WorldWideScience

Sample records for accelerator-based radiation sources

  1. The Elettra and FERMI: Two accelerator-based radiation sources in Trieste

    Elettra is the Italian third generation synchrotron radiation laboratory located on the Triestinian Carso plateau. It is built around a medium energy electron storage ring operated between 2 and 2.4 GeV. The Elettra beamlines cover a wide energy range, from the far infrared to the hard x-rays, as the photon energy ranges between 2 meV and 40 keV, i.e. wavelengths between 0.6 mm and 0.3 A. Moreover, an existing LINAC, previously used as injector for the storage ring is being upgraded and converted into a Free Electron Laser (FEL), FERMI at ELETTRA (Free Electron laser Radiation for Multidisciplinary Investigations at Elettra) FEL. Both sources are built and operated by the Sincrotrone Trieste public no profit company. Beamlines are often built in collaboration with external partners from different scientific institutions, both Italian and from other countries. Together with the synchrotron radiation activity, Elettra hosts several support and complementary laboratories, which makes it a multidisciplinary Research and Service center, competitive at the international level by employing advanced micro/nano analytical, photolithographic and radiographic techniques. Researchers at Elettra are active in fields as diverse as genomics, pharmacology, biomedicine, catalysis and chemical processes, microelectronics and micromechanics. This wide range of applications makes the site an international crossroad where researchers, coming from different countries and disciplines and from academic and applied research, interact and exchange in a competitive, yet friendly, atmosphere, producing new knowledge and training junior researchers. Training of younger generations of scientists and engineers for research and industry is indeed one of the missions of the Sincrotrone Trieste public company. (author)

  2. Use of accelerator based neutron sources

    With the objective of discussing new requirements related to the use of accelerator based neutron generators an Advisory Group meeting was held in October 1998 in Vienna. This meeting was devoted to the specific field of the utilization of accelerator based neutron generators. This TECDOC reports on the technical discussions and presentations that took place at this meeting and reflects the current status of neutron generators. The 14 MeV neutron generators manufactured originally for neutron activation analysis are utilised also for nuclear structure and reaction studies, nuclear data acquisition, radiation effects and damage studies, fusion related studies, neutron radiography

  3. Accelerator based steady state neutron source

    Using high current, cw linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the accelerator based neutron research facility (ABNR) would initially achieve the 1016 n/cm2s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450 M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source is most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc., with the development of a multibeam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  4. An accelerator based steady state neutron source

    Using high current, cw linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the accelerator based neutron research facility (ABNR) would initially achieve the 1016 n/cm2 s themal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of Dollar 300-450 is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of a multibeam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs. (orig.)

  5. An accelerator-based epithermal photoneutron source for BNCT

    Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.; Yoon, W.Y. [and others

    1995-11-01

    Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.

  6. Accelerator based neutron source for neutron capture therapy

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7Li(p,n)7Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  7. Laser wakefield accelerator based light sources: potential applications and requirements

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  8. Laser wakefield accelerator based light sources: potential applications and requirements

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  9. Laser-plasma accelerators-based high energy radiation femtochemistry and spatio-temporal radiation biomedicine

    Gauduel, Y. A.; Lundh, O.; Martin, M. T.; Malka, V.

    2012-06-01

    The innovating advent of powerful TW laser sources (~1019 W cm-z) and laser-plasma interactions providing ultra-short relativistic particle beams (electron, proton) in the MeV domain open exciting opportunities for the simultaneous development of high energy radiation femtochemistry (HERF) and ultrafast radiation biomedicine. Femtolysis experiments (Femtosecond radiolysis) of aqueous targets performed with relativistic electron bunches of 2.5-15 MeV give new insights on transient physicochemical events that take place in the prethermal regime of confined ionization tracks. Femtolysis studies emphasize the pre-eminence of ultra-fast quantum effects in the temporal range 10-14 - 10-11 s. The most promising advances of HERF concern the quantification of ultrafast sub-nanometric biomolecular damages (bond weakening and bond breaking) in the radial direction of a relativistic particle beam. Combining ultra-short relativistic particle beams and near-infrared spectroscopic configurations, laser-plasma accelerators based high energy radiation femtochemistry foreshadows the development of real-time radiation chemistry in the prethermal regime of nascent ionisation clusters. These physico-chemical advances would be very useful for future developments in biochemically relevant environments (DNA, proteins) and in more complex biological systems such as living cells. The first investigation of single and multiple irradiation shots performed at high energy level (90 MeV) and very high dose rate, typically 1013 Gy s-1, demonstrates that measurable assessments of immediate and reversible DNA damage can be explored at single cell level. Ultrafast in vivo irradiations would permit the development of bio-nanodosimetry on the time scale of molecular motions, i.e. angstrom or sub-angstrom displacements and open new perspectives in the emerging domain of ultrafast radiation biomedicine such as pulsed radiotherapy.

  10. Strengthening the inherent safety and security of radioactive sources: Accelerator based options

    First and foremost, radioactive sources are both useful and cost effective. If a technology can't be utilized in an effective manner, it won't be useful, no matter how clever and elegant it is. Secondly, there are safety and proliferation concerns that must be addressed. Accidents, contamination, dirty bombs, etc., all represent real concerns. A single incident can impact the cost of all uses. These issues and regulations devised to reduce these risks are driving up the costs and lowering efficiency. An alternative would be the accelerator based option, which is nothing new, it has been around for decades. Using accelerator technologies to produce radiation will address the issues I raise by limiting the production of radiation to only those times when a switch has been flipped. Producing radiation that way has one main advantage over the use of radioactive sources. When the switch is off, there is no radiation. Making instruments that are doubly fail-safe is straightforward. Issues associated with radiation safety during transport and storage disappear. There are also minimal issues of disposal and tracking of materials. There is very little potential for diverting a transportable radiography machine or portable neutron generator for nefarious uses. There is a need to carefully monitor the balance between the increasing number of radioactive sources in use, increasing concern for their location and condition, and the cost of employing radiation generators. In many cases there will be a natural progression away from using sources towards the use of radiation generators. Another key factor that would influence this balance is if an accident and or misuse of radioactive sources were to occur. The costs of dealing with sources would rapidly escalate, and would likely tip the balance sooner

  11. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  12. Research of accelerator-based neutron source for boron neutron capture therapy

    Background: 7Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  13. BINP pilot accelerator-based neutron source for neutron capture therapy

    Neutron source based on accelerator has been proposed for neutron capture therapy at hospital. Innovative approach is based upon tandem accelerator with vacuum insulation and near threshold 7Li(p,n)7Be neutron generation. Pilot innovative accelerator based neutron source is under going to start operating now at BINP, Novosibirsk. Negative ion source with Penning geometry of electrodes has been manufactured and dc H- ion beam has been obtained. Study of beam transport was carried out using prototype of tandem accelerator. Tandem accelerator and ion optical channels have been manufactured and assembled. Neutron producing target has been manufactured, thermal regimes of target were studied, and lithium evaporation on target substrate was realized. In the report, the pilot facility design is given and design features of facility components are discussed. Current status of project realization, results of experiments and simulations are presented. (author)

  14. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  15. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies

  16. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  17. Industrial applications of accelerator-based infrared sources: Analysis using infrared microspectroscopy

    Bantignies, J.L.; Fuchs, G.; Wilhelm, C. [Elf Atochem, Pierre-Benite (France); Carr, G.L. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source; Dumas, P. [Centre Univ. Paris-Sud, Orsay (France)

    1997-09-01

    Infrared Microspectroscopy, using a globar source, is now widely employed in the industrial environment, for the analysis of various materials. Since synchrotron radiation is a much brighter source, an enhancement of an order of magnitude in lateral resolution can be achieved. Thus, the combination of IR microspectroscopy and synchrotron radiation provides a powerful tool enabling sample regions only few microns size to be studied. This opens up the potential for analyzing small particles. Some examples for hair, bitumen and polymer are presented.

  18. Study of medical RI production with accelerator-based neutron sources

    The single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have been widely adopted for nuclear medicine imaging to make diagnoses of body functions, identification of site of cancers, and so on. Now, almost all of medical radio isotopes are produced by nuclear reactors or charged particle accelerators. We propose a new route to produce the medical radio isotopes with accelerator-based neutron sources. In this paper, as an example, we introduce the proposed production method of 99Mo, which is the mother nuclide of 99mTc for SPECT. We determined the 100Mo(n,2n)99Mo reaction cross section to 1,415±82mb and it was consistent with the value (1,398mb) obtained from JENDL-4.0. Therefore, it indicates yields of produced RIs can be predicted with nuclear data based simulations. The simulation also can be used to design irradiation condition. In this paper some results of the simulations are also shown. (author)

  19. PREFACE: 6th Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS11)

    Lupi, Stefano; Perucchi, Andrea

    2012-05-01

    This volume of Journal of Physics: Conference Series is dedicated to a subset of papers related to the work presented at the 6th edition of the international Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS), held in Trieste, Italy, September 4-8 2011. Previous editions of the conference were held in Porquerolles (France), Lake Tahoe (USA), Rathen (Germany), Awaji (Japan), and Banff (Canada). This edition was organized and chaired by Stefano Lupi (Roma La Sapienza) and co-chaired by Andrea Perucchi (Elettra), with the support of the Italian Synchrotron Light Laboratory ELETTRA, which was honored to host the WIRMS workshop in its tenth anniversary. The 6th WIRMS edition addressed several different topics, ranging from biochemistry to strongly correlated materials, from geology to conservation science, and from forensics to the study of cometary dusts. Representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities. This edition was attended by 88 participants, including representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities, who enjoyed the stimulating scientific presentations, several detailed discussions, and the beautiful weather and scenery of the Trieste gulf. Participants came from 16 different nations and four continents, including many young scientists, six of which were supported by the organizers. There were 45 scientific talks divided in 11 sessions: Facilities, Microspectroscopy (I, II, III), Time-Resolved Spectroscopies, Extreme Conditions, Condensed Matter, Near-Field, Imaging, THz Techniques and High-Resolution Spectroscopy. 37 posters were also presented at two very lively evening poster sessions. We would like to use the opportunity of writing this preface to thank all the participants of the workshop for the very high level of their scientific contribution and for the very friendly atmosphere

  20. Factors Predictive of Symptomatic Radiation Injury After Linear Accelerator-Based Stereotactic Radiosurgery for Intracerebral Arteriovenous Malformations

    Herbert, Christopher, E-mail: cherbert@bccancer.bc.ca [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Moiseenko, Vitali [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, BC (Canada); McKenzie, Michael [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Redekop, Gary [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Hsu, Fred [Department of Radiation Oncology, British Columbia Cancer Agency, Abbotsford, BC (Canada); Gete, Ermias; Gill, Brad; Lee, Richard; Luchka, Kurt [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, BC (Canada); Haw, Charles [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Lee, Andrew [Department of Neurosurgery, Royal Columbian Hospital, New Westminster, BC (Canada); Toyota, Brian [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Martin, Montgomery [Department of Medical Imaging, British Columbia Cancer Agency, Vancouver, BC (Canada)

    2012-07-01

    Purpose: To investigate predictive factors in the development of symptomatic radiation injury after treatment with linear accelerator-based stereotactic radiosurgery for intracerebral arteriovenous malformations and relate the findings to the conclusions drawn by Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC). Methods and Materials: Archived plans for 73 patients who were treated at the British Columbia Cancer Agency were studied. Actuarial estimates of freedom from radiation injury were calculated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards models were used for analysis of incidence of radiation injury. Log-rank test was used to search for dosimetric parameters associated with freedom from radiation injury. Results: Symptomatic radiation injury was exhibited by 14 of 73 patients (19.2%). Actuarial rate of symptomatic radiation injury was 23.0% at 4 years. Most patients (78.5%) had mild to moderate deficits according to Common Terminology Criteria for Adverse Events, version 4.0. On univariate analysis, lesion volume and diameter, dose to isocenter, and a V{sub x} for doses {>=}8 Gy showed statistical significance. Only lesion diameter showed statistical significance (p < 0.05) in a multivariate model. According to the log-rank test, AVM volumes >5 cm{sup 3} and diameters >30 mm were significantly associated with the risk of radiation injury (p < 0.01). The V{sub 12} also showed strong association with the incidence of radiation injury. Actuarial incidence of radiation injury was 16.8% if V{sub 12} was <28 cm{sup 3} and 53.2% if >28 cm{sup 3} (log-rank test, p = 0.001). Conclusions: This study confirms that the risk of developing symptomatic radiation injury after radiosurgery is related to lesion diameter and volume and irradiated volume. Results suggest a higher tolerance than proposed by QUANTEC. The widely differing findings reported in the literature, however, raise considerable uncertainties.

  1. Measurement and analysis of the radio frequency radiation (non-ionizing) in DC accelerator based 14 MeV neutron generator facility

    Radio frequency (RF) driven ion sources are used in various scientific applications like neutral beam injection systems for fusion reactors, particle accelerators, proton therapy machines, ion implantation systems, neutron generator and neutron spallation source. In BARC, a DC accelerator based 14 MeV neutron generator uses RF type ion source for generation of deuterium ion beam current that is used in DT reaction for neutron generation. An indigenously developed RF amplifier system, capacitively couples (via two electrode rings) the RF power at 100 MHz to deuterium gas filled RF ion source assembly. The RF radiation (non ionizing radiation) emanates from the capacitively coupling that is in the form of circular electrode (metal) rings across deuterium plasma column. A very minor RF leakage may arise from the amplifier assembly itself. This total radiation was measured at various locations within the neutron generator facility and also in two set ups. It was then quantified, analyzed and qualified from the allowed RF emissions standards. This would and have ensured equipment and personnel safety in addition to avoiding of the radio frequency interference (RFI) towards other instrumentation. This paper describes in detail all these measurements and their analysis done. (author)

  2. Design and techniques for fusion blanket neutronics experiments using an accelerator-based deuterium-tritium neutron source

    The experiments performed in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics are designed with consideration of geometrical and material configurations. The general guide that is used to design the engineering-oriented neutronics experiment, which uses an accelerator-based 14-MeV neutron source, is discussed and compared with neutronics characteristics of the reactor models. Preparation of the experimental assembly, blanket materials, and the neutron source is described. A variety of techniques for measuring the nuclear parameters such as the tritium production rate are developed or introduced through the collaboration as a basis of the neutronics experiments. The features of these techniques are discussed with the experimental error and compared with each other. 25 refs., 15 figs., 4 tabs

  3. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations

    Skjøth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars;

    2010-01-01

    Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large...... gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles....

  4. An accelerator-based neutron microbeam system for studies of radiation effects

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2010-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam...

  5. Accelerator based neutron source for the neutron capture therapy at hospital

    Accelerator source of epithermal neutrons for the hospital-based boron neutron capture therapy is proposed and discussed. Kinematically collimated neutrons are produced via near-threshold 7Li(p, n)7Be reaction at proton energies of 1.883 - 1.9 MeV. Steady-state accelerator current of 40 mA allows to provide therapeutically useful beams with treatment times of tens of minutes. The basic components of the facility are a hydrogen negative ion source, an electrostatic tandem accelerator with vacuum insulation, a sectioned rectifier, and a thin lithium neutron generating target on the surface of tungsten disk cooled by liquid metal heat carrier. Design features of facility components are discussed. The possibility of stabilization of proton energy is considered. At proton energy of 2.5 MeV the neutron beam production for NCT usage after moderation is also considered. (author)

  6. The Argonne ACWL, a potential accelerator-based neutron source for BNCT

    THE CWDD (Continuous Wave Deuterium Demonstrator) accelerator was designed to accelerate 80 mA cw of D- to 7.5 MeV. Most of the hardware for the first 2 MeV was installed at Argonne and major subsystems had been commissioned when program funding from the Ballistic Missile Defense Organization ended in October 1993. Renamed the Argonne Continuous Wave Linac (ACWL), we are proposing to complete it to accelerate either deuterons to 2 MeV or protons to 3-3.5 MeV. Equipped with a beryllium or other light-element target, it would make a potent source of neutrons (on the order of 1013 n/s) for BNCT and/or neutron radiography. Project status and proposals for turning ACWL into a neutron source are reviewed, including the results of a computational study that was carried out to design a target/moderator to produce an epithermal neutron beam for BNCT. (orig.)

  7. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  8. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  9. India's first synchrotron radiation source Indus-1: a historical perspective

    The first Indian synchrotron radiation source Indus-l was commissioned in May 1999. This article briefs the development of accelerator based research programme in India and discusses the historical perspectives starting from the year 1953 at and goes to the development of Indus-1 and Indus-2 at Centre for Advanced Technology at Indore

  10. Accelerator-based BNCT

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the 9Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. - Highlights: • The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. • Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. • The present status and recent progress of the Argentine project will be reviewed. • Topics cover intense ion sources, accelerator tubes, transport of intense beams and beam diagnostics, among others

  11. New sources of radiation

    An attempt is made to select examples of radiation sources whose application may make new or unconventional demands on radiation protection and dosimetry. A substantial body of knowledge about high energy facilities exists and, partly for this reason, the great high energy accelerators are mentioned only briefly

  12. New sources of radiation

    Schimmerling, W.

    1979-09-01

    An attempt is made to select examples of radiation sources whose application may make new or unconventional demands on radiation protection and dosimetry. A substantial body of knowledge about high energy facilities exists and, partly for this reason, the great high energy accelerators are mentioned only briefly.

  13. Radiation Source Replacement Workshop

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  14. Final report of the IAEA advisory group meeting on accelerator-based nuclear analytical techniques for characterization and source identification of aerosol particles

    The field of aerosol characterization and source identification covers a wide range of scientific and technical activities in many institutions, in both developed and developing countries. This field includes research and applications on urban air pollution, source apportionment of suspended particulate matter, radioactive aerosol particles, organic compounds carried on particulate matter, elemental characterization of particles, and other areas. The subject of this AGM focused on the use of accelerator-based nuclear analytical techniques for determination of elemental composition of particles (by either bulk or single particle analysis) and the use of accumulated knowledge for source identification

  15. Categorization of radiation sources

    The objective of this report is to develop a categorization scheme for radiation sources that could be relevant to decisions both in a retrospective application to bring sources under control and in a prospective sense to guide the application of the regulatory infrastructure. The Action Plan envisages that the preparation of guidance on national strategies and programmes for the detection and location of orphan sources and their subsequent management should commence after the categorization of sources has been carried out. In the prospective application of the system of notification, registration, and licensing, the categorization is relevant to prioritize a regulatory authority's resources and training activities; to guide the degree of detail necessary for a safety assessment; and to serve as a measure of the intensity of effort which a regulatory authority should apply to the safety and security of a particular type of source

  16. Doses from Medical Radiation Sources

    ... Radiation Protection and Measurements; NCRP Report 124; 1996. United Nations Scientific Committee on the Effects of Atomic Radiation. ... ionizing radiation, Vol. 1: Sources. New York, NY: United Nations Publishing; 2000. Russell JR, Stabin MG, Sparks RB, ...

  17. Future Synchrotron Radiation Sources

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  18. Factors Predictive of Symptomatic Radiation Injury After Linear Accelerator-Based Stereotactic Radiosurgery for Intracerebral Arteriovenous Malformations

    Purpose: To investigate predictive factors in the development of symptomatic radiation injury after treatment with linear accelerator–based stereotactic radiosurgery for intracerebral arteriovenous malformations and relate the findings to the conclusions drawn by Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC). Methods and Materials: Archived plans for 73 patients who were treated at the British Columbia Cancer Agency were studied. Actuarial estimates of freedom from radiation injury were calculated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards models were used for analysis of incidence of radiation injury. Log–rank test was used to search for dosimetric parameters associated with freedom from radiation injury. Results: Symptomatic radiation injury was exhibited by 14 of 73 patients (19.2%). Actuarial rate of symptomatic radiation injury was 23.0% at 4 years. Most patients (78.5%) had mild to moderate deficits according to Common Terminology Criteria for Adverse Events, version 4.0. On univariate analysis, lesion volume and diameter, dose to isocenter, and a Vx for doses ≥8 Gy showed statistical significance. Only lesion diameter showed statistical significance (p 5 cm3 and diameters >30 mm were significantly associated with the risk of radiation injury (p 12 also showed strong association with the incidence of radiation injury. Actuarial incidence of radiation injury was 16.8% if V12 was 3 and 53.2% if >28 cm3 (log–rank test, p = 0.001). Conclusions: This study confirms that the risk of developing symptomatic radiation injury after radiosurgery is related to lesion diameter and volume and irradiated volume. Results suggest a higher tolerance than proposed by QUANTEC. The widely differing findings reported in the literature, however, raise considerable uncertainties.

  19. Compact synchrotron radiation source

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  20. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. PMID:26260448

  1. Repeated delayed onset cerebellar radiation injuries after linear accelerator-based stereotactic radiosurgery for vestibular schwannoma. Case report

    A 63-year-old woman presented with right hearing disturbance and vertigo. Magnetic resonance (MR) imaging revealed the presence of right vestibular schwannoma (VS). Stereotactic radiosurgery (SRS) was performed with a tumor marginal dose of 14 Gy using two isocenters. She was followed up clinically and neuroradiologically using three-dimensional spoiled gradient-echo MR imaging. She experienced temporal neurological deterioration due to peritumoral edema in her right cerebellar peduncle and pons for a few months beginning 1.5 years after SRS, when she experienced transient right facial dysesthesia and hearing deterioration. Ten years after SRS, the patient presented with sudden onset of vertigo, gait disturbance, diplopia, dysarthria, and nausea. MR imaging demonstrated a new lesion in the right cerebellar peduncle, which was diagnosed as radiation-induced stroke. The patient was followed up conservatively and her symptoms disappeared within a few months. Multiple delayed onset radiation injuries are possible sequelae of SRS for VS. (author)

  2. Synchrotron radiation source Indus-1

    Indus-1 is a 450 MeV electron storage ring for the production of the synchrotron radiation in VUV range with a critical wavelength of 61 A. In this paper we discuss the synchrotron radiation source Indus-1 and report some results of its present performance. Besides, results of beam lifetime studies are also reported. (author)

  3. Compton Sources of Electromagnetic Radiation

    Geoffrey Krafft,Gerd Priebe

    2011-01-01

    When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.

  4. Searching for Orphan radiation sources

    Full text: The problem of orphan sources cannot be left unaddressed due high probability of accidental exposure and use of sources for terrorism. Search of objects of this kind is complex particularly when search territory is large. This requires devices capable of detecting sources, identifying their radionuclide composition, and correlating scan results to geographical coordinates and displaying results on a map. Spectral radiation scanner AT6101C can fulfill the objective of search for gamma and neutron radiation sources, radionuclide composition identification, correlation results to geographical coordinates and displaying results on a map. The scanner consists of gamma radiation scintillation detection unit based on NaI(Tl) crystal, neutron detection unit based on two He3 counters, GPS receiver and portable ruggedized computer. Built-in and application software automates entire scan process, saving all results to memory for further analysis with visual representation of results as spectral information diagrams, count rate profile and gamma radiation dose rates on a geographical map. The scanner informs operator with voice messages on detection of radiation sources, identification result and other events. Scanner detection units and accessories are packed in a backpack. Weighing 7 kg, the scanner is human portable and can be used for scan inside cars. The scanner can also be used for radiation mapping and inspections. (author)

  5. Radiation sources 1977/8

    This catalogue describes the radiation sources available from The Radiochemical Centre for industrial and laboratory applications. It includes general information (e.g. on licensing and registration) and technical information (e.g. on calibration, source safety, packaging). Applications and nuclide indexes are included. (U.K.)

  6. Radiation sources working group summary

    Fazio, M.V.

    1998-12-31

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, components technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigation, and phenomena that impact source design such as fatigue in resonant structures due to RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations.

  7. Radiation sources working group summary

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, components technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigation, and phenomena that impact source design such as fatigue in resonant structures due to RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations

  8. Capillary Discharge XUV Radiation Source

    M. Nevrkla

    2009-01-01

    Full Text Available A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 

  9. Overview of Terahertz Radiation Sources

    Gallerano, G P

    2004-01-01

    Although Terahertz (THz) radiation was first observed about hundred years ago, the corresponding portion of the electromagnetic spectrum has been for long time considered a rather poorly explored region at the boundary between the microwaves and the infrared. This situation has changed during the past ten years with the rapid development of coherent THz sources, such as quantum cascade laser, diodes, optically pumped solid state devices and novel free electron devices, which have in turn stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. In this paper we review the development and perspectives of THz radiation sources and their applications with particular emphasis on the research effort carried out and planned in the frame of various European programs.

  10. Radiation studies in the antiproton source

    Experiment E760 has a lead glass (Pb-G) calorimeter situated in the antiproton source tunnel in the accumulator ring at location A50. This location is exposed to radiation from several sources during antiproton stacking operations. A series of radiation studies has been performed over the last two years to determine the sources of this radiation and as a result, some shielding has been installed in the antiproton source in order to protect the lead glass from radiation damage

  11. Regulatory control of radiation sources in Slovakia

    In Slovakia, there are two regulatory authorities. Regulatory control of the utilization of nuclear energy, based on the Slovak National Council's law No. 130/1998 on the peaceful uses of nuclear energy, is exercised by the Nuclear Regulatory Authority of the Slovak Republic. The second regulatory authority - the Ministry of Health - is empowered by law No. 72/1994 on the protection of human health to license radiation sources and is responsible for radiation protection supervision (there are nearly 3000 establishments with sealed sources, radiation generators and unsealed sources in Slovakia). Pursuant to a new radiation protection regulation based on international standards, radiation sources are to be categorized in six classes according to the associated exposure and contamination hazards. A national strategy for improving the safety of radiation sources over their life-cycle and for the management of disused and orphan sources is being prepared for governmental approval. (author)

  12. Regulated control of practices and radiation sources

    Excepting the radiation caused by the natural background radiation, the Executive Secretariat for Nuclear Affairs (SEAN) does not authorize any source no practice within the national territory that may imply exposure of a person to ionizing radiation unless this use is ruled. This document establishes the basic criteria to set up such system as well as to exclude or exempt practices and sources from this regulated control

  13. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others

    1995-02-22

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

  14. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported

  15. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  16. Radiation safety and inventory of sealed radiation sources in Pakistan

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  17. Sources of radiation exposure - an overview

    Sources of radiation exposure are reviewed from the perspective of mining and milling of radioactive ores in Australia. The major sources of occupational and public exposure are identified and described, and exposures from mining and milling operations are discussed in the context of natural radiation sources and other sources arising from human activities. Most radiation exposure of humans comes from natural sources. About 80% of the world average of the effective dose equivalents received by individual people arises from natural radiation, with a further 15-20% coming from medical exposures*. Exposures results from human activities, such as mining and milling of radioactive ores, nuclear power generation, fallout from nuclear weapons testing and non-medical use of radioisotopes and X-rays, add less than 1% to the total. 9 refs., 4 tabs., 10 figs

  18. All-fiber femtosecond Cherenkov radiation source

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe;

    2012-01-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion med......An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave......-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  19. Radiation protection and the safety of radiation sources

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  20. All-fiber femtosecond Cherenkov radiation source.

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2012-07-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580-630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics such as bioimaging and microscopy. PMID:22743523

  1. Accelerator-based neutrino oscillation experiments

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  2. The utilization of radiation sources in Angola

    The report describes the situation that Angola, which joined the IAEA in September 1999, is facing with the lack of an appropriate infrastructure for the control of radiation sources. It emphasizes the country's needs in technical assistance from the IAEA and other Member States for improving its regulatory infrastructure for radiation safety. (author)

  3. Management of Spent Radiation Source from Radiotherapy

    Nowadays the use of radioactive source for both radiodiagnostic and radiotherapy in Indonesia hospital increases rapidly. Sealed source used in radiotherapy among others for brachytherapy, teletherapy, bone densitometry, whole blood irradiation and gamma knife (radiosurgery). In line with this, the waste of spent radiation sources will be generated in hospitals. Of course these spent radiation sources must be treated correctly in order to maintain the safety of both the public and the environment. According to the Act No. 10/1997, BATAN, in care of the Radioactive Waste Management Center is the national appointed agency for the management of radioactive waste. The option for waste management by hospitals needs to be expound, either by re-exporting to the supplier of origin, re-exporting to other supplier, re-use by other licensee or sending to the Radioactive Waste Management Center. Usually the waste sent by the hospitals to the center comprises of sealed radiation source of 60Co, 137Cs or 226Ra. The management of spent radiation source in the center is carried out in several steps i.e. conditioning, temporary storage, and long-term storage (final disposal). The conditioning of non 226Ra is carried out by placing the waste in a 200 litter drum shell, 950 or 350 litter concrete shells, depends on the activity and dimension of the spent radiation source. The conditioning of 226Ra is carried out by encapsulating the waste in a stainless steel container for long-term storage shield which then placed in a 200 litter drum shell. The temporary storage of the conditioned spent radiation source is carried out by storing it in the center’s temporary storages, either low or medium activity waste. Finally, the conditioned spent radiation source is buried in a disposal facility. For medium half-life spent radiation source, the final disposal is burial it in a shallow-land disposal; mean while, for long half-life spent radiation source, the final disposal is burial it in a

  4. Safety of radiation sources and radioactive materials

    The activities involving the use of radiation sources and radioactive materials must be subject to the control of national authorities dedicated to their regulation. Nuclear regulatory bodies should be established with an adequate infrastructure, independence and technical competence and knowledge to provide the people with an appropriate to level of protection against harmful effects of ionizing radiation. In Argentina, the Nuclear Regulatory Authority (ARN) is empowered to regulate and control all nuclear activities with regard to radiological and nuclear safety, physical protection and non proliferation matters. Its regulatory system for radiation sources and radioactive materials comprises a registration, licensing and inspection regime. Due to the appearance of a considerable number of illicit traffic events involving radiation sources and radioactive materials in several countries and at their borders, the specialized national and international community identified and adopted supplementary measures to those of 'safety' aim at preventing and responding to such events. These measures are known as 'security measures'. The International Atomic Energy Agency (IAEA) is the main international forum in which its Member States are discussing the problems associated with the illicit traffic of radioactive materials and radiation sources. A main product of these discussions is the implementation of an Action Plan that includes 'security' measures. The objective of this article is to analyze when the adoption of additional 'security' measures is indispensable. The analysis considers two cases of illicit trafficking: one involving radiation sources under regulatory control; and the other involving 'orphan sources'. Orphan sources constitute the most important challenge to be addressed since these radiation sources are out of adequate control. The absence of additional measures (named 'security measures') to prevent and detect such sources, reduce the possibility of

  5. Devices for obtaining information about radiation sources

    The invention provides a sensitive, fast high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions which are not photoconductor elements each at the end of a slit. A positioner operates to change the transverse position of the slits and radiation transducing portions relative to the source, wherein each radiation transducing element is positioned within its respective slit between the slit defining walls. Full details and preferred embodiments are given. (U.K.)

  6. A Palmtop Synchrotron-like Radiation Source

    Chen, Min; Luo, Ji; Liu, Feng; Sheng, Zheng-Ming; Zhang, Jie

    2015-01-01

    Synchrotron radiation sources are immensely useful tools for scientific researches and many practical applications. Currently, the state-of-the-art synchrotrons rely on conventional accelerators, where electrons are accelerated in a straight line and radiate in bending magnets or other insertion devices. However, these facilities are usually large and costly. Here, we propose a compact all-optical synchrotron-like radiation source based on laser-plasma acceleration either in a straight or in a curved plasma channel. With the laser pulse off-axially injected in a straight channel, the centroid oscillation of the pulse causes a wiggler motion of the whole accelerating structure including the trapped electrons, leading to strong synchrotron-like radiations with tunable spectra. It is further shown that a ring-shaped synchrotron is possible in a curved plasma channel. Due to the intense acceleration and bending fields inside plasmas, the central part of the sources can be made within palm size. With its potential...

  7. Regulatory control of radiation sources. Safety guide

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  8. Safe management of spent radiation source

    Presented are 8 investigation reports concerning the safe management of spent radiation source (SRS) during the current 2 years. Four reports from Japan are: Scheme for SRS management (approach and present status of the SRS management and consideration toward solving problems); Current International Atomic Energy Agency (IAEA) activities related to safety of radiation sources (Chronology of action plan development, Outline of revised action plan, and Asian regional activities); Current status of SRS management in Japan (Regulation system, Obligations of licensed users, Regulatory system on sealed sources, Status in the incidents on sources occurred, Incident of source loss, and Incidents of orphan sources); and SRS management system in Japan (Current status of using of sealed sources, collection system of SRS-Japan Radioisotope Association (JRIA) services, and Disposal of SRS). Four reports from the Asian countries also concern the current statuses of SRS management in the Philippine (Radioactive waste sources, Waste management strategies, Conditioning of Ra sources, Ra project action plan, as low as reasonably achievable (ALARA) program, Dose assessment, Regulations on radioactive waste, Action plan on the safety and security of sources, IAEA Regional Demonstration Centers, and sitting studies for a near surface disposal facility); Thailand (Current status of using sealed sources, Inventory of SRS, and Current topics of SRS management); Indonesia (Principles of management of radiation sources, Legislative framework of SRS management practices, Regulatory on SRS, management of sealed SRS, management hurdles, and reported incidents); and Korea (Regulatory frame work, Collection systems of SRS, Radioisotope waste generation, Radiation exposure incident, and Scrap monitoring system). (N.I.)

  9. The radiating part of circular sources

    Carley, Michael

    2010-01-01

    An analysis is developed linking the form of the sound field from a circular source to the radial structure of the source, without recourse to far-field or other approximations. It is found that the information radiated into the field is limited, with the limit fixed by the wavenumber of source multiplied by the source radius (Helmholtz number). The acoustic field is found in terms of the elementary fields generated by a set of line sources whose form is given by Chebyshev polynomials of the ...

  10. The safe use of radiation sources

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  11. Maximum Likelihood Localization of Radiation Sources with unknown Source Intensity

    Baidoo-Williams, Henry E

    2016-01-01

    In this paper, we consider a novel and robust maximum likelihood approach to localizing radiation sources with unknown statistics of the source signal strength. The result utilizes the smallest number of sensors required theoretically to localize the source. It is shown, that should the source lie in the open convex hull of the sensors, precisely $N+1$ are required in $\\mathbb{R}^N, ~N \\in \\{1,\\cdots,3\\}$. It is further shown that the region of interest, the open convex hull of the sensors, is entirely devoid of false stationary points. An augmented gradient ascent algorithm with random projections should an estimate escape the convex hull is presented.

  12. Accelerator-based validation of shielding codes

    Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack; Wilson, John W.

    2002-01-01

    The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be th...

  13. Devices for obtaining information about radiation sources

    The invention provides a sensitive, fast, high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one transverse direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions, each at the end of a slit. A positioner changes the transverse position of the slits and radiation transducer (a photoconductor) relative to the source. Applications are in nuclear medicine and industry. Full details and preferred embodiments are given. (U.K.)

  14. Spallation Neutron Source Radiation Shielding Issues

    This paper summarizes results of Spallation Neutron Source calculations to estimate radiation hazards and shielding requirements for activated Mercury, target components, target cooling water, and 7Be plateout. Dose rates in the accelerator tunnel from activation of magnets and concrete were investigated. The impact of gaps and other streaming paths on the radiation environment inside the test cell during operation and after shutdown were also assessed

  15. Characterization of coherent Cherenkov radiation source

    Smirnov, A.V.

    2015-01-21

    Engineering formulae for calculation of peak, and spectral brightness of resonant long-range wakefield extractor are given. It is shown that the brightness is dominated by beam density in the slow wave structure and antenna gain of the outcoupling. Far field radiation patterns and brightness of circular and high aspect ratio planar radiators are compared. A possibility to approach diffraction limited brightness is demonstrated. The role of group velocity in designing of the Cherenkov source is analyzed. The approach can be applied for design and characterization of various structure-dominated sources (e.g., wakefield extractors with gratings or dielectrics, or FEL-Cherenkov combined sources) radiating into a free space using an antenna (in microwave to sub-mm wave regions). The high group velocity structures can be also effective as energy dechirpers and for diagnostics of microbunched relativistic electron beams.

  16. Regulatory control of radiation sources in Bangladesh

    Nuclear and radiological practices are doing immense benefits to society but like all other practices nuclear and radiological practices also have risks. Necessary laws and regulatory bodies exist in many countries for a long time to control and keep the risks within acceptable limits. Bangladesh, though late, also enacted laws and initiated to implement the law. In this paper are presented the regulatory aspects of the radiation sources safety in Bangladesh, based on the Nuclear Safety and Radiation Control Act and Rules. The radiation protection infrastructures and procedures are described as well as their functioning for the implementation of relevant activities such as licensing, regular inspection and enforcement. The issue of the security of radiation sources is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country. This paper outlines the methodology of regulatory control exercised by the BAEC for safe use of the radioactive materials and the radiation generating equipment in the country. (author)

  17. Assessment of risk from radiation sources

    Assessment of risk from exposure to ionizing radiations from man-made radiation sources and nuclear installations has to be viewed from three aspects, namely, dose-effect relationship (genetic and somatic) for humans, calculation of doses or dose-commitments to population groups, assessment of risk to radiation workers and the population at large from the current levels of exposure from nuclear industry and comparison of risk estimates with other industries in a modern society. These aspects are discussed in brief. On the basis of available data, it is shown that estimated incidence of genetic diseases and cancers due to exposure of population to radiation from nuclear industry is negligible in comparison with their natural incidence, and radiation risks to the workers in nuclear industry are much lower than the risks in other occupations. (M.G.B.)

  18. [The use of radiation sources in solariums].

    Steck, B

    1975-08-01

    Solaria are increasingly in favour. As radiation sources, the following ones have proved useful: high-pressure mercury-vapour lamps, compound radiation systems consisting of high-pressure mercury-vapour burner, series coiled filament and reflector bulbs made of special glass as well as halogen metal-vapour lamps. The spectral distributions of irradiances of these emitters, the spatial and local distribution of their radiant intensity or irradiance respectively are reported as well as the balance of emitted energy, i.e. the distribution of radiant power over the different wave ranges. Demands of radiation technics are pointed out, which ought to be considered for the construction of solaria. PMID:1179451

  19. Occupational exposure to natural sources of radiation

    The most important natural sources of radiation are analyzed. The situation in France, Italy, and Spain concerning protection against natural radiation is described, including the identification of sources, and defined practices, organizations charged of national surveys and the responsibility of regulatory bodies and the role of operating management. The activities of the international organizations (ICRP, CEC and IAEA) are presented and discussed, and existing actions toward harmonization in the CEC, IAEA and other international programs is also discussed. (R.P.) 23 refs., 2 tabs

  20. All-fiber femtosecond Cherenkov radiation source

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2012-01-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. ...

  1. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  2. Radiation as a source of risk

    Essence and nature of ionizing radiation as a source of risk are reviewed. Following to the appeal of necessity and importance of campaign for enlightening risk management, of individual and of society, background knowledge and information helpful to the promotion and discussion are summarized, also. (author)

  3. Trade and transport of radiation sources

    The guide specifies the obligations pertaining to the trade in and transport of radiation sources and other matters to be taken into account in safety supervision. It also specifies obligations and procedures relating to transfrontier movements of radioactive waste contained in the EU Council Directive 92/3/Euratom. (7 refs.)

