weintraub, M.

    Under an SDI contract a small, lightweight Inertial Measurement Unit (IMU) was developed that uses two new technologies namely, Fiber Optic Gyros and miniature micromachined single-crystal Silicon Accelerometers. This paper describes the theory of operation of the two new inertial instruments which lead to an IMU of high sensitivity, wide bandwidth, low noise, low weight and rapid reaction; ideal for many Strategic Defense Initiatives (SDI), military and commercial applications. A flyable brassboard model of the IMU was built with three miniature Fiber Optic Gyros (FOG) and three silicon accelerometers. The brassboard model was tested under static and dynamic conditions in a laboratory and the test data compared favorably to the performance objectives. This paper concludes by forecasting the next phase, continued miniaturization, and adaptation to missiles and aircraft compass/Altitude and Heading Reference Systems (AHRS) for many applications.

  14. GAC: Energy-Efficient Hybrid GPS-Accelerometer-Compass GSM Localization

    Youssef, Moustafa; El-Derini, Mohamed

    2010-01-01

    Adding location to the available information enables a new category of applications. With the constrained battery on cell phones, energy-efficient localization becomes an important challenge. In this paper we introduce a low-energy calibration-free localization scheme based on the available internal sensors in many of today's phones. We start by energy profiling the different sensors that can be used for localization. Based on that, we propose GAC: a hybrid GPS/accelerometer/compass scheme that depends mainly on using the low-energy accelerometer and compass sensors and uses the GPS infrequently for synchronization. We implemented our system on Android-enabled cell phones and evaluated it in both highways and intra-city driving environments. Our results show that the proposed hybrid scheme has an exponential saving in energy, with a linear loss in accuracy compared to the GPS accuracy. We also evaluate the effect of the different parameters on the energy-accuracy tradeoff.

  15. An Accelerometer Based Instrumentation of the Golf Club: Measurement and Signal Analysis

    Grober, Robert D

    2010-01-01

    Two accelerometers are used to measure the motion of the golf club. The accelerometers are mounted in the shaft of the golf club. Each measures the acceleration along the axis of the shaft of the golf club. Interpreting the measurement with the context of the double pendulum model of the golf swing, it is useful to resolve the resulting signals into differential and common mode components. The differential mode is a measure of the rotational kinetic energy of the golf club, and this can be used to understand the tempo, rhythm, and timing of the golf swing. The common mode measurement is related to the motion of the hands. It is shown that both components can be used to recover the motion of the swing within the context of the double pendulum model of the golf swing.

  16. Off-the-shelf mobile handset environments for deploying accelerometer based gait and activity analysis algorithms.

    Hynes, Martin; Wang, Han; Kilmartin, Liam

    2009-01-01

    Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform. PMID:19964383

  17. Three 3-axis accelerometers fixed inside the tyre for studying contact patch deformations in wet conditions

    Niskanen, Arto J.; Tuononen, Ari J.

    2014-05-01

    The tyre-road contact area was studied visually by means of a high-speed camera and three accelerometers fixed to the inner liner of the tyre carcass. Both methods show a distorted contact area in wet conditions, but interesting differences appeared. First, the contact area in full aquaplaning seems strongly distorted on a glass plate when subjected to visual inspection, while the accelerometers indicate a more even hydrodynamic aquaplaning contact length (CL) across the tyre width. Secondly, the acceleration sensors predict the clear shortening of the CL of the tyre before the critical aquaplaning speed. It can be concluded that the visual contact area and shape are heavily dependent on the transparency of the liquid and smoothness of the glass. Meanwhile, the tyre sensors can provide a CL estimate on any road surface imaginable.

  18. The association between park visitation and physical activity measured with accelerometer, GPS, and travel diary.

    Stewart, Orion T; Moudon, Anne Vernez; Fesinmeyer, Megan D; Zhou, Chuan; Saelens, Brian E

    2016-03-01

    Public parks are promoted as places that support physical activity (PA), but evidence of how park visitation contributes to overall PA is limited. This study observed adults living in the Seattle metropolitan area (n=671) for one week using accelerometer, GPS, and travel diary. Park visits, measured both objectively (GPS) and subjectively (travel diary), were temporally linked to accelerometer-measured PA. Park visits occurred at 1.4 per person-week. Participants who visited parks at least once (n=308) had an adjusted average of 14.3 (95% CI: 8.9, 19.6)min more daily PA than participants who did not visit a park. Even when park-related activity was excluded, park visitors still obtained more minutes of daily PA than non-visitors. Park visitation contributes to a more active lifestyle, but is not solely responsible for it. Parks may best serve to complement broader public health efforts to encourage PA. PMID:26798965

  19. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers

    Li, G.; Wu, S. C.; Zhou, Z. B.; Bai, Y. Z.; Hu, M.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurements, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-12-15

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10{sup −8} m/s{sup 2}/Hz{sup 1/2} at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  20. Comprehensive Warpage Analysis of Stacked Die MEMS Package in Accelerometer Application

    2006-01-01

    Packaging of MEMS ( micro-electro-mechanical system ) devices poses more challenges than conventional IC packaging, since the performance of the MEMS devices is highly dependent on packaging processes. A Land Grid Array (LGA) package is introduced for MEMS technology based linear multi-axis accelerometers. Finite element modeling is conducted to simulate the warpage behavior of the LGA packages. A method to correlate the package warpage to matrix block warpage has been developed. Warpage for both package and sensor substrate are obtained. Warpage predicted by simulation correlates very well with experimental measurements. Based on this validated method, detailed design analysis with different package geometrical variations are carried out to optimize the package design. With the optimized package structure,the packaging effect on accelerometer signal performance is well controlled.

  1. Simulation of a low frequency Z-axis SU-8 accelerometer in coventorware and MEMS+

    Carreno, Armando Arpys Arevalo

    2013-04-01

    This paper presents the simulation of a z-axis SU-8 capacitive accelerometer. The study consists of a modal analysis of the modeled accelerometer, a study relating capacitance to acceleration, capacitance to deflection, an effective spring constant calculation, and a comparison of results achieved using CoventorWare® ANALYZER™ and MEMS+®. A fabricated energy harvester design from [1] was used for modeling and simulation in this study, with a four spring attachment of a 650μm×650μm; ×110μm proof mass of 4.542×10-8 kg. At rest, the spacing between electrodes is 4μm along the z-axis, and at 1.5g acceleration, there is 1.9μm spacing between electrodes, at which point pull in occurs for a 1V voltage. © 2013 IEEE.

  2. Experimental Robot Position Sensor Fault Tolerance Using Accelerometers and Joint Torque Sensors

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. The proposed method uses joint torque sensors found in most existing advanced robot designs along with easily locatable, lightweight accelerometers to provide a joint position sensor fault recovery mode. This mode uses the torque sensors along with a virtual passive control law for stability and accelerometers for joint position information. Two methods for conversion from Cartesian acceleration to joint position based on robot kinematics, not integration, are presented. The fault tolerant control method was tested on several joints of a laboratory robot. The controllers performed well with noisy, biased data and a model with uncertain parameters.

  3. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10−8 m/s2/Hz1/2 at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower

  4. Improvements in the Measurement of Physical Activity in Childhood Obesity Research; Lessons from Large Studies of Accelerometers

    Andy Ness; Kate Tilling; Calum Mattocks; Chris Riddoch

    2008-01-01

    Advances in technology have improved our ability to measure physical activity in free-living humans. In the last few years, several large epidemiological studies in Europe and the United States have used accelerometers to assess physical activity in children and adolescents. The use of accelerometers to study physical activity has presented some challenges on how to summarise and interpret the data that they generate, however these studies are providing important information on the levels and...

  5. MEMS加速度计的六位置测试法%Six-Position Testing of MEMS Accelerometer

    宋丽君; 秦永元

    2009-01-01

    主要介绍了MEMS加速度计的六位置测试法,根据MEMS加速度计输出数学模型详细推导了如何得到MEMS加速度计的输出数学模型中的刻度因数、零偏以及安装误差,并在得到其标定系数后将其封装在C函数中进行了验证实验.通过实验数据分析可知,MEMS加速度计的六位置测试法原理简单、易于实现,且精度较高.这种标定法所得到的MEMS加速度计输出能够比较准确地反映其输出,而且MEMS加速度计的线性度有所改善.%A six-position testing method of MEMS accelerometer is introduced mainly. According to the error model of MEMS accelerometer the scale factor of MEMS accelerometer, bias of MEMS accelerometer and error on installation of MEMS accelerometer are derived. When the user gets these parameters, the user should pack the function of the concrete mathematics model in C code. By analyzing the results of examination, the six-posi-tion testing method of MEMS accelerometer is simple on principle, easy to realize and high in precision as long as the user gets the error model of MEMS accelerometer. And the scale factor nonlinearity is improved by the error model of MEMS accelerometer.

  6. Number of Days Required to Estimate Habitual Activity Using Wrist-Worn GENEActiv Accelerometer: A Cross-Sectional Study

    Dillon, Christina B.; Fitzgerald, Anthony P.; Kearney, Patricia M.; Perry, Ivan J; Rennie, Kirsten L.; Kozarski, Robert; Phillips, Catherine M.

    2016-01-01

    Introduction Objective methods like accelerometers are feasible for large studies and may quantify variability in day-to-day physical activity better than self-report. The variability between days suggests that day of the week cannot be ignored in the design and analysis of physical activity studies. The purpose of this paper is to investigate the optimal number of days needed to obtain reliable estimates of weekly habitual physical activity using the wrist-worn GENEActiv accelerometer. Metho...

  7. Accuracy of StepWatch™ and ActiGraph Accelerometers for Measuring Steps Taken among Persons with Multiple Sclerosis

    Brian M. Sandroff; Motl, Robert W.; Pilutti, Lara A.; Learmonth, Yvonne C.; Ipek Ensari; Deirdre Dlugonski; Klaren, Rachel E; Swathi Balantrapu; Barry J Riskin

    2014-01-01

    INTRODUCTION: There has been increased interest in the objective monitoring of free-living walking behavior using accelerometers in clinical research involving persons with multiple sclerosis (MS). The current investigation examined and compared the accuracy of the StepWatch activity monitor and ActiGraph model GT3X+ accelerometer for capturing steps taken during various speeds of prolonged, over-ground ambulation in persons with MS who had mild, moderate, and severe disability. METHODS: Sixt...

  8. Towards Uniform Accelerometry Analysis: A Standardization Methodology to Minimize Measurement Bias Due to Systematic Accelerometer Wear-Time Variation

    Tarun R. Katapally; Muhajarine, Nazeem

    2014-01-01

    Accelerometers are predominantly used to objectively measure the entire range of activity intensities – sedentary behaviour (SED), light physical activity (LPA) and moderate to vigorous physical activity (MVPA). However, studies consistently report results without accounting for systematic accelerometer wear-time variation (within and between participants), jeopardizing the validity of these results. This study describes the development of a standardization methodology to understand and minim...

  9. An eHealth System for Pressure Ulcer Risk Assessment Based on Accelerometer and Pressure Data

    Dieter Hayn; Markus Falgenhauer; Jürgen Morak; Karin Wipfler; Viktoria Willner; Walter Liebhart; Günter Schreier

    2015-01-01

    Pressure ulcers are a common skin disease which is associated with pain, reduced autonomy, social isolation, and reduced quality of life. There are several systems for monitoring of pressure ulcer-related risk factors on the market, but up to now no satisfactory solution is available, especially for people with medium pressure ulcer risk. We present a novel pressure ulcer risk assessment and prevention system, which combines the advantages of accelerometer and pressure sensors for monitoring ...

  10. Detecting Fetal Movements Using Non-Invasive Accelerometers: A Preliminary Analysis

    Girier, T.; O'Toole, J; Mesbah, M.; Boashash, B.; Clough, I.; Wilson, S; Fuentes, M; Callan, S.; East, C; COLDITZ, P

    2010-01-01

    Monitoring fetal movement is important to assess fetal health. Standard clinical fetal monitoring technologies include ultrasound imaging and cardiotocography. Both have limited prognostic value and require significant health resources. We have recently developed a low-cost, passive, non-invasive system to monitor fetal activity, and therefore fetal health. This accelerometer-based system does not require trained operators and can be used outside a clinic. This work is a preliminary study to ...

  11. Theory, technology and assembly of a highly symmetrical capacitive triaxial accelerometer

    Lotters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P.

    1997-01-01

    A highly symmetrical cubic easy-to-assemble capacitive triaxial accelerometer for biomedical applications has been designed, realized and tested. The outer dimensions of the sensor are 5×5×5 mm 3 and the device is mounted on a standard IC package. New aspects of the sensor are an easy assembly procedure, the use of the polymers polydimethylsiloxane (PDMS) as spring material between the capacitor plates and the mass and polyimide (PI) as flexible interconnection layer between the capacitor pla...

  12. Comparison of Accelerometer Cut Points to Estimate Physical Activity in U.S. Adults

    Watson, Kathleen B; Carlson, Susan; Carroll, Dianna D; Fulton, Janet

    2013-01-01

    The purpose of this study was to (1) describe physical activity prevalence, categorized according to the 2008 Physical Activity Guidelines for Americans (2008 Guidelines), using different accelerometer cut points and (2) examine physical activity prevalence patterns by reported cut points across selected characteristics. Cut points from 9 studies were used to estimate physical activity prevalence in a national adult sample (n=6547). Estimates were stratified by validation study activity proto...

  13. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances

    Dong Linxi; Chen Jindan; Yan Haixia; Huo Weihong; Li Yongjie; Sun Lingling

    2009-01-01

    The comb capacitances fabricated by deep reactive ion etching (RIE) process have high aspect ratio which is usually smaller than 30 : 1 for the complicated process factors, and the combs are usually not parallel due to the well-known micro-loading effect and other process factors, which restricts the increase of the seismic mass by increasing the thickness of comb to reduce the thermal mechanical noise and the decrease of the gap of the comb capacitances for increasing the sensitive capacitance to reduce the electrical noise. Aiming at the disadvantage of the deep RIE, a novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances is developed. One part of sensing of inertial signal of the micro-accelerometer is by the grid strip capacitances whose overlapping area is variable and which do not have the non-parallel plate's effect caused by the deep RIE process. Another part is by the sensing gap alterable capacitances whose gap between combs can be reduced by the actuators. The designed initial gap of the alterable comb capacitances is relatively large to depress the effect of the maximum aspect ratio (30 : 1) of deep RIE process. The initial gap of the capacitance of the actuator is smaller than the one of the comb capacitances. The difference between the two gaps is the initial gap of the sensitive capacitor. The designed structure depresses greatly the requirement of deep RIE process. The effects of non-parallel combs on the accelerometer are also analyzed. The characteristics of the micro-accelerometer are discussed by field emission microscopy (FEM) tool ANSYS. The tested devices based on slide-film damping effect are fabricated, and the tested quality factor is 514, which shows that grid strip capacitance design can partly improve the resolution and also prove the feasibility of the designed silicon-glass anodically bonding process.

  14. SVM-based posture identification with a single waist-located triaxial accelerometer

    Rodríguez Martín, Daniel Manuel; Samà Monsonís, Albert; Pérez López, Carlos; Català Mallofré, Andreu; Cabestany Moncusí, Joan; Rodríguez Molinero, Alejandro

    2013-01-01

    Analysis of human body movement is an important research area, specially for health applications. In order to assess the quality of life of people with mobility problems like Parkinson’s disease o stroke patients, it is crucial to monitor and assess their daily life activities. The main goal of this work is the characterization of basic activities using a single triaxial accelerometer located at the waist. This paper presents a novel postural detection algorithm based in SVM methods which is ...

  15. Electrostatic accelerometer with bias rejection for Gravitation and Solar System physics

    Lenoir, Benjamin; Lévy, Agnès; Foulon, Bernard; Lamine, Brahim; Christophe, Bruno; Reynaud, Serge

    2010-01-01

    Radio tracking of interplanetary probes is an important tool for navigation purposes as well as for testing the laws of physics or exploring planetary environments. The addition of an accelerometer on board a spacecraft provides orbit determination specialists and physicists with an additional observable of great interest: it measures the value of the non-gravitational acceleration acting on the spacecraft, i.e. the departure of the probe from geodesic motion. This technology is now routinely...

  16. On-line Context Aware Physical Activity Recognition from the Accelerometer and Audio Sensors of Smartphones

    Blachon, David; Cokun, Doruk; Portet, François

    2014-01-01

    Activity Recognition (AR) from smartphone sensors has be-come a hot topic in the mobile computing domain since it can provide ser-vices directly to the user (health monitoring, fitness, context-awareness) as well as for third party applications and social network (performance sharing, profiling). Most of the research effort has been focused on direct recognition from accelerometer sensors and few studies have integrated the audio channel in their model despite the fact that it is a sensor tha...

  17. Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities

    Siemes, Christian; da Encarnacao, Joao de Teixeira; Doornbos, Eelco;

    2016-01-01

    The Swarm satellites were launched on November 22, 2013, and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers do not only provide the position and time for the magnetic field measurements, but are also used for determining non-gravitational forces like...... acceleration measurements of Swarm B. We show the results of each processing stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set....

  18. Quality of GOCE accelerometer data and analysis with ionospheric dynamics during geomagnetically active days

    Sinem Ince, Elmas; Fomichev, Victor; Floberghagen, Rune; Schlicht, Anja; Martynenko, Oleg; Pagiatakis, Spiros

    2016-07-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was launched in March, 2009 and completed its mission with great success in November, 2011. GOCE data processing is challenging and not all the disturbances are removed from the gravitational field observations. The disturbances observed in GOCE Vyy gradients around magnetic poles are investigated by using external datasets. It is found that the amplitude of these disturbances increase during geomagnetically active days and can reach up to 5 times the expected noise level of the gradiometer. ACE (Advanced Composition Explorer) and Wind satellites measured electric field and interplanetary magnetic field components have shown that the disturbances observed in the polar regions agree with the increased solar activity. Moreover, equivalent ionospheric currents computed along ascending satellite tracks over North America and Greenland have shown a noticeable correlation with the cross-track and vertical currents and the pointing flux (ExB) components in the satellite cross track direction. Lastly, Canadian Ionosphere and Atmosphere Model (C-IAM) electric field and neutral wind simulations have shown a strong correlation of the enhancement in the ionospheric dynamics during geomagnetically active days and disturbances measured by the GOCE accelerometers over high latitudes. This may be a result of imperfect instrumentation and in-flight calibration of the GOCE accelerometers for an increased geomagnetic activity or a real disturbance on the accelerometers. We use above listed external datasets to understand the causes of the disturbances observed in gravity gradients and reduce/ eliminate them by using response analyses in frequency domain. Based on our test transfer functions, improvement is possible in the quality of the gradients. Moreover, this research also confirms that the accelerometer measurements can be useful to understand the ionospheric dynamics and space weather forecasting.

  19. Pyroshock data acquisition-historical developments using piezoelectric accelerometers and other transducers

    Himelblau, Harry

    2002-05-01

    For nearly 50 years, P/E accelerometers have been used for acquiring pyroshock data with mixed results. For longer distances between the explosive source and the transducer location (e.g., two feet or more), valid data of lesser shock magnitude were usually obtained. However, for shorter distances, a variety of problems were often encountered, causing erroneous results. It was subsequentially determined that most problems were caused by measurement system nonlinearities, i.e., the nonlinear resonant response of the accelerometer, or exceeding the linear amplitude range of the signal conditioner and recorder. In the earlier years, it was erroneously assumed that subsequent low pass filtering of the signal would remove the nonlinearities, hopefully leading to valid data. This only masked the invalid results. Eventually, improved P/E accelerometers were developed with higher natural frequencies and larger amplitude limits that caused substantially fewer problems and allowed measurements closer to the explosive sources. Shortly thereafter, the high frequency noncontact laser doppler vibrometer became available which circumvented the accelerometer resonance problem. However, this velocity transducer is almost always limited to laboratory tests in order to constrain the motion of the laser head by a very rigid and massive support foundation compared to the flexible structure which is attached to the laser target. Other LDV measurement problems have been encountered that must be avoided to achieve valid data. Conventional strain gages have been successfully used to measure pyroshock strain. However, due to the short wavelength of direct and bending pyroshock waves at high frequencies, small strain gages are usually required to avoid spatial averaging over the length of the gage.

  20. Using Hidden Markov Models to Improve Quantifying Physical Activity in Accelerometer Data – A Simulation Study

    Witowski, Vitali; Foraita, Ronja; Pitsiladis, Yannis; Pigeot, Iris; Wirsik, Norman

    2014-01-01

    Introduction The use of accelerometers to objectively measure physical activity (PA) has become the most preferred method of choice in recent years. Traditionally, cutpoints are used to assign impulse counts recorded by the devices to sedentary and activity ranges. Here, hidden Markov models (HMM) are used to improve the cutpoint method to achieve a more accurate identification of the sequence of modes of PA. Methods 1,000 days of labeled accelerometer data have been simulated. For the simulated data the actual sedentary behavior and activity range of each count is known. The cutpoint method is compared with HMMs based on the Poisson distribution (HMM[Pois]), the generalized Poisson distribution (HMM[GenPois]) and the Gaussian distribution (HMM[Gauss]) with regard to misclassification rate (MCR), bout detection, detection of the number of activities performed during the day and runtime. Results The cutpoint method had a misclassification rate (MCR) of 11% followed by HMM[Pois] with 8%, HMM[GenPois] with 3% and HMM[Gauss] having the best MCR with less than 2%. HMM[Gauss] detected the correct number of bouts in 12.8% of the days, HMM[GenPois] in 16.1%, HMM[Pois] and the cutpoint method in none. HMM[GenPois] identified the correct number of activities in 61.3% of the days, whereas HMM[Gauss] only in 26.8%. HMM[Pois] did not identify the correct number at all and seemed to overestimate the number of activities. Runtime varied between 0.01 seconds (cutpoint), 2.0 minutes (HMM[Gauss]) and 14.2 minutes (HMM[GenPois]). Conclusions Using simulated data, HMM-based methods were superior in activity classification when compared to the traditional cutpoint method and seem to be appropriate to model accelerometer data. Of the HMM-based methods, HMM[Gauss] seemed to be the most appropriate choice to assess real-life accelerometer data. PMID:25464514

  1. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer

    Yonggang Yin; Boqian Sun; Fengtian Han

    2016-01-01

    A micromachined electrostatically-suspended accelerometer (MESA) is a kind of three-axis inertial sensor based on fully-contactless electrostatic suspension of the proof mass (PM). It has the potential to offer broad bandwidth, high sensitivity, wide dynamic range and, thus, would be perfectly suited for land seismic acquisition. Previous experiments showed that it is hard to lift up the PM successfully during initial levitation as the mass needs to be levitated simultaneously in all six degr...

  2. Non-Parametric Bayesian Human Motion Recognition Using a Single MEMS Tri-Axial Accelerometer

    Ejaz Ahmed, M.; Ju Bin Song

    2012-01-01

    In this paper, we propose a non-parametric clustering method to recognize the number of human motions using features which are obtained from a single microelectromechanical system (MEMS) accelerometer. Since the number of human motions under consideration is not known a priori and because of the unsupervised nature of the proposed technique, there is no need to collect training data for the human motions. The infinite Gaussian mixture model (IGMM) and collapsed Gibbs sampler are adopted to cl...

  3. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    Weiping Zhang; Xiaosheng Wu; Wenyuan Chen; Wu Liu; Feng Cui

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micro...

  4. Compact dual-frequency fiber laser accelerometer with sub-μg resolution

    Cao, Qian; Jin, Long; Liang, Yizhi; Cheng, Linghao; Guan, Bai-Ou

    2016-06-01

    We demonstrate a compact and high-resolution dual-polarization fiber laser accelerometer. A spring-mass like scheme is constructed by fixing a 10-gram proof mass on the laser cavity to transduce applied vibration into beat-frequency change. The loading is located at the intensity maximum of intracavity light to maximize the optical response. The detection limit reaches 107 ng/Hz1/2 at 200 Hz. The working bandwidth ranges from 60 Hz to 600 Hz.

  5. Using accelerometers to determine the calling behavior of tagged baleen whales

    Goldbogen, J.A.; Stimpert, A. K.; DeRuiter, S. L.; Calambokidis, J.; Friedlaender, A.S.; G. S. Schorr; Moretti, D. J.; Tyack, P.L.; Southall, B.L.

    2014-01-01

    The article of record as published may be found at http://dx.doi.org/10.1242/jeb.103259 Low-frequency acoustic signals generated by baleen whales can propagate over vast distances, making the assignment of calls to specific individuals problematic. Here, we report the novel use of acoustic recording tags equipped with high-resolution accelerometers to detect vibrations from the surface of two tagged fin whales that directly match the timing of recorded acoustic signals. A ta...

  6. Identifying active travel behaviors in challenging environments using GPS, accelerometers and machine learning algorithms

    Katherine eEllis

    2014-04-01

    Full Text Available Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper we present a supervised machine learning method for transportation mode prediction from GPS and accelerometer data. Methods: We collected a dataset of about 150 hours of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-minute windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. Results: The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Conclusions: Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel.

  7. Attitude Determination with Magnetometers and Accelerometers to Use in Satellite Simulator

    Helio Koiti Kuga

    2013-01-01

    Full Text Available Attitude control of artificial satellites is dependent on information provided by its attitude determination process. This paper presents the implementation and tests of a fully self-contained algorithm for the attitude determination using magnetometers and accelerometers, for application on a satellite simulator based on frictionless air bearing tables. However, it is known that magnetometers and accelerometers need to be calibrated so as to allow that measurements are used to their ultimate accuracy. A calibration method is implemented which proves to be essential for improving attitude determination accuracy. For the stepwise real-time attitude determination, it was used the well-known QUEST algorithm which yields quick response with reduced computer resources. The algorithms are tested and qualified with actual data collected on the streets under controlled situations. For such street runaways, the experiment employs a solid-state magnetoresistive magnetometer and an IMU navigation block consisting of triads of accelerometers and gyros, with MEMS technology. A GPS receiver is used to record positional information. The collected measurements are processed through the developed algorithms, and comparisons are made for attitude determination using calibrated and noncalibrated data. The results show that the attitude accuracy reaches the requirements for real-time operation for satellite simulator platforms.

  8. Lumped parameter analytic modeling and behavioral simulation of a 3-DOF MEMS gyro-accelerometer

    Verma, Payal; Arya, Sandeep K.; Gopal, Ram

    2015-12-01

    A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with each DOF of the system by vector analysis. The coupled differential equations thus established are solved analytically for their responses in both the time and frequency domains. Considering these frequency response equations, novel device design concepts are derived by forcing the sense phase to zero, which leads to a certain relationship between the structural frequencies, thereby causing minimization of the damping effect on the performance of the system. Furthermore, the feasibility of the present gyro-accelerometer structure is studied using a unique discriminatory scheme for the detection of both gyro action and linear acceleration at their events. This scheme combines the formulated settled transient solution of the gyro-accelerometer with the processes of synchronous demodulation and filtration, which leads to the in-phase and quadrature components of the system's output signal. These two components can be utilized in the detection of angular motion and linear acceleration. The obtained analytical results are validated by simulation in a MATLAB/Simulink environment, and it is found that the results are in excellent agreement with each other.

  9. Fabrication of micro accelerometer and magnetoresistive sensor directly on a ceramic substrate

    Micro-electro-mechanical systems (MEMS) sensors have movable parts: thus, it is difficult to handle them at fabrication because of the possibility of fracture. If a MEMS sensor could be fabricated not only on a silicon substrate but also on a ceramic substrate, which can be used for a package of the end product, the above-mentioned problem about handling would be solved, and its fabrication cost would be reduced. In this presentation, as demonstrations of the sensors directly fabricated on a ceramic package, an accelerometer and a magnetoresistive (MR) sensor are focused on. A micro accelerometer is proposed, which consists of a proof mass and ferroelectric substrate under it. A screen-printed barium titanate (BTO) film on an alumina substrate was employed as ferroelectrics. The sensitivity of the fabricated accelerometer was 0.1 pF g−1. A triaxis MR sensor is proposed, which detects not only x- and y-axes' magnetic field intensities but also that of the z-axis. Namely, not only azimuth but also angle of elevation of the sensor can be detected from triaxis components of the geomagnetic field. A permalloy (FeNi) plate is stood aside from the MR element. The plate distorts magnetic field and generates the x- (or y-) component from the originally z-directional field. A triaxis geomagnetic field was successfully detected by the fabricated sensor

  10. Flight experience on CHAMP and GRACE with ultra-sensitive accelerometers and return for LISA

    Rodrigues, Manuel; Foulon, Bernard; Liorzou, Francoise; Touboul, Pierre [Physics and Instrumentation Department, Office National d' Etudes et de Recherches Aerospatiales, BP 72, 92322 Chatillon Cedex (France)

    2003-05-21

    The challenging drag-free sensor of the Laser Interferometer Space Antenna (LISA) mission is derived from electrostatic accelerometers developed for a long time in ONERA. The LISA sensor includes a gold platinum alloy inertial mass free-floating in space and used as reflectors for the laser interferometer. This test mass should not undergo more than 3x10{sup -15} m s{sup -2} Hz{sup -1/2} acceleration at 0.1 mHz. This tremendous performance is not close to what has been reached so far, but should be approached within one order of magnitude with the projected SMART-2 ESA mission by 2006. Meanwhile, ONERA has participated in several space missions with the flight of increasingly sensitive accelerometers. The German CHAMP mission aims at mapping the Earth's magnetic and gravity fields. More than two years data have been accumulated showing a resolution better than 3 x 10{sup -9} m s{sup -2} Hz{sup -1/2} for the accelerometer. With the JPL/NASA GRACE mission launched in March 2002, even more sensitive measurements have been obtained. From these two flight experiments with electrostatic sensors very similar in concept to that of LISA, the accelerometric environment on board a satellite is discussed at nanogravity levels. It is also shown that these first analyses are compatible with the expected LISA performance when the results are extrapolated to the LISA environment, needing femto-gravity levels.

  11. Physical Explanation on Designing Three Axes as Different Resolution Indexes from GRACE Satellite-Borne Accelerometer

    ZHENG Wei; XU Hou-Ze; ZHONG Min; YUN Mei-Juan

    2008-01-01

    @@ The GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the same and different three-axis resolution indexes from satellite-borne accelerometer using the improved energy conservation principle. The results show that designing XA1(2) as low-sensitivity axis (3 × 10-9 m/s2) of accelerometer and designing YA1(2) and ZA1(2) as high-sensitivity axes (3 × 10-10m/s2) are reasonable. The physical reason why the resolution of XA1(2) is one order of magnitude lower than YA1(2) and ZA1(2) is that non-conservative forces acting on GRACE satellites axe mainly decomposed into YA1(2) and ZA1(2) in the orbital plane.Since X A1(2) is not orthogonal accurately to orbital plane during the development of accelerometer, the measurement of X A1(2) can not be thrown off entirely, but be reduced properly.

  12. Data generator for a satellite-borne three-axis accelerometer

    Branch, C. G.

    1980-03-01

    Atmospheric drag has a significant effect on low altitude trajectories. To measure this force, an accelerometer will be tested which senses this nonconservative acceleration. The information obtained will then be used to improve the orbit and obtain a more accurate gravity field model. When the raw data is first received, all known systematic effects will be removed. These include gravity gradient and pitch-rate induced accelerations. However, the preprocessed data will still contain anomalies of which there is little or no a priori knowledge. Satellite attitude thruster-induced vibrations are a major source of unmodeled noise. As for the instrument itself, each axis of the accelerometer adds an undetermined bias to the output accelerations. In addition, the conversion of the digital output to engineering units introduces a scale factor error. Other effects may take the form of additive correlated noise and white noise. The first instrument to be flown is the miniature electrostatic accelerometer (MESA). The MESA senses accelerations along the vehicle pitch, roll, and yaw axes. Relying on the accuracy of the vehicle's attitude control system, these axes are assumed to be along the R,R X V, and -R vectors, respectively. Hence, any attitude errors will be reflected in the measurements. The MESA also introduces undetermined scale factor errors and biases. Consequently, a computer program was designed which applies a filter to the processed accelerations. This filter should statistically remove most of the unmodeled corruptions. The filtered data is then input to a special version of the Celest orbit determination program.

  13. A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process.

    Merdassi, Adel; Yang, Peng; Chodavarapu, Vamsy P

    2015-01-01

    We present the design and fabrication of a single axis low noise accelerometer in an unmodified commercial MicroElectroMechanical Systems (MEMS) process. The new microfabrication process, MEMS Integrated Design for Inertial Sensors (MIDIS), introduced by Teledyne DALSA Inc. allows wafer level vacuum encapsulation at 10 milliTorr which provides a high Quality factor and reduces noise interference on the MEMS sensor devices. The MIDIS process is based on high aspect ratio bulk micromachining of single-crystal silicon layer that is vacuum encapsulated between two other silicon handle wafers. The process includes sealed Through Silicon Vias (TSVs) for compact design and flip-chip integration with signal processing circuits. The proposed accelerometer design is sensitive to single-axis in-plane acceleration and uses a differential capacitance measurement. Over ±1 g measurement range, the measured sensitivity was 1 fF/g. The accelerometer system was designed to provide a detection resolution of 33 milli-g over the operational range of ±100 g. PMID:25815451

  14. A Wafer Level Vacuum Encapsulated Capacitive Accelerometer Fabricated in an Unmodified Commercial MEMS Process

    Adel Merdassi

    2015-03-01

    Full Text Available We present the design and fabrication of a single axis low noise accelerometer in an unmodified commercial MicroElectroMechanical Systems (MEMS process. The new microfabrication process, MEMS Integrated Design for Inertial Sensors (MIDIS, introduced by Teledyne DALSA Inc. allows wafer level vacuum encapsulation at 10 milliTorr which provides a high Quality factor and reduces noise interference on the MEMS sensor devices. The MIDIS process is based on high aspect ratio bulk micromachining of single-crystal silicon layer that is vacuum encapsulated between two other silicon handle wafers. The process includes sealed Through Silicon Vias (TSVs for compact design and flip-chip integration with signal processing circuits. The proposed accelerometer design is sensitive to single-axis in-plane acceleration and uses a differential capacitance measurement. Over ±1 g measurement range, the measured sensitivity was 1fF/g. The accelerometer system was designed to provide a detection resolution of 33 milli-g over the operational range of ±100 g.

