WorldWideScience

Sample records for accelerator technology developments

  1. Technology development for RF accelerators

    Accelerator Control Division (ACnD) is having mandate for the design and development of key technologies in RF particle accelerators and for specialized applications in the field of RF Power, Controls, Magnetism, Superconductivity, Beam diagnostics and magnetic and electric field measurements. The activities being carried out in ACnD are mainly divided into three sectors, viz. (1) The Indian Accelerator program, (2) Accelerator development in collaboration with international laboratories and (3) specialized and specific applications for physics and material science applications. For the LEHIPA project at BARC, ACnD is involved in the development of Low level RF control systems, RF protection interlock systems, RF power systems and transmission lines, Drift Tube Linac and Permanent Magnets Based Drift Tubes. ACnD is also working in collaboration with international laboratories like Fermi National Accelerator Laboratory (FNAL), USA and GANIL, France. Under these collaborations, ACnD is responsible for the design and delivery of Low level RF controls and interlock systems, Solid state RF power amplifiers, Beam handling systems including warm quadrupoles and Superconducting focusing magnets and Beam diagnostics elements. ACnD is also working in specialized fields including high field magnets for MHD studies, magnetic sensors and magnetic flow meters for ITER (International Thermonuclear Experimental Reactor); focusing magnets for miniature klystron for mission critical applications, Field press and Pulsed field magnetizers for permanent magnets development, and High uniformity magnets for heavy ion penning traps. (author)

  2. TESLA accelerator installation: development of accelerator methods and technologies

    The TESLA Accelerator Installation is a multipurpose facility for production, acceleration and use of ions consisting of a light ion source, a heavy ion source, an isochronous cyclotron and a number of experimental channels. Its construction had begun in December 1989 and it was stopped temporarily in June 1998, after completing about three quarters of the planned jobs. The construction of the facility included the development of a number of accelerator methods and technologies. We shall present in this lecture the developed methods and technologies related to large electromagnets and systems for precise moving of their parts, systems for precise measurement of magnetic fields, radiofrequency resonators and amplifier chains, large high-vacuum chambers, cooling, control and safety systems of complex experimental set-ups, and production of radioisotopes and radiopharmaceuticals. (author)

  3. Technology development for high power induction accelerators

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  4. Accelerator technology and SPECT developments for BNCT

    Accelerator-Based BNCT (AB-BNCT) is establishing itself worldwide as the future modality to start the phase of in-hospital facilities. There are projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators. They will be briefly mentioned. In particular, the present status and recent progress of the Argentine project will be presented. The topics will cover: high power ion sources, power and voltage generation systems for a Tandem- Electrostatic Quadrupole (TES Q) accelerator, acceleration tubes, transport of intense beams, beam diagnostics, control systems, high power targets, the 9Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA.s), treatment room design, treatment planning assessment of clinical cases, etc. A complete test stand has been built and commissioned for intense proton beam production and characterization. Beams of 10 to 30 m A have been produced and transported during variable periods of operation by means of a pre accelerator and an electrostatic quadrupole doublet to a suppressed Faraday cup. The beam diagnostics has been performed through the observation with digital cameras of induced fluorescence in the residual gas. A 200 kV TES Q accelerator prototype has been constructed and tested and a 600 keV prototype is under construction. Self consistent space charge beam transport simulations have been performed and compared with experimental results. In addition to the traditional 7Li(p,n)7Be reaction, 9Be(d,n)10B using a thin Be target has been thoroughly studied as a candidate for a possible neutron source for deep seated tumors, showing a satisfactory performance. BSA.s and production targets and a treatment room complying with regulations have also been designed. Realistic clinical treatment planning cases for AB-BNCT have been studied showing very good results. Finally we will present advances in the development of a Single Photon Emission Computed Tomography (SPECT

  5. Indigenous development of advanced technologies lasers and accelerators

    Lasers and accelerators are powerful tools at the fore-front of the present day scientific research and technological developments. R and D activities in the areas of lasers and accelerators being pursued at various laboratories of the Department of Atomic Energy (DAE) span wide-ranging applications in basic research, industry, health care, and strategic areas covering energy research and national security, besides participation in large scale international projects. Core strength in these areas has been built through indigenous development of related advanced technologies like radio-frequency (RF) power; ultra-high vacuum, laser and accelerator materials, magnets, power supplies and control systems, superconducting radio-frequency cavities, cryogenics, and high damage threshold optical coatings. An overview of the laser and accelerator activities in DAE laboratories is presented in this article. (author)

  6. Separations technology development to support accelerator-driven transmutation concepts

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  7. Study of the Accelerator Technology Development for Cancer Radiotherapy

    The hadronic particle beams including both protons, neutrons and charged particles have been studied for cancer therapy by a number of research centers in several countries during the past two decades. In this paper is briefly discussed concerning the accelerator type and its applications. The future trends are seen in the new technological developments like the use of proton gantries, beam scanning techniques, improved patient handling system and in the increasing precision of treatment. (author)

  8. Development of superconducting acceleration cavity technology for free electron lasers

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x109 at 2.5K, and 8x109 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  9. Status of Accelerator Driven Systems Research and Technology Development

    One of the greatest challenges for nuclear energy is how to properly manage the highly radioactive waste generated during irradiation in nuclear reactors. In order for nuclear power to exploit its full potential as a major sustainable energy source, there needs to be a safe and effective way to deal with this waste. Since 1995, several scenario studies have been conducted on different advanced nuclear fuel cycle and waste management options in various countries. Examples include the collaborative projects under “Global sustainable nuclear energy scenarios for long term development and deployment of nuclear energy” of the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative, and the scenario studies conducted under the auspices of the OECD Nuclear Energy Agency and the Euratom research project PATEROS — Partitioning and Transmutation European Roadmap for Sustainable Nuclear Energy. Some of the proposed long term nuclear fuel cycles include an innovative concept of a hybrid system for the transmutation of long lived radioisotopes. This is usually the called accelerator driven system (ADS) — or accelerator driven transmutation of waste (ATW) — and consists of a high power proton accelerator, a heavy metal spallation target that produces neutrons when bombarded by the high power beam, and a subcritical core that is neutronically coupled to the spallation target. The ADS, which has been developed in different countries for more than 40 years, is claimed to offer new prospects and advantages for the transmutation of high level radioactive waste. The ADS would convert highly radioactive material to non-radioactive material or material with a much shorter half-life. In addition, these hybrid systems can generate electricity during the conversion of transuranic waste. In 1997, under the guidance of its Technical Working Group on Fast Reactors (TWG-FR), the IAEA published IAEA-TECDOC-985, Accelerator Driven Systems: Energy

  10. Development of small applied accelerator in Tokyo Institute of Technology

    Hattori, T

    2002-01-01

    Interdigital-H(IH) Linac was constructed and applied to materials research in the University. IH Linac uses 1.6 MV small tandem pelletron and accelerates ion (>Q/A=1/4) from 240 KeV to 2.4 MeV. The secondary IH Linac was built and increased the energy to 3.4 MeV/u. In order to apply linac to therapy, IH Linac for PET (Position Emission Tomography), Carbon 6 MeV/u Linac for cancer therapy, APF (Alternating Phase Focus)-IH prototype linac, Carbon 2 MeV/u test APF-IH linac were developed. On application to semiconductor and industry, IHQ type MeV ion implantation device, APF-IH type MeV ion implantation device and high-energy electron accelerator were developed. A bone density measurement instrument was developed and the data was proved better values than ordinary instrument. The problems of prototype small accelerator are summarized. (S.Y.)

  11. DTU climate change technologies. Recommendations on accelerated development and deployment of climate change technologies

    Larsen, Hans; Halsnaes, K. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, System Analysis Div., Roskilde (Denmark)); Nielsen, Niels Axel; Moeller, J.S.; Hansen, Jakob Fritz; Froekjaer Strand, I. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark))

    2009-09-15

    During 2009, the Technical University of Denmark (DTU) has held a number of international workshops for climate change. Participants came from industry, research institutions and government. The workshops focused on sustainable energy systems and climate change adaptation. The summary of conclusions and recommendations from the workshops constitutes a comprehensive set of technology tracks and recommended actions towards accelerated development and deployment of technology within these two key areas. The workshop process has led to three main conclusions. A. Radical changes are needed to develop sustainable energy systems. B. Tools and processes that climate-proof societal planning and management are needed in order to adapt to climate change. C. Partnerships concerning innovation and deployment (research, development and deployment) are required to meet time constraints.

  12. DEVELOPMENT OF A COMPACT RADIOGRAPHY ACCELERATOR USING DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    Sampayan, S; Caporaso, G; Chen, Y; Hawkins, S; Holmes, C; Krogh, M; McCarrick, J; Nelson, S; Nunnally, W; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2005-06-02

    We are developing an inexpensive compact accelerator system primarily intended for pulsed radiography. Design characteristics are an 8 MeV endpoint energy, 2 kA beam current, a cell gradient of approximately 3 MV/m (for an overall accelerator length is 2-3 m), and <$1/Volt capital costs. Such designs have been made possible with the development of high specific energy dielectrics (>10J/cm{sup 3}), specialized transmission line designs and multi-gap laser triggered low jitter (<1 ns) gas switches. In this geometry, the pulse forming lines, switches, and insulator/beam pipe are fully integrated within each cell to form a compact, stand-alone, stackable unit. We detail our research and modeling to date, recent high voltage test results, and the integration concept of the cells into a radiographic system.

  13. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  14. Prospects for Accelerator Technology

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  15. Development of accelerator technology in Poland, Impact of European CARE and EuCARD projects

    Romaniuk, R.

    2008-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financin...

  16. Accelerator Technology for the Mankind

    Sultansoy, S

    2006-01-01

    Particle accelerators technology is one of the generic technologies which is locomotive of the development in almost all fields of science and technology. According to the U.S. Department of Energy: "Accelerators underpin every activity of the Office of Science and, increasingly, of the entire scientific enterprise. From biology to medicine, from materials to metallurgy, from elementary particles to the cosmos, accelerators provide the microscopic information that forms the basis for scientific understanding and applications. The combination of ground and satellite based observatories and particle accelerators will advance our understanding of our world, our galaxy, our universe, and ourselves." Because of this, accelerator technology should become widespread all over the world. Existing situation shows that a large portion of the world, namely the South and Mid-East, is poor on the accelerator technology. UNESCO has recognized this deficit and started SESAME project in Mid-East, namely Jordan. Turkic Acceler...

  17. Superconducting accelerator technology

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  18. Development of Wind-and-React Bi-2212 Accelerator Magnet Technology

    Godeke, A; Cheng, D.; Dietderich, D. R.; English, C.D.; Felice, H.; Hannaford, C.R.; Prestemon, S. O.; Sabbi, G.; Scanlan, R.M.; Hikichi, Y.; Nishioka, J; Hasegawa, T.

    2008-01-01

    We report on the progress in our R&D program, targeted to develop the technology for the application of Bi2Sr2CaCu2Ox (Bi-2212) in accelerator magnets. The program uses subscale coils, wound from insulated cables, to study suitable materials, heat treatment homogeneity, stability, and effects ofmagnetic field and thermal and electro-magnetic loads. We have addressed material and reaction related issues and report onthe fabrication, heat treatment, and analysis of subscale Bi-2212 coils. ...

  19. Accelerator technology for the mankind

    Full text: Particle accelerators technology is one of the generic technologies which is locomotive of the development in almost all fields of science and technology. According to the U. S. Department of Energy: Accelerators underpin every activity of the Office of Science and, increasingly, of the entire scientific enterprise. From biology to medicine, from materials to metallurgy, from elementary particles to the cosmos, accelerators provide the microscopic information that forms the basis for scientific understanding and applications. The combination of ground and satellite based observatories and particle accelerators will advance our understanding of our world, our galaxy, our universe, and ourselves. Because of this, accelerator technology should become widespread all over the world. Existing situation shows that a large portion of the world, namely the South and Mid-East, is poor on the accelerator technology. UNESCO has recognized this deficit and started SESAME project in Mid-East, namely Jordan. Turkic Accelerator Complex (TAC) project is more comprehensive and ambitious project, from the point of view of it includes light sources, particle physics experiments and proton and secondary beam applications. At this stage, TAC project includes: Linac-ring type charm factory; Synchrotron light source based on positron ring; Free electron laser based on electron linac; GeV scale proton accelerator; TAC-Test Facility

  20. Accelerating process and catalyst development in reforming reactions with high throughput technologies under industrially relevant conditions

    Schunk, S.A.; Bollmann, G.; Froescher, A.; Kaiser, H.; Lange de Oliveira, A.; Roussiere, T.; Wasserschaff, G. [hte Aktiengesellschaft, Heidelberg (Germany); Domke, I. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The generation of hydrogen via reforming of a variety of carbon containing feed-stocks in the presence of water is up to date one of the most versatile technologies for the production of hydrogen and syngas. Although these reforming technologies are in principle well established, understood and commercialized, there are still a number of technological challenges that are not solved up to a satisfactorily degree and there is a constant demand for appropriate answers to the challenges posed. High throughput experimentation can be a valuable tool in helping accelerate the development of suitable solutions on the catalyst and process development side. In order to be able to generate test data that are close or identical to process relevant conditions, hte has developed a new technology portfolio of test technologies named Stage-IV technology. In contrast to earlier developments which address more small scale testing on the basis of catalyst volumes of 1ml up to 10 ml under isothermal conditions, our new technology portfolio offers the advantage of test volumes at sub-pilot scale also realizing reactor dimensions close to technical applications. This does not only ensure a good mimic of the hydrodynamic conditions of the technical scale, but also allows a fingerprinting of features like temperature gradients in the catalyst bed which play a large role for catalyst performance. Apart from catalyst tests with granulates when screening for optimized catalyst compositions, the units are designed to accommodate tests with shaped catalysts. In order to demonstrate how these technologies can accelerate catalyst and process development we have chosen technically challenging application examples: (I) Pre-reforming and reforming of methane based feeds which accelerate coking and catalyst deactivation. Higher reaction pressures, high CO{sub 2} contents in the feedgas (which occur typically in sources like bio-gas or certain types of natural gas), the presence of higher alkanes

  1. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  2. Development of accelerator technology in Poland, Impact of European CARE and EuCARD projects

    Romaniuk, R

    2008-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.

  3. Development of free electron laser and accelerator technology in Poland (CARE and EuCARD projects)

    Romaniuk, Ryszard

    2009-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.

  4. Accelerator laboratories: development centers for experimental physics and technology in Mexico

    Three years ago in this Nuclear Center the author and Professor Graef expounded the inception and development of experimental physics and new techniques centered about laboratories and equipped in our country with positive ion accelerators. Extracted here is the information on the laboratories that have allowed professional training as well as the furtherance of scientific productivity in each group. An additional proposal as to how the technical groups knowledgeable in advanced technology might contribute significantly to adequate preparation of youth at the intermediate level able to generate innocuous micro industries in their own neighbourhood. (Author). 5 refs, 2 figs, 2 tabs

  5. APT accelerator technology

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  6. ACCELERATING NANO-TECHNOLOGICAL

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in...

  7. Industrial Applications of Accelerator Technologies

    PEFP(Proton Engineering Frontier Project) put its aim on development of high power linear proton accelerator and its beam applications. So, it has, since late 1990's, accumulated accelerator and ion source technologies, supplied beam utilization service to related industry. As of now, right after 10 year long project(PEFP), many of its low energy beam technologies seem to be successfully utilized for industrial purpose to meet the market needs, especially in improvement of production process and manufacturing performance, new substance development, etc. In this context, it is high time to carry out in-depth industrialization development on PEFP's retained ion beam technology prowess: To help them diffused profitable markets as soon as possible. So, in this work, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products

  8. Research needs of the new accelerator technologies

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research

  9. Summary: 'A roadmap for developing Accelerator Transmutation of Waste (ATW) technology'. A report to Congress

    The U.S. Congressional Conference Report accompanying the Fiscal Year 1999 Energy and Water Development Appropriation Act directed the U.S. Department of Energy, through its Office of Civilian Radioactive Waste Management, to conduct a study of accelerator transmutation of waste (ATW). It was transmitted to the U.S. Congress on November 1, 1999. The Report to Congress made it clear that the U.S. Administration, in transmitting the report, was not taking a position either way on those recommendations. If an ATW program were to be undertaken in the U.S., the pace and funding would have to be evaluated and planned in light of the currently unproven technologies involved, the potential benefits, and overall Government budget priorities. (author)

  10. ACCELERATING NANO-TECHNOLOGICAL

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in...... that opportunities are generally poorly appreciated by the industry and research communities alike. It is found that the construction industry is characterized by low-tech trajectories where dedicated innovation networks are often too fragile for innovations to stabilize and diffuse. The institutional...