  4. Underdense radiation sources: Moving towards longer wavelengths

    Back, C.A.; Kilkenny, J.D. [General Atomics, San Diego, California (United States); Seely, J.F.; Weaver, J.L. [Naval Research Laboratory, Washington, DC (United States); Feldman, U. [Artep Inc., Ellicott City, MD (United States); Tommasini, R.; Glendinning, S.G.; Chung, H.K.; Rosen, M.; Lee, R.W.; Scott, H.A. [Lawrence Livermore National Laboratory, California (United States); Tillack, M. [U. C. San Diego, La Jolla, CA (United States)

    2006-06-15

    Underdense radiation sources have been developed to provide efficient laboratory multi-keV radiation sources for radiography and radiation hardening studies. In these plasmas laser absorption by inverse Bremsstrahlung leads to high x-ray conversion efficiency because of efficient ionization of the low density aerogel or gas targets. Now we performing experiments in the soft x-ray energy regime where the atomic physics models are much more complicated. In recent experiments at the NIKE laser, we have irradiated a Ti-doped SiO{sub 2} aerogel with up to 1650 J of 248 nm wavelength light. The absolute Ti L-shell emission in the 200-800 eV range is measured with a diagnostic that uses a transmission grating coupled to Si photodiodes. We will give an overview of the temporally-resolved absolutely calibrated spectra obtained over a range of conditions. (authors)

  5. Aircrew radiation exposure: sources-risks-measurement

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  6. Network algorithms for detection of radiation sources

    Networks of radiation counters have been recently developed for detecting low-level, hazardous radiation sources, and they have been utilized in indoor and outdoor characterization tests. Subsequently, the test measurements have been “replayed” using multiple sub-networks, which enabled the analysis of various scenarios beyond the tests. We present a particle filter algorithm that combines measurements from gamma counters across the network to detect radiation sources. Using replays from an outdoor test, we construct a border monitoring scenario that consists of twelve 2 in.×2 in. NaI detectors or counters deployed on the periphery to monitor a 42×42 m2 region. A 137Cs source is moved across this region, starting several meters outside and finally moving away from it. The measurements from individual, pairs and boundary detectors are replayed using the particle filter algorithm. The algorithm outputs demonstrate, both quantitatively and qualitatively, the benefits of networking all boundary counters: the source is detected meters before it enters the region, while being inside, and until moving several meters away. On the other hand, when counters are used individually or in pairs, the source is detected for much shorter durations, and sometimes not detected at all while inside the region

  7. Radiation source term reduction in BWR plants

    This series of slides presents: the collective radiation exposures at US and European BWRs; the European experience with source term reduction measures (normal water chemistry - NWC): zinc addition, stellite replacement, full system decontamination; the effects of evolving water chemistries/US experience. The conclusions are summarized as follows: worldwide reduction of collective radiation exposures at BWRs by following the ALARA principle; zinc addition proven option for source term reduction for NWC and hydrogen water chemistry (HWC) plants; reducing feedwater iron has been proven to reduce dose rates - as operational observations in the US indicate; optimized feedwater iron is very important for fuel performance under all modes of water chemistry (HWC, Zn, and noble metal chemical addition (NMCA)); minimize 59Co sources/stellite, follow the ALARA principle; full system decontamination (FSD) plus zinc injection is an attractive option for reducing reactor coolant system (RCS) dose rates of mature BWR plants

  8. Purification of 85Kr radiation source, (2)

    A gas-purification equipment was devised for 85Kr radiation source. Purification of a 210 Ci 85Kr source was performed by removing chemically dimethyl ether (CH3OCH3) contained in the 85Kr source with CuO. In order to find the optimum conditions for this purification prior to hot run, preliminary investigations were carried out about the effect of various factors (temperature, gas circulation, amount of used CuO, mode of reaction and so on) on the decomposition of CH3OCH3 with CuO using the mixtures of Ar-Ch3OCH3. The concentration of CH3OCH3 in the 85Kr source fell to 152 ppm from 38.3% by this purification. The purified 85Kr gas could be used repeatedly as radiation source for chemical reactions. It is considered that this purification method is effective for the removal of hydrocarbons (component of low boiling point) in the 85Kr source. (author)

  9. A Cherenkov radiation source for photomultiplier calibration

    The Sudbury Neutrino Observatory (SNO) will detect the Cherenkov radiation from relativistic electrons produced from neutrino interactions in a heavy water (D2O) target. A Cherenkov radiation source is required that will enable the efficiency of the photomultipliers to detect this radiation to be calibrated in situ. We discuss such a source based upon the encapsulation of a 90Sr solution in a glass bulb, and describe its construction. The Cherenkov light output of this source is computed using the theory of Frank and Tamm and an EGS4 Monte Carlo code is used to propagate the beta decay electrons. As an example of the use of this source, the single photoelectron counting efficiency of an EMI 9350 photomultiplier was measured as a function of the applied voltages, given that the quantum efficiency of its photocathode was known. The single photoelectron counting efficiencies obtained were in the range 73-87% and these are consistent with the measurements of other authors using photomultipliers of a broadly similar design. ((orig.))

  10. Borehole Disposal for Spent Radiation Sources

    As generally, many countries in the world, Indonesia still faces some difficulties in the storage and final disposal for spent radiation sources (SRS) which categorized as high risk. Spent radiation sources that have been stored in the Interim Storage 1 and 2 (IS-1 and IS-2), and High Activity Waste Storage (PSLAT) consist of Co-50 or Cs-137 (as irradiator), Pu-238 (as power sources), Am-241 (as neutron source) and Ra-226 (as sources in the medical field). The difficulties faced on storage and disposal are reasoned by long half-life, high gamma radiation, not established disposal system, expensiveness of disposal facility, difficulties on option to reexport of the SRS, lack of skilled labour, and the activity exceed for near surface disposal. For that reason, disposal system for SRS must be developed with the small scale national facility having some advances as well as costly cheaper, fulfill the safety standard, and could avoid the possibility of human intrusion. The answer of this problem is borehole disposal concept. By using this concept can be hoped that the problems of SRS disposal can be handled well, based on site characterization, borehole technology, SRS capsule packaged design, repository facility, and safety assessment. Finally, after obtained the optimum concepts, would be applied in the future to support the national nuclear program accepted by the public. The assessment of borehole disposal technology for SRS has been done. The assessment was done descriptively, involve the waste, site, technology, and safety aspects. Some concepts of borehole have been obtained that have been recommended by International Atomic Energy Agency (IAEA), applicable and suitable with the waste and site condition. The concepts are Borehole Disposal of Sealed Sources (BOSS) with variation as follow: 1) Unsaturated, non-sulphate environments type; 2) Saturated, non-sulphate, non-clay environments with high to medium permeability, and 3) saturated, very low permeability

  11. Applications and opportunities for radiation sources

    An important spin-off benefit from the nuclear industry has been the ability to produce a wide variety of ionizing radiation sources for industrial, medical and scientific applications. These sources include radionuclides produced by irradiation of target material in reactors and cyclotrons or recovered from spent fuels, and accelerators. The uses of radiation in both medicine and industry can be expected to evolve. Traditional uses such as cancer therapy will mature and in some cases be displaced by new technology. Major new applications, including food processing and waste treatment, are expected to maintain the demand for isotopes such as cobalt 60 and to stimulate the development of economical and reliable accelerator systems. (L.L.) (Tab., 2 figs.)

  12. Safety of radiation sources in Slovenia

    The Republic of Slovenia, a central European country which has been independent since 1991, has about 2 million inhabitants and an area of 20,256 km2 . The Constitutional Law on Enforcement of the Basic Constitutional Charter on the Autonomy and Independence of the Republic of Slovenia, adopted on 23 June 1991 (Off. Gaz. of the R of Slovenia No. 1/91), provided that all the laws adopted by the Socialist Federal Republic (SFR) of Yugoslavia should remain in force in the Republic of Slovenia pending the adoption of appropriate legislation by the Slovene Parliament. Under the Slovene Constitution, all international treaties ratified by Slovenia constitute an integral part of Slovenia's legislation and can be applied directly. In Slovenia, all regular types of ionizing radiation source are being used for peaceful purposes and are covered by a system for their safe use and control. All radiation sources and radioactive materials are registered and under regulatory control. Inspections are carried out periodically by the Health Inspectorate of the Republic of Slovenia (HIRS) and, in the case of nuclear installations, the Slovene Nuclear Safety Administration (SNSA). Technical checks on radiation sources are carried out periodically by technical support organizations: the Jozef Stefan Institute and the Institute for Occupational Safety (IOS). (author)

  13. The natural sources of ionizing radiation exposure

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance

  14. Inductive pulsed power source for plasma radiator

    The current fed plasmadynamic discharge is used for generation of a wide range of radiation. Such discharges have variable induction and resistance. They therefore require a definite power source to transfer energy with high efficiency. It is known that inductive storage has the larger specific energy capacity in comparison with capacitive energy storage, and better power matching. Therefore an inductive pulsed power source with current multiplication by sectioned inductive storage was designed to feed the plasma flow switch, using explosive switching technology. This report describes the design and the parameters of the inductive energy storage system, and the switches, and the test results for the model- source, where the energy scale is 1:20

  15. Sources of radiation from neutron stars

    Schutz, B F

    1998-01-01

    I give a brief introduction to the problem of detecting gravitational radiation from neutron stars. After a review of the mechanisms by which such stars may produce radiation, I consider the different search strategies appropriate to the different kinds of sources: isolated known pulsars, neutron stars in binaries, and unseen neutron stars. The problem of an all-sky survey for unseen stars is the most taxing one that we face in analysing data from interferometers. I describe the kinds of hierarchical methods that are now being investigated to reach the maximal sensitivity, and I suggest a replacement for standard Fourier-transform search methods that requires fewer floating-point operations for Fourier-based searches over large parameter spaces, and in addition is highly parallelizable, working just as well on a loosely coupled network of workstations as on a tightly coupled parallel computer.

  16. Helical Cerenkov effect, a novel radiation source

    The observability of the helical Cerenkov effect as a novel radiation source is discussed. Depending on the value of the index of refraction of the medium, the strength of the uniform magnetic field, and the electron beam energy, helical Cerenkov radiation can occur in the same spectral regions as the ordinary Cerenkov effect, that is, from microwave to visible wavelengths. From the kinematics point of view, the author argues that for a microwave wavelength of 10-1 cm this effect should be observable in a medium with an index of refraction of 1.4, with a beam energy of 3 MeV, and a uniform magnetic field of 4 T. On the specific level, however, for the sake of simplicity, he discusses the observability of this effect for visible light with the central wavelength of 5 x 10-5 cm which can be achieved with 2 MeV in beam energy, silica aerogel as a medium (with an index of refraction of 1.075), and uniform magnetic fields from 5 to 10 T. For a 10-T magnetic field, he calculates that in the visible region of 250 to 750 nm an electron will produce a photon per 10 cm of traveled length. As to the stimulated helical Cerenkov emission, the author estimates that respectable gains are possible even if the beam passes close to the dielectric rather than through it. In addition to being potentially a new radiation source, the helical Cerenkov effect could possibly be used as a detector of radiation by energetic electrons that are trapped in a medium by strong magnetic fields

  17. 21 CFR 886.5100 - Ophthalmic beta radiation source.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic beta radiation source. 886.5100 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5100 Ophthalmic beta radiation source. (a) Identification. An ophthalmic beta radiation source is a device intended to apply...

  18. Ionizing radiation source detection by personal TLD

    The Laboratory for personal dosimetry has about 3000 workers under control. The most of them work in medicine. Some institutions, as big health centers, have different ionizing radiation sources. It is usefull to analyze what has been the source of irradiation, special when appears a dosimeter with high dose. Personal dosimetry equipment is Harshaw TLD Reader Model 6600 and dosimeters consist of two chips LiF TLD-100 assembled in bar-coded cards which are wearing in holders with one tissue-equivalent filter (to determine H(10)) and skin-equivalent the other (to determine H(0.07)). The calibration dosimeters have been irradiated in holders by different sources: x-ray (for 80keV and 100keV), 60Co, 90Sr (for different distances from beta source) and foton beem (at radiotherapy accelerator by 6MeV, 10MeV and 18MeV). The dose ratio for two LiF cristals was calculated and represented with graphs. So, it is possible to calculate the ratio H(10)/H(0.07) for a personal TLD and analyze what has been the source of irradiation. Also, there is the calibration for determination the time of irradiation, according to glow curve deconvolution

  19. Regulatory Control of Radiation Sources. Safety Guide

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  20. Radiation sources safety and radioactive materials security regulation in Ukraine

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M2/sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  1. Development of radioisotopes and radiation sources

    The purpose of this project is to develop RI production technology utilizing HANARO and to construct a sound infra-structure for mass production and supply to domestic users. The Ir-192 NDT sources of more than 50 Ci, equivalent in activity, are now available in KAERI and covers more than 90 % of the nationwide demand. For the commercial supply of Ir-192 industrial source, we developed irradiation target for mass-production and automatic fabrication system. The developed IR-Rigs have been used in production of various radioisotope and radiation sources in IR 1, 2 and CT irradiation holes. A Loop-Batch system for the mass-production of I-125 has been developed and tested its reliability and safety.The separation of I-125 formed from irradiated xenon gas was performed by column chromatographic technique using platinum coated on copper(PCC) granules as an adsorbent. For the preparation of I-125 seed, the retention of iodine on a ceramic rod coated with silver nitrate as an iodine absorbent was studied. The production possibility of Sr-89 using 89Y(n,p) and 88Sr(n,γ) in HANARO has been estimated. A new distillation process for P-33 production has been developed and applied for production of P-32. The current status of W-188/Re-188 generator production technology were reviewed. Main interests were given to the aspects of W-188 reactor production, irradiated targets reprocessing and generator loading technologies, such as alumina type and gel type generators. To develop the Yb-169 radiographic sources for industrial NDT application, molding machine which can apply fabrications of small pellets with various size and shapes was designed and manufactured. Automatic welding system and assembly technologies for Co-60 source fabrication were developed. The developed HDR Ir-192 source was tested for application in Microselectron [32P] γ - ATP has been developed using [32P] phosphoric acid produced by KAERI. Calibration sources for correcting of energy and detection efficiency

  2. Seeding Coherent Radiation Sources with Sawtooth Modulation

    Ratner, Daniel; Chao, Alex; /SLAC

    2012-03-28

    Seed radiation sources have the ability to increase longitudinal coherence, decrease saturation lengths, and improve performance of tapering, polarization control and other FEL features. Typically, seeding schemes start with a simple sinusoidal modulation, which is manipulated to provide bunching at a high harmonic of the original wavelength. In this paper, we consider seeding from sawtooth modulations. The sawtooth creates a clean phase space structure, providing a maximal bunching factor without the need for an FEL interaction. While a pure sawtooth modulation is a theoretical construct, it is possible to approach the waveform by combining two or more of the composite wavelengths. We give examples of sawtooth seeding for HGHG, EEHG and other schemes, and note that the sawtooth modulation may aid in suppression of the microbunching instability.

  3. Cesium-137 as a radiation source

    The U.S. Department of Energy (DOE) Byproducts Utilization Program (BUP) seeks to develop and encourage widespread commercial use of defense byproducts that are produced by DOE. Cesium-l37 is one such byproduct that is radioactive and decays with emission of gamma rays. The beneficial use of this radiation to disinfect sewage sludge or disinfest food commodities is actively being pursued by the program. The radiation produced by cesium-l37(Cs-l37) is identical in form to that produced by cobalt-60(Co-60), an isotope that is widely used in commercial applications such as medical product sterilization. The choice of isotope to use depends on several factors ranging from inherent properties of the isotopes to availability and cost. The BUP, although centrally concerned with the beneficial use of Cs-l37, by investigating and assessing the feasibility of various uses hopes to define appropriate circumstances where cesium or cobalt might best be used to accomplish specific objectives. This paper discusses some of the factors that should be considered when evaluating potential uses for isotopic sources

  4. Establishing control over nuclear materials and radiation sources in Georgia

    Regulatory control over radiation sources in Georgia was lost after disintegration of the Soviet Union. A number of radiation accidents and illegal events occurred in Georgia. From 1999 Nuclear and Radiation Safety Service of the Ministry of Environmental Protection and Natural Resources is responsible for regulatory control over radiation sources in Georgia. US NRC Regulatory Assistance Program in Georgia Assist the Service in establishing long term regulatory control over sources. Main focuses of US NRC program are country-wide inventory, create National Registry of sources, safe storage of disused sources, upgrade legislation and regulation, implementation licensing and inspection activities

  5. Methods to identify and locate spent radiation sources

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs, tabs

  6. Methods to identify and locate spent radiation sources

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs and tabs

  7. The regulatory control of radiation sources in Turkey

    In Turkey, the national competent authority for regulating activities involving radioactive sources is the Turkish Atomic Energy Authority, which implements the responsibility for the safety and security of radiation sources through its Radiation Health and Safety Department. The report describes the organization of the regulatory infrastructure for radiation safety in Turkey and, after a brief explanation of the current legal framework for such purpose, it refers to how the management of radiation sources is carried out and to the new provisions regarding radiation sources, including inspections of licensees and training on source safety. Finally, the report provides information on the Ikitelli radiological accident in Turkey and the current public concern about radiation sources after it happened. (author)

  8. Radiological control in fires involving radiation sources

    The copies used during the chatter by techniques from CDTN in the I Mineiro Symposium of Fire Engineering, are presented. The chatter was based on emergency radiation control course, given by CDTN. Basic concepts, such as nuclear physics fundaments, radiation nature and detection, radiation protection and practical aspects of radiological fire emergency, were enphasized. (M.C.K.)

  9. Nature and magnitude of the problem of spent radiation sources

    Various types of sealed radiation sources are widely used in industry, medicine and research. Virtually all countries have some sealed sources. The activity in the sources varies from kilobecquerels in consumer products to hundreds of pentabecquerels in facilities for food irradiation. Loss or misuse of sealed sources can give rise to accidents resulting in radiation exposure of workers and members of the general public, and can also give rise to extensive contamination of land, equipment and buildings. In extreme cases the exposure can be lethal. Problems of safety relating to spent radiation sources have been under consideration within the Agency for some years. The first objective of the project has been to prepare a comprehensive report reviewing the nature and background of the problem, also giving an overview of existing practices for the management of spent radiation sources. This report is the fulfilment of this first objective. The safe management of spent radiation sources cannot be studied in isolation from their normal use, so it has been necessary to include some details which are relevant to the use of radiation sources in general, although that area is outside the scope of this report. The report is limited to radiation sources made up of radioactive material. The Agency is implementing a comprehensive action plan for assistance to Member States, especially the developing countries, in all aspects of the safe management of spent radiation sources. The Agency is further seeking to establish regional or global solutions to the problems of long-term storage of spent radiation sources, as well as finding routes for the disposal of sources when it is not feasible to set up safe national solutions. The cost of remedial actions after an accident with radiation sources can be very high indeed: millions of dollars. If the Agency can help to prevent even one such single accident, the cost of its whole programme in this field would be more than covered. Refs

  10. Natural radiation source fabricated from commercially available instant coffee

    Commercially available instant coffee, Nescafe Excella, contained the radionuclide 40K. From the instant coffee, sixteen coffee-block radiation sources were successfully fabricated with sufficiently low production dependences. The coffee-block radiation sources were examined their suitability for a radiation protection course. Although a part of radiation counts(cpm) obtained with 1 minute measurement were largely deviated, those determined by 5 minute measurements and five times of 1 minute measurement were less deviated, enabling better comprehension of the three cardinal principles of radiation protection. (author)

  11. Sterilization plants equipped with the isotopic gamma radiation sources

    Presentation describes different isotopic gamma radiation sources applicable for sterilization of food and medical materials. Certain gamma pallet irradiators, mini gamma irradiators and different scale gamma tote irradiators are presented. It is concluded, that about two hundreds plants with gamma radiation sources operates in different countries. However, industrially developed countries must construct much more plants than operates now

  12. New high-power source of directional electromagnetic radiation

    Kumakhov, M. A.

    2014-07-01

    A new source of electromagnetic radiation in a wide spectral range can be based on multiple contactless deflection of the beams of charged particles in a circular channel. The radiation with wavelengths ranging from submillimeter to radio ranges can be generated using nonrelativistic electrons. Directional radiation is obtained at relativistic energies. The IR, optical, and UV radiation can be generated. The X-ray and gamma-radiation can be obtained at relatively high energies. The new source is compared with the source of synchrotron radiation. The radiation intensity at energies of 1-2 GeV is relatively high, since strong currents are possible in the ring channel. The channeling and synchrotron emission are simultaneously obtained at relatively small (several tens of nanometers) internal diameters of the ring.

  13. III. Artificial sources of ionizing radiation

    A theoretical explanation is given of obtaining electrons by thermal emission. The Coolidge X-ray tube is described. The spectral composition is presented of X radiation, changes in the spectrum of X radiation bremsstrahlung in dependence on anode potential and on different shapes of the rectifier of the high voltage curve. X-ray spectrography of crystals is presented as an example of the use of X radiation. Linear accelerators (simple and multiple), microtrons, cyclotrons and betatrons are used for obtaining higher energy radiation. The principle is given for each accelerator and examples of acclerators are given such as are used in clinical practice and in radiotherapy. (E.S.)

  14. Transition undulator radiation as bright infrared sources

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/γ, where γ is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron's longitudinal velocity as it enters and leaves the undulator. The characteristics of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets

  15. Transition undulator radiation as bright infrared sources

    Kim, K.J. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  16. Regulatory infrastructure for the control of radiation sources in Madagascar

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no. 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no. 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This body is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Waste Management.The paper includes an overview of the Regulatory infrastructure and the organizations of radiation protection in Madagascar. (author)

  17. The safety of radiation sources and radioactive materials in China

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  18. Large area radiation source for water and wastewater treatment

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  19. Radiations and regulation (of ionizing radiations from nuclear sources)

    Some contextual aspects of the regulatory action regarding the use of ionizing radiations (X-rays excluded) are made explicit. Some sociological aspects establishing the framework for the regulatory action, a tentative definition of what a regulator is and the role of precaution on his acting are discussed. Furthermore, a unified definition of human nature and physical nature (i.e. nature) is introduced, aimed at allowing its protection regarding ionizing radiation and, at the same time, the ethical framework for the application of radiation protection actions is defined. (author)

  20. Synchrotron radiation sources: general features and vacuum system

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10-9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.)

  1. Radiation Protection for Manned Interplanetary Missions - Radiation Sources, Risks, Remedies

    Facius, R.; Reitz, G.

    Health risks in interplanetary explorative missions differ in two major features significantly from those during the manned missions experienced so far. For one, presently available technologies lead to durations of such missions significantly longer than so far encountered - with the added complication that emergency returns are ruled out. Thus radiation exposures and hence risks for late radiation sequelae like cancer increase proportional to mission duration - similar like most other health and many technical risks too. Secondly, loss of the geomagnetic shielding available in low earth orbits (LEO) does increase the radiation dose rates from galactic cosmic rays (GCR) since significant fractions of the GCR flux below about 10 GeV/n now can reach the space vehicle. In addition, radiation from solar particle events (SPE) which at most in polar orbit segments can contribute to the radiation exposure during LEO missions now can reach the spaceship unattenuated. Radiation doses from extreme SPEs can reach levels where even early acute radiation sickness might ensue - with the added risks from potentially associated crew performance decrements. In contrast to the by and large predictable GCR contribution, the doses and hence risks from large SPEs can only stochastically be assessed. Mission designers face the task to contain the overall health risk within acceptable limits. Towards this end they have to transport the particle fluxes of the radiation fields in free space through the walls of the spaceship and through the tissue of the astronaut to the radiation sensitive organs. To obtain a quantity which is useful for risk assessment, the radiobiological effectiveness as well as the specific sensitivity of a given organ has to be accounted for in such transport calculations which of course require a detailed knowledge of the spatial distribution and the atomic composition of the surrounding shielding material. In doing so the mission designer encounters two major

  2. Natural sources of ionizing radiation in Europe

    This publication maps levels of radiation of natural origin throughout the European Community (except in the Lander of the former German Democratic Republic), in Scandinavia and in Austria. The booklet explains in simple terms the basic properties and origin of different types of radiation (cosmic rays, gamma rays and radon) and their contribution to the overall exposure of the population. A glossary, a list of administrative regions used in the maps and detailed references to the data for each country are included

  3. The regulatory control of ionizing radiation sources in Lithuania

    The Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for radiation protection of the public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the control of radioactive sources, which includes keeping the registry, investigating persons arrested while illegally carrying or in possession of radioactive material, decision making and control of users of radioactive sources. The computer based registry contains a directory of more than 24,000 sources and some 800 users in research, medicine and industry. Most of these sources are found in smoke detectors and X ray equipment. The potentially most dangerous sources for therapy and industry (sealed and unsealed) are also listed in this registry. Problems connected with the regulatory control of radioactive sources in Lithuania are presented and their solution is discussed. (author)

  4. Rendering harmless and deposition of spent sealed radiation sources

    The sealed radiation sources are commonly used in medicine, agriculture, industry and scientific research. There is millions of such sources being used all over the world. The purpose of this article is to present a modes of management and disposal of spent sealed radioactive sources in different countries as well as methods being recommended in Poland

  5. Natural radiation sources fabricated from potassic chemical fertilizers and application to radiation education

    Potassic chemical fertilizers contain potassium, a small part of which is potassium-40. Since potassium-40 is a naturally occurring radioisotope, potassic chemical fertilizers are often used for demonstrations of the existence of natural radioisotopes and radiation. To fabricate radiation sources as educational tools, the compression and formation method developed by our previous study was applied to 13 brands of commercially available chemical fertilizers containing different amounts of potassium. The suitability (size, weight, and solidness) of thus fabricated sources was examined and 12 of them were selected as easy-to-use radiation sources at radiation educational courses. The radiation strength (radiation count rate measured by a GM survey meter) and potassium content of the 12 sources were examined. It was found that the count rate was wholly proportional to the percentage of potassium, and a new educational application was proposed and discussed for understanding that the substance emitting radiation must be the potassium present in the raw fertilizers. (author)

  6. Synchrotron radiation sources INDUS-1 and INDUS-2

    The synchrotron radiation sources, INDUS-1 and INDUS-2 are electron storage rings of 450 MeV and 2 GeV beam energies respectively. INDUS-1 is designed to produce VUV radiation whereas INDUS-2 will be mainly used to produce x-rays. INDUS-1 is presently undergoing commissioning whereas INDUS-2 is under construction. Both these rings have a common injector system comprising of a microtron and a synchrotron. Basic design features of these sources and their injector system are discussed in this paper. The radiation beamlines to be set up on these sources are also described. (author)

  7. RASTA: A generalized tool for radiation source term analysis

    A FORTRAN computer code has been written for generalized radiation source term preparation. The RASTA (Radiation Source Term Analysis) code calculates the neutron and photon sources for any input isotopic combination and collapses to a user-selected multigroup format. The code is very easy to use, requiring minimal input. It provides extensive output edits suitable for data analysis or direct input into radiation transport codes. RASTA runs on the SRS RS6000 workstation cluster, but it should be easily portable to other computers

  8. Introduction to radiation protection practical knowledge for handling radioactive sources

    Grupen, Claus

    2010-01-01

    The book presents an accessible account of the sources of ionising radiation and the methods of radiation protection. The basics of nuclear physics which are directly related to radiation protection are briefly discussed. The book describes the units of radiation protection, the measurement techniques, biological effects of radiation, environmental radiation, and many applications of radiation. For each chapter there is a problem section with full solutions. A detailed glossary and many useful information in appendixes complete the book. The author has addressed the issue of internationality to make sure that the text and, in particular, the complicated regulations can be easily interpreted not only in Europe and the United States but also in other countries. The subject of radiation protection requires a certain amount of mathematics. For those who have forgotten the basic rules of calculus a short refresher course in the form of a mathematical appendix is added.

  9. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  10. Regulatory aspects of radiation sources safety in Albania

    In this paper are presented the regulatory aspects of the radiation sources safety in Albania, based in the new Radiological Protection Act and Regulations. The radiation protection infrastructures and procedures are described as well as their functioning for the implementation of relevant activities such as licensing and regular inspection, personal dose monitoring, emergency preparedness which are developed in the frame of the IAEA Technical Co-operation Programme. The issue of the security of radiation sources is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country. A special attention is paid to the identification and location of lost sources for their finding and secure storage. (author)

  11. Rules and regulations on ionizing radiations sources installations

    The finality of this legislative text is to establish the standards and procedures for site, design, building, operation and decommissioning of nuclear installations, radioactive installations and ionizing radiations sources. This text include the commercialization of radioactive substances and equipment fabrication

  12. Stability of high-brilliance synchrotron radiation sources

    This paper discusses the following topics: characteristics of synchrotron radiation sources; stability of the orbits; orbit control; nonlinear dynamic stability; and coherent stability and control. 1 ref., 5 figs., 1 tab

  13. Accelerator based atomic physics experiments: an overview

    Atomic Physics research with beams from accelerators has continued to expand and the number of papers and articles at meetings and in journals reflects a steadily increasing interest and an increasing support from various funding agencies. An attempt will be made to point out where interdisciplinary benefits have occurred, and where applications of the new results to engineering problems are expected. Drawing from material which will be discussed in the conference, a list of the most active areas of research is presented. Accelerator based atomic physics brings together techniques from many areas, including chemistry, astronomy and astrophysics, nuclear physics, solid state physics and engineering. An example is the use of crystal channeling to sort some of the phenomena of ordinary heavy ion stopping powers. This tool has helped us to reach a better understanding of stopping mechanisms with the result that now we have established a better base for predicting energy losses of heavy ions in various materials

  14. Control of sources of ionizing radiation in Lithuania

    Aspects connected with regulatory control of radioactive sources in Lithuania, such as keeping of the computer-based registry, investigation of arrested illegal radioactive material, decision making, control of users of radioactive sources are discussed. Most of the sources of ionizing radiation are smoke detectors and x-ray equipment. Potentially most dangerous sources (both sealed and unsealed) of therapy and industry are also presented

  15. Detecting small low emission radiating sources

    Allmaras, Moritz; Hristova, Yulia; Kanschat, Guido; Kuchment, Peter

    2010-01-01

    The article addresses the possibility of robust detection of geometrically small, low emission sources on a significantly stronger background. This problem is important for homeland security. A technique of detecting such sources using Compton type cameras is developed, which is shown on numerical examples to have high sensitivity and specificity and also allows to assign confidence probabilities of the detection. 2D case is considered in detail.

  16. Diffraction measurements at sources of synchrotron radiation

    Hašek, Jindřich

    Vol. 2a. Praha : Czech and Slovak Crystallographic Association, 2008, s. 15-16. ISSN 1211-5894. [Struktura 2008 - Colloquium of the Czech and Slovak Crystallographic Association. Valtice (CZ), 16.06.2008-20.06.2008] R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : synchrotron radiation Subject RIV: CE - Biochemistry

  17. Background radiation and man-made and sources of radiation

    This paper describes the development of the use of the atom and its present applications in food and agriculture, industry medicine and health care, energy-environment and research. These applications have inevitably led to concerns about nuclear safety and radioactive waste management and the need for the adoption of procedures for control, safe use and disposal of radioactive sources

  18. The Advanced Light Source (ALS) Radiation Safety System

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  19. Diffractive triangulation of radiative point sources

    Vespucci, Stefano; Maneuski, Dzmitry; O'Shea, Val; Winkelmann, Aimo

    2016-01-01

    We describe a general method to determine the location of a point source of waves relative to a two-dimensional active pixel detector. Based on the inherent structural sensitivity of crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the location of a wave emitter. As a practical application of the wide-ranging principle, a digital hybrid pixel detector is used to localize a source of electrons for Kikuchi diffraction pattern measurements in the scanning electron microscope. This provides a method to calibrate Kikuchi diffraction patterns for accurate measurements of microstructural crystal orientations, strains, and phase distributions.

  20. Technological yields of sources for radiation processing

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs

  1. Radiation properties of Turkish light source facility TURKAY

    Nergiz, Zafer

    2015-09-01

    The synchrotron light source TURKAY, which is one of the sub-project of Turkish Accelerator Center (TAC), has been supported by Ministry of Development of Turkey since 2006. The facility is designed to generate synchrotron radiation (SR) in range 0.01-60 keV from a 3 GeV storage ring with a beam emittance of 0.51 nm rad. Synchrotron radiation will be produced from the bending magnets and insertion devices in the storage ring. In this paper design studies for possible devices to produce synchrotron radiation and radiation properties of these devices with TURKAY storage ring parameters are presented.

  2. Radiation properties of Turkish light source facility TURKAY

    Nergiz, Zafer, E-mail: znergiz@nigde.edu.tr

    2015-09-21

    The synchrotron light source TURKAY, which is one of the sub-project of Turkish Accelerator Center (TAC), has been supported by Ministry of Development of Turkey since 2006. The facility is designed to generate synchrotron radiation (SR) in range 0.01–60 keV from a 3 GeV storage ring with a beam emittance of 0.51 nm rad. Synchrotron radiation will be produced from the bending magnets and insertion devices in the storage ring. In this paper design studies for possible devices to produce synchrotron radiation and radiation properties of these devices with TURKAY storage ring parameters are presented.

  3. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are 85Kr, 147Pm, 3H and 232Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  4. Solar radiation data sources, applications, and network design

    None

    1978-04-01

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided about solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.

  5. Ionizing radiation sources used in medical applications in Brazil

    Preliminary data about ionizing radiation sources used in medical applications and obtained through a national programme by IRD/CNEN together with Brazilian health authorities are presented. The data presentation follows, as close as possible, recommendations given by the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). This programme has two main aims: First: to contribute for research in the field of ionizing radiation effects and risks including information about equipment quality control and procedures adopted by professionals working in Radiation Medicine. Second: to investigate the radiation protection status in Brazil, in order to give assistance to Brazilian health authorities for planning regional radiation programmes and training programmes for medical staffs. (F.E.). 13 refs, 19 figs, 34 tabs

  6. Training of human resources on radiation protection and safe use of radiation sources. Argentine experience

    Argentina has a long experience in Radiation Protection training since 25 years ago. In the present work we analyse those variable and non variable training aspects according to scientific development, increasing radiation source diversity (including new concepts like orphan sources and security), mayor concern about patient in Radiation Protection, previous exposures, etc. We comment what we consider the main steps in the training of Radiation Protection specialists, like university degree, post graduate education distinguishing between formative and informative contents and on the job training. Moreover, we point out the trainees aptitudes and attitudes to be developed in order to work properly in this interdisciplinary field. (author)

  7. First accelerator-based physics of 2014

    Katarina Anthony

    2014-01-01

    Experiments in the East Area received their first beams from the PS this week. Theirs is CERN's first accelerator-based physics since LS1 began last year.   For the East Area, the PS performs a so-called slow extraction, where beam is extracted during many revolution periods (the time it take for particles to go around the PS, ~2.1 μs). The yellow line shows the circulating beam current in the PS, decreasing slowly during the slow extraction, which lasts 350 ms. The green line is the measured proton intensity in the transfer line toward the East Area target. Although LHC physics is still far away, we can now confirm that the injectors are producing physics! In the East Area - the experimental area behind the PS - the T9 and T10 beam lines are providing beams for physics. These beam lines serve experiments such as AIDA - which looks at new detector solutions for future accelerators - and the ALICE Inner Tracking System - which tests components for the ALICE experiment. &qu...

  8. Radiation protection and regulatory aspects in the use of radiation sources

    The uses of ionising radiation sources (i.e. radioisotopes and radiation generating equipment such as accelerators and X-ray machines) for multifarious applications in industry, medicine, agriculture, research and teaching have been significantly increasing all over the world. In India, the application of radiation sources in various fields has registered phenomenal growth during the last decade. The use of radiation sources mainly include radiation processing for food preservation and sterilization of healthcare products, radiotherapy for treatment of cancer, nuclear medicine for diagnosis and therapy, gamma chambers for several R and D studies, blood irradiators, industrial radiography for non destructive examinations of steel structures, industrial ionising radiation gauging devices for monitoring/measurement of on-line quality control parameters (e.g. thickness, level, density, moisture, elemental analysis), consumer products such as gaseous tritium light sources (GTLS), gaseous tritium light devices (GTLD), ionisation chamber smoke detectors (ICSD), fluorescent light starters, antistatic devices and incandescent gas mantles containing thorium etc. All these beneficial applications involve use of both sealed and unsealed radioactive sources and amount of radioactivity varies from few kBq (μCi) to hundreds of TBq (thousands of curies). Radiation sources emit ionising radiations and if not handled properly and safely, may give rise to potential exposures leading to an unacceptable hazard. Therefore, it is necessary to ensure a high standard of safety and reliability in handling of radiation equipment and sources through their careful design by ensuring adequate built-in-safety as per applicable national/international standard, safe operation and periodic maintenance procedures, safe transport from one place to another, secured storage when not in use, physical security to radiation sources, effective emergency response plans and preparedness, including safe

  9. Radiating sources in higher-dimensional gravity

    Liu, Hongya; Wesson, Paul S.

    2001-01-01

    We study a time-dependent 5D metric which contains a static 4D sub-metric whose 3D part is spherically symmetric. An expansion in the metric coefficient allow us to obtain close-to Schwarzschild approximation to a class of spherically-symmetric solutions. Using Campbell's embedding theorem and the induced-matter formalism we obtain two 4D solutions. One describes a source with the stiff equation of state believed to be applicable to dense astrophysical objects, and the other describes a spher...

  10. Materials considerations for molten salt accelerator-based plutonium conversion systems

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  11. Regulatory control for safe usage of radiation sources in India

    The widespread applications of radioactive materials and radiation generating equipment in the field of industry, medicine agriculture and research in India necessitated the establishment of an efficient regulatory framework and consequently the Atomic Energy Regulatory Board (AERB) was constituted to exercise regulatory control over the safe usage of the radioactive materials and the radiation generating equipment. The Atomic Energy Act, 1962 and the Radiation Protection Rules, 1971 promulgated under the Act forms the basis of radiation safety in India and Chairman, AERB is the Competent Authority to enforce the regulatory provisions of the Radiation Protection Rules, 1971, for safe use of radiation source in the country. AERB has published a number of documents such as Radiation Surveillance Procedures, Standards, Codes, Guides and Manuals for safe use and handling of radioactive materials and radiation generating equipment. Apart from nuclear fuel cycle documents, these publications pertain to industrial radiography, medical application of radiation, transport of radioactive material, industrial gamma irradiators, X-ray units etc. AERB safety related publications are based on international standards e.g. BSS, IAEA, ICRP, ISO etc. This paper outlines the methodology of regulatory control exercised by AERB for safe use of the radioactive materials and the radiation generating equipment in the country. (author)

  12. Radiation in the living environment: sources, exposure and effects

    We are living in a milieu of radiations and continuously exposed to radiations from natural sources from conception to death. We are exposed to radiation from Sun and outer space, radioactive materials present in the earth, house we live in, buildings and workplace, food we eat and air we breath. Each flake of snow, grain of soil, drop of rain, a flower, and even each man in the street is a source of this radiation. Even our own bodies contain naturally occurring radioactive elements. The general belief is that the radiations are harmful and everybody is scared of the same. The cancer is the most important concern on account of exposure to Ionizing Radiation which is initiated by the damage to DNA. The level of exposure depends on the environmental and working conditions and may vary from low to moderate to high and depending on the same the exposed humans can be classified as general public, non nuclear workers (NNW) and nuclear workers (NW). Though, the LNT theory which is considered to be the radiation paradigm considers all radiation at all levels to be harmful and the -severity of the deleterious effect increases with the increase in dose, however, the available literature, data and reports (epidemiological and experimental) speaks otherwise particularly at low levels. The purpose of this paper is to address the question, whether the radiation is harmful at all levels or it is simply media hype and the truth is different, and to promote harmony with nature and to improve our quality of life with the knowledge that cancer mortality rates decrease following exposure to LLIR. Various sources of radiation exposure and the subsequent consequences will be discussed. (author)

  13. Environmental radiation safety source term evaluation program

    Plutonium-238 is currently used in the form of a pure refractory oxide as a power source on a number of space vehicles that have already been or will be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere and impact with the earth's surface without releasing any plutonium, the possibility of such an event can never be absolutely excluded. Three separate tasks were undertaken in this study. The interactions between soils and 238PuO2 aerosols which might be created in a space launch about environment were examined. Aging of the plutonium-soil mixture under a humid atmosphere showed a trend toward the slow coagulation of two dilute aerosols. Studies on marine animals were conducted to assess the response of 238PuO2 pellets to conditions found 60 feet below the ocean surface. Ultrafilterability studies measured the solubility of 238PuO2 as a function of time, temperature, suspension concentration and molality of solvent

  14. Environmental radiation safety source term evaluation program

    Moss, O.R.; Filipy, R.E.; Cannon, W.C.; Craig, D.K.