  15. A novel quasi-digital detection method of micro differential capacitance in micro-accelerometers

    Song, Xing; Fang, Jiancheng; Yi, Ranran; Sheng, Wei

    2008-10-01

    This paper proposed a novel method of sensing the weak differential capacitance change of Micro-Electro-Mechanical Systems (MEMS) accelerometer with sandwich structure. The detection circuit mainly consisted of frequency selective networks, Phase Locked Loop (PLL), logical gate and low-pass filter. The two elemental capacitances of differential capacitance respectively harmonic oscillated in two parameter symmetry resonance units. Beating wave represented when the two output signals with different frequency had passed the logical gate and low-pass filter in turn. The frequency of beating wave was proportional to the sensing differential capacitance. One of the most important aspects of using circuit resonance elements with MEMS technology was the elimination of analog voltage amplitude measurement used in conventional MEMS accelerometers. On the other hand, this method overcame the disadvantages of conventional mechanical resonance accelerometers, with frequency output and high Signal Noise Ratio (SNR), such as poor dynamic response, temperature drift, complex structure and large power dissipation. According to the numerical simulation results, the circuit resonance detector with PLL can reach high capacitance resolution: 10-16 F.

  16. Automatic Stress Detection in Working Environments From Smartphones' Accelerometer Data: A First Step.

    Garcia-Ceja, Enrique; Osmani, Venet; Mayora, Oscar

    2016-07-01

    Increase in workload across many organizations and consequent increase in occupational stress are negatively affecting the health of the workforce. Measuring stress and other human psychological dynamics is difficult due to subjective nature of selfreporting and variability between and within individuals. With the advent of smartphones, it is now possible to monitor diverse aspects of human behavior, including objectively measured behavior related to psychological state and consequently stress. We have used data from the smartphone's built-in accelerometer to detect behavior that correlates with subjects stress levels. Accelerometer sensor was chosen because it raises fewer privacy concerns (e.g., in comparison to location, video, or audio recording), and because its low-power consumption makes it suitable to be embedded in smaller wearable devices, such as fitness trackers. About 30 subjects from two different organizations were provided with smartphones. The study lasted for eight weeks and was conducted in real working environments, with no constraints whatsoever placed upon smartphone usage. The subjects reported their perceived stress levels three times during their working hours. Using combination of statistical models to classify selfreported stress levels, we achieved a maximum overall accuracy of 71% for user-specific models and an accuracy of 60% for the use of similar-users models, relying solely on data from a single accelerometer. PMID:26087509

  17. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems.

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao; Li, Zhijun

    2016-01-01

    In a charge-coupled device (CCD)-based fast steering mirror (FSM) tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs) are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM) to realize the stabilization of the line-of-sight (LOS) of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system. PMID:27023557

  18. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems

    Jing Tian

    2016-03-01

    Full Text Available In a charge-coupled device (CCD-based fast steering mirror (FSM tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM to realize the stabilization of the line-of-sight (LOS of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system.

  19. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  20. MOCA: A Low-Power, Low-Cost Motion Capture System Based on Integrated Accelerometers

    Elisabetta Farella

    2007-01-01

    Full Text Available Human-computer interaction (HCI and virtual reality applications pose the challenge of enabling real-time interfaces for natural interaction. Gesture recognition based on body-mounted accelerometers has been proposed as a viable solution to translate patterns of movements that are associated with user commands, thus substituting point-and-click methods or other cumbersome input devices. On the other hand, cost and power constraints make the implementation of a natural and efficient interface suitable for consumer applications a critical task. Even though several gesture recognition solutions exist, their use in HCI context has been poorly characterized. For this reason, in this paper, we consider a low-cost/low-power wearable motion tracking system based on integrated accelerometers called motion capture with accelerometers (MOCA that we evaluated for navigation in virtual spaces. Recognition is based on a geometric algorithm that enables efficient and robust detection of rotational movements. Our objective is to demonstrate that such a low-cost and a low-power implementation is suitable for HCI applications. To this purpose, we characterized the system from both a quantitative point of view and a qualitative point of view. First, we performed static and dynamic assessment of movement recognition accuracy. Second, we evaluated the effectiveness of user experience using a 3D game application as a test bed.

  1. Initial Borehole Accelerometer Array Observations Near the North Portal of the ESF

    David von Seggern

    2005-08-17

    This report addresses observed ground motions at the site of the proposed surface facilities associated with the designated repository for high-level nuclear waste at Yucca Mountain, Nevada. In 2003 an accelerometer array was installed at three boreholes on the pad of the north portal of the ESF (Exploratory Studies Facility) at Yucca Mountain, Nevada, by the Nevada Seismological Laboratory (NSL). These boreholes, roughly 150 m apart and initially used for extensive geological and geophysical surveys, were ideal locations to measure the subsurface ground motions at the proposed site of surface facilities such as the Waste Handling Building. Such measurements will impact the design of the facilities. Accelerometer emplacement depths of approximately 15 m from the surface and then at the bottom of the boreholes, roughly 100 m, were chosen. Accelerometers were also placed at the surface next to the boreholes, for a total of nine accelerometers, all three-component. Data recording was accomplished with onsite recorders, with the onsite data transmitted to a central computer at a trailer on the pad. All requirements were met to qualify these data as ''Q''. Due to the lack of significant recordings during 2003, several low signal-to-noise (S/N) quality events were chosen for processing. The maximum horizontal peak ground acceleration (PGA) recorded at the pad was approximately 1 cm/s2 in 2003; the corresponding peak ground velocity (PGV) was approximately 0.01 cm/s. PGA and PGV were obtained at all nine accelerometers for most of these events, and spectra were computed. Ground motion amplitudes varied significantly across the boreholes. Higher ground amplifications were observed at the surface for the two boreholes that penetrated a thick amount ({approx} 30 m) of fill and Quaternary alluvium compared to the one that had less than 2 m of such. Additionally, surface-to-deep recordings showed as much as a factor of five amplification at these two

  2. Initial Borehole Accelerometer Array Observations Near the North Portal of the ESF

    This report addresses observed ground motions at the site of the proposed surface facilities associated with the designated repository for high-level nuclear waste at Yucca Mountain, Nevada. In 2003 an accelerometer array was installed at three boreholes on the pad of the north portal of the ESF (Exploratory Studies Facility) at Yucca Mountain, Nevada, by the Nevada Seismological Laboratory (NSL). These boreholes, roughly 150 m apart and initially used for extensive geological and geophysical surveys, were ideal locations to measure the subsurface ground motions at the proposed site of surface facilities such as the Waste Handling Building. Such measurements will impact the design of the facilities. Accelerometer emplacement depths of approximately 15 m from the surface and then at the bottom of the boreholes, roughly 100 m, were chosen. Accelerometers were also placed at the surface next to the boreholes, for a total of nine accelerometers, all three-component. Data recording was accomplished with onsite recorders, with the onsite data transmitted to a central computer at a trailer on the pad. All requirements were met to qualify these data as ''Q''. Due to the lack of significant recordings during 2003, several low signal-to-noise (S/N) quality events were chosen for processing. The maximum horizontal peak ground acceleration (PGA) recorded at the pad was approximately 1 cm/s2 in 2003; the corresponding peak ground velocity (PGV) was approximately 0.01 cm/s. PGA and PGV were obtained at all nine accelerometers for most of these events, and spectra were computed. Ground motion amplitudes varied significantly across the boreholes. Higher ground amplifications were observed at the surface for the two boreholes that penetrated a thick amount (∼ 30 m) of fill and Quaternary alluvium compared to the one that had less than 2 m of such. Additionally, surface-to-deep recordings showed as much as a factor of five amplification at these two boreholes. Signal correlation

  3. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS) Accelerometer.

    Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun

    2016-01-01

    Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383

  4. The impact of accelerometer use in exercise-associated hypoglycemia prevention in type 1 diabetes.

    Stenerson, Matthew; Cameron, Fraser; Payne, Shelby R; Payne, Sydney L; Ly, Trang T; Wilson, Darrell M; Buckingham, Bruce A

    2015-01-01

    Exercise-associated hypoglycemia is a common adverse event in people with type 1 diabetes. Previous in silico testing by our group demonstrated superior exercise-associated hypoglycemia mitigation when a predictive low glucose suspend (PLGS) algorithm was augmented to incorporate activity data. The current study investigates the effectiveness of an accelerometer-augmented PLGS algorithm in an outpatient exercise protocol. Subjects with type 1 diabetes on insulin pump therapy participated in two structured soccer sessions, one utilizing the algorithm and the other using the subject's regular basal insulin rate. Each subject wore their own insulin pump and a Dexcom G4™ Platinum continuous glucose monitor (CGM); subjects on-algorithm also wore a Zephyr BioHarness™ 3 accelerometer. The algorithm utilized a Kalman filter with a 30-minute prediction horizon. Activity and CGM readings were manually entered into a spreadsheet and at five-minute intervals, the algorithm indicated whether the basal insulin infusion should be on or suspended; any changes were then implemented by study staff. The rate of hypoglycemia during and after exercise (until the following morning) was compared between groups. Eighteen subjects (mean age 13.4 ± 3.7 years) participated in two separate sessions 7-22 days apart. The difference in meter blood glucose levels between groups at each rest period did not achieve statistical significance at any time point. Hypoglycemia during the session was recorded in three on-algorithm subjects, compared to six off-algorithm subjects. In the postexercise monitoring period, hypoglycemia occurred in two subjects who were on-algorithm during the session and four subjects who were off-algorithm. The accelerometer-augmented algorithm failed to prevent exercise-associated hypoglycemia compared to subjects on their usual basal rates. A larger sample size may have achieved statistical significance. Further research involving an automated system, a larger sample

  5. Monitoring recovery of gait balance control following concussion using an accelerometer.

    Howell, David; Osternig, Louis; Chou, Li-Shan

    2015-09-18

    Despite medical best-practice recommendations, no consistent standard exists to systematically monitor recovery from concussion. Studies utilizing camera-based systems have reported center-of-mass (COM) motion control deficits persisting in individuals with concussion up to two months post-injury. The use of an accelerometer may provide an efficient and sensitive method to monitor COM alterations following concussion that can be employed in clinical settings. This study examined: (1) frontal/sagittal plane acceleration characteristics during dual-task walking for individuals with concussion and healthy controls; and (2) the effectiveness of utilizing acceleration characteristics to classify concussed and healthy individuals via receiver operating characteristic (ROC) curve analyses. Individuals with concussion completed testing within 72 h as well as 1 week, 2 weeks, 1 month, and 2 months post-injury. Control subjects completed the same protocol in similar time increments. Participants walked and simultaneously completed a cognitive task while wearing an accelerometer attached to L5. Participants with concussion walked with significantly less peak medial-lateral acceleration during 55-75% gait cycle (p=0.04) throughout the testing period compared with controls. Moderate levels of sensitivity and specificity were found at the 72 h and 1 week testing times (sensitivity=0.70, specificity=0.71). ROC analysis revealed significant AUC values at the 72 h (AUC=0.889) and two week (AUC=0.810) time points. Accelerometer-derived measurements may assist in detecting frontal plane control deficits during dual-task walking post-concussion, consistent with camera-based studies. These initial findings demonstrate potential for using accelerometry as a tool for clinicians to monitor gait balance control following concussion. PMID:26152463

  6. Vibration transmissibility on rifle shooter: A comparison between accelerometer and laser Doppler vibrometer data

    Scalise, L.; Casacanditella, L.; Santolini, C.; Martarelli, M.; Tomasini, E. P.

    2014-05-01

    The transmission of mechanical vibrations from tools to human subjects is known to be potentially dangerous for the circulatory and neurological systems. It is also known that such damages are strictly depending on the intensity and the frequency range of the vibrational signals transferred to the different anatomical districts. In this paper, very high impulsive signals, generated during a shooting by a rifle, will be studied, being such signals characterised by a very high acceleration amplitude as well as high frequency range. In this paper, it will be presented an experimental setup aimed to collect experimental data relative to the transmission of the vibration signals from the rifle to the shoulder of subject during the shooting action. In particular the transmissibility of acceleration signals, as well as of the velocity signals, between the rifle stock and the subject's back shoulder will be measured using two piezoelectric accelerometers and a single point laser Doppler vibrometer (LDV). Tests have been carried out in a shooting lab where a professional shooter has conducted the experiments, using different experimental configurations: two different types of stocks and two kinds of bullets with different weights were considered. Two uniaxial accelerometers were fixed on the stock of the weapon and on the back of the shoulder of the shooter respectively. Vibration from the back shoulder was also measured by means of a LDV simultaneously. A comparison of the measured results will be presented and the pros and cons of the use of contact and non-contact transducers will be discussed taking into account the possible sources of the measurement uncertainty as unwanted sensor vibrations for the accelerometer.

  7. The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data.

    Chimienti, Marianna; Cornulier, Thomas; Owen, Ellie; Bolton, Mark; Davies, Ian M; Travis, Justin M J; Scott, Beth E

    2016-02-01

    The recent increase in data accuracy from high resolution accelerometers offers substantial potential for improved understanding and prediction of animal movements. However, current approaches used for analysing these multivariable datasets typically require existing knowledge of the behaviors of the animals to inform the behavioral classification process. These methods are thus not well-suited for the many cases where limited knowledge of the different behaviors performed exist. Here, we introduce the use of an unsupervised learning algorithm. To illustrate the method's capability we analyse data collected using a combination of GPS and Accelerometers on two seabird species: razorbills (Alca torda) and common guillemots (Uria aalge). We applied the unsupervised learning algorithm Expectation Maximization to characterize latent behavioral states both above and below water at both individual and group level. The application of this flexible approach yielded significant new insights into the foraging strategies of the two study species, both above and below the surface of the water. In addition to general behavioral modes such as flying, floating, as well as descending and ascending phases within the water column, this approach allowed an exploration of previously unstudied and important behaviors such as searching and prey chasing/capture events. We propose that this unsupervised learning approach provides an ideal tool for the systematic analysis of such complex multivariable movement data that are increasingly being obtained with accelerometer tags across species. In particular, we recommend its application in cases where we have limited current knowledge of the behaviors performed and existing supervised learning approaches may have limited utility. PMID:26865961

  8. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice.

    Chang, Kang-Ming; Chun, Yu-Teng; Chen, Sih-Huei; Lu, Luo; Su, Hsiao-Ting Jannis; Liang, Hung-Meng; Santhosh, Jayasree; Ching, Congo Tak-Shing; Liu, Shing-Hong

    2016-01-01

    Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20-30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were -0.440, -0.369, and -0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice. PMID:27447641

  9. An Approach to Identify Site Response Directivity of Accelerometer Sites and Application to the Iranian Area

    Del Gaudio, Vincenzo; Pierri, Pierpaolo; Rajabi, Ali M.

    2015-06-01

    In recent years, several workers have found numerous cases of sites characterised by significant azimuthal variation of dynamic response to seismic shaking. The causes of this phenomenon are still unclear, but are possibly related to combinations of geological and geomorphological factors determining a polarisation of resonance effects. To improve their comprehension, it would be desirable to extend the database of observations on this phenomenon. Thus, considering that unrevealed cases of site response directivity can be "hidden" among the sites of accelerometer networks, we developed a two-stage approach of data mining from existing strong motion databases to identify sites affected by directional amplification. The proposed procedure first calculates Arias Intensity tensor components from accelerometer recordings of each site to determine mean directional variations of total shaking energy. Then, at the sites where a significant anisotropy appears in ground motion, azimuthal variations of HVSR values (spectral ratios between horizontal and vertical components of recordings) are analysed to confirm the occurrence of site resonance conditions. We applied this technique to a database of recordings acquired by accelerometer stations in the Iranian area. The results of this investigation pointed out some sites affected by directional resonance that appear to be correlated to the orientation of local tectonic lineaments, these being mostly transversal to the direction of maximum shaking. Comparing Arias Intensities observed at these sites with theoretical estimates provided by ground motion prediction equations, the presence of significant site amplifications was confirmed. The magnitude of the amplification factors appear to be correlated to the results of HVSR analysis, even though the pattern of dispersion of HVSR values suggests that while high peak values of spectral ratios are indicative of strong amplifications, lower values do not necessarily imply lower

  10. A novel stress isolation guard-ring design for the improvement of a three-axis piezoresistive accelerometer

    This study designs and implements a stress isolation guard-ring structure to improve the performances of the existing single proof-mass three-axis piezoresistive accelerometer. Thus, the environment disturbances, such as temperature variation and force/deflection transmittance, for a packaged three-axis piezoresistive accelerometer are significantly reduced. In application, the three-axis piezoresistive accelerometer has been fabricated using the bulk micromachining process on the SOI wafer. Experimental results show that the out-of-plane deformation of the suspended spring mass on the packaged accelerometer is reduced from 0.72 to 0.10 µm at a 150 °C temperature elevation. The temperature coefficient of zero-g offset for the presented sensor is reduced, and the temperature-induced sensitivity variation is minimized as well. Measurements also demonstrate that the guard-ring design successfully reduces the false signals induced by the force and displacement transmittance disturbances for one order of magnitude. Moreover, the three-axis acceleration sensing for the presented accelerometer with guard ring has also been demonstrated with sensitivities of 0.12–0.17 mV V−1 g−1 and nonlinearity < 1.02%.

  11. Does a waist-worn ActiGraph accelerometer quantify community ambulation in persons with multiple sclerosis?

    Jacob J. Sosnoff, PhD

    2012-12-01

    Full Text Available Accelerometry has been recognized as a method of objectively measuring community ambulation in persons with multiple sclerosis (MS. However, the assumption that walking itself serves as a major contributor to the accelerometer signal has yet to be tested. This study examined the assumption that community-based walking is a primary contributor to accelerometer output in MS. Ambulatory persons (5 males/17 females; 13 without aid/9 with aid with MS wore a triaxial accelerometer (ActiGraph GT3X, Health One Technologies; Fort Walton Beach, Florida as well as an IDEEA system (MiniSun, Inc; Fresno, Florida over the course of a single day. Outcome measures for the accelerometer included movement counts/hour for the vertical, anterior-posterior, and mediolateral axes. Outcomes for the IDEEA system included percent time walking, sitting, and standing, as well as walking speed. Pearson product correlations (r were used to examine the associations between outcomes from the accelerometer and IDEEA system. Significant correlations were observed between percent walking time and movement counts/hour along the vertical (r = 0.84 and anterior-posterior (r = 0.69 axes. Significant correlations were further noted between movement counts/hour along the vertical axis and walking speed (r = 0.45 and self-report walking impairment (r = −0.50 and disability (r = −0.46. Such observations further support accelerometry as an objective marker of community ambulation in persons with MS.

  12. Transmissive grating-reflective mirror-based fiber optic accelerometer for stable signal acquisition in industrial applications

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-05-01

    This paper discusses an applicable fiber-optic accelerometer composed of a transmissive grating panel, a reflection mirror, and two optical fibers with a separation of quarter grating pitch as transceivers that monitor the low-frequency accelerations of civil engineering structures. This sensor structure brings together the advantages of both a simple sensor structure, which leads to simplified cable design by 50% in comparison with the conventional transmission-type fiber optic accelerometer, and a stable reflected signals acquisition with repeatability in comparison to the researched grating-reflection type fiber optic accelerometer. The vibrating displacement and sinusoidal acceleration measured from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and a MEMS accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4.0 Hz with a margin of error that is less than 5% and a high sensitivity of 5.06 rad/(m/s)2.

  13. Design and fabrication of three-axis accelerometer sensor microsystem for wide temperature range applications using semi-custom process

    Merdassi, A.; Wang, Y.; Xereas, G.; Chodavarapu, V. P.

    2014-03-01

    This paper describes an integrated CMOS-MEMS inertial sensor microsystem, consisting of a 3-axis accelerometer sensor device and its complementary readout circuit, which is designed to operate over a wide temperature range from - 55°C to 175°C. The accelerometer device is based on capacitive transduction and is fabricated using PolyMUMPS, which is a commercial process available from MEMSCAP. The fabricated accelerometer device is then post-processed by depositing a layer of amorphous silicon carbide to form a composite sensor structure to improve its performance over an extended wide temperature range. We designed and fabricated a CMOS readout circuit in IBM 0.13μm process that interfaces with the accelerometer device to serve as a capacitance to voltage converter. The accelerometer device is designed to operate over a measurement range of +/-20g. The described sensor system allows low power, low cost and mass-producible implementation well suited for a variety of applications with harsh or wide temperature operating conditions.

  14. A New Method for Identifying Hazardous Road Locations Using GPS and Accelerometer

    Reinau, Kristian Hegner; Andersen, Camilla Sloth; Agerholm, Niels

    Identification of hazardous road locations is of key importance to traffic safety and has traditionally relied on accident statistics. Due to a declining quality of statistics on accidents in many countries, a need exist for new methods to identify hazardous road locations. This article presents a...... tested and validated through a case study of Aalborg city, where HRLs identified on the basis of accident statistics are compared to the HCLs identified with the new method on a dataset of more than 36.531 hours of driving tracked with accelerometer and GPS, containing 131 million GPS and 1.1 billion...

  15. Changes in Physical Activity over Time in Young Children: A Longitudinal Study Using Accelerometers

    Taylor, Rachael W; Williams, Sheila M.; Victoria L Farmer; Taylor, Barry J.

    2013-01-01

    Previous research has suggested that marked declines in physical activity occur during the preschool years, and across the transition into school. However, longitudinal studies using objective measures of activity have been limited by sample size and length of follow-up. The aims of this study were to determine how overall activity and time in different intensities of activity change in children followed from 3 to 7 years. Children (n = 242) wore Actical accelerometers at 3, 4, 5, 5.5, 6.5 an...

  16. Testing gravity beyond the standard model: status of GAP, an electrostatic accelerometer for interplanetary fundamental physics

    Berge, Joel; Christophe, Bruno; Liorzou, Françoise

    Theories beyond the standard model aim to face several challenges: connect gravitation with the other three known forces, and shed light on dark matter and dark energy. Although General Relativity has been incredibly successful at passing laboratory / Solar System scales tests to date, it is a classical theory (hence, incompatible with quantum physics scales) and it fails at explaining large scale astrophysical observations such as galaxy rotation curves and the accelerated expansion of the Universe without introducing dark matter and dark energy. Thus, most theories beyond the standard model explore modifications to General Relativity. Those modifications, whether they consist in adding an extra scalar field or adding a scale-dependence to the gravitation laws, allow us to predict small deviations from General Relativity at laboratory / Solar System scales. For instance, such a deviation could have explained the Pioneer anomaly, where the Pioneer probes were measured to undergo an unexpected acceleration. Although this anomaly has recently been accounted for by an instrumental thermal radiation, precise measurements of the non-gravitational forces applied to the probes would have helped decide whether the observed behavior was due to gravitational or non-gravitational physics. As a result, several missions have been proposed to embark an accelerometer on-board an interplanetary probe. Indeed, an accelerometer will measure the non-gravitational accelerations applied to the probe, thereby separating the potentially measured departures from a pure geodetic trajectory into their gravitational and non-gravitational components, and allowing us to easily constrain General Relativity in deep space. The Gravity Advanced Package (GAP) is an instrument developed for this purpose. It is composed of a 3-axes electrostatic accelerometer called MicroSTAR and a rotating platform called Bias Rejection System. It aims to provide an unbiased measurement of a spacecraft's non

  17. Optimization of an Accelerometer and Gyroscope-Based Fall Detection Algorithm

    Huynh, Quoc T.; Nguyen, Uyen D; Irazabal, Lucia B.; Nazanin Ghassemian; Tran, Binh Q.

    2015-01-01

    Falling is a common and significant cause of injury in elderly adults (>65 yrs old), often leading to disability and death. In the USA, one in three of the elderly suffers from fall injuries annually. This study’s purpose is to develop, optimize, and assess the efficacy of a falls detection algorithm based upon a wireless, wearable sensor system (WSS) comprised of a 3-axis accelerometer and gyroscope. For this study, the WSS is placed at the chest center to collect real-time motion data of va...

  18. Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms.

    Thorup, V M; Munksgaard, L; Robert, P-E; Erhard, H W; Thomsen, P T; Friggens, N C

    2015-10-01

    Lameness in dairy herds is traditionally detected by visual inspection, which is time-consuming and subjective. Compared with healthy cows, lame cows often spend longer time lying down, walk less and change behaviour around feeding time. Accelerometers measuring cow leg activity may assist farmers in detecting lame cows. On four commercial farms, accelerometer data were derived from hind leg-mounted accelerometers on 348 Holstein cows, 53 of them during two lactations. The cows were milked twice daily and had no access to pasture. During a lactation, locomotion score (LS) was assessed on average 2.4 times (s.d. 1.3). Based on daily lying duration, standing duration, walking duration, total number of steps, step frequency, motion index (MI, i.e. total acceleration) for lying, standing and walking, eight accelerometer means and their corresponding coefficient of variation (CV) were calculated for each week immediately before an LS. A principal component analysis was performed to evaluate the relationship between the variables. The effects of LS and farm on the principal components (PC) and on the variables were analysed in a mixed model. The first four PC accounted for 27%, 18%, 12% and 10% of the total variation, respectively. PC1 corresponded to Activity variability due to heavy loading by five CV variables related to standing and walking. PC2 corresponded to Activity level due to heavy loading by MI walking, MI standing and walking duration. PC3 corresponded to Recumbency due to heavy loading by four variables related to lying. PC4 corresponded mainly to Stepping due to heavy loading by step frequency. Activity variability at LS4 was significantly higher than at the lower LS levels. Activity level was significantly higher at LS1 than at LS2, which was significantly higher than at LS4. Recumbency was unaffected by LS. Stepping at LS1 and LS2 was significantly higher than at LS3 and LS4. Activity level was significantly lower on farm 3 compared with farms 1 and 2

  19. Analysis of Accelerometer Data from a Woven Inflatable Creep Burst Test

    James, George H.; Grygier, Michael; Selig, Molly M.

    2015-01-01

    Accelerometers were used to montor an inflatable test article during a creep test to failure. The test article experienced impulse events that were classified based on the response of the sensors and their time-dependent manifestation. These impulse events required specialized techniques to process the structural dynamics data. However, certain phenomena were defined as worthy of additional study. An assessment of one phenomena (a frequency near 1000Hz) showed a time dependent frequency and an amplitude that increased significantly near the end of the test. Hence, these observations are expected to drive future understanding of and utility in inflatable space structures.

  20. Using hidden markov models to improve quantifying physical activity in accelerometer data - a simulation study.

    Vitali Witowski

    Full Text Available INTRODUCTION: The use of accelerometers to objectively measure physical activity (PA has become the most preferred method of choice in recent years. Traditionally, cutpoints are used to assign impulse counts recorded by the devices to sedentary and activity ranges. Here, hidden Markov models (HMM are used to improve the cutpoint method to achieve a more accurate identification of the sequence of modes of PA. METHODS: 1,000 days of labeled accelerometer data have been simulated. For the simulated data the actual sedentary behavior and activity range of each count is known. The cutpoint method is compared with HMMs based on the Poisson distribution (HMM[Pois], the generalized Poisson distribution (HMM[GenPois] and the Gaussian distribution (HMM[Gauss] with regard to misclassification rate (MCR, bout detection, detection of the number of activities performed during the day and runtime. RESULTS: The cutpoint method had a misclassification rate (MCR of 11% followed by HMM[Pois] with 8%, HMM[GenPois] with 3% and HMM[Gauss] having the best MCR with less than 2%. HMM[Gauss] detected the correct number of bouts in 12.8% of the days, HMM[GenPois] in 16.1%, HMM[Pois] and the cutpoint method in none. HMM[GenPois] identified the correct number of activities in 61.3% of the days, whereas HMM[Gauss] only in 26.8%. HMM[Pois] did not identify the correct number at all and seemed to overestimate the number of activities. Runtime varied between 0.01 seconds (cutpoint, 2.0 minutes (HMM[Gauss] and 14.2 minutes (HMM[GenPois]. CONCLUSIONS: Using simulated data, HMM-based methods were superior in activity classification when compared to the traditional cutpoint method and seem to be appropriate to model accelerometer data. Of the HMM-based methods, HMM[Gauss] seemed to be the most appropriate choice to assess real-life accelerometer data.

  1. Design of a fibre-optic disc accelerometer: theory and experiment

    Wang, Yongjie; Xiao, Hao; Zhang, Songwei; Li, Fang; Liu, Yuliang

    2007-06-01

    Mechanical principles of fibre-optic disc accelerometers (FODA) different from those assumed in previous calculation methods are presented. An FODA with a high sensitivity of 82 rad/g and a resonance frequency of 360 Hz is designed and tested. In this system, the minimum measurable demodulation phase of the phase-generated carrier (PGC) is 10-5 rad, and the minimum acceleration reaches 120 ng theoretically. This kind of FODA, with its high responsivity, all-optic-fibre configuration, small size, light weight and stiff shell housing, ensures effective performance in practice.

  2. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014

  3. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age

    Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M

    2016-01-01

    To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155

  4. An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers

    The Timed Up and Go (TUG) test is a widely used measure of mobility and fall risk among older adults that is typically scored using a stopwatch. We tested the hypothesis that a body-fixed accelerometer can enhance the ability of the TUG to identify community-living older adults with a relatively high fall risk of unknown origin. Twenty-three community-living elderly fallers (76.0 ± 3.9 years) and 18 healthy controls (68.3 ± 9.1 years) performed the TUG while wearing a 3D-accelerometer on the lower back. Acceleration-derived parameters included Sit-to-Stand and Stand-to-Sit times, amplitude range (Range), and slopes (Jerk). Average step duration, number of steps, average step length, gait speed, acceleration-median, and standard-deviation were also calculated. While the stopwatch-based TUG duration was not significantly different between the groups, acceleration-derived TUG duration was significantly higher (p = 0.007) among the fallers. Fallers generally exhibited lower Range and Jerk (p < 0.01). While TUG stopwatch duration successfully identified 63% of the subjects, an accelerometer-derived three-measure-combination correctly classified 87% of the subjects. Accelerometer-derived measures were generally not correlated with TUG duration. These findings demonstrate that fallers have difficulty with specific TUG aspects that can be quantified using an accelerometer. Without compromising simplicity of testing, an accelerometer can apparently be combined with TUG duration to provide complementary, objective measures that allow for a more complete, sensitive TUG-based fall risk assessment

  5. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.

    Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M

    2015-11-01

    To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18-39, 40-64, 65 +  years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of -0.03 to 0.01 METs, bias percent of -0.8 to 0.3%, and a rMSE range of 0.81-1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155

  6. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer.

    Liu, T Y; Wu, Q P; Sun, B Q; Han, F T

    2016-01-01

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10(-4)g0 (Earth's gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726

  7. Modeling the Microstructure Curvature of Boron-Doped Silicon in Bulk Micromachined Accelerometer

    Xiaoping He

    2013-01-01

    Full Text Available Microstructure curvature, or buckling, is observed in the micromachining of silicon sensors because of the doping of impurities for realizing certain electrical and mechanical processes. This behavior can be a key source of error in inertial sensors. Therefore, identifying the factors that influence the buckling value is important in designing MEMS devices. In this study, the curvature in the proof mass of an accelerometer is modeled as a multilayered solid model. Modeling is performed according to the characteristics of the solid diffusion mechanism in the bulk-dissolved wafer process (BDWP based on the self-stopped etch technique. Moreover, the proposed multilayered solid model is established as an equivalent composite structure formed by a group of thin layers that are glued together. Each layer has a different Young’s modulus value and each undergoes different volume shrinkage strain owing to boron doping in silicon. Observations of five groups of proof mass blocks of accelerometers suggest that the theoretical model is effective in determining the buckling value of a fabricated structure.

  8. High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1991-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  9. The Practical Design of In-vehicle Telematics Device with GPS and MEMS Accelerometers

    D. M. Dramićanin

    2012-11-01

    Full Text Available The latest generation of vehicle tracking devices relies not only on Global Positioning System (GPS but also uses low-cost Micro-Electro-Mechanical Systems (MEMS accelerometers. This combination supports new services such as driving style characterization and Automatic Crash Notification (ACN. Our focus will be on practical considerations of such a telematics unit. The paper will consider the boundaries of allowed errors and minimal requirements for sensors and mounting requirements. Sensor range for crash detection and impact angle estimation was tested on field trials with two units containing accelerometers range of 18g and 2g. The kinematic orientation of vehicle is evaluated in a series of field trials with a resulting standard deviation of estimation of 1.67°. The second run of experiments considers the dynamic range and sampling rate of sensors during collision. A sensor range of 8g (typical for present-day telematics devices can be used to detect crash without accurate knowledge of impact angle.

  10. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control

    Differential vibrating accelerometer (DVA) is a resonant-type sensor which detects the change in the resonant frequency in the presence of acceleration input, i.e. inertial loading. However, the resonant frequency of micromachined silicon resonators is sensitive to the temperature change as well as the input acceleration. Therefore, to design a high-precision vibrating accelerometer, the temperature sensitivity of the resonant frequency has to be predicted and compensated accurately. In this study, a temperature compensation method for resonant frequency is proposed which controls the electrostatic stiffness of the dual-ended tuning fork (DETF) using the temperature-dependent dc voltage between the parallel plate electrodes. To do this, the electromechanical model is derived first to predict the change in the electrostatic stiffness and the resonant frequency resulting from the dc voltage between the resonator and the electrodes. Next, the temperature sensitivity of the resonant frequency is modeled, estimated and compared with the measured values. Then it is shown that the resonant frequency of the DETF can be kept constant in the operating temperature range by applying the temperature-dependent driving voltage to the parallel plate electrodes. The proposed method is validated through experiment. (paper)

  11. Optimal Sensor Placement for Measuring Physical Activity with a 3D Accelerometer

    Simone T. Boerema

    2014-02-01

    Full Text Available Accelerometer-based activity monitors are popular for monitoring physical activity. In this study, we investigated optimal sensor placement for increasing the quality of studies that utilize accelerometer data to assess physical activity. We performed a two-staged study, focused on sensor location and type of mounting. Ten subjects walked at various walking speeds on a treadmill, performed a deskwork protocol, and walked on level ground, while simultaneously wearing five ProMove2 sensors with a snug fit on an elastic waist belt. We found that sensor location, type of activity, and their interaction-effect affected sensor output. The most lateral positions on the waist belt were the least sensitive for interference. The effect of mounting was explored, by making two subjects repeat the experimental protocol with sensors more loosely fitted to the elastic belt. The loose fit resulted in lower sensor output, except for the deskwork protocol, where output was higher. In order to increase the reliability and to reduce the variability of sensor output, researchers should place activity sensors on the most lateral position of a participant’s waist belt. If the sensor hampers free movement, it may be positioned slightly more forward on the belt. Finally, sensors should be fitted tightly to the body.