  11. Design and development of high power pulsed technologies and systems for H- and proton accelerators

    For energizing the 3 MeV RFQ, under development at RRCAT, a 1 MW pulsed RF system operating at 352.2 MHz is required. The characteristics of the pulsed RF delivered to RFQ are important for its correct operation. Keeping in view these requirements, in house design and development of crucial technologies like high voltage solid state pulse modulators, WR 2300 waveguide components, solid state high voltage switches, high voltage high power pulse transformers, advanced solid state Marx modulator, high power RF/Microwave test facilities etc has been initiated. A 1 MW pulsed test stand at 352.21 MHz has been developed and tested using TH 2089 klystrons provided by CERN. A solid state bouncer modulator with 500 microsecs pulse duration, 25 Hz pulse repetition rate, giving output voltage upto 100 kV for energizing klystron for pulsed RFQ has been designed, integrated and testing has been started. Design and prototype development of advanced solid state Marx modulator has also been carried out. The WR 2300 waveguide components have also been developed and tested at low power as well as 1 MW pulsed power at the test stand. The WR 2300 waveguide transmission line with full height dual directional coupler, harmonic filter, three port junction circulator, full height to half height transition, half height waveguide sections, E and H bends, power dividers, flexible waveguides, phase shifter, 45 deg E plane bends, RF loads etc. was assembled and tested at 1 MW pulsed power. Utilizing the experience gathered, design of WR 2300 waveguide transmission system for LEHIPA project of BARC was also done. Development of 1.3 GHz RF systems and cavity test set ups for characterizing the superconducting cavities is in advanced stage. A solid state bouncer compensated long pulse modulator operating at 100 kV, 20 A with 800 microsecs pulse duration at 2 Hz PRR, was successfully designed, developed and supplied to CERN for LINAC 4 proton accelerator project under DAE CERN collaboration in

  12. The transfer of accelerator technology to industry

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  13. Optimizing accelerator technology

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  14. Accelerator system of neutron spallation source for nuclear energy technology development

    High intensity proton accelerators are at present and developed for applications in neutron spallation sources. The advantages of this source are better safety factor, easy in controlling and spent fuel free. A study of conceptual design of required accelerator system has been carried out. Considering the required proton beam and feasibility in the development stages, a stepped linac system is an adequate choice for now

  15. The status of fast reactor technology development and accelerator driven subcritical system researches in China

    Since last May in mainland China there are two nuclear power plants with total capacity of 2.1 GWe in operation and four NPPs in construction. It is envisaged that the total nuclear power capacity will be about 8.5 GWe in the year 2005. Recently the Government is considering four other new NPPs with a total capacity of about 4 GWe and starting their construction during 'tenth five years Plan' (2001-2005). The three new nuclear systems, FBR, ADS and Hybrid, have started to be developed with a rather moderate project and are all still in the early stage. For fast reactor engineering development, the China Experimental Fast Reactor (CEFR) of 65 MWt is the first step. After some additional accidents analysis, especially sodium spray fire accident analysis, the reactor building construction will be continued. The main components including of the reactor block, primary and secondary circuits, fuel handling system have been ordered. It is foreseen to have CEFR reaching first criticality at the end of 2005. The second step 300 MWe Modular Fast Reactor (MPFR) is under consideration, which will be a prototype for large size fast reactor. Based on the size of MPFR, the role of MA transmutation has been evaluated. For the Accelerator Driven Subcritical System (ADS), we are making great efforts to accomplish the research tasks worked out in the first phase program (1998-2002) with emphasis on the system optimization, reactor physics and technology, accelerator physics and technology and nuclear and material data base, and are enthusiastically preparing to step to the second phase program which is marked by ADS concept verification study (2000-2007). As to the Fusion-Fission Hybrid System, in near-term the emphasis will be put on the experiments on two big testing facilities HL-1M and HT-7 on one hand, and on the other hand, we will determine the targets of medium-term and long-term development for Hybrid system and work out relative development program

  16. Annotated bibliography of Accelerator Technology Division research and development, 1978-1985

    A bibliography is presented of unclassified published and in-house technical material written by members of the Accelerator Technology Division, Los Alamos National Laboratory, since its inception in January, 1978. The author and subject concordances in this report provide cross-reference to detailed citations kept in a computer database and a microfilm file of the documents. The citations include an abstract and other notes, and can be searched for key words and phrases

  17. Accelerator development in BARC

    Charged particle accelerators have played crucial role in the field of both basic and applied sciences. This has been possible because the accelerators have been extensively utilized from unraveling the secrets of nature to diverse applications such as implantation, material modification, medical diagnostics and therapy, nuclear energy and clean air and water. The development of accelerators in BARC can be categorized in two broad categories namely proton and heavy ion based accelerators and electron based accelerators. The heavy ion accelerators with sufficiently high energies are currently being used for conducting frontline nuclear and allied research whereas the electron accelerators are being routinely used for various industrial applications. Recently, there is a strong interest for developing the high energy and high intensity accelerators due to their possibility of effective utilization towards concept of energy amplification (Accelerator Driven System), incineration nuclear waste and transmutation. This talk will discuss details of the accelerator development program in BARC with particular emphasis on the recent development at Low Energy High Intensity Proton Accelerator (LEHIPA) Facility in Ion Accelerator Development Division, BARC. (author)

  18. Accelerator Applications Support Nuclear Science and Technology

    Accelerators are machines that use high voltages to produce artificial radiation in the form of beams of energetic particles. They are more versatile and safer than radioactive sources because the energy can be varied, and when the accelerator is turned off, so is the radiation. Accelerators are used for diverse applications such as to treat cancer, analyse artwork and old artefacts, clean up waste effluent gases, produce computer chips and map the structure of proteins. Accelerator technology makes a valuable contribution to the technological progress of a country, which in turn can also contribute to a country’s economic development

  19. Advances in medical electron linear accelerator technologies and the development of a next generation robotic radiation therapy system

    Radiation therapy for cancer began in the early 20th century with X-ray tubes delivering a few hundred keV. Through the 1930's to 1940's, 2 MV Van de Graaff accelerators and Betatrons of 20 to 45 MeV were used for cancer treatment. In the mid 1950's, radiation therapy combined 4 to 8 MeV linear accelerators with several high power microwave magnetrons and klystrons working in the megawatt range that have been developed for radar applications during the second world war. Since then, the linear accelerator became the most commonly used technology for radiation therapy and nowadays, more than 8000 linear accelerators are contributing to the treatment of cancer worldwide. We present the development of a real-time 3D robotic radiation therapy system combined with a compact X-band linear accelerator for the early detection of deep seated, small tumors. The system utilizes multiple narrow high energy X-ray beams focused on the target tumor. Real-time positioning is achieved by non-invasive methods based on correlation models for tumor motion and respiratory signals. Emphasis is placed on the tumor motion which is used to control a robotic head with six degrees of freedom to fix the tumor in a certain spatial position. (author)

  20. Accelerator technology working group summary

    A summary is presented of workshop deliberations on basic scaling, the economic viability of laser drive power for HEP accelerators, the availability of electron beam injectors for near-term experiments, and a few very general remarks on technology issues

  1. Accelerators for the advanced radiation technology project

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  2. Accelerated technology development by the use of critical point imaging SEM

    Sanchez, Dominique; Hinschberger, Benôit; Bouckou, Loemba; Moreau, Olivier; Parisi, Paolo

    2015-03-01

    In order to optimize the time to market of the newest technology nodes and maximize their profitability, advanced semiconductor manufacturers need to adapt their yield enhancement strategies to their current development stage. During very early development, gross Defectivity at some critical process steps often makes it impractical to use broadband plasma or laser scanning micro-defect patterned wafer inspection techniques: such sensitive defect inspections capture a large number of defects, producing wafer defect maps so heavily populated that even wafer level signature are difficult to visualize.

  3. Innovations in accelerator technology

    We review several promising directions for improvements in high energy collider performance that have been initiated and reported in scientific publications recently, namely: extraction by means of a crystal of the beam halo from high energy colliders for use in auxiliary experiments; compensation of mutual space effects of collider beams on one another; intelligent beam damping schemes and application of these to feedback systems; beam parameter diagnostics by use of low energy beam probes. To facilitate these developments an efficient software model of the collider was developed

  4. EuCARD and CARE - development of accelerator technology in Poland

    Romaniuk, Ryszard

    2009-01-01

    EuCARD (2009-1013) and CARE (2004-2008) are examples of big European R&D projects for building integrated accelerator infrastructures in Europe. Several research teams from a number of European countries are participating in this consolidated effort. Here we summarize the tasks done by some teams from Poland on a more general background.

  5. Technology of magnetically driven accelerators

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability. 8 figs., 1 tab

  6. Quantum Systems Engineering: A structured approach to accelerating the development of a quantum technology industry

    Everitt, M. J.; Henshaw, Michael J de C; Dwyer, Vincent M

    2016-01-01

    The exciting possibilities in the field of new quantum technologies extend far beyond the well-reported application of quantum computing. Precision timing, gravity sensors and imagers, cryptography, navigation, metrology, energy harvesting and recovery, biomedical sensors and imagers, and real-time optimisers all indicate the potential for quantum technologies to provide the basis of a technological revolution. From the field of Systems Engineering emerges a focused strategy for the developme...

  7. Accelerator Technology Division annual report, FY 1989

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  8. Accelerator Technology Division annual report, FY 1989

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  9. Physics and technical development of accelerators

    About 90 registered participants delivered more than 40 scientific papers. A great part of these presentations were of general interest about running projects such as CIME accelerator at Ganil, IPHI (high intensity proton injector), ESRF (European source of synchrotron radiation), LHC (large hadron collider), ELYSE accelerator at Orsay, AIRIX, and VIVITRON tandem accelerator. Other presentations highlighted the latest technological developments of accelerator components: superconducting cavities, power klystrons, high current injectors..

  10. Accelerating the development and deployment of carbon capture and storage technologies : an innovation system perspective

    van Alphen, K.

    2011-01-01

    In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. At present CCS is the only t

  11. Laser technologies for laser accelerators. Annual report

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO2, excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  12. Development of accelerated dewatering technology for managing oil sands fine fluid tailings

    Lahaie, R. [Syncrude Canada Ltd., Fort McMurray, AB (Canada); Seto, J.T.C. [BGC Engineering Inc., Edmonton, AB (Canada); Chapman, D. [O' Kane Consultants Inc., Saskatoon, SK (Canada); Carrier, W.D. III [Argila Enterprises Inc., Lakeland, FL (United States)

    2010-07-01

    This article discussed an accelerated dewatering technique being applied and tested for managing fine fluid tailings produced from oil sands mining. The process involved rim ditching and a decant system to promote the drainage of surface waters and enhance the drying and densification of mature fine tailings (MFT). To field test the procedure, a deposit containing 60,000 cubic metres of in-line flocculated MFT was constructed and instrumented to monitor consolidation and dewatering response of the MFT deposit over time. Ten months after being filled, the deposit had settled about 1.2 metres, which corresponds to a 19 percent reduction in volume relative to initial filling. The field test will continue for several more years, during which time the deposit will continue to be monitored and sampled. The Florida phosphate industry has used rim ditching for over 20 years, but the process had never before been applied to oil sand tailings. The paper discussed the particular consolidation behaviour of MFT, the rim ditch concept, the layout of the containment pit and instrumentation, the pit filling procedure, and post-filling observations. 6 refs., 12 figs.

  13. RFQ accelerator development

    Radio frequency quadrupole (RFQ) accelerators have established themselves as highly efficient and potential tools for delivering intense beams of the order of 100 mA or more. They are being employed as injectors to high energy machines used for basic sciences, spallation neutron sources, fusion devices and accelerator breeders. They have also made their mark as neutron generators, ion implanters, x-ray generators, etc. Realising the importance of this programme, Bhabha Atomic Research Centre initiated a totally indigenous effort to develop RFQs for the light as well as heavy ion beams. A low power RFQ for the proton and deuteron beams is already in the final phase of commissioning. (author). 30 refs., 14 figs., 2 tabs

  14. Department of Accelerator Physics and Technology: Overview

    problems with DKFZ Heidelberg, where she participates in the development so called scanning collimators. As a result of a collaboration with LNF INFN Frascati, apart from two travelling wave RF structures now operated in the CTF3 experiment at CERN, one additional TW structure was made in our Department. It serves as an experimental unit for further study of TW technology. The collaboration with the DESY TESLA-FEL Project during the past years concerned mainly the RF accelerating super-conducting superstructures. This work ended with good results; it was reported in a common international oral session held during PAC2003 in Portland, USA. The superstructures have a chance to be mass-produced if the TESLA Superconducting Collider gets international financial approval. The work on RF vacuum windows upgrading against the multipactor effects in high power couplers was continued at DESY till the end of 2003. The original new technologies of thin TiN coating of ceramic windows were applied using newly constructed coating set-up. The summary of our 2003 results on coating will be presented in the TESLA Report 2004-02. A prerequisite of practising Accelerator Physics is understanding its importance in the wider context. Looking to professional literature on accelerators applications, one finds that in the developed world roughly 20000 accelerators exist (excluding electron units below 0.2 MeV) and yearly this number increases by at least 10%. More than half are used for material modification and roughly 30 % in radiotherapy. The most advanced technically and technologically are accelerators for subatomic physics and synchrotron radiation sources, where the total number of existing or under construction machines surpasses 200. New solutions, new technologies, cost reductions are still being investigated. So, in spite of difficult financial conditions, there is real motivation to keep accelerator physics alive in our Institute. (author)

  15. Department of Accelerator Physics and Technology: Overview

    Pachan, M. [The Andrzej Soltan Institute for Nuclear Studies, Otwock-Swierk (Poland)

    1999-10-01

    Full text: As presented at the overview seminar held on December 98, the activities of the Department were shared among several directions of accelerator applications, as well as research and development works on new accelerator techniques and technologies. In the group of proton and ion accelerators, two main tasks were advanced. The first was a further step in the optimization of operational parameters of multicusp ion-source, prepared for axial injection system in C-30 cyclotron. Another one is the participation in important modifications of r.f. acceleration system in heavy-ion accelerator C-200 of Warsaw University. In the broad field of electron accelerators our main attention was directed at medical applications. Most important of them was the designing and construction of a full scale technological model of a high-gradient accelerating structure for low-energy radiotherapy unit CO-LINE 1000. Microwave measurements, and tuning were accomplished, and the technical documentation for construction of radiation unit completed. This work was supported by the State Committee for Scientific Research. Preparatory work was continued to undertake in the year 1999 the design of two new medical accelerators. First is a new generation radiotherapy unit, with 15 MeV electron beam and two selected energies of X-ray photons. This accelerator should in future replace the existing Neptun 10 MeV units. The work will be executed in the frame of the Project-Ordered commissioned by the State Committee for Scientific Research. The next type of accelerators in preparation is the mobile, self-shielded electron-beam unit for inter operative irradiation. The specification of parameters was completed and study of possible solutions advanced. The programme of medical accelerator development is critically dependent on the existence of a metrological and experimental basis. Therefore the building of a former proton linear accelerator was adopted to the new function as electron accelerators

  16. Department of Accelerator Physics and Technology: Overview

    Full text: As presented at the overview seminar held on December 98, the activities of the Department were shared among several directions of accelerator applications, as well as research and development works on new accelerator techniques and technologies. In the group of proton and ion accelerators, two main tasks were advanced. The first was a further step in the optimization of operational parameters of multicusp ion-source, prepared for axial injection system in C-30 cyclotron. Another one is the participation in important modifications of r.f. acceleration system in heavy-ion accelerator C-200 of Warsaw University. In the broad field of electron accelerators our main attention was directed at medical applications. Most important of them was the designing and construction of a full scale technological model of a high-gradient accelerating structure for low-energy radiotherapy unit CO-LINE 1000. Microwave measurements, and tuning were accomplished, and the technical documentation for construction of radiation unit completed. This work was supported by the State Committee for Scientific Research. Preparatory work was continued to undertake in the year 1999 the design of two new medical accelerators. First is a new generation radiotherapy unit, with 15 MeV electron beam and two selected energies of X-ray photons. This accelerator should in future replace the existing Neptun 10 MeV units. The work will be executed in the frame of the Project-Ordered commissioned by the State Committee for Scientific Research. The next type of accelerators in preparation is the mobile, self-shielded electron-beam unit for inter operative irradiation. The specification of parameters was completed and study of possible solutions advanced. The programme of medical accelerator development is critically dependent on the existence of a metrological and experimental basis. Therefore the building of a former proton linear accelerator was adopted to the new function as electron accelerators

  17. Developments and Applications of Particle Accelerators

    Particle accelerators are now widely used in many fields of applications as scientific researches, applied physics, medicine, industrial processing and agriculture, biology, chemistry etc. The physics and technology of accelerators involve many branches of science. These include electromagnetism, solid state properties of matter, atomic physics, plasma physics and quantum physics. In this article, a history of particle accelerators will be discussed. Also, the important milestones in the accelerators development up to the present day are given. Finally, a various applications of accelerators have also discussed

  18. Department of Accelerator Physics and Technology: Overview

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  19. Electromagnetic forming - a potentially viable technique for accelerator technology

    Modern day accelerator development encompasses a myriad technologies required for their diverse needs. Whereas RF, high voltage, vacuum, cryogenics etc., technologies meet their functional requirements, high finish lapping processes, ceramic-metal joining, oven brazing, spark erosion or wire cutting etc., are a must to meet their fabrication requirements. Electromagnetic (EM) forming technique falls in the latter category and is developed as a special technology. It is currently catering to the development as a nuclear reactor technology, but has the potential to meet accelerator requirements too. This paper highlights the general principle of its working, simple design guidelines, advantages, and suggests some specific areas where this could benefit accelerator technologies

  20. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years

  1. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  2. Accelerator Technology Program. Status report, April-September 1985

    This report presents highlights of major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first section deals with the Fusion Materials Irradiation Test Facility. The second section covers code development and documentation done by the Accelerator Theory and Simulation Group. Following sections relate to the Proton Storage Ring, the racetrack microtron projects, beam dynamics, accelerator structure development, and LAMPF II. The last sections discuss programs involving free-electron laser technology, microwave and magnet technology, the portable accelerator, and klystron code development. The report concludes with a listing of papers published by AT-Division personnel during this reporting period

  3. Technology and applications of electron accelerator

    Technology of electron accelerator have been developed so fast in advanced countries. It was applied in the research and development (R and D) and comercially in various industries. The industries applying electron accelerator includes polymers industry, sterilization of medical tools, material surface modification, and environmental management. The radiation process using electron beam is an ionization radiation process. Two facilities of electron accelerator have been established in pilot scale at the Centre for the Application of Isotope and Radiation CAIR-BATAN, Jakarta, for the RandD of radiation process technology and in demonstrating the electron accelerator application in industry in Indonesia. The first has low energy specification of 300 keV, 50 mA, EPS-300 type and the second has medium energy specification of 2 MeV, 10 mA dynamitron model GJ-2 type. Both the electron accelerators have an electron penetration depth capability of 0.6 and 12 mm, respectively, for the double side irradiation in the materials with density of 1 g/cm3. They also highly capacity production and electron beam cross-section of 120 cm length and 10 cm width. The beam will go through the atmosphere for irradiation samples or industrial products. The radiation dose can be selected precisely by adjusting the electron beam current and conveyor speed. Both of these facilities were applied in many aspects RandD, for examples dosimetry, wood surface coating, cross-linking of polymer, heatshrincable tube, polymer grafting, plastic degradation, food preservation, sterilization and so on. Engineering factors of radiation design process and general observation of electron accelerator application in RandD for various industries in Indonesia are briefly discussed

  4. ACCELERATING CONSTRUCTION INDUSTRY DEVELOPMENT

    Mohan M. Kumaraswamy

    2006-06-01

    Full Text Available The needs for construction industry development are initially viewed from the broader perspectives of imperatives for infrastructure development and national development. All these are clearly more critical in developing countries. A non-exhaustive set of potential drivers and common barriers to construction industry development is identified from previous research. These suggest the usefulness of consolidating a cluster of recent proposals and exercises aiming at (a construction organization development in terms of an over-arching management support system model, as well as improved information and knowledge management; and (b project team development in the context of relationally integrated teams and supply chains, joint risk management and ‘technology and knowledge exchange’ in joint ventures, as well as longer term public private partnerships. These apparently disparate research thrusts are threaded together into a pattern that may inspire, if not feed, specific research and development (R & D agendas for construction industry development in different countries according to their own priorities, constraints and stages of infrastructure and national development.