    1977-04-01

    Plutonium-238 is currently used in the form of a pure refractory oxide as a power source on a number of space vehicles that have already been or will be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere and impact with the earth's surface without releasing any plutonium, the possibility of such an event can never be absolutely excluded. Three separate tasks were undertaken in this study. The interactions between soils and /sup 238/PuO/sub 2/ aerosols which might be created in a space launch about environment were examined. Aging of the plutonium-soil mixture under a humid atmosphere showed a trend toward the slow coagulation of two dilute aerosols. Studies on marine animals were conducted to assess the response of /sup 238/PuO/sub 2/ pellets to conditions found 60 feet below the ocean surface. Ultrafilterability studies measured the solubility of /sup 238/PuO/sub 2/ as a function of time, temperature, suspension concentration and molality of solvent. (ACR)

  15. Possible sources of radiation in indoor environment

    More locations and building material will be needed to solve the housing needs, actually the future quantities will equal the total of all the previous building. And presently one quarter of the world population is already homeless. The development of human civilization in the new technological era goes on extremely quickly. In the search for new spaces, in the last decade of the 20th century, in town renovation planning the application of subterranean civil engineering is very popular. Below ground level, the new towns are built with many stories, with exclusively artificial light and artificial climate. There is not the slightest possibility of natural ventilation. These spaces have not been investigated as regards the contents of radon. Man is not adapted to spend most of the time in under artificial conditions. It is still to be discovered how it will affect humans and what is the degree of exposure to ionizing radiation in such conditions. It might be better to abandon underground construction before the adverse effects are proved. Previous mistakes in building must be overcome and new technologies applied as well as sustainable development in the future. (author)

  16. Control of radioisotopes and radiation sources in Indonesia

    Radioisotopes and radiation sources are extensively used in Indonesia in medicine, industry, mining, agriculture and research. These materials are controlled by the regulatory authority, according to established legal procedures. The Nuclear Energy Control Board of Indonesia (BAPETEN), which was established in 1998 through the Nuclear Energy Act No. 10/1997, is entrusted with the control of any application of nuclear energy, including the application of radioisotopes and radiation sources, through regulation, licensing and inspection. The control is aimed to assure welfare, security and peace, the safety and health of workers and the public, and environmental protection. The number of licences issued to date is around 2400, consisting of 1600 licences for radioisotopes and radiation sources used in hospitals, 347 in radiography, 256 in industry, 53 in mining, and the rest in many other areas such as research and agriculture. A licence can cover one or more radioisotopes or radiation sources, depending on the location of the user institution. These radioisotopes and radiation sources are Co-60, Cs-137, Ir-192, Ra-226, Am-241, Sr-90, Kr-85, Pm-147, linear accelerator and X-ray, and short half-life radioisotopes such as I-125, I-131 and Tc-99m. There are 10 LINACs, 27 X-ray medicines, 61 radioisotope devices for Co-60 and Cs-137, and 10 mHDR Ir-192 for therapeutic purposes currently used in Indonesia and some Ra-226 in storage. Any activity related to the application of nuclear energy is required to be conducted in a manner which observes safety and security. According to the legal requirements, each user has to employ at least one radiation safety officer. To improve the control of the application of radiation sources and radioactive material in the country, BAPETEN introduced some new approaches to the users, including regular dialogues with radiation safety officers and the management of the users, requalification for radiation protection officers twice in five

  17. Protection from potential exposures: application to selected radiation sources

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)

  18. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  19. Safety of radiation sources: basic requirements for the regulatory control

    All countries of the world use radiation sources in medicine, industry, scientific research and teaching. Radioactivity is also part of our planet and the space. Man has ever been exposed to natural radiation. Accidents with radioactive sources, specially the ones occurred in Ciudad Juarez, Mexico, in 1983-1984 and in Goiania, Brazil, in 1987, made the nuclear community face up the necessity of a through revision of their basic safety requirements. The accidents caused the death of exposed persons and other serious consequences. It is extremely important to maintain an effective control of sources in order to prevent these serious accidents. The normative structure must follow international principles where workers exposure to ionizing radiation is restricted and the environment is protected (author)

  20. Radiation sources generated by TRIGA - INR reactor operation

    The main radioisotopes occurring in TRIGA reactor and in its accessories and irradiation devices during reactor operation, that determine the radiation fields in the adjacent technological halls are presented. The source data covering, the period November 1979 to May 200, were gamma spectrometric analysis reports for the liquid radioactive waste as well as analysis reports of water, gas or refuse samples and filters for radioactive aerosols retained from installations and adjacent rooms. The main radiation sources inside the reactor building are: - fission products; - radioactive wastes; - from the reactor cooling water and water additions (intrinsic activation products); - activated products of corrosion leavings. These radiation sources are analyzed in details and their occurrence and strength interpreted as probes of reactor operation. For instance, occurrence of delayed neutrons in cooling systems indicates can failure

  1. Radiation problems expected for the German spallation neutron source

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  2. Exposure of the Spanish population to radiation from natural sources

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L. [Consejo de Seguridad Nuclear. Justo Dorado, Madrid (Spain)

    2006-07-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  3. Dosimetric analysis of radiation sources for use dermatological lesions

    Skin lesions undergoing therapy with radiation sources may have different patterns of malignancy. Malignant lesions or cancer most commonly found in radiotherapy services are carcinomas. Radiation therapy in skin lesions is performed with low penetration beams and orthovoltage X-rays, electron beams and radioactive sources (192Ir, 198Au, e 90Sr) arranged on a surface mold or in metal applicator. This study aims to analyze the therapeutic radiation dose profile produced by radiation sources used in skin lesions radiotherapy procedures . Experimental measurements for the analysis of dosimetric radiation sources were compared with calculations obtained from a computer system based on the Monte Carlo Method. Computational results had a good agreement with the experimental measurements. Experimental measurements and computational results by the MCNP4C code were both physically consistent as expected. These experimental measurements compared with calculations using the MCNP-4C code have been used to validate the calculations obtained by MCNP code and to provide a reliable medical application for each clinical case. (author)

  4. Producing Terahertz Conherent Synchrotron Radiation Based On Hefei Light Source

    De-Rong, Xu; Yan, Shao

    2014-01-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in THz region using a quick kicker magnet and an ac sextupole magnet. When the vertical chromaticity is modulated by the ac sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. We calculate the radiation spectral distribution from the wavy bunch in Hefei Light Source(HLS). If we reduce electron energy to 400MeV, it can produce extremely strong coherent synchrotron radiation(CSR) at 0.115THz.

  5. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  6. History and design of the Karlsruhe synchroton radiation source ANKA

    The first proposal for constructing a synchrotron radiation source at Forschungszentrum Karlsruhe dates back to 1986. Nevertheless, it took an additional 14 years until the state-of-the-art ANKA facility could commence with operation in year 2000. ANKA will provide radiation for two main areas, fabrication of micro-components and for analytical applications. The goals of the ANKA concept are in applying synchrotron radiation to issues relevant for industrial companies, in involving programs and units of Forschungszentrum, and in operating a facility for the research community. (orig.)

  7. Research activities related to accelerator-based transmutation at PSI

    Transmutation of actinides and fission products using reactors and other types of nuclear systems may play a role in future waste management schemes. Possible advantages of separation and transmutation are: volume reductions, the re-use of materials, the avoidance of a cumulative risk, and limiting the duration of the risk. With its experience in reactor physics, accelerator-based physics, and the development of the SINQ spallation neutron source, PSI is in a good position to perform basic theoretical and experimental studies relating to the accelerator-based transmutation of actinides. Theoretical studies at PSI have been concentrated, so far, on systems in which protons are used directly to transmute actinides. With such systems and appropriate recycling schemes, the studies showed that considerable reduction factors for long-term toxicity can be obtained. With the aim of solving some specific data and method problems related to these types of systems, a programme of differential and integral measurements at the PSI ring accelerator has been initiated. In a first phase of this programme, thin samples of actinides will be irradiated with 590 MeV protons, using an existing irradiation facility. The generated spallation and fission products will be analysed using different experimental techniques, and the results will be compared with theoretical predictions based on high-energy nucleon-meson transport calculations. The principal motivation for these experiments is to resolve discrepancies observed between calculations based on different high-energy fission models. In a second phase of the programme, it is proposed to study the neutronic behaviour of multiplying target-blanket assemblies with the help of zero-power experiments set up at a separate, dedicated beam line of the accelerator. (author) 3 figs., 2 tabs., 8 refs

  8. MCNP model for the many KE-Basin radiation sources

    Rittmann, P.D.

    1997-05-21

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with.

  9. MCNP model for the many KE-Basin radiation sources

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with

  10. Romanian experience on safety and security of radiation sources

    Romania has established the first administrative structure for controlling the deployment of the nuclear activities in 1961 and the first Romanian nuclear law was published in 1974. In the present, it is in force the Law no. 111, published in 1996 and republished in 2003. Moreover, there are available facilities and services to the persons authorized to manage radioactive sources. The regulation for safety and security of radioactive sources was amended two times in order to implement the international recommendations for setting up the national system for accounting and control of radiation sources and to coordinate the recovery activities. As part of national control programme, the national inventory of sources and devices is updated permanently, when issuing a new authorization, when modifying an existing one, or when renewing an authorization system and records in the database. The government responsibility for the orphan sources is stated in the law on radioactive waste management and decommissioning fund. There is a protocol between CNCAN, Ministry of Internal and Ministry of Health and Family regarding the co-operation in the case of finding orphan sources. When a radiation source is spent, it becomes radioactive waste that has to be disposed off properly. Depending on the case, the holder of a spent source has the possibility either to return the radioactive source to its manufacturer for regeneration or to transfer it to the Radioactive Waste Treatment Facility. (author)

  11. The THz Radiation Source at the SPARC Facility

    The interest for Terahertz (THz) radiation is rapidly growing, both as it is a powerful tool for investigating the behavior of matter at low energy, and as it allows for a number of possible spectroscopic applications spanning from medical science to security. The linac-driven THz source at the SPARC facility can deliver broadband THz pulses with femtosecond shaping and can be used for electron beam diagnostics to fully reconstruct the longitudinal charge distribution. Beyond this application, the possibility to store much more energy in a single THz pulse than table-top sources renders the SPARC THz source very interesting for a spectroscopic use. In addition, taking advantage from electron beam manipulation techniques, high power, narrow-band THz radiation can be also generated. Those source characteristics provide a unique chance to realize THz-pump/THz-probe spectroscopy, a technique practically unexplored up to now.

  12. The German radiation protection infrastructure with emphasis on the safety of radiation sources and radioactive material

    Through federalism, Germany has a complicated but well functioning regulatory infrastructure for the safety and security of radiation sources based on a clear legal system. The main features of this infrastructure include the legal framework, the authorization and control systems and the responsibilities of different regulatory authorities, which this paper will describe. In connection with the legal framework, the provisions to control the import/export of radiation sources are briefly discussed and some information is given about the registries of sources. Protection and response measures related to unusual events concerning radiation sources, including orphan sources, will be cited. Also, the education and training of different target groups and punitive actions are touched upon in the paper. Conclusions will be drawn for future national and international actions. (author)

  13. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  14. Overview in Argentina on spent/disused radiation sources

    Argentine nuclear activities have begun since about 1950. Since those days the peaceful applications of nuclear energy have been developed and together with then radioactive wastes have taken more and more relevance day by day. To deal with this special subject the Radioactive Waste Management Programme (RWMP) has been established. Spent/disused radiation sources are a very important task to consider in the management of radioactive waste. A great number of sources have been received along these years by the RWMP. Different sources categories handled together with their figures and radionuclide activities will be presented. Also described will be the steps that have to be followed by the users/owners of spent/disused radiation sources to transfer them to the RWMP. Once the sources are in the RWMP custody, they can be stored or they can be conditioned in order to be stored in an interim storage or disposed of. It is shown how the different sources are managed, taking into account the radionuclide's half life, its activity and the available facilities. Besides a record-keeping system for tracking all spent/disused radiation sources has been developed. It consists on a computerized database that contains essential information about the sources as well as the whole radioactive wastes managed by the RWMP. The main objective of the waste management registry-database system is to collect, identify, process and follow the related information about the radioactive wastes among al the management steps. It is also able to calculate the actualized activity inventory for the storage and final disposal facilities. In order to implement this system, it was necessary to write the related technical documentation. These documents established the radioactive waste acceptance requirements, that together with others integrates the Quality Assurance System applied to the radioactive waste management. Regarding the disused sources little could be done. They are stored in an appropriate

  15. Terrestrial radiation sources at the place of work

    An altogether new Part 3 of the draft amendment contains the substantive provisions for ''protection of the population and the environment from the hazards of natural sources of ionizing radiation''. The regulatory provisions have been formulated in compliance with the requirements and principles of the EURATOM Directive. (orig./CB)

  16. Sources of ionizing radiation in industry: licensing and control

    In this paper are presented several methods, which the Inspection on the Safe Use of Atomic Energy applies for the control on the use of sources of ionizing radiation in industry. It reviews some problems, which we have to solve during our inspections. An analysis and assessment of them is done. The prescribed safety ensuring measures are discussed. (author)

  17. Thermophotoelectric converter with radioisotope source of thermal radiation

    Results of investigating a thermophotoelectric converter with a radioisotope heat source to warm up a radiating surface are presented. Results are given of calculating the efficiency of thermophotoelectric converters with germanium and silicon photocells in the temperature range from 1000 to 1300 K, and of the comparative analysis of experimental and theoretical values of thermophotoelectric converter efficiencies. The possibility of developing a thermophotoconverter with a radioisotope source of thermal energy which has an efficiency of up to 15% is substantiated. It is shown that for effective energy conversion at radiator temperatures of 1000-1300 K it is necessary to use Ge, GaSb, InAs, PbS and PbTe semiconducting materials, and to increase to maximum the reflection coefficient of the photocell back contact and the radiation blackness

  18. Control of radiation sources and general regulations for accidental situations

    In order to prevent accidents caused by application of radiation sources the Tunisian O.N.P.C. established straightforward strategy made up of 3 phases: prevention, planning and intervention. Civil Protection conducts prevention studies of all radiation sources by examining normal application conditions as well as possible accidental situations. It keeps up with scientific, technical and statistical aspects of radiation risks, elaborates specific plans and programs for intervention operations and cooperates with administrative and security services as well as international organisations. The O.N.P.C. established a model intervention plan based on observation (according to preliminary information), evaluation of the situation (according to the head of operation) intervention (specialized units) and post intervention (testing of personnel)

  19. Superlattice Photocathodes for Accelerator-Based Polarized Electron Source Applications

    A major improvement in the performance of the SLC was achieved with the introduction of thin strained-layer semiconductor crystals. After some optimization, polarizations of 75-85% became standard with lifetimes that were equal to or better than that of thick unstrained crystals. Other accelerators of polarized electrons, generally operating with a much higher duty factor, have now successfully utilized similar photocathodes. For future colliders, the principal remaining problem is the limit on the total charge that can be extracted in a time scale of 10 to 100 ns. In addition, higher polarization is critical for exploring new physics, especially supersymmetry. However, it appears that strained-layer crystals have reached the limit of their optimization. Today strained superlattice crystals are the most promising candidates for better performance. The individual layers of the superlattice can be designed to be below the critical thickness for strain relaxation, thus in principle improving the polarization. Thin layers also promote high electron conduction to the surface. In addition the potential barriers at the surface for both emission of conduction-band electrons to vacuum and for tunneling of valence-band holes to the surface can be significantly less than for single strained-layer crystals, thus enhancing both the yield at any intensity and also decreasing the limitations on the total charge. The inviting properties of the recently developed AlInGaAs/GaAs strained superlattice with minimal barriers in the conduction band are discussed in detail

  20. Small compact pulsed electron source for radiation technologies

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  1. Cumulation in the exposure to sources of ionizing radiation

    The Dutch National Institute of Public health and Environmental protection (RIVM) has investigated if the maximum permissible risk of 10-6 a-1 for a single source and 10-5a-1 for all sources of ionizing radiation, as defined in the framework of BNS (policy notice regarding the regulation of ionizing radiation), are exceeded in the Dutch population due to the exposure by one single source or all sources respectively. The following sources were considered: radionuclide laboratories, nuclear installations, nuclear waste, sources and devices, conventional energy plants, phosphate fertilizer plants, other non-nuclear industries, transport of radioactive sources and consumer goods. A distinction was made between 'critical' groups due to geographical factors and due to behaviour, such as consumption of special food-stuffs. For risk assessment a uniform risk factor of 0.025 Sv-1 was used, as proposed in BNS. This factor is based on the life-time risk of women and includes the higher risk factors for children. (author). 15 refs.; 4 figs.; 9 tabs

  2. Large radiation sources in industry. Proceedings of a conference on the application of large radiation sources in industry. V. I

    Uses of radiation in industry are among the most effective ways in which atomic energy can help economic development. The benefits to industry, which are already substantial, have so far been mostly derived from the application of radioisotopes and other small sources of radiation as tools of scientific investigation, detection, measurement or control. The use of radiation as a direct agent in initiating industrial processes, which has now become possible with the availability of large radiation sources, will perhaps result in ever greater and wider development. Work in this new field of research and development has already been undertaken in some countries and a beginning is being made in many others. In view of a widely felt need for an exchange of information and views on the new techniques and results, the International Atomic Energy Agency organized a conference at Warsaw in September 1959 on the Application of Large Radiation Sources in Industry and Especially to Chemical Processes. This was the first international scientific meeting at which the whole subject was reviewed in detail.

  3. Nuisance Source Population Modeling for Radiation Detection System Analysis

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of

  4. Nuisance Source Population Modeling for Radiation Detection System Analysis

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial

  5. Training in radiation protection and the safe use of radiation sources

    The need for education and training in the various disciplines of radiation protection has long been recognized by the IAEA, the International Labour Organization (ILO), the United Nations Educational, Scientific and Cultural Organization, the World Health Organization and the Pan American Health Organization (PAHO). This need has been partially met through the many training courses undertaken by these organizations, either individually or in collaboration. The IAEA has assisted developing Member States in the training of specialists in radiation protection and safety through its organized educational and specialized training courses, workshops, seminars, fellowships and scientific visits. Training is an important means of promoting safety culture and enhancing the level of competence of personnel involved in radiation protection activities, and has acquired a place in the IAEA's programme accordingly. For example, the IAEA Post-graduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is regularly offered in countries around the world, and has been provided in Arabic, English, French, Spanish and Russian. The training provided by the IAEA is primarily aimed at regulators, professionals working in radiation protection and those responsible for the development of training programmes in their own countries. The importance of adequate and appropriate training for all those working with ionizing radiation has been highlighted by the results of the IAEA's investigations of radiological accidents. A significant contributory factor in a number of the accidents has been a lack of adequate training, which gave rise to errors with serious consequences. This report provides assistance in organizing training and complying with the requirements on training of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The previous version of this report. Technical Reports

  6. Protection of loading and unloading machines. General considerations, radiation sources

    The first part of this report states several general considerations regarding the protection during loading and unloading operations of an operating atomic pile, i.e. the introduction of a fuel element or a control bar into a pressurized enclosure, and the removal from a pressurized enclosure of a radioactive element the radioactivity of which decreases, and the transfer of this element into a pool. These handling operations are associated with different risks: external neutron or gamma irradiation, installation contamination, and effluent leakages presenting chemical or radioactive hazards. The authors indicate or address the admissible radiation level, the dose level at the vicinity of loading machines, the distribution of radiation sources, the distribution of dose rates between neutron and gamma rays, the material selection, issues related to heating, the subsequent transfer of the fuel to the storage pool, and the unloading of control bars with non fissile bodies. The second part addresses the radiation sources: gamma radiations from fission product, delayed neutrons, neutrons from the reactor, thermal capture gamma radiations, heating

  7. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  8. Accelerator Based Neutron Beams for Neutron Capture Therapy

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  9. Operation of INDUS-1, India's first synchrotron radiation source

    INDUS-1 is a 450 MeV electron storage ring for the production of Synchrotron Radiation in Visible Ultra Violet (VUV) range with a critical wavelength of 61 A deg. The ring was commissioned in June 1999. Since then it is in regular operation. This Synchrotron Radiation Source (SRS) facility consists of a 20 MeV injector microtron, a 450 MeV booster synchrotron and a storage ring. In this paper operation aspects of INDUS-1 SRS facility will be presented. (author)

  10. Present situation of regulatory control of radiation sources in Cuba

    The report explains the basis for an effective regulatory control and in particular refers to the system established in Cuba for such purposes. Reference is made to the new Decree-Law No. 207 'On the Use of Nuclear Energy' and the main topics it covers and to the 'Rules for Authorization of Practices Involving the use of Radiation Sources' which have been in force since 1998. Following it, the report illustrates the existing Cuban system of notification, registration and licensing, and of inspection and enforcement, including information of the established classification of radiation practices in the country. (author)

  11. Radiation efficiency of earthquake sources at different hierarchical levels

    Kocharyan, G. G., E-mail: gevorgkidg@mail.ru [Institute of Dynamics of Geospheres RAS, Moscow, 119334 (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudny, 117303 (Russian Federation)

    2015-10-27

    Such factors as earthquake size and its mechanism define common trends in alteration of radiation efficiency. The macroscopic parameter that controls the efficiency of a seismic source is stiffness of fault or fracture. The regularities of this parameter alteration with scale define several hierarchical levels, within which earthquake characteristics obey different laws. Small variations of physical and mechanical properties of the fault principal slip zone can lead to dramatic differences both in the amplitude of released stress and in the amount of radiated energy.

  12. High-power bremsstrahlung sources for radiation sterilization

    A theoretical investigation has been made of the radiation processing rate that can be achieved using Bremsstrahlung radiation produced by electrons from an electrostatic accelerator. Computer calculations were made using experimentally measured angular distributions to calculate the spatial distribution of Bremsstrahlung produced by scanned electron beams of 4 and 5 MeV. The calculations take into account scan angle, scan height, and source-product distance to calculate the dose distribution in a homogeneous absorber of uniform density. Several conveyor configurations are examined in order to determine the optimum in terms of overall power efficiency for a given dose uniformity requirement. (author)

  13. Definition of loss-of-coolant accident radiation source

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist

  14. Radiation efficiency of earthquake sources at different hierarchical levels

    Such factors as earthquake size and its mechanism define common trends in alteration of radiation efficiency. The macroscopic parameter that controls the efficiency of a seismic source is stiffness of fault or fracture. The regularities of this parameter alteration with scale define several hierarchical levels, within which earthquake characteristics obey different laws. Small variations of physical and mechanical properties of the fault principal slip zone can lead to dramatic differences both in the amplitude of released stress and in the amount of radiated energy

  15. Gamma radiation levels from a line source of monazite

    Monazite contains some 6% thorium and the thorium decay chain gives rise to gamma radiation emissions. It is often desirable to predict the gamma radiation levels associated with the radioactive decay of the thorium chain in monazite, particularly in situations where storage and transport are involved . The mathematics associated with a radioactive line source are considered and an expression is derived for the prediction of gamma radiation levels from the line source. This is applied to practical situations involving monazite and a mathematical model specifically for monazite is developed. As monazite is transported in bulk bags which are placed inside transport containers, beyond a certain distance from such containers or similar storage devices, the monazite may be considered to approximate a line source. The validity of approximating monazite containers to a line source is checked by comparing the gamma levels predicted by the model with those actually measured in a field situation where transport containers of monazite are involved. 2 refs., 3 figs., 2 tabs

  16. Reactor - and accelerator-based filtered beams

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10-3 eV up to 107 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  17. Source term calculations for assessing radiation dose to equipment

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, ''Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs

  18. Transition radiation as an x-ray source for lithography

    The authors demonstrate that high-intensity soft x-rays from transition radiation can be generated by passing moderate-energy electron beams through targets consisting of multiple foils of beryllium and aluminum. The authors measured the absolute photon flux from five foil targets using a 44-μA, 109-MeV-electron beam, and estimated the photon flux by exposing 4'' silicon wafers coated with PGMA photoresist. All previous measurements of photon production used photon-counting methods. They destructively tested foils at high-average currents for the first time. They exposed photoresist using a mask to produce a soft-x-ray lithograph. This research constitutes the first use of transition radiation as a source of soft x rays for lithography. The results are discussed in this paper. They indicate that moderate-energy linacs with transition radiators offer an alternative method of high power production of soft x rays for lithography

  19. Accelerator-based neutron radioscopic systems

    There is interest in non-reactor source, thermal neutron inspection systems for applications in aircraft maintenance, explosive devices, investment-cast turbine blades, etc. Accelerator sources, (d-T), RFQ accelerators and cyclotrons as examples, are available for either transportable or fixed neutron inspection systems. Sources are reviewed for neutron output, portability, ease of use and cost, and for use with an electronic neutron imaging camera (image intensifier or scintillator-camera system) to provide a prompt response, neutron inspection system. Particular emphasis is given to the current aircraft inspection problem to detect and characterize corrosion. Systems are analyzed to determine usefulness in providing an on-line inspection technique to detect corrosion in aluminum honeycomb aircraft components, either on-aircraft or in a shop environment. The neutron imaging sensitivity to hydrogenous aluminum corrosion product offers early detection advantages for aircraft corrosion, to levels of aluminum metal loss as small as 25 μm. The practical capability for a continuous scan thermal neutron radioscopic system to inspect up to 500 square feet of component surface per day is used as an evaluation criterion, with the system showing contrast sensitivity of at least 5% and image detail in the order of 4 mm for parts 10 cm thick. Under these practical conditions and 3-shift operation, the source must provide an incident thermal neutron flux of 5.6x104 n cm-2 s-1 at an L/D of 30. A stop and go inspection approach, offering improved resolution, would require a source with similar characteristics

  20. Radiological protection issues in endovascular use of radiation sources

    The use of radiation from radioactive materials for cancer treatment is well established. However, examples of uses of radiation therapy for benign conditions have been limited. Placing a radioactive source in the blood vessel so as to irradiate the surrounding inner periphery of the vessel has been attempted in recent years to prevent restenosis after percutaneous coronary and peripheral interventions. This kind of endovascular application provides treatment options that are less invasive for various vascular conditions compared with open surgery. As a part of the International Atomic Energy Agency's (IAEA) function for providing for application of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) that were jointly sponsored by the IAEA, FAO, ILO, OECD/NEA, PAHO and WHO, the IAEA planned a coordinated research project (CRP) that was to start in 2002 on radiological protection problems in endovascular use of radiation sources. However, as experts soon realized that the interest in this modality was waning, the CRP was not initiated. Nevertheless, it was felt that it would be appropriate to compile the information available on radiological protection problems observed so far and their possible solutions. This work was seen as part of a broader IAEA programme that covered accident prevention in radiotherapy. Publications on this topic have included, inter alia, Lessons Learned from Accidental Exposures in Radiotherapy (Safety Reports Series No. 17); Accidental Overexposure of Radiotherapy Patients in Bialystok; Investigation of an Accidental Exposure of Radiotherapy Patients in Panama; Accidental Overexposure of Radiotherapy Patients in San Jose, Costa Rica; and Investigation of an Accidental Exposure of Radiotherapy Patients in Poland. Keeping in mind that endovascular applications involve specialists such as cardiologists, angiologists and surgeons, all of whom might not have a

  1. Regulatory control of radiation sources in the Philippines

    This paper is concerned with the radiation protection and safety infrastructure providing emphasis on the regulation and control of radiation sources in the Philippines. It deals with the experiences of the Philippine Nuclear Research Institute, as a regulatory body, in the regulation and control of radioactive materials in radiotherapy, nuclear medicine, industrial radiography, industrial gauges, industrial irradiators, and well logging. This paper includes an inventory of the sources and types of devices/equipment used by licensed users of radioactive materials in the Philippines as a contribution to the data base being prepared by the IAEA. The problems encountered by the regulatory body in the licensing and enforcement process, as well as the lessons learned from incidents involving radioactive materials are discussed. Plans for improving compliance to the regulations and enhancing the effectiveness of PNRI's regulatory functions are presented. (author)

  2. Helium Reionization Simulations. I. Modeling Quasars as Radiation Sources

    La Plante, Paul

    2015-01-01

    We introduce a new project to understand helium reionization using fully coupled $N$-body, hydrodynamics, and radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium (IGM) as a result of reionization and make predictions about the Lyman-$\\alpha$ forest and baryon temperature-density relation. The dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very important for making reliable predictions. In this first paper, we present a new method for populating dark matter halos with quasars. Our set of quasar models include two different light curves, a lightbulb (simple on/off) and symmetric exponential model, and luminosity-dependent quasar lifetimes. Our method self-consistently reproduces an input quasar luminosity function (QLF) given a halo catalog from an $N$-body simulation, and propagates quasars through the merger history of halo hosts. After calibrating quasar clustering using measurem...

  3. Cosmic Radiation Fields: Sources in the early Universe

    Raue, Martin; Kneiske, Tanja; Horns, Dieter; Elsaesser, Dominik; Hauschildt, Peter

    The workshop "Cosmic Radiation Fields - Sources in the Early Universe" (CRF 2010) focuses on the connection between the extragalactic infrared background and sources in the early universe, in particular stars powered by dark matter burning (Dark Stars; DS). The workshop covers the following topics: the cosmic infrared background, formation of early stars, dark stars, effect of dark matter in the early universe, dark matter halos, primordial star formation rate, and reionization. Further information can be found on the conference webpage: http://www.desy.de/crf2010/. Organizing committee: Tanja Kneiske, Martin Raue, Dominik Elsaesser, Alexander Gewering-Peine, Peter Hausschildt, Dieter Horns, and Andreas Maurer.

  4. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  5. The ALS -- A high-brightness XUV synchrotron radiation source

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory is scheduled to be operational in the spring of 1993 as a US Department of Energy national user facility. The ALS will be a next-generation source of soft x-ray and ultraviolet (XUV) synchrotron radiation. Undulators will provide high-brightness radiation oat photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes approaching 20 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. the high brightness will open new areas of research from the materials sciences, such as spatially resolved spectroscopy, to the life sciences, such as x-ray microscopy with element-specific sensitivity. Experimental facilities (insertion devices, beamlines, and end stations) will be developed and operated by participating research teams working with the ALS staff. 6 refs., 2 figs., 2 tabs

  6. RF gun for an intense THz radiation source

    GU Qiang; ZHAO Zhen-Tang; TONG De-Chun; CHEN Li-Fang; XU Xiu-Min

    2008-01-01

    A new facility is under construction at the Shanghai Institute of Applied Physics,to generate femto-second electron bunches and intense coherent THz radiation pulses.A thermionic RF-gun is used to be the electron source of the linac,which is 1.6 cell,π/2,side coupled in design.In the following of this paper,the design,manufacture and beam operation of this gun are presented.

  7. Experiments planned to be made with the synchrotron radiation source

    For this working meeting, various research groups from the Land Sachsen and from the neighbouring countries Poland and the Czech Republic have been invited in order to present their materials research programmes or task-specific experiments intended to be carried out with the synchrotron radiation source to be installed in the near future. The proceedings volume in hand presents the discussion papers, which have been directly reproduced from the original foils. (orig.)

  8. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume I: Sources

    Over the past few years the United Nations Scientific Committee on the effects of Atomic Radiation has undertaken a broad review of the sources and effects of ionizing radiation. In the present report, the Committee, drawing on the main conclusions of its scientific assessment summarizes the developments in radiation science in the years leading up to the next millennium. It covers the following: the effects of radiation exposure; levels of radiation exposure; radiological consequences of the Chernobyl accident; sources of radiation exposure including natural exposures, man-made environmental exposures, medical and occupational exposures; radiation associated cancer. This volume includes five Annexes covering: dose assessment methodologies; exposure from natural sources; exposures to the public from man-made sources of radiation and occupational radiation exposures

  9. System of the radiation safety provisions during application of the ionizing radiation sources in the radiation technology

    It is noted that in the connection with expansion of the scale of the ionozing radiation sources application in the radiation technology, contingent of persons engaged in operations connected with ionizing radiations application is continiously growing. In this connection, necessity appears to ensure safety of the personnel and population and also to provide radioisotopic purity of the items produced. One of the indices of the radiation safety system is the personnel irradiation level. It is shown that in the exploitation of such a powerful radiation technique as the gamma-irradiation installations and electron accelerators, the doses of the personnel irradiation do not exceed 1.5 ber/year. The personnel irradiation levels in performing gamma-flaw detection in the stationary conditions equals to 0.3 - 0.5 ber/year, and during application of the portable flaw-detectors equals to 2 - 3 ber/year. The radioisotope radiation sources produced nowdays, practically exclude possibilities for radioactive contaminations of the environment and the products subject to irradiations. It is noted that in the USSR some sanitary-legislative and metodological documents have been developed, regulating projecting, constructing and exploitation of different types of radiation technique. Such documents (ESP-gamma, ESP-electron) have been developed and continue to be developed for the CMEA member-states. It is noted that carrying out the complex technical and organizational arrangements aimed at the securing radiation protection during the ionizing radiation sources application has permitted to improve working conditions and to lower considerably the personnel irradiation levels (up to 1.5 -2 times in the period from 1960 to 1975)

  10. Regulatory control of radiation sources and radioactive materials in Ireland

    The primary legislation governing safety in uses of ionizing radiation in Ireland is the Radiological Protection Act, 1991. This Act provided for the establishment in 1992 of the Radiological Protection Institute of Ireland, and gives the Institute the functions and powers which enable it to be the regulatory body for all matters relating to ionizing radiation. A Ministerial Order made under the Act in 2000 consolidates previous regulations and, in particular, provides for the implementation in Irish law of the 1996 European Union Directive which lays down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Under the legislation, the custody, use and a number of other activities involving radioactive substances and irradiating apparatus require a licence issued by the Institute. Currently some 1260 licences are in force. Of these, some 850 are in respect of irradiating apparatus only and are issued principally to dentists and veterinary surgeons. The remaining licences involve sealed radiation sources and/or unsealed radioactive substances used in medicine, industry or education. A schedule attached to each licence fully lists the sealed sources to which the licence applies, and also the quantities of radioactive substances which may be acquired or held under the licence. It is an offence to dispose of, or otherwise relinquish possession of, any licensable material other than in accordance with terms and conditions of the licence. Disused sources are returned to the original supplier or, where this is not possible, stored under licence by the licensee who used them. Enforcement of the licensing provisions relies primarily on the programme of inspection of licensees, carried out by the Institute's inspectors. The Institute's Regulatory Service has a complement of four inspectors, one of whom is the Manager of the Service. The Manager reports to one of the Institute's Principal

  11. Accelerator-based studies of intercombination transitions

    Intercombination transitions in multiply-charged few-electron ions have been studied for a number of years now by a number of methods, including beam-foil spectroscopy. Only very recently it has been realized that the intrinsic properties of the beam-foil light source, in particular the time resolution, offer means to single out and measure such transitions from the multiline spectra of many-electron ions where the exploitation of other light sources has been less successful. Wavelengths and transition rates of these lines provide both a test of many-electron atomic theory and tools for plasma diagnostics. As examples, data on Mg-, Al- and Si-like ions of elements Ti-Zn are presented and compared with tokamak, laser-produced plasma and solar flare data. It turns out that the level of adequacy reached by the various theoretical approaches for predictions of wavelengths and transition probabilities in the individual isoelectronic sequences is very different. However, even calculational schemes which are successful for one sequence are much worse for others. The variety of isoelectronic sequences and the ranges of ionic charge for each of the sequences which are accessible at typical heavy-ion accelerator laboratories are outlined in order to encourage the use of existing facilities for this type of spectroscopy. (orig.)

  12. Testing the integrity of packaging radiation shielding by scanning with radiation source and detector

    This specification deals with the radiological scanning method of inspection for biological shielding (to be used in transport packaging for gamma emitting sources of radiation), of regular thickness, when the sections are to be checked for integrity and homogeneity; it does not establish the adequacy of design. The shielding materials may be lead, iron, steel, heavy alloy (tungsten), and depleted uranium. (author)

  13. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Anania, M.P.; Brunetti, E; Wiggins, S M; Grant, D W; Welsh, G. H.; Issac, R.C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; van der Geer, S. B.; De Loos, M.J.; Poole, M.W.; Shepherd, B. J. A.; Clarke, J A

    2014-01-01

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 106 per shot for a 100 period undulator, with a mean peak brilliance of 1 × 1018 photons/s/mrad2/mm2/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has ...

  14. Fabrication of radiation sources for educational purposes from chemical fertilizers using compressing and forming method

    Chemical fertilizers contain potassium, which is composed of a small amount of naturally occurring potassium-40. The potassium-40 radionuclide emits beta and gamma radiation. Three brands of chemical fertilizer were used to fabricate disk-shaped radiation sources and the fabricated radiation sources were examined for applicability to an educational radiation course. In the examination, tests to determine dependence of count rate on distance, shielding thickness, and shielding materials were conducted using the radiation sources. Results showed that radiation sources fabricated from the three brands of chemical fertilizer were equivalent for explaining radiation characteristics, particularly those related to the dependence of radiation strength on distance and shielding thickness. The relation between shielding effect and mass density can be explained qualitatively. Thus, chemical fertilizer radiation sources can be a useful teaching aid for educational courses to better promote understanding of radiation characteristics and the principles of radiation protection. (author)

  15. Accelerator based techniques for aerosol analysis

    At the 3 MV Tandetron accelerator of the LABEC laboratory of INFN (Florence, Italy) an external beam facility is fully dedicated to PIXE-PIGE measurements of elemental composition of atmospheric aerosols. Examples regarding recent monitoring campaigns, performed in urban and remote areas, both on a daily basis and with high time resolution, as well as with size selection, will be presented. It will be evidenced how PIXE can provide unique information in aerosol studies or can play a complementary role to traditional chemical analysis. Finally a short presentation of 14C analysis of the atmospheric aerosol by Accelerator Mass Spectrometry (AMS) for the evaluation of the contributions from either fossil fuel combustion or modern sources (wood burning, biogenic activity) will be given. (author)

  16. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  17. Health risk assessment of jobs involving ionizing radiation sources

    Spasojević-Tišma Vera D.