  12. Wireless portable electrocardiogram and a tri-axis accelerometer implementation and application on sleep activity monitoring.

    Chang, Kang-Ming; Liu, Shin-Hong

    2011-04-01

    Night-to-night variability of sleep activity requires more home-based portable sleep monitoring instead of clinical polysomnography examination in the laboratory. In this article, a wireless sleep activity monitoring system is described. The system is light and small for the user. Sleep postures, such as supine or left/right side, were observed by a signal from a tri-axis accelerometer. An overnight electrocardiogram was also recorded with a single lead. Using an MSP430 as microcontroller, both physiological signals were transmitted by a Bluetooth chip. A Labview-based interface demonstrated the recorded signal and sleep posture. Three nights of sleep recordings were used to examine night-to-night variability. The proposed system can record overnight heart rate. Results show that sleep posture and posture change can be precisely detected via tri-axis accelerometer information. There is no significant difference within subject data sets, but there are statistically significant differences among subjects, both for heart rate and for sleep posture distribution. The wireless transmission range is also sufficient for home-based users. PMID:21413872

  13. Validation of Accelerometer Thresholds and Inclinometry for Measurement of Sedentary Behavior in Young Adult University Students.

    Peterson, Neil E; Sirard, John R; Kulbok, Pamela A; DeBoer, Mark D; Erickson, Jeanne M

    2015-12-01

    Sedentary behavior (SB) is a major contributor to obesity and significant morbidity and mortality in adolescence and adulthood, yet measurement of SB is still evolving. The purpose of this study was to assess the degree of construct validity of the inclinometer function and single-axis and vector magnitude accelerometry metrics of the ActiGraph GT3X+ in objectively measuring SB and physical activity in 28 young adult university students who performed nine semi-structured activities, each for five minutes: lying, sitting, reading, seated video gaming, video watching, seated conversation, standing, stationary biking, and treadmill walking. Inclinometry and four output metrics from the ActiGraph were analyzed in comparison to direct observation by a researcher recorded each minute. For overall accuracy in measuring both SB and physical activity, all four accelerometer metrics (94.7-97.8%) outperformed the inclinometer function (70.9%). Vector magnitude accelerometry with a threshold of 150 counts per minute as the cut point for sedentary behavior was superior to other methods. While accelerometry was more accurate overall at detecting the behaviors tested, inclinometry had some advantages over accelerometry methods at detecting walking, biking, and standing. The findings support use of accelerometry as a valid objective measure of body movement, while use of inclinometry as a sole measure is not recommended. Additional research would be beneficial to improve the calibration of the inclinometer and explore ways of combining this with accelerometer data for objectively measuring SB and physical activity. PMID:26444969

  14. Measurement Uncertainty Analysis of an Accelerometer Calibration Using a POC Electromagnetic Launcher

    Timpson, Erik J.; Engel, T. G.

    2012-06-12

    A pulse forming network (PFN), helical electromagnetic launcher (HEML), command module (CM), and calibration table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored nergy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass reinforced epoxy and is designed to accelerate a mass of 600 grams to a velocity of 10 meters per second. The CM is microcontroller-based running Arduino Software. The CM has a keypad input and 7 segment outputs of the PFN voltage and desired charging voltage. After entering a desired PFN voltage, the CM controls the charging of the PFN. When the two voltages are equal it sends a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile’s tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocimeter and catch pot. The target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely so that the velocimeter can accurately read. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  15. Accelerometer Load Profiles for Basketball-Specific Drills in Elite Players

    Xavi Schelling, Lorena Torres

    2016-12-01

    Full Text Available The purpose of this study was to quantify the workload during basketball-specific drills measured through microtechnology. Twelve professional male basketball players from the Spanish 1st Division were monitored over a 4-week period. Data were collected from 16 sessions, for a total of 95 ± 33 drills per player. Workload data (Acceleration load; AL were obtained from a tri-axial accelerometer at 100Hz sampling frequency, and were expressed over time (AL.min-1. Comparisons among training drills (i.e., 2v2, 3v3, 4v4, and 5v5 were assessed via standardized mean differences. Full-court 3v3 and 5v5 showed the highest physical demand (AL.min-1: 18.7 ± 4.1 and 17.9 ± 4.6, respectively compared with other traditional balanced basketball drills such as 2v2 and 4v4 (14.6 ± 2.8 and 13.8±2.5, respectively. The AL.min-1 on half-court showed trivial-to-moderate differences with a likely increase of ~10-20% in 2v2 drill compared with any other formats. This study provides insight into the specific requirements of a range of exercises typically performed in basketball sessions. The use of accelerometer data is presented as a useful tool in assessing the workload.

  16. Spend Less, Get More? Using Low-Cost Accelerometers to Calculate Building Responses

    Chung, A. I.; Lawrence, J. F.; Prieto, G.; Kohler, M. D.; Cochran, E. S.

    2009-12-01

    We present a new technique for predicting the earthquake responses of various structures, and we demonstrate its effectiveness by applying the method to several buildings, including several newly instrumented buildings around the Stanford University campus. While the use of ambient noise recordings to determine structural qualities of buildings is not new, our technique produces robust results that are independent of the noise sources. The process of averaging 10-minute inter-station transfer functions for a long duration (approximately 14 days) generates robust building responses comparable to those generated with earthquake data. The method allows us to employ large volumes of data recorded from low-gain accelerometers such as those currently used by the Quake-Catcher Network. Furthermore, as we can obtain the phase information, we can Fourier transform the transfer functions into the time domain to calculate the Impulse Response Function (IRF). The IRF can then be used to approximate a building’s response to a moderate earthquake. Using small, inexpensive accelerometers means that there is the exciting potential of being able to perform minimally invasive campaign-style state-of-health monitoring for many buildings at low cost. The increased data volume will provide useful and dependable results for many structures, thereby improving our understanding of building responses.

  17. Using commodity accelerometers and gyroscopes to improve speed and accuracy of JanusVF

    Hutson, Malcolm; Reiners, Dirk

    2010-01-01

    Several critical limitations exist in the currently available commercial tracking technologies for fully-enclosed virtual reality (VR) systems. While several 6DOF solutions can be adapted to work in fully-enclosed spaces, they still include elements of hardware that can interfere with the user's visual experience. JanusVF introduced a tracking solution for fully-enclosed VR displays that achieves comparable performance to available commercial solutions but without artifacts that can obscure the user's view. JanusVF employs a small, high-resolution camera that is worn on the user's head, but faces backwards. The VR rendering software draws specific fiducial markers with known size and absolute position inside the VR scene behind the user but in view of the camera. These fiducials are tracked by ARToolkitPlus and integrated by a single-constraint-at-a-time (SCAAT) filter to update the head pose. In this paper we investigate the addition of low-cost accelerometers and gyroscopes such as those in Nintendo Wii remotes, the Wii Motion Plus, and the Sony Sixaxis controller to improve the precision and accuracy of JanusVF. Several enthusiast projects have implemented these units as basic trackers or for gesture recognition, but none so far have created true 6DOF trackers using only the accelerometers and gyroscopes. Our original experiments were repeated after adding the low-cost inertial sensors, showing considerable improvements and noise reduction.

  18. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control

    Lee, Jungshin; Rhim, Jaewook

    2012-09-01

    Differential vibrating accelerometer (DVA) is a resonant-type sensor which detects the change in the resonant frequency in the presence of acceleration input, i.e. inertial loading. However, the resonant frequency of micromachined silicon resonators is sensitive to the temperature change as well as the input acceleration. Therefore, to design a high-precision vibrating accelerometer, the temperature sensitivity of the resonant frequency has to be predicted and compensated accurately. In this study, a temperature compensation method for resonant frequency is proposed which controls the electrostatic stiffness of the dual-ended tuning fork (DETF) using the temperature-dependent dc voltage between the parallel plate electrodes. To do this, the electromechanical model is derived first to predict the change in the electrostatic stiffness and the resonant frequency resulting from the dc voltage between the resonator and the electrodes. Next, the temperature sensitivity of the resonant frequency is modeled, estimated and compared with the measured values. Then it is shown that the resonant frequency of the DETF can be kept constant in the operating temperature range by applying the temperature-dependent driving voltage to the parallel plate electrodes. The proposed method is validated through experiment.

  19. Sedentary Behavior in Preschoolers: How Many Days of Accelerometer Monitoring Is Needed?

    Wonwoo Byun

    2015-10-01

    Full Text Available The reliability of accelerometry for measuring sedentary behavior in preschoolers has not been determined, thus we determined how many days of accelerometry monitoring are necessary to reliably estimate daily time spent in sedentary behavior in preschoolers. In total, 191 and 150 preschoolers (three to five years wore ActiGraph accelerometers (15-s epoch during the in-school (≥4 days and the total-day (≥6 days period respectively. Accelerometry data were summarized as time spent in sedentary behavior (min/h using three different cutpoints developed for preschool-age children (<37.5, <200, and <373 counts/15 s. The intraclass correlations (ICCs and Spearman-Brown prophecy formula were used to estimate the reliability of accelerometer for measuring sedentary behavior. Across different cutpoints, the ICCs ranged from 0.81 to 0.92 for in-school sedentary behavior, and from 0.75 to 0.81 for total-day sedentary behavior, respectively. To achieve an ICC of ≥0.8, two to four days or six to nine days of monitoring were needed for in-school sedentary behavior and total-day sedentary behavior, respectively. These findings provide important guidance for future research on sedentary behavior in preschool children using accelerometry. Understanding the reliability of accelerometry will facilitate the conduct of research designed to inform policies and practices aimed at reducing sedentary behavior in preschool children.

  20. Reliability Study of the Hitachi H34C Accelerometer in Wireless Body Area Networks for Fall Detection

    Catteeuw, Wim; Hallez, Hans; Boydens, Jeroen

    2013-01-01

    A WBAN (Wireless Body Area Network) allows connecting several sensor nodes into one sensor network. Each sensor node can be provided with a dedicated sensor. In case of fall detection, the physical movements of the body, which show characteristic patterns typical for a falling body, are used to generate a warning signal. Physical movements of the body can be measured by accelerometers. Today there is a lot of progress in the area of MEMS accelerometers. They are very small and hence can get i...

  1. Influence of allowable interruption period on estimates of accelerometer wear time and sedentary time in older adults

    Mailey, Emily L.; Gothe, Neha P.; Wójcicki, Thomas R.; Szabo, Amanda N.; Olson, Erin A.; Mullen, Sean P.; Fanning, Jason T.; Motl, Robert W.; McAuley, Edward

    2013-01-01

    The criteria one uses to reduce accelerometer data can profoundly influence the interpretation of research outcomes. The purpose of this study was to examine the influence of three different interruption periods (i.e., 20, 30, and 60 minutes) on the amount of data retained for analyses and estimates of sedentary time among older adults. Older adults (N=311; Mage=71.1) wore an accelerometer for seven days and reported wear time on an accelerometer log. Accelerometer data were downloaded and scored using 20, 30, and 60-minute interruption periods. Estimates of wear time derived using each interruption period were compared to self-reported wear time, and descriptive statistics were used to compare estimates of sedentary time. Results showed a longer interruption period (i.e., 60 minutes) yields the largest sample size and the closest approximation of self-reported wear time. A short interruption period (i.e., 20 minutes) is likely to underestimate sedentary time among older adults. PMID:23752299

  2. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  3. Sensitivity optimization of a monolithic high-shock three-axis piezoresistive accelerometer with single sensing element

    SONG Ping; LI QingZhou; LI KeJie

    2009-01-01

    There exist several difficulties in the design of monolithic high-shock three-axis accelerometer, such as high g overload, transverse overload and the cross coupling in three dimensions, etc. It is necessary to optimize the sensitivity to improve the performance of the accelerometer. For the monolithic high-shock three-axis accelerometer, the complexity of the sensitivity optimization is that it should consider not only the sensitivity difference between different axes but also the elimination of cross-coupling outputs, together with the natural frequency, structural integrity and high g overload. In this paper, the optimization process for decreasing the difference of the sensitivities between different axes of a monolithic high-shock three-axis piezoresistive accelerometer with single sensing element is established. The optimization is conducted in the condition of 100000 g acceleration by two methods-the method based on the optimization module of ANSYS and the ACO (ant colony optimiza-tion) method. The comparison between un-optimized and optimized models proves the efficiency of the optimization methods. In addition, the optimization results show that the ACO method combined with the FEA (finite element analysis) is much more efficient than the method based on the optimization module of ANSYS for the structural optimization problem. And the ACO method can be widely used in the optimization problem of the sensing elements with complicated structure.

  4. Neckband or backpack? Differences in tag design and their effects on GPS/accelerometer tracking results in large waterbirds

    Kölzsch, Andrea; Neefjes, Marjolein; Barkway, Jude; Müskens, G.J.D.M.; Langevelde, van Frank; Boer, de Willem F.; Prins, Herbert H.T.; Cresswell, Brian H.; Nolet, Bart A.

    2016-01-01

    Background
    GPS and accelerometer tracking presently revolutionises the fields of ecology and animal behaviour. However, the effects of tag characteristics like weight, attachment and data quality on study outcomes and animal welfare are important to consider. In this study, we compare how differ

  5. Neckband or backpack? Differences in tag design and their effects on GPS/accelerometer tracking results in large waterbirds.

    Kölzsch, Andrea; Neefjes, M.; Barkway, J.; Müskens, G.J.D.M.; van Langevelde, F.; De Boer, W.F.; Prins, H.H.T.; Cresswell, B.H.; Nolet, B.A.

    2016-01-01

    Background GPS and accelerometer tracking presently revolutionises the fields of ecology and animal behaviour. However, the effects of tag characteristics like weight, attachment and data quality on study outcomes and animal welfare are important to consider. In this study, we compare how different

  6. A National Survey of Physical Activity and Sedentary Behavior of Chinese City Children and Youth Using Accelerometers

    Wang, Chao; Chen, Peijie; Zhuang, Jie

    2013-01-01

    Purpose: The purpose of this study was to objectively assess levels of physical activity (PA) and sedentary behavior (SB) of Chinese city children and youth aged 9 to 17 years old using accelerometers and to examine their differences by gender, age, grade, and weight status. Method: The PA and SB of 2,163 students in 4th grade through 11th grade…

  7. An intermediate-level physics laboratory: A system of two coupled oscillators with low-cost accelerometers

    Lamont, Mary

    2012-01-01

    We describe an intermediate-level physics experiment beyond the first-year, which uses versatile, low-cost accelerometers (Wiimotes for the Nintendo Wii gaming system) and scientific-computing software for numerical data analysis. It is designed to help students to develop better understanding of a system of coupled oscillators and Fourier transform.

  8. Improvements in the Measurement of Physical Activity in Childhood Obesity Research; Lessons from Large Studies of Accelerometers

    Andy Ness

    2008-01-01

    Full Text Available Advances in technology have improved our ability to measure physical activity in free-living humans. In the last few years, several large epidemiological studies in Europe and the United States have used accelerometers to assess physical activity in children and adolescents. The use of accelerometers to study physical activity has presented some challenges on how to summarise and interpret the data that they generate, however these studies are providing important information on the levels and patterns of physical activity among children and adolescents. Some studies have reported that few children and adolescents appear to meet the recommended minimum of 60 minutes of moderate to vigorous activity per day. Accelerometers have also allowed examination of the relationships between physical activity and health outcomes like obesity and other chronic disease risk factors such as insulin resistance, aerobic fitness, blood lipids and blood pressure. Use of accelerometers allows such relationships to be estimated with a precision that was previously impossible with self-report measures of physical activity. Such information is already advancing our understanding of the role that physical activity plays in preventing childhood obesity and cardiovascular disease risk.

  9. A Single Accelerometer based Wireless Embedded System for Predefined Dynamic Gesture Recognition

    Parsani, Rahul; Singh, Karandeep

    The use of hand gestures provides an attractive alternative to cumbersome interface devices for human-computer interaction. A complete embedded system which facilitates the data acquisition, analysis, recognition, and the transmission wirelessly, of human dynamic gestures to a computer, is described. An intuitive algorithm for processing the accelerometer data was implemented and tested. This method permits all the analysis to be done by the embedded system processor. The system is capable of recognizing gestures involving a combination of straight line motions in three dimensions. These gestures are then used to control a host computer which executes tasks based on the gesture received. A sample application showing how the gestures can be mapped to the English alphabet is also shown.

  10. Microcontroller 8051 Based Accident Alert System Using MEMS Accelerometer, GPS and GSM Technology

    Ms. Anju M. Vasdewani

    2014-12-01

    Full Text Available The largest cause of unnatural deaths in the world today (apart from diseases is road accidents. With increase in population and thus in the number of vehicles, accidents are only going to increase. Most of these deaths are due to delay in medical attention to the injured. The major cause of this delay is lack of intimation or delayed intimation of the accident to emergency medical response authorities. This can be addressed by the system proposed. This system uses an accelerometer, GSM modem and a GPS device along with a microcontroller to report an accident. The system also incorporates a “panic switch” which when depressed will send a text message for help to stored numbers. This facility provides assistance in the case of some chronic medical condition like heart attack or robberies that are increasing on highways.

  11. Tooth brushing pattern classification using three-axis accelerometer and magnetic sensor for smart toothbrush.

    Lee, Kang-Hwi; Lee, Jeong-Whan; Kim, Kyeong-Seop; Kim, Dong-Jun; Kim, Kyungho; Yang, Heui-Kyung; Jeong, Keesam; Lee, Byungchae

    2007-01-01

    The concept of intelligent toothbrush, capable of monitoring brushing motion, orientation through the grip axis, during toothbrushing was suggested in our previous study. In this study, we describe a tooth brushing pattern classification algorithm using three-axis accelerometer and three-axis magnetic sensor. We have found that inappropriate tooth brushing pattern showed specific moving patterns. In order to trace the position and orientation of toothbrush in a mouth, we need to know absolute coordinate information of toothbrush. By applying tilt-compensated azimuth (heading) calculation algorithm, which is generally used in small telematics devices, we could find the inclination and orientation information of toothbrush. To assess the feasibility of the proposed algorithm, 8 brushing patterns were preformed by 6 individual healthy subjects. The proposed algorithm showed the detection ratio of 98%. This study showed that the proposed monitoring system was conceived to aid dental care personnel in patient education and instruction in oral hygiene regarding brushing style. PMID:18002931

  12. Accelerometer-measured daily physical activity related to aerobic fitness in children and adolescents

    Dencker, Magnus; Andersen, Lars Bo

    2011-01-01

    purpose of this paper is to summarise recently published data on the relationship between daily physical activity, as measured by accelerometers, and [Vdot]O(2PEAK) in children and adolescents. A PubMed search was performed on 29 October 2010 to identify relevant articles. Studies were considered relevant......Maximum oxygen uptake ([Vdot]O(2PEAK)) is generally considered to be the best single marker for aerobic fitness. While a positive relationship between daily physical activity and aerobic fitness has been established in adults, the relationship appears less clear in children and adolescents. The...... if they included measurement of daily physical activity by accelerometry and related to a [Vdot]O(2PEAK) either measured directly at a maximal exercise test or estimated from maximal power output. A total of nine studies were identified, with a total number of 6116 children and adolescents...

  13. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Rodionov, A. V.; Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Shaner, M.; Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street Pasadena, California 91105 (United States); Sobacchi, E. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Dergachev, V.; DeSalvo, R., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientfica 1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia)

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  14. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems

  15. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  16. Slip detection with accelerometer and tactile sensors in a robotic hand model

    Al-Shanoon, Abdulrahman Abdulkareem S.; Anom Ahmad, Siti; Hassan, Mohd. Khair b.

    2015-11-01

    Grasp planning is an interesting issue in studies that dedicated efforts to investigate tactile sensors. This study investigated the physical force interaction between a tactile pressure sensor and a particular object. It also characterized object slipping during gripping operations and presented secure regripping of an object. Acceleration force was analyzed using an accelerometer sensor to establish a completely autonomous robotic hand model. An automatic feedback control system was applied to regrip the particular object when it commences to slip. Empirical findings were presented in consideration of the detection and subsequent control of the slippage situation. These findings revealed the correlation between the distance of the object slipping and the required force to regrip the object safely. This approach is similar to Hooke's law formula.

  17. An automated CAE system for multidisciplinary structural design: its application to micro accelerometer

    This paper describes a new computer-aided engineering system for multidisciplinary structural design. An automatic finite element mesh generation technique, based on fuzzy knowledge processing and computational geometry, is incorporated into the system, together with one of the commercial finite element analysis codes. A bubble is generated if its distance from existing bubble points is similar to the bubble-spacing function at the point. The bubble-spacing function is well controlled by fuzzy knowledge processing. The Delaunay method is employed as a basic tool for element generation. Automatic finite element generation for three-dimensional MEMS holds great benefits for analyses. An optimum design solution or satisfactory solutions will be automatically searched using the genetic algorithms modified for real search space, together with the automated finite element analysis system. A novel CAE system was developed, and successfully applied to the shape design of a micro accelerometer based on a tunneling current concept

  18. Surface Accelerometer Fixation Method Affects Leg Soft Tissue Motion Following Heel Impacts

    Jennifer M. Stefanczyk

    2013-10-01

    Full Text Available Surface-mounted accelerometers (SMA secured tightly to body segments with an elastic strap, are commonly used to quantify the impact response of bone.  However, the effect that this type of fixation has on segment soft tissue motion relative to bone has yet to be determined.  Heel impacts were collected from 20 participants using a human pendulum apparatus, with (strap and without (no strap a SMA attached to the proximal tibia.  Leg soft tissue motion was quantified using digital image analysis software which monitored positions of skin markers from a series of high speed photographs.  The strap was found to alter the natural physiological motion of the soft tissue, with significant displacement, velocity and sex differences occurring within the most proximal regions.  Future research should evaluate alternative methods for quantifying bone and soft tissue response to impact concurrently, to advance our understanding of impact-related injury mechanisms.

  19. User-independent accelerometer-based gesture recognition for mobile devices

    Eduardo METOLA

    2013-07-01

    Full Text Available Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user-independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human-robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone

  20. Design and Modeling of a Three-axis Piezoresistive Microelectronic Accelerometer

    Benmoussa, N.; Benichou, A.; Ghaffour, K.; Benyoucef, B.

    Micro-electro-mechanical systems (MEMS) for automotive industry and biomedical applications (BioMEMS) have the fastest growth rate within the MEMS market. The Microsystems job market imposes to research laboratories and universities to respond by increasing the quality of MEMS engineering and informatics interdisciplinary training programs. In this fact, our work consists to study and develop a three-axis piezoresistive accelerometer having uniform sensitivities along to three axes. This sensor which is made of a heavy proof mass and four long beams, allow us to obtain high sensitivities, by reducing the resonant frequencies. Uniform axial sensitivities, with a transverse sensitivity, could be obtained using a three-axis sensor. The stress analysis of this sensor was performed in order to determine the positions of the piezoresistances, in the four flexure beams.

  1. An improved quaternion Gauss–Newton algorithm for attitude determination using magnetometer and accelerometer

    Liu Fei

    2014-08-01

    Full Text Available For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator (QUEST measurement noise model are complicated for just two observations. In our application, the magnetometer and accelerometer are not two comparable kinds of sensors and both are not small field-of-view sensors as well. So in this paper a new unit measurement model is derived. According to the Wahba problem, the optimal weights for each measurement are obtained by the error variance researches. Then an improved quaternion Gauss–Newton method is presented and adopted to acquire attitude. Eventually, simulation results and experimental validation employed to test the proposed method demonstrate the usefulness of the improved algorithm.

  2. An improved quaternion Gauss-Newton algorithm for attitude determination using magnetometer and accelerometer

    Liu Fei; Li Jie; Wang Haifu; Liu Chang

    2014-01-01

    For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator (QUEST) measurement noise model are complicated for just two observa-tions. In our application, the magnetometer and accelerometer are not two comparable kinds of sen-sors and both are not small field-of-view sensors as well. So in this paper a new unit measurement model is derived. According to the Wahba problem, the optimal weights for each measurement are obtained by the error variance researches. Then an improved quaternion Gauss-Newton method is presented and adopted to acquire attitude. Eventually, simulation results and experimental valida-tion employed to test the proposed method demonstrate the usefulness of the improved algorithm.

  3. Curve aligning approach for gait authentication based on a wearable accelerometer

    Gait authentication based on a wearable accelerometer is a novel biometric which can be used for identity identification, medical rehabilitation and early detection of neurological disorders. The method for matching gait patterns tells heavily on authentication performances. In this paper, curve aligning is introduced as a new method for matching gait patterns and it is compared with correlation and dynamic time warping (DTW). A support vector machine (SVM) is proposed to fuse pattern-matching methods in a decision level. Accelerations collected from ankles of 22 walking subjects are processed for authentications in our experiments. The fusion of curve aligning with backward–forward accelerations and DTW with vertical accelerations promotes authentication performances substantially and consistently. This fusion algorithm is tested repeatedly. Its mean and standard deviation of equal error rates are 0.794% and 0.696%, respectively, whereas among all presented non-fusion algorithms, the best one shows an EER of 3.03%. (paper)

  4. Vehicle Unpaved Road Response Spectrum Acquisition Based on Accelerometer and GPS Data

    Yao Guo

    2012-07-01

    Full Text Available This paper describes a response acquisition system composed of some spindle accelerometers and a time synchronized on-board GPS receiver developed in order to collect the dynamic response of vehicle riding on an unpaved road. A method of time-space conversion for calculating the response spectrum is proposed to eliminate the adverse effect of time-varying speed, based on the transform from the equitime sampled spindle acceleration responses to equidistance sampling. By using two groups of independent distance histories acquired from GPS, a method called long-range error correction is proposed to improve the accuracy of the vehicle’s distance information, which is critical for the time-space conversion. The accuracy and limitations of the system have been analyzed, and its validity has been verified by implementing the system on a wheel loader for road response spectrum measuring. This paper offers a practical approach to obtaining unpaved road response spectra for durability road simulation.

  5. Non-Parametric Bayesian Human Motion Recognition Using a Single MEMS Tri-Axial Accelerometer

    M. Ejaz Ahmed

    2012-09-01

    Full Text Available In this paper, we propose a non-parametric clustering method to recognize the number of human motions using features which are obtained from a single microelectromechanical system (MEMS accelerometer. Since the number of human motions under consideration is not known a priori and because of the unsupervised nature of the proposed technique, there is no need to collect training data for the human motions. The infinite Gaussian mixture model (IGMM and collapsed Gibbs sampler are adopted to cluster the human motions using extracted features. From the experimental results, we show that the unanticipated human motions are detected and recognized with significant accuracy, as compared with the parametric Fuzzy C-Mean (FCM technique, the unsupervised K-means algorithm, and the non-parametric mean-shift method.

  6. Non-parametric Bayesian human motion recognition using a single MEMS tri-axial accelerometer.

    Ahmed, M Ejaz; Song, Ju Bin

    2012-01-01

    In this paper, we propose a non-parametric clustering method to recognize the number of human motions using features which are obtained from a single microelectromechanical system (MEMS) accelerometer. Since the number of human motions under consideration is not known a priori and because of the unsupervised nature of the proposed technique, there is no need to collect training data for the human motions. The infinite Gaussian mixture model (IGMM) and collapsed Gibbs sampler are adopted to cluster the human motions using extracted features. From the experimental results, we show that the unanticipated human motions are detected and recognized with significant accuracy, as compared with the parametric Fuzzy C-Mean (FCM) technique, the unsupervised K-means algorithm, and the non-parametric mean-shift method. PMID:23201992

  7. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer

    Yin, Yonggang; Sun, Boqian; Han, Fengtian

    2016-01-01

    A micromachined electrostatically-suspended accelerometer (MESA) is a kind of three-axis inertial sensor based on fully-contactless electrostatic suspension of the proof mass (PM). It has the potential to offer broad bandwidth, high sensitivity, wide dynamic range and, thus, would be perfectly suited for land seismic acquisition. Previous experiments showed that it is hard to lift up the PM successfully during initial levitation as the mass needs to be levitated simultaneously in all six degrees of freedom (DoFs). By analyzing the coupling electrostatic forces and torques between three lateral axes, it is found there exists a self-locking zone due to the cross-axis coupling effect. To minimize the cross-axis coupling and solve the initial levitation problem, this paper proposes an effective control scheme by delaying the operation of one lateral actuator. The experimental result demonstrates that the PM can be levitated up with six-DoF suspension operation at any initial position. We also propose a feed-forward compensation approach to minimize the negative stiffness effect inherent in electrostatic suspension. The experiment results demonstrate that a more broadband linear amplitude-frequency response and higher suspension stiffness can be achieved, which is crucial to maintain high vector fidelity for potential use as a three-component MEMS geophone. The preliminary performance tests of the three-axis linear accelerometer were conducted under normal atmospheric pressure and room temperature. The main results and noise analysis are presented. It is shown that vacuum packaging of the MEMS sensor is essential to extend the bandwidth and lower the noise floor, especially for low-noise seismic data acquisition. PMID:27213376

  8. Relationship Between Accelerometer Load, Collisions, and Repeated High-Intensity Effort Activity in Rugby League Players.

    Gabbett, Tim J

    2015-12-01

    Triaxial accelerometers have been critical in providing information on the high-acceleration, low-velocity movements that occur in team sports. In addition, these sensors have proven to be useful in quantifying the activities that do not involve the vertical acceleration associated with locomotion (e.g., tackling, on-ground wrestling, and grappling). This study investigated the relationship between Player Load (PL), 2D Player Load (2DPL), and Player Load Slow (PL Slow), collisions, and repeated high-intensity effort (RHIE) activity in rugby league players. One hundred and eighty-two rugby league players (age, 24.3 ± 3.3 years) participated in this study. Movement was recorded using a global positioning system unit sampling at 10 Hz and triaxial accelerometer sampling at 100 Hz. Analysis was completed during 26 matches (totaling 386 appearances). Pearson product-moment correlation coefficients were used to determine relationships between PL, 2DPL, and PL Slow and total collisions and RHIE activity. When all players were considered, weak relationships were found between PL and the number of collisions and RHIE bouts performed. However, PL was strongly associated (p ≤ 0.05) with total distance, low-speed activity, high-speed running distance, total collisions, and the number of RHIE bouts for forwards and hookers. Weak and typically insignificant relationships were found between PL, 2DPL, and PL Slow and the number of collisions and RHIE bouts performed by the adjustables and outside backs positional groups. The relationships between PL and the number of collisions and RHIE bouts are stronger in positions where contact and repeated-effort demands are high. From a practical perspective, these results suggest that PL, 2DPL, and PL Slow offer useful "real-time" measures of collision and RHIE activity, particularly in forwards and hookers, to inform interchange strategies and ensure players are training at an adequate intensity. PMID:26196661

  9. Using Wearable Accelerometers in a Community Service Context to Categorize Falling Behavior

    Chia-Hsuan Lee

    2016-07-01

    Full Text Available In this paper, the Multiscale Entropy (MSE analysis of acceleration data collected from a wearable inertial sensor was compared with other features reported in the literature to observe falling behavior from the acceleration data, and traditional clinical scales to evaluate falling behavior. We use a fall risk assessment over a four-month period to examine >65 year old participants in a community service context using simple clinical tests, including the Short Form Berg Balance Scale (SFBBS, Timed Up and Go test (TUG, and the Short Portable Mental Status Questionnaire (SPMSQ, with wearable accelerometers for the TUG test. We classified participants into fallers and non-fallers to (1 compare the features extracted from the accelerometers and (2 categorize fall risk using statistics from TUG test results. Combined, TUG and SFBBS results revealed defining features were test time, Slope(A and slope(B in Sit(A-to-stand(B, and range(A and slope(B in Stand(B-to-sit(A. Of (1 SPMSQ; (2 TUG and SPMSQ; and (3 BBS and SPMSQ results, only range(A in Stand(B-to-sit(A was a defining feature. From MSE indicators, we found that whether in the X, Y or Z direction, TUG, BBS, and the combined TUG and SFBBS are all distinguishable, showing that MSE can effectively classify participants in these clinical tests using behavioral actions. This study highlights the advantages of body-worn sensors as ordinary and low cost tools available outside the laboratory. The results indicated that MSE analysis of acceleration data can be used as an effective metric to categorize falling behavior of community-dwelling elderly. In addition to clinical application, (1 our approach requires no expert physical therapist, nurse, or doctor for evaluations and (2 fallers can be categorized irrespective of the critical value from clinical tests.

  10. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer

    Seismocardiography (SCG) is a non-invasive measurement of the vibrations of the chest caused by the heartbeat. SCG signals can be measured using a miniature accelerometer attached to the chest, and are thus well-suited for unobtrusive and long-term patient monitoring. Additionally, SCG contains information relating to both cardiovascular and respiratory systems. In this work, algorithms were developed for extracting three respiration-dependent features of the SCG signal: intensity modulation, timing interval changes within each heartbeat, and timing interval changes between successive heartbeats. Simultaneously with a reference respiration belt, SCG signals were measured from 20 healthy subjects and a respiration rate was estimated using each of the three SCG features and the reference signal. The agreement between each of the three accelerometer-derived respiration rate measurements was computed with respect to the respiration rate derived from the reference respiration belt. The respiration rate obtained from the intensity modulation in the SCG signal was found to be in closest agreement with the respiration rate obtained from the reference respiration belt: the bias was found to be 0.06 breaths per minute with a 95% confidence interval of −0.99 to 1.11 breaths per minute. The limits of agreement between the respiration rates estimated using SCG (intensity modulation) and the reference were within the clinically relevant ranges given in existing literature, demonstrating that SCG could be used for both cardiovascular and respiratory monitoring. Furthermore, phases of each of the three SCG parameters were investigated at four instances of a respiration cycle—start inspiration, peak inspiration, start expiration, and peak expiration—and during breath hold (apnea). The phases of the three SCG parameters observed during the respiration cycle were congruent with existing literature and physiologically expected trends. (paper)

  11. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer.