  5. New directions for accelerator mass spectrometry technology

    The influence on accelerator mass spectrometry (AMS) of developments in other fields is reviewed and three examples are discussed in detail. The appropriate use of electric and magnetic analysers with small AMS systems (129I, for nuclear fuel monitoring and ocean circulation tracer studies. The inclusion of gas chromatography technology extends the capability of AMS to applications which require large numbers of samples with rapid turn-around. The adaptation of chemical reaction cell technology to negative ion beams adds new isobar selection capability to AMS and will permit analyses of isotopes such as 36Cl on small AMS systems. (author)

  6. Laser technology inspires new accelerator concepts

    Katarina Anthony

    2012-01-01

    A new EU-funded research network, LA³NET, is bringing together universities, research centres and industry partners worldwide to explore the use of laser technology in particle beam generation, acceleration and diagnostics. As one of the network partners, CERN will be hosting three early stage researchers in the BE and EN Departments.   One of the laser systems now in use in the ISOLDE experiment. If you take a closer look at recent experimental developments, you’ll notice a new topic trending: laser technology. It’s being used to study the characteristics of particles, as incorporated into the new ALPHA-2 set-up; to conduct diagnostics of particle beams, as used in a laser wire scanner at Petra III; to “breed” unusual ion beams, as carried out by ISOLDE’s Resonance Ionization Laser Ion Source (RILIS); and even to accelerate particles to high energies, as explored at Berkeley’s BELLA facility. These projects notwithstanding...

  7. Accelerator-driven transmutation technologies

    The basic principles of accelerator-driven transmutation technologies (ADTT) are outlined and their assets highlighted. Current designs of ADTT facilities pursue 3 basic objectives: (i) Systems designed to generate power and convert nuclear wastes produced by conventional nuclear reactors into long-lived radioisotopes by transmutation. Such isotopes will be separated from molten salts by centrifugal separation. A single subcritical assembly will 'burn' wastes produced by several conventional NPPs. (ii) Systems for power generation using thorium fuel. Such systems are not designed for transmutation of nuclear wastes. The amount of transuranium elements produced by the thorium cycle is minimal, whereby the problem of storage of very long lived isotopes is virtually eliminated. (iii) Systems for transmutation of plutonium reclaimed from nuclear weapons. As to the future of ADTT in comparison with nuclear fusion, an asset of the former is that there remain no unsolved principal physical problems that would preclude its implementation. What has to be solved is materials and technological problems and, in particular, the financial problem. Implementation of ADTT is impossible in any way other than on the basis of a wide international cooperation. There exists a group of people dealing with ADTT in the Czech Republic, joining academic and industrial experts; this group is fostering contacts with the Los Alamos National Laboratory, U.S.A. The Institute of Nuclear Physics, Academy of Sciences of the Czech Republic, has set up an ADTT Documentation Center, which is accessible to any person interested in this promising field of science and technology. (P.A.). 3 figs

  8. Accelerator-Driven System with Current Technology

    World needs a safer and cleaner nuclear power plant. A nuclear power plant that will not cause a disaster and that will produce radiotoxic nuclear waste as small as possible. At the moment, the closest system is the accelerator driven system (ADS) making use of the Thorium fuel. First of all, it is safer in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. And, there won't be a Fukushima-like accident, because this Thorium ADS reactor uses air cooling. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem. The Thorium reserve is much larger than that of Uranium. Although the idea of ADS was proposed long time ago, it has not been utilized yet first by technical difficulty of accelerator. The accelerator-based system needs 0.6-1 GeV and at least a few MW power proton beam, which is an unprecedentedly high power. The most powerful 1 GeV proton linear accelerator is the Spallation Neutron Source, USA, which operates now at the power of 1.5 MW with the length of 350 m. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. Another difficulty is reliability of accelerator operation. To be used as a power plant facility, accelerator should obviously operate such that the power plant may continuously generate electricity at least for months with no interruption. However, the reality is that a high power proton accelerator is hardly operated even a few hours without interruption, although very short interruptions are tolerable. Anyway, it will take a time to develop an accelerator sufficiently reliable to be used for power generation. Now the question is if it is possible to realize ADS with the current level of accelerator technology. This paper seeks the possibility

  9. Accelerator-Driven System with Current Technology

    Lee, Hee Seok; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2013-10-15

    World needs a safer and cleaner nuclear power plant. A nuclear power plant that will not cause a disaster and that will produce radiotoxic nuclear waste as small as possible. At the moment, the closest system is the accelerator driven system (ADS) making use of the Thorium fuel. First of all, it is safer in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. And, there won't be a Fukushima-like accident, because this Thorium ADS reactor uses air cooling. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem. The Thorium reserve is much larger than that of Uranium. Although the idea of ADS was proposed long time ago, it has not been utilized yet first by technical difficulty of accelerator. The accelerator-based system needs 0.6-1 GeV and at least a few MW power proton beam, which is an unprecedentedly high power. The most powerful 1 GeV proton linear accelerator is the Spallation Neutron Source, USA, which operates now at the power of 1.5 MW with the length of 350 m. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. Another difficulty is reliability of accelerator operation. To be used as a power plant facility, accelerator should obviously operate such that the power plant may continuously generate electricity at least for months with no interruption. However, the reality is that a high power proton accelerator is hardly operated even a few hours without interruption, although very short interruptions are tolerable. Anyway, it will take a time to develop an accelerator sufficiently reliable to be used for power generation. Now the question is if it is possible to realize ADS with the current level of accelerator technology. This paper seeks the possibility.

  10. Accelerator Technology Division progress report, FY 1992

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  11. Accelerator Technology Division annual report, FY 1991

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  12. Accelerator Technology Division progress report, FY 1992

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  13. Accelerator physics and technology research toward future multi-MW proton accelerators

    Shiltsev, V; Romanenko, A; Valishev, A; Zwaska, R

    2015-01-01

    Recent P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program. Operation, upgrade and development of the accelerators for the near-term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss accelerator physics and technology research toward future multi-MW proton accelerators.

  14. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  15. Meeting the nation's environmental restoration and waste management challenges through the accelerated development of innovative technologies: A report on the DOIT initiative

    New environmental technologies are needed to meet the Nation's environmental restoration and waste management challenges. However, in the past environmental technology development and commercialization process has been hampered by the absence of critical intergovernmental linkages and broad public acceptability. If the Nation can create cooperative linkages among levels of government and stakeholders, there is a tremendous opportunity not only to accelerate the pace of site cleanups but also to capture a larger share of the growing international market for remediation and waste management technologies. Recognizing this opportunity not only to accelerate the pace of site cleanups but also to capture a larger share of the growing international market for remediation and waste management technologies. Recognizing this opportunity, western governors and the U.S. Departments of Defense, Interior, Energy, and U.S. Environmental Protection Agency have established a partnership to test ways to expedite the deployment and testing of innovative cleanup technologies. This partnership, which was formalized through the creation of the Federal Advisory Committee to Develop On-Site Innovative Technologies (the DOIT initiative), will soon test models for speeding up the deployment, testing, evaluation, and commercialization of environmental technologies at selected demonstration sites primarily in the western United States. This evaluation process will be pursued in a manner that poses no additional risks to the environment, encourages innovative public participation, and helps ensure financial feasibility, insurability, and eventual commercialization of new technologies

  16. A Survey of Hadron Therapy Accelerator Technologies

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy

  17. A Survey of Hadron Therapy Accelerator Technologies.

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  18. Superconducting Radiofrequency (SRF) Acceleration Technology

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  19. Development project of small accelerator

    Yamada, S

    2002-01-01

    The object of this project is demonstration of a small proton and heavy ion synchrotron and a small hard X-ray photon radiation source by using new technology and application of them to therapy, diagnosis, material science and life science. In this paper, a part of small proton and heavy ion synchrotron is discussed. Nine organizations joined in this project. There are four development themes such as optimization of laser-ion 100 TW class source target, beam storage and cooling device, small synchrotron ring and FFAG accelerator. Outline and contents of development of them are explained. This project is planning to generate a few MeV/u carbon ions in fully ionized states by impact of laser with about 100 TW output. 3 T maximum bending magnetic field using normal conduction AC magnet will be actualized for synchrotron with 200 MeV proton beam. (S.Y.)

  20. Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"

    Gold, Steven H. [Naval Research Laboratory

    2013-10-13

    This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a

  1. Technology of superconducting accelerator dipoles

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value

  2. Recent developments in RF accelerators at IUAC

    The increasing demand for energetic ion beams and large beam currents has been the driving force behind various developments in accelerator technology in the country. Among them, the technology associated with superconducting radio frequency (SRF) niobium cavities has generated a lot of interest among accelerator physicists in recent times and is witnessing rapid growth. Inter-University Accelerator Centre (IUAC) has been engaged in the indigenous development of SRF cavities for almost one and a half decades. During this period IUAC created the necessary infrastructure and successfully developed niobium cavities for its superconducting linac. The proposed high current injector (HCI) at IUAC aims to significantly increase the beam currents available from the HCI-Superconducting Linac combination. In addition, it will also provide beams of noble gases which are not available from the Pelletron accelerator. For the HCI, several room temperature RF structures are being developed. In addition, the HCI will also incorporate a superconducting low beta module, for which a new low beta niobium resonator has been designed and successfully prototyped. Apart from the in-house projects, IUAC has shared its expertise with other Indian laboratories for developing niobium cavities for a wide range of velocities. Recently a single spoke niobium resonator has also been successfully developed at IUAC as part of an international collaboration. This development will have significant impact on the indigenous programs also. This talk will present details of the various developments associated with RF accelerators at IUAC, especially highlighting the significant contributions made in SRF technology. (author)

  3. Accelerator Technology Division progress report, FY 1993

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation

  4. Department of Accelerator Physics and Technology - Overview

    Full text: The work of Department P-10 in 2004 included the following subjects: - development of radiographic 4 MeV electron accelerator, - physical and technological problems related to the development of accelerating and deflecting types travelling and standing wave RF structures and their subsystems, - MC simulations applied to radiotherapy; continuation study of photon beams with the use of BEAMnrc Monte Carlo codes, - minor works concerning the C-30 cyclotron: the modifications of an H- external ion source and actualisation our list for cyclotron upgrading. The compact 6 MeV electron linac constructed in Department P-10 was mounted on an experimental stand, equipped with necessary auxiliary systems (pulsed high power RF supply, focusing and beam measuring system, cooling and temperature stabilising and safety system) and put into preliminary operation. The output energy and current intensity of the structure were measured and compared with the calculated values. The computational codes written in our Department during realisation of the 6/15 MeV project were used for that purpose, giving satisfactory agreement of calculations with measurements. The accelerator can be operated in electron or X-ray mode depending on demand. In 2004 all sub-units of the accelerator were operationally tested and intensity optimisation for e-/X-ray conversion was made. As the linac is thought primarily as a tool for radiographic services which may be offered by the Department, a number of X-ray exposures to radiographic films has been made in order to check its usability and the quality of pictures. The MC calculations of photon beams produced on the e-/X converter were made to complete the design of radiographic facility. Apart from radiography, the output beams of electrons and/or X-rays can also be used for studies in dosimetry, radiation effects in electronic components, neutron production in RT low energy linacs and so on. The TiN coating of accelerator components, in

  5. Superconducting magnet technology for accelerators

    A review article on superconducting magnets for accelerators should first answer the question, why superconductivity. The answer revolves around two pivotal facts: (1) fields in the range of 2 T to 10 T can be achieved; and (2) the operating cost can be less than conventional magnets. The relative importance of these two factors depends on the accelerator. In the case where an upgrade of an accelerator at an existing facility is planned, the ability to obtain fields higher than conventional magnets leads directly to an increase in machine energy for the given tunnel. In the case of a new facility, both factors must be balanced for the most economical machine. Ways to achieve this are discussed

  6. Department of Accelerator Physics and Technology: Overview

    (full text) In the context of general discussions concerning the activity of the Institute, it was important to look critically at current and future directions at the Department's activity. Attention is given to development of basic accelerator knowledge, realized at home and throughout international collaborations. Of importance is a steady improvement of metrological and experimental basis for accelerator research. Apart of this, some development tendencies were formulated during 1997, oriented to application fields of accelerators. As examples should be named: - medical applications: a) A serious effort was given to an idea of using the existing compact cyclotron C-30 as a source for creation of a diagnostic centre in Swierk. The proposition was formulated in contact with the Nuclear Medicine Department of the Medical Academy, and the ''Brodno'' General Hospital. In spite of declared medical interest in such an installation, the project was not approved, due to lack of proper financial support. b) Model measurements and verification of theoretical assumptions and calculations oriented on the design of a very short, high-gradiented acceleration structure for the low energy accelerator COLINE/1000 were done. This project will enable us to achieve ''source - isocentre distance'', of 1000 mm, instead of existing 800 mm. This is important for therapy. In 1998, this work will be supported by the State Committee for Scientific Research. c) Preliminary discussions, and design approach were undertaken in collaboration with the Centre of Oncology, for elaboration of a movable low-energy accelerator with electron beam output, matched to inter operational irradiation during surgical therapy of tumours. - applications in radiation technology: Comparison of isotope and machine radiation sources indicates that, under Polish conditions it is reasonable to use purpose-oriented high power accelerators. The working group composed of specialists from IChTJ and IPJ prepared the

  7. Accelerated Development of Organizational Talent

    Korotov, Konstantin

    2007-01-01

    This working paper explores the challenges of accelerated development of organizational talent. The meaning of the word "accelerated" is that such development takes place at a pace that is significantly higher than that of "traditional" development that allows an individual to learn the intricacies of the current job, observe incumbents in a higher level position (usually, one level up), practice elements of the boss' job when being delegated tasks, undergoing formal training, or benefiting f...

  8. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  9. Technologies for Advanced Induction Accelerators

    Hernández, M A; Autrey, D; Duncan, G; Friedman, A; Grote, D P; Halaxa, E; Hanks, R; Kamin, G; Sangster, C; Sharp, W; Williams, C

    2000-01-01

    To harness fusion energy is one of today's greatest technological challenges, and one well worth pursuing. Success in the development of fusion power would result in a virtually inexhaustible source of energy. The fusion reaction, the process that powers the sun and the stars, can be duplicated on Earth. However, to date these fusion processes have been the products of large-scale experimental efforts. They have yet to achieve fusion in a manner that is cost effective and efficient enough to be applied in a commercial reactor. Lawrence Livermore National Laboratory (LLNL) has been centrally involved in the Nation's inertial confinement fusion (ICF) program for over 25 years. Much of the focus of the LLNL ICF Program has been the well-known effort to develop high power, short wavelength laser drivers to create the conditions necessary for the fusion process. But the ICF Program has also been investigating, in collaboration with Lawrence Berkeley National Laboratory (LBNL), the potential of heavy-ion accelerato...