    2011-01-01

    Full Text Available The study included 75 subjects exposed to low doses of external ionizing radiation and 25 subjects from the control group, all male. The first group (A consisted of 25 subjects employed in the production of technetium, with an average job experience of 15 years. The second group (B consisted of 25 subjects exposed to ionizing radiation from enclosed sources, working in jobs involving the control of X-ray devices and americium smoke detectors, their average work experience being 18.5 years. The third group (C consisted of 25 subjects involved in the decontamination of the terrain at Borovac from radioactive rounds with depleted uranium left over after the NATO bombing of Serbia in 1999, their average job experience being 18.5 years. The control group (K consisted of 25 subjects who have not been in contact with sources of ionizing radiation and who hold administrative positions. Frequencies of chromosome aberrations were determined in lymphocytes of peripheral blood and compared to the control group. The average annual absorbed dose determined by thermoluminescent dosimeters for all three groups did not exceed 2 mSv. In the present study, the largest number of observed changes are acentric fragments and chromosome breaks. The highest occupational risk appears to involve subjects working in manufacturing of the radio-isotope technetium.

  18. Blast wave radiation source measurement experiments on Z

    The Dynamic Hohlraum (DH) radiation on the Z facility at Sandia National Laboratories is a bright source of radiant energy that has proven useful for High Energy Density (HED) physics experiments. To be useful for HED experiments, where computer simulations need to be compared with experimental measurements, the radiation output from a DH on Z needs to be well-known. We present in this paper a new method for measuring the delivered radiation energy deposited in an experiment, specifically, an experiment driven by a Z DH. This technique uses a blast wave produced in a SiO2 foam, which is initially super-sonic but transitions to sub-sonic, producing a shock at the transition point that is observable via radiography. The position of this shock is a sensitive measure of the radiation drive energy from the Z DH. Computer simulations have been used to design and analyze a Z foam blast wave experiment. This experiment has been shot on Z and experimental results compare favorably with the computations. (authors)

  19. Radiation damage of the ILC positron source target

    Ushakov, A.; Riemann, S.

    2007-11-15

    The radiation damage of the positron source target for the International Linear Collider (ILC) has been studied. The displacement damage in target material due to multi-MeV photons has been calculated by combining FLUKA simulations for secondary particle production, SPECTER data for neutron displacement cross-sections and the Lindhard model for estimations of displacement damage by ions. The radiation damage of a stationary Ti6Al4V target in units of displacements per atom (dpa) has been estimated for photons from an undulator with strength 0.92 and period 1.15 cm. The calculated damage is 7 dpa. Approximately 12.5% of displacement damage result from neutrons. (orig.)

  20. 76 FR 76327 - Installation of Radiation Alarms for Rooms Housing Neutron Sources

    2011-12-07

    ... COMMISSION 10 CFR Part 73 Installation of Radiation Alarms for Rooms Housing Neutron Sources AGENCY: Nuclear... radiation alarms in rooms housing neutron sources. DATES: Submit comments by February 21, 2012. Comments..., Radiation Safety for Research. Mr. Hamawy is concerned about the security of neutron sources. III....

  1. National system of notification, authorization and inspection for the control of radiation sources in Ghana

    The Radiation Protection Board (RPB) was established in 1993 in Ghana as the regulatory authority for radiation protection and safety of radiation sources; its functions are prescribed in the 1993 national radiation protection regulation. The report describes how the country's radiation protection and safety infrastructure have been established, including the RPB's organizational structure, with reference in particular to the main activities carried out by both the Regulatory Control Department and the Radiation and Waste Safety Department. It also briefly mentions the existing RPB human resources; the national system of notification, authorization and inspection of radiation sources; the inventory of radiation sources; and the management of disused radiation sources. Finally, the report identifies the two main problem areas regarding the regulatory control of radiation sources in the country. (author)

  2. Manufacture of 60Co source irradiation facility and measurement of radiation filed

    60Co source radiation facility is an important equipment to produce reference radiation filed, according to national standard, the scattered dose rate must be less than 5% of the total dose rate in the reference radiation filed. Scattered radiation contribution and uniformity of reference radiation field are important parameters to describe the radiation performance of 60CO source irradiation device, Monte Carlo method was used to study the scattered radiation and uniformity of the reference radiation filed to provide theoretical basis for the design of 60CO source irradiating device in order to avoid economic losses caused by design mistakes. When 60CO source irradiating device was manufactured, PTW ionization chamber was used to measure the irradiation field. The results showed that the scattered radiation and uniformity of the radiation filed were in good agreement with the simulation results. The radiation performance met the design requirements. (authors)

  3. Radiation protection for the illegal governmental use of radiation sources. A case study

    Probably for the first time, illegal governmental uses of radiation sources, including the administrative infrastructure such as special radiation protection regulation, an advisory body etc., have been documented by the evaluation of the documents of the Ministry of State Security in the former German Democratic Republic (East Germany). Over a thousand persons, but also documents, money bills etc. were marked with a wide variety of radionuclides and traced with specially developed detectors. Among the many different nuclides provided regularly from the Rossendorf Research Center near Dresden, in particular 46Sc was popular. (orig.)

  4. Radiation protection data sheet. Radiation protection data sheets for the use of radionuclides in unsealed sources

    These radiation protection data sheet are devoted to responsible persons and employees of various laboratories or medical, pharmaceutical, university and industrial departments where radionuclides are handled as well as all the persons who attend to satisfy in this field. They contain the essential radiation protection data for the use of unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography. This new series includes the following radionuclides: californium 252, curium 244, gallium 67, indium 113m, plutonium 238, plutonium 239, polonium 210, potassium 42, radium 226, thorium 232, uranium 238 and zinc 65. (O.M.)

  5. Magnetic mirror cavities as terahertz radiation sources and a means of quantifying radiation friction

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in, E-mail: amol.holkundkar@gmail.com [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Harvey, Chris, E-mail: cnharvey@physics.org [School of Mathematics and Physics, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2014-10-15

    We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tunable by varying the electron's γ-factor. For very high energy particles, radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.

  6. Magnetic mirror cavities as THz radiation sources and a means of quantifying radiation friction

    Holkundkar, Amol R

    2014-01-01

    We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tuneable by varying the electron's $\\gamma$-factor. For very high energy particles radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.

  7. Measurement of parameters in Indus-2 synchrotron radiation source

    Ghodke, A. D.; Husain, Riyasat; Kumar, Pradeep; Yadav, Surendra; Puntambekar, T. A. [Raja Ramanna Centre for Advanced Technology, 452013, Indore (India)

    2012-10-15

    The paper presents the measurement of optics parameters in Indus-2 synchrotron radiation source, which include betatron tune, beta function, dispersion function, natural chromaticity, corrected chromaticity, central RF frequency, momentum compaction factor, and linear betatron coupling. Two methods were used for beta function measurement; a conventional quadrupole scan method and a method using the fitting of the orbit response matrix. A robust Levenberg-Marquardt algorithm was used for nonlinear least square fitting of the orbit response matrix. In this paper, detailed methods for the parameter measurements are described. The measured results are discussed and compared with the theoretical values obtained using accelerator simulation code Accelerator Toolbox in MATLAB.

  8. AREAL test facility for advanced accelerator and radiation source concepts

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  9. Capillary pinching discharge as water window radiation source

    Vrba, Pavel; Vrbová, M.; Jančárek, A.; Nevrkla, M.; Tamáš, M.; Stefanovic, M.

    Cancún: Institute of Physics(IOP), 2009 - (Juárez Reyes, A.), PB15-5-PB15-5. (ICPIG. 29). ISBN N. [The 29th International Conference on Phenomena in Ionized Gases 2009. Cancún (MX), 12.07.2009-17.07.2009] R&D Projects: GA ČR GA102/07/0275 Grant ostatní: GA MŠk.(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : Capillary Z-pinch * water window radiation source * RHMD Z* engine Subject RIV: BH - Optics, Masers, Lasers http://www.icpig2009.unam.mx

  10. Connecting device for radiation source column and film case carriage

    The device consists of an articulated folding arm whose one part is pivoted on a plate attached to the radiation source column while the other is provided with springs and with a stirrup and a recess between the springs. The extended pin on the tomographic part is slidably fitted in the stirrup with recess. The pin is provided with an adjustable contact linked to the microswitch contact. In tomography, the operator mechanically connects the tomography bar fitted in a sleeve to the source, thus disconecting the articulated folding arm from the extended pin of the tomograph. The disconnected arm will then be folded in the vertical position by the action of gravity. At the same time, the microswitch contact displaying the arm position breaks. The double-sided stirrup design makes it possible to use the device in both right-hand and left-hand operation. (J.B.). 2 figs

  11. Design of an electron gun for terahertz radiation source

    An EC-ITC (External-Cathode Independently Tunable Cells) RF gun was employed with the aim of obtaining short-pulse bunches with high peak current for a terahertz radiation source. A gridded DC gun plays a key role as the external injecting electron source of the ITC RF gun, the performance of which determines the beam quality in the injector and transport line. In order to make the beam well compressed in the ITC RF gun, the energy of the electrons acquired from the gridded DC gun should be 15 keV at most. A proper structure of the gridded gun with double-anode is shown to overcome the strong space-charge force on the cathode, which is able to generate 6 μs beam with 4.5 A current successfully. (authors)

  12. Design of an electron gun for terahertz radiation source

    Li, Ji; Hu, Tongning; Chen, Qushan; Feng, Guangyao; Shang, Lei; Li, Chenglong

    2013-01-01

    With the aim to obtain short-pulse bunches with high peak current for a terahertz radiation source, an EC-ITC (External-Cathode Independently Tunable Cells) RF gun was employed. As the external injecting electron source of the ITC RF gun, a gridded DC gun plays a key role, the performance of which determines the beam quality in the injector and transport line. In order to make the beam well compressed in the ITC RF gun, the energy of the electrons acquired from the gridded DC gun should be 15 KeV at most. A proper structure of the gridded gun is shown to overcome the strong space- charge force on the cathode, which is able to generate 6 {\\mu}s beam with 4.5A current successfully.

  13. Categorization of radioactive sources. Revision of IAEA-TECDOC-1191, Categorization of radiation sources

    Radioactive sources are used throughout the world for a wide variety of peaceful purposes in industry, medicine, agriculture, research and education; and they are also used in military applications. The International Basic Safety Standards provide an internationally harmonized basis for ensuring the safe and secure use of sources of ionizing radiation. Because of the wide variety of uses and activities of radiation sources, a categorization system is necessary so that the controls that are applied to the sources are commensurate with the radiological risks. In September 1998, following an assessment of the major findings of the first International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, held in Dijon, France, from 14 to 18 September 1998 (the Dijon Conference), the IAEA's General Conference (in resolution GC(42)/RES/12), inter alia, encouraged all governments 'to take steps to ensure the existence within their territories of effective national systems of control for ensuring the safety of radiation sources and the security of radioactive materials' and requested the Secretariat 'to prepare for the consideration of the Board of Governors a report on: (i) how national systems for ensuring the safety of radiation sources and the security of radioactive materials can be operated at a high level of effectiveness; and, (ii) whether international undertakings concerned with the effective operation of such systems and attracting broad adherence could be formulated'. In February 1999, the Secretariat submitted to the IAEA Board of Governors a report prepared in response to the request made of it by the General Conference. The Board took up the report at its March 1999 session and, inter alia, requested the Secretariat to prepare an action plan that took into account the conclusions and recommendations in the report, and the Board's discussion of the report. In August 1999, the Secretariat circulated a proposed Action Plan for

  14. Borehole disposal of spent radiation sources: 2. initial safety assessment

    Large numbers of spent radiation sources from the medical and other technical professions exist in many countries, even countries that do not possess facilities related to the nuclear fuel cycle, that have to be disposed. This is particularly the case in Africa, South America and some members of the Russian Federation. Since these sources need to be handled separately from the other types of radioactive waste, mainly because of their activity to volume ratio, countries (even those with access to operational repositories) find it difficult to manage and dispose this waste. This has led to the use of boreholes as disposal units for these spent sources by some members of the Russian Federation and in South Africa. However, the relatively shallow boreholes used by these countries are not suitable for the disposal of isotopes with long half-lifes, such as 226Ra and 241Am. With this in mind the Atomic Energy Corporation of South Africa initiated the development of the BOSS disposal concept n-tilde an acronym for Borehole disposal Of Spent Sources n-tilde as part of an International Atomic Energy Agency (IAEA) AFRA 1-14 Technical Corporation (TC) project. In this paper, an initial assessment of long-term postclosure safety of the concept is discussed. (author)

  15. Insurance of Radioisotopes and Ionizing Radiation Sources in France

    Since the early sixties, Assuratome has amassed quite a long experience in the insurance of radioisotopes and more generally of ionising radiation sources when they are used transported or stored outside a nuclear installation. Aware of the specific dangers of such devices, and having no experience in this domain French insurers were looking for a pragmatic solution which would permit to continue to provide cover for users or fabricants of small radioactive sources and in the meantime to keep a rigorous control on the claims and on the loss ratio which would be achieved over the years. Hence the decision was taken by the French Insurance market to entrust the French Nuclear Insurance Pool, Assuratome, as the recommended body for delivering specific 'nuclear policies' as an expert for this category of business. The next step was to make sure that the 'conventional policies' would not provide the same cover. Therefore, an appropriate exclusion clause was introduced in all the general conditions of the TPL Policies of the conventional market and consequently in the majority, if not all, the reinsurance treaties. Besides the obvious advantage resulting in the management of this category of business in a centralised body, a major benefit of this situation is based on the strict control by the insurer of the compulsory authorisation delivered by the authorities to the owner of the radioactive source. Unofficial sources having in principal no insurance possibilities in France their use would be virtually impossible.(author)

  16. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Arabic ed.)

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  17. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  18. Radiation sources for engineering and medicine. 2. rev. and enl. ed.

    The book on radiation sources for engineering and medicine includes the following issues: Part I: Particle accelerators: review on radiation sources; fundamentals on particle accelerators and radiation optics; electron an ion sources, the X-ray tube; DC accelerators; high-frequency generators; hollow wave guides and cavity resonators; linear accelerators; medical electron linear accelerators; ring accelerators; synchrotron radiation and storage rings. Part II: Nuclear reactors and neutron sources: nuclear reactors; neutron sources and their applications. Part III: Radionuclides and their application: radionuclide production; radionuclides in medicine; cobalt radiation facilities for medicine; afterloading facilities for medicine; technical applications for radionuclides. Part IV: Attachments: tables; literature.

  19. Photoluminescence and Photonics: from miniaturised light sources to radiation detectors

    Photonics is the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification. Luminescence phenomena are widely used in solid state light sources and radiation detectors based on point defects in insulators. Among them, 2 ed F3+ aggregate colour centres are induced in lithium fluoride (LiF) by various kinds of ionizing radiation and are laser active in the visible spectral region. They have been studied and successfully used at Frascati ENEA Research Centre for realizing prototypes of both miniaturized light sources, in the form of waveguides and vertical optical micro cavities for integrated optics, and of novel X-ray imaging detectors, based on the optical reading of photoluminescence of the locally induced defects. The highest intrinsic spatial resolution on a wide field of view and their versatility, achieved by the growth of LiF thin films by thermal evaporation, allow using such detectors in the frameworks of nano photonics, life science and energy. Recently, they have been also used in the advanced diagnostics of proton beams, with promising results in imaging and dosimetry based on photoluminescence

  20. The IAEA Regional Training Course on Regulatory Control of Radiation Sources

    Materials of the IAEA Regional Training Course contains 8 presented lectures. Authors deals with regulatory control of radiation sources. The next materials of the IAEA were presented: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. (IAEA-TECDOC-1067); Safety assessment plants for authorization and inspection of radiation sources (IAEA-TECDOC-1113); Regulatory authority information system RAIS, Version 2.0, Instruction manual

  1. Design of a photoneutron source for time-of-flight experiments at the radiation source Elbe

    The new radiation source ELBE uses the high brilliance electron beam from a superconducting LINAC to produce various secondary beams. Electron beam intensities of up to 1 mA at energies between 12 MeV and 40 MeV can be delivered with a wide variability in the electron pulse structure. The small emittance of the electron beam permits the irradiation of very small volumes. These main beam parameters led to the idea to convert the intense picosecond electron pulses into sub-ns neutron pulses by stopping the electrons in a heavy (high atomic number) radiator and to produce neutrons by Bremsstrahlung photons through (γ,n)-reactions. In order to enable the measurements of energy resolved neutron cross sections with a time-of-flight arrangement with a short flight path of only a few meters, it is necessary to keep the volume of the radiator for neutron production as small as possible to avoid multiple scattering of the emerging neutrons which would broaden the neutron pulses. The energy deposition of the electron beam in the small neutron radiator is that high that any solid material would melt. Therefore, the neutron radiator consists of liquid lead flowing through a channel of 11.2*11.2 mm2 cross section. From the thermal and mechanical point of view molybdenum turned out to be the most suited channel wall (thickness 0.5 mm) material. Depending on the electron energy and current up to 20 kW power will be deposited into a radiator volume of 3 cm3. This heating power is removed through the heat exchanger in the liquid lead circuit. Typical flow velocities of the lead are in the range of 2 m/s in the radiator section. Particle transport calculations were carried out using the Monte Carlo codes MCNP and FLUKA. These calculations predict a neutron source strength of 7.88 1012 and 2.67 1013 n/s for electron energies between 20 and 40 MeV. At the measuring place 362 cm away from the radiator, neutron fluxes of 1.7 107 n/cm2*s) will be obtained. The mentioned time

  2. Calculating the background radiation in the vicinity of the beam catchers of the ELBE radiation source

    The ELBE radiation sources comprises beam catchers in the experimenting sites which absorb the primary electron beam as well as the generated secondary radiation. The beam catcher consists of an ultrapure graphite absorber enclosed in a water-cooled stainless steel shell. Background radiation is shielded by iron, lead and heavy concrete. The beam parameters and the position of the beam catchers differ between experimenting sites. In order to determine the dose dependence of photon and neutron fluence and the dose equivalent at the cooling shell of the beam catcher, simulations were carried out using the FLUKA code. Radiation energies of 20 MeV and 50 MeV and electron fluxes of 1 mA were considered. The spatial and energetic distributions of the dose rate equivalent provide a basis for dimensioning of the radiation shields. The calculated distributions of the energy dose rate in the beam catcher serve as a basis for assessing thermal loads on materials and for designing the cooling system. (orig.)

  3. Safety assessment plans for authorization and inspection of radiation sources

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  4. SU-C-16A-06: Optimum Radiation Source for Radiation Therapy of Skin Cancer

    Safigholi, Habib [Science and Research Branch, Islamic Azad University, Fars, Persepolis (Iran, Islamic Republic of); Meigooni, A S. [Comprehensive cancer center of Nevada, Las Vegas, NV (United States); University of Nevada Las Vegas (UNLV), Las Vegas, NV (United States)

    2014-06-15

    Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed using MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively.

  5. SU-C-16A-06: Optimum Radiation Source for Radiation Therapy of Skin Cancer

    Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed using MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively

  6. Effect of solar-radiation density and angular size of radiation source on efficiency of solar power plants

    Krasina, E.A.; Nevezhin, O.A.; Rubanovich, I.M.

    1976-01-01

    The example of a solar thermoemission power plant is used for the analysis of certain features of solar-power-plant operating regimes for various radiation densities and angular sizes of the radiation source. The calculations are performed both on the assumption of exact pointing of the collector optical axis at the radiation source and with allowance for error. Results are reported for plant-efficiency optimization calculations, together with data on the permissible error angles of the solar tracking system.

  7. Crystal Undulator As A Novel Compact Source Of Radiation

    Bellucci, S; Biryukov, V M; Britvich, G I; Chesnokov, Yu A; Giannini, G; Guidi, V; Ivanov, Y M; Kotov, V I; Maisheev, V A; Malagu, C; Martinelli, G; Petrunin, A A; Pikalov, V A; Skorobogatov, V V; Stefancich, M; Tombolini, F; Vincenzi, D; Chesnokov, Yu. A.; Ivanov, Yu. M.

    2004-01-01

    A crystalline undulator (CU) with periodically deformed crystallographic planes is capable of deflecting charged particles with the same strength as an equivalent magnetic field of 1000 T and could provide quite a short period L in the sub-millimeter range. We present an idea for creation of a CU and report its first realization. One face of a silicon crystal was given periodic micro-scratches (grooves), with a period of 1 mm, by means of a diamond blade. The X-ray tests of the crystal deformation have shown that a sinusoidal-like shape of crystalline planes goes through the bulk of the crystal. This opens up the possibility for experiments with high-energy particles channeled in CU, a novel compact source of radiation. The first experiment on photon emission in CU has been started at LNF with 800 MeV positrons aiming to produce 50 keV undulator photons.

  8. Locating radiating sources for Maxwell's equations using the approximate inverse

    We present a new approach to solve inverse source problems for the three-dimensional time-harmonic Maxwell's equations using boundary measurements of the radiated fields. The modelling is based on the formulation as a system of integro-differential equations for the electric field. We introduce a method to recast the intertwined vector equations of Maxwell into decoupled scalar problems. The method of the approximate inverse is used both for regularization and the development of fast algorithms. We make the analysis of the method when data are collected on a spherical setting around the object. Based on the singular value decomposition, we study the smoothing properties for the underlying operator and derive an error estimate for the regularized solution in a Sobolev-space framework. Numerical simulations illustrate the efficiency and practical usefulness of the developed method

  9. ENHANCEMENT OF HYGIENIC REQUIREMENTS TO THE LIMITATION OF THE POPULATION EXPOSURE FROM NATURAL RADIATION SOURCES

    I. K. Romanovich; I. P. Stamat

    2016-01-01

    The article addresses the issues of regulation system development for the population radiation protection due to the exposurefrom natural radiation. Justification of necessity of separate requirements introduction for population radiation protection from exposure due to natural and artificial radiation sources is done.

  10. Strengthening national infrastructures for the control of radiation sources in Armenia

    The paper describes the work carried out in Armenia to establish and strengthen regulatory control over radiation sources, including the development of legislation and regulations, the establishment of a national registry of sources, and the development of licensing procedures and training programmes in the area of radiation protection and the safe use of radiation sources. The paper also describes the Regulatory Information System of ANRA, inventarization and licensing process of radiation sources, implementation of the IAEA Code of Conduct on the Safety and Security of Radioactive Sources in Armenia. (author)

  11. Radiation protection and safety of radiation sources international basic safety standards

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  12. LIGHT SOURCE: Design of a new compact THz source based on Smith-Purcell radiation

    Dai, Dong-Dong; Bei, Hua; Dai, Zhi-Min

    2009-06-01

    In recent years, people are dedicated to the research work of finding compact THz sources with high emission power. Smith-Purcell radiation is qualified for the possibility of coherent enhancement due to the effect of FEL mechanism. The compact experiment device is expected to produce hundreds mW level THz ray. The electron beam with good quality is provided under the optimized design of the electron gun. Besides, the grating is designed as an oscillator without any external feedbacks. While the beam passes through the grating surface, the beam bunching will be strong and the second harmonics enhancement will be evident, as is seen from the simulation results.

  13. Calculations for Tera-Hertz (THZ) Radiation Sources

    Spencer, James

    2005-01-01

    We explore possibilities for THz sources from 0.3 - 30 THz. While still inaccessible, this broad gap is even wider for advanced acceleration schemes extending from X or, at most, W band RF at the low end up to CO2 lasers. While the physical implementations of these two approaches are quite different, both are proving difficult to develop so that even lower frequency, superconducting RF seems to be the currently preferred means. Similarly, the validity of modelling techniques varies greatly over this range of frequencies but generally mandates coupling Maxwell’s equations to the appropriate device transport physics for which there are many options. Here we calculate radiation from shaped transmission lines using finite-difference, time-domain (FDTD) simulations of Maxwell’s equations coupled to Monte-Carlo techniques for both the production and transport physics of short electron pulses. Examples of THz sources that demonstrate coherent interference effects will be discussed with the goal o...

  14. Radiation of complex and noisy sources within enclosures

    Gradoni, Gabriele; Creagh, Stephen; Tanner, Gregor

    Predicting the radiation of complex electromagnetic sources inside semi-open cavities and resonators with arbitrary geometry is a challenging topic both for physics and for engineering. We have exploited a Perron-Frobenius operator to propagate field-field correlation functions of complex and extended sources in free-space. The formula is based on a phase-space picture of the electromagnetic field, using the Wigner distribution function, and naturally captures evanescent as well as diffracted waves. This approach can be extended to study the propagation of correlation functions within cavities, with the ray-dynamical map given by the geometry of the cord connecting a point of the boundary to another. While ray methods provide an efficient way to predict average values of the correlation matrix elements, the use of random matrix theory approaches allows efficient characterisation of statistical fluctuations around these averages. Universal relations are derived and tested in the presence of dissipation for quantum maps and billiard systems. The use of this formalism is discussed in the contexts of open systems with surface roughness. The theory and achieved results are of interest in the simulation of next-generation of wireless communications. Work supported by the UK Engineering and Physical Sciences Research Council.

  15. In vitro unsealed sources. Radiation protection: research sector

    This sheet concerns the use of unsealed radioactive sources, and is addressed at experts in radiation protection (PCR), occupational doctors, employers, and researchers and technicians using these techniques. After a brief indication of practice types and of personnel concerned by this risk, the sheet indicates the operational processes, the hazards and risks. It describes how to assess the risk and to determine exposure levels (elements for risk assessment, delimitation of controlled and monitored areas, workstation studies and personnel classification, choice of the dose monitoring method), presents the risk management strategy (risk reduction, technical measures regarding the installation, the instrumentation, and sources, management of wastes and of effluents contaminated by radionuclides, measures regarding the personnel), presents various aspects of medical monitoring (strengthened monitoring, examinations, case of subcontracting companies, case of pregnant or breast feeding women, medical file and post-occupational monitoring). It addresses what must be done in case of incident or dysfunction (premise or equipment contamination, contamination of a person, administrative aspects), mentions the associated biological, chemical, physical and psychological risks. It describes how risk management is to be assessed. A sheet is provided in appendix which describes the general approach to a workstation study

  16. Indus-2 Synchrotron Radiation Source: current status and utilization

    Indus Synchrotron Radiation complex at Raja Ramanna Centre for Advanced Technology at Indore, India houses two synchrotron radiation sources: Indus-1 and Indus-2. Indus-1 is a 450 MeV source emitting in VUV/ soft x-ray region and operating at 100 mA since 1999. Indus-2 is designed for 2.5 GeV, 300 mA operation and is operating at 2 GeV and 100 mA since March 2010 in 24x7 mode and a beam lifetime of about 22 hrs has been achieved. Operation at 2.5 GeV and 100 mA has recently been demonstrated with the addition of in-house developed solid state RF amplifiers. Indus-2 can accommodate 21 bending magnet (BM) and 5 insertion device (ID) beamlines. Sixteen BM beamlines have been planned and six BM beamlines namely i) Angle Dispersive XRD ii) Energy dispersive XRD iii) Energy dispersive EXAFS iv) Soft and deep x-ray lithography v) X-ray fluorescence micro-probe and vi) X-ray photoelectron spectroscopy beamlines have been commissioned. These are being used by researchers from different universities, national institutes and laboratories for carrying out several investigations. Two more beamlines namely 'Grazing incidence x-ray scattering' and 'Protein crystallography' are nearing commissioning. A number of materials research related problems have been investigated using these beamlines and several papers have already been published. Here we will report on the current status of the source, details of the beamlines already operational, beamlines to be commissioned soon and several up-gradation schemes that are being planned. Five IDs consisting of two soft x-ray planar undulators, one superconducting wavelength shifter / wiggler, one APPLE II soft x-ray helical undulator and one hard x-ray undulator will be installed during the next few years. Three new ID based beamli-nes for Atomic and Molecular physics, Angle integrated / Angle resolved PES and Magnetic Circular Dichroism experiments will be commissioned.

  17. Regulation for oil wells logging using ionizing radiation sources. A draft

    A project to regulate logging activities using ionizing radiation sources in oil wells in Ecuador is proposed. Its development is based on basic concepts of energy, radiation protection and characteristics of oil exploitation in Ecuador

  18. Study on establishment of national information data base for the radiation sources in China

    China is a big developing country with large use of radioactive sources and nuclear technology. There are great number and different types of radioactive sources and radiation emitting apparatus. As a developing country, China still has a long way to go compared with advanced developed countries in the fields of radiation safety management and related technology. Up to now, some basic information are not clear, such as exact number, type, radiation character, purpose of using radiation sources and the owners of the radioactive sources and radiation emitting apparatus. And also, the information system and related data base has not been established yet. Another problem is that the Chinese experts do not fully master the incidents and accidents happened worldwide, so that the effective experience feedback can not be implemented. From preliminary survey there are 30000 - 50000 radioactive sources in China. Some people died or injured by radioactive accidents in the application of radioactive sources and nuclear technology in China. And some accidents such as loss control of radioactive sources caused radioactive contamination dispersion so that the radioactive materials contaminated environment in certain areas in the past. The Chinese government has paid great attention to the radiation safety in the development of radioactive sources and nuclear technology utilization. The radiation safety management and control on radioactive sources and nuclear technology utilization will be strengthened. In order to ensure the radiation safety and master the exact number of the radiation sources in China, we should investigate and integrate the basic information of radiation sources, including the spent radiation sources. The paper suggest to establish the information data base of radiation safety management on radioactive sources and nuclear technology utilization in China, based on the analysis of the present situation and problems in China. The paper also discusses the contents

  19. Study on establishment of national information data base for the radiation sources in China

    Liu Hua; Wu Hao [Nuclear Safety Center, SEPA, Haidian District, BJ (China)

    2000-05-01

    China is a big developing country with large use of radioactive sources and nuclear technology. There are great number and different types of radioactive sources and radiation emitting apparatus. As a developing country, China still has a long way to go compared with advanced developed countries in the fields of radiation safety management and related technology. Up to now, some basic information are not clear, such as exact number, type, radiation character, purpose of using radiation sources and the owners of the radioactive sources and radiation emitting apparatus. And also, the information system and related data base has not been established yet. Another problem is that the Chinese experts do not fully master the incidents and accidents happened worldwide, so that the effective experience feedback can not be implemented. From preliminary survey there are 30000 - 50000 radioactive sources in China. Some people died or injured by radioactive accidents in the application of radioactive sources and nuclear technology in China. And some accidents such as loss control of radioactive sources caused radioactive contamination dispersion so that the radioactive materials contaminated environment in certain areas in the past. The Chinese government has paid great attention to the radiation safety in the development of radioactive sources and nuclear technology utilization. The radiation safety management and control on radioactive sources and nuclear technology utilization will be strengthened. In order to ensure the radiation safety and master the exact number of the radiation sources in China, we should investigate and integrate the basic information of radiation sources, including the spent radiation sources. The paper suggest to establish the information data base of radiation safety management on radioactive sources and nuclear technology utilization in China, based on the analysis of the present situation and problems in China. The paper also discusses the contents

  20. Radiation doses from radiation sources of neutrons and photons by different computer calculation

    In the present paper the calculation technique aspects of dose rate from neutron and photon radiation sources are covered with reference both to the basic theoretical modeling of the MERCURE-4, XSDRNPM-S and MCNP-3A codes and from practical point of view performing safety analyses of irradiation risk of two transportation casks. The input data set of these calculations -regarding the CEN 10/200 HLW container and dry PWR spent fuel assemblies shipping cask- is frequently commented as for as connecting points of input data and understanding theoric background are concerned

  1. Absolutely connected sets of standard radiation sources for dissemination of the activity unit

    Sealed gamma sources and plane beta sources to be used as reference standards have been produced in such a way that in connecting measurements certain corrections have been avoided (e.g. self-absorption) or can be eliminated (e.g. backscattering). The production of the radiation sources and the technique of absolute connection to the primary standard of the activity unit are described for one set of gamma and beta radiation sources each, and a survey of the standard radiation source sets available is given, considering nuclides, type of source, activity and measuring accuracy. (author)

  2. A tunable terahertz radiation source based on a surface wave transformed into Cherenkov radiation in a subwavelength array

    Zhang, Ping; Hu, Min; Zhong, Renbin; Cheng, Xiaoxing; Gong, Sen; Zhao, Tao; Liu, Shenggang

    2016-04-01

    A tunable THz radiation source based on the Cherenkov radiation mechanism is proposed. In the structure of a dielectric medium rod covered by subwavelength metal ring array, the surface wave is excited by electron bunch on the subwavelength metal ring array, and then transformed into Cherenkov radiation in the dielectric medium rod. The working frequency is determined by the intersection of the surface wave dispersion curve and electron beam line, and could be tuned by adjusting the beam energy. The source, which is compact and operable at room temperature, generates radiation with peak power from microwatts up to milliwatts.

  3. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    Sharma S; Kumar Sudhir; Dagaonkar S; Bisht Geetika; Dayanand S; Devi Reena; Deshpande S; Chaudhary S; Bhatt B; Kannan S

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured...

  4. Proceedings of the specialists' meeting on accelerator-based transmutation

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  5. Addition Laws for Intensities of Radiation Emerging from Scattering Atmospheres Containing Energy Sources

    Nikoghossian, A. G.; Kapanadze, N. G.

    2016-03-01

    A group theoretical approach is developed for solving astrophysical radiative transfer problems described in a previous series of papers. Addition laws for observed radiative intensities are derived for the case in which atmospheres not only absorb and scatter radiation incident on them, but radiate themselves because of energy sources contained within them. As an illustration of the application of these laws, several special radiative transfer problems which we believe are of practical interest are discussed.

  6. HELIOS: A new open-source radiative transfer code

    Malik, Matej; Grosheintz, Luc; Lukas Grimm, Simon; Mendonça, João; Kitzmann, Daniel; Heng, Kevin

    2015-12-01

    I present the new open-source code HELIOS, developed to accurately describe radiative transfer in a wide variety of irradiated atmospheres. We employ a one-dimensional multi-wavelength two-stream approach with scattering. Written in Cuda C++, HELIOS uses the GPU’s potential of massive parallelization and is able to compute the TP-profile of an atmosphere in radiative equilibrium and the subsequent emission spectrum in a few minutes on a single computer (for 60 layers and 1000 wavelength bins).The required molecular opacities are obtained with the recently published code HELIOS-K [1], which calculates the line shapes from an input line list and resamples the numerous line-by-line data into a manageable k-distribution format. Based on simple equilibrium chemistry theory [2] we combine the k-distribution functions of the molecules H2O, CO2, CO & CH4 to generate a k-table, which we then employ in HELIOS.I present our results of the following: (i) Various numerical tests, e.g. isothermal vs. non-isothermal treatment of layers. (ii) Comparison of iteratively determined TP-profiles with their analytical parametric prescriptions [3] and of the corresponding spectra. (iii) Benchmarks of TP-profiles & spectra for various elemental abundances. (iv) Benchmarks of averaged TP-profiles & spectra for the exoplanets GJ1214b, HD189733b & HD209458b. (v) Comparison with secondary eclipse data for HD189733b, XO-1b & Corot-2b.HELIOS is being developed, together with the dynamical core THOR and the chemistry solver VULCAN, in the group of Kevin Heng at the University of Bern as part of the Exoclimes Simulation Platform (ESP) [4], which is an open-source project aimed to provide community tools to model exoplanetary atmospheres.-----------------------------[1] Grimm & Heng 2015, ArXiv, 1503.03806[2] Heng, Lyons & Tsai, Arxiv, 1506.05501Heng & Lyons, ArXiv, 1507.01944[3] e.g. Heng, Mendonca & Lee, 2014, ApJS, 215, 4H[4] exoclime.net

  7. Industrial Uses of Large Radiation Sources. Proceedings of a Conference on the Application of Large Radiation Sources in Industry. Vol. II

    Energy in the form of ionizing radiation has not yet been accepted by industry for use in large scale manufacturing processes. Among its various applications, such radiation can sometimes be used to obtain a unique product, sometimes to lower the production costs of an existing material. During the past few years considerable research has been carried out on chemical reactions of potential industrial use and already some processes are emerging to form the basis of a radiation chemical industry. More rapidly advancing is the use of radiation for sterilization, where a number of commercial plants are already in operation for the sterilization of surgical goods. The first international scientific meeting on the use of large radiation sources was held in Warsaw in 1959 and was organized by the International Atomic Energy Agency. Recent progress was discussed at the second IAEA conference on the ''Application of Large Radiation Sources in Industry'' in Salzburg in May, 1963. About 250 scientists from many countries attended the meeting to discuss the 40 papers presented. The papers were considered under three headings: I. Research on applications of potential industrial use; II. Radioisotope power sources; III. Experience, operation and economics. Most of the papers were in the first group and involved a wide variety of subjects. These included synthesis of chemical compounds, copolymerization reactions, possible applications of radiation in the textile industry and radiation-induced vulcanization of rubber. Much interest was centred on the papers in the third group as, for the first time, actual operating experience with large radiation sources, integrated into a full-scale manufacturing process, could be evaluated. The Proceedings of the conference are now being published by the Agency as ''Industrial uses of large radiation sources'' (Vols. I and II) in the hope that the information made available to industry in general will help to promote greater use of radiation

  8. Industrial Use of Large Radiation Sources. Proceedings of a Conference on the Application of Large Radiation Sources in Industry. V. I

    Energy in the form of ionizing radiation has not yet been accepted by industry for use in large scale manufacturing processes. Among its various applications, such radiation can sometimes be used to obtain a unique product, sometimes to lower the production costs of an existing material. During the past few years considerable research has been carried out on chemical reactions of potential industrial use and already some processes are emerging to form the basis of a radiation chemical industry. More rapidly advancing is the use of radiation for sterilization, where a number of commercial plants are already in operation for the sterilization of surgical goods. The first international scientific meeting on the use of large radiation sources was held in Warsaw in 1959 and was organized by the International Atomic Energy Agency. Recent progress was discussed at the second IAEA conference on the ''Application of Large Radiation Sources in Industry'' in Salzburg in May, 1963. About 250 scientists from many countries attended the meeting to discuss the 40 papers presented. The papers were considered under three headings: I. Research on applications of potential industrial use; II. Radioisotope power sources; III. Experience, operation and economics. Most of the papers were in the first group and involved a wide variety of subjects. These included synthesis of chemical compounds, copolymerization reactions, possible applications of radiation in the textile industry and radiation-induce d vulcanization of rubber. Much interest was centred on the papers in the third group as, for the first time, actual operating experience with large radiation sources, integrated into a full-scale manufacturing process, could be evaluated. The Proceedings of the conference are now being published by the Agency as ''Industrial uses of large radiation sources'' (Vols. I and II) in the hope that the information made available to industry in general will help to promote greater use of radiation

  9. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Calcagnile L.

    2012-04-01

    Full Text Available Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD, University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try radiocarbon dating and IB A (Ion Beam Analysis. An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel burned in WTE (Waste to Energy plants.