    Vincent T van Hees

    Full Text Available Wrist-worn accelerometers are increasingly being used for the assessment of physical activity in population studies, but little is known about their value for sleep assessment. We developed a novel method of assessing sleep duration using data from 4,094 Whitehall II Study (United Kingdom, 2012-2013 participants aged 60-83 who wore the accelerometer for 9 consecutive days, filled in a sleep log and reported sleep duration via questionnaire. Our sleep detection algorithm defined (nocturnal sleep as a period of sustained inactivity, itself detected as the absence of change in arm angle greater than 5 degrees for 5 minutes or more, during a period recorded as sleep by the participant in their sleep log. The resulting estimate of sleep duration had a moderate (but similar to previous findings agreement with questionnaire based measures for time in bed, defined as the difference between sleep onset and waking time (kappa = 0.32, 95%CI:0.29,0.34 and total sleep duration (kappa = 0.39, 0.36,0.42. This estimate was lower for time in bed for women, depressed participants, those reporting more insomnia symptoms, and on weekend days. No such group differences were found for total sleep duration. Our algorithm was validated against data from a polysomnography study on 28 persons which found a longer time window and lower angle threshold to have better sensitivity to wakefulness, while the reverse was true for sensitivity to sleep. The novelty of our method is the use of a generic algorithm that will allow comparison between studies rather than a "count" based, device specific method.

  12. Development of core support barrel(CSB) vibration monitoring system using piezoelectric accelerometer and fuzzy ARTMAP

    A core internal vibration monitoring system which is particularly concerned on the core support barrel (CSB) in the nuclear power plant reactor vessel is developed in this work. The core or fuel damage accidents can be caused by the loose-jointed flange between the top of the CSB and the head of the vessel. The loose-jointed flange can be detected with the internal vibration monitoring system, which has conventionally used the signals from ex-core neutron detectors. In order to improve the accuracy of the CSB monitoring system, however, the signals from the piezoelectric accelerometers are used in this work. This thesis consists of two parts; one is the development of a suitable tool for detecting the hold down spring broken accident or wearing out of the CSB, and the other the generation of vibration signals to represent the abnormal states of CSB. In this thesis, the adaptive resonance theory (ART; a type of neural network) is used to develop the monitoring system. The monitoring system using the Fuzzy ARTMAP processes the signals from the accelerometers. On the other hand, in order to get the data sets of the CSB in abnormal (loose-jointed) states, the finite element method (FEM) is used to model the CSB in various loose-jointed states. The target CSB is the one which is placed in ULJIN nuclear power plant unit 1. A mock-up CSB is constructed and experiments are carried out to prove that the FEM analyses properly simulate the CSB frequency responses in various states. The results show that the CSB FEM analyses and mock-up experiments are in good agreement

  13. Characteristics of satellite accelerometer measurements of thermospheric neutral winds at high latitudes

    Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.

    2015-12-01

    Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.

  14. Comparison of two accelerometer filter settings in individuals with Parkinson’s disease

    This study compared common free-living physical activity (PA) outcomes, assessed with the Actigraph GT3X+ accelerometer and processed with two different filter settings, in a sample of elderly individuals with Parkinson´s disease (PD). Sixty-six individuals (73.1  ±  5.8 years) with mild to moderate idiopathic PD carried an accelerometer for 7 d. Data were processed with the default filter setting and a low frequency extension filter (LFE). Significantly larger values were obtained with the LFE for mean counts and steps per day, and for minutes per day in low intensity- and lifestyle activities at moderate intensity, but not for moderate-to vigorous intensity ambulatory activities. The largest difference was observed for mean ± SD steps per day (default = 4730  ±  3210; LFE = 11 117  ±  4553). Intraclass correlation confidence intervals and limits of agreement were generally wide, indicating poor agreement. A sub-study, in which 15 individuals with PD performed a self-paced 3 min walk, demonstrated that neither filter setting differed from video-recorded steps (p ≥ 0.05). This suggests that the LFE might overestimate PA-outcomes in free-living conditions. Until new evidence supporting an extension of the lower filter-band is presented, it is recommended that the default filter setting be used when assessing PA in elderly individuals with PD. (paper)

  15. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer

    Yonggang Yin

    2016-05-01

    Full Text Available A micromachined electrostatically-suspended accelerometer (MESA is a kind of three-axis inertial sensor based on fully-contactless electrostatic suspension of the proof mass (PM. It has the potential to offer broad bandwidth, high sensitivity, wide dynamic range and, thus, would be perfectly suited for land seismic acquisition. Previous experiments showed that it is hard to lift up the PM successfully during initial levitation as the mass needs to be levitated simultaneously in all six degrees of freedom (DoFs. By analyzing the coupling electrostatic forces and torques between three lateral axes, it is found there exists a self-locking zone due to the cross-axis coupling effect. To minimize the cross-axis coupling and solve the initial levitation problem, this paper proposes an effective control scheme by delaying the operation of one lateral actuator. The experimental result demonstrates that the PM can be levitated up with six-DoF suspension operation at any initial position. We also propose a feed-forward compensation approach to minimize the negative stiffness effect inherent in electrostatic suspension. The experiment results demonstrate that a more broadband linear amplitude-frequency response and higher suspension stiffness can be achieved, which is crucial to maintain high vector fidelity for potential use as a three-component MEMS geophone. The preliminary performance tests of the three-axis linear accelerometer were conducted under normal atmospheric pressure and room temperature. The main results and noise analysis are presented. It is shown that vacuum packaging of the MEMS sensor is essential to extend the bandwidth and lower the noise floor, especially for low-noise seismic data acquisition.

  16. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer.

    Yin, Yonggang; Sun, Boqian; Han, Fengtian

    2016-01-01

    A micromachined electrostatically-suspended accelerometer (MESA) is a kind of three-axis inertial sensor based on fully-contactless electrostatic suspension of the proof mass (PM). It has the potential to offer broad bandwidth, high sensitivity, wide dynamic range and, thus, would be perfectly suited for land seismic acquisition. Previous experiments showed that it is hard to lift up the PM successfully during initial levitation as the mass needs to be levitated simultaneously in all six degrees of freedom (DoFs). By analyzing the coupling electrostatic forces and torques between three lateral axes, it is found there exists a self-locking zone due to the cross-axis coupling effect. To minimize the cross-axis coupling and solve the initial levitation problem, this paper proposes an effective control scheme by delaying the operation of one lateral actuator. The experimental result demonstrates that the PM can be levitated up with six-DoF suspension operation at any initial position. We also propose a feed-forward compensation approach to minimize the negative stiffness effect inherent in electrostatic suspension. The experiment results demonstrate that a more broadband linear amplitude-frequency response and higher suspension stiffness can be achieved, which is crucial to maintain high vector fidelity for potential use as a three-component MEMS geophone. The preliminary performance tests of the three-axis linear accelerometer were conducted under normal atmospheric pressure and room temperature. The main results and noise analysis are presented. It is shown that vacuum packaging of the MEMS sensor is essential to extend the bandwidth and lower the noise floor, especially for low-noise seismic data acquisition. PMID:27213376

  17. Synergistic control of forearm based on accelerometer data and artificial neural networks

    B. Mijovic

    2008-05-01

    Full Text Available In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941. For all other movements, prediction was low (range, 0.0316-0.8302. Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.

  18. Accuracy of StepWatch™ and ActiGraph accelerometers for measuring steps taken among persons with multiple sclerosis.

    Brian M Sandroff

    Full Text Available INTRODUCTION: There has been increased interest in the objective monitoring of free-living walking behavior using accelerometers in clinical research involving persons with multiple sclerosis (MS. The current investigation examined and compared the accuracy of the StepWatch activity monitor and ActiGraph model GT3X+ accelerometer for capturing steps taken during various speeds of prolonged, over-ground ambulation in persons with MS who had mild, moderate, and severe disability. METHODS: Sixty-three persons with MS underwent a neurological examination for generation of an EDSS score and undertook two trials of walking on the GAITRite electronic walkway. Participants were fitted with accelerometers, and undertook three modified six-minute walk (6MW tests that were interspersed with 10-15 minutes of rest. The first 6MW was undertaken at a comfortable walking speed (CWS, and the two remaining 6MW tests were undertaken above (faster walking speed; FWS or below (slower walking speed; SWS the participant's CWS. The actual number of steps taken was counted through direct observation using hand-tally counters. RESULTS: The StepWatch activity monitor (99.8%-99.9% and ActiGraph model GT3X+ accelerometer (95.6%-97.4% both demonstrated highly accurate measurement of steps taken under CWS and FWS conditions. The StepWatch had better accuracy (99.0% than the ActiGraph (95.5% in the overall sample under the SWS condition, and this was particularly apparent in those with severe disability (StepWatch: 95.7%; ActiGraph: 87.3%. The inaccuracy in measurement for the ActiGraph was associated with alterations of gait (e.g., slower gait velocity, shorter step length, wider base of support. CONCLUSIONS: This research will help inform the choice of accelerometer to be adopted in clinical trials of MS wherein the monitoring of free-living walking behavior is of particular value.

  19. Accuracy of StepWatch™ and ActiGraph Accelerometers for Measuring Steps Taken among Persons with Multiple Sclerosis

    Sandroff, Brian M.; Motl, Robert W.; Pilutti, Lara A.; Learmonth, Yvonne C.; Ensari, Ipek; Dlugonski, Deirdre; Klaren, Rachel E.; Balantrapu, Swathi; Riskin, Barry J.

    2014-01-01

    Introduction There has been increased interest in the objective monitoring of free-living walking behavior using accelerometers in clinical research involving persons with multiple sclerosis (MS). The current investigation examined and compared the accuracy of the StepWatch activity monitor and ActiGraph model GT3X+ accelerometer for capturing steps taken during various speeds of prolonged, over-ground ambulation in persons with MS who had mild, moderate, and severe disability. Methods Sixty-three persons with MS underwent a neurological examination for generation of an EDSS score and undertook two trials of walking on the GAITRite electronic walkway. Participants were fitted with accelerometers, and undertook three modified six-minute walk (6MW) tests that were interspersed with 10–15 minutes of rest. The first 6MW was undertaken at a comfortable walking speed (CWS), and the two remaining 6MW tests were undertaken above (faster walking speed; FWS) or below (slower walking speed; SWS) the participant's CWS. The actual number of steps taken was counted through direct observation using hand-tally counters. Results The StepWatch activity monitor (99.8%–99.9%) and ActiGraph model GT3X+ accelerometer (95.6%–97.4%) both demonstrated highly accurate measurement of steps taken under CWS and FWS conditions. The StepWatch had better accuracy (99.0%) than the ActiGraph (95.5%) in the overall sample under the SWS condition, and this was particularly apparent in those with severe disability (StepWatch: 95.7%; ActiGraph: 87.3%). The inaccuracy in measurement for the ActiGraph was associated with alterations of gait (e.g., slower gait velocity, shorter step length, wider base of support). Conclusions This research will help inform the choice of accelerometer to be adopted in clinical trials of MS wherein the monitoring of free-living walking behavior is of particular value. PMID:24714028

  20. Accelerometer-based wireless body area network to estimate intensity of therapy in post-acute rehabilitation

    Hamel Mathieu

    2008-09-01

    Full Text Available Abstract Background It has been suggested that there is a dose-response relationship between the amount of therapy and functional recovery in post-acute rehabilitation care. To this day, only the total time of therapy has been investigated as a potential determinant of this dose-response relationship because of methodological and measurement challenges. The primary objective of this study was to compare time and motion measures during real life physical therapy with estimates of active time (i.e. the time during which a patient is active physically obtained with a wireless body area network (WBAN of 3D accelerometer modules positioned at the hip, wrist and ankle. The secondary objective was to assess the differences in estimates of active time when using a single accelerometer module positioned at the hip. Methods Five patients (77.4 ± 5.2 y with 4 different admission diagnoses (stroke, lower limb fracture, amputation and immobilization syndrome were recruited in a post-acute rehabilitation center and observed during their physical therapy sessions throughout their stay. Active time was recorded by a trained observer using a continuous time and motion analysis program running on a Tablet-PC. Two WBAN configurations were used: 1 three accelerometer modules located at the hip, wrist and ankle (M3 and 2 one accelerometer located at the hip (M1. Acceleration signals from the WBANs were synchronized with the observations. Estimates of active time were computed based on the temporal density of the acceleration signals. Results A total of 62 physical therapy sessions were observed. Strong associations were found between WBANs estimates of active time and time and motion measures of active time. For the combined sessions, the intraclass correlation coefficient (ICC was 0.93 (P ≤ 0.001 for M3 and 0.79 (P ≤ 0.001 for M1. The mean percentage of differences between observation measures and estimates from the WBAN of active time was -8.7% ± 2.0% using

  1. A novel three-component hybrid-integrated optical accelerometer based on a Mach-Zehnder interferometer with a LiNbO3 photoelastic waveguide

    Dong-lin TANG; Xiao-dong ZHANG; Guang-hui ZHAO; Zhi-yong DAI; Xin LAI; Feng GUO

    2009-01-01

    An investigation of the properties ofa LiNbO3 photoelastic waveguide via the acceleration-induced effect is presented.A novel three-component hybrid-integrated optical accelerometer based on a Mach-Zehnder interferometer with a LiNbO3 photoelastic waveguide has been designed, which is capable of detecting seismic acceleration in high-accuracy seismic exploration.The Mach-Zehnder interferometer was successfully fabricated and a lighting test used to check its quality. The frequency response characteristic of the accelerometer was measured. The accelerometer with a resonant frequency of 3549 Hz was demonstrated to show good linear frequency responding characteristics in the range of 100-3000 Hz. The accelerometer also shows good stability and consistency. Experimental results indicate that the outputs of the on- and cross-axis are 147 and 21.3 mV, respectively.

  2. The use of a beryllium Hopkinson bar to characterize in-axis and cross-axis accelerometer response in shock environments

    Bateman, V.I.; Brown, F.A.

    1997-05-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A beryllium Hopkinson bar capability has been developed to extend the understanding of the piezoresistive accelerometer, in two mechanical configurations and with and without mechanical isolation, in the high frequency, high shock environments where measurements are being made. In this paper, recent measurements with beryllium single and split-Hopkinson bar configurations are described. The in axis performance of the piezoresistive accelerometer in mechanical isolation for frequencies of dc-30 kHz and shock magnitudes of up to 6,000 g as determined from measurements with a beryllium Hopkinson bar with a certified laser doppler vibrometer as the reference measurement are presented. Results of characterizations of the accelerometers subjected to cross axis shocks in a split beryllium Hopkinson bar configuration are also presented.

  3. Research on measurement and control of helicopter rotor response using blade-mounted accelerometers 1991-92

    Ham, Norman D.; Mckillip, Robert M., Jr.

    1992-01-01

    Preliminary wind tunnel tests of the hill-size Model 412/IBC rotor at the Ames Research Center, NASA, are described. Blade flapping motion was excited by swash plate oscillation, and the flapping response was measured using blade-mounted accelerometers and compared with flapping motion inferred form blade strain measurements. The recorded open-loop accelerometer signals were used as input to the flapping-IBC system in the laboratory. The resulting controller cyclic pitch outputs are compared with the original cyclic pitch excitation inputs, and the potential effectiveness of the controller in suppressing the original excitation is evaluated. Control of blade flapping excites blade lagging, and vice versa; the paper describes a theoretical investigation of these coupling effects.

  4. An investigation of the orthogonal outputs from an on-rotor MEMS accelerometer for reciprocating compressor condition monitoring

    Feng, G.; Hu, N.; Mones, Z.; Gu, F.; Ball, A. D.

    2016-08-01

    With rapid development in electronics and microelectromechanical systems (MEMS) technology, it becomes possible and attractive to monitor rotor dynamics by directly installing MEMS accelerometers on rotors. This paper studies the mathematical modelling of the orthogonal outputs from an on-rotor MEMS accelerometer and proposes a method to eliminate the gravitational acceleration projected on the measurement axes. This is achieved by shifting the output in the normal direction by π / 2 using a Hilbert transform and then combining it with the output of the tangential direction. With further compensation of the combined signal in the frequency domain, the tangential acceleration of the rotor is reconstructed to a high degree of accuracy. Experimental results show that the crankshaft tangential acceleration of a reciprocating compressor, obtained by the proposed method, can discriminate clearly between different discharge pressures and hence can allow common leakage faults to be detected, located and diagnosed for online condition monitoring purposes.

  5. Effect of the Detector Width and Gas Pressure on the Frequency Response of a Micromachined Thermal Accelerometer

    Johann Courteaud

    2011-05-01

    Full Text Available In the present work, the design and the environmental conditions of a micromachined thermal accelerometer, based on convection effect, are discussed and studied in order to understand the behavior of the frequency response evolution of the sensor. It has been theoretically and experimentally studied with different detector widths, pressure and gas nature. Although this type of sensor has already been intensively examined, little information concerning the frequency response modeling is currently available and very few experimental results about the frequency response are reported in the literature. In some particular conditions, our measurements show a cut-off frequency at −3 dB greater than 200 Hz. By using simple cylindrical and planar models of the thermal accelerometer and an equivalent electrical circuit, a good agreement with the experimental results has been demonstrated.

  6. Bioinspired Electronic White Cane Implementation Based on a LIDAR, a Tri-Axial Accelerometer and a Tactile Belt

    Jordi Palacin

    2010-12-01

    Full Text Available This work proposes the creation of a bioinspired electronic white cane for blind people using the whiskers principle for short-range navigation and exploration. Whiskers are coarse hairs of an animal's face that tells the animal that it has touched something using the nerves of the skin. In this work the raw data acquired from a low-size terrestrial LIDAR and a tri-axial accelerometer is converted into tactile information using several electromagnetic devices configured as a tactile belt. The LIDAR and the accelerometer are attached to the user’s forearm and connected with a wire to the control unit placed on the belt. Early validation experiments carried out in the laboratory are promising in terms of usability and description of the environment.

  7. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests. (paper)

  8. Identification of Prey Captures in Australian Fur Seals (Arctocephalus pusillus doriferus) Using Head-Mounted Accelerometers: Field Validation with Animal-Borne Video Cameras

    Beth L. Volpov; Andrew J. Hoskins; Battaile, Brian C.; Morgane Viviant; Wheatley, Kathryn E.; Greg Marshall; Kyler Abernathy; Arnould, John P. Y.

    2015-01-01

    This study investigated prey captures in free-ranging adult female Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted 3-axis accelerometers and animal-borne video cameras. Acceleration data was used to identify individual attempted prey captures (APC), and video data were used to independently verify APC and prey types. Results demonstrated that head-mounted accelerometers could detect individual APC but were unable to distinguish among prey types (fish, cephalopod, st...

  9. SPE-5 Ground-Motion Prediction at Far-Field Geophone and Accelerometer Array Sites and SPE-5 Moment and Corner-Frequency Prediction

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patton, Howard John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-25

    This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.

  10. Association between toe grasping strength and accelerometer-determined physical activity in middle-aged and older women

    Abe, Takashi; Thiebaud, Robert S.; Loenneke, Jeremy P.; Mitsukawa, Naotoshi

    2015-01-01

    [Purpose] To test the hypothesis that toe grasping strength is associated with daily physical activity in older adults. [Subjects] Fifty-seven Japanese women, aged 52–78 years, volunteered. [Methods] Toe grasping and knee extension strength were measured. Physical activity was also measured, using an accelerometer, and the total duration of each level of exercise intensity (light, moderate, and vigorous) and average step counts were calculated. Subjects were separated into two groups on the b...

  11. VLC-Based Positioning System for an Indoor Environment Using an Image Sensor and an Accelerometer Sensor

    Huynh, Phat; Yoo, Myungsik

    2016-01-01

    Recently, it is believed that lighting and communication technologies are being replaced by high power LEDs, which are core parts of the visible light communication (VLC) system. In this paper, by taking advantages of VLC, we propose a novel design for an indoor positioning system using LEDs, an image sensor (IS) and an accelerometer sensor (AS) from mobile devices. The proposed algorithm, which provides a high precision indoor position, consists of four LEDs mounted on the ceiling transmitti...

  12. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer

    Staudenmayer, John; Pober, David; Crouter, Scott; Bassett, David; Freedson, Patty

    2009-01-01

    The aim of this investigation was to develop and test two artificial neural networks (ANN) to apply to physical activity data collected with a commonly used uniaxial accelerometer. The first ANN model estimated physical activity metabolic equivalents (METs), and the second ANN identified activity type. Subjects (n = 24 men and 24 women, mean age = 35 yr) completed a menu of activities that included sedentary, light, moderate, and vigorous intensities, and each activity was performed for 10 mi...

  13. Identification of the occurrence and pattern of masseter muscle activities during sleep using EMG and accelerometer systems

    Sato Sadao; Tamaki Katsushi; Sasaguri Kenichi; Yoshimi Hidehiro

    2009-01-01

    Abstract Background Sleep bruxism has been described as a combination of different orofacial motor activities that include grinding, clenching and tapping, although accurate distribution of the activities still remains to be clarified. Methods We developed a new system for analyzing sleep bruxism to examine the muscle activities and mandibular movement patterns during sleep bruxism. The system consisted of a 2-axis accelerometer, electroencephalography and electromyography. Nineteen healthy v...

  14. Rapid Earthquake Characterization Using MEMS Accelerometers and Volunteer Hosts Following the M 7.2 Darfield, New Zealand, Earthquake

    Jesse F. Lawrence; Cochran, Elizabeth S.; Chung, Angela; Kaiser, Anna; Christensen, Carl M.; Allen, Richard; Baker, Jack W.; Fry, Bill; Heaton, Thomas; Kilb, Deborah; Kohler, Monica D.; Taufer, Michela

    2014-01-01

    We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake‐Catcher Network (QCN) that connects low‐cost microelectromechanical systems accelerometers to a network of volunteer‐owned, Internet‐connected computers. Following the 3 September 2010 M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports ...

  15. Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy

    Virtanen, Jaakko; Noponen, Tommi; Kotilahti, Kalle; Virtanen, Juha; Ilmoniemi, Risto J.

    2011-08-01

    In medical near-infrared spectroscopy (NIRS), movements of the subject often cause large step changes in the baselines of the measured light attenuation signals. This prevents comparison of hemoglobin concentration levels before and after movement. We present an accelerometer-based motion artifact removal (ABAMAR) algorithm for correcting such baseline motion artifacts (BMAs). ABAMAR can be easily adapted to various long-term monitoring applications of NIRS. We applied ABAMAR to NIRS data collected in 23 all-night sleep measurements and containing BMAs from involuntary movements during sleep. For reference, three NIRS researchers independently identified BMAs from the data. To determine whether the use of an accelerometer improves BMA detection accuracy, we compared ABAMAR to motion detection based on peaks in the moving standard deviation (SD) of NIRS data. The number of BMAs identified by ABAMAR was similar to the number detected by the humans, and 79% of the artifacts identified by ABAMAR were confirmed by at least two humans. While the moving SD of NIRS data could also be used for motion detection, on average 2 out of the 10 largest SD peaks in NIRS data each night occurred without the presence of movement. Thus, using an accelerometer improves BMA detection accuracy in NIRS.

  16. Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data.

    Kate, Rohit J; Swartz, Ann M; Welch, Whitney A; Strath, Scott J

    2016-03-01

    Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679

  17. An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process

    Yazdi, N.; Najafi, K.

    2000-01-01

    This paper reports an all-silicon fully symmetrical z-axis micro-g accelerometer that is fabricated on a single-silicon wafer using a combined surface and bulk fabrication process. The microaccelerometer has high device sensitivity, low noise, and low/controllable damping that are the key factors for attaining micro g and sub-micro g resolution in capacitive accelerometers. The microfabrication process produces a large proof mass by using the whole wafer thickness and a large sense capacitance by utilizing a thin sacrificial layer. The sense/feedback electrodes are formed by a deposited 2-3 microns polysilicon film with embedded 25-35 microns-thick vertical stiffeners. These electrodes, while thin, are made very stiff by the thick embedded stiffeners so that force rebalancing of the proof mass becomes possible. The polysilicon electrodes are patterned to create damping holes. The microaccelerometers are batch-fabricated, packaged, and tested successfully. A device with a 2-mm x 1-mm proof mass and a full bridge support has a measured sensitivity of 2 pF/g. The measured sensitivity of a 4-mm x 1-mm accelerometer with a cantilever support is 19.4 pF/g. The calculated noise floor of these devices at atmosphere are 0.23 micro g/sqrt(Hz) and 0.16 micro g/sqrt(Hz), respectively.

  18. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-08-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform. PMID:26737848

  19. Design and process test of a novel MOEMS accelerometer based on Raman-Nath diffraction

    Zhang Zuwei; Wen Zhiyu; Shang Zhengguo; Li Dongling; Hu Jing

    2012-01-01

    A novel micro-opto-electro-mechanical system (MOEMS) accelerometer based on Raman-Nath diffraction is presented.It mainly consists of an FPW delay line oscillator and optical strip waveguides.The fundamental theories and principles of the device are introduced briefly.A flexural plate-wave delay-line oscillator is designed to work as an acousto-optic (AO) shifter,which has a Klein-Cook parameter of 0.38.Single-mode optical strip waveguides of 2 μm in width and thicknesses of 0.6 μm are designed by using the effective index method for light transmission.The E0y0 mode waveguide polarizers are designed to ensure the consistency of the light polarization in the waveguides.The fabrication process,based on (100) oriented,450-μm-thick silicon wafers is proposed in detail,and some difficulties in the process are discussed carefully.At last,a series of process tests are undertaken to solve the proposed problems.The results indicate that the proposed design and fabrication process of the device is dependable and realizable.

  20. Accelerometer based solution for precision livestock farming: geolocation enhancement and animal activity identification

    Terrasson, G.; Llaria, A.; Marra, A.; Voaden, S.

    2016-07-01

    The rapid evolution of electronics and communication technologies in the last years has contributed to the expansion of Precision Livestock Farming applications. In this context, animal geolocation systems applied to extensive farming are interesting for farmers to optimize their daily work organization. Nevertheless, the deployment of these solutions implies several technical challenges which must be resolved, mainly the energy consumption and the suitability of the communication protocols. A recently developed solution that deals with these technical challenges is the e-Pasto platform, which is composed of low power geolocation devices embedded into collars that offer an energetic autonomy of at least seven months, completed with a visualization user interface. The autonomy is assured employing a duty-cycle operation that results in one geolocation position measurement per hour. This work studies the employ of accelerometers to overcome this limitation assuring, at the same time, the required autonomy for the geolocation device. The authors also propose an algorithm that processes the acceleration data in order to identify the steps of an individual. The whole solution (step identification and geolocation) has been validated by means of several experimental tests.

  1. Optimization of an Accelerometer and Gyroscope-Based Fall Detection Algorithm

    Quoc T. Huynh

    2015-01-01

    Full Text Available Falling is a common and significant cause of injury in elderly adults (>65 yrs old, often leading to disability and death. In the USA, one in three of the elderly suffers from fall injuries annually. This study’s purpose is to develop, optimize, and assess the efficacy of a falls detection algorithm based upon a wireless, wearable sensor system (WSS comprised of a 3-axis accelerometer and gyroscope. For this study, the WSS is placed at the chest center to collect real-time motion data of various simulated daily activities (i.e., walking, running, stepping, and falling. Tests were conducted on 36 human subjects with a total of 702 different movements collected in a laboratory setting. Half of the dataset was used for development of the fall detection algorithm including investigations of critical sensor thresholds and the remaining dataset was used for assessment of algorithm sensitivity and specificity. Experimental results show that the algorithm detects falls compared to other daily movements with a sensitivity and specificity of 96.3% and 96.2%, respectively. The addition of gyroscope information enhances sensitivity dramatically from results in the literature as angular velocity changes provide further delineation of a fall event from other activities that may also experience high acceleration peaks.

  2. Reliability of Accelerometer Scores for Measuring Sedentary and Physical Activity Behaviors in Persons With Multiple Sclerosis.

    Klaren, Rachel E; Hubbard, Elizabeth A; Zhu, Weimo; Motl, Robert W

    2016-04-01

    This brief research note examined the reliability of scores from an accelerometer as measures of sedentary and physical activity behaviors in persons with multiple sclerosis (MS). The analysis was performed on a combined data set from 2 previous longitudinal investigations of physical activity in MS. We focused on the number of days required to reliably estimate sedentary behavior, based on time spent in sedentary behavior per day and number of sedentary breaks, number of long sedentary bouts, and average length of sedentary bouts per day. We further examined the number of days required to reliably estimate physical activity behavior, based on time spent in light and moderate-to-vigorous physical activity and average length of activity bouts per day. Between 4-6 days of monitoring and 3-7 days of monitoring were necessary for good reliability of scores from all sedentary outcomes and physical activity outcomes, respectively. These results should guide research and practice examining sedentary and physical activity behaviors using accelerometry in persons with MS. PMID:27078272

  3. Design and application of single-antenna GPS/accelerometers attitude determination system

    He Jie; Huang Xianlin; Wang Guofeng

    2008-01-01

    In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU).It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi-physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).

  4. Wireless accelerometer network for process monitoring during mold forming in lost foam casting

    Whelan, Matthew J.; Janoyan, Kerop D.

    2006-03-01

    Lost Foam Casting (LFC) enables the production of complex castings while offering the advantages of consolidation of components, reduced machining, and recirculation of the casting mold material. In the process, a replica of the desired product is produced of blown polystyrene, coated in refractory slurry, and cast in a dense, unbonded sand mold. In order for the unbonded sand mold to fill into pattern holes and to provide sufficient confining force to prevent the advancing molten front from penetrating beyond the mold boundaries, the sand mold is produced by an overhead raining and flask vibration schedule that encourages fluidization and subsequent densification. The amplitude, frequency, and duration of the flask vibration as well as the rate of sand filling are critical parameters in achieving quality castings. Currently, many foundries use an often-lengthy trial-and-error process for determining an acceptable raining and vibration schedule for each specific mold and rely heavily on simple measurements and operator experience to control the mold making process on the foundry line. This study focuses on developing a wireless sensor network of accelerometers to monitor vibrational characteristics of the casting flask during the mold making stage of LFC. Transformations in the vibrational characteristics of the flask can provide a "signature" for indicating the condition of the unbonded sand mold. Additionally, the wireless nature of the sensor nodes enables the technology to travel across the foundry floor during the casting cycle eliminating the necessity of routine placement and setup.

  5. Development of a Microcontroller-based Wireless Accelerometer for Kinematic Analysis

    Maria Clarissa Alvarez Carasco

    2015-06-01

    Full Text Available Wireless sensor networks (WSNs allow real-time measurement and monitoring with less complexity and more efficient in terms of obtaining data when the subject is in motion. It eliminates the limitations introduced by wired connections between the sensors and the central processing unit. Although wireless technology is widely used around the world, not much has been applied for education. Through VISSER, a low cost WSN using nRF24L01+ RF transceiver that is developed to observe and analyze the kinematics of a moving object is discussed in this paper. Data acquisition and transmission is realized with the use of a low power and low cost microcontroller ATtiny85 that obtains data from the ADXL345 three-axis accelerometer. An ATtiny85 also controls the receiving module with a UART connection to the computer. Data gathered are then processed in an open-source programming language to determine properties of an object’s motion such as pitch and roll (tilt, acceleration and displacement. This paper discusses the application of the developed WSN for the kinematics analysis of a toy car moving on flat and inclined surfaces along the three axes. The developed system can be used in various motion detection and other kinematics applications, as well as physics laboratory activities for educational purposes.

  6. An Accelerometer Based Instrumentation of the Golf Club: Comparative Analysis of Golf Swings

    Grober, Robert D

    2010-01-01

    The motion of the golf club is measured using two accelerometers mounted at different points along the shaft of the golf club, both sensitive to acceleration along the axis of the shaft. The resulting signals are resolved into differential and common mode components. The differential mode, a measure of the centripetal acceleration of the golf club, is a reasonable proxy for club speed and can be used to understand details of tempo, rhythm, and timing. The common mode, related to the acceleration of the hands, allows insight into the torques that generate speed in the golf swing. This measurement scheme is used in a comparative study of twenty-five golfers in which it is shown that club head speed is generated in the downswing as a two step process. The first phase involves impulsive acceleration of the hands and club. This is followed by a second phase where the club is accelerated while the hands decelerate. This study serves to emphasize that the measurement scheme yields a robust data set which provides de...

  7. System level simulation of a micro resonant accelerometer with geometric nonlinear beams

    Wenlong, Jiao; Weizheng, Yuan; Honglong, Chang

    2015-10-01

    Geometric nonlinear behaviors of micro resonators have attracted extensive attention of MEMS (micro-electro-mechanical systems) researchers, and MEMS transducers utilizing these behaviors have been widely researched and used due to the advantages of essentially digital output. Currently, the design of transducers with nonlinear behaviors is mainly performed by numerical method and rarely by system level design method. In this paper, the geometric nonlinear beam structure was modeled and established as a reusable library component by system level modeling and simulation method MuPEN (multi port element network). A resonant accelerometer was constructed and simulated using this model together with MuPEN reusable library. The AC (alternating current) analysis results of MuPEN model agreed well with the results of architect model and the experiment results shown in the existing reference. Therefore, we are convinced that the beam component based on MuPEN method is valid, and MEMS system level design method and related libraries can effectively model and simulate transducers with geometric nonlinear behaviors if appropriate system level components are available.