  10. Centre for Nuclear and Accelerator Technologies (CENTA)

    A Centre for Nuclear and Accelerator Technologies (CENTA) has been established at the Faculty of Mathematics, Physics and Informatics of the Comenius University in Bratislava comprising of a tandem laboratory designed for the Accelerator Mass Spectrometry (AMS) and Ion Beam Analysis (IBA). The 3 MV Pelletron accelerator is a key feature of the equipment which will enable to carry out state of the art research in physical, environmental, material, biological and medical sciences in collaboration with leading European and world laboratories. The laboratory is further equipped with two ion sources - Alphatros (RF source for H and He ions) and MC-SNICS source (target wheel with 40 positions for solid targets), and low and high energy analyzers of ions (all equipment of National Electrostatics Corp., USA). We shall discuss in detail development of methods for analysis of 14C around nuclear power plant in Jaslovske Bohunice, and present results of temporal 14C variations in atmospheric carbon dioxide and in tree rings collected at the monitoring stations in Zlkovce and in Bratislava. (authors)

  11. Department of Accelerator Physics and Technology - Overview

    The activities of P-10 Department in year 2005 were devoted to: - development of radiographic 4 MeV electron accelerator, - development of accelerating and deflecting types travelling (TW) and standing wave (SW) RF structures for electrons and ions, - MC simulations applied to photon and ion radiotherapy The compact 6 MeV electron linac constructed in Department P-10 was put in the beginning of reported year into experimental operation. The request for permission to use ionisation source (6 MeV linac) was submitted to National Atomic Energy Agency. On the basis of all necessary documents the permission for routine using of our linac was granted. Actually the e/X conversion tungsten target has been moved from vacuum to air. To improve the safety of accelerator operation, the new collimator and some shielding walls were added. Two regimes of operation are actually possible: X ray output beam or electron beam depending on user demand. Some old non-reliable sub-units of accelerator were replaced, and energy and intensity optimisation for e-/X-ray conversion were made. The MC calculations of photon beams produced on e-/X converter were repeated taking into account the new collimator and additional shields. The triode gun, originally thought of as a part of 6/15 MeV medical accelerator is still on long term tests showing excellent performance; it was twice opened to air to confirm the possibility of repeated formation of gun dispenser cathode. New pulse modulator was routinely used in these tests. The sublimation set-up designed and made in our Department for the TiN coating of accelerator components underwent successfully the technological test including coating quality of several ceramic RF power vacuum windows. Within the German heavy ion therapy program the DKFZ Heidelberg is responsible for medical physics problems of treatment planning and modeling of ion beams for GSI Radiotherapy Facility. The MC simulations are used to calibrate the X-ray CT scanners to obtain

  12. ADVANCEMENTS IN LASER TECHNOLOGY AND APPLICATIONS TO ACCELERATORS

    A brief review on the emergent applications of laser technology to particle accelerators is provided. Important developments in laser technology that lead to the application are introduced. Advancements in laser technology have dramatically expanded the applications of lasers to particle accelerators. Today, lasers have been used for accelerators in a broad range from operational systems such as nonintrusive particle beam diagnostics instruments, to elaborate applications with high technical readiness levels including, for instance, photoinjectors, a laser assisted foil-less charge exchange injection scheme and Compton scattering-based light sources, and finally to exotic topics such as laser driven electron/ion accelerators. This talk reviews recent experimental results achieved in the above applications, their requirements on laser parameters and challenges that require future laser technology development. Important technical elements such as the femto-second pulse generation, the burstmode optical amplifiers, the beam combining from laser arrays, and the power enhancement optical cavity will be briefly described.

  13. Emerging landscape of accelerator science and technology

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. In the second half of the twentieth century, we witnessed the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. We give a glimpse of the recent developments and innovations in the conception, production and control of charged particle beams in the service of scientific society. (author)

  14. The affect of community dynamics and knowledge on the acceleration of technology development for the transition towards a hydrogen based transport system in Germany

    Van Giessel, J.F.; Ros, M.

    2003-03-15

    Due to the disadvantages (energy security, urban air pollution, the risk of climate change due to CO2 emission) of the current energy system, scientists and policymakers are searching for alternative energy sources to reduce the need for and use of fossil fuel and make the energy system more sustainable. Hydrogen is one of the proposed options. The transportation sector has a large contribution to climate change in terms of carbon dioxide emission. Hydrogen can be used as an alternative fuel to reduce the air pollution and CO2 emission in the transportation sector. In Europe many organisations and institutions are working together on the research and development of hydrogen as an alternative energy carrier for the transportation sector. The EC tries to reach the policy goal to substitute 2% of the fuel used in the transportation sector by hydrogen in the year 2015 and even 5% in the year 2020. In the EU, Germany is a frontrunner in the amount of hydrogen R and D projects. Many R and D projects in Germany are aimed at the transport sector. Most major car manufactures in Germany, especially DaimlerChrysler and BMW, invest large amounts of money in the R and D of hydrogen and fuel cell technologies. Besides spending of these organisations, the Federal German government and some state governments (Bundesstate) stimulate the development of hydrogen and fuel cell technologies since 1980. The growing awareness of both policy makers and major car manufactures in Germany to use hydrogen as an alternative fuel for the transportation sector makes it interesting to review this transition process in the transportation sector in Germany and see if this process can be accelerated. The innovation systems theory and the co-evolution of technology and community distinguish community dynamics and knowledge as important factors for describing technological change. In this research these factors will be used to determine the affect on the acceleration of technology development. The

  15. Accelerator Operators and Software Development

    At Thomas Jefferson National Accelerator Facility, accelerator operators perform tasks in their areas of specialization in addition to their machine operations duties. One crucial area in which operators contribute is software development. Operators with programming skills are uniquely qualified to develop certain controls applications because of their expertise in the day-to-day operation of the accelerator. Jefferson Lab is one of the few laboratories that utilizes the skills and knowledge of operators to create software that enhances machine operations. Through the programs written; by operators, Jefferson Lab has improved machine efficiency and beam availability. Because many of these applications involve automation of procedures and need graphical user interfaces, the scripting language Tcl and the Tk toolkit have been adopted. In addition to automation, some operator-developed applications are used for information distribution. For this purpose, several standard web development tools such as perl, VBScript, and ASP are used. Examples of applications written by operators include injector steering, spin angle changes, system status reports, magnet cycling routines, and quantum efficiency measurements. This paper summarizes how the unique knowledge of accelerator operators has contributed to the success of the Jefferson Lab control system. *This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150

  16. CAS CERN Accelerator School vacuum technology. Proceedings

    These proceedings present the lectures given at the twelfth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Vacuum Technology'. Despite the importance of vacuum technology in the design and operation of particle accelerators at CERN and at the many other accelerators already installed around the world, this was the first time that CAS has organized a course devoted entirely to this topic. Perhaps this reflects the facts that vacuum has become one of the more critical aspects of future accelerators, and that many of the pioneers in the accelerator field are being replaced by new, younger personnel. The lectures start with the basic concepts of the physics and technology of vacuum followed by detailed descriptions of the many different types of gas-pumping devices and methods to measure the pressures achieved. The outgassing characteristics of the different materials used in the construction of vacuum systems and the optimisation of cleaning methods to reduce this outgassing are then explained together with the effects of the residual gases on the particle beams. Then follow chapters on leak detection, materials and vacuum system engineering. Finally, seminars are presented on designing vacuum systems, the history of vacuum devices, the LHC (large hadron collider) vacuum system, vacuum systems for electron storage rings, and quality assurance for vacuum. (orig.)

  17. Department of Accelerator Physics and Technology - Overview

    Full text: The activity of the P-10 department is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. Our team is able to perform all kind of calculations of research, medical and industrial accelerator components, including accelerating cavities, magnets, transfer lines, sources and targets, collimators and applicators. The main topic of the 2010 was the realization of the ' Accelerators and Detectors ' project. All results of this work are included in detailed descriptions of the particular machines. The other tasks are summarized below: 1) WP-06 Task in the European XFEL Project As part of the EXFEL preparatory phase, IPJ is developing HOM and Pickup output lines from superconducting cavities antennas, and Beam Line Absorbers of travelling HOM. This abridged WP-06 task is wholly realized by IPJ and belongs to WPG-1 (Work Package Group 1- Cold linac). The HOM couplers are used to extract and to dissipate Radio Frequency ('' RF '') energy present in the cavity due to the excitation of the HOMs by the electron beam bunches. The low frequency part of the HOM spectrum (below the cut-off frequency of the beam tube) will be extracted by HOM couplers and transmitted via coax lines to external loads. Each 9-cell cavity is equipped with two HOM couplers placed close to the end cells and working in a 2K environment. The propagating HOM power will be ca. 5.4 W/cryomodule for operation with 40000 bunches/s of a nominal charge of 1 nCoulomb. Power dissipated in BLA will be transferred to the 70 K environment by a copper stub brazed directly to the absorbing ceramic ring. The stub holds the ring in a stainless steel vacuum chamber thermally isolated from the 2K region by a flexible bellows. In 2010 the wakefields excited by beam bunches down to 40 microns were calculated, and the related wake potential and frequency spectrum of HOMs evaluated. The absorbing material (CA137 of Ceradyne Enterprice

  18. Community petascale project for accelerator science and simulation: advancing computational science for future accelerators and accelerator technologies

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors

  19. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  20. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  1. Accelerator science and technology in Europe 2008-2017

    Romaniuk, Ryszard S.

    2013-10-01

    European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, Eu

  2. Pulsed power magnet technology for laser particle acceleration and laser plasma physics - a survey of developments at Helmholtz-Zentrum Dresden-Rossendorf

    Since the mid-1950s, pulsed high-field magnets have become a common, versatile research tool with application mostly in solid state physics and material research. Recently developed pulsed power magnet technology, specifically designed to meet the demands of laser acceleration and laser plasma experiments, open up new research opportunities: We present a pulsed air core solenoid (up to 20 T) for effective collection and focusing of laser accelerated particles. It could function as a crucial part of a compact, laser-based ion source (pursued by the LIGHT collaboration) or of beam guidance systems. Furthermore, the poster shows a split pair coil, utterly compact and with optical access in between the coil pairs and on axis, to study laser-driven plasma expansion under high magnetic fields (30 T). To power such devices, portable capacitor-based pulse generators have been developed at Helmholtz-Zentrum Dresden-Rossendorf. We present first results of the functional testing of our third-generation pulse generator. Looking forward, we outline a concept for a medical gantry based on pulsed high field beam optics.

  3. Neural computation and particle accelerators research, technology and applications

    D'Arras, Horace

    2010-01-01

    This book discusses neural computation, a network or circuit of biological neurons and relatedly, particle accelerators, a scientific instrument which accelerates charged particles such as protons, electrons and deuterons. Accelerators have a very broad range of applications in many industrial fields, from high energy physics to medical isotope production. Nuclear technology is one of the fields discussed in this book. The development that has been reached by particle accelerators in energy and particle intensity has opened the possibility to a wide number of new applications in nuclear technology. This book reviews the applications in the nuclear energy field and the design features of high power neutron sources are explained. Surface treatments of niobium flat samples and superconducting radio frequency cavities by a new technique called gas cluster ion beam are also studied in detail, as well as the process of electropolishing. Furthermore, magnetic devises such as solenoids, dipoles and undulators, which ...

  4. Accelerator technology program. Progress report, January-June 1981

    Knapp, E.A.; Jameson, R.A. (comps.)

    1982-05-01

    This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report.

  5. Accelerator technology program. Progress report, January-June 1981

    This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report

  6. Accelerator structure development for NLC

    Hoag, H.A.; Deruyter, H.; Pearson, C.; Ruth, R.D.; Wang, J.W. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Schaefer, J. [Texas Instruments, Inc., Dallas, TX (United States)

    1993-04-01

    In the program of work directed towards the development of an X-Band Next Linear Collider accelerator structure, two different test accelerator sections have been completed, and a third is being fabricated. The first is a simple 30-cell constant-impedance section in which no special attention was given to surface finish, pumping, and alignment. The second is an 86-cell section in which the cells were precision diamond-turned by Texas Instruments Inc. The structure has internal water-cooling and vacuum pumping manifolds. Some design details are given for the third section, which is a 206-cell structure with cavities dimensioned to give a Gaussian distribution of dipole mode frequencies. It has conventional-machining surface finishes and external water and pumping manifolds. Component design, fabrication, and assembly brazing are described for the first two experimental sections.

  7. Accelerator structure development for NLC

    In the program of work directed towards the development of an X-Band Next Linear Collider accelerator structure, two different test accelerator sections have been completed, and a third is being fabricated. The first is a simple 30-cell constant-impedance section in which no special attention was given to surface finish, pumping, and alignment. The second is an 86-cell section in which the cells were precision diamond-turned by Texas Instruments Inc. The structure has internal water-cooling and vacuum pumping manifolds. Some design details are given for the third section, which is a 206-cell structure with cavities dimensioned to give a Gaussian distribution of dipole mode frequencies. It has conventional-machining surface finishes and external water and pumping manifolds. Component design, fabrication, and assembly brazing are described for the first two experimental sections

  8. Market-pull report. Measures on the demand side accelerate development and market introduction of energy-saving technologies. Swiss examples in the international context

    International Energy Agency (IEA) experts met in Zurich in order to further develop international projects for the coordinated procurement of energy-saving technologies. On the occasion of this meeting, Swiss specialists from business and administrative circles presented examples of how the market can be purposefully influenced by implementing measures on the demand side. In order to ensure success, it is vital that all parties concerned - from the manufacturers to the consumers - are taken into account, and that tools are applied that have been adapted to each individual market. An international coordination of activities that are aimed at bringing about a change in procurement behaviour contributes considerably to an acceleration of the various processes. For the manufacturers, most of whom are active on an international level, it becomes simpler and more worthwhile to react. This applies in particular when instruments such as quality seals (labels) and target values are applied. (author) figs., tabs

  9. Accelerator technology program. Status report, October 1984-March 1985

    Jameson, R.A.; Schriber, S.O. (comps.)

    1986-04-01

    Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period.

  10. Accelerator technology program. Status report, October 1984-March 1985

    Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period

  11. Embryonic development during chronic acceleration

    Smith, A. H.; Abbott, U. K.

    1982-01-01

    Experiments carried out on chicken eggs indicate that the embryo is affected during very early development, especially over the first four days, and during hatching. In the first four days, the brain develops as well as the anlage for all other organs. In addition, the heart commences to function and the extraembryonic membranes that compartmentalize the egg contents form. The latter require an appreciable extension and folding of tissue which may be disrupted by the mechanical load. Observations of embryonic abnormalities that occur during chronic acceleration suggest an inhibition of development of the axial skeleton, which is rarely seen otherwise, a general retardation of embryonic growth, and circulatory problems. The final stages of development (after 18 days) involve the uptake of fluids, the transition to aerial respiration, and the reorientation of the embryo into a normal hatching position. At 4 G mortality is very high during this period, with a majority of embryos failing to reorient into the normal hatching position.

  12. UCLA accelerator research and development

    This progress report covers work supported by the above DOE grant over the period November 1, 1991 to July 31, 1992. The work is a program of experimental and theoretical studies in advanced particle accelerator research and development for high energy physics applications. The program features research at particle beam facilities in the United States and includes research on novel high power sources, novel focussing systems (e.g. plasma lens), beam monitors, novel high brightness, high current gun systems, and novel flavor factories in particular the φ Factory

  13. Department of Accelerator Physics and Technology: Overview

    accelerator radiation head. These programmes enable us to take into account the data of all components along the beam transportation path, and facilitate the design of beam forming systems, e.g. narrow photon beams for stereotactic radiosurgery. * Preliminary studies of a bunching system for high power electron accelerator. Such an accelerator for radiation technology was planned in the programme ''Isotopes and Accelerators'' which was accepted by the Government but not put in operation. It is worthwhile to prepare for possible work on this task by a study of most crucial problems of new design. In effect it was proposed to divide the accelerating structure into two separate parts - bunching and accelerating sections. This solution should improve the efficiency of beam capture and transport. This is very important hut not easy for a beam with high space charge. * An interesting item was the study of possible solutions of a linear energy booster for upgrading proton energy achievable in existing cyclotrons, to get an energy useful for hadron therapy. The principal feature of this idea is to use typical structures of proton linear accelerators, with the RF frequency band in the range of 3000 MHz. It gives the possibility to diminish the dimensions of the structure, and also to achieve high gradients of the accelerating field. In this way it is possible in the module with length about 1.2 m, to get the energy increase of about 15 MeV. In the international collaboration, the Italian INFN-Frascati proposed to undertake a common task on the design and construction of travelling wave sections operating in a deflecting mode, for application in CLIC Test Facility as beam kickers. CLIC is the CERN competitor to the TESLA project of high energy linear beam collider, operating at room temperature but at extremely high frequency, 30 GHz. To join the proposed task it was necessary to make an initial theoretic study and to build an aluminium model in order to formulate the principal design

  14. Developments in laser-driven plasma accelerators

    Hooker, Simon Martin

    2014-01-01

    Laser-driven plasma accelerators provide acceleration gradients three orders of magnitude greater than conventional machines, offering the potential to shrink the length of accelerators by the same factor. To date, laser-acceleration of electron beams to particle energies comparable to those offered by synchrotron light sources has been demonstrated with plasma acceleration stages only a few centimetres long. This article describes the principles of operation of laser-driven plasma accelerators, and reviews their development from their proposal in 1979 to recent demonstrations. The potential applications of plasma accelerators are described and the challenges which must be overcome before they can become a practical tool are discussed.