  10. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  11. Novel particle and radiation sources and advanced materials

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  12. Residual gas analysis system of synchrotron radiation source Indus-2

    Indus-2 is a 2.5 GeV e- storage ring dedicated for its application as Synchrotron Radiation Source (SRS) in the X-ray wavelength region. The beam lifetime is expected to be nearly 20 hours at 300 mA beam current with 2.5 GeV energy. The beam lifetime of 2.5 GeV storage ring is mainly dependent on the vacuum in the storage ring and on the species of gas molecules therein. The residual gas analysis provides the information about gas species present in the Indus-2 vacuum envelope. Eleven Residual Gas Analyzers (RGAs) were installed to know about the residual gas species present inside the Indus-2 vacuum system. A short overview of the installed RGA system is given in detail. During Indus-2 operation residual gas analysis is carried out with RGAs at the important locations. RGAs are also used for in-situ leak detection. This paper outlines the present status of Residual Gas Analysis (RGA) System on Indus-2, its performance over the last few years and their application as leak detector in Indus-2. (author)

  13. Removal of Phenolic Species from Water Sources by Gamma Radiation

    Phenol and substituted phenols may occur in natural, drinking water and industrial waste waters. Those compounds arise typically from petroleum, petroleum industries, chemical refining, livestock dips, breakdown of pesticides, human and animal wastes. All phenols are not removed from water treatment processes, and chlorination of such waters may produce very toxic odorous and objectionable tasting chlorophenols. In this work, the effect of the removal of phenol and substituted phenols from drinking and sewage water were examined by varying Gamma irradiation dose of Cobalt-60 source for the water radiolysis. In addition the effect of substituted position and function group of phenol structure is studied. Radiation effect on initial concentration of phenolic species, dissolved oxygen and PH change during the radiolysis were studied. It was found that the percent removal of all Phenolic species were almost 100% at 1.0 kGy dose when the initial concentrations were set around 5 ppm. If the number of substituted group of phenol was increased, the irradiation dose was also varied depending on the number, type and position of the functional group for total removal of phenolic compound from the solution. (authors)

  14. Radiation education for high school students by measurement sharing method using radiation sources fabricated from potassium chloride chemicals

    In the National Institute for Fusion Science, various exercises are practiced for high school students. One of the exercises is an environmental radiation measurement. In the recent exercise we began to use potassium chloride radiation sources that contained the naturally occurring radioisotope potassium-40. In this study, a measurement sharing method was first applied to the measurements. Through the exercise, students understood the existence of natural radiation and radioisotopes around us, and learned the three principles of radiation protection. According to the questionnaire survey conducted after the exercise, it was found that the environmental radiation measurement by the measurement sharing method using potassium chloride radiation sources was favorably received by many high school students. (author)

  15. Disk shaped radiation sources for education purposes made of chemical fertilizer

    A method for fabricating a disk-shaped radiation source from material containing natural radioisotopes was developed. In this compression and formation method, a certain amount of powdered material is placed in a stainless steel formwork and compressed to form a solid disk. Using this method, educational radiation sources were fabricated using commercially available chemical fertilizers that naturally contain the radionuclide, 40K, which emits either beta or gamma rays, at each disintegration. The compression and formation method was evaluated by inspecting eleven radiation sources thus fabricated. Then the suitability of the fertilizer radiation source as an education aid was evaluated. The results showed that the method could be used to fabricate radiation sources without the need for learning special skills or techniques. It was also found that the potassium fertilizer radiation source could be used to demonstrate that the inverse-square law can be applied to the distance between the radiation source and detector, and that an exponential relationship can be seen between the shielding effectiveness and the total thickness of the shielding materials. It is concluded that a natural fertilizer radiation source is an appropriate aid for demonstrating the characteristics of radiation. (author)

  16. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  17. Educational advertising of the public about the use of radiation sources in technology, research and medicine

    At the latest since Tschernobyl the use of radiation sources and ionizing radiation is due to missing knowledge of the public not affected by popularity but rather by fear. But the question is, whether it would be necessary on the part of the radiation users, not to conceal or mythologise the use, but to emphasize on educational advertising. (orig.)

  18. Trends in use of non-medical radiation sources in Slovenia

    Slovenian Nuclear Safety Administration is the regulatory authority competent also for administrative control in the fields of radiation practices and use of radiation sources in industry and research, with exception in medicine and veterinary medicine. Prior to the adoption of the Act on Protection against Ionizing Radiation and Nuclear Safety the responsible authority was the Health Inspectorate of Republic of Slovenia. The article presents an overview of the use of radiation sources in Slovenia, in industry, research and education. Analysis of the data from abovementioned regulators shall examine trends in use in recent years as number of sources and organizations, and according to the type of their intended use. (author)

  19. COMPARISON OF RADIATION SOURCES FOR PLANT GROWING BY LUMINOUS ENERGY UNIT'S COSTS AND ANALOGS

    Kozyreva I. N.; Nikitin V. D.

    2014-01-01

    The article considers the method of comparison of radiation sources for plant growing by photosynthetic energy units or analogs costs, evaluation of critical values photosynthetic active radiation efficiency at which light-emitting diodes comparable by photosynthetic energy unit's costs with the most common alternative sources for irradiation of plants – high pressure sodium lamps

  20. Determination of the size of a radiation source by the method of calculation of diffraction patterns

    Tilikin, I. N.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.

    2013-07-01

    In traditional X-ray radiography, which has been used for various purposes since the discovery of X-ray radiation, the shadow image of an object under study is constructed based on the difference in the absorption of the X-ray radiation by different parts of the object. The main method that ensures a high spatial resolution is the method of point projection X-ray radiography, i.e., radiography from a point and bright radiation source. For projection radiography, the small size of the source is the most important characteristic of the source, which mainly determines the spatial resolution of the method. In this work, as a point source of soft X-ray radiation for radiography with a high spatial and temporal resolution, radiation from a hot spot of X-pinches is used. The size of the radiation source in different setups and configurations can be different. For four different high-current generators, we have calculated the sizes of sources of soft X-ray radiation from X-ray patterns of corresponding objects using Fresnel-Kirchhoff integrals. Our calculations show that the size of the source is in the range 0.7-2.8 μm. The method of the determination of the size of a radiation source from calculations of Fresnel-Kirchhoff integrals makes it possible to determine the size with an accuracy that exceeds the diffraction limit, which frequently restricts the resolution of standard methods.

  1. Medical management of radiation safety and control of ionizing radiation sources in Armenia

    The events of the last 10 years, Spitak earthquake (1988) and collapse of the former USSR brought forth the changes of the political situation in Armenia and significant disorder in economy, industry, relations, including the radiation safety (RS) and control of the organization of the activities connected with the ionizing radiation sources (IRSs). In 1989 the Armenian Nuclear Power Plant was shut down, and in 1994 it was restarted. In Armenia there are about 750 X-ray rooms, 10 radionuclide diagnostic laboratories, 20 gamma and X-ray units; 95 enterprises in industry, science and technology use the IRSs with different purposes, there are 5 electron particle accelerators of different power capacity. About 6,000 individuals have constant contact to IRS: the roentgenologists, radiologists, the staff of NPP, accelerators, etc. Besides, more than 3,000 liquidators of the Chernobyl NPP disaster live in Armenia. Nowadays, the precise infrastructure of RS is established in Armenia. The regulating body is the 'State Atom Authority', performing the control, coordination and licensing of both enterprises and specialists. Ministry of Health Ministry of Internal Affairs, Ministry of Ecology perform the control of IRSs' delivery into the Republic of Armenia and then their proper use and waste disposal in Armenia. (author)

  2. Radiation protection for the illegal governmental use of radiation sources. A case study

    Becker, K.

    2000-07-01

    Probably for the first time, illegal governmental uses of radiation sources, including the administrative infrastructure such as special radiation protection regulation, an advisory body etc., have been documented by the evaluation of the documents of the Ministry of State Security in the former German Democratic Republic (East Germany). Over a thousand persons, but also documents, money bills etc. were marked with a wide variety of radionuclides and traced with specially developed detectors. Among the many different nuclides provided regularly from the Rossendorf Research Center near Dresden, in particular {sup 46}Sc was popular. (orig.) [German] 'Regierungskriminalitaet' kann man auch im deutschen Strahlenschutz finden. Anhand neuer Dokumentationen der so genannten Gauckbehoerden, ueber die auch schon fluechtig in der Presse berichtet und spekuliert wurde, lassen sich Einzelheiten ueber die Vorgehensweisen einfallsreicher Stasi-Mitarbeiter, die Stasi-eigene Strahlenschutzverordnung und Strahlenschutz-Kommission usw. rekonstruieren. Ueber 1.000 Personen, aber auch Gegenstaende, Dokumente, Geldscheine etc. wurden markiert, wobei unter einer Vielzahl der regelmaessig aus Rossendorf gelieferten Nukliden {sup 46}Sc besonders gern eingesetzt sowie in Dresden spezielle Nachweisgeraete entwickelt wurden. (orig.)

  3. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper

  4. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  5. Tetrode bias power supply for Indus-1, synchrotron radiation source

    An AC regulator based 7 kV, 3 A high voltage DC power supply is designed, fabricated and tested on dummy load for BEL make Tetrode type 15000CX, used in the high power RF amplifier at 31.613 MHz employed with INDUS-1, Synchrotron Radiation Source (SRS). Various protections features like over voltage, under voltage, over current, phase failure and phase reversal are incorporated in this power supply and presented in this paper. As Tetrode amplifier requires various other power supplies in addition to this bias power supply and they are operated in a particular sequence for its healthy operation, suitable interlock arrangements have been incorporated and also presented in this paper. The reliable operation of protection and interlock features incorporated in this power supply has been checked with dummy load under simulated conditions. Three numbers of series limiting inductors, one in each phase, have been incorporated in this power supply to limit fault currents under unfavourable conditions and there by increasing the overall life of this power supply. It will replace existing 7 kV, 3 A HVDC power supply, which is in operation for more than fifteen years with Indus-1 SRS and is likely to be helpful in reducing the down time of Indus-1 SRS. It has better performance features than the existing power supply. The long term voltage stability better than 0.3 % and output ripple less than 0.3 % have been achieved for this Tetrode bias power supply. This power supply is likely to be integrated with INDUS-1 SRS soon. (author)

  6. Radiation sources in the EU. A review of steps in the European Union

    This article reviews the role and activities of the European Union concerning safety of radiation sources. A brief presentation is given of the results from a recent study of the management of radiation sources in EU Member Sates. A Number of legal texts which apply to radiation sources are cited as well. In 1998, the EC co-sponsored together with the IAEA, the International Criminal Police Organization and the World Customs Organization, a Conference on the safety of radiation Sources and the Security of Radioactive Materials in France. Commission supports follow-up actions to that Conference and welcomes the IAEA initiative to develop an action plan that would address the international dimensions of the safety of radiation sources

  7. Method for determination of ratio of absorbed doses created by different radiations from two sources

    The proposed method involves determination of ratio of absorbed doses in a mixed radiation field due to radiations from two different sources, provided that both radiations are of different LET, hence of a different quality factor. A detector used in the method is a tissue-equivalent recombination chamber. Shape of saturation curve of such a chamber depends on LET (on radiation quality). If the shapes of saturation curves are known for the radiations from two sources or for both components of a two-component radiation, then the actual ratio of absorbed dose components created simultaneously by these radiations in the mixed radiation field can be determined, performing relatively simple measurements of the ionization current at two different polarizing voltages applied to the chamber.

  8. Method for determination of ratio of absorbed doses created by different radiations from two sources

    Gryzinski, Michal A., E-mail: m.gryzinski@cyf.gov.p [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland); Zielczynski, Mieczyslaw [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland); Golnik, Natalia [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland)

    2010-12-15

    The proposed method involves determination of ratio of absorbed doses in a mixed radiation field due to radiations from two different sources, provided that both radiations are of different LET, hence of a different quality factor. A detector used in the method is a tissue-equivalent recombination chamber. Shape of saturation curve of such a chamber depends on LET (on radiation quality). If the shapes of saturation curves are known for the radiations from two sources or for both components of a two-component radiation, then the actual ratio of absorbed dose components created simultaneously by these radiations in the mixed radiation field can be determined, performing relatively simple measurements of the ionization current at two different polarizing voltages applied to the chamber.

  9. Some aspects of the regulatory control of radiation sources in Georgia

    The report refers to the responsibilities of the different governmental bodies in Georgia regarding radiation protection and safety of radiation sources. In particular, it explains the role and main activities that are carried out by the Nuclear and Radiation Safety Service which is subordinated to the Ministry of the Environment and Natural Resource Protection. The report emphasizes the important assistance provided by the IAEA in the improvement of the national radiation safety infrastructure. (author)

  10. Management of ionizing radiation sources in university, medical and industrial environments

    This conference treats several subjects relative to the use of radioactive sources. The first session comprises three articles about ionizing sources and regulation. The second session, with three articles, tackles the question of radiation protection in the use of sources in industrial field. The third session, four articles, treats the same question but in the medicine and university media. The fourth session (three articles) is devoted to the organisation of radiation protection in the case of accidents. The fifth session concerns the management of spent sources (three articles). The sixth session studies the radiation protection of sources in Europe. The seventh and final session ends with the part and coordination of actors in radiation protection in the sources management (three articles). (N.C.)

  11. Point Source Detection with Wavelets applied on Cosmic Microwave Radiation Maps

    2008-01-01

    In between the Cosmic Microwave Background (CMB) and the instrument there are other sources of radiation, called foregrounds. The foregrounds radiate in the same frequency bands as the background, and cause contamination in the signal of the CMB. To ensure no wrong estimations of the power spectrum, these contaminants must be removed. There are several classes of contaminants, and this thesis has investigated techniques of removing the point sources (class of extragalactic sources), which occ...

  12. Ionizing radiation sources management in the Commonwealth of Independent States - CIS

    Ionizing radiation sources cover a broad band of power: from powerful NPP reactors and research reactors to portable radioisotope ionizing radiation sources applied in medicine, agriculture, industry and in the energy supply systems of remote facilities. At present, scales and use field of radionuclide sources in the CIS have the tendency to increase. In this connection, the issues of ionizing radiation sources management safety at all stages of their life cycle, from production to treatment, have been of a great importance. The materials on ionizing radiation sources inventory and treatment in the CIS (Russia, Armenia, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan and Ukraine) are presented in the report. It is shown that in some republics, there is difficulty in ionizing radiation sources accounting and control system; the national regulatory and legal framework bases regulating activity on radioactive sources use, localization and treatment require update. Many problems are connected with the sources beyond state accounting. The problem of ionizing radiation sources use safety is complicated by the growing activity of various terrorist groups. The opportunity to use ionizing radiation sources with terrorism goals requires the application of defined systems of security and physical protection at all stages of their management. For this purpose a collective, with all CIS countries, organization of radioactive sources accounting and control as well as countermeasures on their illegal transportation and use are necessary. In this connection, the information collection regarding situation with providing of ionizing radiation sources safety, conditions of equipment and storage facilities, radioactive materials accounting and control system in the CIS countries is vitally needed

  13. Development of quality assurance procedures for production of sealed radiation source

    Nam, J H; Cho, W K; Han, H S; Hong, S B; Kim, K H; Kim, S D; Lee, Y G; Lim, N J

    2001-01-01

    The quality assurance procedures for sealed radiation sources production using HANARO and RIPF have been developed. The detailed quality assurance procedures are essential to manage the whole work process effectively and ensure the quality of the produced sealed sources. Through applying this quality assurance procedures to the entire production works of the sealed radiation sources, it is expected that the quality of the products, the safety of the works and the satisfaction of the customers will be increased.

  14. A basic radiation-education method using a handy-type cloud chamber and natural radiation sources

    Nuclear human resources development becomes increasingly important due to the world trend of expanding nuclear energy utilization in this century. At the Nuclear Human Resource Development Center of the Japan Atomic Energy Agency, many kinds of nuclear and radiation education have been conducted consistently and continuously through its half-century history though having several organizational changes. High level education is required for the specialists of nuclear technology including nuclear power plants operators and engineers, while basic knowledge on nuclear energy and, specially, on radiations and radioisotopes should be given to school students and public. Besides lectures on radiation and radioisotopes, some basic experiments are useful to understand what are radiations and radioisotopes. One of such basic experiments is the cloud chamber experiment. It is a great fun and excitement even for small children as one can actually see the radiation tracks by his/her naked eyes at hand. While there are many types of cloud chambers, we have developed a new-type cloud chamber to use for the radiation education and training s. Using the new-type cloud chamber, we have further developed a new method of this experiment so that the participants can more deeply understand the phenomena and the nature of radiation and radioisotopes. In this method, using a radiation source of natural uranium ore and gaseous radiation source containing Rn-220 obtained from thorium-containing material, they not only observe the radiation tracks but also measure the length and count the number of the tracks. Then they can calculate the energy of the radiation (alpha ray) and can estimate the half-life of the radioisotope (Rn-220). This method can be applied for high-school and general university students as well as for the public as a useful and effective method in the radiation education. (Author)

  15. Overview in Argentina on spent/disused radiation sources

    The paper describes approaches and practices for management of radioactive waste and spent/disused radioactive sources in Argentina. Information on spent sources inventory, their characteristics, available storage and disposal capacities for radioactive waste is provided. (author)

  16. Design and experimental study of a secondary hohlraum radiation source with laser focal spots blocked

    Song, Tianming, E-mail: tianming.song@gmail.com; Zhu, Tuo; Yang, Jiamin; Huang, Chengwu; Wang, Feng; Peng, Xiaoshi; Xu, Tao; Li, Zhichao; Zhang, Huan [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-01-15

    A design of secondary hohlraum radiation source with laser focal spots blocked is introduced. The hard x-ray radiation such as the gold M-band emission and hot electrons from the coronal plasma were designed to be shielded using a cylindrical shield. Three-dimensional view factor analysis was carried out to optimize the shield structure to achieve higher radiation temperature. An experiment was performed at Shenguang III prototype laser facility to verify the design. Velocity Interferometer System for Any Reflector was used to measure the shock wave speed in a three-stepped Al sample driven by this radiation source and the peak radiation temperature of the radiation source was estimated to be about 90 eV.

  17. Loss and recovery of radiation sources in India

    Loss of radioisotope sources occurs as a result of the violation of safe work practices and non-compliance with rules and guidelines. The main causes are human error, negligence in source handling and storage as well as mismanagement and lack of supervision. The failure to adequately supervise and manage leads to a breakdown in communication and differences among workers, supervisors and managers. Recovery of lost sources is generally a tedious task. In India, apart from the efforts of the user institution, a team of scientists from the Bhabha Atomic Research Centre (BARC) undertakes searches and supervises recovery operations. Sources have been lost in brachytherapy and nuclear medicine departments of hospitals and in industrial institutions. For brachytherapy source losses, hospital garbage, dustbins, passages and lifts were the main targets for searches. While gamma ray and neutron sources could be traced for the most part, pure beta ray sources, such as Sr-90 used in ophthalmic applicators or as check sources, could not be recovered. In industrial radiography, the search for sources was more problematic, especially when the sources were stolen or lost in transport. Lost materials could not be traced in only two out of eleven instances of loss of Ir-192 sources since 1986. In a separate incident, sources which had been stolen were found in a deep river: this necessitated an elaborate fishing operation at a cost of some US$100,000. Each occurrence provided lessons calling for the introduction of new control measures. (author)

  18. Synchrotron radiation sources- INDUS-1 and INDUS-2

    The design features of INDUS-1 and INDUS-2 and their radiation characteristics such as variation of flux and brightness with wavelength are discussed. The construction of INDUS-1 and the injector system has reached an advanced stage and the design of INDUS-2 is in a final stage of optimization. The status of the synchrotron radiation facility is discussed briefly. (author). 4 figs., 2 tabs

  19. Indemnification for malignant tumors to personnel handling ionizing radiation sources

    Problems are outlined of medical expertise in according damages for malignant tumors to radiological personnel. The history is briefly shown of defining the methods of assessing tumors induced by radiation, mainly the efforts of the United Nations Scientific Committee on Effects of Atomic Radiation. The concept of probability in assessing the incidence of tumors is explained as used in Czechoslovakia. (L.O.). 4 figs., 3 tabs., 12 refs

  20. Sources of X-radiation based on stochastic acceleration of rape plasma particles

    The results of theoretical and experimental study of stochastic plasma heating are presented. The high efficiency of such heating is shown. The possibility of using such plasma as a source of X-radiation is analyzed. Such sources are compared with the closest known sources

  1. Investigation of aluminised steel as a barrier to tritium using accelerator-based and hydrogen permeation techniques

    Aluminised steel has been proposed as a barrier to tritium permeation in fusion reactors. The properties of these materials as tritium barriers have been studied using accelerator-based techniques and hydrogen permeation methods. The aluminide layers has been characterised by Rutherford backscattering spectroscopy (RBS) and nuclear reaction analysis (NRA) techniques using the 3 MV Dynamitron accelerator based at the School of Physics and Space Research Radiation Centre. The effectiveness of the aluminide layer as a tritium barrier has been measured directly by a conventional permeation apparatus over a range of temperatures. The effect of high temperatures on the structure of the aluminide layer has been examined. Any correlation between the composition of the layer and its effectiveness as a tritium barrier is also discussed. (orig.)

  2. Non-radiating sources, dynamic anapole and Aharonov-Bohm effect

    Nemkov, Nikita A; Fedotov, Vassily A

    2016-01-01

    We show that any non-radiating source can be represented by a combination of identical, spatially localized distributions of electric and toroidal point dipoles. One of the implications is that at every point of an arbitrary non-radiating source there exists a simple universal relation between the electric and toroidal dipole moments. We also present simple means of describing non-radiating sources and discuss a possible scenario for observing the time-dependent version of the Aharonov-Bohm effect in such systems.

  3. Application of sources of ionizing radiation in various fields of the Russian economy and procedures for their utilization

    The paper discusses radionuclides commonly used as sources of ionizing radiation, fields of application of radioactive sources, the decommissioning of spent sources, and procedures to be followed in the Russian Federation for the application of radioactive sources. (author)

  4. Wipe testing of sealed radiation sources using a radiation protection assistant robot

    Both the description of and the operational experience with the radiation protection system at the research reactor WWR-M are presented. The list of the factors regarding the radiation hazards during the reactor routine operation is given and the main activities on the radiation safety provision are established. The statistical information for the staff exposure, the radioactive aerosol releases and the external radiation monitoring is shown. The preliminary considerations on the system upgrading for the decommissioning are presented. (author)

  5. Range of applications of modern superconducting synchrotron radiation sources using the source planned at Karlsruhe (KSSQ) as an example

    The performance of the Karlsruhe synchrotron radiation source which was designed originally for X-ray deep-etch lithography comes close to that of first and second generation synchrotron radiation sources. The range of applications spanned by KSSQ is therefore quite similar to that of those machines. The present report displays a first collection of topics from the fields of surface analysis, solid state and materials research, and biology which could be investigated using KSSQ by interested groups coming from KfK and its surroundings. (orig.)

  6. III. Biological effects of radiation from external and internal sources

    Stone, R.S.

    1948-05-24

    This report focuses on the hemotological effects of total body irradiation from external and internal sources observed in patients treated for arthritis with radioactive phosphorus administered intravenously.

  7. Regulatory control for safe usage of ionizing radiation sources in Bangladesh

    Full text: In Bangladesh, there is a widespread and continuos growth in the use of the ionizing radiation sources both radioactive materials and radiation generating equipment in the field of industry, medicine, agriculture, research, teaching etc. In industry, they are employed in production as well as quality control such as non-destructive testing (radiography), nucleonic gauging, radiotracer techniques and in radiation processing. Medical applications of ionizing radiation include X-ray radiography, X-ray fluoroscopy, CT scan, mammography, nuclear medicine, beam therapy and brachytherapy. Besides radioisotopes are also used for research applications, viz., scattering experiments, tracer studies, etc. In agriculture, the uptake of nutrients by soil, and parts of plants are studied using suitable radionuclides. In all the above applications radioisotopes in two forms namely sealed sources and open sources in different chemical forms are employed with source strengths varying from micro curies to mega curies. The benefits to man from the use of ionizing radiation and sources of radiation are accompanied by risks which may result from exposure of man to ionizing radiation. In order to have an effective control on the use of radiation sources and to ensure radiological safety of the user as well as the public, Government of Bangladesh has promulgated Nuclear Safety and Radiation Control (NSRC) rules 1997 under the NSRC Act 1993. The Bangladesh Atomic Energy commission (BAEC) is the competent authority for formulating rules and regulations for ensuring radiological safety. BAEC is legally responsible for developing and strengthening the necessary radiation protection infrastructure in the country through the effective enforcement and implementation of regulatory requirements, criteria, obligations, guiding, codes etc. in order to save man and the related environment from the deleterious effects of ionizing radiation. In Bangladesh, only those persons who have been

  8. Radiation protection for patients and personnel in diagnostics and therapy with unsealed sources

    The Austrian association for radiation protection in medicine and the union of German practitioners specialized in radiation protection are joining in the task of promoting research in the field of radiation protection, intensifying the exchange of experience among the members of the society and representing the interests of medical personnel as regards radiation protection vis-a-vis interested circles of the public, the health services and similar institutions in science and practice. This range of tasks includes radiation protection of patients and personnel in diagnostics and therapy with unsealed sources. (orig./DG)

  9. Freeze drying method for preparing radiation source material

    Fabrication of a neutron source is specifically claimed. A palladium/californium solution is freeze dried to form a powder which, through conventional powder metallurgy, is shaped into a source containing the californium evenly distributed through a palladium metal matrix. (E.C.B.)

  10. The IAEA's sub programme on the safety of radiation sources and the security of radioactive materials

    In compliance with its mandate to establish standards of safety and to provide for their application with respect to radiation sources, the International Atomic Energy Agency has developed a subprogramme aimed at providing Member States guidance and assistance on achieving regulatory control and the safe use of the sources. The guidance addresses the establishment of a Regulatory Programme, with focus on a system for notification and authorization (registration and licensing) and inspection of radiation sources, including check lists for review of safety. It also includes methods for assessing its effectiveness of the Regulatory Programme and is complemented with tools for the management of data by the Regulatory Authority and Services to assist Member States in assessment and implementation of the programme. In addition, technical guidance for the safety of radiation sources includes both prospective and retrospective safety assessment. Retrospective methods have been used resulting in the publication and dissemination of information and lessons from accidents, both individual accident reports and lessons from collection of accident for the practices with major sources (industrial radiography, irradiators and radiotherapy). Prospective methods will include guidance on the application of the principles of radiation protection to potential exposure, as well as methods to apply the principles, such as identification and evaluation of scenarios. Practice specific reports will address the major radiation sources. A research programme will be dedicated to apply Probabilistic Safety Assessment (PSA) to radiation sources. (author)

  11. Radiation sources supporting the use of natural enemies for biological control of agricultural pests

    Augmentative biological control as a component of integrated pest management programmes involves the release of natural enemies of the pest, such as parasitoids and predators. Several potential uses for nuclear techniques have been identified which can benefit such programmes; these benefits include facilitating trade, protecting the environment and increasing the overall efficacy of the programmes. This may involve sterilising feed material, hosts or even the control insects. Radiation is currently the most favoured sterilising agent, although availability and cost of radiation sources are considered as limiting the use of radiation in support of biological control. This paper reviews various radiation sources that may be used for this purpose, including a comparison of several key parameters such as cost estimates of these radiation sources that should assist in making a judicious selection of a suitable irradiator. (author)

  12. Natural sources of radiation exposure and the teaching of radioecology

    We have developed an experimental activity that introduces concepts of the natural ionizing radiation and its interaction with our contemporary environment that can be used with students from secondary to college level. The experiment is based on the use of traditional and cheap portable Geiger–Müller detectors as survey meters for in situ measurements

  13. Large Radiation Sources for Industrial Processes. Proceedings of a Symposium on the Utilization of Large Radiation Sources and Accelerators in Industrial Processing

    Chemical industries are progressively recognizing the usefulness of high-energy ionizing radiation for initiating chemical syntheses and polymerization reactions. Intense sources of radiation are now available both from particle accelerators and from radioisotopes produced, in quantity by nuclear reactors. The chemical reactions initiated by radiation are easily controlled: many free-radical reactions may be initiated, and for some ionic reactions, radiation obviates the need for a catalyst. Radiation processing, along with other improvements in technology, has already shown significant economic benefits in such fields as the production of composite materials and surface coatings, the modification of textiles and the processing of plastics. Following two previous meetings on the subject in Warsaw (1959) and in Salzburg (1963), the International Atomic Energy Agency convened a third Symposium, on the Utilization of Large Radiation Sources and Accelerators in Industrial Processing, in Munich from 18 to 22 August 1969. About 190 participants from 29 countries and five international organizations attended the meeting to join the discussion of 50 papers. The four main topics of the Symposium were: Chemical synthesis Polymerization and the modification of polymers Dosimetry Engineering. Many developments were reported in radiation-induced polymerization and in the modification of polymers through grafting and cross-linking. There were descriptions, not only of pilot plants, but also of the design of radiation systems for continuous-flow production. Many papers dealt both with theory and practice and some papers identified areas in which intensive research is likely to bring forth new economic applications of radiation processing. These Proceedings, containing the papers and the discussions, will, it is hoped, help to promote this technology as one of the major contributions of nuclear techniques to modern industry

  14. Radiation detectors and sources enhanced with micro/nanotechnology

    Whitney, Chad Michael

    The ongoing threat of nuclear terrorism presents major challenges to maintaining national security. Currently, only a small percentage of the cargo containers that enter America are searched for fissionable bomb making materials. This work reports on a multi-channel radiation detection platform enabled with nanoparticles that is capable of detecting and discriminating all types of radiation emitted from fissionable bomb making materials. Typical Geiger counters are limited to detecting only beta and gamma radiation. The micro-Geiger counter reported here detects all species of radiation including beta particles, gamma/X-rays, alpha particles, and neutrons. The multi-species detecting micro-Geiger counter contains a hermetically sealed and electrically biased fill gas. Impinging radiation interacts with tailored nanoparticles to release secondary charged particles that ionize the fill gas. The ionized particles collect on respectively biased electrodes resulting in a characteristic electrical pulse. Pulse height spectroscopy and radiation energy binning techniques can then be used to analyze the pulses to determine the specific radiation isotope. The ideal voltage range of operation for energy discrimination was found to be in the proportional region at 1000VDC. In this region, specific pulse heights for different radiation species resulted. The amplification region strength which determines the device sensitivity to radiation energy can be tuned with the electrode separation distance. Considerable improvements in count rates were achieved by using the charge conversion nanoparticles with the highest cross sections for particular radiation species. The addition of tungsten nanoparticles to the microGeiger counter enabled the device to be four times more efficient at detecting low level beta particles with a dose rate of 3.2uR/hr (micro-Roentgen per hour) and just under three times more efficient than an off the shelf Geiger counter. The addition of lead

  15. Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality

    Yu, Lifeng; Christner, Jodie A.; Leng, Shuai; Wang, Jia; Fletcher, Joel G.; McCollough, Cynthia H.

    2011-01-01

    Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose.

  16. Recommendations for the safe use and regulation of radiation sources in industry, medicine, research and teaching

    The use of radiation sources of various types and activities is widespread in industry, medicine, research and teaching, and is increasing yearly. The safety record has been admirable, although incidents have occurred where loss of control of radiation sources has given rise to unplanned exposures to workers, medical patients and members of the public, sometimes with fatal results, while in other situations exposure may not have been as low as reasonably achievable. This publication is intended as a practical aid for all concerned with operational radiation protection connected with the use of radiation sources in industry, medicine, research and teaching, from the point of view of both the user of such sources and the regulatory bodies. Refs, figs

  17. The regulatory control of radiation sources in Australia -- The challenges of a federal system

    The report refers to the challenges that Australia is facing, as a federal nation having a Commonwealth Government and six States and two territories, in establishing appropriate regulatory control of radiation sources. Information on the national inventory of radiation sources and existing regulatory infrastructure, including the system of notification, registration, licensing, inspection and enforcement, is explained in the report. The national provisions for the management of disused sources; the planning, preparedness and response to abnormal events and emergencies; the recovery of control over orphan sources; and education and training; are specifically emphasized. (author)

  18. Permanent activity assuring safety of radiation sources used by the Ministry of Defense

    Radiation sources used by the French Ministry of Defence are under a statutory surveillance. Different type of sources are bound by authorisation, acquisition and utilisation procedures coming from the French common law. Systematic and periodic controls are ruled by decree. Radiation sources used by all the organisations of the French Ministry of Defence are indexed by the S.P.R.A. (Army Radio Protection Service). The necessary stages for acquisition, possession, utilisation and elimination of each source may be controlled by the S.P.R.A. (author)

  19. The TPLUS project: a table-top tunable parametric UV radiation source

    We present the project of a parametric radiation source, the Tunable Parametric Laboratory Ultraviolet Source (TPLUS). We aim at building a prototype of such a source with an electron gun of moderate energy, 100 keV, interacting with a periodic multilayer within a high vacuum experiment chamber. The objective of this table-top facility is to provide users with a cost-effective, simple-handling mean to provide a tunable and intense radiation source in the extreme UV and soft X-ray ranges.

  20. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  1. Safety of radiation sources and security of radioactive materials. A Romanian approach

    After a brief explanation on the scope of applications of nuclear energy and practices with ionizing radiation in Romania, the report explains the current national infrastructure for radiation safety making reference in particular to the National Commission for Nuclear Activities Control as the regulatory authority for the safety of radiation sources. The report also describes the existing legal framework, provides information on the list of normative acts in force, and on the system of authorization, inspection and enforcement, which operates effectively. (author)

  2. Concepts and examples for the inclusion of natural radiation sources in radiological protection control

    Natural radiation sources are already included in the system of radiological protection control and are dealt with like artificial radiation sources if their radioactive, fissile or fertile properties are used. According to international recommendations the Council of European Union now demands that also other natural radiation sources should be included in the system of radiological protection if the exposure of workers or members of the public cannot be disregarded from the radiation protection point of view. Since natural radiation sources are omni-present in the living and working environment they, as against artificial ones, cannot be generally included in the control system and decisions have to be made on the natural radiation sources that can possibly be included. In this process the following issues have to be taken into account. The first is the amenability of the radiation exposure to a control. If the radiation exposure due to a natural radiation source is unamenable to a control it stays excluded from the control system: K 40 in the body, cosmic rays at ground level, and above ground exposure to the terrestrial radionuclides in the undisturbed earth's crust. All other radiation exposures due to natural radiation sources are regarded as amenable to a control. However, in deciding on the inclusion of these a second issue has to be considered. Only if the presence of these sources leads to a significant increase in the exposure of workers or members of the public which cannot be disregarded from the radiation protection point of view they should be included in the control system. As the exposure levels resulting from these sources vary widely the international organisations recommend deciding the inclusion of such natural radiation sources at national level taking into account both the levels of radiation exposure in the country and the national resources available for the control. The paper illustrates the concept for the inclusion of natural radiation

  3. Theory for beam-plasma millimeter-wave radiation source experiments

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  4. Source parameters and radiation efficiency for intermediate-depth earthquakes in Northeast Japan

    Nishitsuji, Y.; Mori, J.

    2013-01-01

    We estimated source parameters of 216 intermediate-depth (65–150 km) earthquakes (Mw 4.0–7.0) in the Pacific slab beneath Japan along using Hi-net data. We made determinations of static stress drop, radiated energy and radiation efficiency, along with estimates of the whole path attenuation, to stud

  5. Theory of harmonic radiation using a single-electron source model

    Schmitt, M.J.; Elliott, C.J.

    1989-01-01

    Significant progress has recently been made toward the understanding of the various mechanisms that generate harmonic radiation in plane-polarized free electron lasers. Within the context of a single-frequency coherent-spontaneous emission model, a distributed transverse source function for a single electron has been derived. This source is multiply peaked, with the number of peaks being equal to the harmonic number. The peaks and nulls in the radiation source are analogous to the radiation peaks seen in the spontaneous radiation pattern of a single electron. When the distributed source function is averaged over transverse space, the simplified one-dimensional results are recovered. The distributed source function model predicts the generation of even harmonic radiation with odd-symmetry in the electron wiggle plane (for electrons traveling along the wiggler axis) and odd harmonic radiation patterns with even transverse symmetry. A method for modeling the multi-pole nature of the harmonic radiation on a discrete grid is described. When the transverse electron beam distribution is slowly varying, all the harmonics can be adequately modeled with multi-poles having only a few peaks. This model has been incorporated into the 3-D FEL simulation code FELEX. Simulations of the Los Alamos and Stanford FEL oscillators have been performed. How the harmonic transverse spatial electric field profiles change for different operating conditions is examined. 11 refs., 5 figs.

  6. Radiation Tolerant Low Power Precision Time Source Project

    National Aeronautics and Space Administration — The availability of small, low power atomic clocks is now a reality for ground-based and airborne navigation systems. Kernco's Low Power Precision Time Source...

  7. A radiation protection initiative to map old radium sources

    Due to a legacy of past events, the Technology and Health Department of the Instituto Superiore di Sanita (ISS) has preserved an old, large archive of the allocation of radium sources in public hospitals. These sources were purchased by the Ministry of Interior first, then by the Ministry of Health, and provided to hospitals for cancer brachytherapy. After a retrieval initiative - organised in the 1980's, but discontinued some years later owing to the saturation of the temporary storage site - a considerable number of these sources remained in the hospitals. As a result of an incomplete transfer of the retrieval data, some events connected with the second world war, and the decision of some hospitals to dispose directly of their sources without informing the ISS, the archive was not completed and a series of initiatives were undertaken by the ISS to update it. On the other hand, following the concerns that arose after September 11th, 2001 about the possible criminal use of radioactive sources, the Carabinieri Environmental Care Command (CCTA) were required by the Minister of Environment to carry out a thorough investigation into all possible nuclear sources and waste in the country. Special attention was devoted to radium sources because of the high risk their loss or theft entails. For this reason, in 2004, the CCTA made an agreement with the ISS to acquire a final, updated picture of the distribution of these radium sources. In March 2007 a comprehensive report on this collaborative action and its conclusions was officially sent to both the Ministry of Health and the Ministry of the Environment. The paper describes the involvement of these two bodies in the issue, their collaborative action and the most relevant results. (author)

  8. Determining the temperature and density distribution from a Z-pinch radiation source

    High temperature radiation sources exceeding one hundred eV can be produced via z-pinches using currently available pulsed power. The usual approach to compare the z-pinch simulation and experimental data is to convert the radiation output at the source, whose temperature and density distributions are computed from the 2-D MHD code, into simulated data such as a spectrometer reading. This conversion process involves a radiation transfer calculation through the axially symmetric source, assuming local thermodynamic equilibrium (LTE), and folding the radiation that reaches the detector with the frequency-dependent response function. In this paper the authors propose a different approach by which they can determine the temperature and density distributions of the radiation source directly from the spatially resolved spectral data. This unfolding process is reliable and unambiguous for the ideal case where LTE holds and the source is axially symmetric. In reality, imperfect LTE and axial symmetry will introduce inaccuracies into the unfolded distributions. The authors use a parameter optimization routine to find the temperature and density distributions that best fit the data. They know from their past experience that the radiation source resulting from the implosion of a thin foil does not exhibit good axial symmetry. However, recent experiments carried out at Sandia National Laboratory using multiple wire arrays were very promising to achieve reasonably good symmetry. For these experiments the method will provide a valuable diagnostic tool

  9. Terahertz radiation source using an industrial electron linear accelerator

    Kalkal, Yashvir

    2015-01-01

    High power ($\\sim 100$ kW) industrial electron linear accelerators (linacs) are used for irradiation applications e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high power electron beam from such an industrial linac can be first passed through an undulator to generate powerful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for industrial applications. This will enhance the utilisation of a high power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of $\\mu$W can be produced, which may be useful for many scientific applications.

  10. Polymer research at synchrotron radiation sources: symposium proceedings

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed

  11. Polymer research at synchrotron radiation sources: symposium proceedings

    Russell, T.P.; Goland, A.N. (eds.)