  8. System level simulation of a micro resonant accelerometer with geometric nonlinear beams

    Geometric nonlinear behaviors of micro resonators have attracted extensive attention of MEMS (micro-electro-mechanical systems) researchers, and MEMS transducers utilizing these behaviors have been widely researched and used due to the advantages of essentially digital output. Currently, the design of transducers with nonlinear behaviors is mainly performed by numerical method and rarely by system level design method. In this paper, the geometric nonlinear beam structure was modeled and established as a reusable library component by system level modeling and simulation method MuPEN (multi port element network). A resonant accelerometer was constructed and simulated using this model together with MuPEN reusable library. The AC (alternating current) analysis results of MuPEN model agreed well with the results of architect model and the experiment results shown in the existing reference. Therefore, we are convinced that the beam component based on MuPEN method is valid, and MEMS system level design method and related libraries can effectively model and simulate transducers with geometric nonlinear behaviors if appropriate system level components are available. (paper)

  9. A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure

    Xiao, D. B.; Li, Q. S.; Hou, Z. Q.; Wang, X. H.; Chen, Z. H.; Xia, D. W.; Wu, X. Z.

    2016-02-01

    This paper presents a novel differential capacitive silicon micro-accelerometer with symmetrical double-sided serpentine beam-mass sensing structure and glass-silicon-glass sandwich structure. The symmetrical double-sided serpentine beam-mass sensing structure is fabricated with a novel pre-buried mask fabrication technology, which is convenient for manufacturing multi-layer sensors. The glass-silicon-glass sandwich structure is realized by a double anodic bonding process. To solve the problem of the difficulty of leading out signals from the top and bottom layer simultaneously in the sandwich sensors, a silicon pillar structure is designed that is inherently simple and low-cost. The prototype is fabricated and tested. It has low noise performance (the peak to peak value is 40 μg) and μg-level Allan deviation of bias (2.2 μg in 1 h), experimentally demonstrating the effectiveness of the design and the novel fabrication technology.

  10. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole;

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range of the...... device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype...

  11. Sensitivity and temperature behavior of a novel z-axis differential resonant micro accelerometer

    Comi, C.; Corigliano, A.; Langfelder, G.; Zega, V.; Zerbini, S.

    2016-03-01

    The present work concerns the operating principle and a thorough experimental characterization of a new polysilicon resonant micro accelerometer for out-of-plane measurements, fabricated using an industrial surface micromachining technique. This device is characterized by differential resonant sensing, obtained from the variation of the electrostatic stiffness of two torsional resonators under the application of an external acceleration. The sensitivity, defined as the differential shift in resonance frequencies per gravity unit (lg  =  9.8 m s-2), is of about 10 Hz g-1when operated at a DC bias of 1.5 V only. Over an acceleration range larger than 10 g, the deviation from linearity is lower than 1% and the cross-axis rejection is larger than 34 dB. The resonators temperature coefficients of frequency, in the order of  -29 ppm {{}\\circ} C-1, are matched within about 0.1%, resulting in linear offset drifts against temperature lower than 5 mg up to 95 {{}\\circ} C in absence of any digital compensation.

  12. Sleep Monitoring Based on a Tri-Axial Accelerometer and a Pressure Sensor

    Nam, Yunyoung; Kim, Yeesock; Lee, Jinseok

    2016-01-01

    Sleep disorders are a common affliction for many people even though sleep is one of the most important factors in maintaining good physiological and emotional health. Numerous researchers have proposed various approaches to monitor sleep, such as polysomnography and actigraphy. However, such approaches are costly and often require overnight treatment in clinics. With this in mind, the research presented here has emerged from the question: “Can data be easily collected and analyzed without causing discomfort to patients?” Therefore, the aim of this study is to provide a novel monitoring system for quantifying sleep quality. The data acquisition system is equipped with multimodal sensors, including a three-axis accelerometer and a pressure sensor. To identify sleep quality based on measured data, a novel algorithm, which uses numerous physiological parameters, was proposed. Such parameters include non-REM sleep time, the number of apneic episodes, and sleep durations for dominant poses. To assess the effectiveness of the proposed system, three participants were enrolled in this experimental study for a duration of 20 days. From the experimental results, it can be seen that the proposed monitoring system is effective for quantifying sleep quality. PMID:27223290

  13. A multi-scale sensing and diagnosis system combining accelerometers and gyroscopes for bridge health monitoring

    This paper presents a multi-scale sensing and diagnosis system combining accelerometers and gyroscopes for bridge health monitoring. Since the damage metric estimated from acceleration measurement is insensitive to damage near the hinged support of a bridge, the damage diagnosis performance is limited near the support region. However, the performance can be improved by using two or more complementary data measured from multi-scale sensing. To more effectively diagnose the integrity of an overall bridge structure, angular velocity is complementary to acceleration, because of its high sensitivity to damage near the hinged support. This study proposes a multi-scale sensing and diagnosis system for bridge health monitoring based on a two-step approach. First, the damage diagnosis based on acceleration measurement is performed on the whole structure by using deflection estimated by modal flexibility. Next, the angular-velocity-based damage diagnosis is additionally carried out to localize missed damage by the acceleration-based approach near the hinged support. For validating the feasibility of the proposed system, a series of numerical and experimental studies on a simply supported beam model was performed. It was found that the multiple damages (one is near the center and another is near the support) can be successfully localized by the proposed multi-scale sensing and diagnosis system, while the damage near the support was missed by a conventional damage metric estimated from acceleration measurements. (paper)

  14. A Wireless Accelerometer-Based Body Posture Stability Detection System and Its Application for Meditation Practitioners

    Chun-Lung Huang

    2012-12-01

    Full Text Available The practice of meditation has become an interesting research issue in recent decades. Meditation is known to be beneficial for health improvement and illness reduction and many studies on meditation have been made, from both the physiological and psychological points of view. It is a fundamental requirement of meditation practice to be able to sit without body motion. In this study, a novel body motion monitoring and estimation system has been developed. A wireless tri-axis accelerometer is used to measure body motion. Both a mean and maximum motion index is derived from the square summation of three axes. Two experiments were conducted in this study. The first experiment was to investigate the motion index baseline among three leg-crossing postures. The second experiment was to observe posture dynamics for thirty minute’s meditation. Twenty-six subjects participated in the experiments. In one experiment, thirteen subjects were recruited from an experienced meditation group (meditation experience > 3 years; and the other thirteen subjects were beginners (meditation experience < 1 years. There was a significant posture stability difference between both groups in terms of either mean or maximum parameters (p < 0.05, according to the results of the experiment. Results from another experiment showed that the motion index is different for various postures, such as full-lotus < half-lotus < non-lotus.

  15. Use of a gyroscope/accelerometer data logger to identify alternative feeding behaviours in fish.

    Kawabata, Yuuki; Noda, Takuji; Nakashima, Yuuki; Nanami, Atsushi; Sato, Taku; Takebe, Takayuki; Mitamura, Hiromichi; Arai, Nobuaki; Yamaguchi, Tomofumi; Soyano, Kiyoshi

    2014-09-15

    We examined whether we could identify the feeding behaviours of the trophic generalist fish Epinephelus ongus on different prey types (crabs and fish) using a data logger that incorporated a three-axis gyroscope and a three-axis accelerometer. Feeding behaviours and other burst behaviours, including escape responses, intraspecific interactions and routine movements, were recorded from six E. ongus individuals using data loggers sampling at 200 Hz, and were validated by simultaneously recorded video images. For each data-logger record, we extracted 5 s of data when any of the three-axis accelerations exceeded absolute 2.0 g, to capture all feeding behaviours and other burst behaviours. Each feeding behaviour was then identified using a combination of parameters that were derived from the extracted data. Using decision trees with the parameters, high true identification rates (87.5% for both feeding behaviours) with low false identification rates (5% for crab-eating and 6.3% for fish-eating) were achieved for both feeding behaviours. PMID:25013109

  16. A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure

    This paper presents a novel differential capacitive silicon micro-accelerometer with symmetrical double-sided serpentine beam-mass sensing structure and glass–silicon–glass sandwich structure. The symmetrical double-sided serpentine beam-mass sensing structure is fabricated with a novel pre-buried mask fabrication technology, which is convenient for manufacturing multi-layer sensors. The glass–silicon–glass sandwich structure is realized by a double anodic bonding process. To solve the problem of the difficulty of leading out signals from the top and bottom layer simultaneously in the sandwich sensors, a silicon pillar structure is designed that is inherently simple and low-cost. The prototype is fabricated and tested. It has low noise performance (the peak to peak value is 40 μg) and μg-level Allan deviation of bias (2.2 μg in 1 h), experimentally demonstrating the effectiveness of the design and the novel fabrication technology. (paper)

  17. A wide-range micromachined threshold accelerometer array and interface circuit

    Selvakumar, Arjun; Yazdi, Navid; Najafi, Khalil

    2001-03-01

    This paper presents a complete threshold acceleration detection microsystem comprising an array of threshold accelerometers and a low power interface circuit. The sensors were designed and fabricated using the bulk-silicon dissolved-wafer process. The process offers a wide latitude in sensor threshold levels, as demonstrated in the fabrication of devices with levels of 1.5-1000 g, bandwidths of 45 Hz to 40 kHz, with mass sizes ranging from 0.015 µg to 0.7 µg, and low-resistance gold-gold contacts for the switch. The interface circuit dissipates less than 300 µW, measures 2.2 mm×2.2 mm it was fabricated in-house using a standard 3 µm, p-well CMOS (complementary metal oxide semiconductor) process, and is connected to the sensor chip in a multi-chip module. The key aspects of the microsystem are the implementation of sensor redundancy and supporting circuit logic to improve detection accuracy and fault tolerance, which are crucial factors in many applications. In addition, the microsystem supports communication with a standard microcontroller bus in a smart sensor network.

  18. Towards Uniform Accelerometry Analysis: A Standardization Methodology to Minimize Measurement Bias Due to Systematic Accelerometer Wear-Time Variation

    Tarun R. Katapally, Nazeem Muhajarine

    2014-06-01

    Full Text Available Accelerometers are predominantly used to objectively measure the entire range of activity intensities – sedentary behaviour (SED, light physical activity (LPA and moderate to vigorous physical activity (MVPA. However, studies consistently report results without accounting for systematic accelerometer wear-time variation (within and between participants, jeopardizing the validity of these results. This study describes the development of a standardization methodology to understand and minimize measurement bias due to wear-time variation. Accelerometry is generally conducted over seven consecutive days, with participants' data being commonly considered 'valid' only if wear-time is at least 10 hours/day. However, even within ‘valid’ data, there could be systematic wear-time variation. To explore this variation, accelerometer data of Smart Cities, Healthy Kids study (www.smartcitieshealthykids.com were analyzed descriptively and with repeated measures multivariate analysis of variance (MANOVA. Subsequently, a standardization method was developed, where case-specific observed wear-time is controlled to an analyst specified time period. Next, case-specific accelerometer data are interpolated to this controlled wear-time to produce standardized variables. To understand discrepancies owing to wear-time variation, all analyses were conducted pre- and post-standardization. Descriptive analyses revealed systematic wear-time variation, both between and within participants. Pre- and post-standardized descriptive analyses of SED, LPA and MVPA revealed a persistent and often significant trend of wear-time’s influence on activity. SED was consistently higher on weekdays before standardization; however, this trend was reversed post-standardization. Even though MVPA was significantly higher on weekdays both pre- and post-standardization, the magnitude of this difference decreased post-standardization. Multivariable analyses with standardized SED, LPA and

  19. Using Tri-Axial Accelerometers to Assess the Dynamic Control of Head Posture During Gait

    Lawrence, John H., III

    2003-01-01

    Long duration spaceflight is known to cause a variety of biomedical stressors to the astronaut. One of the more functionally destabilizing effects of spaceflight involves microgravity-induced changes in vestibular or balance control. Balance control requires the integration of the vestibular, visual, and proprioceptive systems. In the microgravity environment, the normal gravity vector present on Earth no longer serves as a reference for the balance control system. Therefore, adaptive changes occur to the vestibular system to affect control of body orientation with altered, or non-present, gravity and/or proprioceptive inputs. Upon return to a gravity environment, the vestibular system must re-incorporate the gravity vector and gravity-induced proprioceptive inputs into the balance control regime. The result is often a period of postural instability, which may also be associated with space motion sickness (oscillopsia, nausea, and vertigo). Previous studies by the JSC Neuroscience group have found that returning astronauts often employ alterations in gait mechanics to maintain postural control during gait. It is believed that these gait alterations are meant to decrease the transfer of heel strike shock energy to the head, thus limiting the contradictory head and eye movements that lead to gait instability and motion sickness symptoms. We analyzed pre- and post-spaceflight tri-axial accelerometer data from the NASA/MIR long duration spaceflight missions to assess the heel to head transfer of heel strike shock energy during locomotion. Up to seven gait sessions (three preflight, four postflight) of head and shank (lower leg) accelerometer data was previously collected from six astronauts who engaged in space flights of four to six months duration. In our analysis, the heel to head transmission of shock energy was compared using peak vertical acceleration (a), peak jerk (j) ratio, and relative kinetic energy (a). A host of generalized movement variables was produced

  20. Instrumentation by accelerometers and distributed optical fiber sensors of a real ballastless track structure

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean

    2015-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a

  1. Dynamic Response Assessment for the MEMS Accelerometer Under Severe Shock Loads

    Fan, Mark S.; Shaw, Harry C.

    2001-01-01

    NASA Goddard Space Flight Center (GSFC) has evaluated the dynamic response of a commercial-off-the-shelf (COTS) microelectromechanical systems (MEMS) device made by Analog Device, Inc. The device is designated as ADXL250 and is designed mainly for sensing dynamic acceleration. It is also used to measure the tilting angle of any system or component from its original level position. The device has been in commercial use (e.g., in automobile airbag deployment system as a dual-axial accelerometer and in the electronic game play-station as a tilting sensor) with success, but NASA needs an in-depth assessment of its performance under severe dynamic shock environments. It was realized while planning this evaluation task that two assessments would be beneficial to NASA's missions: (1) severe dynamic shock response under nominal thermal environments; and (2) general dynamic performance under cryogenic environments. The first evaluation aims at obtaining a good understanding of its micromachined structure within a framework of brittle fracture dynamics, while the second evaluation focuses on the structure integrity under cryogenic temperature conditions. The information we gathered from the manufacturer indicated that the environmental stresses under NASA's evaluation program have been far beyond what the device has experienced with commercial applications, for which the device was designed. Thus NASA needs the outcome of this evaluation in order to make the selection for possible use for its missions. This paper provides details of the first evaluation the dynamic response under severe multi-axial single-pulse shock load. It was performed using finite element tools with nonlinear dynamics procedures.

  2. Attitude determination with three-axis accelerometer for emergency atmospheric entry

    Garcia-Llama, Eduardo (Inventor)

    2012-01-01

    Two algorithms are disclosed that, with the use of a 3-axis accelerometer, will be able to determine the angles of attack, sideslip and roll of a capsule-type spacecraft prior to entry (at very high altitudes, where the atmospheric density is still very low) and during entry. The invention relates to emergency situations in which no reliable attitude and attitude rate are available. Provided that the spacecraft would not attempt a guided entry without reliable attitude information, the objective of the entry system in such case would be to attempt a safe ballistic entry. A ballistic entry requires three controlled phases to be executed in sequence: First, cancel initial rates in case the spacecraft is tumbling; second, maneuver the capsule to a heat-shield-forward attitude, preferably to the trim attitude, to counteract the heat rate and heat load build up; and third, impart a ballistic bank or roll rate to null the average lift vector in order to prevent prolonged lift down situations. Being able to know the attitude, hence the attitude rate, will allow the control system (nominal or backup, automatic or manual) to cancel any initial angular rates. Also, since a heat-shield forward attitude and the trim attitude can be specified in terms of the angles of attack and sideslip, being able to determine the current attitude in terms of these angles will allow the control system to maneuver the vehicle to the desired attitude. Finally, being able to determine the roll angle will allow for the control of the roll ballistic rate during entry.

  3. Measured and perceived environmental characteristics are related to accelerometer defined physical activity in older adults

    Strath Scott J

    2012-04-01

    Full Text Available Abstract Background Few studies have investigated both the self-perceived and measured environment with objectively determined physical activity in older adults. Accordingly, the aim of this study was to examine measured and perceived environmental associations with physical activity of older adults residing across different neighborhood types. Methods One-hundred and forty-eight older individuals, mean age 64.3 ± 8.4, were randomly recruited from one of four neighborhoods that were pre-determined as either having high- or low walkable characteristics. Individual residences were geocoded and 200 m network buffers established. Both objective environment audit, and self-perceived environmental measures were collected, in conjunction with accelerometer derived physical activity behavior. Using both perceived and objective environment data, analysis consisted of a macro-level comparison of physical activity levels across neighborhood, and a micro-level analysis of individual environmental predictors of physical activity levels. Results Individuals residing in high-walkable neighborhoods on average engaged in 11 min of moderate to vigorous physical activity per day more than individuals residing in low-walkable neighborhoods. Both measured access to non-residential destinations (b = .11, p p = .031 were significant predictors of time spent in moderate to vigorous physical activity. Other environmental variables significantly predicting components of physical activity behavior included presence of measured neighborhood crime signage (b = .4785, p = .031, measured street safety (b = 26.8, p = .006, and perceived neighborhood satisfaction (b = .5.8, p = .003. Conclusions Older adult residents who live in high-walkable neighborhoods, who have easy and close access to nonresidential destinations, have lower social dysfunction pertinent to crime, and generally perceive the neighborhood to a higher overall satisfaction are likely to engage in higher levels

  4. Accelerometer measurement of upper extremity movement after stroke: a systematic review of clinical studies.

    Noorkõiv, Marika; Rodgers, Helen; Price, Christopher I

    2014-01-01

    The aim of this review was to identify and summarise publications, which have reported clinical applications of upper limb accelerometry for stroke within free-living environments and make recommendations for future studies. Data was searched from MEDLINE, Scopus, IEEExplore and Compendex databases. The final search was 31st October 2013. Any study was included which reported clinical assessments in parallel with accelerometry in a free-living hospital or home setting. Study quality is reflected by participant numbers, methodological approach, technical details of the equipment used, blinding of clinical measures, whether safety and compliance data was collected. First author screened articles for inclusion and inclusion of full text articles and data extraction was confirmed by the third author. Out of 1375 initial abstracts, 8 articles were included. All participants were stroke patients. Accelerometers were worn for either 24 hours or 3 days. Data were collected as summed acceleration counts over a specified time or as the duration of active/inactive periods. Activity in both arms was reported by all studies and the ratio of impaired to unimpaired arm activity was calculated in six studies. The correlation between clinical assessments and accelerometry was tested in five studies and significant correlations were found. The efficacy of a rehabilitation intervention was assessed using accelerometry by three studies: in two studies both accelerometry and clinical test scores detected a post-treatment difference but in one study accelerometry data did not change despite clinical test scores showing motor and functional improvements. Further research is needed to understand the additional value of accelerometry as a measure of upper limb use and function in a clinical context. A simple and easily interpretable accelerometry approach is required. PMID:25297823

  5. Equating accelerometer estimates of moderate-to-vigorous physical activity: in search of the Rosetta Stone.

    Bornstein, Daniel B; Beets, Michael W; Byun, Wonwoo; Welk, Greg; Bottai, Matteo; Dowda, Marsha; Pate, Russell

    2011-09-01

    No universally accepted ActiGraph accelerometer cutpoints for quantifying moderate-to-vigorous physical activity (MVPA) exist. Estimates of MVPA from one set of cutpoints cannot be directly compared to MVPA estimates using different cutpoints, even when the same outcome units are reported (MVPA mind(-1)). The purpose of this study was to illustrate the utility of an equating system that translates reported MVPA estimates from one set of cutpoints into another, to better inform public health policy. Secondary data analysis. ActiGraph data from a large preschool project (N=419, 3-6-yr-olds, CHAMPS) was used to conduct the analyses. Conversions were made among five different published MVPA cutpoints for children: Pate (PT), Sirard (SR), Puyau (PY), Van Cauwengerghe (VC), and Freedson Equation (FR). A 10-fold cross-validation procedure was used to develop prediction equations using MVPA estimated from each of the five sets of cutpoints as the dependent variable, with estimated MVPA from one of the other four sets of cutpoints (e.g., PT MVPA predicted from FR MVPA). The mean levels of MVPA for the total sample ranged from 22.5 (PY) to 269.0 (FR) mind(-1). Across the prediction models (5 total), the median proportion of variance explained (R(2)) was 0.76 (range 0.48-0.97). The median absolute percent error was 17.2% (range 6.3-38.4%). The prediction equations developed here allow for direct comparisons between studies employing different ActiGraph cutpoints in preschool-age children. These prediction equations give public health researchers and policy makers a more concise picture of physical activity levels of preschool-aged children. PMID:21524938

  6. Use of three-dimensional accelerometers to evaluate behavioral changes in cattle experimentally infected with bovine viral diarrhea virus.

    Bayne, Jenna E; Walz, Paul H; Passler, Thomas; White, Brad J; Theurer, Miles E; van Santen, Edzard

    2016-06-01

    OBJECTIVE To assess the use of 3-D accelerometers to evaluate behavioral changes in cattle experimentally infected with a low-virulent strain of bovine viral diarrhea virus (BVDV). ANIMALS 20 beef steers (mean weight, 238 kg). PROCEDURES Calves were allocated to a BVDV (n = 10) or control (10) group. On day 0, calves in the BVDV group were inoculated with a low-virulent strain of BVDV (4 × 10(6) TCID50, intranasally), and calves in the control group were sham inoculated with BVDV-free medium (4 mL; intranasally). An accelerometer was affixed to the right hind limb of each calf on day -7 to record activity (lying, walking, and standing) continuously until 35 days after inoculation. Baseline was defined as days -7 to -1. Blood samples were collected at predetermined times for CBC, serum biochemical analysis, virus isolation, and determination of anti-BVDV antibody titers. RESULTS All calves in the BVDV group developed viremia and anti-BVDV antibodies but developed only subclinical or mild disease. Calves in the control group did not develop viremia or anti-BVDV antibodies. Mean time allocated to each activity did not differ significantly between the BVDV and control groups on any day except day 8, when calves in the BVDV group spent less time standing than the calves in the control group. Following inoculation, calves in both groups tended to spend more time lying and less time walking and standing than they did during baseline. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that behavioral data obtained by accelerometers could not distinguish calves subclinically infected with BVDV from healthy control calves. However, subtle changes in the behavior of the BVDV-infected calves were detected and warrant further investigation. PMID:27227496

  7. Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions

    Few studies to date have directly compared the Actigraphs GT1M and the GT3X, it would be of tremendous value to know if these accelerometers give similar information about intensities of PA. Knowing if output is similar would have implications for cross-examination of studies. The purpose of the study was to assess the validity of the GT1M and the GT3X Actigraph accelerometers for the assessment of physical activity against oxygen consumption in laboratory conditions. Forty-two college-aged participants aged 18-25 years wore the GT1M and the GT3X on their right hip during treadmill exercise at three different speeds, slow walking 4.8 km.h-1, fast walking 6.4 km.h-1, and running 9.7 km.h-1). Oxygen consumption was measured minute-by minute using a metabolic system. Bland-Altman plots were used to assess agreement between activity counts from the GT3X and GT1M, and correlations were assessed the ability of the accelerometers to assess physical activity. Bias for 4.8 km.h-1 was 2814.4 cpm (limits 1211.3 to 4417.4), for 6.4 km.h-1 was 3713.6 cpm (limits 1573.2 to 5854.0), and for 9.7 km.h-1 was−3811.2 cpm (limits 842.1 to 6780.3). Correlations between counts per minute for the GT1M and the GT3X were significantly correlated with VO2 (r = 0.881, p < 0.001; r = 0.810, p < 0.001 respectively). The present study showed that both the GT1M and the GT3X accurately measure physical activity when compared to oxygen consumption

  8. A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions

    Christophe, B.; Boulanger, D.; Foulon, B.; Huynh, P.-A.; Lebat, V.; Liorzou, F.; Perrot, E.

    2015-12-01

    The sensor core configuration of the electrostatic accelerometers of the CHAMP, GRACE and GOCE missions has been especially designed for space applications and so optimized in regard to the weak level of acceleration to sustain and measure in orbit. The return of experience of these three gravity space missions which demonstrate the robustness and the performances of this family of space instruments, allows a better optimization of the design of the accelerometer in terms of thermal stability and operation reliability for the near future missions as GRACE follow-on. The paper presents the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development. Nevertheless because the next generation of low-low satellite to satellite tracking missions will take advantage of interferometer laser ranging methods to improve their performance, the noise level of the accelerometer has also to be lowered, especially in the low frequency bandwidth. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag, by the Sun radiation and by the Earths albedo and infrared pressures, the accelerometer instrument becomes a major part of the attitude and orbit control system by acting as a drag free sensor and by accurately measuring the angular accelerations. Onera proposes a new configuration much more compact with performances in a better adequacy with a next generation of small but drag compensated micro-satellites or geodesy missions.

  9. Assessment of intensity, prevalence and duration of everyday activities in Swiss school children: a cross-sectional analysis of accelerometer and diary data

    Sennhauser Felix H

    2009-08-01

    Full Text Available Abstract Background Appropriately measuring habitual physical activity (PA in children is a major challenge. Questionnaires and accelerometers are the most widely used instruments but both have well-known limitations. The aims of this study were to determine activity type/mode and to quantify intensity and duration of children's everyday PA by combining information of a time activity diary with accelerometer measurements and to assess differences by gender and age. Methods School children (n = 189 aged 6/7 years, 9/10 years and 13/14 years wore accelerometers during one week in winter 2004 and one in summer 2005. Simultaneously, they completed a newly developed time-activity diary during 4 days per week recording different activities performed during each 15 min interval. For each specific activity, the mean intensity (accelerometer counts/min, mean duration per day (min/d and proportion of involved children were calculated using linear regression models. Results For the full range of activities, boys accumulated more mean counts/min than girls. Adolescents spent more time in high intensity sports activities than younger children (p Conclusion The combination of accelerometers and time activity diaries provides insight into age and gender related differences in PA. This information is warranted to efficiently guide and evaluate PA promotion.

  10. Comparison of capacitive and frequential readout when scaling accelerometers down from Micro- to Nano- Electro Mechanical Systems

    Hentz, Sébastien; Colinet, Eric

    2012-01-01

    This paper shows the effect of scaling silicon accelerometers down from MEMS to NEMS. It models both electronics and Brownian noise sources for both capacitive and resonant devices, and computes the minimum detectable signal attainable. Computed results are remarkably close to published experimental results. It shows the relatively low influence of the quality factor and of the beam width in the resonant case. Different scaling rules are investigated, and it appears that resonant sensing may satisfy some new application requirements, in particular for critical dimensions below a few hundreds of nm, when it is better resolved than capacitive sensing.

  11. Medium-scale gravity waves in the mid-/low-latitude dayside upper thermosphere as observed by the CHAMP accelerometer

    J. Park; H. Lühr

    2014-01-01

    Although a number of studies had investigated gravity waves (GWs) in the upper thermosphere, details of their global climatology at mid-/low-latitudes remained unknown. Here we report a detailed climatology of the medium-scale (150-600 km) GW in the mid-/low-latitude dayside upper thermosphere, as observed by the CHAMP accelerometer (at about 300-400 km altitude) from 2001 to 2010. The mid-latitude GWs exhibit higher activity in the winter hemisphere than in the summer hemisphere. GWs near th...

  12. POD improvements of GALILEO satellites through the measurement of their non-gravitational accelerations by means of an onboard accelerometer

    Peron, Roberto; Lucchesi, David M.; Santoli, Francesco; Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Lucente, Marco; Magnafico, Carmelo; Kalarus, Maciej; Zielinski, Janusz

    2016-04-01

    The Precise Orbit Determination (POD) of the satellites of the Global Navigation Satellite Systems (GNSS) represents the basic prerequisite in order to provide refined ephemerides for their orbit, aimed at providing a precise and accurate positioning on the Earth. An important factor that impacts negatively in the POD of these satellites is the limited modeling of the accelerations produced by the non-gravitational accelerations. These, indeed, are subtle and generally complex to model properly, especially in the case of a complex in shape spacecraft, with solar panels and antennae for microwave link and the mutual shadowing effects among the many surfaces involved. We have to notice that their modeling has an important impact in the determination of a number of geophysical parameters of interest, such as stations coordinates, Earth's geocenter and orientation parameters. In the case of GNSS satellites, the main NGP acceleration is the one produced by the direct solar radiation pressure, with non-negligible contributions due to Earth's albedo, thermal effects and power radiated by the antennae. The models developed so far for these perturbative effects have shown many limits, as pointed out in the literature. Currently, the models developed for the NGPs are mainly based on empirical blind models (with the goal of absorb unknowns quantities) and more recently with the use of wing-box models, that try to provide a finite-elements approach to the modeling. The European Space Agency (ESA) - in the context of the development of the GALILEO constellation, and especially in view of the next generation of GALILEO spacecraft - besides being interested in possible improvements of the NGPs models, is also envisaging the use of an onboard accelerometer to directly measure them in order to improve the POD of each spacecraft of the constellation. We have been involved in this study by means of a proposal to ESA denominated GALileo and ACcelerometry (GALAC) led by the Space

  13. Measuring abnormal movements in free-swimming fish with accelerometers: implications for quantifying tag and parasite load.

    Broell, Franziska; Burnell, Celene; Taggart, Christopher T

    2016-03-01

    Animal-borne data loggers allow movement, associated behaviours and energy expenditure in fish to be quantified without direct observations. As with any tagging, tags that are attached externally may adversely affect fish behaviour, swimming efficiency and survival. We report on free-swimming wild Atlantic cod (Gadus morhua) held in a large mesocosm that exhibited distinctly aberrant rotational swimming (scouring) when externally tagged with accelerometer data loggers. To quantify the phenomenon, the cod were tagged with two sizes of loggers (18 and 6 g; data derived from external tags and the careful consideration of tag type, drag, buoyancy and placement, as well as animal buoyancy and species. PMID:26747901

  14. Comparative studies of principal vibration parameters of a building using an LDV, laser tilt and vibration sensors, and piezoelectric accelerometers

    Passia, Henryk; Staniek, Andrzej; Szade, Adam; Motyka, Zbigniew; Bochenek, Wojciech; Bartmański, Cezary

    2008-06-01

    The paper presents the results of modal analysis of four-storey building. In the tests, the structure was excited to vibrate by means of a modal hammer designed for large objects. To excite the whole structure, multiple-point excitation was applied. The parameters of vibration resulting in consequence of this excitation were measured both by piezoelectric accelerometers and a scanning laser vibrometer. Comparison with the results of in-operation modal analysis, in case when the building was excited by rocket engines, was also performed.

  15. Accelerometer Measured Level of Physical Activity Indoors and Outdoors During Preschool Time in Sweden and the United States

    Raustorp, A.; Pagels, P.; Boldemann, C.;

    2012-01-01

    boys and girls indoor and outdoor physical activity regarding different intensity levels and sedentary behaviour. METHODS: Accelerometer determined physical activity in 50 children with mean age 52 months, (range 40-67) was recorded during preschool time for 5 consecutive weekdays at four sites. The......BACKGROUND: It is important to understand the correlates of physical activity in order to influence policy and create environments that promote physical activity among preschool children. We compared preschoolers' physical activity in Swedish and in US settings and objectively examined differences...

  16. Changes in physical activity over time in young children: a longitudinal study using accelerometers.

    Rachael W Taylor

    Full Text Available Previous research has suggested that marked declines in physical activity occur during the preschool years, and across the transition into school. However, longitudinal studies using objective measures of activity have been limited by sample size and length of follow-up. The aims of this study were to determine how overall activity and time in different intensities of activity change in children followed from 3 to 7 years. Children (n = 242 wore Actical accelerometers at 3, 4, 5, 5.5, 6.5 and 7 years of age during all waking and sleeping hours for a minimum of 5 days. Time in sedentary (S, light (L, moderate (M, and vigorous (V physical activity was determined using available cut points. Data were analyzed using a mixed model and expressed as counts per minute (cpm, overall activity and the ratio of active time to sedentary time (LMV:S, adjusted for multiple confounders including sex, age, time worn, and weather. At 5 years, physical activity had declined substantially to around half that observed at 3 years. Although starting school was associated with a further short-term (6-month decline in activity (cpm in both boys (difference; 95% CI: -98; -149, -46 and girls (-124; -174, -74, both P<0.001, this proved to be relatively transient; activity levels were similar at 6-7 years as they were just prior to starting school. Boys were more physically active than girls as indicated by an overall 12% (95% CI: 2, 22% higher ratio of active to sedentary time (P = 0.014, but the pattern of this difference did not change from 3 to 7 years. Time worn and weather variables were significant predictors of activity. In conclusion, both boys and girls show a marked decline in activity from 3 to 4 years of age, a decrease that is essentially maintained through to 7 years of age. Factors driving this marked decrease need to be determined to enable the development of targeted interventions.

  17. An Earthquake Shake Map Routine with Low Cost Accelerometers: Preliminary Results

    Alcik, H. A.; Tanircan, G.; Kaya, Y.

    2015-12-01

    Vast amounts of high quality strong motion data are indispensable inputs of the analyses in the field of geotechnical and earthquake engineering however, high cost of installation of the strong motion systems constitutes the biggest obstacle for worldwide dissemination. In recent years, MEMS based (micro-electro-mechanical systems) accelerometers have been used in seismological research-oriented studies as well as earthquake engineering oriented projects basically due to precision obtained in downsized instruments. In this research our primary goal is to ensure the usage of these low-cost instruments in the creation of shake-maps immediately after a strong earthquake. Second goal is to develop software that will automatically process the real-time data coming from the rapid response network and create shake-map. For those purposes, four MEMS sensors have been set up to deliver real-time data. Data transmission is done through 3G modems. A subroutine was coded in assembler language and embedded into the operating system of each instrument to create MiniSEED files with packages of 1-second instead of 512-byte packages.The Matlab-based software calculates the strong motion (SM) parameters at every second, and they are compared with the user-defined thresholds. A voting system embedded in the software captures the event if the total vote exceeds the threshold. The user interface of the software enables users to monitor the calculated SM parameters either in a table or in a graph (Figure 1). A small scale and affordable rapid response network is created using four MEMS sensors, and the functionality of the software has been tested and validated using shake table tests. The entire system is tested together with a reference sensor under real strong ground motion recordings as well as series of sine waves with varying amplitude and frequency. The successful realization of this software allowed us to set up a test network at Tekirdağ Province, the closest coastal point to

  18. Measure of sleep and physical activity by a single accelerometer: Can a waist-worn Actigraph adequately measure sleep in children?