  15. Accelerating innovation in information and communication technology for health.

    Crean, Kevin W

    2010-02-01

    Around the world, inventors are creating novel information and communication technology applications and systems that can improve health for people in disparate settings. However, it is very difficult to find investment funding needed to create business models to expand and develop the prototype technologies. A comprehensive, long-term investment strategy for e-health and m-health is needed. The field of social entrepreneurship offers an integrated approach to develop needed investment models, so that innovations can reach more patients, more effectively. Specialized financing techniques and sustained support from investors can spur the expansion of mature technologies to larger markets, accelerating global health impacts. PMID:20348074

  16. Electron gun for technological linear accelerator

    The work is purposed to the design of diode electron gun for powerful technologic electron linac and to experimental investigations of the beam parameters at the gun exit.The gun feature is the quick cathode replacement.This is very impotent for operating of the accelerator.The gun optics and beam parameters were calculated using the EGUN code.Beam parameters were investigated as at the special test stand so as component of the linac injector.The gun produces the beam current of 2 A at the anode voltage 25 kV.Measured beam parameters correspond to calculated results

  17. EuCARD 2010 Accelerator Technology in Europe

    Romaniuk, R S

    2010-01-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new infrastructure, develop the existing, and generally make the infrastructure available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD –European Coordination of Accelerator R&D. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement – control systems, RF-gun co-design, thin-film superconducting technology, superconducting transpo...

  18. The final technical report of the CRADA, 'Medical Accelerator Technology'

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation

  19. Particle accelerator development: Selected examples

    Wei, Jie

    2016-03-01

    About 30 years ago, I was among several students mentored by Professor Yang at Stony Brook to enter the field of particle accelerator physics. Since then, I have been fortunate to work on several major accelerator projects in USA and in China, guided and at times directly supported by Professor Yang. The field of accelerator physics is flourishing worldwide both providing indispensable tools for fundamental physics research and covering an increasingly wide spectrum of applications beneficial to our society.

  20. Accelerator Technology Program. Status report, October 1983-March 1984

    This report covers major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first sections highlight activities related to beam dynamics, inertial fusion, structure development, the racetrack microtron, and the CERN high-energy physics experiment NA-12. Discussed next is the Fusion Materials Irradiation Test Facility, followed by a summary of progress on the Proton Storage Ring and activities of the Theory and Simulation Group. The report concludes with a discussion of the H- accelerator program and a listing of papers published by AT-Division personnel during this reporting period

  1. Industrial applications of low energy accelerator technologies

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  2. ABC Technology Development Program

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  3. ADS specific accelerator developments: Status in Japan

    In Japan, JAEA proposes an ADS which consists of a high power proton LINAC, a spallation target of lead-bismuth eutectic (LBE) and a subcritical core. In this proposal, the energy and beam power of the high power proton LINAC are 1.5 GeV and 20–30 MW, respectively. Other specifications of the high power proton linac are described in [4.28]. An important technical aspect that is considered in the JAEA work is the negative impact of very frequent beam trips as experienced in existing intense accelerator facilities. Frequent beam trips cause thermal fatigue problems for ADS components materials, leading to degradation of their structural integrity and reduction of their lifetime. They can also badly erode the availability or the capacity of ADS, resulting in poor economics. In the development of accelerators for ADS, it is vitally important to establish the technologies to achieve a very high degree of reliability. On the other hand, JAEA considers that it is also important in the development of ADS to design structural components to withstand possible thermal fatigues and a power conversion system less sensitive to beam trips. The purpose of the JAEA study is the comparison of beam trip frequencies between requirement from ADS transient analyses and estimation from current experimental data of accelerators

  4. Accelerator technology program. Status report, July-December 1982

    Major projects of the Los Alamos National Laboratory's Accelerator Technology Division are discussed, covering activities that occurred during the last six months of calendar 1982. The first sections report highlights in beam dynamics, accelerator inertial fusion, radio-frequency structure development, the racetrack microtron, CERN high-energy physics experiment NA-12, and high-flux radiographic linac study. Next we report on selected proton Storage Ring activities that have made significant progress during this reporting period, followed by an update on the free electron laser. The Fusion Materials Irradiation Test Facility work is discussed next, then progress on the klystron development project and on the gyrocon project. The activities of the newly formed Theory and Simulation Group are outlined. The last section covers activities concerning the accelerator test stand for the neutral particle beam program

  5. Advanced visualization technology for terascale particle accelerator simulations

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements

  6. Accelerator Technology Program. Progress report, January-June 1980

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the first six months of calendar 1980 are discussed. This report is organized around major projects of the Division, reflecting a wide variety of applications and sponsors. The first section summarizes progress on the Proton Storage Ring to be located between LAMPF and the LASL Pulsed Neutron Research facility, followed by a section on the gyrocon, a new type of high-power, high-efficiency radio-frequency (rf) amplifier. The third section discusses the racetrack microtron being developed jointly by AT Division and the National Bureau of Standards; the fourth section concerns the free-electron studies. The fifth section covers the radio-frequency quadrupole linear accelerator, a new concept for the acceleration of low-velocity particles; this section is followed by a section discussing heavy ion fusion accelerator development. The next section reports activities in the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory. The final section deals first with development of H- ion sources and injectors, then with accelerator instrumentation and beam dynamics

  7. Recent developments of low-emittance electron gun for accelerator

    Recent developments of low-emittance electron guns for accelerator are reviewed. In the accelerator field, DC biased triode thermionic gun (Pierce type gun) has been widely used and is still conventional. On the other hand, because of strong demands on the high brightness electron beam by FEL and other advanced accelerator concepts based on linear accelerator, the low emittance beam generation becomes one of the most important issue in the accelerator science. The R and D effort is 'accelerated' by two technological innovations, photo-cathode and RF gun. They made a large improvement on the beam emittance. After the explanations on the technical and physical aspects of the low emittance electron beam generation, advanced electron sources for accelerators are reviewed. (author)

  8. Department of Accelerator Physics and Technology - Overview

    Full text: In 2007 we covered the following subjects: · miniaturization of electron linear accelerating structures, · calculations, construction and measurements of a proton accelerating structure operated at high RF frequency, · study of the photon and electron spectra of photon beams using BEAMnrc Monte Carlo codes, · preparatory works for participation in the international X-FEL project, · preparing a Proposal for the Polish Hadron Therapy Project; participation in meetings of the Consortium for the National Center of Hadron Therapy, · development and exploitation of experimental set-ups in Department P-10 (3 electron linacs, TiN deposition unit, triode electron gun measuring stand). The aim of electron accelerating structures is the search for electron accelerator miniaturization, especially for IORT accelerators. At higher frequencies, much higher accelerating fields can be applied and as the wavelength becomes shorter, the overall size of the structure and various components become smaller. Two RF frequency regions are investigated, the C-band region covering 4 to 8 GHz and X-band covering 8 to 12 GHz. In 2006, the main physical parameters of 5720 MHz SW side coupled structures were studied, as well as the availability of necessary microwave high power equipment. In 2007, further optimization of the accelerating structure was approached, the beam dynamics calculated and mechanical design of a prototype prepared. The prototype of a compact proton linac is under study and construction in ENEA-Frascati as an alternative to a cyclotron or synchrotron offered by specialized industries. Generally, linacs are characterized by the ease of beam extraction, and very good beam quality and simple energy changes. Compactness is achieved by very high operating RF frequency of 3 GHz. As a continuation of previous work, all manufacturing tests were finished and the documentation of subsection 2 was closed. In July 2007, the structure subsection 2 was completed and

  9. Industrial applications of low energy accelerator technologies

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah [KAERI, Daejeon (Korea, Republic of)

    2008-05-15

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  10. Development of Power System for Medium Energy Accelerator

    The main goal of the studies are to develop a power supply system used for 100MeV proton accelerator and to operate 20MeV accelerator which has been installed in KAERI site. The 100MeV proton accelerator uses RF cavity to accelerate beams and need RF amplifier, klystron. To operate the klystron, a high power pulse power supply is required and the power supply system should have high quality because the reliability of the power supply has critical impact on the overall reliability of accelerator system. Therefore, high power pulse power system and related technology development are inevitable for 100MeV accelerator system development. 20MeV accelerator system has been developed and installed in KAERI site, which will be used as an injector for 100MeV accelerator and supply 20MeV beam to users. A study on the 20MeV accelerator characteristics should be performed to operate the machine efficiently. In addition, this machine can be used as a test bench for developing the 100MeV accelerator components. Therefore, not only the hardware so called 'high voltage power supply', but the related technology of the high quality high voltage power system and man power can be obtained from the results of this studies. The test results of the 20MeV accelerator can be utilized as a basis for efficient operation of 100MeV accelerator and these are the ultimate objective and necessities of the study

  11. Accelerator technology program. Progress report, July-December 1980

    The activities of Los Alamos National Laboratory's Accelerator Technology Division are discussed. This report covers the last six months of calendar 1980 and is organized around the Division's major projects. These projects reflect a wide variety of applications and sponsors. The major technological innovations promoted by the Pion Generator for Medical Irradiation (PIGMI) program have been developed; accelerator technologies relevant to the design of a medically practical PIGMI have been identified. A new group in AT Division deals with microwave and magnet studies; we describe the status of some of their projects. We discuss the prototype gyrocon, which has been completed, and the development of the radio-frequency quadrupole linear accelerator, which continues to stimulate interest for many possible applications. One section of this report briefly describes the results of a design study for an electron beam ion source that is ideally suited as an injector for a heavy ion linac; another section reports on a turbine engine test facility that will expose operating turbine engines to simulated maneuver forces. In other sections we discuss various activities: the Fusion Materials Irradiation Test program, the free-electron laser program, the racetrack microtron project, the Proton Storage ring, and H- ion sources and injectors

  12. Compact and energy saving magnet technology for particle accelerators

    Despite the fact that funding agencies and industrial users of particle accelerators get more and more alerted about costs of civil engineering, installation and operation, only little effort has been put into development of sustainable, energy and cost saving accelerator technology. In order to reduce the total-cost-of ownership of accelerator magnets, operating at high electrical power for twenty years or more, permanent magnet based Green Magnet technology has been developed at a consortium around Danfysik's R and D team. Together with our partners from ISA, Aarhus University, the Aarhus School of Engineering, the company Sintex and Aalborg University all obstacles in applying permanent magnet technology as e.g. thermal drift and inhomogeneities of magnetic fields have been overcome. The first Green Magnet has now been operated for more than half a year in an Accelerator Mass Spectrometry facility at the ETH in Zurich. The performance of this B=0.43T 90 deg. H-type bending magnet and the most recently builtB=1T, 30 deg. C-type Green Magnet for the synchrotron light source ASTRID2 at ISA in Aarhus will be presented. Danfysik also is designing, manufacturing and testing 60 compact magnet systems, developed at MAX-Lab for the new MAXIV 3.0 GeV synchrotron light source. In addition, 12 for the 1.5 GeV light source and another 12 for the new SOLARIS light source in Krakow, Poland are buying built. Up to a dozen or more magnet functions have been integrated into one yoke of these compact magnet systems, which makes the new MAXIV light sources compact, energy saving and at the same time very bright. Test results and design concepts of the new MAXIV and SOLARIS magnets will be presented. (author)

  13. Computational Tools for Accelerating Carbon Capture Process Development

    Miller, David; Sahinidis, N V; Cozad, A; Lee, A; Kim, H; Morinelly, J; Eslick, J; Yuan, Z

    2013-06-04

    This presentation reports development of advanced computational tools to accelerate next generation technology development. These tools are to develop an optimized process using rigorous models. They include: Process Models; Simulation-Based Optimization; Optimized Process; Uncertainty Quantification; Algebraic Surrogate Models; and Superstructure Optimization (Determine Configuration).

  14. Technology benefits resulting from accelerator production of tritium

    One of the early and most dramatic uses of nuclear transformations was in development of the nuclear weapons that brought World War II to an end. Despite that difficult introduction, nuclear weapons technology has been used largely as a deterrent to war throughout the latter half of the twentieth century. The Accelerator Production of Tritium (APT) offers a clean, safe, and reliable means of producing the tritium (a heavy form of hydrogen) needed to maintain the nuclear deterrent. Tritium decays away naturally at a rate of about 5.5% per year; therefore, the tritium reservoirs in nuclear weapons must be periodically replenished. In recent years this has been accomplished by recycling tritium from weapons being retired from the stockpile. Although this strategy has served well since the last US tritium production reactor was shut down in 1988, a new tritium production capability will be required within ten years. Some benefits will result from direct utilization of some of the APT proton beam; others could result from advances in the technologies of particle accelerators and high power spallation targets. The APT may save thousands of lives through the production of medical isotopes, and it may contribute to solving the nation's problem in disposing of long-lived nuclear wastes. But the most significant benefit may come from advancing the technology, so that the great potential of accelerator applications can be realized during our lifetimes

  15. Accelerator Technology and High Energy Physic Experiments, WILGA 2012; EuCARD Sessions

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different tech...

  16. Proceeding of the Scientific Meeting and Presentation on Accelerator Technology and Its Applications

    Scientific meeting and presentation on accelerator, technology and its application is held by BATAN Yogyakarta at 8 February 2000. The purpose of the seminar is to monitor at BATAN research activity on accelerator area and is already carried out by by BATAN's researcher as well as outside BATAN. The proceeding contains research article as many as 25 topics about accelerator technology development and its application. The proceeding article is come from 21 articles from BATAN and 4 articles from outside BATAN. (PPIN)

  17. Proceedings of the Scientific Meeting and Presentation on Accelerator Technology and its Applications

    Scientific Meeting and Presentation on Accelerator Technology and Its Application is held by BATAN Yogyakarta at October, 1, 2003. The purpose of the seminar is to monitor at BATAN research activity on accelerator and is already carried out by BATAN's researcher as well as outside BATAN. The proceeding contains research article as many of 36 topics about accelerator technology development and its application. The articles are indexing separately. (PPIN)

  18. Leveraging Old Intellectual Property to Accelerate Technology Entrepreneurship

    Derek Smith

    2013-06-01

    Full Text Available Acquiring or licensing assets to older technologies, including surviving intellectual property rights, is an often-overlooked viable strategy for accelerating technology entrepreneurship. This strategy can help entrepreneurs short-cut the growth of a customer base, reduce development effort, and shorten the time to market with a minimum viable product. However, this strategy is not without risk; entrepreneurs need to be careful that the acquired intellectual property rights are not fraught with issues that could severely outweigh any perceived value. Proper investigation is required to ensure success because the current literature fails to provide tools that an entrepreneur can apply when considering the acquisition of intellectual property. This article includes a case study of a technology company – Piranha Games – that indirectly acquired sole and exclusive access to a substantial historical customer base by acquiring and licensing older technology and surviving intellectual property assets. The founders then leveraged the existing product brand and its historical customers to acquire significant funding and went global with a minimum viable product in three years. The copyright and trademark assets provided value on day one to Piranha Games by making it difficult and risky for others to exploit the technology. Based on this case study, this article offers recommendations to entrepreneurs who may benefit from acquiring old intellectual property to accelerate the growth of their startups.

  19. Self-shielded electron linear accelerators designed for radiation technologies

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  20. Accelerator Technology Program. Status report, January-September 1983

    This report presents highlights of major projects in the Accelerator Technology Division of the Los Alamos National Laboratory. The first section deals with the Fusion Materials Irradiation Test Facility's 2-MeV accelerator on which tests began in May, as scheduled. Then, activities are reported on beam dynamics, inertial fusion, structure development, the racetrack microtron, the CERN high-energy physics experiment NA-12, and LAMPF II. The Proton Storage Ring is discussed next, with emphasis on the computer control system, diagnostics interfacing, and theoretical support. Other sections summarize progress on a portable radiographic linac, developments on the klystron code, and on permanent magnets. Activities of the Theory and Simulation Group are outlined next, followed by discussion of the oscillator experiment and the energy-recovery experiment in the free electron laser project. The last section reports on the accelerator test stand. An unusual and very satisfying activity for the Division was the hosting of the 1983 Particle Accelerator Conference in Santa Fe, March 21-23, 1983. The conference had the largest attendance ever, with 895 registrants, 61 invited papers, and 521 contributed papers

  1. Accelerator R and D activities at Raja Ramanna Centre for Advanced Technology, Indore

    Raja Ramanna Centre for Advanced Technology, Indore is a premier national institute engaged in R and D work in front-line areas of particle accelerators and lasers. The Centre has designed, developed, and commissioned two synchrotron radiation sources: Indus-1 and Indus-2, which are serving as national facilities. The Centre is pursuing various other accelerator activities viz. development of a high energy proton accelerator for Indian spallation neutron source, electron accelerators for food irradiation and industrial applications, and free electron lasers (FEL) in THz and IR spectral region, study of innovative schemes of laser driven electron and ion acceleration, and development of supporting advanced technologies such as superconducting radio-frequency (SCRF) cavities, cryogenics, RF power, magnets, ultra-high vacuum, laser manufacturing of accelerator components, and control instrumentation. In this talk, an overview of the progress made in accelerator activities at RRCAT in recent years will be presented

  2. Inverse free-electron laser accelerator development

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 1011 W) CO2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  3. Accelerator technology program. Progress report, January-December 1979

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H- ion sources and injectors, and linear accelerator instrumentation and beam dynamics

  4. Materials for Accelerator Technologies Beyond the Niobium Family

    Three niobium-based materials make up the entire present portfolio of superconducting technology for accelerators: Nb-Ti and Nb3Sn magnet wires and pure niobium for RF cavities. Because these materials are at a high level of maturity, limits imposed by the boundaries of their superconductivity constrain the energy reach of accelerators to several TeV. We sketch here a plan for targeted development of emerging higher field and higher temperature superconductors that could enable accelerators at significantly higher energies. Niobium-based superconductors are the crucial enablers of present accelerators. The Nb-Ti LHC dipole and quadrupole wires, with transition temperature Tc of 9 K and upper critical field Hc2 of 15 T, represent the highest form of superconductor strand art: massive, quarter-ton conductor billets are drawn from 300 mm diameter to ∼1 mm as a single, multi-kilometer-long piece, while retaining uniformity of the several thousand Nb-Ti filaments to within 5% at the scale of a few micrometers. Strands are twisted into fully transposed cables with virtually no loss, preserving a carefully tuned nanostructure that generates the high flux-pinning forces and high current densities to enable high magnetic fields. Nb3Sn, with twice the Tc and Hc2, is now approaching this level of conductor art, where over the last 5 years the LHC Accelerator Research Program (LARP) and the Next European Dipole (NED) program have demonstrated that Nb3Sn can be made into 4 meter long quadrupoles with 12 T fields and 250 T/m gradients. Linear accelerators at TJNAF, ORNL (SNS), and under construction for the European XFEL exploit niobium superconducting radio-frequency (SRF) technology, with gradients at ∼20 MV/m. Tremendous research and development is underway to realize high-power goals for Project X at FNAL and for a possible ILC at 35 MV/m gradients. Despite these impressive achievements, the very maturity of these niobium-based technologies makes them incapable of

  5. Analysis of accelerants and fire debris using aroma detection technology

    Barshick, S.A.