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  12. Crossed undulator system for a variable polarization synchrotron radiation source

    A crossed undulator system can produce synchrotron radiation whose polarization is arbitrary and adjustable. The polarization can be linear and modulated between two mutually perpendicular directions, or it can be circular and can be modulated between right and left circular polarizations. The system works on low emittance electron storage rings and can cover a wide spectral range. Topics discussed include the basic principle of the system, the design equations and the limitations in performance

  13. Electron bunch length measurement at the radiation source ELBE

    In this study, measurement of electron bunch length at the ELBE Free Electron Laser (FEL) in the Forschungszentrum Dresden (FZD) is represented. Transition radiation is emitted when an electron passes the interface of two mediums of different dielectric constants. In case that the wavelength of the radiation is longer than the bunch length, coherent transition radiation (CTR) is emitted. The time profile of the CTR is a copy of the electron bunch longitudinal profile. The Martin-Puplett interferometer (MPI) is used to measure the autocorrelation function of the CTR pulse. The power spectrum and the bunch length information is obtained by Fourier transforming the measured autocorrelation function. There are different approaches for obtaining the bunch length from the MPI measurements. The data can be evaluated in the time domain as well as in the frequency domain. We can derive the longitudinal shapes of the electron bunch by analyzing the frequency information. The Measurement of the longitudinal electron bunch length is compared with the frequency domain method

  14. The spacetime outside a source of gravitational radiation: The axially symmetric null fluid

    Herrera, L; Ospino, J

    2016-01-01

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric spacetimes. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the $1+3$ formalism.

  15. IAEA standard syllabus of a course to acquire competence on ionizing radiation sources activities

    The specialized training for Ionizing Radiation Sources (IRS) activities is conducted according to educational syllabuses developed for every job position in compliance with art. 12, (3) of new Regulation of the conditions and procedure for acquiring professional qualification and for the procedure for issuing licenses for specialized training and certificates for qualification for use of nuclear energy. A brief review of the modular structure of the standard syllabus of the Postgraduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is presented in this paper. The content and level of training for categories of persons engaged in different practices are also listed

  16. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  17. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (Russian Edition)

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  18. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  19. Sources

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  20. Monitoring Of Radiation Exposure Source In PPTA Serpong

    The radiation exposure in the of P PTA Serpone was measured by means of MCA micro nomad. The computer codes NAGABAT was used for analyzing the contribution of natural gamma rays to the exposure rate in the measuring locations. Measurement was taken for 14 locations, under conditions that the nuclear facilities are not in operation. The result showed that the exposure varieties, dependently on potassium, uranium and thorium contents in the environment matrix. The maximum of thorium, uranium and potassium are in amount of 5,269 ppm; 1,650 ppm; and respectively 0,72 %

  1. Pinching Capillary Discharge as a Water Window Radiation Source

    Vrba, Pavel; Zakharov, S.V.; Jančárek, A.; Vrbová, M.; Nevrkla, M.; Kolař, P.

    2011-01-01

    Roč. 184, 3-6 (2011), s. 335-337. ISSN 0368-2048. [The 37th International Conference on Vacuum Ultraviolet and X-ray Physics (VUVX2010). Vancouver, 11.07.2010-16.07.2010] R&D Projects: GA MŠk LA08024 Institutional research plan: CEZ:AV0Z20430508 Keywords : Capillary Z-pinch * water window radiation * soft x-ray spectral diagnostics * RHMD Z* engine Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.958, year: 2011 http://www.sciencedirect.com/science/article/pii/S0368204810002847

  2. A biotechnological project with a gamma radiation source of 100,000 Ci

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The latter is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost. (author)

  3. A biotechnological project with a gamma radiation source of 100,000 Ci

    Lombardo, J. H.; Smolko, E. E.

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The later is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost.

  4. A biotechnological project with a gamma radiation source of 100,000 Ci

    Lombardo, J.H.; Smolko, E.E. (Comision Nacional de Energia Atomica, Buenos Aires (Argentina))

    1990-01-01

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The latter is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost. (author).

  5. Hygiene of labour of medical personnel when dealing with ionizing radiation sources

    The 25-year experience in research efforts and introduction of the radiation protection system for medical personnel, including the materials of long-term investigations in this field carried out by the authors, is generalized. The characterization of the factors of radiation and nonradiation hazards, dynamics of the personnel radiation doses depending on the standard of development of radiation engineering, qualification and profession are presented. The information on the state of health of the personnel working with ionizing sources is given. Practical recommendations on further improvement of hygiene and sanitary labour conditions for medical personnel are given

  6. New regulations for the protection of man and the environment against natural sources of radiation

    The Council directive 96/29/Euratom issued on May 13, 1996, laying down basic safety standards for the protection of the health of workers and the general public against the dangers from ionising radiation, requires that the Member States of the EU make provisions for radiation protection measures relating to natural sources of radiation - even when their radioactive characteristics are not used - in cases where exposures due to natural radiation are significantly increased. This requirement is implemented within German national legislation in the new version of the Radiation Protection Ordinance (StrlSchV), which now includes a new regulative area covering this aspect. As the possibilities of exercising control over sources of radiation of natural origin are significantly limited compared to other radiation applications, the regulations affecting natural sources differ in certain respects. The regulations are limited here to those practices which may lead to radiation exposures to workers or members of the public in excess of 1 mSv. These regulations are directed primarily at the employer, and define the employer's responsibilities with respect to this area of health and occupational protection. Extensive licensing and monitoring procedures to be applied by the competent authorities are avoided in this respect. (orig.)

  7. Assessment of occupational exposure due to external sources of radiation. Safety guide

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  8. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  9. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    Takemoto, Mitsuhiro; Katsui, Kuniaki; Yoshida, Atsushi [Okayama Univ. (Japan). School of Medicine] [and others

    2003-05-01

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  10. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p, n)7Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7Li(p, n)7Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  11. Tandem-ESQ for accelerator-based BNCT

    A project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) is described. A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p,n)7Be reaction beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the '7Li(p,n)7Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. (author)

  12. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  13. Induction of betalain pigmentation in hairy roots of red beet under different radiation sources

    The effect of different radiation sources - blue (B), red (R), R plus B (RB), B plus far red (BFr), R plus far red (RFr) - was tested on the growth of hairy roots and betalain accumulation in Beta vulgaris (red beet). Light emitting diodes were used as radiation sources. The growth of hairy roots under different radiation treatments depended on radiation quality. Highest biomass accumulation was under the BFr treatment. BFr treatment efficiently induced betalain pigmentation in hairy roots. Total sugar and sucrose concentrations of hairy roots were also greater in this treatment. Thus, the betalain pigmentation in the cultured hairy roots can be influenced by radiation quality and BFr is most suitable for accumulation of betalains. (author)

  14. Internet as a Source of Misconception: "Radiation and Radioactivity"

    Acar Sesen, Burcin; Ince, Elif

    2010-01-01

    The purpose of this study is to examine students' usage styles of the Internet for seeking information and to investigate whether information obtained from the Internet is a source of misconceptions. For this reason, a two-stage study was conducted. At the first stage, a questionnaire was developed to get information about students' Internet usage…

  15. Radiation source states on-line supervision system design and implementation based on RFID technology

    It puts forward radiation source states on-line monitoring resolution based on RFID technology. Firstly, the system uses RFID in real-time transmission of the radiation dose rate, and monitors the radiation source states and dose rate of the surrounding environment on-line. Then it adopts regional wireless networking mode to construct enterprise level monitoring network, which resolves long-distance wiring problems. And then it uses GPRS wireless to transport the real-time data to the monitoring center and the government supervision department, By adopting randomly dynamic cording in display update every day, it strengthens the supervision of the radiation source. At last this system has been successful applied to a thickness gauge project, which verifies the feasibility and practicality is good. (authors)

  16. Prospects for the study of biological systems with high power sources of terahertz radiation

    The emergence of intense sources of terahertz radiation based on lasers and electron accelerators has considerable potential for research on biological systems. This perspective gives a brief survey of theoretical work and the results of experiments on biological molecules and more complex biological systems. Evidence is accumulating that terahertz radiation influences biological systems and this needs to be clarified in order to establish safe levels of human exposure to this radiation. The use of strong sources of terahertz radiation may contribute to the resolution of controversies over the mechanism of biological organization. However the potential of these sources will only be realized if they are accompanied by the development of sophisticated pump–probe and multidimensional experimental techniques and by the study of biological systems in the controlled environments necessary for their maintenance and viability. (perspective)

  17. The synchrotron radiation angiography program at the national synchrotron light source

    The National Synchrotron Light Source (NSLS) angiography program is under development. The program is a collaboration between the Stanford University Angiography Project and the NSLS. A 180 m2 clinical facility has been built. A beam line is being constructed to utilize a superconducting wiggler radiation source. Projected start-up date for the NSLS program is Summer 1988

  18. Solid-state radiation detectors for active personal dosimetry and radiations source tracking

    We report on the design of the readout electronics using PIN diode radiation detector of 5 mm thickness for nuclear safety and active personal dosimetry. Our effort consisted in designing and fabricating the electronics to reflect the needs of gamma radiations dosimetry and hybrids PIN diode arrays for charged particle detectors. We report results obtained during testing and characterizing the new devices in gamma fields, operating at room temperature. There were determined the energy spectrum resolution, radiation hardness and readout rate. Also, data recording methods and parallel acquisition problems from a transducer matrix are presented. (authors)

  19. Safety assessment of the disposal of sealed radiation sources in boreholes

    The Radioactive Waste Management Laboratory (RNML) at the Nuclear Energy Research Institute (NERI) in Sao Paulo, Brazil, is developing the concept of a repository for disused sealed radiation sources in a deep borehole. Several thousands disused sealed radiation sources are stored at NERI awaiting the decision on final disposal and tens of thousands are still under the possession of the licensees. A significant fraction of these sources are long-lived and will require final disposal in a geological repository. The purpose of this paper is to identify and discuss suitable safety assessment strategies for the repository concept and to illustrate a rational approach for a long-term safety assessment methodology. (author)

  20. Control of the safety of radiation sources and the security of radioactive materials

    Since its creation in 1950, the National Atomic Energy Commission (CNEA) of Argentina, was established as the competent authority in the control of nuclear applications in relation to the protection against the hazardous effects of ionizing radiation and the safety of installations. In 1958, the Executive issued Decree 842 approving the Regulation for Using Radioisotopes and Ionising Radiations, to control use and application of radioactive materials and radiation emitted by them or from nuclear reactions. A part of the CNEA, the Regulatory Branch, was then formed and very rapidly established itself as the national authority in the areas of radiation and nuclear safety, safeguards and non-proliferation assurances, and physical protection. In the present paper, only the control of radioactive sources will be presented. The Nuclear Regulatory Authority (ARN) is empowered to establish standards and enforce their application to the possession and use of radiation sources. The regulatory goals are: ensure that the radioactive materials are imported, exported produces, transferred, stored, used, or disposed of, only by registrants or licensed persons in authorised or licensed installations, as required by Argentine regulations; ensure that registrants or licensees do everything reasonable and compatible with their possibilities regarding safety and security of radiation sources; ensure that the radioactive materials are handed over to another user, or are disposed of as radioactive waste, only when transfer or disposal was specifically authorised by the Regulatory Authority; keep an updated database of all the sealed radioactive sources in use in the country; prevent the illicit traffic of radiation sources; ensure safety and security of disused radioactive sealed sources, doing whatever necessary to maintain the required control; ensure that technical characteristics of imported of locally produced radioactive sources comply with Argentine safety requirements

  1. Brachytherapy with 125-Iodine sources: transport and radiation protection

    The estimates for the year 2009 show that 466,730 new cancer cases will occur in Brazil. Prostate cancer is the second most incident type. Brachytherapy, a type of radiotherapy, with Iodine-125 sources are an important form of treatment for this kind of cancer. The Instituto de Pesquisas Energeticas e Nucleares (IPEN) created a project to develop a national prototype of these sources and is implementing a facility for local production. The seeds manufacture in Brazil will allow to diminish the treatment cost and make it possible for a larger number of patients. While the laboratory is not ready, the IPEN import and it distributes seeds. This work aim is to present and evaluate the transport procedures and the radiological protection applied to imported sources in order to assist the procedures for the new laboratory implementation. Before sending to hospitals, the seeds are packed by a radioprotector supervisor, in accordance with CNEN NE 5.01 standard 'Radioactive Material Transport'. Despite Iodine-125 presents low energy photons, around 29 keV, local and personal dosimeters are used during the transport process, as described in CNEN NN 3.01 standard 'Radiological Protection Basic Guideline'. All the results show no contamination and very low exposure, proving the method to be valid. The transport procedure used is correct, according to the regulations. As an result of this work, a new dosimeter should be installed and evaluate in future study. (author)

  2. Absolute technique for neutron source calibration by radiation induced activity

    The neutron yield from a Radium Beryllium neutron source has been determined experimentally by the induced Mn-56 activity. The neutron source was placed in the center of a tank filled with aqueous manganese sulphate (MnSO4) solution. Irradiation time usually lasted about 16-18 hours in order to secure saturation. The average induced Mn-56 activity within the MnSO4 bath was then measured by the use of NaI scintillation detector. This detector was placed in a sealed aluminum jacket at the center of the tank. This detector was connected with the necessary electronic counting system and was pre calibrated against a 4 πβ-γ coincidence counting system. The efficiency of the NaI counting system as a function of MnSO4 solution density is investigated as well as the proper dimension of the used tank for the sake of calibration purposes. The neutron leakage within the MnSO4 baths was also investigated for different dimensions of tanks. The experimental errors involved in the counting system were also considered. The numerical value of neutron yield from the used radium beryllium neutron source was given with its corresponding statistical errors as (1.10 + 0.065) x 106 neutron per second

  3. Admixtures in Spent Plutonium Sources and Gamma-Radiation

    Inga Pelanytė

    2011-04-01

    Full Text Available The isotopic composition of several spent smoke detectors containing plutonium has been investigated. The article also presents the calculated results of 241Am and 241Pu activities in smoke detectors. The received values vary from (0.934±0.028 MBq to (91.2±4.6 MBq. The eguivalent dose rate of the established gamma radiation vary from 220 nSv/h to 500 nSv/h. A dose caused by artificial radionuclides in spent smoke detectors was evaluated and compared in the article. It has been found out that due to smoke detectors, an annual dose varies from 0.06 mSv to 0.31 mSv. Article in Lithuanian

  4. Polarization effects in radiation from compact X-ray sources

    A theory of polarization of X rays emitted by magnetized neutron stars, white dwarfs and black hole accretion disks is presented and predictions are compared with polarimetric data. Polarization occurs in accreting neutron stars and white dwarfs in binary systems as plasma travels along magnetic field lines formed between the companions. Movement parallel to the field produces circular polarization, transverse propagation yields linear polarization and elliptical polarization arises from other angles. The actual mechanism is alterations in the absorption coefficients of magnetized plasma, changes introduced by available bremsstrahlung and electron scattering processes. Thomson scattering is an origin of X ray polarization in black hole and neutron star accretion disks, with the type of polarization being dependent on the radiation density near the boundary, the presence of Faraday rotation and the geometry of the disk magnetic field. Polarimetric data on 10 stellar objects are presented as supportive evidence for the theory. 14 references

  5. Building materials as sources of indoor exposure to ionizing radiation

    The thesis deals with the radioactivity of Finnish building materials and of industrial wastes or residues which can be used as building materials or as mixing substances of such materials. The external and internal exposure to radiation from building materials is described. The study also discusses with the methods used for measuring concentrations of natural and artificial gamma emitters in different kinds of materials and the amount of radon exhaling from building materials. A computational method for assessing the gamma ray exposure inside dwellings is desribed, and the results are compared with those of other corresponding methods. The results of the simple method described here are in good agreement with those obtained with the more refined Monte Carlo technique

  6. Physics and dosimetry aspects of synchrotron radiation sources

    Today there is a growing need in the use of accelerators for various applications in the field of medicine, industry, defense, environmental sciences, food processing and in basic and applied research. Electron accelerators are widely used nowadays in the field of diagnosis, therapy, radiography, basic research, production of synchrotron radiation etc. For applications in medicine, industry and food processing, the energy of the accelerated electrons is usually less than about 10 MeV whereas it may extend to several TeV for research applications. Most of the high energy accelerators use radio-frequency for the acceleration and hence the particle beam is bunched or pulsed. The increase in the use of such machines with higher accelerated energy and pulsed in nature raises several safety issues

  7. Long-pulse FELs as sources of monochromatic radiation

    A strong competition among modes in a long-pulse FEL is shown to exist. Through that strong competition the dominant mode is able to suppress other modes which would otherwise be present. The theoretical analysis is based on a perturbation expansion of the transverse current driving the FEL, expanded in powers of the radiation field. The perturbation analysis was carried on in a way similar to the interaction representation treatment of quantum mechanics. To third order in the expansion the crossed saturation between modes is twice as strong as the self-saturation. Thus the intensity of the dominant mode decreases the gain of competing modes at a much faster rate than it decreases its own gain. The result is single mode operation. Besides discussing the self-saturation in a single mode situation, the mode stability problem is treated analytically for the case of the two competing neighboring modes. (orig.)

  8. Control of radiation sources through regulatory inspections of radiation safety in Brazilian industries

    This work presents a brief description of the situation of Brazilian Regulatory Authority about safety control on industrial radioactive installations. It shows the national regulatory infrastructure responsible for radiation safety inspections, the regulation infrastructure, the national inventory of industrial installations, the national system of inspection and enforcement and the national system for qualifying the radiation protection officer. Some results of regulatory safety inspections are also showed in this work. (author)

  9. Control of radiation sources through regulatory inspections of radiation safety in Brazilian industries

    This work presents a brief description of the situation of Brazilian Regulatory Authority with regard to safety control of industrial radioactive installations. It shows the national regulatory infrastructure responsible for radiation safety inspections, the regulation infrastructure, the national inventory of industrial installations, the national system of inspection and enforcement and the national system for qualifying radiation protection officers. Some results of regulatory safety inspections are also shown. (author)

  10. Characteristics and development of the coherent synchrotron radiation sources for THz spectroscopy

    Barros, J.; Evain, C.; Roussel, E.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Couprie, M.-E.; Bielawski, S.; Szwaj, C.; Labat, M.; Roy, P.

    2015-09-01

    We report on the characteristics of coherent synchrotron radiation (CSR) as a source for spectroscopy. The optimization of the source and the resulting figures of merits in terms of flux, signal to noise, spatial distribution and spectral and temporal distribution are presented together with a spectroscopic application. The emission of THz during the slicing operation is also described. The conclusion opens up perspectives made possible by the availability of this intense and stable THz source.

  11. Radiation safety supervisory system in Latvia and its role in prevention of unauthorised practices with radiation sources

    This report provides an overview of the practical and legal aspects of the use of radiation sources. The existing regulatory infrastructure is briefly analysed and proposed systems are described. The proposed interactions between the regulatory body and the advisory board are presented and some details about joint activities of different institutions concerning radiation safety are given. An implementation example of the supervisory system in combating illicit trafficking is analysed and the essential components in the prevention of illicit trafficking are assessed. Some findings of investigations are quoted regarding improvements in protection and prevention on the national and the international level. (author)

  12. Comparison of radiation sources and filtering safety glasses for fluorescent nondestructive evaluation

    Lopez, Richard Daniel

    This study was directed toward the question of whether recent advancements in radiation sources and test media offered significant improvements over the current state of the art. Included were experiments characterizing common penetrant and magnetic particle materials to determine their fluorescent excitation spectra, and a comparison between the fluorescent excitation spectra and the emission spectra of common excitation sources. The relationship between exciter and test medium directly controls the luminance of a defect indication. As indication luminance increases, the probability of it being detected by the inspector increases. Fluorescent penetrant and magnetic particle test media were originally designed around the widely available filtered medium pressure mercury vapor lamp, which remains the standard excitation radiation source. Test media properties, and the types of available excitation sources have changed with time, and it was unclear whether present-day media was still best excited by the historical standard ultraviolet radiation source. Predictions and experimental work was performed to determine the optimal excitation source for fluorescent nondestructive testing, and to determine which safety lens option would offer the highest probability of detection. Improvement in radiation sources was primarily judged by an increase in fluorophore luminance versus background, which led to an increase in signal-to-noise ratio facilitating better indication detectability. Other factors considered were improved health and safety, and ease of use.

  13. Characteristics of synchrotron radiation and of its sources

    Synchrotron light emission and the classical relativistic electromagnetic theory describing it are reviewed. The electron optics of storage rings are considered in some detail, beginning with the ideal electron orbit and the distribution which electrons take around it. This is folded with the process of synchrotron light emission itself to define the effective photon source. The predictions of classical relativistic theory are compared with experiment, and one finds agreement within the experimental uncertainties. Further refinements, such as wiggler magnets and free electron lasers are also considered

  14. Emittance Adapter for a Diffraction Limited Synchrotron Radiation Source

    Chao, Alexander Wu; /SLAC; Raimondi, Pantaleo; /Frascati

    2012-03-01

    We investigate the possibility of reaching very small horizontal and vertical emittances inside an undulator in a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid in a dedicated insertion line in the storage ring. The insertion leaves the ring parameters and its optical properties unaffected. This scheme could greatly relax the emittance requirements for a diffraction limited synchrotron light source. The lattice derivation and design is described.

  15. Subpanel on accelerator-based neutrino oscillation experiments

    Neutrinos are among nature's fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called open-quotes mixing.close quotes The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary

  16. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    Sharma S

    2007-01-01

    Full Text Available Stereotactic radiosurgery (SRS is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC, are used for linear accelerator-based SRS systems (X-Knife. Output factor (St, tissue maximum ratio (TMR and off axis ratio (OAR of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer and Pinpoint (PTW cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well.

  17. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems were measured using CC01 (Scanditronix/Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well. (author)

  18. Beryllium Target for Accelerator - Based Boron Neutron Capture Therapy

    This work is part of a project for developing Accelerator Based Boron Neutron Capture Therapy (AB- BNCT) for which the generation of neutrons through nuclear reactions like 9Be(d,n) is necessary. In this paper first results of the design and development of such neutron production targets are presented. For this purpose, the neutron production target has to be able to withstand the mechanical and thermal stresses produced by intense beams of deuterons (of 1.4 MeV with a total current of about 30mA). In particular, the target should be able to dissipate an energy density of up to 1 kW/cm2 and preserve its physical and mechanical properties for a sufficient length of time under irradiation conditions and hydrogen damage. The target is proposed to consist of a thin Be deposit (neutron producing material) on a thin W or Mo layer to stop the beam and a Cu backing to help carry away the heat load. To achieve the adhesion of the Be films on W, Mo and Cu substrates, a powder blasting technique was applied with quartz and alumina microspheres. On the other hand, Ag deposits were made on some of the substrates previously blasted to favor the chemical affinity between Beryllium and the substrate thus improving adhesion. Be deposits were characterized by means of different techniques including Electron Microscopy (Sem) and Xr Diffraction. Roughness and thickness measurements were also made. To satisfy the power dissipation requirements for the neutron production target, a microchannel system model is proposed. The simulation based on this model permits to determine the geometric parameters of the prototype complying with the requirements of a microchannel system. Results were compared with those in several publications and discrepancies lower than 10% were found in all cases. A prototype for model validation is designed here for which simulations of fluid and structural mechanics were carried out and discussed

  19. A murine model for bone loss from therapeutic and space-relevant sources of radiation.

    Hamilton, S A; Pecaut, M J; Gridley, D S; Travis, N D; Bandstra, E R; Willey, J S; Nelson, G A; Bateman, T A

    2006-09-01

    Cancer patients receiving radiation therapy are exposed to photon (gamma/X-ray), electron, and less commonly proton radiation. Similarly, astronauts on exploratory missions will be exposed to extended periods of lower-dose radiation from multiple sources and of multiple types, including heavy ions. Therapeutic doses of radiation have been shown to have deleterious consequences on bone health, occasionally causing osteoradionecrosis and spontaneous fractures. However, no animal model exists to study the cause of radiation-induced osteoporosis. Additionally, the effect of lower doses of ionizing radiation, including heavy ions, on general bone quality has not been investigated. This study presents data developing a murine model for radiation-induced bone loss. Female C57BL/6 mice were exposed to gamma, proton, carbon, or iron radiation at 2-Gray doses, representing both a clinical treatment fraction and spaceflight exposure for an exploratory mission. Mice were euthanized 110 days after irradiation. The proximal tibiae and femur diaphyses were analyzed using microcomputed tomography. Results demonstrate profound changes in trabecular architecture. Significant losses in trabecular bone volume fraction were observed for all radiation species: gamma, (-29%), proton (-35%), carbon (-39%), and iron (-34%). Trabecular connectivity density, thickness, spacing, and number were also affected. These data have clear implications for clinical radiotherapy in that bone loss in an animal model has been demonstrated at low doses. Additionally, these data suggest that space radiation has the potential to exacerbate the bone loss caused by microgravity, although lower doses and dose rates need to be studied. PMID:16741258

  20. Safety and security of radiation sources and radioactive materials: A case of Zambia - least developed country

    In Zambia, which is current (1998) classified as a Least Developed Country has applications of nuclear science and technology that cover the medical, industrial, education and research. However, the application is mainly in medical and industry. Through the responsibility of radiation source is within the mandate of the Radiation Protection Board. The aspects involving security fall on different stake holders some that have no technical knowledge on what radiation is about. The stake holders in this category include customs clearing and forwarding agents, state security/defence agencies and the operators. Such a situation demands a national system that should be instituted to meet the safety and security requirements but takes into account the involvement of the diverse stake holders. In addition such system should avoid unnecessary exposure, ensure safety of radioactive materials and sources, detect illicit trade and maintain integrity of such materials or sources. This paper will provide the status on issue in Zambia and the challenges that exist to ensure further development in application of Nuclear Science and Technology (S and T) in the country takes into account the safety and security requirements that avoid deliberate and accidental loss of radiation sources and radioactive materials. The Government has a responsibility to ensure that effective system is established and operated to protect radiation sources and radioactive materials from theft, sabotage and ensure safety. (author)

  1. Sources and effects of ionizing radiation. UNSCEAR 1996 report to the General Assembly, with scientific annex

    During the last few years the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has undertaken a broad review of the sources and effects of ionizing radiation. The results of this work have been issued in a series of publications: the UNSCEAR 1993 Report with nine scientific annexes, the UNSCEAR 1994 Report with two scientific annexes and the present UNSCEAR 1996 Report with one scientific annex, ''Effects of radiation on the environment''. These three publications from a series of reports entitled Sources and Effects of Ionizing Radiation, which together inform the General Assembly and the scientific and world community of the Committee's latest findings and evaluations. The Committee considers in this report the effects of ionizing radiation on plants and animals in the environment. These effects have not previously been addressed directly by the Committee. The emphasis of past assessments has been on determining the effects of radiation on human health. With the increasing interest around the world in nurturing the environment and concerns about possible detrimental effects of radiation, the time is appropriate for the Committee to provide a summary of the effects of radiation on the environment. Refs, figs, tabs

  2. Lecture notes on the safety aspects in the industrial applications of radiation sources - Part I

    The report comprises the notes of the lectures delivered on the safety aspects in industrial applications of radiation sources. The notes are presented in 9 chapters. Basic mathematics relevant to the topic and basic concepts of nuclear physics are introduced in chapters I and II respectively. Various aspects of interaction of radiation with matter and living cells are discussed in chapters III and IV respectively. The biological effects of ionizing radiations are described in chapter V. Various commonly used units of measurement of radiation and radioactivity are defined and explained and measuring methods of radiation exposure are described in chapter VI. Chapter VII deals with the maximum permissible levels of radiation, both internal and external, for occupational workers as well as population. The same chapter also deals with ICRP recommendations in this connection. Commonly used radiation detectors and instruments with associated electronics are described in chapter VIII. Production of radioisotopes, radiation sources and labelled compounds is described in chapter IX. A table of useful radioisotopes is appended to this chapter. A bibliography in which references are arranged chapterwise is also given at the end. (M.G.B.)

  3. Novel Radiation Sources in Vacuum UV and Near UV

    Peng, Sheng; Ametepe, Joseph; Manos, Dennis

    2004-05-01

    Ultraviolet (UV) light induced or enhanced chemical reactions have many advanced applications. This causes excimer lamps which deliver high power, large area UV radiations in demand. There have been extensive studies on rare gas or mixtures of rare gas halogen in different excimer lamps. But experimental data for high pressure KrI (iodine in krypton) spectra are scarce partially because the transitions B->X (191nm) and B->A (225nm) are usually very weak. We designed a new prototype of rf lamp for this study. This lamp has its electrodes outside the plasma for longer lamp lifetime. It is capable of studying most rf excited gas discharge and efficient enough for weak emissions like KrI. Detailed features of KrI spectrum from 160nm to 360nm were obtained. The wavelength and intensity variation of with pressure was modeled using a set of coupled kinetic equations. Molecular orbits of KrI were calculated in Gaussian 03. A semi-classical approach was used to study the line shape of the broad band emission and an explicit expression was obtain for KrI.

  4. UY 102 standard use of sealed sources in radiation source implants: approve for the Industry Energy and Mining Ministry 28/6/2002 Resolution

    Establish minimal requires for radiological safety applied to use of the solid radio actives sources with therapeutic purposes in application radiation source implants in surface area and intra cavities

  5. Development of automated measurement system for radioactive intensities of sealed small radiation sources (iodine-125 seed source) for brachytherapy

    We have developed full automated measurement system for radioactive intensities of sealed small radiation sources (iodine-125 seed source) for brachytherapy in this work. Today, quality assurance (QA) of I-125 seed radioactive sources for brachytherapy following AAPM (American Association of Physicists in Medicine) Society's guideline is one of important subjects for hospitals that operate on patients for prostate cancer and medical companies that manufacture and sell these radioactive sources. In order to survey defective seed products into all the number of I-125 seed sources (there are usually fifteen seeds, one seed of dimensions is 0.8 mm φ × 4.5 mm length) within a cartridge, we have applied the method of single slit collimator with moving a radiation detector to measure each radioactive intensity of these I-125 seeds. As a result, it was found that our developed system in the present work has good performance of surveying the defective products manufactured with radioactive intensities out of about ±15% error (p < 0.05). (author)

  6. Projection of needs for gamma radiation sources and other radioisotopes and assessment of alternatives for providing radiation sources

    Ross, W.A.; Jensen, G.A.; Clark, L.L.; Eakin, D.E.; Jarrett, J.H.; Katayama, Y.B.; McKee, R.W.; Morgan, L.G.; Nealey, S.M.; Platt, A.M.; Tingey, G.L.

    1989-06-01

    Pacific Northwest Laboratory reviewed the projected uses and demands for a variety of nuclear byproducts. Because the major large-scale near-term demand is for gamma irradiation sources, this report concentrates on the needs for gamma sources and evaluates the options for providing the needed material. Projections of possible growth in the irradiation treatment industry indicate that there will be a need for 180 to 320 MCi of /sup 60/Co (including /sup 137/Cs equivalent) in service in the year 2000. The largest current and projected use of gamma irradiation is for the sterilization of medical devices and disposable medical supplies. Currently, 40% of US disposable medical products are treated by irradiation, and within 10 years it is expected that 90% will be treated in this manner. Irradiation treatment of food for destruction of pathogens or parasites, disinfestation, or extension of allowable storage periods is estimated to require an active inventory of 75 MCi of /sup 60/Co-equivalent gamma source in about a decade. 90 refs., 7 figs., 25 tabs.

  7. Projection of needs for gamma radiation sources and other radioisotopes and assessment of alternatives for providing radiation sources

    Pacific Northwest Laboratory reviewed the projected uses and demands for a variety of nuclear byproducts. Because the major large-scale near-term demand is for gamma irradiation sources, this report concentrates on the needs for gamma sources and evaluates the options for providing the needed material. Projections of possible growth in the irradiation treatment industry indicate that there will be a need for 180 to 320 MCi of 60Co (including 137Cs equivalent) in service in the year 2000. The largest current and projected use of gamma irradiation is for the sterilization of medical devices and disposable medical supplies. Currently, 40% of US disposable medical products are treated by irradiation, and within 10 years it is expected that 90% will be treated in this manner. Irradiation treatment of food for destruction of pathogens or parasites, disinfestation, or extension of allowable storage periods is estimated to require an active inventory of 75 MCi of 60Co-equivalent gamma source in about a decade. 90 refs., 7 figs., 25 tabs

  8. Accelerator-driven X-ray Sources

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  9. Radiative feedback and cosmic molecular gas: the role of different radiative sources

    Maio, U; De Lucia, G; Borgani, S

    2016-01-01

    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive population III stars are found to be able to largely ionize H and, subsequently, He and He$^+$, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-c...

  10. Single window for issuing licenses for export and import of ionizing radiation sources and transit of radioactive sources

    In this paper we present the electronic system for application and issuing licenses for export, import and transit of goods (EXIM), particularly for ionizing radiation sources, in the Republic of Macedonia. This system is a modern and helpful tool for simple issuing licenses, for establishing a unique database and it represents a harmonized system for exchanging information between the governmental, public and private legal persons in the Republic of Macedonia. (author)

  11. Information System on Integrated Radiation Safety (ISIRS) and Orphan Sources Control in Korea

    Lee, Dew Hey [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2001-09-15

    An Orphan Sources Control program controlled by a web based information system in Korea has been developed to satisfy the national demand on a total management of and integrated radiation safety. There are, currently, three approaches going on to control and manage the orphan sources in Korea. First, Korea regulatory authority has been conducting scrutinizing investigation on and thoroughly monitoring the possession of unlicensed radioactive sources from the late 1990s. Second, the regulatory authority will fully operate an information system on radiation safety to effectively trace and monitor all radioactive sources in the country by the mid 2001. Finally, the regulatory authority strongly advises steel mill companies to closely scrutinize and inspect the scrap metals when they attempt to reutilize metals to prevent from being contaminated by uncontrolled sources through the scrap monitoring systems.

  12. Radiation sources in the nature and its risks

    Pollution is a very significant problem that affects the environment, causes damage of structures and interferes with proper uses of the environmental resources. Naturally Occurring Radioactive Materials and Technical Enhanced Naturally Occurring Radioactive Materials are two terms used in oil and gas industries and phosphate processing. Naturally Occurring Radioactive Materials and Technical Enhanced Naturally Occurring Radioactive Materials continue to present effective and economic challenges as well as risk and regulation concerns for oil / gas and phosphate industries that include mining, water, recycling and land remediation. Adequate regulations should be applied in order to mitigate this risk. The sources of most of the radioactivity are isotopes of 238U and 232Th series, which are naturally present in the subsurface formations from which oil/ gas and phosphate processing are produced. (author)

  13. The present problems of hygienic supervising of workplaces with ionizing radiation sources

    This paper deals with the problems of hygienic supervising of workplaces with ionizing radiation sources in Bratislava. Most problems consist in present economic transformation of State Corporations. Abolishing of previous State Corporations and arising of new organizations means new field of their activities. It often happens, that previously used ionizing radiation sources, X-ray tubes, or radioactive sources, are not longer to use and it is necessary to remove corresponding workplaces.The big State Corporation with series of subsidiaries in whole Slovakia was divided to many new smaller Joint-stock Corporations. A subsidiary possessed workplace with X-ray tube and sealed radioactive source of medium radioactivity. During a routine hygienic inspection was found, that the original establishment was abolished, all personal dismissed and another organization is going to move at this place. New organization personnel has not known,that the previous workplace was such one with radiation sources. The situation was complicated by the fact, that new management had no connection to previous personnel and had not sufficient information about abolished establishment. The problem of supervising workplaces with ionizing radiation sources is described. (J.K.)

  14. Radiation emission characteristics in the x-ray/EUV from spherically pinched and vacuum spark sources

    Extensive research and development have been pursued worldwide on various schemes of plasma radiation sources, such as the laser-plasma X-ray source, the dense plasma focus, and the spherical pinch. At Advanced Laser and Fusion Technology (ALFT), a prototype spherical pinch X-ray source, SPX II, and a commercial machine, SPX III, have been developed as broadband radiation sources. More recently, an alternative and complementary X-ray device, the vacuum spark VSX I, has been developed The spherical pinch is a novel concept based on the principle of strong spherically convergent shock waves compressing a performed plasma in the center of a spherical vessel. The vacuum spark is essentially a capacitor discharge through two properly shaped electrodes in a high vacuum environment (pressure around 1 x 10-5 Torr). During the discharge minute spots of high temperature plasmas are formed in the vicinity of the anode and strong line radiation, characteristic of the electrode material, can be generated in the soft X-ray region. The work on the spherical pinch sources, SPX II and SPX III, are described in terms of their specifications and radiation output, and on the vacuum spark source, VSX I, is presented in terms of its setup and experimental results

  15. Open-source radiation exposure extraction engine (RE3) for dose monitoring

    Weisenthal, Samuel; Folio, Les; Derderian, Vana; Summers, Ronald M.; Yao, Jianhua

    2015-03-01

    Our goal was to investigate the feasibility of an open-source, PACS-integrated, DICOM header-based tool that automatically provides granular data for monitoring of CT radiation exposure. To do so, we constructed a radiation exposure extraction engine (RE3) that is seamlessly connected to the PACS using the digital imaging and communications in medicine (DICOM) toolkit (DCMTK) and runs on the fly within the workflow. We evaluated RE3's ability to determine the number of acquisitions and calculate the exposure metric dose length product (DLP) by comparing its output to the vendor dose pages. RE3 output closely correlated to the dose pages for both contiguously acquired exams (R2 =0.9987) and non-contiguously acquired exams (R2 =0.9994). RE3 is an open-source, automated radiation monitoring program to provide study-, series-, and slice-level radiation data.

  16. Feasibility study on utilization of vitrified radioactive waste as radiation sources

    A feasibility study on utilization of vitrified high level radioactive waste (VW) as radiation source has been carried out. Natural rubber latex was radiation vulcanized with VW to demonstrate the feasibility. The dose rate was 0.1 kGy/hr. As a sensitizer, n-butyl acrylate was added. Negligible small activation of natural rubber (NR) latex by neutron from the VW was observed. The residual sensitizer in the irradiated latex and physical properties of film molded from the irradiated latex were the same level with the conventional radiation vulcanization of NR latex with γ-rays from Co-60. Surgical gloves and protective rubber gloves for radioactive contamination were produced from 20 litters of NR latex vulcanized with 2 VWs. The physical properties of both gloves were acceptable. These results suggested that vitrified high level waste can be used as an industrial radiation source. (author)

  17. Application of large radiation sources in Asia and the Pacific - a review

    The current status of the applications of large radiation sources on industrial scale in the countries of Asia and the Pacific Region has been reviewed. The present R and D programmes and the major centres engaged in these programmes are described. So far as commercialization is considered, radiation processing industry is now well established in Japan, Australia, India and Israel. The major industrial uses of large radiation sources have been for : (1) sterilization of medical products, (2) food preservation, (3) cross-linking of polyethylene and (4) production of composite materials from polymer and wood or bamboo or bagasse. A table is given which indicates the current status of clearance of irradiated food in the countries under consideration. Finally, technological requirements in these countries for development and application of radiation processing are spelled out and discussed. (M.G.B.)

  18. Principles for the exemption of radiation sources and practices from regulatory control

    Radiation sources, including equipment and installations, which emit ionizing radiations, are potentially harmful to health and their use should therefore be regulated. Some types of radiation source, however, do not need to be subject to regulatory control, because they present such a low hazard that it would be a needless waste of time and effort to exercise control by a regulatory process and they can therefore be exempted from it. An Advisory Group Meeting was convened in Vienna in March 1988 sponsored jointly by the IAEA and NEA. This Safety Guide is the result of that meeting and represents a first international consensus on the subject of exemption principles. This document is issued as an IAEA Safety Guide since it recommends a procedure which might be followed in implementing the Basic Safety Standards (BSS) for Radiation Protection. Its purpose is to recommend a policy on exemptions from the BSS system of notification, registration and licensing. 15 refs

  19. Micro - XRF with laboratory sources and synchrotron radiation

    Micro-X-ray fluorescence spectroscopy, the microscopic equivalent of bulk XRF, is one of the most modern and promising branches of XRF, which permits the precise, accurate, non-destructive and localized analysis of small objects or of details on larger ones. The implementation of capillary optics for focusing X-ray beams, which was introduced in the mid-80s, has contributed significantly to the development of several new scientific instruments. The ability to obtain point spectra and elemental maps have lead to numerous applications of micro-XRF on the analysis of different types of materials, including metallic objects, industrial materials, forensic samples, gold artifacts, bronze statuettes, paint layers, etc. More recently, the need to perform in situ analysis of cultural objects, which cannot be transported to the laboratory, has lead to the development of portable micro-XRF spectrometers. This was facilitated by the development of small-sized Peltier-cooled energy dispersive detectors and X-ray optics. Photons are an interesting probe for matter because of the variety of interaction modes. Of these, absorption, diffusion and diffraction bring almost directly valuable chemical and structural information about the sample. The advent of synchrotron radiation (SR) with its unique characteristics,(intensity, tunability, polarization, extremely low divergence, etc.) attracted great attention. Because of the very low energy deposit in matter and the variety of interactions, and thus of the information that can be extracted, it became evident that photon microprobes, may become an excellent probe for matter if one could concentrate enough photons in a micron-size spot. In the present talk I will summarize the potentials of a table-top micro-XRF and its comparison with Synchrotron based micro-XRF. (author)

  20. Decoding of the Spatial Distribution of Ionizing Radiation Sources in Systems with Coded Apertures

    A.A. Nikuliak

    2012-11-01

    Full Text Available In studying the properties of tomographic gamma - ray imaging systems with coded apertures, (gamma emission - tomography raised the question of the influence of the interaction of gamma - radiation with matter on the quality of the reconstructed image. In this paper describes principles of the tomographical information reconstruction in systems with coded apertures, the results of the software - simulation of decoding the location of point sources of ionizing radiation in the field of view of the complete coding.

  1. Hygienic aspects of the classification of works with ionizing radiation sources

    Classification is presented of ionizing radiation sources (IRS) the underlying principle of which is the effect of radiation on living organisms. The ways of improving the classification and expanding it by identifying more groups of IRS and defining the terminology more precisely are suggested. On this basis, a classification of IRS-handling activities has been developed and recommendations on conditions of work with each group have been given

  2. Systems analysis and engineering of the X-1 Advanced Radiation Source

    The X-1 Advanced Radiation Source, which will produce ∼ 16 MJ in x-rays, represents the next step in providing US Department of Energy's Stockpile Stewardship program with the high-energy, large volume, laboratory x-ray sources needed for the Radiation Effects Science and Simulation (RES), Inertial Confinement Fusion (ICF), and Weapon Physics (WP) Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories' Z Accelerator in 1997 provide sufficient basis for pursuing the development of X-1. This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the systems analysis and engineering approach being used, and identify critical technology areas being researched

  3. Eccentricity effects on acoustic radiation from a spherical source suspended within a thermoviscous fluid sphere.

    Hasheminejad, Seyyed M; Azarpeyvand, Mahdi

    2003-11-01

    Acoustic radiation from a spherical source undergoing angularly periodic axisymmetric harmonic surface vibrations while eccentrically suspended within a thermoviscous fluid sphere, which is immersed in a viscous thermally conducting unbounded fluid medium, is analyzed in an exact fashion. The formulation uses the appropriate wave-harmonic field expansions along with the translational addition theorem for spherical wave functions and the relevant boundary conditions to develop a closed-form solution in form of infinite series. The analytical results are illustrated with a numerical example in which the vibrating source is eccentrically positioned within a chemical fluid sphere submerged in water. The modal acoustic radiation impedance load on the source and the radiated far-field pressure are evaluated and discussed for representative values of the parameters characterizing the system. The proposed model can lead to a better understanding of dynamic response of an underwater acoustic lens. It is equally applicable in miniature transducer analysis and design with applications in medical ultrasonics. PMID:14682628

  4. Computation of radiative image formation in isolated source and collimated irradiation problems

    Due to the ray effect, it is not suitable to employ the discrete ordinates method to calculate the radiation field and the image-formation process in radiative problems with isolated radiative sources (such as point and line sources, isolated medium or boundary source). In this paper, a hybrid method, named Monte Carlo-discrete ordinates method (Macadam) is developed. Firstly, the Monte Carlo method is used to calculate the emission process. Secondly, the discrete ordinates method is employed to calculate the scattering process, correspondingly, an alternative energy partitioning method is proposed to combine the above two conventional methods. Thirdly, the DOS+ISW algorithm (JQSRT, 2003, 78: 437-453) is used to calculate the image-formation process. Finally, the MCDOM is applied to computing the image formation of an endoscope, which was used to study the hydrodynamics of circulating fluidized beds (Powder Technology, 2001;114:71-83)

  5. Computation of radiative image formation in isolated source and collimated irradiation problems

    Li Hongshun [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: lihs_hust@yahoo.com.cn; Werther, Joachim [Chemical Engineering I, Technical University Hamburg-Harburg, Denickestrasse 15, 21071 Hamburg (Germany)

    2006-01-15

    Due to the ray effect, it is not suitable to employ the discrete ordinates method to calculate the radiation field and the image-formation process in radiative problems with isolated radiative sources (such as point and line sources, isolated medium or boundary source). In this paper, a hybrid method, named Monte Carlo-discrete ordinates method (Macadam) is developed. Firstly, the Monte Carlo method is used to calculate the emission process. Secondly, the discrete ordinates method is employed to calculate the scattering process, correspondingly, an alternative energy partitioning method is proposed to combine the above two conventional methods. Thirdly, the DOS+ISW algorithm (JQSRT, 2003, 78: 437-453) is used to calculate the image-formation process. Finally, the MCDOM is applied to computing the image formation of an endoscope, which was used to study the hydrodynamics of circulating fluidized beds (Powder Technology, 2001;114:71-83)

  6. Combined sensors for the detection, identification and monitoring of radiation sources

    Radiation sources widely used in industry, medicine, agriculture. Research and education are the most dangerous from the viewpoint of their widespread and easy access.The probability that these sources will be stolen and used to assemble a radiological dispersive (RDD) is nor negligible. Such a device can be used by terrorist groups for the purpose of contamination of industrial centers, airports, seaports and residential areas, which can affect a large sector of the economy of a country. Detonation of a RDD can lead to death and exposure of the population to radiation, but, as a whole, the use of the bomb is aimed at creating panic among population, causing economic damage and social shock to the society. In this work, ways to reduce the threat of radiation sources obtained outside and within a country will be discussed

  7. Quantifying the contributions of individual NO x sources to the trend in ozone radiative forcing

    Dahlmann, K.; Grewe, V.; Ponater, M.; Matthes, S.

    2011-06-01

    Source attribution of ozone radiative forcing (RF) is a prerequisite for developing adequate emission mitigation strategies with regards to climate impact. Decadal means of ozone fields from transient climate-chemistry simulations (1960-2019) are analysed and the temporal development of ozone RF resulting from individual NO x sources, e.g. road traffic, industry and air traffic, is investigated. We calculated an ozone production efficiency which is mainly dependent on the altitude of NO x emission and on the amount of background NO x with values varying over one order of magnitude. Air traffic and lightning are identified as NO x sources with a two and five times higher ozone production efficiency, respectively, than ground based sources. Second, radiative efficiency of source attributed ozone (i.e. total induced radiative flux change per column ozone) shows clear dependence on latitudinal structure of the ozone anomaly and, to a lesser extent, to its altitude. Lightning induced ozone shows the highest radiative efficiency because lightning primarily enhances ozone in low latitudes in the mid-troposphere (higher altitudes). Superimposed on these effects, a saturation effect causes a decreasing radiative efficiency with increasing background ozone concentrations. Changes in RF attributed to NO x induced ozone from 1960 to 2019 are controlled by three factors: changes in emissions, changes in ozone production efficiency and changes in the radiative efficiency. Leading effect is emission increase, but changes in ozone production efficiency increase ozone RF by a factor of three for air traffic, or reduce ozone RF by around 30% for ships. Additionally, changes in the radiative efficiency due to saturation effects change ozone RF by 2-5%.

  8. Accelerator-based neutron tomography cooperating with X-ray radiography

    Neutron resonance absorption spectroscopy (N-RAS) using a pulsed neutron source can be applied to time-of-flight (TOF) radiography, and the obtained parameters from the peak shape analysis can be reconstructed as the tomograms of nuclide distributions using computed tomography (CT). The problem is that the available spatial resolution is not sufficient for radiography imaging. In this study, we combined neutron and X-ray radiographies to improve the quantitative reconstruction of the neutron tomogram. The accelerator-based neutron source emits X-rays (or gamma-rays) at the same time the neutron pulse is emitted. We utilized the X-ray beam from the neutron source to obtain X-ray radiogram on the same beam line with neutron radiography and then reconstructed the neutron tomogram quantitatively with the help of a detailed sample internal structure obtained from the X-ray radiogram. We calculated the nuclide number density distribution tomogram using a statistical reconstruction procedure, which was easy to include in the structure model during the reconstruction. The obtained result of nuclide number density distribution showed good coincidence with the original object number density.

  9. Robust and Scalable Tracking of Radiation Sources with Cheap Binary Proximity Sensors

    Baidoo-Williams, Henry E

    2016-01-01

    We present a new approach to tracking of radiation sources moving on smooth trajectories which can be approximated with piece-wise linear joins or piece-wise linear parabolas. We employ the use of cheap binary proximity sensors which only indicate when a radiation source enters and leaves its sensing range. We present two separate cases. The first is considering that the trajectory can be approximated with piece-wise linear joins. We develop a novel scalable approach in terms of the number of sensors required. Robustness analysis is done with respect to uncertainties in the timing recordings by the radiation sensors. We show that in the noise free case, a minimum of three sensors will suffice to recover one piece of the linear join with probability one, even in the absence of knowledge of the speed and statistics of the radiation source. Second, we tackle a more realistic approximation of trajectories of radiation sources -- piece-wise parabolic joins -- and show that no more than six sensors are required in ...

  10. A radiation incident involving detachment of a cobalt-60 industrial radiography source and its management

    A radiation incident took place inside an open-top radiography enclosure involving an Amertest-676 exposure device containing a cobalt-60 source of activity 2.15 TBq. The exposure device was being checked after receipt of a fresh source. The source assembly having been projected out could not be brought back into the exposure device. After thorough planning, the situation was brought under control by driving the disengaged source assembly into the exposure device. During the incident, the maximum individual whole body dose was 3.1 mSv. (author)

  11. A Response of coaxial Ge (Li) detector to the extended source of gamma radiation

    In measurements of the absolute source strength of extended source of γ radiation, two main limitations on the accuracy are dues to the difficulties in accounting for the self-absorption in the source and for geometrical dependence of detector efficiency. Two problems were separated by introduction of the average only energy dependent efficiency, which lends itself to calculational and experimental determination (to be reported), and the response of coaxial Ge(Li) detector to cylindrical extended source with self-absorption has been developed here to a reduced analytical form convenient gu numerical calculations. (author)

  12. The status of safety of radiation sources and security of radioactive materials in Ethiopia

    Since 1993, the National Radiation Protection Authority (NRPA) has been empowered by the 'Radiation Protection Proclamation no. 79/1993' to authorize and inspect regulated activities, issue guidelines and standards and enforce the legislation and regulations. The report describes the status of the safety of radiation sources and the security of radioactive materials in Ethiopia and the progress made towards building a sound and effective national regulatory infrastructure. Also, the report highlights the challenges and difficulties encountered and concludes by indicating the way forward towards the strategic goals. (author)

  13. Radiation effects in stainless steels and tungsten using as ADS spallation neutron source system

    Radiation effects have been studied in the home-made modified 316L stainless steel and standard stainless steel and tungsten irradiated by 80 MeV 12C or 85 MeV 19F ions. The experimental results show that the radiation resistant property of stainless steels is much better than that of tungsten and the homemade modified 316L stainless steel has the best radiation resistant property among them. The stainless steels are a good choice for beam window material of the ADS spallation neutron source system, and the homemade modified 316L stainless steel is the best choice

  14. Environmental radiation control and quality management system in design and operation of sealed radioactive sources

    New environmental regulations and radiation safety standards are being implemented almost daily to ensure radiation safety, in particular for practices causing exposures to undue radiation doses. A particular emphasis of real challenge for organizations and users of radiation sources has to be for proper radiological safety assessment and is becoming cost effectively to be prepared for auditing. Special concern for the environment is of global . nature, and hence environmental auditing has been and will continue to be an essential practice for improving the environment and for meeting the relevant regulations and standards. In general, most facilities that deal with radioactive sources undertake strict safety measures in terms of personnel radiation protection, handling procedures and security. Hence, those measures should comply with the requirements of the environmental protection standards. Accordingly, a successful quality management system must balance realities of organization and personnel in achieving quality objectives. Organizational principles are found in the technical aspects of' quality management, such as, charting, requirements, measurements, procedures, ... , etc. Human principles are found in the communication side of quality management (e.g. meetings, ,decision making, ,teams, ... , etc). The quality management must understand and balance skills needed to blend them together. Large gamma irradiators present a high potential radiation hazard to the surrounding environment, since the amount of radioactivity is of the order of (P Bq) and a very high dose rates are produced during irradiation. Application of environmental radiation control deemed by regulatory authority and a proper quality management system by the utility would serve public health and safety

  15. Regulatory control of radiation sources and radioactive materials in the Czech Republic

    The paper describes legal and regulatory provisions for radiation protection and safe use of sources of ionizing radiation in the Czech Republic with special emphasis on aspects of bringing activities under regulatory control and releasing them from it. It covers the development of a new legal framework, the work of the regulatory body, an overview of sources in use and provisions to achieve effective regulatory control of facilities and releases of radioactive material into the environment. Also, it describes reported unusual events with a proposed scheme for their classification and evaluation. (author)

  16. The regulatory infrastructure for radiation protection, the safety of radiation sources and security of radioactive materials in Ethiopia

    The application of Nuclear Techniques in Ethiopia started in the early sixties in the medical field and through time has gradually expanded to other areas. Following this growth the practice of Radiation Protection in Ethiopia dates back over 15 years. Radiation Protection Legislation 79/1993 was promulgated in December 1993, which has established an Autonomous Regulatory Authority to control and supervise the introduction and conduct of any practice involving ionizing radiation. Since 1998 the National Radiation Protection Authority has made a remarkable progress in terms of building a National Radiation Protection Infrastructure and is in a full swing transformation process towards a dynamic credible and competent regulatory Authority. The regulatory activities are designed in line with the main regulatory instruments, Notification, Authorization, Inspection and Enforcement. NRPA has a national inventory system and fully implemented the Regulatory Authority Information System (RAIS), which provides a systemic integration and will be instrumental to enhance the effectiveness of the regulatory system. A substantial progress has been made in the development and provision of support and technical services in the areas of Metrology and Calibration Services, Instrument Maintenance Service, Individual Monitoring of Personnel, Environmental and Food Monitoring and Interim Storage Facility for spent sources. Development of a national system for emergency preparedness and response is the current top agenda of NRPA. Towards ensuring an effective radiation protection and regulatory programme, NRPA is also making a proactive involvement in, expanding its outreach, information dissemination, awareness promotion and development of key human resources. In the last four years Ethiopia has been actively co-operating with IAEA in the framework of the Regional Model Projects RAF/9/024, RAF/9/028 and RAF/9/029. The inputs received through the project framework coupled with the

  17. Manual on radiation protection in hospitals and general practice. Unsealed sources

    The present volume review of radiation protection requirements in hospitals using unsealed radioactive sources, and discusses the problems associated with the administration, handling, and transportation of these sources. Also described are the design, construction, and management of nuclear medicine departments and give guidance on methods of reducing the exposure of patient, attendant personnel, and the general public to a level consistent with sound medical practice, without impeding the acquisition of necessary medical information. Separate chapters are devoted to the characteristics and radiation hazards of unsealed sources, the diagnostic and therapeutic application of radionuclides, the organization and staffing, planning of facilities, general layout of a department for the use of unsealed sources, examples of departments for diagnosis and therapy with unsealed sources, the safe handling of unsealed sources prior to administration, equipment for safe handling of radioactive materials, waste treatment and disposal, monitoring, special problems relating to 3H and 14C, decontamination, protection of patients, handling of cadavers with incorporated radionuclides, protection of personnel and members of the public, and measures for dealing with accidents. Five annexes deal with characteristics of some commonly used radionuclides, typical activities administered for diagnostic purposes in Swedish hospitals, integrated doses received by patients in diagnostic examinations using radionuclides, radionuclides used in scintigraphy and resulting radiation doses, and calculated exposure rates from point sources at various distances, respectively

  18. Radiation Build-Up In Shielding Of Low Activity High Energia Gamma Source

    Research to observe radiation build-up factor (b) in aluminium (Al), iron (Fe) and lead (Pb) for shielding of gamma radiation of high energy from 137cs (Eγ : 662 keV) source and 60Co (Eγ : 1332 keV) of low activity sources has been carried out. Al with Z =13 represent metal of low atomic number, Fe with Z =26 represent metal of medium atomic number, and Pb with Z = 82 represent metal of high atomic number. Low activity source in this research is source which if its dose rate decrease to 3 % of its initial dose rate became safe for the workers. Research was conducted by counting of radiation intensity behind shielding with its thickness vary from 1 to 5 times of half value thickness (HVT). NaI(TI) detector which connected to multi channel analyzer (MCA) was used for the counting. Calculation result show that all of b value are close to 1 (b ∼ 1) for all kinds of metals. No radiation build-up factor is required in estimating the shielding thickness from several kinds of metals for low activity of high energy gamma source. (author)

  19. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  20. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained; the requirements for education, training and experience for each category; the processes of qualification and authorization of persons; a national strategy for building competence

  1. Modern state of the application of ionizing radiation for protection of environment. 1. Ionizing radiation sources. Purification of natural and drinking water (review)

    Review of modern state of the application of ionizing radiations for protection of environment and natural and drinking water purification is presented. Building of installations with electron accelerators with summarized power of beam ∼0.6 MW signifies that application of ionizing radiation for ecological needs increase. It is pointed out that extensible application of electron accelerators is explained by their safety and efficiency as compared with gamma-sources. New information about ionizing radiation sources, radiation-chemical purification of polluted natural and drinking water, mechanisms of processes taking place during treatment by ionizing radiations are generalized

  2. Radiative feedback and cosmic molecular gas: the role of different radiative sources

    Maio, Umberto; Petkova, Margarita; De Lucia, Gabriella; Borgani, Stefano

    2016-05-01

    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive population III stars are found to be able to largely ionize H and, subsequently, He and He+, causing an inversion of the equation of state and a bo%ost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of "cosmic fossils" such as low-mass dwarf galaxies, the role of AGNi during reionization, the early formation of extended disks and angular-momentum catastrophe.

  3. Z mode radiation in Jupiter's magnetosphere: The source of Jovian continuum radiation

    Voyager spacecraft observations of Z mode waves in Jupiter's magnetosphere are analyzed. The signal appears in wideband spectrograms as an intense narrowband emission separated from the broadband continuum radiation seen at higher frequencies by a deep emission gap. The assumption that the intensity minimum corresponds to the electron plasma frequency organizes the data very well and provides a consistent interpretation of all spectral features in terms of plasma resonances and cutoffs. Several examples are given which demonstrate that the continuum radiation is composed of both left-hand and right-hand polarized wavs with distinct cutoffs observed at the plasma frequency and right-hand cutoff frequency, respectively. A survey of a representative sample of events reveals that the Z mode peak frequency lies close to the left-hand cutoff frequency, suggesting that the observed characteristics of the emission are the result of wave reflection at the cutoff layer. In a substantial number of events, another distinct emission occurring near the upper hybrid resonance frequency is detected simultaneously with the Z mode. The entire set of observations gives strong support to the linear mode conversion theory of upper hybrid waves to continuum radiation mediated by the Z mode via the Budden radio window mechanism

  4. Radiative feedback and cosmic molecular gas: the role of different radiative sources

    Maio, Umberto; Petkova, Margarita; De Lucia, Gabriella; Borgani, Stefano

    2016-08-01

    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar spectral energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive Population III stars are found to be able to largely ionize H and, subsequently, He and He+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of `cosmic fossils' such as low-mass dwarf galaxies, the role of active galactic nuclei during reionization, the early formation of extended discs and angular-momentum catastrophe.

  5. Coherence-polarization properties of fields radiated from transversely periodic electromagnetic sources

    Santarsiero, M.; de Sande, J. C. G.; Piquero, G.; Gori, F.

    2013-05-01

    Planar electromagnetic sources characterized by a periodic variation of their beam coherence-polarization matrix are investigated, as far as the polarization features of the radiated fields are concerned, within the framework of the paraxial approximation. A propagation scheme based on plane-wave decomposition leads to a longitudinal periodicity of the polarization properties of the field, thus extending the Talbot effect to the case of partially coherent electromagnetic sources. The polarization features of beams radiated from sources of this type are illustrated by means of simple examples. In particular, it is shown that completely unpolarized sources with uniform intensity profiles can be easily realized, for which the propagated field becomes perfectly polarized across some transverse planes, and vice versa.

  6. Intrinsic Radiation Source Generation with the ISC Package: Data Comparisons and Benchmarking

    Solomon, Clell J. Jr. [Los Alamos National Laboratory

    2012-04-26

    The characterization of radioactive emissions from unstable isotopes (intrinsic radiation) is necessary for shielding and radiological-dose calculations from radioactive materials. While most radiation transport codes, e.g., MCNP [X-5 Monte Carlo Team, 2003], provide the capability to input user prescribed source definitions, such as radioactive emissions, they do not provide the capability to calculate the correct radioactive-source definition given the material compositions. Special modifications to MCNP have been developed in the past to allow the user to specify an intrinsic source, but these modification have not been implemented into the primary source base [Estes et al., 1988]. To facilitate the description of the intrinsic radiation source from a material with a specific composition, the Intrinsic Source Constructor library (LIBISC) and MCNP Intrinsic Source Constructor (MISC) utility have been written. The combination of LIBISC and MISC will be herein referred to as the ISC package. LIBISC is a statically linkable C++ library that provides the necessary functionality to construct the intrinsic-radiation source generated by a material. Furthermore, LIBISC provides the ability use different particle-emission databases, radioactive-decay databases, and natural-abundance databases allowing the user flexibility in the specification of the source, if one database is preferred over others. LIBISC also provides functionality for aging materials and producing a thick-target bremsstrahlung photon source approximation from the electron emissions. The MISC utility links to LIBISC and facilitates the description of intrinsic-radiation sources into a format directly usable with the MCNP transport code. Through a series of input keywords and arguments the MISC user can specify the material, age the material if desired, and produce a source description of the radioactive emissions from the material in an MCNP readable format. Further details of using the MISC utility can

  7. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  8. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  9. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume II: Effects

    Over the past few years the United Nations Scientific Committee on the effects of Atomic Radiation has undertaken a broad review of the sources and effects of ionizing radiation. In the present report, the Committee, drawing on the main conclusions of its scientific assessment summarizes the developments in radiation science in the years leading up to the next millennium. It covers the following: the effects of radiation exposure; levels of radiation exposure; radiological consequences of the Chernobyl accident; sources of radiation exposure including natural exposures, man-made environmental exposures, medical and occupational exposures; radiation associated cancer. This volume includes five Annexes covering: DNA repair and mutagenesis; biological effects at low radiation doses; combined effects of radiation and other agents; epidemiological evaluation of radiation-induced cancer and exposure effects of the Chernobyl accident

  10. Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing

    Dahlmann, Katrin; Grewe, Volker; Ponater, Michael; Matthes, Sigrun

    2011-01-01

    Source attribution of ozone radiative forcing (RF) is a prerequisite for developing adequate emission mitigation strategies with regards to climate impact. Decadal means of ozone fields from transient climate-chemistry simulations (1960-2019) are analysed and the temporal development of ozone RF resulting from individual NOx sources, e.g. road traffic, industry and air traffic, is investigated. We calculated an ozone production efficiency which is mainly dependent on the altitude of NOx emiss...

  11. Effects of various radiation source characteristics on shielding requirements at the potential Yucca Mountain repository

    This radiation shielding study provides dose rate information that can be used to estimate required shielding thicknesses for different repository configurations, including various hot cells and vaults in the waste-handling building, the boreholes in the underground emplacement area, and the transfer casks. The study determines gamma and neutron source strengths for various waste types and source geometries representative of conditions at the repository and determines dose rates as a function of shielding thickness for selected materials

  12. Radiation injury from acute exposure to an iridium-192 source: case history

    A 192Ir source became detached and fell from an industrial radiography camera. A labourer, not involved with radiation work and unaware of the hazard picked up the source and kept it in his hip packet for 2 hr. During this period, he received a skin dose of 13,000 rad and testes dose of 130 rad, the latter resulting in temporary sterility for a period of about 2 yr. (author)

  13. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  14. Potential role of intense ionising radiation sources in municipal sludge management and environmental protection

    Magnitude of the problem of safe disposal of sewage and sludge is explained. With rapid increase in the quantum of generated municipal and industrial wastes, their disposal on land or in sea is becoming harmful to public health, hazardous to aquatic life and disturbing to ecological balance. These wastes can be recycled, but to make this recycling beneficial and at the same time harmless to public health, the wastes must be disinfected. Radiation disinfection of sewage and sludge is examined as one of the ways of disinfection. Irradiation can be carried out with gamma radiation or energised electrons. Techniques of radiation disinfection and radiation doses required for disinfection are discussed. Case studies of a few radiation plants for sludge disinfection are presented. They include the Palmdale Plant in Florida, Sandia Irradiator at Albuqurque, New Mexico, Energised Electron Facility at Deer Island, Boston - all these in U.S.A., and the Munich Plant in West Germany. Mention has been made to the work in progress in India on the design of irradiators. Reference has been made to the proposed electron irradiation system for destruction of toxic chemicals such as PCB in drinking water and for disinfection of secondary water. Economics of radiation disinfection is also discussed and it is noted that the radiation process can become economically competitive when cheap sources of radiation become available. (M.G.B.)

  15. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. (author)

  16. The physical protection of radiation sources and radioactive materials in Tanzania

    Full text: In recognition of the legal deficiency and the awareness of radiation safety, the parliament of the United Republic of Tanzania enacted the protection from radiation act no. 5 of 1983, which established the national radiation commission (NRC) as a regulatory authority. The main objective of the act was to provide for a legal framework and guidance of the control of the use of radiation sources and radioactive materials with the view to achieve an assurance for acceptance level of radiation protection and safety standard. Due to trade liberalization that is currently experienced in the country, the increase in the number of radiation practices is observed yearly. medical diagnostic x-ray facilities constitute 72 % of all radiation installations in the country. Radioactive materials used in research, teaching and industrial application constitute 24 % and those used in therapy and nuclear medicine is 4 %. About seven radioactive materials incidents occurred in Tanzania during 1996-2000. Among these cases, some were illegal possession and across-boarder trafficking of radioactive materials. Theft and losses radioactive equipments or sources were also experienced. This presentation discusses the experienced incidents of illegal possession, theft and loss of radioactive materials and the lesson learnt from those events in connection with our operational laws. The needs for improvement of the whole system of notification, authorization, registration and licensing to cope up with increase in radiation practices and cross-border illegal trafficking of radioactive materials. The importance of involving immigration officers, police and custom officer with proper training in radiation safety aspect is emphasized. The recommendation are given in an attempt to rescue the situation. (author)

  17. Public trust in sources of information about radiation risks in the UK

    Hunt, S.; Frewer, L.J.; Shepherd, R. [Institute of Food Research, Earley Gate, Reading (United Kingdom)

    1998-07-01

    Full text of publication follows: perceptions of trust have been identified as crucial to successful risk communication. This research is concerned with establishing the degree of trust the public places in various sources of information about radiation hazards, and identifying a maximally trusted source for communicating risks about these hazards. Participants were asked directly about the degree to which they would trust information about radiation risks from a variety of sources. They were also asked about the putative components of trust: the degree of 'vested interest' they believed each source had in misinforming the public about radiation risks, and the 'degree of knowledge' they believed each source had about these risks. The results indicated that while perceptions of low 'vested interest' and high 'degree of knowledge' are important elements in determining positive trust ratings, neither alone is sufficient to guarantee a high trust rating. The implications of these findings are discussed in terms of a maximally, trusted source for risk communication that could achieve optimal 'vested interest' and 'degree of knowledge' ratings, the principal features for which are identified as independence of government and commercial organisations; high level of technical expertise; and being specifically dedicated to the interests of the public. (authors)

  18. International action plan for the safety of radiation sources and the security of radioactive materials

    In recent years there has been a growing awareness of the potential for accidents involving radiation sources, some accidents having had serious, even fatal, consequences. More recently still, concern has been raised by the problems associated with radiation sources that for one reason or another are not subject to regulatory control or over which regulatory control has been lost. An International Conference held in Dijon, in September 1998 summarized a number of conclusions aiming at a global improvement of source control. These conclusions were taken by the IAEA immediately after, and an Action Plan was developed and approved one year later. The Action Plan aims at assisting Member States in maintaining and, where necessary, improving the safety of radiation sources and the security of radioactive materials over their life cycle. The Plan consists of seven groups of actions, namely; regulatory infrastructures, management of disused sources, categorization of sources, response to abnormal events, information exchange, education and training and international undertakings. The implementation of the Action Plan was initiated the last quarter of 1999. (author)

  19. Radiation

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  20. Management of ionizing radiation sources in university, medical and industrial environments; Gestion des sources ionisantes en milieux universitaire, medical et industriel

    NONE

    2000-07-01

    This conference treats several subjects relative to the use of radioactive sources. The first session comprises three articles about ionizing sources and regulation. The second session, with three articles, tackles the question of radiation protection in the use of sources in industrial field. The third session, four articles, treats the same question but in the medicine and university media. The fourth session (three articles) is devoted to the organisation of radiation protection in the case of accidents. The fifth session concerns the management of spent sources (three articles). The sixth session studies the radiation protection of sources in Europe. The seventh and final session ends with the part and coordination of actors in radiation protection in the sources management (three articles). (N.C.)

  1. Instrument for obtaining information regarding the position of a radiation source

    The instrument is for the derivation of radiation source information, consisting of a split collimator with a large number of splits in order to receive beam components, which are in a straight line with the source, wherein each slot in the splits has an open end near the source and slot defining walls which face inwards near the open end, and a detector for the separate detection of beam components which traverse the slots and for the procurement of detected data output signals, and a positioning arrangement which is bonded with the source or the source simultaneously across the slot positions and the detector elements in order to vary the scanning of the source, characterised in that each detector element is introduced within each respective slot between the slot defining walls. (Auth.)

  2. Endovascular brachytherapy: dosimetry and dose-area analysis of various radiation sources

    With the increase in popularity of endovascular brachytherapy for prevention of restenosis following coronary angioplasty, it remains to be determined which isotope and isotope form is the most ideal. An issue concerning the use of wire sources is the influence of the centering of the wire on dose uniformity across the artery wall and the potential problems this can lead to in terms of underdosage of the target tissues. In this investigation, the dosimetric characteristics of three currently used sources (γ-emitting 192Ir wire; β-emitting 32P wire; and β-emitting 188Re solution) were determined with EGS4 Monte Carlo. The dose results were then used to determine the dose-area relationships for the three sources in arteries with concentric and non-concentric lumens/walls, including situations in which the wire sources are moved away from the centre of the artery. It is found that, in order to ensure dose uniformity, centering is substantially more important for β-emitting wire sources. This is highlighted most significantly in the case of an example large irregular artery. Although the suitability of a source depends on many criteria (e.g., cost, availability, radiation protection, possible radiation-induced late effects), the problem of centering a wire source in possibly large and/or irregular arteries is greatly eased by the use of a γ-emitting source. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  3. Doppler Broadening Analysis of Steel Specimens Using Accelerator Based In Situ Pair Production

    Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma-induced pair-production techniques to produce positrons in thick samples (∼4-40 g/cm2, or ∼0.5-5 cm in steel). These techniques are called 'Accelerator-based Gamma-induced Positron Annihilation Spectroscopy'(AG-PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams by stopping 15 MeV electrons in a 1 mm thick tungsten converter. The accelerator is capable of operating with 30-60 ns pulse width, up to 200 mA peak current at 1 kHz repetition rate. The highly collimated bremsstrahlung beam impinged upon our steel tensile specimens, after traveling through a 1.2 m thick concrete wall. Annihilation radiation was detected by a well-shielded and collimated high-purity germanium detector (HPGe). Conventional Doppler broadening spectrometry (DBS) was performed to determine S, W and T parameters for our samples.

  4. Theoretical study on the carbon nanotube used ashard x—radiation source

    LuJing-Han; QinXi-Jun

    1998-01-01

    Calculations and analyses are made on the interaction between the carbon nanotube and the incident positron of high energy.The results obtained show that it is possible to use carbon nanotube as hard X-radiation source with high intensity and good monochromaticity.

  5. POPULATION RADIATION PROTECTION PROVIDING UNDER THE INFLUENCE OF NATURAL IONIZING IRRADIATION SOURCES

    E. G. Stepanov

    2015-08-01

    Full Text Available An article presents the modern problems of population radiation protection inBashkortostanRepublic. The main natural ionizing irradiation sources are identified and their contribution to the total exposure dose of the BashkortostanRepublicpopulation is analyzed. The types of the main natural ionizing irradiation sources are identified, as well as the ways of their intake and the methods of their influence. The results of laboratory studies are presented for the radon equivalent equilibrium volumetric activity, for the average gamma radiation dose rate in dwellings, for the investigations of gross alpha and gross beta activity in drinking water and open water sourcesBashkortostanRepublic. The article underlines the main problems of the radiation situation in the new construction. The main preventive measures are pointed out for the radiation protection of the buildings under construction improving. The article also presents an analysis of the results of activities of the Administration of Rospotrebnadzor in theBashkortostanRepublicfor the reducing of the levels of the Republican population exposure from the natural irradiation sources.

  6. Accounting and control of sources of ionizing radiation and radioactive materials

    In the Russian Federation, the accounting and control of sources of ionizing radiation and radioactive materials is the responsibility of the Ministry of the Russian Federation for Atomic Energy. The paper describes the various elements of the accounting and control system and some of the tasks to be carried out for the development and improvement of the system. (author)

  7. Urgent help for patients treated with open radioactive sources: Radiation hygiene for reanimation or another disaster

    An overview is given of the organization of and the reanimation and calamity protocol for the section Nuclear Medicine of the Academic Hospital Utrecht (AZU) in Utrecht, Netherlands, to treat and take care of patients that have to undergo different therapies with open radiation sources. The text of an information letter for intensive care nursing staff is included

  8. Proposal for regulation of logging activities in oil wells using ionizing radiation sources

    It covers general aspects of nuclear energy and the suitable legal frame for its application related to oil industry. Besides, a regulation proposal to control logging activities in Ecuador using ionizing radiation sources in oil wells. It was prepared taking into account the Ecuadorian Atomic Energy Commission criteria and international regulations

  9. Radiation Protection Aspects of the Linac Coherent Light Source Front End Enclosure

    Vollaire, J.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, S.H.; Leitner, M.Santana; /SLAC

    2010-08-26

    The Front End Enclosure (FEE) of the Linac Coherent Light Source (LCLS) is a shielding housing located between the electron dump area and the first experimental hutch. The upstream part of the FEE hosts the commissioning diagnostics for the FEL beam. In the downstream part of the FEE, two sets of grazing incidence mirror and several collimators are used to direct the beam to one of the experimental stations and reduce the bremsstrahlung background and the hard component of the spontaneous radiation spectrum. This paper addresses the beam loss assumptions and radiation sources entering the FEE used for the design of the FEE shielding using the Monte-Carlo code FLUKA. The beam containment system prevents abnormal levels of radiations inside the FEE and ensures that the beam remains in its intended path is also described.

  10. Alternative high-level radiation sources for sewage and waste-water treatment

    The choice of an energy source for the radiation treatment of waste-water or sludge is between an electron accelerator or a gamma-ray source of radioactive cobalt or caesium. A number of factors will affect the ultimate choice and the potential future adoption of radiation as a treatment technique. The present and future availability of radioactive sources of cobalt and caesium is closely linked to the rate of nuclear power development and the assumption by uranium fuel reprocessors of a role as radioactive caesium suppliers. Accelerators are industrial machines which could be readily produced to meet any conceivable market demand. For energy sources in the 20-30 kW range, electron accelerators appear to have an initial capital cost advantage of about seven and an operating cost advantage of two. While radioisotope sources are inherently more reliable, accelerators at voltages to 3 MeV have achieved a reliability level adequate to meet the demands of essentially continuous operations with moderate maintenance requirements. The application of either energy source to waste-water treatment will be significantly influenced by considerations of the relative penetration capability, energy density and physical geometrical constraints of each option. The greater range of the gamma rays and the lower energy density of the isotopic sources permit irradiation of a variety of target geometrics. The low penetration of electrons and the high-energy density of accelerators limit application of the latter to targets presented as thin films of several centimetres thickness. Any potential use of radiation must proceed from a clear definition of process objectives and critical comparison of the radiation energy options for that specific objective. (Author)

  11. Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation

    Jaeglé, Pierre

    2006-01-01

    Extreme ultraviolet radiation, also referred to as soft X-rays or XUV, offers very special optical properties. The X-UV refractive index of matter is such that normal reflection cannot take place on polished surfaces whereas beam transmission through one micrometer of almost all materials reduces to zero. Therefore, it has long been a difficult task to imagine and to implement devices designed for complex optics experiments in this wavelength range. Thanks to new sources of coherent radiation - XUV-lasers and High Order Harmonics - the use of XUV radiation, for interferometry, holography, diffractive optics, non-linear radiation-matter interaction, time-resolved study of fast and ultrafast phenomena and many other applications, including medical sciences, is ubiquitous.

  12. Development of the accelerator-based technique for hadron therapy

    Hadron therapy with protons and carbon ions is one of the most effective branches in radiation oncology. It has advantages over therapy using gamma-radiation and electron beams. Fifty thousands of patients per year need such a treatment in Russia. Review of the main modern trends in the development of accelerators for therapy and treatment techniques concerned with respiratory gated irradiation and scanning with the intensity modulated pencil beams is given. Main stages of forming, time-structure and main parameters of the beams used in proton therapy as well as requirements to medicine accelerators are considered. Main results of testing with the beam of C235-V3 cyclotron for the first Russian specialized hospital proton therapy center in Dimitrovgrad are presented. Using of the superconducting accelerators and gantry systems for hadron therapy is considered

  13. Scattering in the radiation source and the fundamental-harmonic hypothesis

    A model for the radiation source for type III solar radio bursts which includes random density fluctuations is reviewed. This methodology is applied to the burst of 28 September, 1973, 03:19 UT which is an archetype 'fundamental-harmonic' pair. It is found that for scattering inhomogeneities consistent with those necessary to explain the observed sizes of the sources, it is impossible to amplify fundamental radiation in a source with a spatially uniform energy density in plasma waves; i.e., it is impossible to interpret this burst as a 'fundamental-harmonic' pair from such a source. However, the supposed 'fundamental' has fine structure similar to type IIIb bursts and since it is very difficult to explain these features except as fundamental radiation, it is concluded that there must be small clumps of intense plasma waves in the source which allow the fundamental to be amplified. These results are also applied to the hectometric burst of 19 July, 1971 for which a steep rise in brightness is observed between 10 and 50 R0. It is argued that the most plausible explanation of this rise is that the density inhomogeneities become sufficiently weak to allow the fundamental to be amplified in this range. (Auth.)