    Hjorth, Mads F.; Chaput, Jean-Philippe; Damsgaard, Camilla T.;

    2012-01-01

    wrist- and waist-worn Actigraphs for sleep scoring using existing algorithms developed for placement on the wrist. Sixty-two Danish children aged 10.3 ± 0.6 years (mean ± standard deviation) wore an accelerometer (Actigraph GT3X+ Tri-Axis Accelerometer Monitor) on the right hip and on the non......Accelerometers could potentially be used to assess physical activity and sleep using the same monitor; however, two different positions are typically used for the assessment of physical activity and sleep (waist and wrist, respectively). The aim of this study is to evaluate the concordance between...... indicators in children using the present algorithms. However, the waist-worn Actigraph monitor can provide a proxy measure of total sleep time for ranking purposes in epidemiologic studies....

  19. A novel capacitive accelerometer with an eight-beam-mass structure by self-stop anisotropic etching of (1 0 0) silicon

    This paper reports a novel capacitive sandwich accelerometer with an eight-beam-mass structure fabricated by self-stop anisotropic wet etching of (1 0 0) silicon and wafer-level Si–Si bonding. In this structure, eight straight beams symmetrically connect to the corners of the proof mass on both sides. These suspension beams are formed by self-stop anisotropic wet etching of (1 0 0) silicon, without heavy boron doping or Si–Si bonding. Through this beam-fabrication approach, the beam thickness can be well controlled and intrinsic stress in the beams is minimized. Accelerometers with different sensitivities can be easily fabricated by varying the thickness of the beams without making any change to the masks. For a device with 17 µm thick beams, the resonance frequency and the quality factor are 696 Hz and 47, respectively. The accelerometer has a sensitivity of 0.35 V g−1

  20. Comparison of macrobend seismic optical fiber accelerometer and ferrule-top cantilever fiber sensor for vibration monitoring

    Poczęsny, Tomasz; Prokopczuk, Krzysztof; Domański, Andrzej W.

    2012-04-01

    The paper presents the exemplary application and comparison of a macrobend seismic optical fiber accelerometer and ferrule-top cantilever fiber sensor for long distance vibration monitoring with use of typical telecommunication optical transmission systems including optical fibers, transmitters and receivers. Use of telecommunication optical systems allows developing cost-effective monitoring and sensing architecture. All-optical fiber sensors do not create any fire hazard due to transmitting low power light through the optical fibers and lack of electrically driven parts in sensing part. Optical fiber macrobend seismic sensor consists of single mode optical fiber bended into a loop of radius around few millimeters with attached small seismic mass around 0.3 grams. We achieve signal that is proportional to the geometrical deformation of the loop. The ferrule-top cantilever (made by Optics11 - Amsterdam, Netherlands) optical fiber sensor is fabricated on a rectangular 3 mm x 3mm x 7 mm glass ferrule equipped with a central borehole and laser curved cantilever with dimensions of 200 microns wide, 30 microns thick and around 3 mm long. Construction allows measuring bending of the cantilever. Both optical fiber sensors in this setup measure force and acceleration similar to the piezoelectric accelerometers. The advantage of these devices is insensitivity to electromagnetic interference because of all-optical sensor head. We compared parameters and measurement capabilities of both sensor types.

  1. A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer

    Ming-jun MA; Zhong-he JIN‡; Hui-jie ZHU

    2015-01-01

    The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the 1/f noise and the tem-perature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot ad-dress the 1/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the 1/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 µg, and the drift of the Allan variance result is reduced to 17 µg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/°C. The combined approach could be useful for many other closed-loop accelerometers.

  2. Intermonitor reliability of the GT3X+ accelerometer at hip, wrist and ankle sites during activities of daily living

    The triaxial GT3X+ accelerometer can measure activity counts in the vertical, horizontal right to left, horizontal front to back planes, and can generate a summative score of the three axes represented by vector magnitude (VM). Information on the reliability of the GT3X+ at the hip, wrist and ankle sites, over all axes and VM during activities of daily living (ADL) is lacking in the literature. Forty healthy adults (14 men and 26 women) were randomly assigned to perform 10 of 20 ADL (consisting of sedentary, housework, yard work, locomotive and recreational activities) while wearing two monitors on the hip, wrist and ankle. Subjects performed each ADL over 7 min and the mean activity counts during the last 4 min were used for analyses. Average intraclass correlations between monitors were high for the three sites for each axis and VM (hip: 0.943, 0.857, 0.864 and 0.966, respectively; wrist: 0.994, 0.963, 0.961 and 0.989, respectively; ankle: 0.977, 0.979, 0.927 and 0.986, respectively). These data suggest that GT3X+ accelerometers measurements made from the hip, wrist and ankle sites are reliable during ADL across all axes and VM. (paper)

  3. Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, ‘making-a-cup-of-tea’. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients. (paper)

  4. Rancang Bangun Permainan Edukasi Matematika dan Fisika dengan Memanfaatkan Accelerometer dan Physics Engine Box2d pada Android

    Putri Nikensasi

    2012-09-01

    Full Text Available Perkembangan industri permainan mobil yang semakin meningkat memotivasi para pengembang permainan mobil untuk membuat inovasi-inovasi terbaru dalam permainannya. Salah satu inovasi tersebut yaitu permainan edukasi, namun saat ini permainan edukasi kurang diminati karena aturan permainannya yang cenderung membosankan. Pengembangan permainan ini ditujukan untuk membuat sebuah permainan mobil edukasi dengan memanfaatkan teknologi mobil terbaru dalam aturan permainannya sehingga permainan tersebut tidak membosankan. Aplikasi yang dikembangkan merupakan aplikasi permainan mobil edukasi yang mengajarkan ilmu matematika dan fisika kepada pemainnya. Teknologi baru yang digunakan dalam permainan ini yaitu accelerometer pada sistem operasi Android yang diintegrasikan dengan Physics Engine Library Box2D. Selain itu, permainan ini dibangun dengan menggunakan Adobe Flash CS5.5 dan bahasa pemrograman Actionscript 3 (AS3 serta Adobe Air sebagai runtime aplikasinya. Uji coba dilakukan dengan menggunakan perangkat Android versi 2.3. Dari uji coba dapat disimpulkan bahwa Adobe Flash CS5.5 dapat digunakan untuk membuat permainan mobil edukasi pada perangkat Android dan mengakses sensor accelerometer-nya.

  5. Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass

    Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass is presented in this paper. The fabricated accelerometer device consists of a heavy proof mass supported by four thin flexures. Boron-diffused piezoresistors located near the fixed ends of the flexures are used for sensing the developed stress and hence acceleration. Performance enhancement is achieved by electroplating a gold mass of 20 µm thickness on top of the proof mass. A commercially available sulfite-based solution TSG-250(TM) was used for the electroplating process. Aluminum metal lines were used to form a Wheatstone bridge for signal pick-up. To avoid galvanic corrosion between two dissimilar metals having contact in an electrolyte, a shadow mask technique was used to selectively deposit a Cr/Au seed layer on an insulator atop the proof mass for subsequent electrodeposition. Bulk micromachining was performed using a 5% dual-doped TMAH solution. Fabricated devices with different electroplated gold areas were tested up to ±13 g acceleration. For electroplated gold dimensions of 2500 µm × 2500 µm × 20 µm on a proof mass, sensitivity along the Z-axis is increased by 21.8% as compared to the structure without gold. Off-axis sensitivities along the X- and Y-axes are reduced by 7.6% and 6.9%, respectively

  6. Do accelerometers mounted on the back provide a good estimate of impact loads in jumping and landing tasks?

    Simons, Chantal; Bradshaw, Elizabeth J

    2016-03-01

    Artistic gymnasts are frequently exposed to both low- and high-magnitude loads through impacts with the apparatus. These impact loads are thought to be associated with the high injury rates observed in gymnastics. Due to the variable apparatus and surfaces in gymnastics, impact loads during training are difficult to quantify. This study aimed to use triaxial accelerometers mounted on the back to assess impact loading during jumping and landing tasks. Twelve participants were fitted with an accelerometer on their upper and lower back, before performing a continuous hopping task, as well as drop landings and rebound jumps from various heights (37.5, 57.5, and 77.5 cm) onto a force platform. Peak resultant acceleration (PRA) was low-pass filtered with four cut-off frequencies (8, 15, 20, and 50 Hz). Filtering of PRA with the 20 Hz cut-off frequency showed the highest correlations between ground reaction force (GRF) and PRA. PRA recorded at the upper back, filtered with a 20 Hz cut-off frequency, appears to provide a good estimate of impact loading for continuous hopping and rebound jumps, but less so for drop landings since correlations between GRF and PRA were only significant when landing from 57.5 cm. PMID:26873303

  7. Development of a noncontact heart rate monitoring system for sedentary behavior based on an accelerometer attached to a chair

    Although people spend a third of their day engaged in sedentary activities, research on heart activity during sitting is almost nonexistent because of the discomfort experienced when electrocardiogram (ECG) measurement electrodes are attached to the body. Accordingly, in this study, a system was developed to monitor heart rate (HR) in a noncontact and unconstrained way while subjects were seated, by attaching an accelerometer on the backrest of a chair. Acceleration signals were obtained three times from 20 healthy adults, a detection algorithm was applied, and HR detection performance was evaluated by comparing the R-peak values from the ECG. The system had excellent performance results, with a sensitivity of 96.10% and a positive predictive value of 96.43%. In addition, the HR calculated by the new system developed in this study was compared with HR calculated using ECG. The new system exhibited excellent performance; its results were strongly correlated with that of ECG (r = 0.97, p ≪ 0.0001; average difference of −0.08  ±  4.60 [mean ± 1.96∙standard deviation] in Bland–Altman analysis). Accordingly, the method presented in this study is expected to be applicable for evaluating diverse autonomic nervous system components in a noncontact and unconstrained way using an accelerometer to monitor the HR of sedentary workers or adolescents. (note)

  8. An accelerometer balance for the measurement of roll, lift and drag on a lifting model in a shock tunnel

    A force balance to measure roll, lift and drag on a lifting aerodynamic body in an ultrashort-duration hypersonic test facility, such as a shock tunnel, has been developed and tested on a flapped, blunt-nosed, triangular lifting body at a freestream Mach number of 8. The flow total enthalpy and the freestream unit Reynolds number were 0.83 MJ kg−1 and 0.98 million, respectively. The balance structure has a soft suspension that allows the model to have a free flight during the short-duration aerodynamic test. The balance was mounted inside the hollow model and was equipped with accelerometers to sense the aerodynamic moment and forces on the model. The measurements were carried out at different angles of incidence of the model and the acquired signals of the accelerometers were reduced to the aerodynamic moment and the force coefficients based on the theories of applied mechanics and aerodynamics. Also, the moment and force coefficients were theoretically calculated based on the Newtonian theory, which is an accepted analytical approach for hypersonic bodies. Good agreement has been observed between the experimental and the analytical results. The method of measurement of roll and lift, and the data on the rolling moment of a lifting body presented in this note are novel. (technical design note)

  9. Mother-reported sleep, accelerometer-estimated sleep and weight status in Mexican American children: sleep duration is associated with increased adiposity and risk for overweight/obese status

    We know of no studies comparing parent-reported sleep with accelerometer-estimated sleep in their relation to paediatric adiposity. We examined: (i) the reliability of mother-reported sleep compared with accelerometer-estimated sleep; and (ii) the relationship between both sleep measures and child a...

  10. Angular and Linear Velocity Estimation for a Re-Entry Vehicle Using Six Distributed Accelerometers: Theory, Simulation and Feasibility

    Clark, G

    2003-04-28

    This report describes a feasibility study. We are interested in calculating the angular and linear velocities of a re-entry vehicle using six acceleration signals from a distributed accelerometer inertial measurement unit (DAIMU). Earlier work showed that angular and linear velocity calculation using classic nonlinear ordinary differential equation (ODE) solvers is not practically feasible, due to mathematical and numerical difficulties. This report demonstrates the theoretical feasibility of using model-based nonlinear state estimation techniques to obtain the angular and linear velocities in this problem. Practical numerical and calibration issues require additional work to resolve. We show that the six accelerometers in the DAIMU are not sufficient to provide observability, so additional measurements of the system states are required (e.g. from a Global Positioning System (GPS) unit). Given the constraint that our system cannot use GPS, we propose using the existing on-board 3-axis magnetometer to measure angular velocity. We further show that the six nonlinear ODE's for the vehicle kinematics can be decoupled into three ODE's in the angular velocity and three ODE's in the linear velocity. This allows us to formulate a three-state Gauss-Markov system model for the angular velocities, using the magnetometer signals in the measurement model. This re-formulated model is observable, allowing us to build an Extended Kalman Filter (EKF) for estimating the angular velocities. Given the angular velocity estimates from the EKF, the three ODE's for the linear velocity become algebraic, and the linear velocity can be calculated by numerical integration. Thus, we do not need direct measurements of the linear velocity to provide observability, and the technique is mathematically feasible. Using a simulation example, we show that the estimator adds value over the numerical ODE solver in the presence of measurement noise. Calculating the velocities in the

  11. High-resolution monitoring of bedload transport rates: a benchmark of two approaches (accelerometers and image processing)

    Dhont, Blaise; Rousseau, Gauthier; Ancey, Christophe

    2016-04-01

    Experimental and field studies have shown how intermittent bedload transport can be at low flow rates. The development and validation of bedload-transport equations require high-resolution records over long periods of time. Two technologies are considered in the present investigation: image processing and accelerometers mounted on impact plates. The former has been successfully applied to monitor bedload transport in many flume experiments, and the latter has shown encouraging results at different field sites. Calibration is a major issue in both cases, and it is often difficult to assess the precision of the data collected. In our talk, we show how to calibrate and compare the performances of accelerometer and image-processing based techniques in laboratory conditions. The accelerometer is fixed on a perforated steel plate, which is placed vertically at the lower end of the flume. The vibrations due to the particles impacting the plate are recorded with a sampling frequency of 10 kHz. The proxy for bedload transport rate is chosen as the number of peaks above a fixed threshold of the recorded signal. Note that impact plates are usually set in flush with the bed, and to our knowledge, the vertical configuration presented here has not yet been documented. The experimental setup for image processing involves a video-camera that takes top-view images of the particles moving over a white board mounted at the outlet of the flume. Data storage poses an issue, which can be got round by pre-processing the images in real time. The bedload transport rate is estimated based on the number of particles that are identified on the images. The two technologies have the advantages of being cost-effective and demanding limited effort for implementation. They provide high-resolution bedload transport rates over several hours. Estimates of bedload discharge were found to be robust and accurate for low sediment transport rates. At higher rates, the sensors may saturate due the arrival

  12. Validity and repeatability of the EPIC physical activity questionnaire: a validation study using accelerometers as an objective measure

    van der Ploeg Hidde P

    2008-06-01

    Full Text Available Abstract Background A primary aim of the European Prospective Investigation into Cancer and Nutrition (EPIC cohort study is to examine the association between total physical activity levels (comprising occupational, household and recreational activity and the incidence of cancer. We examined the validity and long-term repeatability of total physical activity measurements estimated from the past-year recall EPIC questionnaire, using accelerometers as an objective reference measure. Methods Participants included 100 men and 82 women aged 50–65 years. Criterion validity was assessed by comparing the physical activity estimates from the EPIC questionnaire with total activity estimated from the average of three separate 7-day accelerometer periods during the same (past-year period. Long-term repeatability of the EPIC questionnaire was assessed by comparing the responses from the baseline and 10-month administrations. Past-year EPIC estimates were also compared with the Friedenreich Lifetime Total Physical Activity Questionnaire to examine whether recent activity reflected lifetime activity. Results Accelerometer total metabolic equivalent (MET-hours/week were positively associated with a total physical activity index (Spearman rank correlation ρ = 0.29, 95% confidence interval (CI 0.15, 0.42 and with non-occupational activity estimated in MET-hours/week (ρ = 0.21, 95% CI 0.07, 0.35. Stratified analyses suggested stronger correlations for non-occupational activity for participants who were male, had a lower BMI, were younger, or were not full-time workers, although the differences in correlations between groups were not statistically significant. The weighted kappa coefficient for repeatability of the total physical activity index was 0.62 (95% CI 0.53, 0.71. Spearman correlations for repeatability of components of activity were 0.65 (95% CI 0.55, 0.72 for total non-occupational, 0.58 (95% CI 0.48, 0.67 for recreational and 0.73 (95% CI 0.66, 0

  13. Predicting daily eating activity of dairy cows from 3D accelerometer data and RFID signals by use of a random forests model

    Foldager, Leslie; Munksgaard, Lene; Trénel, Philipp;

    2015-01-01

    /logger combinations and synchronised with video recordings at the Danish Cattle Research Centre (DKC). The sensor recorded 3D accelerometer data and radio frequency identification (RFID) signals for positioning of the cow at the feed bunk. Video observations from 21 to 48 hours per cow/logger combination were...

  14. Robust, accurate, and non-contacting vibration measurement systems: Supplemental appendices presenting comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 2

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report

  15. Identification of Prey Captures in Australian Fur Seals (Arctocephalus pusillus doriferus Using Head-Mounted Accelerometers: Field Validation with Animal-Borne Video Cameras.

    Beth L Volpov

    Full Text Available This study investigated prey captures in free-ranging adult female Australian fur seals (Arctocephalus pusillus doriferus using head-mounted 3-axis accelerometers and animal-borne video cameras. Acceleration data was used to identify individual attempted prey captures (APC, and video data were used to independently verify APC and prey types. Results demonstrated that head-mounted accelerometers could detect individual APC but were unable to distinguish among prey types (fish, cephalopod, stingray or between successful captures and unsuccessful capture attempts. Mean detection rate (true positive rate on individual animals in the testing subset ranged from 67-100%, and mean detection on the testing subset averaged across 4 animals ranged from 82-97%. Mean False positive (FP rate ranged from 15-67% individually in the testing subset, and 26-59% averaged across 4 animals. Surge and sway had significantly greater detection rates, but also conversely greater FP rates compared to heave. Video data also indicated that some head movements recorded by the accelerometers were unrelated to APC and that a peak in acceleration variance did not always equate to an individual prey item. The results of the present study indicate that head-mounted accelerometers provide a complementary tool for investigating foraging behaviour in pinnipeds, but that detection and FP correction factors need to be applied for reliable field application.

  16. Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies

  17. Context-specific outdoor time and physical activity among school-children across gender and age: using accelerometers and GPS to advance methods

    Klinker, Charlotte Demant; Schipperijn, Jasper; Kerr, Jacqueline; Ersbøll, Annette Kjær; Troelsen, Jens

    2014-01-01

    . Methods: A total of 170 children had at least one weekday of 9 h combined accelerometer and global positioning system data and were included in the analyses. The data were processed using the personal activity and location measurement system (PALMS) and a purpose-built PostgreSQL database resulting in...

  18. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals.

    Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin

    2006-12-01

    We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects. PMID:16500102

  19. Design and test of a novel accelerometer made-up of an optical-fiber embedded within a polymer resin

    Tihon Pierre

    2015-01-01

    Full Text Available This paper presents a transducer for an optical-fiber accelerometer based on a polarization analysis. The transducer is made up of a fiber section embedded within a resin placed between two metallic pieces. Due to the acceleration, the resin is crushed between the metallic pieces, deforming the fiber section and inducing birefringence in the latter. This birefringence modifies the light polarization state, which can be used as an acceleration measurement. The sensor characteristics (sensitivity and resonance frequency are numerically and experimentally determined. Sine accelerations at 120 Hz with amplitudes going from 5 m/s2 to 13 m/s2 have been successfully measured. The resonance frequency for the transducer crushing mode is above 5000 Hz, but low-frequency vibration modes exist, disturbing the measurements.

  20. Quantifying walking and standing behaviour of dairy cows using a moving average based on output from an accelerometer

    Nielsen, Lars Relund; Pedersen, Asger Roer; Herskin, Mette S; Munksgaard, Lene

    Manual observations either directly or by analysis of video recordings of dairy cow behaviour in loose housing systems are costly. Therefore progress could be made if reliable estimates of duration of walking and standing could be based on automatic recordings. In this study we developed algorithms...... taken. Various algorithms for predicting walking/standing status were compared. The algorithms were all based on a limit of a moving average calculated by using one of two outputs of the accelerometer, either a motion index or a step count, and applied over periods of 3 or 5 s. Furthermore, we...... misclassification given walking and standing differed between algorithms, thus the choice of algorithm should relate to the specific question under consideration. In conclusion, the results suggest that the number of steps taken per time unit as well as the frequency and duration of walking and standing can be...

  1. Does a waist-worn accelerometer capture intra- and inter-person variation in walking behavior among persons with multiple sclerosis?

    Motl, Robert W.; Sosnoff, Jacob J.; Dlugonski, Deirdre; Suh, Yoojin; Goldman, Myla

    2011-01-01

    The valid application of accelerometry and interpretation of its output (i.e., counts per unit time) for the measurement of walking behavior in persons with multiple sclerosis (MS) rests upon multiple untested assumptions. This study tested the assumption that a waist-worn accelerometer should capture the intra- and inter-person variation in walking behavior. Twenty-four participants with a neurologist-confirmed diagnosis of MS and who were ambulatory with minimal assistance undertook three 6-min periods of over-ground walking that involved comfortable (CWS) and then slower (SWS) and faster (FWS) walking speeds while wearing ActiGraph, model 7164, accelerometers around the waist and ankle. The experimental manipulation of walking was successful such that the CWS was 76.7 ± 13.0 m/min (range = 55.6–105.14), whereas the SWS and FWS were 64.3 ± 12.3 m/min (range = 44.5–90.1) and 89.1 ± 13.8 m/min (range = 60.9–116.4), respectively. Movement counts from the waist and ankle-worn accelerometer were strongly associated with the manipulation of speed, but the association was stronger for the waist than ankle based on both eta-squared estimates (η2 values = .78 and .46) and the average squared multiple correlations from individual regression analyses (R2 values = .97 ± .04 and .88 ± .21). The bivariate correlation between movement counts from the waist-worn accelerometer and speed of walking (r = .823, p = .001) was large in magnitude and significantly different (z = 3.22, p = .001) from that between movement counts from the ankle-worn unit and walking speed (r = .549, p = .001). This study provides novel evidence that an accelerometer worn around the waist captures intra- and inter-person variation in over-ground walking behavior in those with MS. PMID:20875952

  2. Performance analysis on captive silicon micro-accelerometer system%电容式硅微加速度计系统的性能分析

    吉训生; 王寿荣; 许宜申; 盛平

    2006-01-01

    The operational principle and the lumped parameters model of capacitive micro-accelerometer are introduced. The equivalent stiffness of different directions of the accelerometer is given. From the point of view of energy and mechanics, expressions of some key parameters, such as the damping, sensitivity, resolution of the accelerometer, are derived. The accelerometer noise behavior of mechanical-thermal noise in the open-loop system, along with the dynamic range of the open-loop system and closed-loop system is analyzed. The result is that the noise of the capacitive micro accelerometer is dominated by the magnitude of mechanical-thermal noise. At the same time, the magnitude of mechanical-thermal noise depends on the temperature and magnitude of mechanical damp. The result of the measurement from the implemented closed-loop micro-accelerometer system shows that the resolution is the level of mg, and the measurement range is from -50g to 50g.%介绍了微加速度计的工作原理,得出了不同方向上的加速度计的等效刚度.基于加速度计的集总模型分析,从能量和运动角度推导得出了加速度计的等效质量、精度和灵敏度的具体表达形式.从力学观点,总结了加速度计阻尼的影响因素.对开环和闭环加速度计系统的机械-热噪声的特性和它们各自检测的动态范围进行研究后发现,电容式微加速度计的噪声主要由机械热噪声决定,并取决于加速度计系统的温度和阻尼.对闭环加速度计系统的测量结果表明,系统的精度可以达到mg数量级,量程为±50g的范围.

  3. French Pregnancy Physical Activity Questionnaire compared with an accelerometer cut point to classify physical activity among pregnant obese women.

    Nadia Chandonnet

    Full Text Available Given the high risk for inactivity during pregnancy in obese women, validated questionnaires for physical activity (PA assessment in this specific population is required before evaluating the effect of PA on perinatal outcomes. No questionnaire was validated in pregnant obese women. The Pregnancy Physical Activity Questionnaire (PPAQ has been designed based on activities reported during pregnancy and validated in pregnant women. We translated the PPAQ to French and assessed reliability and accuracy of this French version among pregnant obese women. In this cross-sectional study, pregnant obese women were evenly recruited at the end of each trimester of pregnancy. They completed the PPAQ twice, with an interval of 7 days in-between, to recall PA of the last three months. Between PPAQ assessments, participants wore an accelerometer (Actigraph GT1M during 7 consecutive days. Fourty-nine (49 pregnant obese women (29.8±4.2 yrs, 34.7±5.1 kg x m(-2 participated to the study. The intraclass correlation coefficients (ICCs between the two PPAQ assessments were 0.90 for total activity, 0.86 for light and for moderate intensity, and 0.81 for vigorous intensity activities. It ranged from 0.59 for "Transportation" to 0.89 for "Household and Caregiving" activities. Spearman correlation coefficients (SCCs between the PPAQ and the Matthews' cut point used to classify an activity of moderate and above intensity were 0.50 for total activity, 0.25 for vigorous intensity and 0.40 for moderate intensity. The correlations between the PPAQ and the accelerometer counts were 0.58 for total activity, 0.39 for vigorous intensity and 0.49 for moderate intensity. The highest SCCs were for "Occupation" and "Household and Caregiving" activities. Comparisons with other standard cutpoints were presented in files S1, S2, S3, S4, S5, S6, S7. The PPAQ is reliable and moderately accurate for the measure of PA of various intensities and types among pregnant obese women.

  4. Walk Score, Transportation Mode Choice, and Walking Among French Adults: A GPS, Accelerometer, and Mobility Survey Study

    Duncan, Dustin T.; Méline, Julie; Kestens, Yan; Day, Kristen; Elbel, Brian; Trasande, Leonardo; Chaix, Basile

    2016-01-01

    Background: Few studies have used GPS data to analyze the relationship between Walk Score, transportation choice and walking. Additionally, the influence of Walk Score is understudied using trips rather than individuals as statistical units. The purpose of this study is to examine associations at the trip level between Walk Score, transportation mode choice, and walking among Paris adults who were tracked with GPS receivers and accelerometers in the RECORD GPS Study. Methods: In the RECORD GPS Study, 227 participants were tracked during seven days with GPS receivers and accelerometers. Participants were also surveyed with a GPS-based web mapping application on their activities and transportation modes for all trips (6969 trips). Walk Score, which calculates neighborhood walkability, was assessed for each origin and destination of every trip. Multilevel logistic and linear regression analyses were conducted to estimate associations between Walk Score and walking in the trip or accelerometry-assessed number of steps for each trip, after adjustment for individual/neighborhood characteristics. Results: The mean overall Walk Scores for trip origins were 87.1 (SD = 14.4) and for trip destinations 87.1 (SD = 14.5). In adjusted trip-level associations between Walk Score and walking only in the trip, we found that a walkable neighborhood in the trip origin and trip destination was associated with increased odds of walking in the trip assessed in the survey. The odds of only walking in the trip were 3.48 (95% CI: 2.73 to 4.44) times higher when the Walk Score for the trip origin was “Walker’s Paradise” compared to less walkable neighborhoods (Very/Car-Dependent or Somewhat Walkable), with an identical independent effect of trip destination Walk Score on walking. The number of steps per 10 min (as assessed with accelerometry) was cumulatively higher for trips both originating and ending in walkable neighborhoods (i.e., “Very Walkable”). Conclusions: Walkable

  5. Comparison of estimated energy intake in children using a Web-based Dietary Assessment Software with accelerometer-estimated energy expenditure in children

    Biltoft-Jensen, Anja Pia; Hjort, Mads F.; Trolle, Ellen; Christensen, Tue; Brockhoff, Per B.; Andersen, Lene F.; Tetens, Inge; Matthiessen, Jeppe

    2013-01-01

    expenditure (TEE) as derived from accelerometers worn by the children during the same period. A second objective was to evaluate the WebDASC's usability. Design Eighty-one schoolchildren took part in what was the pilot study for the OPUS project, and they recorded their total diet using WebDASC and wore an......-induced thermogenesis. WebDASC's usability was assessed using a questionnaire. Parents could help their children record their diet and answer the questionnaire. Results Evaluated against TEE as derived from the accelerometers worn at the same time, the WebDASC performed just as well as other traditional methods of...... in Denmark. Dietary assessment was carried out using a program known as WebDASC (Web-based Dietary Assessment Software for Children) to collect data from the children. Objective To compare the energy intake (EI) of schoolchildren aged 8–11 estimated using the WebDASC system against the total energy...

  6. Does a waist-worn accelerometer capture intra- and inter-person variation in walking behavior among persons with multiple sclerosis?

    Motl, Robert W.; Sosnoff, Jacob J.; Dlugonski, Deirdre; Suh, Yoojin; Goldman, Myla

    2010-01-01

    The valid application of accelerometry and interpretation of its output (i.e., counts per unit time) for the measurement of walking behavior in persons with multiple sclerosis (MS) rests upon multiple untested assumptions. This study tested the assumption that a waist-worn accelerometer should capture the intra- and inter-person variation in walking behavior. Twenty-four participants with a neurologist-confirmed diagnosis of MS and who were ambulatory with minimal assistance undertook three 6...

  7. The validity of the non-exercise activity thermogenesis questionnaire evaluated by objectively measured daily physical activity by the triaxial accelerometer

    Hamasaki, Hidetaka; Yanai, Hidekatsu; Kakei, Masafumi; Noda, Mitsuhiko; Ezaki, Osamu

    2014-01-01

    Background Physical inactivity is a major cardiovascular risk factor. Recently, we showed that non-exercise activity thermogenesis (NEAT) assessed by the self-reported questionnaire is favorably associated with metabolic risks in patients with type 2 diabetes. The purpose of the present study was to examine the validity of the questionnaire by comparing with objectively measured daily physical activity (PA) by using the triaxial accelerometer. Methods Daily physical activity level (PAL) of 51...

  8. Predicting Chinese Children and Youth's Energy Expenditure Using ActiGraph Accelerometers: A Calibration and Cross-Validation Study

    Zhu, Zheng; Chen, Peijie; Zhuang, Jie

    2013-01-01

    Purpose: The purpose of this study was to develop and cross-validate an equation based on ActiGraph accelerometer GT3X output to predict children and youth's energy expenditure (EE) of physical activity (PA). Method: Participants were 367 Chinese children and youth (179 boys and 188 girls, aged 9 to 17 years old) who wore 1 ActiGraph GT3X…

  9. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch.

    Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C

    2015-08-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments. PMID:25549774

  10. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators.

    Niskanen, Arto; Tuononen, Ari J

    2015-01-01

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced. PMID:26251914

  11. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators

    Arto Niskanen

    2015-08-01

    Full Text Available Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced.

  12. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators †

    Niskanen, Arto; Tuononen, Ari J.

    2015-01-01

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced. PMID:26251914

  13. Comparison between low-cost and traditional MEMS accelerometers: a case study from the M7.1 Darfield, New Zealand, aftershock deployment

    Angela Chung

    2011-06-01

    Full Text Available Recent advances in micro-electro-mechanical systems (MEMS sensing and distributed computing techniques have enabled the development of low-cost, rapidly deployed dense seismic networks. The Quake-Catcher Network (QCN uses triaxial MEMS accelerometers installed in homes and businesses to record moderate to large earthquakes. Real-time accelerations are monitored and information is transferred to a central server using open-source, distributed computing software installed on participating computers. Following the September 3, 2010, Mw 7.1 Darfield, New Zealand, earthquake, 192 QCN stations were installed in a dense array in the city of Christchurch and the surrounding region to record the on-going aftershock sequence. Here, we compare the ground motions recorded by QCN accelerometers with GeoNet strong-motion instruments to verify whether low-cost MEMS accelerometers can provide reliable ground-motion information in network-scale deployments. We find that observed PGA and PGV amplitudes and RMS scatter are comparable between the GeoNet and QCN observations. Closely spaced stations provide similar acceleration, velocity, and displacement time series and computed response spectra are also highly correlated, with correlation coefficients above 0.94.

  14. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors.

    Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2015-01-01

    Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems. PMID:26784195

  15. Method for estimating maximum permissible load weight for Japanese native horses using accelerometer-based gait analysis.

    Matsuura, Akihiro; Irimajiri, Mami; Matsuzaki, Kunihiro; Hiraguri, Yuko; Nakanowatari, Toshihiko; Yamazaki, Atusi; Hodate, Koichi

    2013-01-01

    The aim of this study was to establish a method for estimating loading capacity for Japanese native horses by gait analysis using an accelerometer. Six mares of Japanese native horses were used. The acceleration of each horse was recorded during walking and trotting along a straight course at a sampling frequency of 200 Hz. Each horse performed 12 tests: one test with a loaded weight of 80 kg (First 80 kg) followed by 10 tests with random loaded weights between 85 kg and 130 kg and a final test with a loaded weight of 80 kg again. The time series of acceleration was subjected to fast Fourier transformation, and the autocorrelation coefficient was calculated. The first two peaks of the autocorrelation were defined as symmetry and regularity of the gait. At trot, symmetries in the 100, 110, and 125 kg tests were significantly lower than that in First 80 kg (P < 0.05, by analysis of covariance and Sidak's test). These results imply that the maximum permissible load weight is less than 100 kg, which is 29% of the body weight of Japanese native horses. Our method is a widely applicable and welfare-friendly method for estimating maximum permissible load weights of horses. PMID:23302086

  16. Rapid earthquake characterization using MEMS accelerometers and volunteer hosts following the M 7.2 Darfield, New Zealand, Earthquake

    Lawrence, J. F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C. M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, Debi; Kohler, M.D.; Taufer, M.

    2014-01-01

    We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake‐Catcher Network (QCN) that connects low‐cost microelectromechanical systems accelerometers to a network of volunteer‐owned, Internet‐connected computers. Following the 3 September 2010 M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports to the central server. The central server correlates incoming triggers to detect when an earthquake has occurred. The location and magnitude are then rapidly estimated from a minimal set of received ground‐motion parameters. Full seismic time series are typically not retrieved for tens of minutes or even hours after an event. We benchmark the QCN real‐time detection performance against the GNS Science GeoNet earthquake catalog. Under normal network operations, QCN detects and characterizes earthquakes within 9.1 s of the earthquake rupture and determines the magnitude within 1 magnitude unit of that reported in the GNS catalog for 90% of the detections.

  17. Detecting Intra-Fraction Motion in Patients Undergoing Radiation Treatment Using a Low-Cost Wireless Accelerometer

    Joel J. P. C. Rodrigues

    2009-08-01

    Full Text Available The utility of a novel, high-precision, non-intrusive, wireless, accelerometerbased patient orientation monitoring system (APOMS in determining orientation change in patients undergoing radiation treatment is reported here. Using this system a small wireless accelerometer sensor is placed on a patient’s skin, broadcasting its orientation to the receiving station connected to a PC in the control area. A threshold-based algorithm is developed to identify the exact amount of the patient’s head orientation change. Through real-time measurements, an audible alarm can alert the radiation therapist if the user-defined orientation threshold is violated. Our results indicate that, in spite of its low-cost and simplicity, the APOMS is highly sensitive and offers accurate measurements. Furthermore, the APOMS is patient friendly, vendor neutral, and requires minimal user training. The versatile architecture of the APOMS makes it potentially suitable for variety of applications, including study of correlation between external and internal markers during Image-Guided Radiation Therapy (IGRT, with no major changes in hardware setup or algorithm.

  18. Mobility disability and the pattern of accelerometer-derived sedentary and physical activity behaviors in people with multiple sclerosis

    Ezeugwu, Victor; Klaren, Rachel E.; A. Hubbard, Elizabeth; Manns, Patricia (Trish); Motl, Robert W.

    2015-01-01

    Objective Low physical activity and high sedentary behavior levels are major concerns in persons with multiple sclerosis (MS) and these differ depending on the level of mobility disability. However, the manner in which daily activity is accumulated is currently unknown in this population. Methods A secondary analysis was performed on a combined data set of persons with MS from two previous investigations of physical activity and symptomatic or quality of life outcomes in the United States over a two year period (2007–2009). Mobility disability status was determined using the Patient Determined Disease Steps (PDDS) while activity behavior was objectively monitored using an ActiGraph accelerometer for 7 days. Results Persons with MS who have mobility disability were involved in sedentary behavior, light and moderate intensity activity for 65%, 34% and 1% of the day, respectively compared to 60%, 37%, and 3%, respectively in those without mobility disability (p < 0.05). Breaks in sedentary time did not differ by mobility disability status. Compared to those without mobility disability, the average number of sedentary bouts longer than 30 min was greater in those with mobility disability (p = 0.016). Conclusion Persons with MS with mobility disability are less active, engage in more sedentary behavior and accumulate prolonged sedentary bouts. PMID:26844077

  19. Analysis of one month of CHAMP state vector and accelerometer data for the recovery of the gravity potential

    E. Howe

    2003-01-01

    Full Text Available The energy conservation method is based on knowledge of the state vector and measurements of nonconservative forces. This is or will be provided by CHAMP, GRACE and GOCE. Here the analysis of one month of CHAMP state vector and accelerometer data is described. The energy conservation method is used to estimate the gravity potential at satellite altitude. When doing so we consider the tidal potential from the sun and the moon, the explicit time variation of the gravity potential in inertial space and loss of energy due to external forces. Fast Spherical Collocation have been used to estimate a gravity field model to degree and order 90, UCPH2002 04. This gravity field model is compared to EGM96 and EIGEN-2. The largest differences with respect to EGM96 are found at those places where the gravity data used to determine EGM96 had the largest uncertainty. EIGEN-2 and UCPH2002 04 are similar, though there are some differences in Antarctica and Central Asia.

  20. The behaviour and recovery of juvenile lemon sharks Negaprion brevirostris in response to external accelerometer tag attachment.

    Bullock, R W; Guttridge, T L; Cowx, I G; Elliott, M; Gruber, S H

    2015-12-01

    Behavioural responses of lemon sharks Negaprion brevirostris to a fin-mounted tag package (CEFAS G6A tri-axial accelerometer with epoxied Sonotronics PT4 acoustic transmitter) were measured in a controlled captive environment (n = 10, total length, LT range 80-140 cm) and in free-ranging sharks upon release (n = 7, LT range 100-160 cm). No changes were detected in behaviour (i.e. swimming speed, tailbeat frequency, time spent resting and frequency of chafing) between control and tagged captive shark trials, suggesting that the tag package itself does not alter behaviour. In the free-ranging trials, an initial period of elevated swimming activity was found in all individuals (represented by overall dynamic body acceleration). Negaprion brevirostris, however, appeared to recover quickly, returning to a steady swimming state between 2 and 35 min after release. Post-release tracking found that all sharks swim immediately for the shoreline and remain within 100 m of shore for prolonged periods. Hence, although N. brevirostris are capable of quick adaptation to stressors and demonstrate rapid recovery in terms of activity, tracking data suggest that they may modify their spatial use patterns post release. This research is important in separating deviation in behaviour due to environmental stressors from artefacts caused by experimental techniques. PMID:26511658

  1. Identification of the occurrence and pattern of masseter muscle activities during sleep using EMG and accelerometer systems

    Sato Sadao

    2009-02-01

    Full Text Available Abstract Background Sleep bruxism has been described as a combination of different orofacial motor activities that include grinding, clenching and tapping, although accurate distribution of the activities still remains to be clarified. Methods We developed a new system for analyzing sleep bruxism to examine the muscle activities and mandibular movement patterns during sleep bruxism. The system consisted of a 2-axis accelerometer, electroencephalography and electromyography. Nineteen healthy volunteers were recruited and screened to evaluate sleep bruxism in the sleep laboratory. Results The new system could easily distinguish the different patterns of bruxism movement of the mandible and the body movement. Results showed that grinding (59.5% was most common, followed by clenching (35.6% based on relative activity to maximum voluntary contraction (%MVC, whereas tapping was only (4.9%. Conclusion It was concluded that the tapping, clenching, and grinding movement of the mandible could be effectively differentiated by the new system and sleep bruxism was predominantly perceived as clenching and grinding, which varied between individuals.

  2. Statistical analysis of accelerometer data in the online monitoring of a power slip ring in a wind turbine

    The use of a shock accelerometer for the continuous in-service monitoring of wear of the slip ring on a wind turbine generator is proposed and supporting results are presented. Five wear defects in the form of out-of-round circumference acceleration data with average radial dimensions in the range 5.9–25 µm were studied. A theoretical model of the acceleration at a point on the circumference of a ring as a function of the defect profile is presented. Acceleration data as a continuous function of time have been obtained for ring rotation frequencies that span the range of frequencies arising with the variation of wind speeds experienced under all in-service conditions. As a result, the measured RMS acceleration is proven to follow an overall increasing trend with frequency for all defects at all brush pressures. A statistical analysis of the root mean square of the time acceleration data as a function of the defect profiles, rotation speeds and brush contact pressure has been performed. The detection performance is considered in terms of the achievement of a signal to noise ratio exceeding 3 (99.997% defect detection probability). Under all conditions of rotation speed and pressure, this performance was achieved for average defect sizes as small as 10 µm, which is only 0.004% of the ring diameter. These results form the basis of a very sensitive defect alarm system. (paper)

  3. VLC-Based Positioning System for an Indoor Environment Using an Image Sensor and an Accelerometer Sensor.

    Huynh, Phat; Yoo, Myungsik

    2016-01-01

    Recently, it is believed that lighting and communication technologies are being replaced by high power LEDs, which are core parts of the visible light communication (VLC) system. In this paper, by taking advantages of VLC, we propose a novel design for an indoor positioning system using LEDs, an image sensor (IS) and an accelerometer sensor (AS) from mobile devices. The proposed algorithm, which provides a high precision indoor position, consists of four LEDs mounted on the ceiling transmitting their own three-dimensional (3D) world coordinates and an IS at an unknown position receiving and demodulating the signals. Based on the 3D world coordinates and the 2D image coordinate of LEDs, the position of the mobile device is determined. Compared to existing algorithms, the proposed algorithm only requires one IS. In addition, by using an AS, the mobile device is allowed to have arbitrary orientation. Last but not least, a mechanism for reducing the image sensor noise is proposed to further improve the accuracy of the positioning algorithm. A simulation is conducted to verify the performance of the proposed algorithm. PMID:27240383

  4. Physical activity and energy expenditure measurements using accelerometers in older adults Utilización de los acelerómetros para la medida de la actividad física y el gasto energético en personas mayores

    Garatachea, N.; Torres Luque, G.; González Gallego, J.

    2010-01-01

    The purpose of this review is to address methodological issues related to accelerometer-based assessments of physical activity (PA) in older individuals. Special interest is also put on recently updated technology. No definitive evidence exists currently to indicate which are the more valid and reliable accelerometer models for use with older people. When it comes to selecting an accelerometer, issues of affordability, product reliability, monitor size, technical support, and comparability wi...

  5. Radiological Outcomes and Operative Time following Total Knee Arthroplasty using Accelerometer-based, Portable Navigation versus Conventional Inter-Medullary Alignment Guides

    MacDessi, Samuel; Solayar, GN; Thatcher, N; Chen, Darren B

    2016-01-01

    Objectives: Accelerometer-based, portable navigation instrumentation is a new method of achieving desired resection alignments in total knee arthroplasty (TKA). Methods: After randomisation and the application of exclusion criteria, 79 knees were analysed. 42 patients which underwent TKA using conventional intra-medullary (IM) alignment guides were compared to 37 patients with the use of accelerometer-based, portable navigation device (KneeAlign; OrthoAlign Inc, Aliso Viejo, California). Radiographic results were obtained from post-operative computer-tomography following the CT Perth Protocol. Results: In the IM cohort, 81.0% of patients had a coronal alignment within 3° of a neutral mechanical axis (vs 83.8% with KneeAlign, p=0.74), 81.0% had a femoral coronal alignment within 2° of perpendicular to the femoral mechanical axis (vs 89.2% with KneeAlign, p=0.31), and 92.9% had a tibial coronal alignment within 2° of perpendicular to the tibial mechanical axis (vs 81.1% with KneeAlign, p=0.12). Regarding sagittal alignment, the IM cohort had 90.5% of patients with femoral component alignment within 2° of optimum (vs 91.9% with KneeAlign, p=0.83) and 92.9% had a tibial component alignment within 2° of the optimal tibial slope (vs 89.2% with KneeAlign, p=0.57). The mean tourniquet time (from incision to completion of coronal bone resections) in the IM cohort was 16.5± 8.9 minutes vs 22.2 ± 7.6 minutes in the KneeAlign cohort (p<0.003). Conclusion: Accelerometer-based, portable navigation has a statistically similar outcome in alignment following TKA as IM guides. It is noted that using the portable navigation device does prolong surgical time compared to conventional IM surgery and this may be due to the learning curve.

  6. Accelerometer-Derived Sedentary and Physical Activity Time in Overweight/Obese Adults with Type 2 Diabetes: Cross-Sectional Associations with Cardiometabolic Biomarkers

    Healy, Genevieve N.; Winkler, Elisabeth A. H.; Brakenridge, Charlotte L.; Reeves, Marina M.; Eakin, Elizabeth G.

    2015-01-01

    Objective To examine the associations of sedentary time and physical activity with biomarkers of cardiometabolic health, including the potential collective impact of shifting mean time use from less- to more-active behaviours (cross-sectionally, using isotemporal substitution), in adults with type 2 diabetes. Methods Participants with overweight/obese body mass index (BMI; ≥25 kg/m2) (n = 279; 158 men, mean [SD] age = 58.2 [8.6] years) wore Actigraph GT1M accelerometers (waking hours; seven d...

  7. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-01-01

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no

  8. A method to determine the kinematics of the lower limbs of a subject pedaling a bicycle using encoders and accelerometers. M.S. Thesis

    Liu, Shih-Ching

    1994-01-01

    The goal of this research was to determine kinematic parameters of the lower limbs of a subject pedaling a bicycle. An existing measurement system was used as the basis to develop the model to determine position and acceleration of the limbs. The system consists of an ergometer instrumented to provide position of the pedal (foot), accelerometers to be attached to the lower limbs to measure accelerations, a recorder used for filtering, and a computer instrumented with an A/D board and a decoder board. The system is designed to read and record data from accelerometers and encoders. Software has been developed for data collection, analysis and presentation. Based on the measurement system, a two dimensional analytical model has been developed to determine configuration (position, orientation) and kinematics (velocities, accelerations). The model has been implemented in software and verified by simulation. An error analysis to determine the system's accuracy shows that the expected error is well within the specifications of practical applications. When the physical hardware is completed, NASA researchers hope to use the system developed to determine forces exerted by muscles and forces at articulations. This data will be useful in the development of countermeasures to minimize bone loss experienced by astronauts in microgravity conditions.

  9. Down-hole seismic survey system with fiber-optic accelerometer sensor array for 3-dimensions vertical seismic profile (3D-VSP)

    Zou, Qilin; Wang, Liwei; Pang, Meng; Tu, Dongsheng; Zhang, Min; Liao, Yanbiao

    2006-08-01

    We demonstrated a down-hole seismic survey system that can be applied in three dimensions vertical seismic profile (VSP) detection in petroleum exploration. The results of experiments show that the system has a dynamic measurement range of 80db (ratio of maximum to minimum value) and the total delay for signal collection, process and communication is less than 200ms @ 2k bit sample rates. An array consisting of six fiber-optic accelerometers (receivers) is applied in this system. Each receiver is comprised of three fiber-optic Michelson interferometers. In order to meet the requirements of high precision and real-time measurement, the high-speed DSP chips are employed to realize the algorithms of signal filters and Phase Generated Carrier (PGC) demodulation to obtain the seismic information. Multi-ARM CPUs are introduced into the system to design the fiber-optic accelerometer array controller and the receiver array local bus that are used for real-time data communication between the multi-level receivers and controller. The system interface for traditional ELIS Down-hole Instrument Bus (EDIB) is designed by the use of FPGA so that our system can attach to EDIB and cooperate with other instruments. The design and experiments of the system are given in this paper in detail.

  10. Tightly-coupled real-time analysis of GPS and accelerometer data for translational and rotational ground motions and application to earthquake and tsunami early warning

    Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.

    2013-12-01

    High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion

  11. Using RFID and accelerometer-embedded tracers to measure probabilities of bed load transport, step lengths, and rest times in a mountain stream

    Olinde, Lindsay; Johnson, Joel P. L.

    2015-09-01

    We present new measurements of bed load tracer transport in a mountain stream over several snowmelt seasons. Cumulative displacements were measured using passive tracers, which consisted of gravel and cobbles embedded with radio frequency identification tags. The timing of bed load motion during 11 transporting events was quantified with active tracers, i.e., accelerometer-embedded cobbles. Probabilities of cobble transport increased with discharge above a threshold, and exhibited slight to moderate hysteresis during snowmelt hydrographs. Dividing cumulative displacements by the number of movements recorded by each active tracer constrained average step lengths. Average step lengths increased with discharge, and distributions of average step lengths and cumulative displacements were thin tailed. Distributions of rest times followed heavy-tailed power law scaling. Rest time scaling varied somewhat with discharge and with the degree to which tracers were incorporated into the streambed. The combination of thin-tailed displacement distributions and heavy-tailed rest time distributions predict superdiffusive dispersion.

  12. Moderating effects of age, gender and education on the associations of perceived neighborhood environment attributes with accelerometer-based physical activity

    Van Dyck, Delfien; Cerin, Ester; De Bourdeaudhuij, Ilse;

    2015-01-01

    The study's purpose was to examine age, gender, and education as potential moderators of the associations of perceived neighborhood environment variables with accelerometer-based moderate-to-vigorous physical activity (MVPA). Data were from 7273 adults from 16 sites (11 countries) that were part of...... MVPA in men, and curvilinearly in women. Perceived crime safety was related to MVPA only in women. No moderating relationships were found for education. Overall the associations of adults' perceptions of environmental attributes with MVPA were largely independent of the socio-demographic factors...... examined. These findings are encouraging, suggesting that efforts to optimize the perceived built and social environment may act in a socially-equitable manner to facilitate MVPA....

  13. Are Context-specific Measures of Parental-reported Physical Activity and Sedentary Behaviour Associated with Accelerometer Data in 2–9-year-old European Children?

    Verbestel, Vera; De Henauw, Stefaan; Bammann, Karin;

    2015-01-01

    Objective: The aim of the present study was to investigate if context-specific measures of parental-reported physical activity and sedentary behaviour are associated with objectively measured physical activity and sedentary time in children. Design: Cross-sectional study. Setting: Seven European...... countries taking part in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants) study. Subjects: Data were analysed from 2–9-year-old children (n 5982) who provided both parental-reported and accelerometer-derived physical activity....../sedentary behaviour measures. Parents reported their children’s daily screen-time, weekly sports participation and daily outdoor playtime by means of the Outdoor Playtime Checklist (OPC) and Outdoor Playtime Recall Questions (OPRQ). Results: Sports participation, OPC- and OPRQ-derived outdoor play were positively...

  14. Validity of a small low-cost triaxial accelerometer with integrated logger for uncomplicated measurements of postures and movements of head, upper back and upper arms.

    Dahlqvist, Camilla; Hansson, Gert-Åke; Forsman, Mikael

    2016-07-01

    Repetitive work and work in constrained postures are risk factors for developing musculoskeletal disorders. Low-cost, user-friendly technical methods to quantify these risks are needed. The aims were to validate inclination angles and velocities of one model of the new generation of accelerometers with integrated data loggers against a previously validated one, and to compare meaurements when using a plain reference posture with that of a standardized one. All mean (n = 12 subjects) angular RMS-differences in 4 work tasks and 4 body parts were data logger. This makes it well-suited, for both researchers and practitioners, to measure postures and movements during work. Further work is needed for validation of the plain reference posture for upper arms. PMID:26995040

  15. Accelerometer-measured sedentary time among Hispanic adults: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL

    Gina Merchant

    2015-01-01

    Full Text Available Excessive sedentary behavior is associated with negative health outcomes independent of physical activity. Objective estimates of time spent in sedentary behaviors are lacking among adults from diverse Hispanic/Latino backgrounds. The objective of this study was to describe accelerometer-assessed sedentary time in a large, representative sample of Hispanic/Latino adults living in the United States, and compare sedentary estimates by Hispanic/Latino background, sociodemographic characteristics and weight categories. This study utilized baseline data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL that included adults aged 18–74 years from four metropolitan areas (N = 16,415. Measured with the Actical accelerometer over 6 days, 76.9% (n = 12,631 of participants had >10 h/day and >3 days of data. Participants spent 11.9 h/day (SD 3.0, or 74% of their monitored time in sedentary behaviors. Adjusting for differences in wear time, adults of Mexican background were the least (11.6 h/day, whereas adults of Dominican background were the most (12.3 h/day, sedentary. Women were more sedentary than men, and older adults were more sedentary than younger adults. Household income was positively associated, whereas employment was negatively associated, with sedentary time. There were no differences in sedentary time by weight categories, marital status, or proxies of acculturation. To reduce sedentariness among these populations, future research should examine how the accumulation of various sedentary behaviors differs by background and region, and which sedentary behaviors are amenable to intervention.

  16. Self-reported and accelerometer-measured physical activity by body mass index in US Hispanic/Latino adults: HCHS/SOL

    P. Palta

    2015-01-01

    Full Text Available The association between obesity and physical activity has not been widely examined in an ethnically diverse sample of Hispanic/Latino adults in the US. A cross-sectional analysis of 16,094 Hispanic/Latino adults 18–74 years was conducted from the multi-site Hispanic Community Health Study/Study of Latinos (HCHS/SOL. Body mass index (BMI was measured and categorized into normal, overweight, and obese; underweight participants were excluded from analyses. Physical activity was measured using the 16-item Global Physical Activity Questionnaire and by an Actical accelerometer. Minutes/day of physical activity and prevalence of engaging in ≥150 moderate–vigorous physical activity (MVPA minutes/week were estimated by BMI group and sex adjusting for covariates. No adjusted differences were observed in self-reported moderate (MPA, vigorous (VPA, or MVPA across BMI groups. Accelerometry-measured MPA, VPA, and MVPA were significantly higher for the normal weight (females: 18.9, 3.8, 22.6 min/day; males: 28.2, 6.1, 34.3 min/day, respectively compared to the obese group (females: 15.3, 1.5, 16.8 min/day; males: 23.5, 3.6, 27.1 min/day, respectively. The prevalence of engaging in ≥150 MVPA minutes/week using accelerometers was lower compared to the self-reported measures. Efforts are needed to reach the Hispanic/Latino population to increase opportunities for an active lifestyle that could reduce obesity in this population at high risk for metabolic disorders.

  17. Based on the Android Accelerometer Control Car Design and Research%基于Andriod重力感应控制的小车设计与研究

    陈锦儒; 彭昕昀

    2014-01-01

    该次项目主要研究的内容是在上位机的Andriod平台上编写JAVA应用程序,通过利用自身的蓝牙模块发送重力感应系统检测到的方向数据。下位机的蓝牙模块把上位机传输过来的信号通过异步通信的方式与单片机互传数据,从而遥控小车的运动情况,实现控制了小车的前进、后退、左转、右转、停止等运动状态。整个系统的设计主要分成两部分,分别是上位机的Andriod平台的程序开发以及下位机与蓝牙的通信设计,难点在Andriod平台上读取重力感应系统的数据。整个项目主要是在获取重力感应系统的方向数据后通过蓝牙模块进行数据传输而实现遥控功能,需要一个在Andriod平台上稳定可靠的JAVA应用程序保证系统的可行性。%This project mainly studies on the PC of the Android platform is the content of the writing JAVA applications, by us-ing its own bluetooth module sending accelerometer system to detect the direction of the data. Bluetooth module to PC machine under transmission of signal with single-chip microcomputer by means of asynchronous communication data, and remote control car movement situation, realize the control of the car forward, backward, turn left, turn right, stop motion etc. The design of the whole system mainly divided into two parts, respectively is upper machine under the Android platform application development and a machine and the bluetooth communication design, the difficulty on the android platform read data of gravity sensing sys-tem. The whole project is mainly after obtain the direction of the accelerometer system data via bluetooth module for data trans-mission and remote control function, need a stable and reliable on the Android platform of the JAVA application ensure the feasi-bility of the system.

  18. Activity pacing for osteoarthritis symptom management: study design and methodology of a randomized trial testing a tailored clinical approach using accelerometers for veterans and non-veterans

    Geisser Michael E

    2011-08-01

    Full Text Available Abstract Background Osteoarthritis (OA is a prevalent chronic disease and a leading cause of disability in adults. For people with knee and hip OA, symptoms (e.g., pain and fatigue can interfere with mobility and physical activity. Whereas symptom management is a cornerstone of treatment for knee and hip OA, limited evidence exists for behavioral interventions delivered by rehabilitation professionals within the context of clinical care that address how symptoms affect participation in daily activities. Activity pacing, a strategy in which people learn to preplan rest breaks to avoid symptom exacerbations, has been effective as part of multi-component interventions, but hasn't been tested as a stand-alone intervention in OA or as a tailored treatment using accelerometers. In a pilot study, we found that participants who underwent a tailored activity pacing intervention had reduced fatigue interference with daily activities. We are now conducting a full-scale trial. Methods/Design This paper provides a description of our methods and rationale for a trial that evaluates a tailored activity pacing intervention led by occupational therapists for adults with knee and hip OA. The intervention uses a wrist accelerometer worn during the baseline home monitoring period to glean recent symptom and physical activity patterns and to tailor activity pacing instruction based on how symptoms relate to physical activity. At 10 weeks and 6 months post baseline, we will examine the effectiveness of a tailored activity pacing intervention on fatigue, pain, and physical function compared to general activity pacing and usual care groups. We will also evaluate the effect of tailored activity pacing on physical activity (PA. Discussion Managing OA symptoms during daily life activity performance can be challenging to people with knee and hip OA, yet few clinical interventions address this issue. The activity pacing intervention tested in this trial is designed to help

  19. Development of micro capacitive accelerometer for subsurface microseismic measurement; Micromachining ni yoru chika danseiha kenshutsu no tame no silicon yoryogata kasokudo sensor no seisaku

    Nishizawa, M.; Niitsuma, H.; Esashi, M. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1997-05-27

    A silicon capacitive accelerometer was fabricated to detect subsurface elastic waves by using micromachining technology. Characteristics required for it call for capability of detecting acceleration with amplitudes from 0.1 to 1 gal and flat amplitude characteristics in frequency bands of 10 Hz to several kHz. For the purpose of measuring transition phenomena, linear phase characteristics in the required bands must be guaranteed, cross sensitivity must be small, and resistance to water, pressure and heat is demanded. Sensitivity of the sensor is determined finally by noise level in a detection circuit. The sensor`s minimum detection capability was 40 mgal in the case of the distance between a weight and an electrode being 3 {mu}m. This specification value is a value realizable by the current micromachining technology. Dimensions for the weight and other members were decided with the natural frequency to make band width 2 kHz set to 4 kHz. Completion of the product has not been achieved yet, however, because of a problem that the weight gets stuck on the electrode plate in anode bonding in the assembly process. 7 refs., 5 figs., 1 tab.

  20. Moderating effects of age, gender and education on the associations of perceived neighborhood environment attributes with accelerometer-based physical activity: The IPEN adult study.

    Van Dyck, Delfien; Cerin, Ester; De Bourdeaudhuij, Ilse; Salvo, Deborah; Christiansen, Lars B; Macfarlane, Duncan; Owen, Neville; Mitas, Josef; Troelsen, Jens; Aguinaga-Ontoso, Ines; Davey, Rachel; Reis, Rodrigo; Sarmiento, Olga L; Schofield, Grant; Conway, Terry L; Sallis, James F

    2015-11-01

    The study's purpose was to examine age, gender, and education as potential moderators of the associations of perceived neighborhood environment variables with accelerometer-based moderate-to-vigorous physical activity (MVPA). Data were from 7273 adults from 16 sites (11 countries) that were part of a coordinated multi-country cross-sectional study. Age moderated the associations of perceived crime safety, and perceiving no major physical barriers to walking, with MVPA: positive associations were only found in older adults. Perceived land use mix-access was linearly (positive) associated with MVPA in men, and curvilinearly in women. Perceived crime safety was related to MVPA only in women. No moderating relationships were found for education. Overall the associations of adults' perceptions of environmental attributes with MVPA were largely independent of the socio-demographic factors examined. These findings are encouraging, suggesting that efforts to optimize the perceived built and social environment may act in a socially-equitable manner to facilitate MVPA. PMID:26454247

  1. Robust Multivariable Estimation of the Relevant Information Coming from a Wheel Speed Sensor and an Accelerometer Embedded in a Car under Performance Tests

    Wilmar Hernandez

    2005-11-01

    Full Text Available In the present paper, in order to estimate the response of both a wheel speedsensor and an accelerometer placed in a car under performance tests, robust and optimalmultivariable estimation techniques are used. In this case, the disturbances and noisescorrupting the relevant information coming from the sensors’ outputs are so dangerous thattheir negative influence on the electrical systems impoverish the general performance of thecar. In short, the solution to this problem is a safety related problem that deserves our fullattention. Therefore, in order to diminish the negative effects of the disturbances and noiseson the car’s electrical and electromechanical systems, an optimum observer is used. Theexperimental results show a satisfactory improvement in the signal-to-noise ratio of therelevant signals and demonstrate the importance of the fusion of several intelligent sensordesign techniques when designing the intelligent sensors that today’s cars need.

  2. Accelerometer data requirements for reliable estimation of habitual physical activity and sedentary time of children during the early years - a worked example following a stepped approach.

    Bingham, Daniel D; Costa, Silvia; Clemes, Stacy A; Routen, Ash C; Moore, Helen J; Barber, Sally E

    2016-10-01

    This study presents a worked example of a stepped process to reliably estimate the habitual physical activity and sedentary time of a sample of young children. A total of 299 children (2.9 ± 0.6 years) were recruited. Outcome variables were daily minutes of total physical activity, sedentary time, moderate to vigorous physical activity and proportional values of each variable. In total, 282 (94%) provided 3 h of accelerometer data on ≥1 day and were included in a 6-step process: Step-1: determine minimum wear-time; Step-2: process 7-day-data; Step-3: determine the inclusion of a weekend day; Step-4: examine day-to-day variability; Step-5: calculate single day intraclass correlation (ICC) (2,1); Step-6: calculate number of days required to reach reliability. Following the process the results were, Step-1: 6 h was estimated as minimum wear-time of a standard day. Step-2: 98 (32%) children had ≥6 h wear on 7 days. Step-3: no differences were found between weekdays and weekend days (P ≥ 0.05). Step-4: no differences were found between day-to-day variability (P ≥ 0.05). Step-5: single day ICC's (2,1) ranged from 0.48 (total physical activity and sedentary time) to 0.53 (proportion of moderate to vigorous physical activity). Step-6: to reach reliability (ICC = 0.7), 3 days were required for all outcomes. In conclusion following a 7 day wear protocol, ≥6 h on any 3 days was found to have acceptable reliability. The stepped-process offers researchers a method to derive sample-specific wear-time criterion. PMID:26920123

  3. Comparison of the low-cost MEMS accelerometers used by the Quake-Catcher Network and traditional strong motion seismic sensors

    Cochran, E. S.; Lawrence, J.; Kaiser, A. E.; Fry, B.; Chung, A. I.; Evans, J. R.

    2011-12-01

    Accelerometers based on low-cost micro-electro-mechanical systems (MEMS) have improved swiftly, making the rapid deployment of dense seismic arrays possible. For example, the Quake-Catcher Network (QCN) makes use of MEMS-based tri-axial sensors installed in homes and businesses to record earthquakes, with almost 2000 participants worldwide. QCN utilizes an open-source distributed-computing system, called the Berkeley Open Infrastructure for Network Computing (BOINC), to retrieve waveforms from continuous or triggered recordings back to the QCN server. Furthermore, the QCN approach can also be used to augment existing seismic networks for rapid-earthquake detection purposes, as well as studies on seismic source- and site-related phenomena. Following the 3 September 2010 Mw7.1 Darfield earthquake, 192 QCN stations were installed in a dense array to record the on-going aftershock sequence in and around the city of Christchurch. We examine the peak ground motions recorded during a M5.1 aftershock and find that peak ground acceleration (PGA) is spatially variable, but with a clear decay in amplitude with distance. In general, closely located GeoNet and QCN stations report similar PGA. Several QCN stations were located within 1 km of existing GeoNet stations, providing an opportunity to compare time series and amplitude spectra. For these closely spaced pairs of stations, the amplitude spectra observed from the horizontal components are highly correlated with average cross-correlation coefficients of 0.9 or higher. In addition, we find the correlation coefficient decreases with increasing distance between station pairs. In future work we will compare the instrumental sensitivity between traditional and MEMS-based sensors by conducting shake table tests of five different types of MEMS sensors at the Albuquerque Seismic Lab.

  4. Accelerometer Based Real-time Gesture Segmentation and Recognition%实时手势加速度动作分割与识别研究

    刘蓉; 刘明

    2012-01-01

    Real-time gesture segmentation and recognition are very important task in inertial sensor-based HCI (human-computer interaction) research. This paper uses a three-axial accelerometer to capture the acceleration of dominant wrist, and a real-time gesture segmentation and recognition approach is proposed. It achieves auto temporal segmentation by using the gesture segmentation algorithm based on slope threshold and error threshold of fitting lines, then choice the key features by k-means clustering, and Discrete Hidden Markov Models are built for gesture recognition. Experimental results show that the proposed method can achieve real-time gesture segmentation, and the key feature selection method can not only reduce the complexity of Discrete Hidden Markov Models, but also improve the recognition performance.%实时手势动作分割与识别是基于惯性传感器手势交互的重要研究内容.采用佩戴在手腕的单个加速度传感器获取手势加速度信号,提出一种实时手势加速度动作分割和识别方案.首先采用基于阈值的动作分割算法实时切分连续手势,通过聚类算法提取手势动作的关键特征,然后构造离散隐马尔可夫模型实现手势识别.实验结果表明,本文采用的手势动作切分算法能自动提取有效手势信号,关键特征选择不仅降低了隐马尔可夫模型的复杂度,而且提高了识别率.

  5. A DEMODULATOR OF PWM SIGNALS GENERATED FOR A DIGITAL ACCELEROMETER IS DEVELOPED USING A MICROCONTROLLER UN DEMODULADOR DE SEÑALES PWM GENERADAS POR UN ACELERÓMETRO DIGITAL ES DESARROLLADO USANDO UN MICROCONTROLADOR

    Eduardo Pérez Lobato

    2006-08-01

    Full Text Available This paper presents the use of a microcontroller to demodulate two Pulse Width Modulated (PWM signals which are being generated by a digital accelerometer, to obtain their pulse widths and transmit them serially to a parallel port of a general purpose computer.Esta publicación presenta el uso de un microcontrolador para demodular dos señales PWM que están siendo generadas por un acelerómetro digital, obtener sus anchos y enviarlas en forma serial al puerto paralelo de un computador de propósitos generales.

  6. Accelerometer-derived sedentary and physical activity time in overweight/obese adults with type 2 diabetes: cross-sectional associations with cardiometabolic biomarkers.

    Genevieve N Healy

    Full Text Available To examine the associations of sedentary time and physical activity with biomarkers of cardiometabolic health, including the potential collective impact of shifting mean time use from less- to more-active behaviours (cross-sectionally, using isotemporal substitution, in adults with type 2 diabetes.Participants with overweight/obese body mass index (BMI; ≥25 kg/m2 (n = 279; 158 men, mean [SD] age = 58.2 [8.6] years wore Actigraph GT1M accelerometers (waking hours; seven days to assess moderate- to vigorous-intensity physical activity (MVPA, light-intensity activity, and sedentary time (segregated into non-prolonged [accumulated in bouts <30min] and prolonged [accumulated in bouts ≥30 min]. Cross-sectional associations with waist circumference, BMI, fasting blood (HbA1c, glucose, triacylglycerols, high-density lipoprotein cholesterol, and blood pressure of these activity variables (30 min/day increments were examined adjusted for confounders and wear then, if significant, examined using isotemporal substitution modelling.Waist circumference and BMI were significantly (p<0.05 associated with more prolonged sedentary time and less light-intensity activity. Light intensity activity was also significantly associated with lower fasting plasma glucose (relative rate: 0.98, 95% CI: 0.97, 1.00; p<0.05. No biomarker was significantly associated with non-prolonged sedentary time or MVPA. Lower mean prolonged sedentary time (-30 min/day with higher mean light intensity time (+30 min/day was significantly associated with lower waist circumference (β = -0.77, 95% CI: -1.33, -0.22 cm. Lower mean prolonged sedentary time (-30 min/day with either 30 min/day higher mean non-prolonged sedentary time (β = -0.35, 95%CI: -0.70, -0.01 kg/m2 or light-intensity time (β = -0.36, -0.61, -0.11 kg/m2 was associated with significantly lower average BMI.Significantly improved mean levels of waist circumference and BMI were observed when shifting time from prolonged

  7. Zero-shifted accelerometer outputs

    Galef, Arnold

    1986-08-01

    It is claimed that the commonly appearing zero-shift in pyroshock data is usually a symptom of a malfunctioning measurement system, so that the data can not be repaired (by high-pass filtering or equivalent) unless tests can be devised that permit the demonstration that the system is operating in a linear mode in all respects other than the shift. The likely cause of the zero-shift and its prevention are discussed.

  8. Vibration Analysis and the Accelerometer

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  9. Accelerometers identify new behaviors and show little difference in the activity budgets of lactating northern fur seals (Callorhinus ursinus) between breeding islands and foraging habitats in the eastern Bering Sea.

    Battaile, Brian C; Sakamoto, Kentaro Q; Nordstrom, Chad A; Rosen, David A S; Trites, Andrew W

    2015-01-01

    We tagged 82 lactating northern fur seals (Callorhinus ursinus) with tri-axial accelerometers and magnetometers on two eastern Bering Sea islands (Bogoslof and St. Paul) with contrasting population trajectories. Using depth data, accelerometer data and spectral analysis we classified time spent diving (30%), resting (~7%), shaking and grooming their pelage (9%), swimming in the prone position (~10%) and two types of previously undocumented rolling behavior (29%), with the remaining time (~15%) unspecified. The reason for the extensive rolling behavior is not known. We ground-truthed the accelerometry signals for shaking and grooming and rolling behaviors--and identified the acceleration signal for porpoising--by filming tagged northern fur seals in captivity. Speeds from GPS interpolated data indicated that animals traveled fastest while in the prone position, suggesting that this behavior is indicative of destination-based swimming. Very little difference was found in the percentages of time spent in the categorical behaviors with respect to breeding islands (Bogoslof or St. Paul Island), forager type (cathemeral or nocturnal), and the region where the animals foraged (primarily on-shelf 200 m). The lack of significant differences between islands, regions and forager type may indicate that behaviors summarized over a trip are somewhat hardwired even though foraging trip length and when and where animals dive are known to vary with island, forager type and region. PMID:25807552

  10. Preliminary evidence of physical activity levels measured by accelerometer in Spanish adolescents: The AFINOS Study Evidencia preliminar de los niveles de actividad física medidos mediante un acelerómetro en adolescentes españoles: Estudio AFINOS

    D. Martínez-Gómez; G. J. Welk; M. E. Calle; A. Marcos; O. L. Veiga

    2009-01-01

    Background: It is necessary to know the levels of physical activity (PA) for a better understanding of the development of chronic diseases in youth. The aim of this study was to assess levels of total PA and time spent in different PAintensities in Spanish adolescents by accelerometer. Methods: A sub-sample of 214 healthy Spanish adolescents (107 females), aged 13-16 years, enrolled in the AFINOS Study was selected for this study. Participants wore the ActiGraph GT1M accelerometer for 7 conse...

  11. Design and Analysis of the Z-Axis Fully Differential Capacitive Accelerometer Sensor%Z轴完全差分电容式加速度传感器设计分析

    许高斌; 韩成成; 陈兴

    2012-01-01

    设计了一种Z轴完全差分电容式加速度传感器,交错梳齿、两组对称可动梳齿通过挠性梁连接在固定衬底上,对称布局使结构稳定并解决了X和Y轴向对Z轴向加速度检测的耦合干扰.对传感器在敏感方向加速度作用下的偏转特性进行分析,给出了相关理论模型并对其求解.对传感器在非敏感方向加速度作用下的扭转变形进行分析,计算该扭转对Z轴检测产生的干扰与结构之间的关系.通过结构的优化设计,使传感器在设计的量程范围内达到最佳检测效果.利用ANSYS进行模拟分析,得到该传感器的灵敏度为0.31 fF/g,验证了本设计分析的合理性、可行性和精确性.%A Z-axis fully differential capacitive accelerometer was designed, and the staggered vertical combs and two sets of symmetrical movable combs were connected to the fixed substrate through the flexible beams. The structural stability was obtained by the design of the symmetrical layout, and the coupling interference of X and Y axes to Z axis acceleration detecting was solved. The torsional characteristics of the sensor in the sensitive direction of the acceleration effect were analyzed, and the theoretical model of the change in Z axis capacitance was given and solved. The torsional deformation of the non-sensor in the sensitive direction of the acceleration effect was analyzed, the relationship between the torsional interference generated at the Z axial detected and the structure was calculated. By optimizing the design of the structure, the best detection results of the accelerometer in the range of the design were achieved. The simulation and analysis were also verified by using ANSYS. The simulation results show that the sensitivity of the accelerometers is 0. 31 iF/g, confirming the rationality, feasibility and accuracy of the design and analysis.

  12. Application of linear accelerometer to Kalman filter for piezoelectric gyro%线性加速度计在压电陀螺卡尔曼滤波技术中的应用

    林旻序; 汪永阳; 戴明; 乔彦峰

    2011-01-01

    针对光电稳定平台常用的压电陀螺随机游走噪声大的缺点,提出采用基于线性加速度计的卡尔曼滤波技术对其进行信号滤波。利用卡尔曼滤波理论,建立了压电陀螺角速率状态观测方程,采用线性加速度计测量平台惯性角加速度,由此对陀螺信号进行了滤波。实验结果表明:采用线性加速度计能够在不影响陀螺带宽的前提下将压电陀螺的随机游走噪声水平由原有的0.005(°).s-1/槡Hz降低到0.001 25(°).s-1/槡Hz,提高了光电平台的稳定精度。%As for the larger random walk noise of a piezoelectric gyro in the stabilized platform,the Kalman filtering technology based on a linear accelerometer is proposed to perform the signal filtering.Based on Kalman filtering theory,the observation equation of an angle rate for the piezoelectric gyro is established,and the linear accelerometer is used to measure the inertial angle accelaration of the platform.Then,the signal filtering of piezoelectric gyro is achieved.Experimental results show that the random walk noise level is reduced from 0.005(°)·s-1/Hz to 0.001 25(°)·s-1/Hz by using linear accelerometers and without affecting the bandwidth of piezoelectric gyro,which improves the stability precision of the optoelectronic platform.

  13. Development of a Weight Loss Mobile App Linked With an Accelerometer for Use in the Clinic: Usability, Acceptability, and Early Testing of its Impact on the Patient-Doctor Relationship

    Choo, Seryung; Jung, Se Young; Kim, Sarah; Kim, Jeong Eun; Han, Jong Soo; Kim, Sohye; Kim, Jeong Hyun; Kim, Jeehye; Kim, Yongseok; Kim, Dongouk; Steinhubl, Steve

    2016-01-01

    Background Although complications of obesity are well acknowledged and managed by clinicians, management of obesity itself is often difficult, which leads to its underdiagnosis and undertreatment in hospital settings. However, tools that could improve the management of obesity, including self-monitoring, engagement with a social network, and open channels of communication between the patient and doctor, are limited in a clinic-based setting. Objective The objective of our study was to evaluate the usability and acceptability of a newly developed mobile app linked with an accelerometer and its early effects on patient-doctor relationships. Methods From September 2013 to February 2014, we developed a mobile app linked with an accelerometer as a supportive tool for a clinic-based weight loss program. The app used information from electronic health records and delivered tailored educational material. Personal goal setting, as well as monitoring of weight changes and physical activity combined with feedback, are key features of the app. We also incorporated an interactive message board for patients and doctors. During the period of March 2014 to May 2014, we tested our mobile app for 1 month in participants in a hospital clinic setting. We assessed the app’s usability and acceptability, as well as the patient-doctor relationship, via questionnaires and analysis of app usage data. Results We recruited 30 individuals (18 male and 12 female) for the study. The median number of log-ins per day was 1.21, with the most frequently requested item being setting goals, followed by track physical activities and view personal health status. Scales of the depth of the patient-doctor relationship decreased from 27.6 (SD 4.8) to 25.1 (SD 4.5) by a Wilcoxon signed rank test (P=.02). Conclusions A mobile phone app linked with an accelerometer for a clinic-based weight loss program is useful and acceptable for weight management but exhibited less favorable early effects on patient

  14. 反馈补偿对高Q值加速度计动态性能的影响%Influence of Feedback Compensation on Dynamic Property for High-Q Capacitive Accelerometers

    戚玉婕; 车录锋; 孙腾; 王跃林

    2011-01-01

    High-Q capacitive accelerometer has low mechanical noise, which meets high resolution application requirements. However, the system with an under-damping accelerometer results in bad dynamic response needs feedback compensation in a closed-loop circuit to increase electrical damping, reduce the Q factor and improve the dynamic response. Firstly, a simplified mathematical model with time delay was built based on the simulation of MATLAB/SIMULINK. Further, step responses and Q factors of the closed loop using different compensation parameters were discussed based on the simulation and PCB board level measurements. Results show that proper compensation parameters can effectively reduce the Q factor and improve the dynamic response of the closed-loop system. Finally, how to choose proper proportionaldifferential parameters in a closed loop for the capacitive accelerometer was obtained.%高Q值MEMS电容式加速度计因具有很小的机械噪声,满足于高精度测量的需要,但欠阻尼的传感器系统动态性能较差,因此需要在闭环检测电路中通过补偿反馈模块施加电学阻尼,以降低系统Q值,改善系统的动态响应.首先通过MATLAB/SIMULINK仿真建立了带有延时的系统模型,进一步结合实际PCB板的测量,分析了不同反馈补偿参数下的阶跃响应和幅频响应曲线.实验结果表明,合适的反馈补偿参数能有效地降低系统Q值,改善动态响应.最后得出了该电容式加速度计在闭环系统下的较优比例微分参数的选择策略.

  15. Unit-specific calibration of Actigraph accelerometers in a mechanical setup – Is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field

    Moeller, Niels C; Korsholm, Lars; Kristensen, Peter L; Andersen, Lars B; Wedderkopp, Niels; Froberg, Karsten

    2008-01-01

    Background Potentially, unit-specific in-vitro calibration of accelerometers could increase field data quality and study power. However, reduced inter-unit variability would only be important if random instrument variability contributes considerably to the total variation in field data. Therefore, the primary aim of this study was to calculate and apply unit-specific calibration factors in multiple accelerometers in order to examine the impact on random output variation caused by inter-instrument variability. Methods Instrument-specific calibration factors were estimated in 25 MTI- and 53 CSA accelerometers in a mechanical setup using four different settings varying in frequencies and/or amplitudes. Calibration effect was analysed by comparing raw and calibrated data after applying unit-specific calibration factors to data obtained during quality checks in a mechanical setup and to data collected during free living conditions. Results Calibration reduced inter-instrument variability considerably in the mechanical setup, both in the MTI instruments (raw SDbetween units = 195 counts*min-1 vs. calibrated SDbetween units = 65 counts*min-1) and in the CSA instruments (raw SDbetween units = 343 counts*min-1 vs. calibrated SDbetween units = 67 counts*min-1). However, the effect of applying the derived calibration to children's and adolescents' free living physical activity data did not alter the coefficient of variation (CV) (children: CVraw = 30.2% vs. CVcalibrated = 30.4%, adolescents: CVraw = 36.3% vs. CVcalibrated = 35.7%). High correlations (r = 0.99 & r = 0.98, respectively) were observed between raw and calibrated field data, and the proportion of the total variation caused by the MTI- and CSA monitor was estimated to be only 1.1% and 4.2%, respectively. Compared to the CSA instruments, a significantly increased (9.95%) mean acceleration response was observed post hoc in the batch of MTI instruments, in which a significantly reduced inter-instrumental reliability

  16. Unit-specific calibration of Actigraph accelerometers in a mechanical setup – Is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field

    Andersen Lars B

    2008-04-01

    Full Text Available Abstract Background Potentially, unit-specific in-vitro calibration of accelerometers could increase field data quality and study power. However, reduced inter-unit variability would only be important if random instrument variability contributes considerably to the total variation in field data. Therefore, the primary aim of this study was to calculate and apply unit-specific calibration factors in multiple accelerometers in order to examine the impact on random output variation caused by inter-instrument variability. Methods Instrument-specific calibration factors were estimated in 25 MTI- and 53 CSA accelerometers in a mechanical setup using four different settings varying in frequencies and/or amplitudes. Calibration effect was analysed by comparing raw and calibrated data after applying unit-specific calibration factors to data obtained during quality checks in a mechanical setup and to data collected during free living conditions. Results Calibration reduced inter-instrument variability considerably in the mechanical setup, both in the MTI instruments (raw SDbetween units = 195 counts*min-1 vs. calibrated SDbetween units = 65 counts*min-1 and in the CSA instruments (raw SDbetween units = 343 counts*min-1 vs. calibrated SDbetween units = 67 counts*min-1. However, the effect of applying the derived calibration to children's and adolescents' free living physical activity data did not alter the coefficient of variation (CV (children: CVraw = 30.2% vs. CVcalibrated = 30.4%, adolescents: CVraw = 36.3% vs. CVcalibrated = 35.7%. High correlations (r = 0.99 & r = 0.98, respectively were observed between raw and calibrated field data, and the proportion of the total variation caused by the MTI- and CSA monitor was estimated to be only 1.1% and 4.2%, respectively. Compared to the CSA instruments, a significantly increased (9.95% mean acceleration response was observed post hoc in the batch of MTI instruments, in which a significantly reduced inter

  17. 自适应Kalman滤波算法在加速度计自标定中的应用%Application of adaptive Kalman filtering algorithm in autonomous calibration accelerometer

    叶军; 陈坚; 石国祥

    2011-01-01

    针对自标定加速度计组合动基座试验数据中存在的数据异常问题,推导并运用自适应Kalman滤波算法剔除异常数据,通过对不同Kalman滤波算法自标定精度解算结果的均值和标准差进行比较,表明自适应Kalman滤波算法更加有效.%Aiming at the problems of abnormal data in the test data of autonomous calibration accelerometer-unit on dynamicbase,deducing and using adaptive Kalman filtering algorithm eliminates abnormal data, according the comparison of results from calibration precision by different Kalman filtering algorithm, it shows that the adaptive Kalman filtering algorithm is more effective.

  18. Unit-specific calibration of Actigraph accelerometers in a mechanical setup - is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field

    Moeller, Niels C; Korsholm, Lars; Kristensen, Peter L;

    2008-01-01

    , the primary aim of this study was to calculate and apply unit-specific calibration factors in multiple accelerometers in order to examine the impact on random output variation caused by inter-instrument variability. METHODS: Instrument-specific calibration factors were estimated in 25 MTI- and 53 CSA...... during free living conditions. RESULTS: Calibration reduced inter-instrument variability considerably in the mechanical setup, both in the MTI instruments (raw SDbetween units = 195 counts*min-1 vs. calibrated SDbetween units = 65 counts*min-1) and in the CSA instruments (raw SDbetween units = 343 counts.......3% vs. CVcalibrated = 35.7%). High correlations (r = 0.99 & r = 0.98, respectively) were observed between raw and calibrated field data, and the proportion of the total variation caused by the MTI- and CSA monitor was estimated to be only 1.1% and 4.2%, respectively. Compared to the CSA instruments, a...

  19. The Parasitic Capacitance' s Influence on Noise in a MEMS Accelerometer Sensor%微机械加速度计中的寄生电容对噪声的影响

    朱忠益; 刘义冬; 金仲和

    2013-01-01

    主要分析变面积式微机械加速度敏感元件中的固定平行电极间寄生电容对系统噪声的影响,建立敏感元件的电磁仿真模型,进行噪声公式的推导,并得到了实验验证.通过仿真分析发现,铝电极下的玻璃衬底是增大该寄生电容的主要因素.实验结果表明,该寄生电容会增加60%以上的系统噪声.%This paper mainly analyzes the influence on noise of the parasitic capacitance between the fixed parallel electrodes in a variable-area type MEMS accelerometer sensor. An electromagnetic simulation model is built. The noise formula is derived and it is verified by experiment. The simulation results indicate that the glass substrate under the parallel electrodes can increase the capacitance. The experiment results show that the parasitic capacitance will raise the noise by 60% or more.

  20. Assessment of Adaptive Rate Response Provided by Accelerometer, Minute Ventilation and Dual Sensor Compared with Normal Sinus Rhythm During Exercise: A Self-controlled Study in Chronotropically Competent Subjects

    Yuanyuan Cao

    2015-01-01

    Full Text Available Background: Dual sensor (DS for rate adaption was supposed to be more physiological. To evaluate its superiority, the DS (accelerometer [ACC] and minute ventilation [MV] and normal sinus rate response were compared in a self-controlled way during exercise treadmill testing. Methods: This self-controlled study was performed in atrioventricular block patients with normal sinus function who met the indications of pacemaker implant. Twenty-one patients came to the 1-month follow-up visit. Patients performed a treadmill test 1-month post implant while programmed in DDDR and sensor passive mode. For these patients, sensor response factors were left at default settings (ACC = 8, MV = 3 and sensor indicated rates (SIRs for DS, ACC and MV sensor were retrieved from the pacemaker memories, along with measured sinus node (SN rates from the beginning to 1-minute after the end of the treadmill test, and compared among study groups. Repeated measures analysis of variance and profile analysis, as well as variance analysis of randomized block designs, were used for statistical analysis. Results: Fifteen patients (15/21 were determined to be chronotropically competent. The mean differences between DS SIRs and intrinsic sinus rates during treadmill testing were smaller than those for ACC and MV sensor (mean difference between SIR and SN rate: ACC vs. SN, MV vs. SN, DS vs. SN, respectively, 34.84, 17.60, 16.15 beats/min, though no sensors could mimic sinus rates under the default settings for sensor response factor (ACC vs. SN P-adjusted < 0.001; MV vs. SN P-adjusted = 0.002; DS vs. SN P-adjusted = 0.005. However, both in the range of 1 st minute and first 3 minutes of exercise, only the DS SIR profile did not differ from sinus rates (P-adjusted = 0.09, 0.90, respectively. Conclusions: The DS under default settings provides more physiological rate response during physical activity than the corresponding single sensors (ACC or MV sensor. Further study is needed to

  1. A New Annular Shear Piezoelectric Accelerometer

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    prototype. Reasonable agreement between the experimental results of the physical prototype and the simulation results is achieved. The design becomes more efficient. In addition, Type 4511 has a built in DeltaTronâ charge amplifier with ID and complies with IEEE-P1451.4 standard, which is a smart transducer...

  2. Zeroshift of piezoelectric accelerometers in pyroshock measurements

    Chu, Anthony

    1987-01-01

    Zeroshift, a common measurement error in piezoelectric shock accelerometry, is any spurious output baseline shift which occurs after a pyroshock event. All components of the shock measurement system are analyzed for sources of zeroshift, and preventive practices are presented to aid in equipment selection, setup, and operation.

  3. Associations of pulmonary parameters with accelerometer data

    Dias, André

    2014-01-01

    Some papers of this thesis are not available in Munin: Paper 2. Dias, A.; Gorzelniak, L.; Jorres, R.; Fischer, R.; Hartvigsen, G.; Horsch,A.: 'Assessing Physical Activity in the daily life of cystic fibrosis patients', Journal of Pervasive Computing (2012), vol. 8(6):837–844. Available at http://dx.doi.org/10.1016/j.pmcj.2012.08.001 Paper 3. Gorzelniak, L.; Dias, A.; Schultz,K.; Wittmann, M.; Karrasch, S.; Jorres, R.; Horsch,A.: 'Comparison of recording positions of physical activity in sever...

  4. Physical activity and energy expenditure measurements using accelerometers in older adults Utilización de los acelerómetros para la medida de la actividad física y el gasto energético en personas mayores

    N. Garatachea

    2010-04-01

    Full Text Available The purpose of this review is to address methodological issues related to accelerometer-based assessments of physical activity (PA in older individuals. Special interest is also put on recently updated technology. No definitive evidence exists currently to indicate which are the more valid and reliable accelerometer models for use with older people. When it comes to selecting an accelerometer, issues of affordability, product reliability, monitor size, technical support, and comparability with other studies may be equally as important as the relative validity and reliability of an instrument. The accelerometer should be attached as close as possible to the body's center of mass, and in the case of elders using walking aids, it should be placed on the same body side. Variability due to positioning can be reduced with careful training and supervision. Typically, the sampling period is between 3 and 7 days and it is not yet clear if variability exists between weekdays and weekend in the elderly. It is possible that aging effects on physical and cognitive health may limit the ability of an older adult to be compliant with an accelerometer protocol; in this line many methods have been suggested for increasing compliance to protocols for research studies. Accelerometers can provide reliable information on mobility and objective measurement of PA. These activity monitors have significant advantages when compared with other quantitative methods for measurement of energy expenditure. Accelerometers are currently used mainly in a research setting; however, with recent advances, incorporation into clinical and fitness practice is possible and increasing.El objetivo de esta revisión se centra en cuestiones metodológicas relacionadas con la medición de la actividad física mediante acelerómetros en personas mayores. Se pone un especial énfasis en la tecnología más reciente. Actualmente no existen pruebas definitivas que indiquen que un modelo es m

  5. Error estimation of angle measured by accelerometer based on PMI observer for three-axis inertially stabilized platform%基于比例多重积分观测器的三轴惯性稳定平台加速度计测角误差估计

    钟麦英; 矫成斌; 李树胜; 赵岩

    2014-01-01

    航空遥感三轴惯性稳定平台用于有效隔离飞行载体的偏航及姿态角运动,使成像载荷沿航向平稳飞行并保持载荷视轴对地垂直指向。通常情况下,稳定平台采用高精度位置姿态测量系统(Position and Orientation System, POS)作为姿态角传感器,一旦POS发生故障会导致平台失稳甚至危及载荷安全。为了提高平台运行可靠性并保证载荷安全,考虑了一种以加速度计作为姿态角冗余传感器的双工作模式,即POS组合工作模式和自主工作模式。当POS发生故障时平台切换到自主工作模式,依靠平台自身加速度计组件进行姿态控制。但与POS相比,加速度计测角易受载体扰动加速度影响从而导致测角误差较大,严重影响平台的稳定精度。针对这一问题,提出了一种基于比例多重积分(Proportional and Multiple-integral, PMI)观测器的加速度计测角误差估计方法,对平台系统建模及PMI观测器的设计过程进行了详细的论述,并利用真实飞行实验数据进行了性能测试。结果表明该方法对实际误差的估计精度达到0.0701°(RMS),可较好的估计出加速度计测角误差,为提高平台自主工作模式的稳定精度奠定基础。%Three-axis inertially stabilized platform for airborne remote sensing is used to isolate the impact of flight vehicle attitude angular motion to improve the image quality and operational efficiency. Normally, the stabilized platform uses a POS as attitude angle sensor. Once the POS has failure, it will lead to instability and even endanger the load platform security. In order to improve the operational reliability of the platform and the safety of the load, a kind of dual modes is proposed, that is, the POS combination mode and the independent mode. The platform switch to independent mode when the POS has failure, and the platform uses the accelerometer for attitude control. But compared with

  6. Preliminary evidence of physical activity levels measured by accelerometer in Spanish adolescents: The AFINOS Study Evidencia preliminar de los niveles de actividad física medidos mediante un acelerómetro en adolescentes españoles: Estudio AFINOS

    D. Martínez-Gómez

    2009-04-01

    Full Text Available Background: It is necessary to know the levels of physical activity (PA for a better understanding of the development of chronic diseases in youth. The aim of this study was to assess levels of total PA and time spent in different PAintensities in Spanish adolescents by accelerometer. Methods: A sub-sample of 214 healthy Spanish adolescents (107 females, aged 13-16 years, enrolled in the AFINOS Study was selected for this study. Participants wore the ActiGraph GT1M accelerometer for 7 consecutive days. Total PA and time spent in sedentary, light, moderate, vigorous, and moderate to vigorous physical activity (MVPA was estimated using the accelerometer. Adiposity was measured in the sample using sum of 6 skinfoldthickness, waist circumference and BMI. Results: Adolescent boys were engaged in higher levels of total PA, moderate PA, vigorous PA and MVPA than adolescent girls, whereas girls were engaged in higher levels of light PA. Differences between age groups showed that the 15-16 years group did more total PA (P = 0.008 than the 13-14 years group. Adolescents with highest levels of body fat were less active and spent less time in vigorous PA and MVPA than adolescents with less body fat. Among the current sample, 71.1% of the adolescents (82.2% adolescent boys and 60.7% adolescent girls reached the recommendation of ≥ 60 min in MVPA. Conclusions: Although these findings suggest that Spanish adolescents have similar PA levels than other European adolescents, further cross-sectional and longitudinal studies must assess PA levels in free-living conditions in Spanish children and adolescents using objective methods such as accelerometers, heart rate monitors and pedometers.Antecedentes: Para comprender mejor el desarrollo de las enfermedades crónicas en los jóvenes resulta necesario conocer los niveles de actividad física (AF que realizan. El propósito de este estudio es evaluar los niveles de AF total y el tiempo de AF a distintas

  7. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  8. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    Chisum, Brad [Lumedyne Technologies Incorporated, San Diego, CA (United States)

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  9. Application of MEMS gyroscopes and accelerometers in FSM stabilization

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Deng, Chao

    2015-10-01

    Gimbals and Fast steering mirrors (FSMs) are commonly used to stabilize the line-of-sight (LOS) of the electro-optical tracking system mounted on moving platforms .The gimbal is used to restrain the vibration of low frequencies, and the FSM is used to restrain the vibration of high frequencies. The restraining performance of the Electro-Optical tracking system is equal to the multiplication of the restraining performance of the gimbal and the FSM. The vibration of high frequencies is mainly restrained by the FSM, and so the performance of the FSM is very important to the Electro-Optical tracking system. There are two ways to improve the stabilization accuracy and bandwidth of the FSM, one way is to improve the accuracy and bandwidth of inertial sensors, and the other way is to use low weight inertial sensors to reduce the load of FSM and increase the mechanical resonance frequency. And so the inertial sensors of high accuracy, high bandwidth and low weight are the key to improve the stabilization accuracy and bandwidth of the FSM.

  10. MGS accelerometer data analysis with the LMD GCM

    Angelats i Coll, M.; Forget, F.; Lopez-Valverde, M.A.; P. L. Read; Lewis, S R

    2003-01-01

    Mars Global Surveyor aerobreaking phases, required to achieve its mapping orbit, have yielded vertical profiles of thermospheric densities, scale heights and temperatures covering a broad range of local times, seasons and spatial coordinates [Keating et al. 1998, 2001]. Phase I covered local times from 11 to 16 h (assuming 24 "martian hours” per martian day or sols), with a latitude coverage of approximately 40deg to 60deg N. Seasons observed during this phase were cen...

  11. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses. (paper)

  12. Cross-correlations of ambient noise recorded by accelerometers.

    Rábade García, S. E.; Ramirez-Guzman, L.

    2014-12-01

    We investigate the ambient noise cross-correlations obtained by using properly corrected accelerometric recordings, and determine velocity structure in central Mexico based on a dispersion analysis. The data used comprise ten months of continuous recordings - from April 2013 to January 2014 - of ambient seismic noise at stations operated by the National Seismological Service of Mexico and the Engineering Strong Ground Motion Network of the National Autonomous University of Mexico (UNAM). The vertical component of ambient noise was base-line corrected, filtered, and properly integrated before extracting Green's functions (GF), which were compared successfully against GF obtained using recordings from broadband velocity sensors. In order to obtain dispersion curves, we estimated group and phase velocities applying the FTAN analysis technique and obtained s-wave velocity profiles at selected regions. We conclude and highlight that the use of widely deployed accelerographs to conduct regional studies using ambient noise tomography is feasible

  13. Wireless Accelerometer for MRI-Guided Interventional Procedures

    Martyn N.J. Paley

    2013-12-01

    Full Text Available MRI-guidance is increasingly used for minimally-invasive procedures, such as biopsy, and requires real-time active tracking of surgical instruments. Although optical and MR-based fiducial tracking devices have been used, these systems rely on complex contact with the operator or line-of-sight access for effective operation. A more straight-forward and clinically robust method is required to allow interactive real-time slice positioning of MR scan planes during interventional procedures. This study evaluated the use of a wristwatch-mounted, low cost wireless interface device for real-time MRI guidance. The device was designed to interact with software for planning rather than instrument guidance. The wireless device was integrated with two novel, open interventional magnet systems operating at 0.17T and 0.5T and utilized a novel customized graphic user interface (GUI to assess interventional capability.

  14. Long-Term Activity Recognition from Wristwatch Accelerometer Data

    Enrique Garcia-Ceja

    2014-11-01

    Full Text Available With the development of wearable devices that have several embedded sensors, it is possible to collect data that can be analyzed in order to understand the user’s needs and provide personalized services. Examples of these types of devices are smartphones, fitness-bracelets, smartwatches, just to mention a few. In the last years, several works have used these devices to recognize simple activities like running, walking, sleeping, and other physical activities. There has also been research on recognizing complex activities like cooking, sporting, and taking medication, but these generally require the installation of external sensors that may become obtrusive to the user. In this work we used acceleration data from a wristwatch in order to identify long-term activities. We compare the use of Hidden Markov Models and Conditional Random Fields for the segmentation task. We also added prior knowledge into the models regarding the duration of the activities by coding them as constraints and sequence patterns were added in the form of feature functions. We also performed subclassing in order to deal with the problem of intra-class fragmentation, which arises when the same label is applied to activities that are conceptually the same but very different from the acceleration point of view.

  15. Long-term activity recognition from wristwatch accelerometer data.

    Garcia-Ceja, Enrique; Brena, Ramon F; Carrasco-Jimenez, Jose C; Garrido, Leonardo

    2014-01-01

    With the development of wearable devices that have several embedded sensors, it is possible to collect data that can be analyzed in order to understand the user's needs and provide personalized services. Examples of these types of devices are smartphones, fitness-bracelets, smartwatches, just to mention a few. In the last years, several works have used these devices to recognize simple activities like running, walking, sleeping, and other physical activities. There has also been research on recognizing complex activities like cooking, sporting, and taking medication, but these generally require the installation of external sensors that may become obtrusive to the user. In this work we used acceleration data from a wristwatch in order to identify long-term activities. We compare the use of Hidden Markov Models and Conditional Random Fields for the segmentation task. We also added prior knowledge into the models regarding the duration of the activities by coding them as constraints and sequence patterns were added in the form of feature functions. We also performed subclassing in order to deal with the problem of intra-class fragmentation, which arises when the same label is applied to activities that are conceptually the same but very different from the acceleration point of view. PMID:25436652

  16. Cardioaccelerometery: the assessment of pulse wave velocity using accelerometers

    Pereira, Helena Catarina de Bastos Marques

    2007-01-01

    In the past recent years, great emphasis has been placed on the role of arterial stiffness in the development of cardiovascular diseases, recognized as the leading cause of death in the world. This hemodynamic parameter, generally associated to age and blood pressure increase, can be assessed by the measurement of the pulse wave velocity (PWV), i.e., the velocity at which the pressure wave propagates along an artery. Although PWV measurement is accepted as the most simple, non-...

  17. Determination of Vertical Alignment of Track using Accelerometer Readings

    O'Brien, Eugene J.; Bowe, Cathal; Quirke, Paraic

    2015-01-01

    Railway track vertical alignment is an important indicator of serviceability condition. Through comparisons with past history, track alignment also informs maintenance planning. The vertical alignment of a railway track excites a dynamic response in a train which can potentially be used to determine that alignment. A method is proposed in this paper for the detection of the alignment through an analysis of vehicle accelerations resulting from the train/track dynamic interaction. The Cross Ent...

  18. Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer

    Lotters, Joost C.; Olthuis, Wouter; Veltink, Peter H.; Bergveld, Piet

    1996-01-01

    Polydimethylsiloxane is a silicone rubber. It has a unique flexibility, resulting in one of the lowest glass-transition temperatures of any polymer. Furthermore, it shows a low elasticity change versus temperature, a high thermal stability, chemical inertness, dielectric stability, shear stability a

  19. Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer

    Lotters, Joost C.; Olthuis, Wouter; Veltink, Peter H; Bergveld, Piet

    1996-01-01

    Polydimethylsiloxane is a silicone rubber. It has a unique flexibility, resulting in one of the lowest glass-transition temperatures of any polymer. Furthermore, it shows a low elasticity change versus temperature, a high thermal stability, chemical inertness, dielectric stability, shear stability and high compressibility. Because of its high flexibility and the very low drift of its properties with time and temperature, polydimethylsiloxane could be well suited for mechanical sensors, such a...

  20. Animations to illustrate the Autocalibration process of accelerometer data

    van Hees, Vincent ,

    2014-01-01

    .avi files: animation_a_6_3D_prepostautocal.avi ? 3D animation showing static points before and after autocalibration process. animation_c_4_2D_duringautocal.avi ? 2D animation showing how static points moved during autocalibration. animation_d_3_3D_duringautocal.avi ? 3D animation showing how static points moved during autocalibration.