    1997-01-17

    The purpose of this work was to investigate the utility of electronic aroma detection technologies for the detection and identification of accelerant residues in suspected arson debris. Through the analysis of known accelerant residues, a trained neural network was developed for classifying suspected arson samples. Three unknown fire debris samples were classified using this neural network. The item corresponding to diesel fuel was correctly identified every time. For the other two items, wide variations in sample concentration and excessive water content, producing high sample humidities, were shown to influence the sensor response. Sorbent sampling prior to aroma detection was demonstrated to reduce these problems and to allow proper neural network classification of the remaining items corresponding to kerosene and gasoline.

  6. Development of a dedicated beam forming system for material and bioscience research with high intensity, small field electron beam of LILLYPUT 3 accelerator at Wroclaw Technology Park

    Adrich, Przemysław; Wilk, Piotr; Chorowski, Maciej; Poliński, Jarosław; Bogdan, Piotr

    2016-01-01

    The primary use of the LILLYPUT 3 accelerator at the Nondestructive Testing Laboratory at Wroclaw Technology Park is X-ray radiography for nondestructive testing, including R&D of novel techniques for industrial and medical imaging. The scope of possible applications could be greatly extended by providing a system for irradiation with electron beam. The purpose of this work was to design such a system, especially for high dose rate, small field irradiations under cryogenic conditions for material and bioscience research. In this work, two possible solutions, based either on beam scanning or scattering and collimation, were studied and compared. It was found that under existing conditions efficiency of both systems would be comparable. The latter one was adopted due to its simplicity and much lower cost. The system design was optimized by means of detailed Monte Carlo modeling. The system is being currently fabricated at National Centre for Nuclear Research in \\'Swierk.

  7. Accelerator Technology Program. Status report, April-September 1985

    This report presents highlights of major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Radio-frequency and microwave technology are dealt with. The p-bar gravity experiment, accelerator theory and simulation activities, the Proton Storage Ring, and the Fusion Materials Irradiation Test accelerator are discussed. Activities on the proposed LAMPF II accelerator, the BEAR (Beam Experiment Aboard Rocket) project, beam dynamics, the National Bureau of Standards racetrack microtron, and the University of Illinois racetrack microtron are covered. Papers published by AT-Division personnel during this reporting period are listed

  8. ADS specific accelerator developments: Status in China

    A basic research programme of ADS was launched in 2000 under the support of the Ministry of Science and Technology, China. In this programme some key technologies are studied for an intense beam proton LINAC, including construction of an ECR proton source and a pulsed beam RFQ accelerator. Further, Chinese Academy of Sciences also gave a support to LINAC research in the field of medium-β superconducting cavity

  9. Reviews of accelerator science and technology

    Chou, Weiren

    2008-01-01

    Particle accelerators are a major invention of the 20th century. In the last eight decades, they have evolved enormously and have fundamentally changed the way we live, think and work. Accelerators are the most powerful microscopes for viewing the tiniest inner structure of cells, genes, molecules, atoms and their constituents such as protons, neutrons, electrons, neutrinos and quarks. This opens up a whole new world for materials science, chemistry and molecular biology.Accelerators with megawatt beam power may ultimately solve a critical problem faced by our society, namely, the treatment of nuclear waste and the supply of an alternative type of energy. There are also tens of thousands of small accelerators all over the world. They are used every day for medical imaging, cancer therapy, radioisotope production, high-density chip-making, mass spectrometry, cargo x-ray/gamma-ray imaging, detection of explosives and illicit drugs, and weapons. This volume provides a comprehensive review of this driving and fas...

  10. Toshiba's accelerator technology and approach toward higher performance and downsizing for heavy-ion radiotherapy

    Toshiba has developed various systems and components for particle beam accelerators, and delivered a number of accelerator systems including for SPring-8, which is the world's largest-class synchrotron radiation facility, as well as for the Central Japan Synchrotron Radiation Facility (provisional name). Combining our proprietary technologies cultivated through our experience in the development of particle beam accelerators, we are promoting the development of an accelerator for heavy-ion radiotherapy. Toward the higher performance and downsizing of its accelerator, we are also focusing on the research and development of both an ion source applying laser beam technologies, and a superconducting deflecting magnet for accelerators. (author)

  11. Induction linear accelerator technology for SDIO applications

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser

  12. Leadership Excellence Through Accelerated Development (LEAD)

    Wanders, Stephen P.

    2014-01-01

    The Leadership Excellence through Accelerated Development (LEAD) Institute at CH2M HILL provides a yearlong curriculum designed to accelerate the development of leaders of individual contributors and leaders of managers who have demonstrated skill, potential, and aspiration for roles requiring strategic, operational, and leadership capabilities. An overview of the program and intended outcomes will be presented and the various elements comprising the LEAD Institute will be discussed.

  13. Assessment of the adequacy of US accelerator technology for Department of Energy missions

    Accelerator technology has made enormous impact across a wide field of research, industrial, and commercial endeavor and new developments are projected to broaden this technology transfer and open up new applications not previously possible or economically attractive. At the same time, however, the broad multi-agency base of support for the development of accelerator technology has largely evaporated leaving the program with the Department of Energy (DOE) Office of Energy Research (OER) as the only major National effort not directed at specific narrow applications. In order to continue to reap the benefits and spin-offs from this area of technology, an expanded long-term funding committment is vigorously endorsed since there appear to be major payoff potential in several areas of national need. Three specific recommendations are made that would accelerate the projected benefits from accelerator technology. An expanded effort should be undertaken to develop the key technologies of high brightness, high current, large area, long life, reliable ion, electron and RF sources along with associated studies directed toward accelerator design optimization. A centralized computational facility with a dedicated staff and library of programs for simulation of accelerator phenomenology should be created similar to that for the magnetic fusion program. Advanced accelerator R and D should be funded at a steady level to support a long range accelerator applications program

  14. Accelerated plan to develop magnetic fusion energy

    We have shown that, despite funding delays since the passage of the Magnetic Fusion Engineering Act of 1980, fusion development could still be carried to the point of a demonstration plant by the year 2000 as called for in the Act if funding, now about $365 million per year, were increased to the $1 billion range over the next few years (see Table I). We have also suggested that there may be an economic incentive for the private sector to become in accelerating fusion development on account of the greater stability of energy production costs from fusion. Namely, whereas fossil fuel prices will surely escalate in the course of time, fusion fuel will always be abundantly available at low cost; and fusion technology poses less future risk to the public and the investor compared to conventional nuclear power. In short, once a fusion plant is built, the cost of generating electricity mainly the amortization of the plant capital cost - would be relatively fixed for the life of the plant. In Sec. V, we found that the projected capital cost of fusion plants ($2000 to $4000 per KW/sub e/) would probably be acceptable if fusion plants were available today

  15. Advanced power flow technologies for high current ICF accelerators

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 1014 W/m2 over six meters and up to 1.6 x 1015 W/m2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  16. Development of image acquisition and analysis software for accelerator applications

    The electron beam profile, beam size and beam position are some of the important parameters in an accelerator. Measurement of these parameters in a quantitative manner allows accelerator operators to optimize other beam and machine parameters. One of the most commonly used device for measurement of beam profile and beam size in an accelerator is fluorescent screen beam profile monitor. In Indus Accelerator Complex at Raja Ramanna Centre for Advanced Technology (RRCAT), fluorescent screen beam profile monitors are installed in Transport Lines, Booster Synchrotron, Indus-1 and Indus-2 ring. A software has been developed in-house for image acquisition and analysis which allows accelerator operators to capture the images of beam. Once image is acquired, user can process the image offline to find beam profile and beam position. The software supports various modes of image acquisition and has built-in function for viewing the beam profile. The software allows accelerator operators to create audio video interleave (AVI) files from the acquired images and built-in AVI file viewer allows operators to play the AVI files. The software has been installed in Indus accelerator control room and now routinely being used by Indus accelerator operation group. This paper presents the various features of the software. (author)

  17. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  18. Assesment of Ion Accelerator Technology for Material Engineering

    The assesment of ion accelerator technology for material engineering has been carried out. The objective of the assesment is to prepare the document about application of ion accelerator technology for the industry of material engineering. The assesment is related with the plan of establishment of accelerator laboratory at CRDAT of BATAN, where the one of its applications in the future is for industry of material engineering. Application of accelerator technology for material engineering is mostly using ion implantation technique, where ions of certain atoms (called dopan) are implanted into material after accelerating up to a certain kinetic energy. Ion implantation technique in material engineering can be used for surface treatment of industrial engine components such as heat exchanger, turbine, seeker ring, gear, roller, etc. The kinds of dopan ions, which were used for surface treatment, are reactive elements such as Y, Ce, Zr, Hf, Ti, and Cr, Ta as well as N ions. The ion current for surface treatment is from μA up to mA, with the energy of 20 to 600 keV which can be provided by ion implantation accelerator. Therefore the application of accelerator laboratory for the industry of material engineering needs one unit of ion implantation accelerator which produces various kind of ions with variable ions energy from 20 up to 600 keV and equipped with its supporting facilities. (author)

  19. Accelerated Leadership Development: Fast Tracking School Leaders

    Earley, Peter; Jones, Jeff

    2010-01-01

    "Accelerated Leadership Development" captures and communicates the lessons learned from successful fast-track leadership programmes in the private and public sector, and provides a model which schools can follow and customize as they plan their own leadership development strategies. As large numbers of headteachers and other senior staff retire,…

  20. The development of accelerator mass spectroscopy system

    Mitarai, Shiro; Machida, Atsushi; Iwata, Yasunao; Tsubusaki, Yoshihiro; Tanaka, Katsuhiko; Maeda, Toyokazu; Nakajima, Takao [Kyushu Univ., Fukuoka (Japan)

    2001-02-01

    Inverse PIXE method was applied to the differentiation of Chlorine 36 and Sulfur 36. The contaminated soil from the USSR nuclear test site was measured. Terminal potential of the tandem accelerator was controlled by GVM. A new AMS system, using time-of flight method is under development. The development of beam buncher and beam chopper for the system is briefly described. (A. Yamamoto)

  1. The proton engineering frontier project: accelerator development

    Since launched in 2002 to establish an advanced research facility to promote and support core R and D programs by utilizing highly-characterized proton beams, the Proton Engineering Frontier Project has been devoted to developing a high-current 100-MeV, 20 mA proton linac. The upstream part of the proton linac, up to 20 MeV, has been successfully developed, integrated, and commissioned and has delivered proton beams to users under a limited operation license. The high-energy part of the accelerator and beamlines are under development. The architectural and radiation shielding design of the accelerator building and beam experimental hall has been completed. The site preparation and construction works are in progress in cooperation with the municipal government of Gyeongju city. When the project is completed in 2012, as scheduled, the proton accelerator facility will be capable of delivering highly-characterized proton beams to multiple users by satisfying their dedicated requirements.

  2. Acceleration in dental development: fact or fiction.

    Holtgrave, E A; Kretschmer, R; Müller, R

    1997-12-01

    The aim of this investigation was to determine whether an actual acceleration in dental development has taken place over the last 30 years in a European population group, as is so readily observable in relation to body height. In this study, radiographs of 1038 healthy European children, 516 boys and 522 girls, were evaluated. The methodology and norms given by Nolla (1960) for both sexes were used and compared with the tooth developmental stages in our subjects. In girls, no difference to Nolla's norms could be detected. However, in boys, dental development has accelerated. This difference was most apparent in the 3- to 9-year-old age group and was statistically significant. Thus, over the last 30 years, a small acceleration in dental development has taken place in very young males. PMID:9458603

  3. Application of software and hardware components of can-technology for accelerator control

    CAN-technology was developed for embedded hard real time automotive applications. Software components of CAN-technology consist of high level application protocols, programs for testing, monitoring and configuring of CAN-nodes as well as the components which bind CAN-components with SCADA systems and ensure control through the WEB-browsers. CAN-technology is used in INP to control accelerators, for beam diagnostic and, in cooperation with the RRC Kurchatov Institute, in automation of the large neutrino detector Borexino. Long-term positive experience of CAN-technology usage allows us to recommend this technology for accelerator control especially if industrial style and compatibility is desired

  4. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm2. The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  5. Development of an explosive detection system using a proton accelerator

    The technology of explosive detection using radiation had been studied. On the basis that explosives has nitrogen atoms, the proof of principle experiments had been performed with the gamma ray which interacts with nitrogen atoms. The production of the gamma ray had been confirmed and, the scattered gamma ray from nitrogen had been observed in the experiment at Seoul National University. According to the experimental results, the specifications of the accelerator had been determined, 1.8MeV and 10mA. For a long-life time, a TCP type ion source using rf power have been developed. A tandem type accelerator had been chosen, and the important technologies, accelerating column and high voltage power supply, had been developed. On the basis of these technologies, the 1MV tandem accelerator had been constructed. The production process of C-13 film had been developed, and a 20kW water-cooled target had been fabricated. For gamma ray detection, a array detector with 9 BGO had been constructed, and the SW had been developed for the imaging of explosives. The lead shield had been fabricated for radiation shielding. The constructed system will be tested for the proof of explosive detection.

  6. Survey of CAE workstation and accelerator developments

    Taking advantage of the ready availability of high powered microprocessors, significant advances have been made in recent years in the development of computer-aided engineering (CAE) workstations. These workstations have revolutionized the electronic design process. An equally significant attempt is currently being made to increase the workstation's capabilities by attaching to them special or general purpose accelerators to handle computing/memory-intensive tasks such as simulation, placement and routing. In this paper, the authors will first survey some of the recent developments in CAE workstations. They will then describe some of the more interesting general purpose accelerators as well as a unique system currently being designed in the laboratory

  7. Wind energy technology developments

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    This chapter describes the present mainstream development of the wind turbine technology at present. The turbine technology development trend is characterized by up-scaling to turbines with larger capacity for both onshore and offshore applications, larger rotors and new drivetrain solution, including the direct-drive solution without gearbox. The technology solutions are strongly influenced by the development of the international industry with a global market for components and a trend towar...

  8. Fusion technology development plan

    This Fusion Technology Development Plan (FTDP) has been prepared to show how the technology development program conducted by the Division of Development and Technology of the Office of Fusion Energy supports the overall magnetic fusion energy program as delineated in the March 17, 1983, DOE testimony before the Energy Research and Production Subcommittee of the House Committee on Science and Technology. A first draft of this plan distributed for comment in November 1981. since that draft was prepared, changes in expectations for funding in the program have led us to develop a set of priorities based on critical technology issues. These critical issues and the priority ranking of technology development efforts was accomplished with help from each of the major program participants

  9. WILGA Photonics and Web Engineering, January 2012; EuCARD Sessions on HEP and Accelerator Technology

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper presents a digest of chosen technical work results shown by young researchers from technical universities during the SPIE-IEEE Wilga January 2012 Symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, new technologies for photonics, sensory and nonline...

  10. Developments of AMS at the TANDAR accelerator

    Fernández Niello, J. O.; Abriola, D.; Alvarez, D. E.; Capurro, O. A.; di Tada, M.; Etchegoyen, A.; Ferrero, A. M. J.; Martí, G. V.; Pacheco, A. J.; Testoni, J. E.; Korschinek, G.

    1996-08-01

    Man-made long-lived radioisotopes have been produced as a result of different nuclear technologies. The study of accidental spillages and the determination of radioisotope concentrations in nuclear waste prior to final storage in a repository are subjects of great interest in connection with this activity. The accelerator mass spectrometry (AMS) technique is a powerful tool to measure long-lived isotopes at abundance ratios as low as 10 -12-10 -15 in small samples. Applications to the Argentine nuclear program like those mentioned above, as well as applications to archaeology, hydrology and biomedical research, are considered in an AMS program using the TANDAR 20 UD electrostatic accelerator at Buenos Aires. In this work we present the status of the program and a description of the facility.