  14. Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source

    Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Fujioka, Shinsuke; Nishikawa, Takeshi; Koike, Fumihiro; Ohashi, Hayato; Tanuma, Hajime

    2010-06-01

    Atomic processes in Sn plasmas are investigated for application to extreme-ultraviolet (EUV) light sources used in microlithography. We develop a full collisional radiative (CR) model of Sn plasmas based on calculated atomic data using Hebrew University Lawrence Livermore Atomic Code (HULLAC). Resonance and satellite lines from singly and multiply excited states of Sn ions, which contribute significantly to the EUV emission, are identified and included in the model through a systematic investigation of their effect on the emission spectra. The wavelengths of the 4d-4f+4p-4d transitions of Sn5+ to Sn13+ are investigated, because of their importance for determining the conversion efficiency of the EUV source, in conjunction with the effect of configuration interaction in the calculation of atomic structure. Calculated emission spectra are compared with those of charge exchange spectroscopy and of laser produced plasma EUV sources. The comparison is also carried out for the opacity of a radiatively heated Sn sample. A reasonable agreement is obtained between calculated and experimental EUV emission spectra observed under the typical condition of EUV sources with the ion density and ionization temperature of the plasma around 1018 cm-3 and 20 eV, respectively, by applying a wavelength correction to the resonance and satellite lines. Finally, the spectral emissivity and opacity of Sn plasmas are calculated as a function of electron temperature and ion density. The results are useful for radiation hydrodynamics simulations for the optimization of EUV sources.

  15. Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source

    Atomic processes in Sn plasmas are investigated for application to extreme-ultraviolet (EUV) light sources used in microlithography. We develop a full collisional radiative (CR) model of Sn plasmas based on calculated atomic data using Hebrew University Lawrence Livermore Atomic Code (HULLAC). Resonance and satellite lines from singly and multiply excited states of Sn ions, which contribute significantly to the EUV emission, are identified and included in the model through a systematic investigation of their effect on the emission spectra. The wavelengths of the 4d-4f+4p-4d transitions of Sn5+ to Sn13+ are investigated, because of their importance for determining the conversion efficiency of the EUV source, in conjunction with the effect of configuration interaction in the calculation of atomic structure. Calculated emission spectra are compared with those of charge exchange spectroscopy and of laser produced plasma EUV sources. The comparison is also carried out for the opacity of a radiatively heated Sn sample. A reasonable agreement is obtained between calculated and experimental EUV emission spectra observed under the typical condition of EUV sources with the ion density and ionization temperature of the plasma around 1018 cm-3 and 20 eV, respectively, by applying a wavelength correction to the resonance and satellite lines. Finally, the spectral emissivity and opacity of Sn plasmas are calculated as a function of electron temperature and ion density. The results are useful for radiation hydrodynamics simulations for the optimization of EUV sources.

  16. Impact of Multinational Support for the Control of Nuclear and Radiation Sources in Ghana

    The International Atomic Energy Agency (IAEA) and the Office of Global Threat Reduction's (GTRI) Protect Program continue to provide support for the protection of nuclear and radiological sites throughout the world. This paper summarizes the activities of the IAEA and GTRI in Ghana for the control of nuclear and radioactive sources. A new draft nuclear regulatory control legislation has been prepared and submitted to the Government for promulgation. The GTRI program has funded physical protection upgrades at large radiological sources at the Korle-Bu Teaching Hospital in Accra, at the Komfo Anokye Teaching Hospital in Kumasi, and at the Ghana Atomic Energy Commissions (GAEC) Gamma Irradiation Facility in Legon. GTRI is also funding an addition to the existing national radioactive source storage facility to enlarge it to meet the needs of Ghana for many years to come. Further security upgrades at other large radiological sources and a MNSR research reactor (GHARR-1) at the GAEC facility have been done by the International Atomic Energy Agency (IAEA). A central alarm station coordinating the new security systems sponsored by both the IAEA and GTRI is also being installed at the GAEC. The GTRI program has also sponsored a Search and Secure Workshop in Ghana to train the radiation protection staff in how to locate orphan sources and in how to perform a verified inventory. New portable radiation detection equipment has been provided to the Radiation Protection Institute to support this important effort. (author)

  17. Radiation exposure of the US population from consumer products and miscellaneous sources

    The primary goal of the effort that resulted in this report was to update the earlier report issued by the NCRP on this subject (NCRP, 1977). In so doing, the Council has identified additional consumer products that can be sources of ionizing radiation, and has deleted coverage of some products that are either no longer available or whose use has essentially been discontinued. For each source category, a major effort has been made to provide data on the number of products currently in use, the rate at which such usage is changing, and the range of typical dose equivalents being received from that source by the general public. To the extent possible, an attempt has been made to provide information to assist in making decisions on whether a given application might better be replaced by some other method of accomplishing the same task without involving radiation exposure to the population. 162 refs., 2 figs., 23 tabs

  18. An analysis on international trends of radiation application and security of radioactive sources

    Radiation technologies are being utilized in a wide range of daily modern life and provide the public with valuable benefits through applications in fields of medical, industrial, agricultural, and science and engineering research. On the other hand, there is a high possibility that radioactive materials could be used for potentially malevolent purposes such as dirty bombs. International community, therefore, has made efforts to improve security of radioactive sources for protecting the public from radiological terrorism. This study investigated current status of radiation technologies and radioactive sources which could be used by radiological dispersal devices. This paper also reviewed the possibility of radiological weapon attacks, international trends and our methods to enhance security of radioactive sources

  19. Blind source separation of ship-radiated noise based on generalized Gaussian model

    Kong Wei; Yang Bin

    2006-01-01

    When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model nonGaussian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumulants and Gaussian mixture density function.

  20. Radiation safety in Radium-226 spent sources conditioning operations in Cuba

    Full text: In the past Radium-226 sources have been used in several applications all over the world. Because of their unfavourable radioactive characteristics and those of their progeny, specially of Radon-222 radioactive gas, the conditioning of them for safe storage until disposal can be made, have been recommended. In 1991 the International Atomic Energy Agency (IAEA) established a Spent Radiation Sources Programme, with the purpose to assist Member States. This program includes one activity specifically related to the spent radium sources conditioning for safe storage. This radium spent sources conditioning methodology consists on encapsulation of sources in a stainless steel capsule, which become then a new sealed radioactive source. In that way the future retrieval of the capsule for disposal is possible. Recently our country received Agency's technical assistance, through the provision of the necessary equipment and devices to perform the operations and an IAEA expert mission to supervise these operations, which were carried out on July 2007. This paper describes the Radiation Protection Program (RPP) designed to carry out the conditioning works of more than 1000 Radium-226 spent sources, with an estimated total activity of 178 GBq. The operations were performed in the Radioactive Waste Management facilities of the Centre for Radiation Protection and Hygiene (CPHR). The designed program allowed CPHR to get the Cuban Regulatory Body authorization to carry out operations for conditioning the whole planned source inventory. The results of the application of RPP demonstrate its effectiveness, as the operations were carried out without radiological events that could cause impact on workers, on members of the public or on the environment. The individual monitoring performed, covered the internal and external dosimetry (Hp(10), Hp(0,07), Hp(0,03)) and the values estimated did not exceed in any case the dose constraints for these works. (author)

  1. Use of Z pinch radiation sources for high pressure shock wave studies

    Recent developments in pulsed power technology demonstrate use of intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions larger than possible with other radiation sources. Initial indications are that the use of Z pinch sources can be used to produce planar shock waves in samples with diameters of a few millimeters and thicknesses approaching one half millimeter. These dimensions allow increased accuracy of both shock velocity and particle velocity measurements. The Z pinch radiation source uses imploding metal plasma induced by self-magnetic fields applied to wire arrays to produce high temperature x-ray environments in vacuum hohlraum enclosures. Previous experiments have demonstrated that planar shock waves can be produced with this approach. A photograph of a wire array located inside the vacuum hohlraum is shown here. Typically, a few hundred individual wires are used to produce the Z pinch source. For the shock wave experiments being designed, arrays of 120 to 240 tungsten wires with a diameter of 40 mm and with individual diameters of about 10 microm are used. Preliminary experiments have been performed on the Z pulsed radiation source to demonstrate the ability to obtain VISAR measurements in the Z accelerator environment. Analysis of these results indicate that another effect, not initially anticipated, is an apparent change in refractive index that occurs in the various optical components used in the system. This effect results in an apparent shift in the frequency of reflected laser light, and causes an error in the measured particle velocity. Experiments are in progress to understand and minimize this effect

  2. IAEA Conference on Large Radiation Sources in Industry (Warsaw 1959): Which technologies of radiation processing survived and why?

    The IAEA has organized in Warsaw an International Conference on Large Radiation Sources in Industry from 8 to 12 September 1959. Proceedings of the Conference have been published in two volumes of summary amount of 925 pages. This report presents analysis, which technologies presented at the Conference have survived and why. The analysis is interesting because already in the fifties practically full range of possibilities of radiation processing was explored, and partially implemented. Not many new technologies were presented at the next IAEA Conferences on the same theme. Already at the time of the Warsaw Conference an important role of economy of the technology has recognized. The present report selects the achievements of the Conference into two groups: the first concerns technologies which have not been implemented in the next decades and the second group which is the basis of highly profitable, unsubsidized commercial production. The criterion of belonging of the technology to the second group, is the value of the quotient of the cost of the ready, saleable product diminished by the cost of a raw material before processing, to the expense of radiation processing, being the sum of irradiation cost and such operations as transportation of the object to and from the irradiation facility. Low value of the quotient, as compared to successful technologies is prophesying badly as concerns the future of the commercial proposal. A special position among objects of radiation processing is occupied by radiation processing technologies direct towards the protection or improving of the environment. Market economy does not apply here and the implementation has to be subsidized. (author)

  3. Spectrum shaping of accelerator-based neutron beams for BNCT

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  4. A Review of the US National Academies Report on Radiation Source Use and Replacement

    In 2008, the US Congress asked the National Academy of Sciences (NAS) to form the Committee on Radiation Source Use and Replacement. The NAS Committee was tasked with reviewing prospects for replacing IAEA Category 1 and 2 radionuclide sealed sources with less dangerous alternatives. The NAS Committee found that non-radionuclide replacements existed for nearly all Category 1 and 2 radionuclide sources in varying degrees of readiness. However, after reviewing the overall risks associated with radioactive caesium chloride (CsCl), the NAS Committee felt it was urgent to take near term action on CsCl sources. The Committee recommended that the US Government should implement options for eliminating Category 1 and 2 CsCl sources from use. The paper provides an overview of the risk based methodology that was used by the NAS Committee in formulating this recommendation. (author)

  5. Regulatory infrastructure for the control of radiation sources in the Africa region: Status, needs and programmes

    In recent years, several African countries have taken steps towards creating or strengthening legal, administrative and technical mechanisms for the regulation and control of peaceful uses of nuclear technology, and towards improving the effectiveness and sustainability of radiation protection measures based on international standards. This stems from a growing awareness that a proper national infrastructure is a prerequisite for the implementation of safety standards to achieve and maintain the desired level of protection and safety, particularly in such sectors as public health and industry. Also, other issues of global and regional interest, such as the control of radiation sources, including the handling of hazardous waste, and response capabilities in the case of a radiological emergency, have contributed to a better perception of risks associated with deficiencies in or lack of adequate national radiation protection control mechanisms. Too often, however, this awareness has not been matched with adequate progress in the establishment of a regulatory framework for the control of radiation sources. This paper presents a summary of the current status of radiation protection infrastructure in all African Member States. On a background of still existing weaknesses and challenges, an overview of the Agency's response to assistance needs and programmes in this field is discussed. (author)

  6. Concepts for the control of occupational exposure to natural radiation sources

    The Council Directive 96/29 EURATOM demands of the Member States to include such human activities in the institutional control if the presence of natural radiation sources leads to a significant increase in the exposure of workers or members of the public. These human activities are termed 'work activities'. As natural radiation sources are omnipresent the protection concept for work activities differs considerably from this one evolved for 'practices'. Three areas are of concern: exposure of workers in specific working areas, residues causing a significant increase in the exposure of members of the public and exposure of air crews to cosmic radiation. The exposure of workers to radon is of special concern. The paper deals with guiding principles underlying the German regulations for the control of natural radiation sources and, by way of example, with the regulations specified to control workers occupationally exposed to increased radon concentrations. The working areas of concern are explicitly mentioned in the regulations. For all work places which can be assigned to a mentioned working area the exposure must be estimated. If the exposure exceeds an exposure level of 2 . 106 Bqhm-3 specified in the regulations remediation measures have to be considered and the competent authority has to be notified. Only if the exposure cannot be reduced below this level the exposed workers have to be monitored. (author)

  7. Bernoulli particle filter with observer altitude for maritime radiation source tracking in the presence of measurement uncertainty

    Luo Xiaobo; Fan Hongqi; Song Zhiyong; Fu Qiang

    2013-01-01

    For maritime radiation source target tracking in particular electronic counter measures (ECM) environment, there exists two main problems which can deteriorate the tracking perfor-mance of traditional approaches. The first problem is the poor observability of the radiation source. The second one is the measurement uncertainty which includes the uncertainty of the target appear-ing/disappearing and the detection uncertainty (false and missed detections). A novel approach is proposed in this paper for tracking maritime radiation source in the presence of measurement uncertainty. To solve the poor observability of maritime radiation source target, using the radiation source motion restriction, the observer altitude information is incorporated into the bearings-only tracking (BOT) method to obtain the unique target localization. Then the two uncertainties in the ECM environment are modeled by the random finite set (RFS) theory and the Bernoulli filtering method with the observer altitude is adopted to solve the tracking problem of maritime radiation source in such context. Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source, and also demonstrate the superiority of the method compared with the traditional integrated probabilistic data association (IPDA) method. The tracking perfor-mance under different conditions, particularly those involving different duration of radiation source opening and switching-off, indicates that the method to solve our problem is robust and effective.

  8. Methods radiation protection data sheets for the use radionuclides in unsealed sources

    These radiation protection data sheets are devoted to responsible persons and employees of various laboratories or medical, pharmaceutical, university and industrial departments where radionuclides are handled as well as all the persons who attend to safety in this field. They contain the essential radiation protection data for the use of radionuclides in unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography. This new series includes the following radionuclides: bromine 82, cobalt 58, cobalt 60, manganese 54, mercury 197, mercury 203, promethium 147, xenon 133 and ytterbium 169. (O.M.)

  9. Compact narrow-band THz radiation source based on photocathode rf gun

    Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m). (authors)

  10. Definition of loss-of-coolant accident radiation source: summary and conclusions. [BWR; PWR

    Bonzon, L.L.; Lurie, N.A.; Houston, D.H.; Naber, J.A.

    1978-05-01

    The radiation energy release rates and spectra corresponding to those sources specified in USNRC Regulatory Guide 1.89 for the radiation qualification of Class 1E equipment were calculated. The effects of several parameters (some not specific in the Guide), such as reactor fuel composition, operating duration and power level, and treatment of progeny, are evaluated. The results are presented as time-dependent beta and gamma-ray energy release rates and spectra which are fundamental quantities that are not specific to a plant design but are generally applicable to any nuclear power station.

  11. Definition of loss-of-coolant accident radiation source. [PWR; BWR

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist.

  12. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Blanchet Luc

    2006-06-01

    Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.

  13. Development of an accelerator-based BNCT facility at the Berkeley Lab

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7Li(p,n)7Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  14. Development of sup 1 sup 9 sup 2 Ir radiation sources for intravascular irradiation

    Kogure, H; Iwamoto, S; Iwata, K; Kawauchi, Y; Nagata, Y; Sorita, T; Suzuki, K

    2003-01-01

    Intravascular brachytherapy is a novel therapy for preventing the restenosis of coronary artery by use of low-dose irradiation. JAERI and Kyoto University have been developing sup 1 sup 9 sup 2 Ir radiation sources by the cooperative research project entitled as 'The research on safety and effectiveness of the intravascular brachytherapy for preventing restenosis of the coronary artery disease' since 1998. The radiation source was introduced into the stenosis through a catheter (a guide-tube to insert directly into vascular) to irradiate the diseased part. Ten sup 1 sup 9 sup 2 Ir seed sources (phi 0.4 mm x 2.5 mm) were positioned between nylon spacers (phi 0.3 mm x 1.0 mm) in a flexible covering tube and the tube was plugged with a core-wire; the tube was shrunk to fix the inside materials and the size is 0.46 mm in diameter and 3 m in length. The physically optimal design was determined to insert the radiation source easily into vascular and to get the dose uniformity in the diseased part. The production me...

  15. Development of a sealed source radiation detector system for gamma ray scanning of petroleum distillation columns

    Gamma Ray Scanning is an online technique to 'view' the hydraulic performance of an operating column, with no disruption to operating processes conditions (pressure and temperature), as a cost-effective solution. The principle of this methodology consists of a small suitably sealed gamma radiation source and a radiation detector experimentally positioned to the column, moving concurrently in small increments on opposite sides and the quantity of gamma transmitted. The source-detector system consists of: a sealed ''60Co radioactive source in a panoramic lead radiator, a scintillator detector coupled to a ratemeter / analyzer and a mobile system. In this work, a gamma scanning sealed source-detector system for distillation columns, was developed, comparing two scintillator detectors: NaI(Tl) (commercial) and CsI(Tl) (IPEN). In order to project the system, a simulated model of a tray-type distillation column was used. The equipment developed was tested in an industrial column for water treatment (6.5 m diameter and 40 m height). The required activities of 6''0Co, laboratory (11.1 MBq) and industrial works (1.48 TBq) were calculated by simulation software. Both, the NaI(Tl) and the CsI(Tl) detectors showed good proprieties for gamma scanning applications, determining the position and presence or absence of trays. (author)

  16. Regulatory control of radiation sources and radioactive materials: The UK position

    The paper presents the organizations involved in the regulation of the safety of radiation sources and the security of radioactive materials across the UK. The safety of radiation sources is within the regulatory remit of the Health and Safety Executive, under the Health and safety of Work Act 1974 and associated regulations. Any employer using radiation sources has a statutory duty to comply with this legislation, thereby protecting workers and the public from undue risk. From a radioactive waste management perspective, the storage and use of radioactive materials and the accumulation and disposal of radioactive waste are regulated by the environment agencies of England and Wales, Scotland, and Northern Ireland, under the Radioactive Substances Act 1993. Special regulatory arrangements apply to nuclear sites, such as power stations and fuel cycle plants, and some additional bodies are involved in the regulation of the security of fissile materials. An explanation is given in the paper as to how these organizations to work together to provide a comprehensive and effective regulatory regime. An overview of how these regulators have recently started to work more closely with other enforcement bodies, such as the Police and Customs and Excise is also given, to illustrate the approach that is being applied in the UK to deal with orphan sources and illicit trafficking. (author)

  17. Effects of ionizing and particle radiation on precision frequency sources (Proposal for IEEE Standards Project P1193). Technical report

    The susceptibility of quartz oscillators and atomic frequency standards to natural and enhanced ionizing and particle radiation is an important parameter in predicting the short and long term performances of these standards in spacecraft. Characterization of the response of frequency standards to ionizing and particle radiation should be based on a thorough understanding of the radiation environment (proton, electron, neutron and flash x-ray radiation and single event upset) and radiation scenarios (dose/anneal cycle, combined environments). The document will present, in detail, the various forms of radiation existing or produced in the low-earth orbit and enhanced environments. In particular, emphasis will be placed on flux, fluence and dose rate levels and interaction mechanisms as pertaining to realistic radiation exposure scenarios. In addition to a discussion of radiation environments (proton, electron, neutron, flash x-ray, gamma and single event upset), selection criteria for radiation sources are presented including dosimetry and procedures for the radiation testing of frequency standards

  18. Radiation exposure of the population and indoor radiation levels in The Netherlands caused by natural gamma sources

    An estimate has been made of gamma doses to the population in the Netherlands, caused by natural radiation sources encountered in the environment. Data are given, derived from two independent types of measurements: 1. Exposure/dose rate measurements in the living environment (private houses as well as workplaces), using a high pressure ionization chamber and thermoluminescent dosemeters (TLD) respectively and 2. Individual monitoring, using TLD. The study included some 750 individuals, 400 houses and 275 workplaces. The participants were selected and divided into two groups on the basis of their location in areas of relatively high and low terrestrial radiation level respectively. Distinction was made between three categories of individuals with respect to their patterns of life. An estimate was made of the influence of the terrestrial component of the natural background and of some typical building materials on the indoor radiation level. An average indoor exposure rate of 9.4 μR.h-1 (6.7 x 10-13 C0144.s)-1) and a dose rate of 9.3 μrad.h-1 (93 nGy.h-1) for individuals were found, both with a standard deviation of 15-20%. (Auth.)

  19. Permissible dose from external sources of ionizing radiation. Recommendations of the National Committee on Radiation Protection. Handbook 59

    The Advisory Committee on X-ray and Radium Protection was formed in 1929 upon the recommendation of the International Commission on Radiological Protection, under the sponsorship of the National Bureau of Standards, and with the cooperation of the leading radiological organizations. The small committee functioned effectively until the advent of atomic energy, which introduced a large number of new and serious problems in the field of radiation protection. The present report deals primarily with the protection of persons occupationally exposed to ionizing radiation from external sources. An attempt has been made to cover most of the situations encountered in practice. However, it has not always been possible to make recommendations in quantitative terms. In such cases the recommendations are intended to serve as practical guides. The recommendations are based on presently available information and cannot be regarded as permanent. For this reason and on general grounds it is strongly recommended that exposure to radiation be kept at the lowest practicable level in all cases

  20. Study on External Exposure Doses Received by the Cuban Population from Environmental Radiation Sources

    The results are described of the study carried out with the aim of assessing doses received by the Cuban population due to the external exposure to environmental radiation sources. Contributions of cosmic radiation's ionising and indirectly ionising components to these doses, as well as the fraction resulting from terrestrial radiation, were also assessed as part of this study. Measurements made enabled us to estimate representative effective average doses received by the Cuban population from external exposure to cosmic and terrestrial radiation. Both outdoor and indoor permanency were taken into account for this estimate as well as the distribution of the Cuban population by altitude. The average representative dose due to cosmic radiation was estimated to be 298 ± 17 μSv per year, while the dose received by terrestrial radiation represented 180 ± 14 μSv per year, for a total annual dose of 78 ± 20 μSv. These values are within the range of those reported throughout the world by other authors. (author)

  1. Sources and effects of ionizing radiation. UNSCEAR 1994 report to the General Assembly, with scientific annexes

    During the last few years the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has undertaken a broad review of the sources and effects of ionizing radiation. Nine scientific annexes on particular subjects were issued in the UNSCEAR 1993 Report. Two further annexes have been completed, and these comprise the UNSCEAR 1994 Report. This is the twelfth substantive Report of the Committee, informing the General Assembly and the scientific and world community of its latest assessments. The two reports, 1993 and 1994, are complementary and provide a coherent summary of the Committee's findings and programme of work. The Committee considers in this report the effects of ionizing radiation on plants and animals in the environment. These effects have not previously been addressed directly by the Committee. The emphasis of past assessments has been on determining the effects of radiation on human health. With the increasing interest around the world in nurturing the environment and concerns about possible detrimental effects of radiation, the time is appropriate for the Committee to provide a summary of the effects of radiation on the environment. Refs, figs, tabs

  2. Protection and safety of the application of radiation sources in medicine

    Creating working conditions that are safe and do not endanger health in connection with the application of ionizing radiation in health care means quite complicated tasks and obligations to the employees whose main orders concerning the application of radiation sources and radiation protection are determined in the Workplace Radiation Protection Regulation. At the same time, almost all internal regulations of health and security at work have a chapter on radiation (regulations of occupational safety, fire protection, etc.) The well-co-ordinated work of several experts and special fields is needed for taking protective measures and a far-reaching authority and supervising system takes care of keeping the rules and making the realization easier. Naturally, what has been written down here is only of summarising character. Its aim is to call the attention to the requirements in a form within the understanding of everybody with a high-level knowledge of the given technology and the professional requirements of radiation protection, and the widespread application of the legal and standard rules redownloaded in this writing are necessary for realising complex protection. (author)

  3. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: investigating the radiative impact of elevated point sources

    E. G. Chapman

    2008-08-01

    Full Text Available The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous-phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs and produced clouds of comparable thickness to observations at approximately the proper times and places. The model overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model

  4. The basic safety standards on diskette. International basic safety standards for protection against ionizing radiation and for the safety of radiation sources

    The program SS115 contains the text and data from Safety Series No. 115: 'International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources' published by the IAEA in Vienna in 1996. The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  5. Saturn Neutron Exosphere as Source for Inner and Innermost Radiation Belts

    Cooper, John; Lipatov, Alexander; Sittler, Edward; Sturner, Steven

    2011-01-01

    Energetic proton and electron measurements by the ongoing Cassini orbiter mission are expanding our knowledge of the highest energy components of the Saturn magnetosphere in the inner radiation belt region after the initial discoveries of these belts by the Pioneer 11 and Voyager 2 missions. Saturn has a neutron exosphere that extends throughout the magnetosphere from the cosmic ray albedo neutron source at the planetary main rings and atmosphere. The neutrons emitted from these sources at energies respectively above 4 and 8 eV escape the Saturn system, while those at lower energies are gravitationally bound. The neutrons undergo beta decay in average times of about 1000 seconds to provide distributed sources of protons and electrons throughout Saturn's magnetosphere with highest injection rates close to the Saturn and ring sources. The competing radiation belt source for energetic electrons is rapid inward diffusion and acceleration of electrons from the middle magnetosphere and beyond. Minimal losses during diffusive transport across the moon orbits, e.g. of Mimas and Enceladus, and local time asymmetries in electron intensity, suggest that drift resonance effects preferentially boost the diffusion rates of electrons from both sources. Energy dependences of longitudinal gradient-curvature drift speeds relative to the icy moons are likely responsible for hemispheric differences (e.g., Mimas, Tethys) in composition and thermal properties as at least partly produced by radiolytic processes. A continuing mystery is the similar radial profiles of lower energy (neutron decay, but perhaps alternatively from atmospheric albedo, or else all protons from diverse distributed sources are similarly affected by losses at the moon' orbits, e.g. because the proton diffusion rates are extremely low. Enceladus cryovolcanism, and radiolytic processing elsewhere on the icy moon and ring surfaces, are additional sources of protons via ionization and charge exchange from breakup of

  6. Linear accelerator based stereotactic radiosurgery for melanoma brain metastases

    Mark E Bernard

    2012-01-01

    Full Text Available Purpose: Melanoma is one of the most common malignancies to metastasize to the brain. Many patients with this disease will succumb to central nervous system (CNS disease, highlighting the importance of effective local treatment of brain metastases for both palliation and survival of the disease. Our objective was to evaluate the outcomes associated with stereotactic radiosurgery (SRS in the treatment of melanoma brain metastases. Materials and Methods: We retrospectively reviewed 54 patients with a total of 103 tumors treated with SRS. Twenty patients had prior surgical resection and nine patients underwent prior whole brain radiation therapy (WBRT. 71% of patients had active extracranial disease at the time of SRS. Median number of tumors treated with SRS was 1(range: 1-6 with median radiosurgery tumor volume 2.1 cm 3 (range: 0.05-59.7 cm 3 . The median dose delivered to the 80% isodose line was 24 Gy in a single fraction. Results: The median follow-up from SRS was five months (range:1-30 months. Sixty-five percent of patients had a follow-up MRI available for review. Actuarial local control at six months and 12 months was 87 and 68%, respectively. Eighty-one percent of patients developed new distant brain metastases at a median time of two months. The six-month and 12-month actuarial overall survival rates were 50 and 25%, respectively. The only significant predictor of overall survival was surgical resection prior to SRS. Post-SRS bleeding occurred in 18% of patients and at a median interval of 1.5 months. There was only one episode of radiation necrosis with no other treatment-related toxicity. Conclusion: SRS for brain metastases from melanoma is safe and achieves acceptable local control.

  7. Radiation Protection During the Change of Sources for the Gamma Knife System in the General Hospital of Vienna

    Full text: The Leksell Gamma Knife of the General Hospital of Vienna is a complete system for radiosurgery. The Gamma Knife delivers highly accurate external irradiation of intracranial structures from an array of collimated beams of ionising radiation targeted in compliance with a predeviced treatment protocol. The ionising radiation is emitted by cobalt-60 sources in the radiation unit. The sources are heavily shielded within a cast iron body with shielding doors which provide protection for the patient and the staff. Each of the 201 radiation sources located in the radiation unit is composed of cobalt-60 pellets which are encapsulated in double stainless steel capsules with welded closures. At the time of calibration the specific activity of each source was approximately 925 GBq/g (250 Ci/g) and the total activity was 222 TBq. After six years of operation without any problems and incidents, due to the decrease of activity the 201 old sources had to be changed. The cobalt sources were delivered to the site in specially designed protective casks. With a special loading machine, which is a shielded cell, designed for handling radiation sources with full radiation safety, the 201 old sources were unloaded and the loading procedure with the new sources was done. The paper describes all the radiation protection measures foreseen from the arrival of the new sources, the unloading of the old sources, the loading of the Gamma Knife with the new sources and the re-transport of the old sources, especially the dose and dose-rate measurements and the results of the smear and wipe-tests. (author)

  8. A Study on the Radiation Source Effect to the Radiation Shielding Analysis for a Spent-Fuel Cask Design with Burnup-Credit

    The radiation shielding analysis for a Burnup-credit (BUC) cask designed under the management of Korea Radioactive Waste Management Corporation (KRMC) was performed to examine the contribution of each radiation source affecting dose rate distribution around the cask. Various radiation sources, which contain neutron and gamma-ray sources placed in active fuel region and the activation source, and imaginary nuclear fuel were all considered in the MCNP calculation model to realistically simulate the actual situations. It was found that the maximum external and surface dose rates of the spent fuel cask were satisfied with the domestic standards both in normal and accident conditions. In normal condition, the radiation dose rate distribution around the cask was mainly influenced by activation source (60 Co radioisotope); in another case, the neutron emitted in active fuel region contributed about 90% to external dose rate at 1m distance from side surface of the cask. Besides, the contribution level of activation source was dramatically increased to the dose rates in top and bottom regions of the cask. From this study, it was recognized that the detailed investigation on the radiation sources should be performed conservatively and accurately in the process of radiation shielding analysis for a BUC cask.

  9. Time-resolved X-ray studies using third generation synchrotron radiation sources

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  10. Advisory Committee on human radiation experiments. Supplemental Volume 2a, Sources and documentation appendices. Final report

    This large document provides a catalog of the location of large numbers of reports pertaining to the charge of the Presidential Advisory Committee on Human Radiation Research and is arranged as a series of appendices. Titles of the appendices are Appendix A- Records at the Washington National Records Center Reviewed in Whole or Part by DoD Personnel or Advisory Committee Staff; Appendix B- Brief Descriptions of Records Accessions in the Advisory Committee on Human Radiation Experiments (ACHRE) Research Document Collection; Appendix C- Bibliography of Secondary Sources Used by ACHRE; Appendix D- Brief Descriptions of Human Radiation Experiments Identified by ACHRE, and Indexes; Appendix E- Documents Cited in the ACHRE Final Report and other Separately Described Materials from the ACHRE Document Collection; Appendix F- Schedule of Advisory Committee Meetings and Meeting Documentation; and Appendix G- Technology Note

  11. Advisory Committee on human radiation experiments. Supplemental Volume 2a, Sources and documentation appendices. Final report

    NONE

    1995-01-01

    This large document provides a catalog of the location of large numbers of reports pertaining to the charge of the Presidential Advisory Committee on Human Radiation Research and is arranged as a series of appendices. Titles of the appendices are Appendix A- Records at the Washington National Records Center Reviewed in Whole or Part by DoD Personnel or Advisory Committee Staff; Appendix B- Brief Descriptions of Records Accessions in the Advisory Committee on Human Radiation Experiments (ACHRE) Research Document Collection; Appendix C- Bibliography of Secondary Sources Used by ACHRE; Appendix D- Brief Descriptions of Human Radiation Experiments Identified by ACHRE, and Indexes; Appendix E- Documents Cited in the ACHRE Final Report and other Separately Described Materials from the ACHRE Document Collection; Appendix F- Schedule of Advisory Committee Meetings and Meeting Documentation; and Appendix G- Technology Note.

  12. Measurement, analysis and correction of the closed orbit distortion in Indus-2 synchrotron radiation source

    The paper presents the measurement, analysis and correction of closed orbit distortion (COD) in Indus-2 at 550 MeV injection energy and 2 GeV synchrotron radiation user run energy. The measured COD was analysed and fitted to understand major sources of errors in terms of the effective quadrupole misalignments. The rms COD was corrected down to less than 0.6 mm in both horizontal and vertical planes. A golden orbit was set for the operative synchrotron radiation beamlines. With COD correction, the injection efficiency at 550 MeV was improved by ∼ 8 h. In this paper, the method of global COD correction based on singular value decomposition (SVD) of the orbit response matrix is described. Results for the COD correction in both horizontal and vertical planes at 550 MeV injection energy and at 2 GeV synchrotron radiation user run energy are discussed. (author)

  13. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  14. The Development of ADS Virtual Accelerator Based on XAL

    Peng-Fei, Wang; Qiang, Ye

    2013-01-01

    XAL is a high level accelerator application framework originally developed by the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. It has advanced design concept and adopted by many international accelerator laboratories. Adopting XAL for ADS is a key subject in the long term. This paper will present the modifications to the original XAL applications for ADS. The work includes proper relational database schema modification in order to better suit ADS configuration data requirement, redesigning and re-implementing db2xal application and modifying the virtual accelerator application. In addition, the new device types and new device attributes for ADS online modeling purpose is also described here.

  15. Experimental observation of nonspherically-decaying radiation from a rotating superluminal source

    We describe the experimental implementation of a superluminal (i.e., faster than light in vacuo) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments predict that the radiation emitted by each volume element of the superluminally moving distribution pattern will comprise a Cerenkov-like envelope with two sheets that meet along a cusp. Correspondingly, the emission from the experimental machine is found to be tightly beamed in both the azimuthal and polar directions. The beaming is frequency independent and has a sharply defined and unchanging geometry determined only by the speed and path of the moving distribution pattern, i.e., by the parameters governing the structure of the Cerenkov-like envelopes. In addition, over a restricted range of angles, we detect the presence of cusps in the emitted radiation. These, which are due to the focusing of wave fronts on a propagating space curve, result in the reception, during a short time period, of radiation emitted over a considerably longer period of (retarded) source time. The intensity of the radiation at these angles was observed to decline more slowly with increasing distance from the source than would the emission from a conventional antenna. The angular distribution of the emitted radiation and the properties associated with the cusps are in good quantitative agreement with theoretical models of superluminal sources once the effect of reflections from the earth's surface are taken into account. In particular, the prediction that the beaming and the slow decay should extend into the far zone has been tested to several hundred Fresnel distances (Rayleigh ranges). The excellent agreement between the theoretical calculations and the data suggests that the apparatus achieves precise and reproducible control of the polarization current and that similar machines could be of general interest for studying and utilizing the novel effects associated with

  16. Experimental observation of nonspherically-decaying radiation from a rotating superluminal source

    Ardavan, A.; Hayes, W.; Singleton, J.; Ardavan, H.; Fopma, J.; Halliday, D.

    2004-10-01

    We describe the experimental implementation of a superluminal (i.e., faster than light in vacuo) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments predict that the radiation emitted by each volume element of the superluminally moving distribution pattern will comprise a Čerenkov-like envelope with two sheets that meet along a cusp. Correspondingly, the emission from the experimental machine is found to be tightly beamed in both the azimuthal and polar directions. The beaming is frequency independent and has a sharply defined and unchanging geometry determined only by the speed and path of the moving distribution pattern, i.e., by the parameters governing the structure of the Čerenkov-like envelopes. In addition, over a restricted range of angles, we detect the presence of cusps in the emitted radiation. These, which are due to the focusing of wave fronts on a propagating space curve, result in the reception, during a short time period, of radiation emitted over a considerably longer period of (retarded) source time. The intensity of the radiation at these angles was observed to decline more slowly with increasing distance from the source than would the emission from a conventional antenna. The angular distribution of the emitted radiation and the properties associated with the cusps are in good quantitative agreement with theoretical models of superluminal sources once the effect of reflections from the earth's surface are taken into account. In particular, the prediction that the beaming and the slow decay should extend into the far zone has been tested to several hundred Fresnel distances (Rayleigh ranges). The excellent agreement between the theoretical calculations and the data suggests that the apparatus achieves precise and reproducible control of the polarization current and that similar machines could be of general interest for studying and utilizing the novel effects associated with

  17. Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation

    Epstein, Ariel

    2014-01-01

    We present a semi-analytical formulation of the interaction between a given source field and a scalar Huygens metasurface (HMS), a recently introduced promising concept for wavefront manipulation based on a sheet of orthogonal electric and magnetic dipoles. Utilizing the equivalent surface impedance representation of these metasurfaces, we establish that an arbitrary source field can be converted into directive radiation via a passive lossless HMS if two physical conditions are met: local power conservation and local impedance equalization. Expressing the fields via their plane-wave spectrum and harnessing the slowly-varying envelope approximation we obtain semi-analytical formulae for the scattered fields, and prescribe the surface reactance required for the metasurface implementation. The resultant design procedure indicates that the local impedance equalization induces a Fresnel-like reflection, while local power conservation forms a radiating virtual aperture which follows the total excitation field magni...

  18. Plasma Focus as a source of intense radiation and plasma streams for technological applications

    Dense Plasma Focus, a device invented more than 30 years, is until now one of the most bright and efficient source of ionizing radiation (neutrons, soft and hard X-rays, electron and ion streams). Being relatively cheap and flexible (energy stored in condenser battery and driving the phenomena from 0,2 kJ up to 1MJ) Dense Plasma Focus fits very well to a number of applications in different fields e.g. nano technology, material science, defectoscopy, biology, medicine etc... Already investigated and existing applications of Dense Plasma Focus, as well as those of future potential are presented and discussed in the paper. Specific demands for radiation sources based on Dense Plasma Focus principle to be used in above mentioned fields, problems encountered and methods how to overcome them are briefly indicated (Authors)

  19. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Blanchet, Luc

    2013-01-01

    To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc.) and by the future detectors in space (LISA, etc.), inspiralling compact binaries --- binary star systems composed of neutron stars and/or black holes in their late stage of evolution --- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source) and inspiralling compact binaries. We describe the post-Newtonian equations of motion, pay attention to the self-field regularizations at work, discuss several notions of innermost circular orbits, estimate the accuracy of the approximation and make a comparison with num...

  20. B polarization of cosmic background radiation from second-order scattering sources

    B-mode polarization of the cosmic background radiation is induced from purely scalar primordial sources at second order in perturbations of the homogeneous, isotropic universe. We calculate the B-mode angular power spectrum ClBB sourced by the second-order scattering term in the full second-order Boltzmann equations for the polarized radiation phase-space density, which have recently become available. We find that at l ≈ 200 the second-order effect is comparable to the first-order effect for a tensor-to-scalar ratio of r = 10−6, and to about 2·10−4 at l ≈ 1000. It is always negligible relative to the weak-lensing induced contribution