  11. ADS specific accelerator developments: Status in India

    Since India envisages the application as thorium–uranium breeder, the ADS must be operated with high beam power to maximize breeding potential. Since the thermalhydraulics issue in spallation target may restrict ~1 GeV proton beam current to ~10 mA on a single target module, an ADS core design is visualized with 3 or more spallation targets that would also help suppress the neutron flux peaking. With this assumption, the R&D objective is to realize a proton accelerator of 30 mA beam current (cw/average) within as short time as feasible. Of the two alternative accelerator types, cyclotron and LINAC, basic indigenous technological know-how, up to limited extent, exists for both

  12. The EM technology development strategy

    The Office of Technology Development (TD) supports research and development of technologies that will lower cost, reduce risk, improve safety, and accelerate cleanup of the Nuclear Weapons Complex and provide solutions to currently untractable environmental problems. The TD strategic plan outlines Applied Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) that will provide needed technology products to be used by Environmental Restoration and Waste Management operations (i.e., our customers). The TD strategic plan is derived from EM Goals, Objectives, and Strategy and is incorporated into DOE'S Five-Year Plan for Environmental Restoration and Waste Management. The TD strategic plan is developed based on integrating customer requirements, and is complemented by a top-down, bottom-up analysis of Site Specific Technology Needs and environmental problems. The execution of TD's strategic plan is implemented largely through Integrated Programs (IP) and Integrated Demonstrations (ID). IDs have proven to be a cost-effective method of managing technology development, testing and evaluation, and implementation of successful technology systems into the DOE Environmental Restoration and Waste Management Programs. The Savannah River ID for Volatile Organic Compounds (VOCs) in Saturated Soils resulted in a 51 percent cost savings over stand-alone demonstrations, saving over $8 million. The IPs and IDs are selected based on customer needs, technical complexity, and complex-wide regulatory and compliance agreements. New technology systems are selected for incorporation into an IP or ID from offerings of the DOE laboratories, industry, and the universities. A major TD initiative was announced in August 1991, with the release of a Program Research and Development Announcement (PRDA) requesting industry and universities to propose innovative new technologies to clean up the Weapons Complex. (author)

  13. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  14. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  15. Recent activities in accelerator code development

    In this paper we will review recent activities in the area of code development as it affects the accelerator community. We will first discuss the changing computing environment. We will review how the computing environment has changed in the last 10 years, with emphasis on computing power, operating systems, computer languages, graphics standards, and massively parallel processing. Then we will discuss recent code development activities in the areas of electromagnetics codes and beam dynamics codes

  16. CNPC Accelerates Development of Financial Business

    2009-01-01

    @@ The Beijing-based China National Petroleum Corporation (CNPC) has got approval from the State-owned Assets Supervision and Administration Commission of the State Council and China Banking Regulatory Commission to buy the stake in Karamay City Commercial Bank in Xinjiang Uygur Autonomous Region. The deal was an important step for the companyto develop its own financial business. Currently, CNPC is making efforts to accelerate the development of thefinancial business to diversify its portfolio.

  17. Development of beam utilization/application technology

    Choi, B. H.; Kim, Y.K.; Song, T.Y. [and others

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized forindustries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs.

  18. Development of beam utilization/application technology

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized for industries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs

  19. Report to the Joint Economic Committee Congress of the United States by the Comptroller General of the United States. Can the U.S. breeder reactor development program be accelerated by using foreign technology

    For years the United States, Britain, France, the Federal Republic of Germany, the Soviet Union, and Japan have been conducting extensive fast breeder reactor research and development programs. Except for the Soviet Union, these countries lack the energy resources--coal, oil, natural gas, and uranium--that the U.S. possesses and have more urgent needs and shorter time frames for developing commercial fast breeder reactors than does the U.S. This report deals with the status of the foreign LMFBR programs and the benefits from and impediments to exchanging foreign LMFBR technology. It is concluded that although the Energy Research and Development Administration's efforts to develop areas of exchange are worthwhile and should be continued, it is unrealistic to expect that the U.S. program could be greatly accelerated or that large amounts of money could be saved through quid pro quo exchanges with other nations

  20. CO2 laser technology for advanced particle accelerators

    Short-pulse, high-power C02 lasers open new prospects for development of high-gradient laser-driven electron accelerators. The advantages of λ=10 μm CO2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ2-proportional ponderomotive potential, λ-proportional phase slippage distance, and %-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt C02 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATFs experimental program of testing far-field, near-field, and plasma accelerator schemes

  1. CO2 laser technology for advanced particle accelerators

    Short-pulse, high-power CO2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ2-proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  2. Physics and technical development of accelerators; Physique et technique des accelerateurs

    NONE

    2000-03-01

    About 90 registered participants delivered more than 40 scientific papers. A great part of these presentations were of general interest about running projects such as CIME accelerator at Ganil, IPHI (high intensity proton injector), ESRF (European source of synchrotron radiation), LHC (large hadron collider), ELYSE accelerator at Orsay, AIRIX, and VIVITRON tandem accelerator. Other presentations highlighted the latest technological developments of accelerator components: superconducting cavities, power klystrons, high current injectors..

  3. Recent developments in high voltage photocathode DC gun for accelerator

    A photoinjector which can generate a high brightness, low emittance and short duration electron bunches is required for future light source accelerators and applications such as electron microscopes. A DC high voltage gun which has a semiconductor photocathode in a high DC electric field is one of the technology choices for the generation of high quality electron beam. Many techniques to the development of semiconductor based photoemission gun are introduced in briefly. (author)

  4. Linear IFMIF prototype accelerator (LIPAc) control system: design and development

    Calvo Pinto, Julio

    2014-01-01

    Distributed real time control systems in scientific instruments, such as particle accelerators or telescopes, have emerged as a solution to control multiple interconnected devices, which required constant attention and observation, along with a complete integration of each of its parts. This enhancement is provided by the intense technological development that control devices have suffered in recent years. With respect to the control software, libraries and applications have also emerged in r...

  5. Technology and human development

    Ranis, Gustav

    2011-01-01

    Human development, in combination with technology, yields economic growth which, in turn, is necessary to generate further advances in human development. This paper focuses on the first channel above and finds the relationship significant. Secondly, the paper tries to investigate what affects technology change, as represented by TFP. We examine the influence of openness, FDI, patents and R&D in a 22 country sample and also contrast Asian and Latin American experience.

  6. Fusion development and technology

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  7. High voltage technologies for radio frequency (RF) systems of proton accelerators in BARC

    Accelerators were invented to provide energetic particles to investigate the structure of the atomic nucleus. They speed up and increase the energy of a beam of particles by generating electric fields that accelerate the particles and magnetic fields that steer and focus them. An RF accelerator uses electromagnetic fields to propel charged particles to high speeds and to contain them in well-defined beams. The RF power amplifier, which provides electromagnetic fields, converts direct current (D.C.) input power into r.f. output power. The accelerating structures use this r.f. power to accelerate low-charge bunches to high energies. An important program of Department of Atomic Energy is to build accelerator driven sub critical reactor system (ADS). In ADS, high energy proton beam (from the CW particle accelerator, 1 GeV, > 20 mA) strikes a heavy element target which yields copious neutrons by (p, xn) spallation reaction inside a sub-critical core. One of the critical components of ADS is a 1 GeV, high current proton accelerator. It is being built in three phases. In the first phase, a 20 MeV, 30 mA, low energy high intensity proton accelerator (LEHIPA) is under construction at BARC. It requires radio frequency (RF) power for beam acceleration and is provided by high power RF systems. The RF systems require and use high voltage DC technologies (at 100 kV and 65 kV) as their subsystems that are developed with the help of local Indian industries. These technologies are making use of innovative techniques, new insulating materials and new technologies to avoid the critical problems (associated with high voltages) like arcing, sparking, energy deposition under arcing etc. This poster will describe in detail these high voltage technologies developed with the help of local Indian industries. (author)

  8. Technology research and development

    The U.S. Dept. of Energy discusses the new program plan, the parameters of which are a broad scientific and technology knowledge base, an attractive plasma configuration to be determined, and other issues concerning uncertainty as to what constitutes attractive fusion options to be determined in the future, and increased collaboration. Tables show changing directions in magnetic fusion energy, two examples of boundary condition impacts on long-term technology development, and priority classes of the latter. The Argonne National Laboratory comments on the relationship between science, technology and the engineering aspects of the fusion program. UCLA remarks on the role of fusion technology in the fusion program plan, particularly on results from the recent studies of FINESSE. General Dynamics offers commentary on the issues of a reduced budget, and new emphasis on science which creates an image of the program. A table illustrates technology research and development in the program plan from an industrial perspective

  9. An overview of accelerator-driven transmutation technology

    Accelerator-Driven Transmutation Technology, or ADT2, is a collection of programs that share a common theme - they each have at their heart an intense source of neutrons generated by a high-energy proton beam striking a heavy metal target. The beam energy, typically 1000 MeV, is enough for a single proton to smash a target atom into atomic fragments. This so-called spallation process generates large numbers of neutrons (around 20 to 30 per proton) amid the atomic debris. These neutrons are of high value because they can be used to transmute neighboring atoms by neutron capture. Three distinct ADT2 program elements will be described. These are ADEP - accelerator-driven energy production, ABC - accelerator based conversion (of plutonium) and ATW - accelerator transmutation of waste

  10. Technology development for safeguards

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency

  11. EuCARD 2010 Accelerator Technology in Europe

    Romaniuk, R S

    2010-01-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. Th...

  12. The development of laser technology

    The objective of this project is the 'Development of Laser Technology' for the use of nuclear facilities. For the last first year, a 1kW-class Nd:YAG laser materials processing system has been assembled and laser sleeve welding related materials have been analyzed. Furthermore, laser metrology for the fast and accurate inspection of defects in steam generator U-tube has been also constructed and 5W high-resolution tunable dye laser, which is pumped by CVL, has been developed for applying to atomic spectroscopy technique development. A millimeter-wave free electron laser (FEL) system using an electrostatic accelerator has been designed and A one-dimensional simulation code has been developed to expect the gain of FEL. (Author)

  13. Developing acceleration schedules for NDCX-II

    The Virtual National Laboratory for Heavy-Ion Fusion Science is developing a physics design for NDCX-II, an experiment to study warm dense matter heated by ions near the Bragg-peak energy. Present plans call for using about thirty induction cells to accelerate 30 nC of Li+ ions to more than 3 MeV, followed by neutralized drift-compression. To heat targets to useful temperatures, the beam must be compressed to a millimeter-scale radius and a duration of about 1 ns. An interactive 1-D particle-in-cell simulation with an electrostatic field solver, acceleration-gap fringe fields, and a library of realizable analytic waveforms has been used for developing NDCX-II acceleration schedules. Axisymmetric simulations with WARP have validated this 1-D model and have been used both to design transverse focusing and to compensate for injection non-uniformities and radial variation of the fields. Highlights of this work are presented here

  14. Accelerator development in India for ADS programme

    P Singh; S V L S Rao; Rajni Pande; T Basak; Shwetha Roy; M Aslam; P Jain; S C L Srivastava; Rajesh Kumar; P K Nema; S Kailas; V C Sahni

    2007-02-01

    At BARC, development of a Low Energy High Intensity Proton Accelerator (LEHIPA), as front-end injector of the 1 GeV accelerator for the ADS programme, has been initiated. The major components of LEHIPA (20 MeV, 30 mA) are a 50 keV ECR ion source, a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV drift tube linac (DTL). The Low Energy Beam Transport (LEBT) and Medium Energy Beam Transport (MEBT) lines match the beam from the ion source to RFQ and from RFQ to DTL respectively. Design of these systems has been completed and fabrication of their prototypes has started. Physics studies of the 20{1000 MeV part of the Linac are also in progress. In this paper, the present status of this project is presented.

  15. Proceedings of the 20th meeting for tandem accelerators and their associated technologies

    The 20th Meeting of Tandem Accelerators and their Associated Technologies was held from July 12 through 13, 2007 at Tokai-mura, Ibaraki-ken, under the auspices of the Nuclear Science Research Institute of Japan Atomic Energy Agency (JAEA). About one hundred and ten people participated in the meeting from thirty-three organizations; universities, research institutes and industries, which have a tandem accelerator or an electrostatic accelerator. The objective of the meeting is to contribute to research and development of accelerator technology by exchanging information on their accelerators each other. The meeting consisted of oral and poster sessions. Forty-seven presentations about present status and technical development on tandem accelerators or electrostatic accelerators and applications using these accelerators were discussed during the two days. This report summarizes the forty-five presentations including posters in the meeting. This publication is the collection of the paper presented at the title meeting. The 44 of the presented papers are indexed individually. (J.P.N.)

  16. Wind energy technology developments

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    , including the direct-drive solution without gearbox. The technology solutions are strongly influenced by the development of the international industry with a global market for components and a trend towards a “shared” development effort in collaboration between the OEM’s and component sub-suppliers. Wind...

  17. Mobile Router Technology Development

    Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent

    2002-01-01

    Cisco Systems and NASA have been performing joint research on mobile routing technology under a NASA Space Act Agreement. Cisco developed mobile router technology and provided that technology to NASA for applications to aeronautic and space-based missions. NASA has performed stringent performance testing of the mobile router, including the interaction of routing and transport-level protocols. This paper describes mobile routing, the mobile router, and some key configuration parameters. In addition, the paper describes the mobile routing test network and test results documenting the performance of transport protocols in dynamic routing environments.

  18. Technology transfer for development

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  19. Technology benefits associated with Accelerator Production of Tritium

    The Accelerator Production of Tritium (APT) offers a clean, safe, and reliable means of producing the tritium needed to maintain the nuclear deterrent. Tritium decays away naturally at a rate of ∼5.5%/yr; therefore, the tritium reservoirs in nuclear weapons must be periodically replenished. In recent years this has been accomplished by recycling tritium from weapons being retired from the stockpile. Although this strategy has served well since the last US tritium production reactor was shut down in 1988, a new tritium production capability will be required within 10 yr. Important technology benefits will result from direct utilization of some of the APT proton beam; others could result from advances in the technologies of particle accelerators and high-power spallation targets. These technology benefits are briefly discussed here

  20. LUEh-60 accelerator as an injector for technological source of synchrotron radiation

    A linear electron accelerator developed as a beam injector for a compact technological sources of synchrotron radiation (SR) designed for solving the problems of X-ray lithography in the field of microelectronics is described. Physical basis for choice systems for accelerator with energy up to 60 MeV at pulse current up to 100 μA to optimize beam output parameters is presented. 7 refs.; 6 figs.; 4 tabs

  1. Fusion development and technology

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  2. Development of the power system for accelerator

    The 100-MeV proton linac needs 4 modulators whose specification is as follows, -115kV, 55A, and 9%. The development of the modulators were successfully finished and installed at Gyeongju site of KAERI. One of them was used and successfully tested in the 20-MeV linac operation at Daejeon site. The klystron is used to supply the high power RF into the accelerating structure. There are 2 klystrons for 20-MeV part of the linac and 7 klystrons from 20-MeV to 100-MeV region. The maximum voltage is ?105kV, the peak power is 1.6 MW, and the duty is 9%. All of the 7 klystrons have been fabricated, tested and installed. The high power RF system includes circulators, dummy lodes, RF windows, and wave-guides. The development of the high power RF components was finished and they were installed at the Gyeongju site. The 11 sets of RCCS (resonant control cooling system) will be used to control the cooling water temperature inside the accelerating structure. The temperature range of the cooling water covers between 21 .deg. C and 33 .deg. C with the 0.1 .deg. C control. All RCCSs were installed in the klystron gallery. Purposes of the 20-MeV linac operation at Daejeon site of KAERI (2007∼2011) are to supply proton beams to user, to porve the accelerator performance, to test the developed components including LLRF, diagnostics, and control system, and to measure the proton beam properties. During the period, the total number of samples reaches to 1,603 and the average machine availability becomes 96.2%. The 20-MeV linac was disassembled, moved and installed at Gyeongju site after finishing the test operation

  3. Design and development of R.F. LINAC accelerator components

    Full text: Radio frequency linear accelerator, a high power electron LINAC technology, is being developed at BARC. These accelerators are considered to be the most compact and effective for a given power capacity. Important application areas of this LINAC include medical sterilization, food preservation, pollution control, semiconductor industries, radiation therapy and material science. Center for Design and Manufacture (CDM), BARC has been entrusted with the design, development and manufacturing of various mechanical components of the accelerator. Most critical and precision components out of them are Diagnostic chamber, Faraday cup, Drift tube and R.F. cavities. This paper deals with the design aspects in respect of Ultra high vacuum compatibility and the mechanism of operation. Also this paper discusses the state-of-art technology for machining of intricate contour using specially designed poly crystalline diamond tool and the inspection methodology developed to minimize the measurement errors on the machined contour. Silver brazing technique employed to join the LINAC cavities is also described in detail

  4. Biofuel technologies. Recent developments

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  5. E-beam accelerator cavity development for the ground-based free electron laser

    Bultman, N. K.; Spalek, G.

    Los Alamos National Laboratory is designing and developing four prototype accelerator cavities for high power testing on the Modular Component Technology Development (MCTD) test stand at Boeing. These cavities provide the basis for the e-beam accelerator hardware that will be used in the Ground Based Free Electron Laser (GBFEL) to be sited at the White Sands Missile Range (WSMR) in New Mexico.

  6. Theoretical and technological building blocks for an innovation accelerator

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  7. A proton medical accelerator by the SBIR route: An example of technology transfer

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig

  8. The overview and history of permanent magnet devices in accelerator technology

    This paper reviews the early history of accelerator development with a particular focus on the important discoveries that opened the door for the application of permanent-magnet materials to this area of science. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, that showed magnetic fields could be used to control the transverse envelope of charged-particle beams. Since that time, permanent-magnet materials have found wide application in the modern charged particle accelerator. The history of permanent-magnet use in accelerator physics and technology is outlined, general design considerations are presented, and material properties of concern for particle accelerator applications are discussed

  9. CO2 laser technology for advanced particle accelerators. Revision

    Short-pulse, high-power CO2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ2-proportional ponderomotive potential, λ-proportional phase slippage distance, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  10. Development technologies and strategies

    NONE

    1993-12-31

    The proceedings consist of lectures presented at the Colloquium on wood collective heating in North Europe, held in November 1993 in Evreux, France. The sessions treated of development technologies and strategies in this scope. Separate abstracts were prepared for 23 papers. (TEC).

  11. Marine & hydrokinetic technology development.

    LiVecchi, Al (National Renewable Energy Laboratory); Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and

  12. Remediation Technology Collaboration Development

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  13. Electron Accelerator Facilities

    Lecture presents main aspects of progress in development of industrial accelerators: adaptation of accelerators primary built for scientific experiments, electron energy and beam power increase in certain accelerator constructions, computer control system managing accelerator start-up, routine operation and technological process, maintenance (diagnostics), accelerator technology perfection (electrical efficiency, operation cost), compact and more efficient accelerator constructions, reliability improvement according to industrial standards, accelerators for MW power levels and accelerators tailored for specific use

  14. Robotics Technology Development Program

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  15. Textile technology development

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  16. MYRRHA: a multipurpose accelerator driven system for research and development

    The development of a new nuclear installation that is able to fulfil the economical, social, environmental and technological demands, is a cornerstone for the future provision of sustainable energy. Accelerator Driven Systems (ADS) can pave the way for a more environmentally safe and acceptable nuclear energy production. Fundamental and applied R and D are crucial in the development of ADS technologies and demand the availability of appropriate prototype installations. In answer to this need and in order to update its current irradiation potential, the Belgian Nuclear Research Centre (SCK·CEN), in partnership with Ion Beam Applications s. a. (IBA), is launching the MYRRHA project. It is focussed on the design, development and realisation of a modular and flexible irradiation facility based on the ADS concept. This paper describes the concept, the applications foreseen in the MYRRHA installation and the accompanying design activities currently being performed at SCK·CEN and IBA. (authors)

  17. Transmutation Technology Development

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  18. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  19. Extraordinary Tools for Extraordinary Science: The Impact of SciDAC on Accelerator Science and Technology

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects

  20. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, 'Facilities for the Future of Science: A Twenty-Year Outlook'. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects

  1. ECH Technology Development

    Temkin, Richard [MIT

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  2. Research and Development for Ultra-High Gradient Accelerator Structures

    Tantawi, Sami G.; Dolgashev, Valery; Higashi, Yasuo; Spataro, Bruno

    2010-11-01

    Research on the basic physics of high-gradient, high frequency accelerator structures and the associated RF/microwave technology are essential for the future of discovery science, medicine and biology, energy and environment, and national security. We will review the state-of-the-art for the development of high gradient linear accelerators. We will present the research activities aimed at exploring the basic physics phenomenon of RF breakdown. We present the experimental results of a true systematic study in which the surface processing, geometry, and materials of the structures have been varied, one parameter at a time. The breakdown rate or alternatively, the probability of breakdown/pulse/meter has been recorded for different operating parameters. These statistical data reveal a strong dependence of breakdown probability on surface magnetic field, or alternatively on surface pulsed heating. This is in contrast to the classical view of electric field dependence.

  3. An overview of the JAERI accelerator research and development

    The high-intensity proton accelerator with an energy of 1.5 GeV and a beam power of 8 MW has been proposed for the Neutron Science Project (NSP) at JAERI. The purpose of the NSP is to explore various basic research fields such as condensed matter physics in combination with a proton storage ring and nuclear technologies for radioactive waste transmutation based on proton induced spallation neutrons. The conceptual design and R and D work have been carried out for the components of the low energy accelerator portion. For the high energy portion above 100 MeV, the superconducting (SC) linac has been designed and developed as a major option. The proton storage ring has been studied to produce high intensity pulsed beam. (author)

  4. Proceeding of the Scientific Meeting and Presentation on Accelerator Technology and its Application

    The proceeding contains papers presented on Scientific Meeting and Presentation on Accelerator Technology and Its Application, held in Yogyakarta, 16 january 1996. This proceeding contains papers on accelerator technology, especially electron beam machine. There are 11 papers indexed individually. (ID)

  5. Superconducting Linac and associated accelerator development at NSC

    Amit Roy

    2001-08-01

    There has been significant progress in the programme to develop a superconducting linear accelerator as a booster for the Pelletron accelerator at the Nuclear Science Centre. This paper presents the current status of the development in all the major components of the accelerator.

  6. Heavy ion accelerator and associated developments in India

    G K Mehta

    2002-11-01

    Developments of ion accelerator and associated facilities in India are presented. Various types of accelerator facilities which are systematically built in the country through sustained development and research programs at various research centres and institutions are highlighted. Impact of accelerator in different interdisciplinary fields of research are highlighted.

  7. Overview of CERN Technology Transfer Strategy and Accelerator-Related Activities

    Chesta, E; Wuensch, W; Sgobba, S; Stora, T; Chiggiato, P; Taborelli, M

    2013-01-01

    CERN, the European Organization for Nuclear Research, is actively engaged in identifying technologies developed for its accelerator complex that could be profitably used by partner research organizations or commercial companies in applications with potentially high socio-economic impact beyond pure fundamental physics research. \

  8. Technical development of high intensity proton accelerators in Japan Atomic Energy Research Institute (JAERI)

    Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)

  9. Development of S-band accelerating structure

    In Pohang Accelerator Laboratory (PAL) in Korea construction of XFEL (X-ray Free electron Lazar) institution is under construction aiming at the completion in 2014. Energy 10 GeV of the linac part of this institution and main frequency are planned in S-band (2856 MHz), and about 178 S-band 3m accelerating structures are due to be used for this linac. The oscillation of an X-ray laser requires very low emittance electron beam. On the other hand, since the accelerating structure which accelerates an electron beam has a feed port of microwave (iris), the electromagnetic field asymmetry of the microwave feeding device called coupler worsens the emittance of an electron beam. MHI manufactured two kinds of S-band accelerating structures with which the electromagnetic field asymmetry of coupler cavity was compensated for PALXFEL linac. We report these accelerating structures. (author)

  10. The impact of new computer technology on accelerator control

    This paper describes some recent developments in computing and stresses their application in accelerator control systems. Among the advances that promise to have a significant impact are (1) low cost scientific workstations; (2) the use of ''windows'', pointing devices and menus in a multi-tasking operating system; (3) high resolution large-screen graphics monitors; (4) new kinds of high bandwidth local area networks. The relevant features are related to a general accelerator control system. For example, this paper examines the implications of a computing environment which permits and encourages graphical manipulation of system components, rather than traditional access through the writing of programs or ''canned'' access via touch panels

  11. Educating the next generation in the science and technology of plasmas, beams and accelerators

    Barletta, Wiliam

    2007-11-01

    Accelerators are essential tools for discovery in fundamental physics, biology, and chemistry. Particle beam based instruments in medicine, industry and national security constitute a multi-billion dollar per year industry. More than 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web. Yet only a handful of universities offer any formal training in accelerator science. Several reasons can be cited: 1) The science and technology of non-neutral plasmas cuts across traditional academic disciplines. 2) Electrical engineering departments have evolved toward micro- and nano-technology and computing science. 3) Nuclear physics departments have atrophied. 4) With few exceptions, interest at individual universities is not extensive enough to support a strong faculty line. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed an educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Governed and supported by a consortium of nine DOE laboratories and two NSF university laboratories, USPAS offers a responsive and balanced curriculum of science, engineering, and hands-on courses. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  12. Development of Sodium Technology

    The basic P and ID and fabrication method for IHTS simplification experiment were prepared for the experimental apparatus. In order to investigate the later phase of a SWR event, an experimental apparatus was designed and manufactured. The 620 data set have been obtained in the experiment of free surface fluctuation and an experimental correlation for the critical gas entertainment condition is additionally developed. For development of water into sodium leak detection technology, the properties from leak noises were extracted, and the tools for analyzing acoustic noises were constructed. The state-of-the-art on the flow and differential pressure measuring techniques in the piping system is investigated to develop new techniques which are applicable to high temperature sodium flow environment. The plan for the minimization of errors in temperature measurement was drawn up by analysing the error factors in temperature measurement. And the countermeasures for the minimization of errors in temperature measurement due to complex heat transfer were prepared

  13. Graphite Technology Development Plan

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  14. The accelerator driven transmutation technology - A study on the linac for proton accelerator

    Han, Bum Soo; Joh, Ki Hun; Kim, Sung Myun; Park, Heung Gyu; Park, Jong Pil; Kang, Bo Sun [Samsung Heavy Industries, Taejon (Korea)

    1999-04-01

    The purpose of this study is to investigate the manufacturing technology of proton accelerators, and to find the adequate manufacturing technique for construction of such proton accelerators. Review of manufacturing technology for RFQ has been carried out - RFQ machine of other country has been reviewed on the aspects of manufacturing, - Machining of engineering mock-up has been performed based on the designed data, - Brazing technology for RFQ, and brazing test and analysis of Copper specimen. Adequate brazing conditions for RFQ - 1st brazing (vane to section, 950 deg C), Filler metal composition: Cu-20Sn, Brazing conditions: peak temp. 950 deg C (holding time 20min, rising rate 7 deg C/min), Atmosphere: H{sub 2}. - 2nd brazing (section to section, 850 deg C or less), Filler metal: Cu-Sn4%-P7.5%-Ag6%, Brazing conditions: peak temp. 750 deg C (holding time 20min, rising rate 7 deg C/min), Atmosphere: H{sub 2}. 8 refs., (author). 31 figs., 6 tabs.

  15. Developments in sodium technology

    Sodium, because of its good heat transfer and nuclear properties, is used as a coolant in fast reactors. It is also used largely as a reducing agent in pharmaceutical, perfumery and general chemical industries. Its affinity to react with air and water is a strong disadvantage. However, this is fully understood and the design of engineering systems takes care of this aspect. With several experimental and test facilities established over the years in this country and abroad, 'sodium technology' has reached a level of maturity. The design of sodium systems considering all the physical and chemical properties and the development work carried out in this country are broadly covered in this article. (author)

  16. Emerging Sealing Technologies Development

    2005-01-01

    Under this Cooperative Agreement, the objective was to investigate several emerging sealing technologies of interest to the Mechanical Components Branch of National Aeronautics and Space Administration Glenn Research Center at Lewis Field (NASA GRC). The majority of the work conducted was to support the development of Solid Oxide Fuel Cells for application to aeronautic auxiliary power units, though technical investigations of interest to other groups and projects were also conducted. In general, accomplishments and results were periodically reported to the NASA Technical Monitor, the NASA GRC Seal Team staff, and NASA GRC project management. Several technical reports, journal articles, and presentations were given internally to NASA GRC and to the external public.

  17. Use of permanent magnets in accelerator technology: Present and future

    This report is a collection of viewgraphs discussing accelerator magnets. Permanent magnet systems have some generic properties that, under some circumstances, make them not only mildly preferable over electromagnets, but make it possible to do things that can not be done with any other technology. After a general discussion of these generic advantages, some specific permanent magnet systems will be described. Special emphasis will be placed on systems that have now, or are likely to have in the future, a significant impact on how some materials research is conducted. 4 refs., 33 figs

  18. Accelerator Technology Program: Status report, October 1985--March 1986: Volume 1

    This report presents highlights of the major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first section details progress associated with the accelerator test stand. Following sections cover achievements in accelerator theory and simulation, LAMPF II accomplishments, and updates on BEAR, beam dynamics, the rf laboratory, p-bar gravity experiment, University of Illinois racetrack microtron, and NBS microtron. Also included are results from the Proton Storage Ring commissioning, developments in very high microwave systems, and advances in the Fusion Materials Irradiation Test rf technology. In addition, the Phoenix Project and the Krypton Fluoride Project are discussed. The report concludes with a listing of papers published by AT-Division personnel during this reporting period. 42 figs., 5 tabs

  19. Accelerator Technology and High Energy Physic Experiments, WILGA 2012; EuCARD Sessions

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the ...

  20. ADS specific accelerator developments: Status in Europe

    The EUROpean research programme for the TRANSmutation of high level radioactive waste in accelerator driven systems (EUROTRANS) is funded by the European Commission within the 6th Framework Programme, and involves 31 partners (research agencies and nuclear industries) with the contribution of 16 universities [4.32]. EUROTRANS is a 4-year programme (2005–2009) extending previous activities (PDS-XADS, Preliminary Design Study for an eXperimental Accelerator Driven System) and paving the road towards the construction, during the next EC framework programmes, of an eXperimental facility demonstrating the technical feasibility of Transmutation in an Accelerator Driven System (XT-ADS)

  1. Proceeding on the scientific meeting and presentation on accelerator technology and its applications: physics, nuclear reactor

    The scientific meeting and presentation on accelerator technology and its applications was held by PTAPB BATAN on 13 December 2011. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 23 papers about physics and nuclear reactor. (PPIKSN)

  2. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  3. Kif14 overexpression accelerates murine retinoblastoma development.

    O'Hare, Michael; Shadmand, Mehdi; Sulaiman, Rania S; Sishtla, Kamakshi; Sakisaka, Toshiaki; Corson, Timothy W

    2016-10-15

    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo. PMID:27270502

  4. Development of an accelerating-piston implosion-driven launcher

    Huneault, Justin; Loiseau, Jason; Higgins, Andrew

    2013-06-01

    The ability to soft-launch projectiles at velocities exceeding 10 km/s is of interest to several scientific fields, including orbital debris impact testing and equation of state research. Current soft-launch technologies have reached a performance plateau below this operating range. The energy and power density of high explosives provides a possible avenue to reach this velocity if used to dynamically compress a light driver gas to significantly higher pressures and temperatures compared to light-gas guns. In the implosion-driven launcher (IDL), linear implosion of a pressurized tube drives a strong shock into the gas ahead of the tube pinch, thereby forming an increasingly long column of compressed gas which can be used to propel a projectile. The McGill IDL has demonstrated the ability to launch a 0.1-g projectile to 9.1 km/s. This study focuses on the implementation of a novel launch cycle wherein the explosively driven pinch is accelerated down the length of the tube in order to maintain a relatively constant projectile base pressure early in the launch cycle. The experimental development of an accelerating driver which utilizes an explosive lens to phase the detonation wave is presented. The design and experimental performance of an accelerating-piston IDL is also discussed.

  5. Superconducting RF Technology R and D for Future Accelerator Applications

    Superconducting rf (SRF) technology is evolving rapidly, as are its applications. While there is active exploitation of what one may call the current state-of-the-practice, there is also rapid progress in expanding in several dimensions the accessible and useful parameter space. While state-of-the-art performance sometimes outpaces thorough understanding, the improving scientific understanding from active SRF research is clarifying routes to obtain optimum performance from present materials and opening avenues beyond the standard bulk niobium. The improving technical basis understanding is enabling process engineering to improve both performance confidence and reliability and also unit implementation costs. Increasing confidence in the technology enables the engineering of new creative application designs. We attempt to survey this landscape to highlight the potential for future accelerator applications

  6. The story of the Tevatron accelerators: Accelerator science and technology breakthroughs, achievements and lessons

    For almost a quarter of a century, the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program - since it began operation in December of 1985, until it was overtaken by LHC in 2011. The aim of this unique scientific instrument was to explore the elementary particle physics reactions with center of mass collision energies of up to 1.96 TeV. The initial design luminosity of the Tevatron was 1030 cm-2 s-1, however as a result of two decades of upgrades, the accelerator has been able to deliver 430 times higher luminosities to each of two high luminosity experiments, CDF and D0. The Tevatron has been shut off since September 30, 2011. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for many technological breakthroughs and numerous physics discoveries. In this paper, we briefly present the history of the Tevatron, major advances in accelerator physics, technology implemented during the long quest for better and better performance, and the lessons learned from our experience.

  7. Development of sodium technology

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D. [and others

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, {tau}{sub c} = {delta}{center_dot}g{sup -0.83}{center_dot}10{sup (3570/T{sub Na}-3.34)}, in 400-500 deg C of liquid sodium atmosphere. The characteristics

  8. Development of sodium technology

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, τc = δ·g-0.83·10(3570/TNa-3.34), in 400-500 deg C of liquid sodium atmosphere. The characteristics of pressure propagation and gas flow, and pressure

  9. Education in a rapidly advancing technology: Accelerators and beams

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A&B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A&B is described and addressed. The solution proposed, a type of "distance" education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A&B, primarily but not exclusively the national laboratories. The field of A&B is briefly summarized. The need for education outside the university framework, the raison d'être for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities.

  10. Education in a rapidly advancing technology: Accelerators and beams

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers