WorldWideScience

Sample records for accelerator pulsed fast assembly

  1. Pulsed neutron source based on accelerator-subcritical-assembly

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  2. The Pulsed Neutron Technique Applied to Fast Non-Multiplying Assemblies

    A nanosecond pulsed Van de Graaff accelerator has been used to study the behaviour of fast neutrons in non-multiplying metal assemblies. A pulsed neutron source technique has been utilized to measure fast non-elastic cross-sections for iron. The method employed is similar to that used to measure absorption cross-sections in thermal assemblies, with the exception that the fast decay times are of the order of nanoseconds rather than microseconds. Nanosecond bursts of monoenergetic neutrons are injected into various size iron assemblies. The neutron flux in these assemblies is observed to decay exponentially with a characteristic decay constant. The decay constant is composed of a sum of terms which represent neutron loss due to leakage and energy degradation. Energy degradation represents a neutron loss since a biased neutron detector is used. The removal term due to elastic and nonelastic scattering can be determined by measuring the decay constant as a function of assembly size. A theoretical development is presented for calculating the fraction that the elastic scattering contributes to the removal term, hence the non-elastic cross-section can be determined. The theoretical treatment for calculating the elastic contribution has been verified experimentally. The non-elastic cross-section for iron has been measured by this technique for primary neutron energies between 0.8 and 1.5 MeV. The pulsed source technique described above has been used to measure decay constants for lead slabs. The experiment approximates the assumptions which are generally made when solving the time-dependent Boltzmann transport equation (i.e. one-dimension, one-velocity). Decay constants have been measured for 28 in x 32 in lead slabs of 2, 4, 6 and 8-in thickness. The results, after being corrected for energy degradation and finite assembly, are compared with the approximate solutions of the Boltzmann transport equation. (author)

  3. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars René;

    2010-01-01

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator. Th...

  4. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration

    Kojima, Sadaoki; Arikawa, Yasunobu; Morace, Alessio; Hata, Masayasu; Nagatomo, Hideo; Ozaki, Tetsuo; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Johzaki, Tomoyuki; Sunahara, Atsushi; Sakagami, Hitoshi; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-05-01

    The dependence of high-energy electron generation on the pulse duration of a high intensity LFEX laser was experimentally investigated. The LFEX laser (λ = 1.054 and intensity = 2.5 – 3 x 1018 W/cm2) pulses were focused on a 1 mm3 gold cubic block after reducing the intensities of the foot pulse and pedestal by using a plasma mirror. The full width at half maximum (FWHM) duration of the intense laser pulse could be set to either 1.2 ps or 4 ps by temporally stacking four beams of the LFEX laser, for which the slope temperature of the high-energy electron distribution was 0.7 MeV and 1.4 MeV, respectively. The slope temperature increment cannot be explained without considering pulse duration effects on fast electron generation.

  5. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  6. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    Beierholm, A.R., E-mail: anders.beierholm@risoe.d [Radiation Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Andersen, C.E.; Lindvold, L.R. [Radiation Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Aznar, M.C. [Department of Radiation Oncology, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark)

    2010-03-15

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator. This can be used in complex treatment procedures such as gated intensity-modulated radiotherapy (IMRT), where the advantage of dose rate measurements of high temporal resolution is highly emphasized. We report on development of a fast data acquisition scintillator-based system as well as measurements performed on Varian medical linear accelerators, delivering 6 MV X-ray beams. The dose delivery per radiation pulse was found to agree with expectations within roughly 1%, although minor discrepancies and transients were evident in the measurements.

  7. Electric drive for accelerator target with a timer for a fast pulsed reactor

    The invention refers to electric drives with digital control. The electric drive provides for cophased rotation of the target-containing particle reflector and the frequency of the accelerator functioning, the syncronization being provided by the current mains. At the same time the reflector may rotate with any given velocity in the necessary range, this being required also for the work of pulse fast neutron reactor. The drive involves a driving syncronic engine, an electromagnetic clutch, a pulse velocity indicator and a digital regulator with a velocity measuring block, a counter and a memory block

  8. Ultra-fast electron diffraction using electrons accelerated by intense femtosecond laser pulses

    We have demonstrated to use electron pulses accelerated by intense femtosecond laser pulses and self-compressed for ultrafast electron diffraction (UED). The electron pulses are generated by irradiating tightly focused terawatt femtosecond laser pulses on a polyethylene foil target, then, the pulses are compressed by using an achromatic bending magnet system. These femtosecond electron pulses have an intensity to demonstrate a single-shot diffraction pattern. (author)

  9. Compact pulsed accelerator

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab

  10. Contribution to the Study of Fast Neutron Non-Multiplying Assemblies by the Pulsed Neutron Technique

    Pulsed neutrons experiments have been performed on non-multiplying and poorly moderating materials (Fe, Cu, C). The energy of the source neutrons was chosen to be 1400, 1100, 890 and 670 keV. The time variations of the leakage flux have been measured for different locations of the detector. The former was shown to be strongly dependent on the latter. A systematic study of these experiments has been done by the Monte Carlo method using a semi-continuous energy model. The results given by this method are in good agreement with the experimental results and, moreover, the Monte Carlo method is a very useful tool to study the energetic degradation of the primary neutrons. The propagation of the incident neutrons in such assemblies has also been studied by the time-dependent P1 approximation. This method gives analytical results which are also in good agreement with the experimental results. (author)

  11. Petawatt pulsed-power accelerator

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  12. Intense pulsed neutron source (IPNS-I) accelerator 500 MeV fast kickers

    Two ferrite loaded picture frame magnets with a kick of up to 15 mrad each are used to extract 500 MeV protons from the IPNS-I accelerator to the neutron source target at the Argonne National Laboratory. The magnet aperture is 10 cm wide by 5 cm high and the length is 60 cm. The single bunch extraction requires a magnetic field rise time (0 to 100%) of 90 ns and a flattop of 100 ns. The magnets receive the 3600 A maximum current via an array of 50 Ω coaxial cables connected in a shunt arrangement. The two legs of each magnet are energized with separate lines to keep the potential to ground to less than 40 kV. The system is designed to run at 30 pulses per second repetition rate. The complete system of control electronics, power supply, deuterium thyratron switch, magnet and resistive load will be described along with some of the problems of stray inductances and the techniques used to reduce them

  13. Electric drive for an accelerator target with a timer for a pulsed fast reactor

    The invention is presented relating to electric drives with numerical control devices. An electric drive is described, comprising a synchronous drive motor, an electromagnetic clutch, a pulse speed transducer, and a numerical control device with a speed measuring unit, a counter, and a storage unit. The electric drive ensures cophasal rotation of a particle reflector with an attached target at the operating frequency of the accelarator, which is synchronized from the mains with a possibility of maintaining the reflector rotation at any preset invariable speed within a desired range

  14. Monte Carlo Modeling of Fast Sub-critical Assembly with MOX Fuel for Research of Accelerator-Driven Systems

    Polanski, A.; Barashenkov, V.; Puzynin, I.; Rakhno, I.; Sissakian, A.

    It is considered a sub-critical assembly driven with existing 660 MeV JINR proton accelerator. The assembly consists of a central cylindrical lead target surrounded with a mixed-oxide (MOX) fuel (PuO2 + UO2) and with reflector made of beryllium. Dependence of the energetic gain on the proton energy, the neutron multiplication coefficient, and the neutron energetic spectra have been calculated. It is shown that for subcritical assembly with a mixed-oxide (MOX) BN-600 fuel (28%PuO 2 + 72%UO2) with effective density of fuel material equal to 9 g/cm 3 , the multiplication coefficient keff is equal to 0.945, the energetic gain is equal to 27, and the neutron flux density is 1012 cm˜2 s˜x for the protons with energy of 660 MeV and accelerator beam current of 1 uA.

  15. Pulsed DC accelerator for laser wakefield accelerator

    For the acceleration of ultra-short, high-brightness electron bunches, a pulsed DC accelerator was constructed. The pulser produced megavolt pulses of 1 ns duration in a vacuum diode. Results are presented from field emission of electrons in the diode. The results indicate that the accelerating gradient in the diode is approximately 1.5 GV/m

  16. Pulsed Superconductivity Acceleration

    Liepe, M

    2000-01-01

    The design of the proposed linear collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities, operated in pulsed mode. Within the framework of an international collaboration the TESLA Test Facility (TTF) has been set up at DESY, providing the infrastructure for cavity R&D towards higher gradients. More than 60 nine-cell cavities were tested, accelerating gradients as high as 30 MV/m were measured. In the second production of TTF-cavities the average gradient was measured to be 24.7 MV/m. Two modules, each containing eight resonators, are presently used in the TTF-linac. These cavities are operated in pulsed mode: 0.8 ms constant gradient with up to 10 Hz repetitions rate. We will focus on two aspects: Firstly, the cavity fabrication and treatment is discussed, allowing to reach high gradients. Latest results of single cell cavities will be shown, going beyond 40 MV/m. Secondly, the pulsed mode operation of superconducting cavities is reviewed. This includes Lorentz force detuning, mechanic...

  17. Sequentially pulsed traveling wave accelerator

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  18. Assembly delay line pulse generators

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  19. Load assembly design of the FAST machine

    The preliminary design of the FAST (Fusion Advanced Studies Torus) Load Assembly is presented. FAST is a compact and cost effective machine operating with plasma current Ip from 3 MA, in the long pulse advanced scenario, up to 7.5 MA, in standard H-Mode. FAST, has a pulsed, resistive copper magnets which are at cryogenic temperatures and adiabatically heated during the plasma pulse. The cooling is guaranteed by Helium gas allowing the extension of the flat-top to about 3 min. The magnet dimensions has been determined by the cooling requirements. TF magnet ripple has limitated with optimized ferromagnetic inserts. The Vacuum Vessel is adequate to accommodate the whole heating system as well as to withstand the electromagnetic loads produced by plasma disruption. The first wall and the divertor are actively cooled by pressurized water. Liquid Lithium as divertor target will be tested. (author)

  20. Accelerator driven assembly

    Balderas, J.; Cappiello, M.; Cummings, C.E.; Davidson, R. [and others

    1997-01-01

    This report addresses a Los Alamos National Laboratory (LANL) proposal to build a pulsed neutron source for simulating nuclear-weapons effects. A point design for the pulsed neutron facility was initiated early in FY94 after hosting a Defense Nuclear Agency (DNA) panel review and after subsequently visiting several potential clients and users. The technical and facility designs contained herein fulfill the Statement of Work (SOW) agreed upon by LANL and DNA. However, our point designs and parametric studies identify a unique, cost-effective, above-ground capability for neutron nuclear-weapons-effects studies at threat levels. This capability builds on existing capital installations and infrastructure at LANL. We believe that it is appropriate for us, together with the DNA, to return to the user community and ask for their comments and critiques. We also realize that the requirements of last year have changed significantly. Therefore, the present report is a `working document` that may be revised where feasible as we learn more about the most recent Department of Defense (DoD) and Department of Energy (DOE) needs.

  1. A nanosecond pulsed accelerator facility

    The operation and performance of a 3-MeV pulsed electrostatic generator producing 1-ns (10-9 s) pulses is described. The system employs terminal pulsing and post-acceleration time-compression to achieve short pulses and high average current. The specifications for this system were based on the following considerations. A 10-μA average beam current represents a reasonable limit based on the ability of a target to dissipate beam power, the 1-ns pulse-length was consistent with other factors such as detector response, energy homogeneity, etc. which determine over-all time resolution, and a repetition rate of 1 MHz/s gives a duty factor consistent with the current capabilities of existing accelerator ion sources. The system consists of a terminal pulsing component which produces pulses of 10 ns in duration by sweeping a beam over an aperture located at the entrance to an accelerator tube. An average output of a current of 10 μA requires a source capable of producing 1 mA of atomic ions. After acceleration this pulse is compressed to 1 ns by the scheme suggested by Mobley. This involves sweeping the beam with proper synchronization across the aperture of a 90o doubly-focusing deflection magnet so that the early portion of the pulse travels through a longer trajectory thani the later portions, thus achieving time compression when the beam is brought to a focus on a suitable target. The radius of beam curvature in the compression magnet is 30 in and the over-all beam divergence at the target is 5o. The choice of these parameters and the effect of the deflection scheme in the beam-energy homogeneity will be discussed. Using existing nanosecond detector techniques, this system has produced over-all system resolutions of 1 ns full-width at half-maximum for both gamma rays and neutrons. It is not yet known what component or components of the system determine the limits on the time resolution of the system. As a facility for investigating neutron inelastic scattering and

  2. Method for integrating a train of fast, nanosecond wide pulses

    This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal

  3. Ion Acceleration by Short Chirped Laser Pulses

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  4. Load Assembly Design of the FAST Machine

    The FAST [1][2] (Fusion Advanced Studies Torus) load assembly, which includes the Vacuum Vessel (VV) and its internal components, the magnet system and the poloidal field coils, is presented in this paper. FAST operates at a wide range [3][4] of parameters from high performance H-Mode (BT up to 8.5 T; IP up to 8 MA) as well as Advance Tokamak operation (IP=3 MA), and full non inductive current scenario (IP=2 MA). Helium gas at 30K is used for cooling the resistive copper magnets. That allows for a pulse duration up to 170 s (∼ 40 times τres) at 3MA/ 3.5T. To limit the TF magnet ripple ferromagnetic within acceptable values insert have been introduced inside the outboard area of the VV. The VV, segmented by 20 degree modules, is capable to accommodate 40 MW RF power systems. The machine has been designed to house10 MW Negative Neutral Beam injection (NNBI) systems. Tungsten (W) and Liquid Lithium (L-Li) have been chosen as the divertor plates material, and Argon and Neon as the injected impurities to mitigate the thermal loads

  5. Fast Neutron Resonance Radiography in a Pulsed Neutron Beam

    Dangendorf, V.; Laczko, G; Kersten, C.; Jagutzki, O.; Spillmann, U

    2003-01-01

    The feasibility of performing fast neutron resonance radiography at the PTB accelerator facility is studied. A neutron beam of a broad spectral distribution is produced by a pulsed 13 MeV deuterium beam hitting a thick Be target. The potential of 3 different neutron imaging detectors with time-of flight capability are investigated. The applied methods comprise wire chambers with hydrogenous converter layers and a fast plastic scintillator with different optical readout schemes. We present the...

  6. Pulse propagation in the laser wakefield accelerator

    A high-density regime of the laser wakefield accelerator is reviewed in which enhanced acceleration is achieved via resonant self-modulation of the laser pulse. This requires laser power in excess of the critical power for optical guiding and a plasma wavelength short compared to the laser pulse-length. The evolution of the laser pulse is described, including a discussion of self-modulation and laser-hose instabilities. Examples of self-modulated laser wakefield accelerators are presented. copyright 1996 American Institute of Physics

  7. Design of a Compact Pulsed Power Accelerator

    2011-01-01

    A 100 kA/60 ns compact pulsed power accelerator was designed to study the influence to the X-pinch by the load. It is composed of a Marx generator, a combined pulse forming (PFL), a gas-filled V/N field distortion switch, a transfer line,

  8. Nanosecond pulse generators for induction linear accelerators

    The paper reviews five different circuits of nanosecond pulse generators for induction linear accelerators. Hydrogen thyratrons which feature a good stability of parameters in time are used as switches. Short voltage pulses (1 - 5 ns) are shaped using nonlinear ferromagnetic lines.The voltage amplitude range on inductor excitation turns is 20-50 kV. 6 refs., 6 figs., 1 tab

  9. Laser pulse shaping for high gradient accelerators

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  10. Pulse Power Supply for Plasma Dynamic Accelerator

    YANG Xuanzong; LIU Jian; FENG Chunhua; WANG Long

    2008-01-01

    A new concept of a coaxial plasma dynamic accelerator with a self-energized mag-netic compressor coil to simulate the effects of space debris impact is demonstrated. A brief description is presented about the pulse power supply system including the charging circuit, start switch and current transfer system along with some of the key techniques for this kind of acceler-ator. Using this accelerator configuration, ceramic beads of 100 μm in diameter were accelerated to a speed as high as 18 km/sec. The facility can be used in a laboratory setting to study impact phenomena on solar array materials, potential structural materials for use in space.

  11. First measurements of the kinetic response of the muse-4 fast Ads mock-up to fast neutron pulse

    The MUSE-4 experiment has started its first commissioning measurements at the beginning of the year 2001 at CEA/Cadarache (France). This international experiment co-ordinated by CEA, included in the 5FWP of the European Union and GEDEON, is intended to study the physics of fast sub-critical assemblies coupled with a pulsed external source. To achieve this objective, the GENEPI accelerator, a (d,d) or (d,t) neutron source developed at CRNS/IN2P3/ISN (Grenoble), has been coupled with the MASURCA reactor, a uranium-plutonium MOX-based fast reactor, with solid sodium simulating a liquid metal coolant and a lead buffer to simulate a spallation target. The very short neutron pulse (1 μs) provided by GENEPI, together with the possibility to change the pulse repetition rate up to 5 kHz and the different levels of sub-criticality available will facilitate a study of the reactor kinetic parameters in situations close to most of the proposed accelerator-driven Systems (ADS). The paper presents the first experimental results for dynamic measurements performed in MUSE-4 configurations. Several pulsed neutron source experiments have been carried out using the (d,d) GENEPI neutron source in configurations going from USD 1,33 to USD 12,6. In addition, noise techniques (Rossi and Feynman-alpha) have been applied to stationary states in the same range of sub-criticalities. Reactivity levels obtained by these techniques have been compared with more classic rod drop/source multiplication measurements. The kinetic parameters, β(which ranges between 330 and 360 pcm) and β/Λ (with a value of approximately 6270 s-1), have been determined by Monte Carlo and/or deterministic codes. (author)

  12. Accelerated Leadership Development: Fast Tracking School Leaders

    Earley, Peter; Jones, Jeff

    2010-01-01

    "Accelerated Leadership Development" captures and communicates the lessons learned from successful fast-track leadership programmes in the private and public sector, and provides a model which schools can follow and customize as they plan their own leadership development strategies. As large numbers of headteachers and other senior staff retire,…

  13. Fast Neutron Resonance Radiography in a Pulsed Neutron Beam

    Dangendorf, V; Kersten, C; Jagutzki, O; Spillmann, U

    2003-01-01

    The feasibility of performing fast neutron resonance radiography at the PTB accelerator facility is studied. A neutron beam of a broad spectral distribution is produced by a pulsed 13 MeV deuterium beam hitting a thick Be target. The potential of 3 different neutron imaging detectors with time-of flight capability are investigated. The applied methods comprise wire chambers with hydrogenous converter layers and a fast plastic scintillator with different optical readout schemes. We present the neutron facility, the imaging methods employed and results obtained. in beam experiments where samples of carbon rods with various length and diameter were imaged to study resolution and sensitivity of the method.

  14. Important concepts in the assembly and early characterization of the PBFA II accelerator

    Planning and efficient execution of the assembly and early characterization phases of a large, multi-module superpower generator like PBFA II require development of concepts frequently not found in either the pulsed power RandD community or in the pulsed power industry. To meet the constraints of performance, cost, and schedule of the PBFA II Project, special skills for assembly and characterization of large facilities are being established. These likely will become the technology for activating Sandia's future large accelerators. Some of the concepts for orchestrating large numbers of events associated with accelerator assembly and characterization include: structuring of activity into smaller workable and trackable packages, with associated subelements assigned to each section of the accelerator, and establishing detailed assembly and characterization documentation to assist in component testing and subsystem integration. The application of these and other concepts to FBFA II, and the progress of accelerator assembly are discussed

  15. YALINA-booster subcritical assembly pulsed-neutron experiments : data processing and spatial corrections.

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    2010-10-11

    The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear energy applications using low enriched uranium. The YALINA-Booster subcritical assembly is utilized for studying the kinetics of accelerator driven systems with its highly intensive D-T or D-D pulsed neutron source. In particular, the pulsed neutron methods are used to determine the reactivity of the subcritical system. This report examines the pulsed-neutron experiments performed in the YALINA-Booster facility with different configurations for the subcritical assembly. The 1141 configuration with 90% U-235 fuel and the 1185 configuration with 36% or 21% U-235 fuel are examined. The Sjoestrand area-ratio method is utilized to determine the reactivities of the different configurations. The linear regression method is applied to obtain the prompt neutron decay constants from the pulsed-neutron experimental data. The reactivity values obtained from the experimental data are shown to be dependent on the detector locations inside the subcritical assembly and the types of detector used for the measurements. In this report, Bell's spatial correction factors are calculated based on a Monte Carlo model to remove the detector dependences. The large differences between the reactivity values given by the detectors in the fast neutron zone of the YALINA-Booster are reduced after applying the spatial corrections. In addition, the estimated reactivity values after the spatial corrections are much less spatially dependent.

  16. Analysis of selected fast critical assemblies

    Integral parameters for a series of fast reactor bench-mark assemblies covering a wide range of energy spectra have been calculated with the reference Cadarache Cross Section Library. Multigroup cross sections relative to each assembly were generated using the self-shielding factor approach and were used in a diffusion-cum-perturbation theory code to obtain the parameters. The parameters considered in this study include K-eff, spectral indices (reaction rate ratios), β-effs and central reactivity worths. Results of these calculations indicate that some of the important neutron cross section data need re-evaluation. (author)

  17. Design and development of pulsed electron beam accelerator 'AMBICA - 600'

    Verma, Rishi; Deb, Pankaj; Shukla, Rohit; Sharma, Surender; Shyam, Anurag

    2012-11-01

    Short duration, high power pulses with fast rise time and good flat-top are essentially required for driving pulsed electron beam diodes. To attain this objective, a dual resonant Tesla transformer based pulsed power accelerator 'AMBICA-600' has been developed. In this newly developed system, a coaxial water line is charged through single turn Tesla transformer that operates in the dual resonant mode. For making the accelerator compact, in the high power pulse forming line, water has been used as dielectric medium because of its high dielectric constant, high dielectric strength and high energy density. The coaxial waterline can be pulsed charged up to 600kV, has impedance of ~5Ω and generates pulse width of ~60ns. The integrated system is capable of producing intense electron beam of 300keV, 60kA when connected to impedance matched vacuum diode. In this paper, system hardware details and experimental results of gigawatt electron beam generation have been presented.

  18. The pulsing CPSD method for subcritical assemblies with pulsed sources

    Ballester, D; Ballester, Daniel; Munoz-Cobo, Jose L.

    2005-01-01

    Stochastic neutron transport theory is applied to the derivation of the two-neutron-detectors cross power spectral density for subcritical assemblies when external pulsed sources are used. A general relationship between the two-detector probability generating functions of the kernel and the source is obtained considering the contribution to detectors statistics of both the pulsed source and the intrinsic neutron source. An expansion in alpha-eigenvalues is derived for the final solution, which permits to take into account the effect of higher harmonics in subcritical systems. Further, expressions corresponding to the fundamental mode approximation are compared with recent results from experiments performed under the MUSE-4 European research project.

  19. Fast Reactor Physics Parameters from a Pulsed Source

    One of the more important integral parameters in fast reactor physics analysis is the neutron spectrum of a particular composition reactor core. Various methods, such as proton recoil counters and nuclear emulsion analysis, have been used to study fast reactor spectra. With the development of high intensity short-duration pulsed neutron sources, the time-of-flight technique has become suitable for fast reactor spectrum determination. To evaluate the feasibility of measuring fast neutron spectra from a core using time-of-flight techniques, an experiment has been performed to measure the equilibrium spectmm in a large block of depleted uranium using the General Atomics Linac facilities. A ten-metric-ton block of depleted uranium was assembled to form a 81-cm cube. This block of uranium was pulsed by electron bombardment of a uranium target imbedded in the block. The spectra from various sections of the block were measured using time-of-flight techniques for a 50-m flight path. Spectral indices, such as the ratio of the fission rates of U238/U235, U233/U235, U234/U235, Np237/U235, Pu239/U235 were also measured. In addition, measurements of the U238 capture rates were obtained in various parts of the block. This paper describes the techniques used to obtain these reactor physics parameters. The experimental results such as the spectra and spectral indices are also compared with those obtained from theoretical considerations using multigroup transport theory analysis. The pulsed neutron technique is also applicable for the measurement of such parameters as: β/ℓ, where β is the effective delayed neutron fraction and ℓ is the lifetime; neutron importance; and keff. This paper concludes with a discussion on the proposed application of a pulsed neutron source for the measurement of some of these parameters on fast reactor cores constructed on ZPR-VI, the Argonne Fast Critical Facility. (author)

  20. Heavy ion acceleration using femtosecond laser pulses

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  1. Pulse detonation assembly and hybrid engine

    Rasheed, Adam (Inventor); Dean, Anthony John (Inventor); Vandervort, Christian Lee (Inventor)

    2010-01-01

    A pulse detonation (PD) assembly includes a number of PD chambers adapted to expel respective detonation product streams and a number of barriers disposed between respective pairs of PD chambers. The barriers define, at least in part, a number of sectors that contain at least one PD chamber. A hybrid engine includes a number of PD chambers and barriers. The hybrid engine further includes a turbine assembly having at least one turbine stage, being in flow communication with the PD chambers and being configured to be at least partially driven by the detonation product streams. A segmented hybrid engine includes a number of PD chambers and segments configured to receive and direct the detonation product streams from respective PD chambers. The segmented hybrid engine further includes a turbine assembly configured to be at least partially driven by the detonation product streams.

  2. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 μNsec, 6,200 sec and 22%, respectively.

  3. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  4. Pulsed power accelerator for material physics experiments

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  5. A fast pulse memory using a delay line

    Severe limitations are set for the counting rates of detecting and analysing equipment if incident particles arrive in short bursts. A fast memory which may, during one burst, store information which can be processed in the off-period of the accelerator would facilitate many experiments. Such a fast-memory has been designed and is operating. It will store pulses from Nal-scintillation counters during 420 μs in a delay line of 60 μs length in a re-entrant fashion. Up to 20 pulses can be accepted from one burst. The arrival of the machine burst opens the entrance to the memory during a time-interval variable from 20 to 60 μs. The analysing equipment is sampling the memory content continuously. Pulses which enter the analysing equipment are destroyed in the memory. The memory is cleaned of remaining pulses 420 μs after the beginning of the burst and is ready to accept new information. The gain of the ring-storage system is 1 ± 0.0005 during 8 h or more. (author)

  6. Overview of LANL short-pulse ion acceleration activities

    Flippo, Kirk A. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Schmitt, Mark J. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Offermann, Dustin [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Cobble, James A. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gautier, Donald [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Kline, John [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Workman, Jonathan [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Archuleta, Fred [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gonzales, Raymond [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Hurry, Thomas [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Johnson, Randall [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Letzring, Samuel [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Montgomery, David [Los Alamos National Laboratory; Reid, Sha-Marie [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Shimada, Tsutomu [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gaillard, Sandrine A. [Univ. of Nevada, Reno, NV (United States); Sentoku, Yasuhiko [Univ. of Nevada, Reno, NV (United States); Bussman, Michael [Forschungszentrum Dresden (Germany); Kluge, Thomas [Forschungszentrum Dresden (Germany); Cowan, Thomas E. [Forschungszentrum Dresden (Germany); Rassuchine, Jenny M. [Forschungszentrum Dresden - Rossendorf (Germany); Lowenstern, Mario E. [Univ. of Michigan, Ann Arbor, MI (United States); Mucino, J. Eduardo [Univ. of Michigan, Ann Arbor, MI (United States); Gall, Brady [Univ. of Missouri, Columbia, MO (United States); Korgan, Grant [Nanolabz, Reno, NV (United States); Malekos, Steven [Nanolabz, Reno, NV (United States); Adams, Jesse [Nanolabz, Reno, NV (United States); Bartal, Teresa [Univ. of California, San Diego, CA (United States); Chawla, Surgreev [Univ. of California, San Diego, CA (United States); Higginson, Drew [Univ. of California, San Diego, CA (United States); Beg, Farhat [Univ. of California, San Diego, CA (United States); Nilson, Phil [Lab. for Laser Energetics, Rochester, NY (United States); Mac Phee, Andrew [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Le Pape, Sebastien [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Hey, Daniel [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mac Kinnon, Andy [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Geissel, Mattias [Sandia National Lab. (SNL), Albuquerque, NM (United States); Schollmeier, Marius [Sandia National Lab. (SNL), Albuquerque, NM (United States); Stephens, Rich [General Atomics, San Diego, CA (United States)

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  7. Controlling electron injection in laser plasma accelerators using multiple pulses

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  8. Double-decker electron beam accelerator and pulse radiolysis

    A new concept of double-decker electron beam accelerator is proposed to study the ultra-fast electron-induced reactions in materials by pulse radiolysis. The double-decker electron beams are generated and accelerated in an S-band linear accelerator with different positions in vertical direction and a time delay. One of them is used as a pump electron source and another is converted to light as a probe light source. The time jitter between the pump electron beam and the probe light is thus reduced. The time resolution of pulse radiolysis is expected to be improved. The double-decker electron beam has been generated successfully by injected two laser beam into the photocathode RF gun, which is generated by splitting an Nd:YLF picosecond laser beam. The double-decker electron beams were accelerated up to 31 MeV by an S-band booster linear accelerator and compressed into femtosecond by a magnetic bunch compressor. The profiles of the double-decker electron beams were measured at the exits of the RF gun, the linac and the bunch compressor. The normalized transverse emittance was obtained to be 3.3 mm-mrad for the upper beam and 6.4 mm-mrad for the lower beam at bunch charge of 2nC. The relative energy spread was obtained to be 0.1-0.2% for both beams. The Cherenkov light generated in a suprasil plate and OTR produced on a mirror from the electron beam were also measured. (author)

  9. Development of bipolar pulse accelerator for high-purity intense pulsed ion beam

    In order to improve the purity of the intense pulsed ion beam, a new type of a pulsed ion beam accelerator named “bipolar pulse accelerator” has been proposed. A double coaxial type bipolar pulse generator was developed as the power supply of the bipolar pulse accelerator. By applying the bipolar pulse with voltage of about ±100 kV and pulse duration of about 70 ns to the drift tube of the bipolar pulse accelerator, the ion beam was successfully accelerated from the grounded anode to the drift tube in the 1st gap by the negative pulse of the bipolar pulse and the pulsed ion beam with current density of 40 A/cm2 and pulse duration of 30 ns was obtained at 50 mm downstream from the anode surface. In addition, part of the ion beam was again accelerated toward the grounded cathode in the 2nd gap by the positive pulse of the bipolar pulse. The pulsed ion beam with the peak ion current density of 2 A/cm2 and the beam pulse duration of 30 ns was obtained at 25 mm downstream from the cathode surface, which suggests the bipolar pulse acceleration. (author)

  10. Accelerator requirements for fast-neutron interrogation of luggage and cargo

    Several different fast-neutron based techniques are being studied for the detection of contraband substances in luggage and cargo containers. The present work discusses the accelerator requirements for fast-neutron transmission spectroscopy (FNTS), pulsed fast-neutron analysis (PFNA), and 14-MeV neutron interrogation. These requirements are based on the results of Monte-Carlo simulations of neutron or gamma detection rates. Accelerator requirements are driven by count-rate considerations, spatial resolution and acceptable uncertainties in elemental compositions. The authors have limited their analyses to luggage inspection with FNTS and to cargo inspection with PFNA or 14-MeV neutron interrogation

  11. Measurement of fast assembly spectra using time-of-flight method

    Measurement of neutron spectra made in fast subcritical assemblies HUG 3 and PHUG 3 (uranium-graphite and plutonium-graphite) utilizing time-of-flight techniques are described. The matrix were excited by the pulsed neutron source from the BCMN Linac beam impinging on a target of natural uranium. Details of the experimental procedure, safety studies, detector calibration and data reduction are given

  12. Generation of nanosecond neutron pulses in vacuum accelerating tubes

    Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.

    2014-06-01

    The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.

  13. Hydraulic Experiment for Simulative Assemblies of Blanket Assembly and Np Transmutation Assembly of China Experimental Fast Reactor

    CHENG; Dao-xi; QI; Xiao-guang; ZHAI; Wei-ming; YANG; Bing; ZHOU; Ping

    2013-01-01

    The out-of reactor hydraulic experiment of fast reactor assembly is one of the important experiments in the process of the development of the fast reactor assembly.In this experiment,the size of the throttling element in the foot of the assembly is decided which is fit for the flow division in the reactor and the

  14. Shaping of electron beam picosecond current pulses in waveguide accelerators

    Results are given of experiments on extracting a single bunch in an experimental SHF wavegujde accelerator operating in the stoped energy mode. The accelerator has the following parameters: 8 MeV energy, 1818 MHz frequency of the accelerating field, 10 ns pulse duration of current; 20 A pulsed current, operation in the mode of single massages. An electron beam in the shape of a 10 ns pulse has been injected into the waveguide at the end of a SHF-pulse. The shape of detected picosecond pulses of accelerated electron current is close to triangular one, pulse duration at half-height with correction for rise time of the measuring system is equal to 50 ps, pulse current is about 100 A, electron energy equals 8 MeV

  15. Flexible Assembly Solar Technology (FAST) Final Technical Report

    Toister, Elad [BrightSource Energy Inc., Jerusalem (Israel)

    2014-11-06

    The Flexible Assembly Solar Technology (FAST) project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  16. Pulsed Electromagnetic Acceleration of Plasma: A Review

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  17. Accelerating Thick Aluminum Liners Using Pulsed Power

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane

  18. Some Considerations on the Pulsed Electromagnetic Acceleration of Plasma

    Thio, Y. C. F.; Markusic, T. E.; Cassibry, J. T.; Sommers, J. C.; Turchi, P. J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    In applying pulsed electromagnetic acceleration of plasma to space propulsion (known as pulsed plasma thrusters in the community), the mode of acceleration used has been mostly in the collisionless or near-collisionless regime. The preparation of the initial plasma is given scant attention. Collisional regime of accelerating the plasma, however, have been encountered in a variety of plasma accelerating devices. Both of these modes of acceleration are reviewed in a companion paper. In this paper, we discuss the considerations governing the controlled introduction and preparation of the initial plasma, so that the collisional mode of accelerating the plasma may be suitably enhanced.

  19. Characteristics of pulsed heavy ion beam generated in bipolar pulse accelerator

    We have developed a new type of a pulsed ion beam accelerator named 'bipolar pulse accelerator' for improvement of the purity of the intense pulsed ion beam. The system utilizes a magnetically insulated accelerate on gap and was operated with the bipolar pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside of the grounded anode. Source plasma (nitrogen) of current density of ≈30 A/cm2 and pulse duration of ≈1.0 μs was injected into the acceleration gap. When the bipolar pulse of -114 kV, 70 ns (1st pulse) and 85 kV, 62 ns (2nd pulse) was applied to the drift tube, the ions were successfully accelerated from the grounded anode to the drift tube in the 1st gap by the negative pulse of the bipolar pulse. The pulsed ion beam with current density of 60 A/cm2 and pulse duration of ≈50 ns was obtained at 48 mm downstream from the anode surface. The energy spectrum of the ion beam was evaluated by a magnetic energy spectrometer. The ion energy was in reasonable good agreement with the acceleration voltage, i.e., 1st pulse (negative pulse) voltage of the bipolar pulse. (author)

  20. Relativistic electron accelerations associated with the interplanetary pressure pulse

    Miyoshi, Yoshizumi; Saito, Shinji; Matsumoto, Yosuke; Hayashi, Masahiro; Amano, Takanobu; Seki, Kanako

    2016-04-01

    The radiation belt electron fluxes are highly variable, and various time scales for the flux enhancements are observed. The rapid flux enhancements of the outer belt electrons have been observed associated with the solar wind pressure pulse. In order to investigate such rapid flux enhancements, we conduct the code-coupling simulations of GEMSIS-RB test particle simulation [Saito et al., 2010] and GEMSIS-GM global MHD simulation [Matsumoto et al., 2010]. The GEMSIS-RB simulation calculates the 3-dimentional guiding-center motion of a number of test particles in the electric/magnetic fields provided from the GEMSIS-GM. After the arrival of the pressure pulse, the outer belt electrons in the dayside moves inward due to the drift resonance with inductive electric fields of the fast mode waves. Some of electrons are strongly accelerated within a few ten minutes and spiral patterns of drifted electrons can be observed. We may discuss the possibility to identify such selected acceleration of relativistic electrons by Van Allen Probes and upcoming ERG satellite.

  1. PROTO-II: a short pulse water insulated accelerator

    A new accelerator, designated Proto-II, is presently under construction at Sandia Laboratories. Proto-II will have a nominal output of 100 kJ into a two-sided diode at a voltage of 1.5 MV and a total current of over 6 MA for 24 ns. This accelerator will be utilized for electron beam fusion experiments and for pulsed power and developmental studies leading to a proposed further factor of five scale-up in power. The design of Proto-II is based upon recent water switching developments and represents a 10-fold extrapolation of those results. Initial testing of Proto-II is scheduled to begin in 1976. Proto-II power flow starts with eight Marx generators which charge 16 water-insulated storage capacitors. Eight triggered, 3 MV, SF6 gas-insulated switches next transfer the energy through oil-water interfaces into the first stage of 16 parallel lines. Next, the 16 first stages transfer their energy into the pulse forming lines and fast switching sections.The energy is then delivered to two converging, back-to-back, disk-shaped transmission line. Two back-to-back diodes then form the electron beams which are focused onto a common anode

  2. Scalable fast multipole accelerated vortex methods

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  3. Experimental Research of Fast Proton Generation From Ultra-short Intense Laser Pulses Interaction With Different Thickness Al Foils

    LAN; Xiao-fei; LU; Jian-xin; HUANG; Yong-sheng; WANG; Lei-jian; XI; Xiao-feng; TANG; Xiu-zhang

    2012-01-01

    <正>With the development of laser technology, the generation of fast ions by the interaction of ultra-short ultra-intense laser pulses with matters has recently been attracting considerable attention, especially for acceleration of proton. Before performing experiment, we calibrated the CR39 detector using standard proton beams from conventional accelerator. In the field of proton acceleration driven by ultra-short ultra-intense laser pulses,

  4. Minimus: a fast, lightweight genome assembler

    Salzberg Steven L

    2007-02-01

    Full Text Available Abstract Background Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. Results We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. Conclusion We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.

  5. Pulsed power for particle beam accelerators in military applications

    Techniques useful for generating and conditioning power for high energy pulsed accelerators with potential weapon applications are described. Pulsed electron accelerators are exemplified by ETA and ATA at Lawrence Livermore Laboratories and RADLAC at Sandia Laboratories Albuquerque. Pulse-power techniques used in other applications are briefly mentioned, including some that may be useful for collective ion accelerators. The limitations of pulse-power and the general directions of desirable development are illustrated. The main needs are to increase repetition rate and to decrease size

  6. Fast magnetic field annihilation driven by two laser pulses in underdense plasma

    Fast magnetic annihilation is investigated by using 2.5-dimensional particle-in-cell simulations of two parallel ultra-short petawatt laser pulses co-propagating in underdense plasma. The magnetic field generated by the laser pulses annihilates in a current sheet formed between the pulses. Magnetic field energy is converted to an inductive longitudinal electric field, which efficiently accelerates the electrons of the current sheet. This new regime of collisionless relativistic magnetic field annihilation with a timescale of tens of femtoseconds can be extended to near-critical and overdense plasma with the ultra-high intensity femtosecond laser pulses

  7. E-field measurement of a pulse line ion accelerator

    WANG Bo; ZENG Rong; NIU Ben; SHEN Xiao-Li; SHEN Xiao-Kang; CAO Shu-Chun; ZHANG Zi-Min

    2013-01-01

    The E-field of pulse line ion accelerator (PLIA) is unique with high frequency (~MHz),large magnitude (~MV/m),and limited measuring space (~cm).The integrated optical E-field sensor (IOES) has remarkable advantages and has been used for PLIA E-field measurement.Firstly,the transfer function of the IOES has been calibrated to ensure measurement accuracy.The time-domain response illustrates that the sensor has a fast dynamic performance to effectively follow a 4 ns rising edge.Then,the E-field distribution along the axis and near the insulator surface of the PLIA was measured,showing that propagation of the E-field is almost lossless and the E-field near the insulation surface is about 1.1 times larger than that along the axis,which is in accordance with the simulation result.

  8. A Fast Time-to-Pulse Height Converter

    A fast time-to-pulse height converter representing a development of Green and Bell's gated beam converter is described. The converter is compatible with 2 input pulses in the stop channel and exhibits excellent linearity and time resolution properties. High stability and large output pulses are obtained by using a large time constant in the converting network

  9. Trapping of Hepatitis B Virus capsid assembly intermediates by phenylpropenamide assembly accelerators

    Katen, Sarah P.; Chirapu, Srinivas Reddy; Finn, M.G.; Zlotnick, Adam

    2010-01-01

    Understanding the biological self-assembly process of virus capsids is key to understanding the viral life cycle, as well as serving as a platform for the design of assembly-based antiviral drugs. Here we identify and characterize the phenylpropenamide family of small molecules, known to have antiviral activity in vivo, as assembly effectors of the Hepatitis B Virus (HBV) capsid. We have found two representative phenylpropenamides to be assembly accelerators, increasing the rate of assembly w...

  10. The ''Ehlina-5'' high-current pulse electron accelerator

    Description and test results of the Ehlina-5 high-current pulse electron accelerator for studying primary active short-lived products produced under irradiation are presented. The accelerator consists of two metal tanks and removable control panel. A charging device is located in the lower tank, in the upper - pulse transforme r, X-ray-electron tube and four-stage high-voltage generator. Accelerator dimensions are: 2.3x0.7x0.9; weight - 600 kg; consumed power -0.5 kW; generation frequency - 2 pulse/min. Accelerator parameters are the following: beam total energy - 15J; electron radiation energy -350-400 keV; electron current pulse equals 2 kA at 30 ns duration, the number of electrons in the beam (1-3)x1014 electron/pulse. The cost is approximatly 10.000 rubles

  11. Two-pulse injector experiments with the RIIM electron accelerator

    The RADLAC-II accelerator foilless diode injector was operated under double-pulse conditions utilizing the RIIM accelerator as the test bed [M. G. Mazarakis, D. L. Smith, R. B. Miller, R. S. Clark, D. E. Hasti, D. L. Johnson, J. W. Poukey, K. R. Prestwich, and S. L. Shope, IEEE Trans. Nucl. Sci. NS-32, 3237 (1985)]. The original RIIM accelerator pulsed-power network was modified to provide for the generation, transmission, and delivery to the foilless diode of two distinct multimegavolt pulses with variable interpulse separation from 0 to 2 ms. The foilless diode successfully produced two 10-kA current pulses with interpulse separations up to 1 μs. For larger separations, the generated plasma and an excessive neutral gas release following the first pulse prevented the diode from producing a second current pulse

  12. A cargo inspection system based on pulsed fast neutron analysis (PFNATM)

    A cargo inspection system based on pulsed fast neutron analysis (PFNATM) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described. (authors)

  13. Method for pulse to pulse dose reproducibility applied to electron linear accelerators

    An original method for obtaining programmed beam single shots and pulse trains with programmed pulse number, pulse repetition frequency, pulse duration and pulse dose is presented. It is particularly useful for automatic control of absorbed dose rate level, irradiation process control as well as in pulse radiolysis studies, single pulse dose measurement or for research experiments where pulse-to-pulse dose reproducibility is required. This method is applied to the electron linear accelerators, ALIN-10 of 6.23 MeV and 82 W and ALID-7, of 5.5 MeV and 670 W, built in NILPRP. In order to implement this method, the accelerator triggering system (ATS) consists of two branches: the gun branch and the magnetron branch. ATS, which synchronizes all the system units, delivers trigger pulses at a programmed repetition rate (up to 250 pulses/s) to the gun (80 kV, 10 A and 4 ms) and magnetron (45 kV, 100 A, and 4 ms).The accelerated electron beam existence is determined by the electron gun and magnetron pulses overlapping. The method consists in controlling the overlapping of pulses in order to deliver the beam in the desired sequence. This control is implemented by a discrete pulse position modulation of gun and/or magnetron pulses. The instabilities of the gun and magnetron transient regimes are avoided by operating the accelerator with no accelerated beam for a certain time. At the operator 'beam start' command, the ATS controls electron gun and magnetron pulses overlapping and the linac beam is generated. The pulse-to-pulse absorbed dose variation is thus considerably reduced. Programmed absorbed dose, irradiation time, beam pulse number or other external events may interrupt the coincidence between the gun and magnetron pulses. Slow absorbed dose variation is compensated by the control of the pulse duration and repetition frequency. Two methods are reported in the electron linear accelerators' development for obtaining the pulse to pulse dose reproducibility: the method

  14. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Cappelli, Mark A. [Stanford Plasma Physics Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-06-15

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  15. A 7MeV S-Band 2998MHz Variable Pulse Length Linear Accelerator System

    Hernandez, Michael; Mishin, Andrey V; Saverskiy, Aleksandr J; Skowbo, Dave; Smith, Richard

    2005-01-01

    American Science and Engineering High Energy Systems Division (AS&E HESD) has designed and commissioned a variable pulse length 7 MeV electron accelerator system. The system is capable of delivering a 7 MeV electron beam with a pulse length of 10 nS FWHM and a peak current of 1 ampere. The system can also produce electron pulses with lengths of 20, 50, 100, 200, 400 nS and 3 uS FWHM with corresponding lower peak currents. The accelerator system consists of a gridded electron gun, focusing coil, an electrostatic deflector system, Helmholtz coils, a standing wave side coupled S-band linac, a 2.6 MW peak power magnetron, an RF circulator, a fast toroid, vacuum system and a PLC/PC control system. The system has been operated at repetition rates up to 250pps. The design, simulations and experimental results from the accelerator system are presented in this paper.

  16. Multistage linear electron acceleration using pulsed transmission lines

    A four-stage linear electron accelerator is described which uses pulsed radial transmission lines as the basic accelerating units. An annular electron beam produced by a foilless diode is guided through the accelerator by a strong axial magnetic field. Synchronous firing of the injector and the acccelerating modules is accomplished with self-breaking oil switches. The device has accelerated beam currents of 25 kA to kinetic energies of 9 MV, with 90% current transport efficiency. The average accelerating gradient is 3 MV/m

  17. Fast Heat Pulse Propagation by Turbulence Spreading

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola;

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis...... of the heat wave propagation, and within local transport models no sufficient explanation for this behaviour can be found. Recently, modelling of the cold pulse propagation using non-local effects and a transport equation that uses fractional derivatives has been successfully applied to model the effect [1...... to the core have been established [3]. Here we report on recent results in the modelling of cold pulse propagation using turbulence spreading transport models....

  18. Stanford Linear Accelerator Center pulsed x-ray facility

    The Stanford Linear Accelerator Center (SLAC) operates a high-energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the radio-frequency power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target window. The window consists of Al 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of Au 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 microseconds. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The maximum absorbed dose rate obtained at 6.35 cm below the target window as measured by an ionization chamber is 258 Gy/h. The major part of the x-ray tube is enclosed in a large walk-in cabinet made of 1.9-cm-thick (3/4-inch-thick) plywood and lined with 0.32-cm-thick (1/8-inch-thick) Pb to make a very versatile facility

  19. Control and accelerating voltage automatic pulse acquisition system for ''LIU-5/5000'' linear accelerators

    A system prowiding continuous control and automatic correction of actuation of accelerating voltage pulse generators of a linear induction accelerator is described. TGI-2500/50 thyratrons are switching elements of the generators. Shaped pulses have a bell form, their duration on the foundation constitues 300 ns. The device operation is based on the determination of a sign of time error between generator and reference pulses. Depending on the error sign performed is correction of the delay value included into the actuation circuit of the corresponding generator. Such operation is accomplished in each working pulse of the accelerator. Data on the delay condition go to the digital panel and digital print-out. Technical characteristics of the system are the following: 56 cynchronization channels, 155 ns control interval, 5 ns control pitch, error of the error determination is not worse than +-2.5 ns. The system permitted to improve accelerated beam stability and to simplify accelerator tuning and control

  20. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  1. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  2. FAITH - Fast Assembly Inhibitor Test for HIV

    Hadravová, Romana; Rumlová, Michaela; Ruml, T.

    2015-01-01

    Roč. 486, Dec (2015), s. 78-87. ISSN 0042-6822 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : retrovirus * HIV * assembly * assay * inhibitor Subject RIV: EE - Microbiology, Virology Impact factor: 3.321, year: 2014 http://www.sciencedirect.com/science/article/pii/S0042682215003864

  3. Beam dynamics in a long-pulse linear induction accelerator

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  4. Beam dynamics in a long-pulse linear induction accelerator

    Ekdahl, Carl [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mc Cuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rose, Chris R [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Scarpetti, Raymond [LLNL; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  5. Linear induction accelerators made from pulse-line cavities with external pulse injection

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator

  6. Current pulse generator of an induction accelerator electromagnet

    Thyristor generator forming in betatron electromagnet coil sinusoidal and quasisinusoidal current unipolar pulses, the field being deforced at the beginning of acceleration cycle, and with the pulse flat top in the cycle end, is described. The current amplitude is controlled by pulse-phase method. The current pulse time shift permitted to decrease the loss rate in the accumulating capacitor. The generator is used in systems with 1-10 ms pulse duration, electromagnet magnetic field maximal energy - 45-450 J, the voltage amplitude in the coil 960-1500 V and amplitude of the current passing the coil 100-500 A, the repetition frequency being 50-200 Hz. In particular, the generator is used to supply betatrons designed for defectoscopy in nonstationary conditions, the accelerated electron energy being 4, 6, 8 and 15 MeV

  7. Current-pulse generator for electromagnet of induction accelerator

    A thyristor generator is described that produces in the winding of the electromagnet of a betatron unipolar current pulses of sinusoidal and quasisinusoidal shape with deforcing of the field at the beginning of an acceleration cycle and with a plateau on the pulse top at the end of a cycle. The current amplitude is controlled by a pulse-phase method. The generator is used in apparatus with a pulse duration of 1-10 msec, a maximum electromagnet field energy 45-450 J, a winding voltage of 960-1500 V, and a winding current of 100-500 A for a repetition frequency of 50-200 Hz

  8. Electron-yield enhancement in a Laser-Wakefield accelerator driven by asymmetric laser pulses

    Leemans, W P; Esarey, E; Geddes, C G R; Toth, C; Trines, R; Schroeder, C B; Shadwick, B A; Tilborg, J V; Faure, J

    2002-01-01

    The effect of asymmetric laser pulses on electron yield from a laser Wakefield accelerator has been experimentally studied using > 10 sup 1 sup 9 cm sup - sup 3 plasmas and a 10 TW, >45 fs, Ti:Al sub 2 O sub 3 laser. The laser pulse shape was controlled through nonlinear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability, and that frequency chirp is of minimal importance for the experimental parameters.

  9. Collimator assembly for an electron accelerator

    According to this invention, the collimator assembly comprises a collimator shielding block for blocking undesired x-rays and a bushing inserted into the shielding block. The bushing has a conical passage opening for transmitting x-rays therethrough and for defining the x-ray cone. There are provided means for easily interchanging the bushing in the collimator shielding block. Therefore, bushings of different cone-defining passage can be inserted readily into the shielding block. If a larger area is to be irradiated, a bushing will be used which has a passageway of a larger cone angle

  10. Ultra fast imaging of a laser wake field accelerator

    Saevert, Alexander; Schnell, Michael; Nicolai, Maria; Reuter, Maria; Schwab, Matthew B.; Moeller, Max [Friedrich-Schiller-Universitaet, Jena (Germany); Mangles, Stuart P.D.; Cole, Jason M.; Poder, Kristjan; Najmudin, Zulfikar [The John Adams Institute Imperial College, London (United Kingdom); Jaeckel, Oliver; Paulus, Gerhard G.; Spielmann, Christian; Kaluza, Malte C. [Friedrich-Schiller-Universitaet, Jena (Germany); Helmholtz Institut Jena, Jena (Germany)

    2014-07-01

    Ultra intense laser pulses are known to excite plasma waves with a relativistic phase velocity. By harnessing these waves it is possible to generate quasi-monoenergetic, ultra-short electron pulses with kinetic energies from 0.1 to 2 GeV by guiding the laser pulse over several Rayleigh lengths. To further improve the stability of these particle pulses and ultimately to be able to tailor the energy spectrum toward their suitability for various applications, the physics underlying the different acceleration scenarios need to be understood as completely as possible. To be able to resolve the acceleration process diagnostics well-suited for this plasma environment need to be designed and realized. By using sub-10 fs probe pulses we were able to freeze the transient accelerating structure in the plasma. We will present the first results of an experiment which was carried out with the 30 TW JETi Laser and a few cycle probe pulse at the Institute of Optics and Quantum Electronics Jena. The resulting snapshots show unprecedented details from the laser plasma interaction and allow a direct comparison to computer simulations.

  11. Development of a fast voltage control method for electrostatic accelerators

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed

  12. Development of a fast voltage control method for electrostatic accelerators

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-11

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  13. The linear accelerator and pulse compressor of the SNQ-project

    The Spallation Neutron Source is one of Germany's most important scientific projects proposed at present. Its main purpose is to provide short neutron bursts of high intensity which are produced by a pulsed proton beam hitting a target. The proton beam itself will also be used directly for a series of very important experiments in nuclear physics. The performance requested from the proton accelerator part of the project with respect to average intensity and pulse rate limits the choice of all technical solutions to a combination of a high duty Linac and an additional pulse compressing synchrotron ring. The concept of the accelerator part of the SNQ-project, in particular the Linac, will be described. The Linac may be subdivided into three sections, namely the Injector with two RFQ-structures and a beam merging by funneling, the Alvarez-Accelerator and the High Energy Linear Accelerator with its single cell structure. For the ring shaped pulse compressor two technical solutions are being investigated. One is a isochronous storage ring and the other is a FFAG-synchrotron, which can also accelerate at a fast rate. (orig.)

  14. Development of fast pulse driving power supply in the SPring-8 storage ring

    We have developed a fast pulsed power supply as a part of the development of the fast kicker magnet system in the SPring-8 storage ring since 2007. The initial required pulse width and current was 800 ns which is sufficiently short time less than 4.8 μs of the revolution time and more than 250 A for 0.8 μH load of magnet coil respectively. These parameters come from the requirement of the horizontal oscillation suppression of the stored beam at the injection. Afterward, the power supply became to apply to the kicker system for the short pulsed X-ray generation by vertical kick scheme, too. Because the allowed space where the kicker system is installed without changing the existing main accelerator components was about 30 cm long, we started the development of a fast, high power and compact power supply. We chose a Si-MOSFET as a switching device of pulsed current generation circuit to realize the required power supply parameters. The first output current in 2007 was a 67 A with a pulse width of 1.0 μs. In 2012, by using the parallel-series connecting of the MOSFET, we confirmed the output current of 232 A with a pulse width of 0.4 μs, whose case volume is less than 0.01 m3. (author)

  15. γ-Flash suppression using a gated photomultiplier assembled with an LaBr3(Ce) detector to measure fast neutron capture reactions

    A gated photomultiplier tube (PMT) assembled with an LaBr3(Ce) detector was applied toward the prompt γ{/hbox-}ray measurement of fast neutron capture reactions. Time-of-flight measurements of the neutron capture reactions of Cl and Al were performed using the 46-MeV electron linear accelerator at the Kyoto University Research Reactor Institute (KURRI) as a pulsed neutron source. The photomultiplier gating technique effectively suppressed the saturation of the PMT output and extended the energy region of the TOF measurement. -- Highlights: • Prompt $/gamma$-ray measurements of fast neutron capture reaction. • An LaBr$3$(Ce) detector is used with a gated voltage divider. • The photomultiplier gating technique is applied to the detector. • The effect of the intense $/gamma$ flash is suppressed. • The measured TOF spectrum extends toward faster neutron energy region

  16. The Model of Temperature Dynamics of Pulsed Fuel Assembly

    Bondarchenko, E A; Popov, A K

    2002-01-01

    Heat exchange process differential equations are considered for a subcritical fuel assembly with an injector. The equations are obtained by means of the use of the Hermit polynomial. The model is created for modelling of temperature transitional processes. The parameters and dynamics are estimated for hypothetical fuel assembly consisting of real mountings: the powerful proton accelerator and the reactor IBR-2 core at its subcritica l state.

  17. Time-pick-off from pulsed beam accelerators

    The accelerator radio-frequency or time pulses from nuclear radiation detectors are shifted by a voltage-controlled delay unit (VCD) in series with the start or stop input of the time-to-pulse-height converter (TPC). The counting rates of two single channel analysers are compared, whose windows select different areas of the TPC spectrum. A regulation signal is derived for the VCD, to stabilize the center of the spectrum in a closed loop control circuit. (Auth.)

  18. Linear induction accelerator and pulse forming networks therefor

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  19. Injection and acceleration system of pulsed racetrack microtron

    Ermakov, A N; Ishkhanov, B S

    2002-01-01

    Paper describes a pulsed racetrack microtron (RM) with 70 MeV beam maximal power. For this project one designed rare-earth permanent magnet base bending magnets, pattern to inject a bunched electron bean through a compact alpha-magnet and prismatic biperiodic accelerating structure (PBAS) characterized by compact transverse dimensions ensuring bar-free passing of electron beam through the first orbit. Besides, the PBAS has a high-frequency quadrupole focusing. These features facilitate essentially RM design and adjustment. Paper describes tests, technique of adjustment and of measuring of systems to inject and to accelerate a pulsed racetrack microtron

  20. Injection and acceleration system of pulsed racetrack microtron

    Paper describes a pulsed racetrack microtron (RM) with 70 MeV beam maximal power. For this project one designed rare-earth permanent magnet base bending magnets, pattern to inject a bunched electron bean through a compact α-magnet and prismatic biperiodic accelerating structure (PBAS) characterized by compact transverse dimensions ensuring bar-free passing of electron beam through the first orbit. Besides, the PBAS has a high-frequency quadrupole focusing. These features facilitate essentially RM design and adjustment. Paper describes tests, technique of adjustment and of measuring of systems to inject and to accelerate a pulsed racetrack microtron

  1. Pulsed magnetic field for PHERMEX-injected circular accelerator

    The PHERMEX accelerator is a standing wave, 50 MHz rf linear accelerator. The rf fields in three cavities are pulsed for a period of 3 ms. The experiments described are directed toward studying injection and trapping of electron rings at modes field strengths (approximately 1 T). A single 200 ns beam macropulse is to be injected transverse to a solenoidal field, which is tilted at a small angle relative to the beam normal so that a beam micropulse does not return and strike the injection point. The pulsed field coils and vacuum chamber are reported under construction, and the capacitor bank being tested

  2. Application of a removable accelerator to fast neutron imaging

    Working principle and structure and debugging process of a mobile accelerator are introduced. The mobile accelerator, compact and light-weighted, can produce beam currents with high stability and small spot, and it is used in experiment of fast neutron imaging in our academy for the first time. In application process, some parameters including the beam current stability parameter are measured. Successive neutron yield is measured using concomitance particle means. Elementary images are acquired to fit the accelerator and the digital imaging system together. (authors)

  3. Long-pulse induction acceleration of heavy ions

    A long-pulse induction acceleration unit has been installed in the high-current Cs+ beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low voltage trigger generators

  4. Fast current pulse amplifier for neutron flux monitoring system of Prototype Fast Breeder Reactor

    The neutron flux monitoring system (NFMS) for Prototype Fast Breeder Reactor (PFBR) measures the neutron power and the reactivity changes in the core in all the states such as shut down, fuel handling, reactor startup, intermediate and power ranges using high temperature cylindrical fission chambers, four section fission counter and high temperature boron coated counter. Fast Current Pulse Amplifier has been developed to use in NFMS of PFBR that amplifies single/four numbers of input current pulses independently, discriminates and electronically wire - OR them to give differential pulse output along with the Campbell output. The paper describes the design, development of integrated single/Quad channel fast current pulse amplifier based on in-house developed ASIC, Hybrid IC, in built test features, LV and HV supplies. (author)

  5. Klystron pulse modulator of linear electron accelerator: test results

    Z. Zimek

    2009-12-01

    Full Text Available Purpose: The purpose of the paper is to describe Klystron pulse modulator of linear electron accelerator.Design/methodology/approach: TH-2158 klystron modulator experimental model is based on semiconductor switch HTS 181-160 FI (acceptable current load 1600 A, and voltage up to 18 kV. The results of test measurements carried out during modulator starting up period are presented in this work. TH-2158 klystron was used as a load. The klystron was connected to the second winding of the pulse HV transformer with 1:10 windings turn ratio. The examined modulator is equipped with safety shutdown circuitry for protection against current overload that may appear at IGBT switch in the case of short-circuiting happened in klystron and waveguide system.Findings: Linear electron accelerator type LAE 10/15 with electron energy 10 MeV and beam power up to 15 kW was designed and completed at Institute of Nuclear Chemistry and Technology. This accelerator was installed in facility for radiation sterilization single use medical devices, implants and tissue grafts. The standing wave accelerating section was selected. Microwave energy used for accelerating process is provided by klystron type TH-2158 working at frequency 2856 MHz.Practical implications: Described HV pulse modulator which designed and constructed for klystron TH-2158 was preliminary tested to evaluate the quality of the klystron HV and load current pulses and optimized selected component parameters. Obtained experimental results are better than those which were predicted by computer simulation method.Originality/value: Description of Klystron pulse modulator of linear electron accelerator.

  6. Optimized antisymmetric composite pulses for fast proton spectroscopic imaging

    Starčuk jr., Zenon; Starčuk, Zenon; Starčuková, Jana; Horký, Jaroslav

    Berkeley : ISMRM, 2005, s. 2520. ISSN 1545-4436. [International Society for Magnetic Resonance in Medicine /13./. Miami Beach (US), 07.05.2005-13.05.2005] R&D Projects: GA ČR(CZ) GA202/02/1493 Keywords : fast magnetic resonance spectroscopic imaging * composite pulses Subject RIV: FS - Medical Facilities ; Equipment

  7. SUAK, a Fast Subcritical Facility for Pulsed Neutron Measurements

    SUAK is a small unreflected unmoderated assembly fuelled with 20% enriched uranium. The fuel is in the form of thin plates of 2 in x 2 in x 1/B in which are held in square tubes. The tubes are closely packed together, so that assemblies of different size and composition can be realized. The maximum size is a cube of about 35-cm side length. The maximum value of keff is 0.90. To reduce the backscattering of neutrons the assembly is located in the centre of a thin-walled building surrounded at a distance of 25 m by a wall for radiation protection. The control room is embedded in this wall. With a 200-keV pulsed neutron generator, measurements of the prompt neutron decay with different detectors and measurements of spectra by the time-of-flight technique are performed. A description of the assembly is given. First preliminary results are presented and compared with calculations. (author)

  8. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  9. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm2. The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  10. Design and development of pulsed electron beam accelerator 'AMBICA – 600'

    Short duration, high power pulses with fast rise time and good flat-top are essentially required for driving pulsed electron beam diodes. To attain this objective, a dual resonant Tesla transformer based pulsed power accelerator 'AMBICA-600' has been developed. In this newly developed system, a coaxial water line is charged through single turn Tesla transformer that operates in the dual resonant mode. For making the accelerator compact, in the high power pulse forming line, water has been used as dielectric medium because of its high dielectric constant, high dielectric strength and high energy density. The coaxial waterline can be pulsed charged up to 600kV, has impedance of ∼5Ω and generates pulse width of ∼60ns. The integrated system is capable of producing intense electron beam of 300keV, 60kA when connected to impedance matched vacuum diode. In this paper, system hardware details and experimental results of gigawatt electron beam generation have been presented.

  11. Ion acceleration with ultra intense and ultra short laser pulses

    Accelerating ions/protons can be done using short laser pulse (few femto-seconds) focused on few micrometers area on solid target (carbon, aluminum, plastic...). The electromagnetic field intensity reached on target (≥1018 W.cm-2) allows us to turn the solid into a hot dense plasma. The dynamic motion of the electrons is responsible for the creation of intense static electric field at the plasma boundaries. These electric fields accelerate organic pollutants (including protons) located at the boundaries. This acceleration mechanism known as the Target Normal Sheath Acceleration (TNSA) has been the topic of the research presented in this thesis.The goal of this work has been to study the acceleration mechanism and to increase the maximal ion energy achievable. Indeed, societal application such as proton therapy requires proton energy up to few hundreds of MeV. To proceed, we have studied different target configurations allowing us to increase the laser plasma coupling and to transfer as much energy as possible to ions (target with microspheres deposit, foam target, grating). Different experiments have also dealt with generating a pre-plasma on the target surface thanks to a pre-pulse. On the application side, fluorescent material such as CdWO4 has been studied under high flux rate of protons. These high flux rates have been, up to now, beyond the conventional accelerators capabilities. (author)

  12. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  13. Ultrafast Pulse Radiolysis Using a Terawatt Laser Wakefield Accelerator

    Oulianov, D A; Gosztola, D J; Korovyanko, O J; Rey de Castro, R C; Shkrob, I A; Crowell, Robert A.; Gosztola, David J.; Korovyanko, Oleg J.; Oulianov, Dmitri A.; Rey-de-Castro, Roberto C.; Shkrob, Ilya A.

    2006-01-01

    We report the first ultrafast pulse radiolysis transient absorption spectroscopy measurements from the Terawatt Ultrafast High Field Facility (TUHFF) at Argonne National Laboratory. TUHFF houses a 20 TW Ti:sapphire laser system that generates 2.5 nC sub-picosecond pulses of multi-MeV electrons at 10 Hz using laser wakefield acceleration. The system has been specifically optimized for kinetic measurements in a pump-probe fashion. This requires averaging over many shots which necessitates stable, reliable generation of electron pulses. The latter were used to generate excess electrons in pulse radiolysis of liquid water and concentrated solutions of perchloric acid. The hydronium ions in the acidic solutions react with the hydrated electrons resulting in the rapid decay of the transient absorbance at 800 nm on the picosecond time scale. Time resolution of a few picoseconds has been demonstrated. The current time resolution is determined primarily by the physical dimensions of the sample and the detection sensit...

  14. Development of high power toroidal pulse transformer with 10-100 Hz repetition rate for linear induction accelerator

    Full text: An amorphous-core pulse transformer of 2.5kV /20kV, 20μs, 250J, 100 pps rating has been designed and fabricated for Linear Induction Accelerator. This accelerator will be used to generate intense electron beam pulses at high repetition rate for plastic modification and other material processing applications. The peak power and average power of the pulse transformer are 20MW and 25kW respectively. Modular design based on parallel operation of 6 identical modules has been incorporated in this pulse transformer. Single module has been tested up to 10pps for 10 minute durations. Full transformer assembly has been tested in single pulse mode

  15. Plasma acceleration processes in an ablative pulsed plasma thruster

    Plasma acceleration processes in an ablative pulsed plasma thruster (APPT) were investigated. APPTs are space propulsion options suitable for microspacecraft, and have recently attracted much attention because of their low electric power requirements and simple, compact propellant system. The plasma acceleration mechanism, however, has not been well understood. In the present work, emission spectroscopy, high speed photography, and magnetic field measurements are conducted inside the electrode channel of an APPT with rectangular geometry. The successive images of neutral particles and ions give us a comprehensive understanding of their behavior under electromagnetic acceleration. The magnetic field profile clarifies the location where the electromagnetic force takes effect. As a result, it is shown that high density, ablated neutral gas stays near the propellant surface, and only a fraction of the neutrals is converted into plasma and electromagnetically accelerated, leaving the residual neutrals behind

  16. Material acceleration estimation by four-pulse tomo-PIV

    A tomographic PIV system is introduced for the instantaneous measurement of the material acceleration (material derivative of velocity). The system is conceived to operate with short temporal separation (microseconds) and is therefore suitable for applications up to the high-speed flow regimes. The method of operation consists of tomographic imaging of a measurement volume using three arrays of four CCD cameras and two double-pulse laser systems. Advantages and shortcomings of the approach with respect to the most commonly used method based on light polarization are discussed. Various approaches are compared to determine the optimal utilization of four-pulse data to measure the material acceleration: Eulerian and Lagrangian schemes are compared to the recently introduced fluid trajectory correlation (FTC) technique from the authors. A synthetic image test case of a translating vortex is used to compare the schemes with and without the presence of noise. The truncation errors and sensitivity to random noise for each scheme are highlighted. A discussion is also given on the dynamic range of the schemes. The four-pulse tomographic system is used to measure the separated wake of an axisymmetric truncated base with afterbody at a Reynolds number of 68 000. The system calibration accuracy and the baseline measurement uncertainty of the velocity are evaluated with a zero-time delay test. A novel criterion is introduced to establish the relative accuracy of the material derivative measurement, based on the curl of the material acceleration field. The results indicate that the four-pulse tomo-PIV approach suits the measurement of the material acceleration using a variety of estimation schemes. In particular, the FTC technique gives the lowest error levels and is well-suited to perform accurate material acceleration measurements. (paper)

  17. Design, Construction and Test Arrangement of a Fast-Cycling HTS Accelerator Magnet

    Piekarz, H; Hays, Steven; Shiltsev, Vladimir

    2014-01-01

    Design, fabrication and assembly of a novel fast-cycling accelerator magnet is presented. A short-sample magnet is powered with a single-turn HTS cable capable to carry 80 kA current at 20 K and generate 1.75 T field in a 40 mm magnet gap. The applied conventional leads and the power supply, however, allow only for a sin-wave 24 kA, 20 Hz current limiting test magnet to a B-field of 0.5 T and to a maximum cycling rate of 20 T/s. The critical aspects of the cable construction and the splicing connection to the power leads are described. Tentative power losses of the proposed HTS accelerator magnet in a possible application for proton and muon accelerators are presented.

  18. Cyclinac medical accelerators using pulsed C6+/H2+ ion sources

    Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed 'cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H2+ ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 108 fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.

  19. Nitrogen implantation in steel with a pulsed ion beam accelerator

    The modification of wear properties of high speed steel cutting tools for lathe by nitrogen implantation, were studied in a normal boring process of SAE 1045 steel parts. The implantation was done with a pulsed ion beam accelerator, which produced a nitrogen ion beam of continuous energy spectrum (10-300 KeV) with 400 ns pulsed duration on target. A tool fluence of 1.65 x 1017 cm-2 - obtained by 30 singles shot accumulation was used in the experiments. (author)

  20. Fast initial continuous current pulses versus return stroke pulses in tower-initiated lightning

    Azadifar, Mohammad; Rachidi, Farhad; Rubinstein, Marcos; Rakov, Vladimir A.; Paolone, Mario; Pavanello, Davide; Metz, Stefan

    2016-06-01

    We present a study focused on pulses superimposed on the initial continuous current of upward negative discharges. The study is based on experimental data consisting of correlated lightning current waveforms recorded at the instrumented Säntis Tower in Switzerland and electric fields recorded at a distance of 14.7 km from the tower. Two different types of pulses superimposed on the initial continuous current were identified: (1) M-component-type pulses, for which the microsecond-scale electric field pulse occurs significantly earlier than the onset of the current pulse, and (2) fast pulses, for which the onset of the field matches that of the current pulse. We analyze the currents and fields associated with these fast pulses (return-stroke type (RS-type) initial continuous current (ICC) pulses) and compare their characteristics with those of return strokes. A total of nine flashes containing 44 RS-type ICC pulses and 24 return strokes were analyzed. The median current peaks associated with RS-type ICC pulses and return strokes are, respectively, 3.4 kA and 8 kA. The associated median E-field peaks normalized to 100 km are 1.5 V/m and 4.4 V/m, respectively. On the other hand, the electric field peaks versus current peaks for the two data sets (RS-type ICC pulses and return strokes) are characterized by very similar linear regression slopes, namely, 3.67 V/(m kA) for the ICC pulses and 3.77 V/(m kA) for the return strokes. Assuming the field-current relation based on the transmission line model, we estimated the apparent speed of both the RS-type ICC pulses and return strokes to be about 1.4 × 108 m/s. A strong linear correlation is observed between the E-field risetime and the current risetime for the ICC pulses, similar to the relation observed between the E-field risetime and current risetime for return strokes. The similarity of the RS-type ICC pulses with return strokes suggests that these pulses are associated with the mixed mode of charge transfer to ground.

  1. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Zhao, Quantang, E-mail: zhaoquantang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Z.M.; Yuan, P.; Cao, S.C.; Shen, X.K.; Jing, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu, C.S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Z.P.; Liu, M.; Xiao, R.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zong, Y.; Wang, Y.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-11-21

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60–70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article. -- Highlights: •The key technology of DWA, including switches and pulse forming lines were studied. •The SiC PCSS obtained from Shanghai Institute were tested. •Two layers ZIP lines (new structure) and four layers Blumlein lines were studied with laser triggered spark gap switches. •A nanosecond pulse-width electron diode based on DWA technologies is achieved and studied experimentally. •The principle of DWA is also proved by the diode.

  2. Design and development of high power pulsed technologies and systems for H- and proton accelerators

    For energizing the 3 MeV RFQ, under development at RRCAT, a 1 MW pulsed RF system operating at 352.2 MHz is required. The characteristics of the pulsed RF delivered to RFQ are important for its correct operation. Keeping in view these requirements, in house design and development of crucial technologies like high voltage solid state pulse modulators, WR 2300 waveguide components, solid state high voltage switches, high voltage high power pulse transformers, advanced solid state Marx modulator, high power RF/Microwave test facilities etc has been initiated. A 1 MW pulsed test stand at 352.21 MHz has been developed and tested using TH 2089 klystrons provided by CERN. A solid state bouncer modulator with 500 microsecs pulse duration, 25 Hz pulse repetition rate, giving output voltage upto 100 kV for energizing klystron for pulsed RFQ has been designed, integrated and testing has been started. Design and prototype development of advanced solid state Marx modulator has also been carried out. The WR 2300 waveguide components have also been developed and tested at low power as well as 1 MW pulsed power at the test stand. The WR 2300 waveguide transmission line with full height dual directional coupler, harmonic filter, three port junction circulator, full height to half height transition, half height waveguide sections, E and H bends, power dividers, flexible waveguides, phase shifter, 45 deg E plane bends, RF loads etc. was assembled and tested at 1 MW pulsed power. Utilizing the experience gathered, design of WR 2300 waveguide transmission system for LEHIPA project of BARC was also done. Development of 1.3 GHz RF systems and cavity test set ups for characterizing the superconducting cavities is in advanced stage. A solid state bouncer compensated long pulse modulator operating at 100 kV, 20 A with 800 microsecs pulse duration at 2 Hz PRR, was successfully designed, developed and supplied to CERN for LINAC 4 proton accelerator project under DAE CERN collaboration in

  3. A CFD Simulation Process for Fast Reactor Fuel Assemblies

    Kurt D. Hamman; Ray A. Berry

    2010-09-01

    A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three-dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly “benchmark” geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k–e and SST (Menter) k–? were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.

  4. A CFD simulation process for fast reactor fuel assemblies

    Hamman, Kurt D., E-mail: Kurt.Hamman@inl.go [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Berry, Ray A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)

    2010-09-15

    A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three-dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly 'benchmark' geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k-{epsilon} and SST (Menter) k-{omega} were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.

  5. Medium-type pulsed fast-neutron detector

    A newly developed medium-type pulsed fast neutron detector is proposed. The detector consists of front insulator, n-p converter, absorber, collector and rear insulator. The detection principle is based on the output signal from both recoil-protons of the n-p converter and secondary electrons induced by the recoil-protons passing the interface between the absorber and the collector. Because of its detection of fast neutrons in the medium, unlike many traditional fast neutron detectors which work in the vacuum environment, this detector has obvious advantages. It does not need vacuum environment and high voltage power supply. This makes it to be used easily. By choosing teflon as the absorber and by choosing graphite as the charge collector, the contribution of the secondary electrons to the output signal can be determined experimentally

  6. Study on variance-to-mean method as subcriticality monitor for accelerator driven system operated with pulse-mode

    Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)

  7. Pulse-Height Distribution Analysis for Superconducting Nanostripline Ion Detector with a Fast Pulse-Integration Analog-Todigital Converter

    Suzuki, Koji; Ukibe, Masahiro; Shiki, Shigetomo; Miki, Shigehito; Wang, Zhen; Takahashi, Yoshihiro; Yoshikawa, Nobuyuki; Ohkubo, Masataka

    Superconducting nano-stripline structure is promising for realizing an ideal ion detector for mass spectrometry (MS); nano-second time resolution and mass-independent detection efficiency from atoms to proteins. We report the first pulse-height spectra of a superconducting nano-stripline ion detector (SSLD) by a pulse-integration analog-to-digital converter (PIADC). A niobium nitride (NbN)-SSLD had a meander structure of the stripline with a thickness of 10 nm and a linewidth of 800 nm on an MgO substrate. A matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer or a double-focusing mass spectrometer was used to produce and accelerate biomolecule ions (bovine serum albumin) with a molecular weight (MW) of 66,400 and Ar ions with an atomic weight (AW) of 40. Output pulse height did not depend on the MW or ion species for a wide mass range. Moreover, measured pulse-height distribution indicates that our SSLD system is so fast enough to discriminate the simultaneous ion incidence within 200 ns, which is close to the virtual dead time of time-to-digital converters (TDCs) at the practical usage in TOF MS for macromolecules.

  8. Fast magnetic reconnection and particle acceleration in pair plasmas

    Bessho, Naoki; Bhattacharjee, A.

    2009-11-01

    Magnetic reconnection without a guide field in both non-relativistic and relativistic regimes has been studied in pair plasmas by 2D PIC simulations. We have found that in both regimes, particle acceleration enhances reconnection rates by an interesting feedback effect. Reconnection rates in the impulsive phase become of the order of 1 when the background density in a Harris sheet equilibrium is of the order of 0.01 of the density in the current sheet. Fast reconnection becomes possible not only because of increase of the time derivative part of the inertial term in the generalized Ohm's law, but also by a positive feedback on the pressure tensor term, bootstrapped by particle acceleration that produces a reduction in the particle density in the diffusion region. In this impulsive phase, the extension of the diffusion region along the outflow region is accompanied by a broadening of the width of the current sheet in the inflow region, keeping the aspect ratio small and sustaining a large reconnection rate. The collisionless resistivity originating from non-ideal terms in the generalized Ohm's law becomes large and nearly spatially uniform along the diffusion region even after the extension of the diffusion region, and can account quantitatively for the fast reconnection rate. We will compare and contrast this with reconnection and particle acceleration in hydrogen plasmas.

  9. Rapid fuel drawer scanner for fast critical assembly safeguards

    An integrated scanning system incorporating highly efficient collimated neutron and high purity germanium gamma detectors with an on-line microprocessor has been developed to perform rapid inventorying of uranium and plutonium fuel drawers from fast critical assemblies. On-line least-squares fit procedures provide quantitative comparisons at a rate exceeding two drawers per minute. For plutonium-containing fuel, the neutron scan data can be related to the included 240Pu isotopic mass; individual 239Pu, 241Pu, and 241Am isotopic contents are obtained from simultaneous scans of the appropriate isolated gamma lines

  10. Study of the pulsation of an ion accelerator giving 20 nano-second pulses

    In order to measure fast neutron spectra by the time-of-flight method, we have studied a pulsed ion-source which has been placed on the 600 kV electrostatic accelerator at Fontenay-aux-Roses. We examine successively: the ion-source itself, its extraction device, the focussing equipment and the pulsation system constituted by a slit which is swept by the beam. Using this ion-source it is possible to obtain a direct current of deutons of over 800 μA, and clouds having a duration which can be adjusted to between 15 and 40 nano-seconds. (author)

  11. Accelerated oxygen precipitation in fast neutron irradiated Czochralski silicon

    Ma Qiao-Yun; Li Yang-Xian; Chen Gui-Feng; Yang Shuai; Liu Li-Li; Niu Ping-Juan; Chen Dong-Feng; Li Hong-Tao

    2005-01-01

    Annealing effect of the oxygen precipitation and the induced defects have been investigated on the fast neutron irradiated Czochralski silicon (CZ-Si) by infrared absorption spectrum and the optical microscopy. It is found that the fast neutron irradiation greatly accelerates the oxygen precipitation that leads to a sharp decrease of the interstitial oxygen with the annealing time. At room temperature (RT), the 1107cm-1 infrared absorption band of interstitial oxygen becomes weak and broadens to low energy side. At low temperature, the infrared absorption peaks appear at 1078cm-1, 1096cm-1, and 1182cm-1, related to different shapes of the oxygen precipitates. The bulk microdefects,including stacking faults, dislocations and dislocation loops, were observed by the optical microscopy. New or large stacking faults grow up when the silicon self-interstitial atoms are created and aggregate with oxygen precipitation.

  12. Fast Neutron Radiography at an RFQ Accelerator System

    Daniels, G. C.; Franklyn, C. B.; Dangendorf, V.; Buffler, A.; Bromberger, B.

    This work introduces the Necsa Radio Frequency Quadrupole (RFQ) accelerator facility and its work concerning fast neutron radiography (FNR). Necsa operates a 4-5 MeV, up to 50 mA deuteron RFQ. The previous deuterium gas target station has been modified to enable producing a white neutron beam employing a solid B4C target. Furthermore, the high energy beam transport (HEBT) section is under adjustment to achieve a longer flight-path and a better focus. This work presents an overview of the facility, the modifications made, and introduces past and ongoing neutron radiography investigations.

  13. Intense ion beams accelerated by ultra-intense laser pulses

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  14. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    Buxiang Zheng; Gedong Jiang; Wenjun Wang; Kedian Wang; Xuesong Mei

    2014-01-01

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology...

  15. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-01-01

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be...

  16. Preliminary Heating Rate Evaluation of Control Assembly in Fast Reactor

    The diameter of B4C absorber pin can expand 1.85 times as the number of absorber pins is reduced from 61 to 19. However, a lager pin diameter leads higher absorber centerline temperature and cladding mid-wall temperature which are major criteria on thermal hydraulic design. The most important thing is to consider the incident neutron energy and inelastic scattering to prevent underestimating the heating rate when the heating rate is evaluated at control assembly in the fast reactor. It is appropriate to apply only absorption reaction in a thermal reactor. In fast reactor, however, the heating rate at all rod-in condition in this study is about 40% bigger when the both effects are taken into account. The heating rate at the control assembly that consists of 19 absorber pins is about 5.3% bigger than the case of 61 pins. But thermal hydraulic integrities in the both designs can satisfy the design requirements by modifying flow rate

  17. Cyclinac Medical Accelerators Using Pulsed C6+/H2+ Ion Sources

    Garonna, A; Bonomi, R; Campo, D; Degiovanni, A; Garlasché, M; Mondino, I; Rizzoglio, V; Andrés, S Verdú

    2010-01-01

    Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is huge pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian Research Foundation TERA is developing fast-cycling accelerators, dubbed cyclinacs. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multi-painting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both ...

  18. LIU 0.5/3000 pulse-periodical linear induction accelerator

    LIU 0.5/3000 accelerator designed for production of accelerator nanosecond high-current electron beam is described. Its main characteriatics are as follows: electron beam energy in pulse is 50j; electron peak energy - 500 keV; beam pulse power - 15 GW; current amplitude in pulse - 3 kA; beam current duration - 80 ns (at 0.1 level); beam aperture - 8-30cm2; accelerator operates in three modes: single-pulse mode, continuous mode with 50 pulses/s. Succession frequency, mode of pulse train formationfrom 5-10 pulses with equivalent pulse duration in the train up to 200 pulses/s; operating lifetime is ≥ 107 pulses. Accelerator dimensions are 2000x2100x900 mm, its mass - 800 kg

  19. Fast Radio Bursts counterparts in the scenario of supergiant pulses

    Popov, S B

    2016-01-01

    We discuss identification of possible counterparts and persistent sources related to Fast Radio Bursts (FRBs) in the framework of the model of supergiant pulses from young neutron stars with large spin-down luminosities. In particular, we demonstrate that at least some of sources of FRBs can be observed as ultraluminous X-ray sources (ULXs). At the moment no ULXs are known to be coincident with localization areas of FRBs. We searched for a correlation of FRB positions with galaxies in the 2MASS Redshift survey catalogue. Our analysis produced statistically insignificant overabundance ($p$-value $\\approx 4\\%$) of galaxies in error boxes of FRBs. In the very near future with even modestly increased statistics of FRBs and with the help of dedicated X-ray observations and all-sky X-ray surveys it will be possible to decisively prove or falsify the supergiant pulses model.

  20. Development of the pulsed power system of the accelerator module for the linear induction accelerator

    This paper presents a pulsed power system, the terminal load of which is an accelerator module, with this system, A 350 kV, 90 ns (FWHM) voltage with 30 ns rise-time accross the accelerating gap has been obtained. The jitter of the main switch operating at 280 kv is less than 1.5 ns (RMS). Further improvement on the performance of the coaxial field distortion switch is discussed and it is pointed out that the operating voltage of the switch can be increased by 8.2 %. If the triggering electrode is biased by means of equivalent electrical field stress. (author)

  1. High Spatial Resolution Fast-Neutron Imaging Detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M B; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.

    2009-01-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several im...

  2. Numerical analysis of acceleration obtained from pulsed-linear-MHD accelerator using model rocket engine

    To improve the thrust efficiency of a pulsed magnetohydrodynamic (MHD) accelerator, we perform numerical calculations that simulate the experimental conditions, which were used earlier, in an apparatus that include a model rocket engine. The one-fluid one-dimensional-MHD simulation results show agreement between the experimental and numerical results. We discuss simulation results for temporal and spatial distributions of the electrical conductivity and current density. (author)

  3. Nike Experiments on Acceleration of Planar Targets Stabilized with a Short Spike Pulse^1

    Weaver, J. L.; Velikovich, A. L.; Metzler, N.; Aglitskiy, Y.; Oh, J.; Mostovych, A. N.; Gardner, J. H.

    2005-10-01

    Theoretical work has shown that a low energy spike pulse in front of the drive laser pulse can help mitigate the growth of hydrodynamic instabilities in targets for inertial confinement fusion.[1]^ While other experiments [2] used higher spike pulse energies, this study reports the influence of a lower energy spike and longer spike-main pulse delay on the acceleration of planar CH targets. Time evolution of preimposed sinusoidal ripples on the target surface was observed using a monochromatic x-ray imaging system. Delayed onset and/or suppression of mode growth was found for the spike prepulse shots compared to those with a low intensity foot, in good agreement with predictions from FAST2D simulations. The propagation velocity of the decaying shock wave from the spike pulse was measured with VISAR and was also in good agreement with an analytical prediction.[3] [1] Metzler et al., Phys. Plasmas 6, 3283 (1999); 9, 5050 (2002); 10, 1897 (2003);Goncharov et al., Phys. Plasmas 10, 1906 (2003) ;Betti et al., Phys Plamas 12, 042703 (2005) ;[2]Knauer et al., Phys. Plasmas 12, 056306 (2005) ; [3]Velikovich et al., Phys. Plasmas 10, 3270 (2003). ^1Work supported by U. S. Department of Energy

  4. Eddy Current Modeling and Measuring in Fast-Pulsed Resistive Magnets

    Arpaia, P; Gollucio, G; Montenero, G

    2010-01-01

    A method for modeling and measuring electromagnetic transients due to eddy currents in fast-pulsed resistive magnets is proposed. In particular, an equivalent-circuit model and a method for time-domain measurements of eddy currents are presented. The measurements are needed for an accurate control of the magnetic field quality to ensure adequate stability and performance of the particle beam in particle accelerators in dynamic conditions (field ramps up to about 700 T/s). In the second part, the results of experiments for model definition, identification, and validation are discussed. The tests were carried out on a quadrupole of Linac4, a new linear particle accelerator under construction at CERN (European Organization for Nuclear Research).

  5. Calculation of Heterogeneity Effects in Fast Critical Assemblies

    The physical properties of the fast power reactor cores with respect to the neutron transport are usually not essentially influenced by the heterogeneity of the core structure. Nevertheless, when modelling the cores of these reactors by experimental critical assemblies the heterogeneity of the structure becomes essentially greater and cannot be neglected in the analysis of experiments. In connection with this fact a further development of the previously presented method of homogenization of slab lattices with respect to the chain reaction with fast neutrons is contributed. Attention is restricted to bare assemblies made up of a periodic lattice of parallel slabs of two different materials, a so-called ''sandwich'' reactor of materials 1 and 2. The geometry considered is (a) the plane geometry with boundaries parallel to the slabs, (b) the plane geometry with boundaries perpendicular to the slabs, and (c) the cylindrical geometry with boundaries perpendicular to the slabs with infinite or finite height. The restriction to two different media is made because of a simplification only and is not substantial. The starting point is the integral transport theory based on the solution of the kinetic Boltzmann equation. The solution is sought in the form of a product of asymptotic transport theory solution characterized by the buckling B2 and representing the general trend of the neutron emission density with the fine structure, taking account of the heterogeneous structure of alternative layers of media 1 and 2. As a result the value of the buckling B2 of the heterogeneous assembly together with energy spectra in each medium is obtained. As an illustration of the method the chain reaction with fast neutrons in a heterogeneous medium consisting of 235U and 238U plates placed in turn is investigated. For 16 energy groups the buckling B2 and the energy spectrum in 235U and 238U have been calculated for a 10%, 20% and 30% enrichment with 235U for different cell dimensions of

  6. Cargo inspection system based on pulsed fast neutron analysis

    Brown, Douglas R.; Coates, Allison; Kuo, Stelly N.; Loveman, Robert; Pentaleri, Ed; Rynes, Joel C.

    1997-02-01

    The pulsed fast neutron analysis (PFNA) cargo inspection system (CIS) uses a nanosecond pulsed beam of fast neutrons to interrogate the contents of small volume elements -- voxels -- of a cargo container or truck. A color display shows the three-dimensional location of suspected contraband, such as drugs or explosives. The neutrons interact with the elemental contents of each vowel, and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs and other contraband. From the time of arrival of the gamma rays, the position of the vowel within the truck is determined. The PFNA CIS is designed to scan five or more trucks per hour. The operator interface has been designed to assist in the rapid identification of drugs, explosives or other contraband. This paper describes the system and the tests for drugs and explosives that have been carried out during the past year. These tests were aimed at exploring the envelope of performance of the system.

  7. A high current, short pulse electron source for wakefield accelerators

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  8. Development of GMT fast steering secondary mirror assembly

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Won Hyun; Muller, Gary; Johns, Matt; Hull, Charlie; Kern, Jonathan; Kim, Young-Soo

    2014-07-01

    The Giant Magellan Telescope (GMT) is one of Extremely large telescopes, which is 25m in diameter featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The guiding philosophy in the design of the FSM segment mirror is to minimize development and fabrication risks ensuring a set of secondary mirrors are available on schedule for telescope commissioning and early operations in a seeing limited mode. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter, thus optimizing the seeing limited performance of the telescope. The final design of the FSM mirror and support system configuration was optimized using finite element analyses and optical performance analyses. The optical surface deformations, image qualities, and structure functions for the gravity print-through cases, thermal gradient effects, and dynamic performances were evaluated. The results indicated that the GMT FSM mirror and its support system will favorably meet the optical performance goals for residual surface error and the FSM surface figure accuracy requirement defined by encircled energy (EE80) in the focal plane. The mirror cell assembly analysis indicated an excellent dynamic stiffness which will support the goal of tip-tilt operation.

  9. Measurement of subcriticality using delayed neutron source combined with pulsed neutron accelerator

    A new experimental method for subcriticality measurement was developed by using delayed neutron source which is produced by external pulsed neutron source to increase accuracy of measured results by overcoming the space dependency problem which means difference of measured results in different detector position and often appeared in almost all other subcriticality measurement techniques. Experiments were performed at Kyoto University Critical Assembly (KUCA) combined with a DT accelerator to produce pulsed neutron in outside of the core repeatedly. In this method, neutron detection counts in the prompt neutron time region which are appeared just after injection of pulsed neutron are omitted, whereas neutron counts in the delayed neutron time region which are appeared after disappearance of exponential decay of the prompt neutron are adopted in analysis based on neutron source multiplication method or neutron noise analysis method; the variance to mean ratio method. In the delayed neutron time region, neutron sources to initiate fission chain reactions in subcritical state are delayed neutrons from delayed neutron precursors which are mainly produced by fission chain reactions in the prompt neutron time region, and delayed neutron precursors exist only in the fuel region, which makes possible to decrease the space dependency problem. The obtained results were compared with conventional pulsed neutron method, and it was found that the space dependency problem in subcriticality measurement can be fairly decreased by using the present new method compared with conventional one. (author)

  10. Control of fast-pulsed Power Converters at CERN using a function generator controller

    Murillo Garcia, Raul; Magrans De Abril, Marc

    2015-01-01

    The electrical power converter group at CERN is responsible for the design of fast-pulsed power converters. These generate a flat-top pulse of the order of a few milliseconds. Control of these power converters is orchestrated by an embedded computer, known as the Function Generator/Controller (FGC). The FGC is the main component in the so-called RegFGC3 chassis, which also houses a variety of purpose-built cards. Ensuring the generation of the pulse at a precise moment, typically when the beam passes, is paramount to the correct behaviour of the accelerator. To that end, the timing distribution and posterior handling by the FGC must be well defined. Also important is the ability to provide operational feedback, and to configure the FGC, the converter, and the pulse characteristics. This paper presents an overview of the system architecture as well as the results obtained during the commissioning of this control solution in CERN’s new Linac4.

  11. Fast Decompression Of Ultra-Thin Targets For High-Energy, High-Contrast Laser Pulses

    Antici, P.; Fuchs, J.; Lefebvre, E.; Gremillet, L.; Brambrink, E.; Audebert, P.; Pépin, H.

    2010-02-01

    In the laser-plasma interaction process, for ultra-high temporal contrast laser pulses, experimental measurements show that reducing the thickness of solid targets increases the laser-to-fast electrons energy conversion and the hot electron temperature. We have performed an experiment using the LULI 100 TW laser facility working in the chirped pulse amplification (CPA) mode at a wavelength λ0 = 1.057 μm, pulse duration 320 fs, laser spot size FWHM ˜6 μm and intensity ˜1×1018 W/cm2 in which the laser pulses were temporal-contrast enhanced by the use of two plasma mirrors. Shots were performed on Si3N4 aluminum coated targets of thickness 30 nm to 500 nm. Spectra of the laser-accelerated electrons were recorded with a spectrometer and are compared to PIC simulations performed with the CALDER code. The simulations allow an insight into the electron heating process during the laser-matter interaction.

  12. Vein of Galen aneurysm: MRI with a fast gradient refocusing pulse sequence

    A case of vein of Galen aneurysm, studied with a fast gradient refocusing pulse MRI sequence, is presented. Fast MRI sequences allowed the acquisition of additional hemodynamic information that was not available with either routine MRI or angiography. (orig.)

  13. Alternative concept for a fast energy amplifier accelerator driven reactor

    Recently Rubbia et al. introduced a conceptual design of a Fast Energy Amplifier (EA) as an advanced innovative reactor which utilizes a neutron spallation source induced by protons as an external source in a subcritical array imbibed a molten lead coolant which, besides being breeder and waste burner, generates energy. This paper introduces some qualitative changes in Rubbia's concept such as more than one point of spallation, in order to reduce the requirement in the energy and current of the accelerator, and mainly to make a more flat neutron distribution. The subcritical core which in Rubbia's concept is an hexagonal array of pins immersed in a molten lead coolant is replaced by a concept of a solid lead calandria with the fuel elements in channels cooled by helium, allowing on line refueling or shuffling, and the utilization of a direct thermodynamic cycle (Brayton), which is more efficient than a vapor cycle. Although the calculations to demonstrate the feasibility of the EA alternative concept are underway and not yet finished, these ideas do not violate the basic physics of the EA, as showed in this paper, with evident advantages in the fuel cycle (on line refueling); reduced requirements in the accelerator complex, which is more realistic and economical in today accelerators technology; and finally the utilization of He as coolant compared with molten Pb is more close to the proved technology given the know how of gas cooled reactors and more efficient from the thermodynamic point of view, allowing simplification and the utilization in other process, besides electricity generation, as hydrogen generation. (author)

  14. A fast sequence assembly method based on compressed data structures.

    Liang, Peifeng; Zhang, Yancong; Lin, Kui; Hu, Jinglu

    2014-01-01

    Assembling a large genome using next generation sequencing reads requires large computer memory and a long execution time. To reduce these requirements, a memory and time efficient assembler is presented from applying FM-index in JR-Assembler, called FMJ-Assembler, where FM stand for FMR-index derived from the FM-index and BWT and J for jumping extension. The FMJ-Assembler uses expanded FM-index and BWT to compress data of reads to save memory and jumping extension method make it faster in CPU time. An extensive comparison of the FMJ-Assembler with current assemblers shows that the FMJ-Assembler achieves a better or comparable overall assembly quality and requires lower memory use and less CPU time. All these advantages of the FMJ-Assembler indicate that the FMJ-Assembler will be an efficient assembly method in next generation sequencing technology. PMID:25569963

  15. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  16. Note: A pulsed laser ion source for linear induction accelerators

    Zhang, H., E-mail: bamboobbu@hotmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China); School of Physics, Peking University, Beijing 100871 (China); Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J. [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China)

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  17. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    Mor, I; Vartsky, D; Bar, D; Feldman, G; Goldberg, M B; Katz, D; Sayag, E; Shmueli, I; Cohen, Y; Tal, A; Vagish, Z [Soreq NRC, 81800 Yavne (Israel); Bromberger, B; Dangendorf, V; Mugai, D; Tittelmeier, K; Weierganz, M [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany)], E-mail: ilmor@soreq.gov.il

    2009-05-15

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1-10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  18. High Spatial Resolution Fast-Neutron Imaging Detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    Mor, I; Bar, D; Feldman, G; Goldberg, M B; Katz, D; Sayag, E; Shmueli, I; Cohen, Y; Tal, A; Vagish, Z; Bromberger, B; Dangendorf, V; Mugai, D; Tittelmeier, K; Weierganz, M

    2009-01-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  19. Subcritical assemblies with fast and thermal neutron spectrum driven with high intensity neutron generator NG-12-1

    Full text: The investigations in the field of nuclear physics, development of numerical calculation methods for nuclear reactors, neutron physics and etc. are carried out at the Joint Institute for Power and Nuclear Research - Sosny (JIPNR-Sosny) since the 60s after putting into operation the research reactor and the critical assemblies. A large range of different configuration (geometry,composition) of critical assemblies have been constructed at the NAS Belarus during 25 years of studding neutronic of the special (fast and thermal) reactors. The Chernobyl accident brought a massive public reaction to nuclear efforts and the reactor ceased operation in 1987 and was shut down in 1991 and all investigations using of the reactor neutrons were interrupted. Closure of the reactor led to new endeavors being undertaken at NAS Belarus including the coupling of a high-yield neutron generator to a sub-critical assemblies fuelled with high enriched uranium. The neutron generator NG-12-1 consists of a high-current deuteron accelerator, highly effective water-cooling rotating Ti3H (TiD) 230 mm diameter target and has been operated since 1997 as intense continuous neutron source of (1.5-2.0) 1012 n/s at maximum with neutron energy 13.0 - 15.0 MeV and a continuous neutron source of (2.0-3.0) 1010 n/s at maximum with neutron energy 2.0- 3.0 MeV. When operating in the pulse mode the neutron beam pulse can be adjusted from 0.5μs up to 100μs and pulse repetition rate can be vary from 1 Hz to 10 000 Hz. According research program of the NAS of Belarus the experimental facility 'Yalina' consisting of the sub-critical assembly with neutron thermal spectrum (source neutron multiplication factor Ms of the assembly is in the range of 10 ≤ Ms ≥ 50), high intensity neutron generator and measurement systems was developed and put into operation in 2001. The core of the subcritical assembly is a rectangular parallelepiped 40.0cm width, 40.0cm length and 57.0 cm height. It is assembled

  20. Divergence of fast ions generated by interaction of intense ultra-high contrast laser pulses with thin foils

    We propose an analytical model that analyzes the divergence of fast ion beams accelerated at the rear of thin foils irradiated with ultra-short intense laser pulses. We demonstrate the critical role played by the non-stationary character of the side components of the electric field, which is responsible for ion acceleration from the back of the foil. The model predictions are in very good agreement with 2D PIC simulations and with the experiments performed in the ultra-high-contrast regime as well.

  1. Further finite element structural analysis of FAST Load Assembly

    The FAST (Fusion Advanced Study Torus) machine is a compact high magnetic field tokamak, that will allow to study in an integrated way the main operational issues relating to plasma-wall interaction, plasma operation and burning plasma physics in conditions relevant for ITER and DEMO. The present work deals with the structural analysis of the machine Load Assembly for a proposed new plasma scenario (10 MA – 8.5 T), aimed to increase the operational limits of the machine. A previous paper has dealt with an integrated set of finite element models (regarding a former reference scenario: 6.5 MA – 7.5 T) of the load assembly, including the Toroidal and Poloidal Field Coils and the supporting structure. This set of models has regarded the evaluation of magnetic field values, the evaluation of the electromagnetic forces and the temperatures in all the current-carrying conductors: these analysis have been a preparatory step for the evaluation of the stresses of the main structural components. The previous models have been analyzed further on and improved in some details, including the computation of the out-of-plane electromagnetic forces coming from the interaction between the poloidal magnetic field and the current flowing in the toroidal magnets. After this updating, the structural analysis has been executed, where all forces and temperatures, coming from the formerly mentioned most demanding scenario (10 MA – 8.5 T) and acting on the tokamak's main components, have been considered. The two sets of analysis regarding the reference scenario and the extreme one have been executed and a useful comparison has been carried on. The analyses were carried out by using the FEM code Ansys rel. 13

  2. A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas

    Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.

  3. Seismic analysis of new fuel assembly loading machine for China experimental fast reactor

    New fuel assembly loading machine of China Experiment Fast Reactor is a kind of kinetic equipment with very complex structure. Many of its motional and driving components can not be simulated exactly by finite element model (FEM). A simplified FEM analysis method was introduced in the paper, and the main frame of the equipment was simulated by a simplified FEM model. Response spectrum analysis method was used to obtain the acceleration response of the main components of the equipment under seismic condition. Theoretical analysis method was used to calculate the stresses of the main connecting bolts, and these bolts were evaluated based the regulations of nuclear codes to ensure the structure integrity of the equipment. (authors)

  4. Radiation damage effects and performance of power MOSFET using SPring-8 fast pulse driving power supply

    We have developed a compact and fast pulsed power supply system using in a fast kicker magnet system which is applied to suppress the perturbation of stored beam at injection to SPring-8 storage ring and to generate short pulsed synchrotron radiation in the SPring-8 storage ring. In this power supply system, we need a special specification to realize rapidity and high power output with compact system volume. We employed the system design to separate the output part from other components of the power supply system in order to place it near a beam pipe of the storage ring. By the employment of this system arrangement, it becomes easier not only to reduce the inductance to achieve above request specifications, but also to protect the main power supply components from radiation damage by placing them outside of the accelerator tunnel. We have employed Si Power MOSFETs as switching devices in the output part of the power supply system. By placing the output part beside of the beam pipe, the life of power MOSFETs naturally becomes to be affected an influence of the radiation. We assessed radiation damage for Si and SiC Power MOSFETs used in the actual operating system. Based on experimental results, we will discuss about the suitable switching device for our next generation power supply system from the point of view of Total Ionizing Dose (TID) effects. (author)

  5. Laser Zone Annealing - Accelerated Route to Self-Assembled Nanostructures

    Majewski, Pawel; Yager, Kevin; Rahman, Atikur; Black, Charles

    We present Laser Zone Annealing - a novel technique of accelerated self-assembly of block copolymer thin films utilizing laser light. In our approach, the laser beam, focused to a narrow line, is rastered across the polymer film coated on the light-absorbing substrate, inducing rapid and highly localized temperature transients in the film. By coupling our method with soft-shear, we demonstrate monolithic alignment of various cylinder-forming block copolymers over extremely short timescales. We utilize the aligned block copolymer films as templates for inorganic nanomaterials pattering. After delivery of inorganic precursors via aqueous or gaseous route, the polymer matrix is ashed leading to extremely well-ordered arrays of inorganic, metallic or semiconducting nanowires. Subsequently, we demonstrate how more complex nanostructures can be created with LZA including multilayered nanomeshes with symmetries beyond the conventional motifs accessible by native block copolymers. We investigate a perspective use of the inorganic arrays as transparent conductors or chemical sensors and characterize their anisotropic electro-optical properties. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  6. Fast scaling of energetic protons generated in the interaction of linearly polarized femtosecond petawatt laser pulses with ultrathin targets

    Kim, I. Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Choi, Il Woo; Lee, Chang-Lyoul; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Nam, Chang Hee

    2015-12-01

    Laser-driven proton/ion acceleration is a rapidly developing research field attractive for both fundamental physics and applications such as hadron therapy, radiography, inertial confinement fusion, and nuclear/particle physics. Laser-driven proton/ion beams, compared to those obtained in conventional accelerators, have outstanding features such as low emittance, small source size, ultra-short duration and huge acceleration gradient of ∼1 MeV μm-1. We report proton acceleration from ultrathin polymer targets irradiated with linearly polarized, 30-fs, 1-PW Ti:sapphire laser pulses. A maximum proton energy of 45 MeV with a broad and modulated profile was obtained when a 10-nm-thick target was irradiated at a laser intensity of 3.3 × 1020 W/cm2. The transition from slow (I1/2) to fast scaling (I) of maximum proton energy with respect to laser intensity I was observed and explained by the hybrid acceleration mechanism including target normal sheath acceleration and radiation pressure acceleration in the acceleration stage and Coulomb-explosion-assisted free expansion in the post acceleration stage.

  7. Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results

    Cosimo Mazzotta

    2014-01-01

    Full Text Available Purpose. To compare functional results in two cohorts of patients undergoing epithelium-off pulsed (pl-ACXL and continuous light accelerated corneal collagen crosslinking (cl-ACXL with dextran-free riboflavin solution and high-fluence ultraviolet A irradiation. Design. It is a prospective, comparative, and interventional clinical study. Methods. 20 patients affected by progressive keratoconus were enrolled in the study. 10 eyes of 10 patients underwent an epithelium-off pl-ACXL by the KXL UV-A source (Avedro Inc., Waltham, MS, USA with 8 minutes (1 sec. on/1 sec. off of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off cl-ACXL at 30 mW/cm2 for 4 minutes. Riboflavin 0.1% dextran-free solution was used for a 10-minutes corneal soaking. Patients underwent clinical examination of uncorrected distance visual acuity and corrected distance visual acuity (UDVA and CDVA, corneal topography and aberrometry (CSO EyeTop, Florence, Italy, corneal OCT optical pachymetry (Cirrus OCT, Zeiss Meditec, Jena, Germany, endothelial cells count (I-Conan Non Co Robot, and in vivo scanning laser confocal microscopy (Heidelberg, Germany at 1, 3, 6, and 12 months of follow-up. Results. Functional results one year after cl-ACXL and pl-ACXL demonstrated keratoconus stability in both groups. Functional outcomes were found to be better in epithelium-off pulsed light accelerated treatment together with showing a deeper stromal penetration. No endothelial damage was recorded during the follow-up in both groups. Conclusions. The study confirmed that oxygen represents the main driver of collagen crosslinking reaction. Pulsed light treatment optimized intraoperative oxygen availability improving postoperative functional outcomes compared with continuous light treatment.

  8. Analog optical transmission of fast photomultiplier pulses over distances of 2 km

    Karle, A; Cichos, S; Hundertmark, S; Pandel, D; Spiering, C; Streicher, O; Thon, T; Wiebusch, C; Wischnewski, R

    1997-01-01

    New LED-transmitters have been used to develop a new method of fast analog transmission of PMT pulses over large distances. The transmitters, consisting basically of InGaAsP LEDs with the maximum emission of light at 1300 nm, allow the transmission of fast photomultiplier pulses over distances of more than 2 km. The shape of the photomultiplier pulses is maintained, with an attenuation less than 1 dB/km. Typical applications of analog optical signal transmission are surface air shower detectors and underwater/ice neutrino experiments, which measure fast Cherenkov or scintillator pulses at large detector distances to the central DAQ system.

  9. Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses.

    Marceau, Vincent; April, Alexandre; Piché, Michel

    2012-07-01

    Exact closed-form solutions to Maxwell's equations are used to investigate the acceleration of electrons in vacuum driven by ultrashort and nonparaxial radially polarized laser pulses. We show that the threshold power above which significant acceleration takes place is greatly reduced by using a tighter focus. Moreover, electrons accelerated by tightly focused single-cycle laser pulses may reach around 80% of the theoretical energy gain limit, about twice the value previously reported with few-cycle paraxial pulses. Our results demonstrate that the direct acceleration of electrons in vacuum is well within reach of current laser technology. PMID:22743415

  10. Study of Homogeneous Core Assemblies Using Pulsed Neutron Sources

    The pulsed neutron technique was there applied to the study of light-water-moderated homogeneous core assemblies, using fissile materials in solution form it is easy to achieve large variations in geometrical buckling and moderation ratio. In the initial series of experiments, the fuel consisted of U235 or U238 in the form of uranyl nitrate. The solution concentrations used varied from 44 to 326 g of uranium per litre. Adoption of a coherent series of cross-sections made it possible to deduce, from the variations in the prompt neutron decay constant as a function of geometrical buckling, data on the non-leakage probability and the slowing-down area. We adopted effective cross-sections calculated on the basis of assimilating light water to a secondary differential thermalizer. Interesting comparisons are made possible by the use of two fissile materials with markedly different η and resonance capture values. In a second series of experiments, devoted mainly to safety measures, we were able to deduce the maximum permissible concentrations in various containers at processing plants by measuring the prompt neutron decay constants in weak plutonium nitrate solutions. (author)

  11. Sync control of X-ray pulse in ICT driven by linear accelerator

    It is very important to synchronize the ray pulse frequency of accelerator with data acquisition cycle of Industrial Computed Tomography (ICT) when using accelerator as ray source. This paper analyzes the original signal of CT and designs a sync control circuit which can make the accelerator produce respectively 2, 3 or 4 X-ray pulses in one data acquisition cycle. The minimum average rate of X-ray intensity can meet the requirement of image reconstruction for high density material

  12. Nanosecond neutron pulse generation in diode acceleration tubes with vacuum arc discharge and laser deuteron sources

    Nonsteady process of deuteron pulse formation and acceleration to neutron produced target at vacuum acceleration tubes is investigated. Deuterons are emitted from vacuum arc discharge or laser deuteron sources. This generation mechanism has been studied by numerical simulations using a relativistic electromagnetic PIC code. The results obtained shows essential dependence of deuteron plasma emission, forming and accelerating processes in diode from the final deuteron current. Neutron flow calculation can be done based on short pulse dynamic investigation.

  13. Experimental Studies on Assemblies 1 and 2 of the Fast Reactor FR-0. Part 2

    In a first part of this report, published as AE-195, an account was given of critical mass determinations and measurements of flux distribution and reaction ratios in the first assemblies of the fast zero power reactor FR0. This second part of the report deals with various investigations involving the measurement of reactivity. Control rod calibrations have been made using the positive period, the inverse multiplication, the rod drop and the pulsed source techniques, and show satisfactory agreement between the various methods. The reactivity worths of samples of different materials and different sizes have been measured at the core centre. Comparisons with perturbation calculations show that the regular and adjoint fluxes are well predicted in the central region of the core. The variation in the prompt neutron life-time with reactivity has been studied by means of the pulsed source and the Rossi-α techniques. Comparison with one region calculations reveals large discrepancies, indicating that this simple model is inadequate. Some investigations of streaming effects in an empty channel in the reactor and of interaction effects between channels have been made and are compared with theoretical estimates. Measurements of the reactivity worth of an air gap between the reactor halves and of the temperature coefficient are also described in the report. The work has been performed as a joint effort by AB Atomenergi and the Research Institute of National Defence

  14. Important concepts in the assembly and early characterization of the PBFA II accelerator

    Some of the concepts for orchestrating large numbers of events associated with accelerator assembly and characterization include: (1) structuring of activity into smaller workable and trackable packages, with associated subelements assigned to each section of the accelerator. (2) establishing detailed assembly and characterization documentation to assist in component testing and subsystem integration. (3) structuring the project team for efficient communication, identification of responsibility, and capability for problem and conflict resolution. (4) developing technologies for receival, inventory, controlled storage, staging, and phased installation and testing of components and pieceparts. The application of these and other concepts to PBFA II, and the progress of accelerator assembly is discussed

  15. Important concepts in the assembly and early characterization of the PBFA 2 accelerator

    Goldstein, S. A.; Clevenger, R. J.; Donovan, G. L.; Holman, G. T.; Johnston, R. R.; Nations, D. R.

    Some of the concepts for orchestrating large numbers of events associated with accelerator assembly and characterization include: (1) structuring of activity into smaller workable and trackable packages, with associated subelements assigned to each section of the accelerator, (2) establishing detailed assembly and characterization documentation to assist in component testing and subsystem integration, (3) structuring the project team for efficient communication, identification of responsibility, and capability for problem and conflict resolution, and (4) developing technologies for receival, inventory, controlled storage, staging, and phased installation and testing of components and pieceparts. The application of these and other concepts to PBFA II, and the progress of accelerator assembly is discussed.

  16. Experimental study of the neutronics of the first gas cooled fast reactor benchmark assembly (GCFR phase I assembly)

    Bhattacharyya, S.K.

    1976-12-01

    The Gas Cooled Fast Reactor (GCFR) Phase I Assembly is the first in a series of ZPR-9 critical assemblies designed to provide a reference set of reactor physics measurements in support of the 300 MW(e) GCFR Demonstration Plant designed by General Atomic Company. The Phase I Assembly was the first complete mockup of a GCFR core ever built. A set of basic reactor physics measurements were performed in the assembly to characterize the neutronics of the assembly and assess the impact of the neutron streaming on the various integral parameters. The analysis of the experiments was carried out using ENDF/B-IV based data and two-dimensional diffusion theory methods. The Benoist method of using directional diffusion coefficients was used to treat the anisotropic effects of neutron streaming within the framework of diffusion theory. Calculated predictions of most integral parameters in the GCFR showed the same kinds of agreements with experiment as in earlier LMFBR assemblies.

  17. An optimized neutron-beam shaping assembly for accelerator-based BNCT

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon[reg ], and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the 7Li(p,n)7Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases

  18. Proton Acceleration in Underdense Plasma by Ultraintense Laguerre-Gaussian Laser Pulse

    Zhang, Xiaomei; Zhang, Lingang; Xu, Jiancai; Wang, Xiaofeng; Wang, Wenpeng; Yi, Longqiong; Shi, Yin

    2014-01-01

    Three-dimensional particle-in-cell simulation is used to investigate the witness proton acceleration in underdense plasma with a short intense Laguerre-Gaussian (LG) laser pulse. Driven by the LG10 laser pulse, a special bubble with an electron pillar on the axis is formed, in which protons can be well-confined by the generated transversal focusing field and accelerated by the longitudinal wakefield. The risk of scattering prior to acceleration with a Gaussian laser pulse in underdense plasma is avoided, and protons are accelerated stably to much higher energy. In simulation, a proton beam has been accelerated to 7 GeV from 1 GeV in underdense tritium plasma driven by a 2.14x1022 W/cm2 LG10 laser pulse.

  19. Acceleration of Initially Moving Electrons by a Copropagation Intense Laser Pulse

    JING Guo-Liang; YU Wei; LI Ying-Jun; SENECHA Vinod; CHEN Zhao-Yang; LEI An-Le

    2008-01-01

    Acceleration of an initially moving electron by a copropagation ultra-short ultra-intense laser pulse in vacuum is studied. It is shown that when appropriate laser pulse parameters and focusing conditions are imposed, the acceleration of electron by ascending front of laser pulse can be much stronger compared to the deceleration by descending part. Consequently, the electron can obtain significantly high net energy gain. We also report the results of the new scheme that enables a second-step acceleration of electron using laser pulses of peak intensity in the range of 1019 - 1020 Wμm2/cm2. In the first step the electron acceleration from rest is limited to energies of a few MeV, while in the second step the electron acceleration can be considerably enhanced to about 100 MeV energy.

  20. Pulse-burst laser systems for fast Thomson scattering (invited)

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  1. Pulse-burst laser systems for fast Thomson scattering (invited).

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned. PMID:21033868

  2. Power supply and control system of the gun for an electron pulse high-current accelerator

    The control and supply system is described intended for a gun of the EhLIT-L high-current pulsed electron accelerator. The accelerator parameters are as follows: electron energy of 500 KeV, current of 600 A, accelerating voltage semiwave duration of 15 μs, current pulse duration of 0.5 μs, pulse frequency of 5 Hz, max. The required parameters of the master pulse are: voltage of 0 to 60 kV; current up to 200 A; pulse duration of 500 ns; edge duration below 70 ns; amplitude instability +-5%; pulse frequency of 10 Hz, max.; the filament power drain of the gun is 1500 W

  3. Time-of-flight techniques applied to neutron spectra measurements in fast subcritical assemblies

    Time-of-flight measurements on Uranium-Graphite assemblies were performed using the BCMN linear accelerator. Methods to provide scalar spectra averaged over a core cell from these experimental results are described

  4. Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies. Operational Behaviour

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. This report summarizes the results of two IAEA sponsored technical meetings, conducted in 2008 and 2011, and associated consultancies directed toward a common set of goals. These technical meetings and their venues were as follows: - IAEA Technical Meeting on Status and Trends of Stainless Steel Cladding and Fuel Assembly Materials and Components for LMR, held in Hyderabad, India, 2-4 July 2008; - IAEA Technical Meeting on Design, Manufacturing and Irradiation Behaviour of Fast Reactor Fuels, held in Obninsk, Russian Federation, 30 May-3 June 2011. One of the main objectives of these

  5. Electron acceleration by relativistic laser pulse on the front of solid targets

    The mechanism of electron acceleration and extraction during propagation of an ultra-relativistic laser pulse in an underdense plasma in front of a solid target has been studied. When laser pulse reaches the target surface the accelerated electrons move forward inertially and gain high energy which scales proportionally to the laser intensity. The energy conversion efficiency into these electrons is ∼ne/2nc if the plasma thickness exceeds the laser pulse width. The backward electrons accelerated by the reflected light accumulate significantly higher energy though their total number is less. (author)

  6. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which--besides photomultiplier itself--also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes - embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device

  7. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  8. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 μm thicknesses) irradiated with an ultra-intense laser pulse (up to 1020 W⋅cm−2, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  9. Photon acceleration in the amplified plasma density wake of two copropagating laser pulses

    Photon acceleration of a laser pulse occurs in a medium with a space and time-varying permittivity. Using Hamiltonian formulation, a theoretical study of the frequency upshift of a probe laser pulse, which is considered as a ''quasiphoton'' or ''test particle,'' propagating through an amplified plasma density wake of two copropagating laser pulses, is presented. The linear superposition of wakefields studied using an analytical model shows that the presence of a controlling pulse amplifies the wake of a driver pulse. The amplified wake amplitude can be controlled by varying the delay between the two pulses. Two-dimensional particle-in-cell simulations demonstrate wake superposition due to the two copropagating laser pulses. A phase space analysis shows that the probe photon can experience a significant frequency upshift in the amplified density wake. Furthermore, the range of photon frequencies trapped and accelerated is determined by the amplitude of the density wake.

  10. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Buffechoux, S.; Albertazzi, B. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Capelli, D.; Antici, P. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Dipartimento SBAI, Sapienza, Universita di Roma, Via Scarpa 16, 00161 Roma (Italy); Levy, A.; Fuchs, J. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Lecherbourg, L.; Marjoribanks, R. S. [Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-01-15

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  11. Installation of a 100 kJ pulsed power system to drive pulsed plasma devices

    A pulsed-plasma accelerator is being developed at CPP-IPR, Assam. The accelerator consists of a co-axial electrode assembly housed inside an evacuated chamber that can produce high speed plasma stream of density approximately equal to 1022 m-3. For driving this plasma accelerator, a Pulsed Power System (PPS) of energy nearly 200kJ will be coupled to the electrode assembly. The voltage appearing across the electrode assembly will breakdown the gas present in the inter-electrode gap and create high density plasma. In this paper, the installation of a 100kJ PPS will be discussed, which is one module of the 200 kJ PPS of the plasma accelerator. In general, the conventional high voltage PPS is basically for producing fast output pulses (time periods of few microseconds) according to their uses. In contrast to that, the newly installed pulsed power system at CPP-IPR will produce relatively longer pulse of time period around 1.0ms. This PPS consists of 5 capacitors of rating 180μF, 15 kV each, connected in parallel by using two parallel plates of SS. The newly installed 100kJ bank has been tested and the detailed report of installation and testing will be presented. (author)

  12. High-powered pulsed-ion-beam acceleration and transport

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  13. Readjoiner: a fast and memory efficient string graph-based sequence assembler

    Gonnella Giorgio; Kurtz Stefan

    2012-01-01

    Abstract Background Ongoing improvements in throughput of the next-generation sequencing technologies challenge the current generation of de novo sequence assemblers. Most recent sequence assemblers are based on the construction of a de Bruijn graph. An alternative framework of growing interest is the assembly string graph, not necessitating a division of the reads into k-mers, but requiring fast algorithms for the computation of suffix-prefix matches among all pairs of reads. Results Here we...

  14. Experimental research of local hydrodynamic characteristics of fast reactor fuel assembly peripheral zone. 4

    Measurements were made of shear stress distribution and the velocity field of an aerodynamic model of the fast breeder reactor fuel assembly periphery. The effect was studied of a 50% disturbance of the geometry of a corner rod in a fuel assembly as against normal geometry. The coefficient of friction in the channel was assessed in dependence on the Reynolds number. The distribution of shear stresses in the walls of the fuel assembly and on spacers is graphically represented. (M.D.)

  15. Fast Track Teaching: Beginning the Experiment in Accelerated Leadership Development

    Churches, Richard; Hutchinson, Geraldine; Jones, Jeff

    2009-01-01

    This article provides an overview of the development of the Fast Track teaching programme and personalised nature of the training and support that has been delivered. Fast Track teacher promotion rates are compared to national statistics demonstrating significant progression for certain groups, particularly women. (Contains 3 tables and 3 figures.)

  16. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  17. Fast neutron leakage in 18 MeV medical electron accelerator

    Paredes, L; Balcazar, M; Tavera, L; Camacho, E

    1999-01-01

    In this work the neutron fluence of the Varian Clinac 2100C Medical Accelerator has been evaluated using CR39 track dosimeter. The assessment of fast neutron dose to a patient for typical treatment of 200 cGy with an 18 MV photons beam is performed at surface-source distance of 100 cm with a field size of 20x20 cm sup 2. Fast neutron leakage around of the accelerator head is evaluated.

  18. Device for transferring fast nuclear reactor fuel assemblies

    The description is given of a device for transferring fuel assemblies between a storage position near the reactor vessel and a position where the irradiated assemblies are evacuated and the provision of new assemblies for the reactor. This device can be dismantled and is movable as a whole for its successive use on several reactors and includes: - a platform mounted so as to rotate on a support made to rest on the structure of the reactor, the platform having at least one opening then being horizontal and mobile about a vertical axis to bring the opening successively in position with vertical wells giving access to the storage and evacuation positions of the assemblies provided in the reactor structure, - at least one hopper that can contain one assembly in a vertical position, located on the upper surface of the platform around the opening provided in it and fitted with a winch for the vertical moving of the assemblies inside the wells and the hopper, when these follow each other by rotation of the platform, - at least one connecting device carried on the platform for connecting the hopper and wells when these are in line

  19. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  20. Multichannel computerized control system of current pulses in LIU-30 electron accelerator

    Gerasimov, A I; Kulgavchuk, V V; Pluzhnikov, A V

    2002-01-01

    In LIU-30 power linear pulsed induction electron accelerator (40 MeV, 10 kA, 25 ns) 288 radial lines with water insulation serve as energy accumulators and shapers of accelerating voltage pulses. The lines are charged simultaneously up to 500 kV using a system comprising 72 Arkadiev-Marx screened generators. To control parameter of synchronous pulses of charging current with up to 60 kA amplitude and 0.85 mu s duration in every of 72 charging circuits one applies a computer-aided system. Current pulse is recorded at output of every generator using the Rogowski coil signal from which via a cable line is transmitted to an analog-digital converter, is processed with 50 ns sampling and is recorded to a memory unit. Upon actuation of accelerator the signals are sequentially or selectively displayed and are compared with pulse typical shape

  1. Multichannel computerized control system of current pulses in LIU-30 electron accelerator

    In LIU-30 power linear pulsed induction electron accelerator (40 MeV, 10 kA, 25 ns) 288 radial lines with water insulation serve as energy accumulators and shapers of accelerating voltage pulses. The lines are charged simultaneously up to 500 kV using a system comprising 72 Arkadiev-Marx screened generators. To control parameter of synchronous pulses of charging current with up to 60 kA amplitude and 0.85 μs duration in every of 72 charging circuits one applies a computer-aided system. Current pulse is recorded at output of every generator using the Rogowski coil signal from which via a cable line is transmitted to an analog-digital converter, is processed with 50 ns sampling and is recorded to a memory unit. Upon actuation of accelerator the signals are sequentially or selectively displayed and are compared with pulse typical shape

  2. Fast waveform metrology : generation, measurement and application of sub-picosecond electrical pulses

    A. J. A. Smith

    1996-01-01

    This thesis describes work performed at the National Physical Laboratory to improve the electrical risetime calibration of instruments such as fast sampling oscilloscopes. The majority of the work can be divided into four sections: development of an ultrafast optoelectronic pulse generator; measurement of fast electrical pulses with an electrooptic sampling system; de-embedding of transmission line and transition effects as measured at different calibration reference planes; an...

  3. Time-resolved fast-neutron imaging with a pulse-counting image intensifier

    Dangendorf, Volker; Lauck, Ronald; Kaufmann, Frank; Barnstedt, Juergen; Breskin, Amos; Jagutzki, Ottmar; Kraemer, Michael; Vartsky, David

    2006-01-01

    A new imaging method that combines high-efficiency fast-neutron detection with sub-ns time resolution is presented. This is achieved by exploiting the high neutron detection efficiency of a thick scintillator and the fast timing capability and flexibility of light-pulse detection with a dedicated image intensifier. The neutron converter is a plastic scintillator slab or, alternatively, a scintillating fibre screen. The scintillator is optically coupled to a pulse counting image intensifier wh...

  4. Theory for resonant ion acceleration by nonlinear magnetosonic fast and slow waves in finite beta plasmas

    A Korteweg--de Vries equation that is applicable to both the nonlinear magnetosonic fast and slow waves is derived from a two-fluid model with finite ion and electron pressures. As in the cold plasma theory, the fast wave has a critical angle theta/sub c/. For propagation angles greater than theta/sub c/ (quasiperpendicular propagation), the fast wave has a positive soliton, whereas for angles smaller than theta/sub c/, it has a negative soliton. Finite β effects decrease the value of theta/sub c/. The slow wave has a positive soliton for all angles of propagation. The magnitude of resonant ion acceleration (the v/sub p/ x B acceleration) by the nonlinear fast and slow waves is evaluated. In the fast wave, the electron pressure makes the acceleration stronger for all propagation angles. The decrease in theta/sub c/ resulting from finite β effects results in broadening of the region of strong acceleration. It is also found that fairly strong ion acceleration can occur in the nonlinear slow wave in high β plasmas. The possibility of unlimited acceleration of ions by quasiperpendicular magnetosonic fast waves is discussed

  5. Design and measurements of a fast high-voltage pulse generator for the MedAustron Low Energy Transfer line fast deflector

    Fowler, T; Mueller, F; Kramer, T; Stadlbauer, T

    2012-01-01

    MedAustron, a centre for ion-therapy and research, will comprise an accelerator facility based on a synchrotron for the delivery of protons and light ions for cancer treatment. The Low Energy Beam Transfer line (LEBT) to the synchrotron contains an electrostatic fast deflector (EFE) which, when energized, deviates the continuous beam arriving from the ion source onto a Faraday Cup: the specified voltage is ±3.5 kV. De-energizing the EFE for variable pulse durations from 500 ns up to d.c. allows beam passage for multi-turn injection into the synchrotron. To maintain beam quality in the synchrotron, the EFE pulse generator requires rise and fall times of less than 300 ns between 90 % of peak voltage and a ±1 V level. To achieve this, a pulsed power supply (PKF), with high voltage MOSFET switches connected in a push-pull configuration, will be mounted in close proximity to the deflector itself. A fast, large dynamic range monitoring circuit will verify switching to the ±1 V level and subsequent flat bottom pu...

  6. Optimisation of resolution in accelerator-based fast neutron radiography

    Rahmanian, H; Watterson, J I W

    2002-01-01

    In fast neutron radiography, imaging geometry, neutron scattering, the fast neutron scintillator and the position-sensitive detector all influence feature contrast, resolution and the signal-to-noise ratio in the image. The effect of imaging geometry can be explored by using a ray-tracing method. This requires following the path of neutrons through the imaging field, which includes the sample of interest. A relationship between imaging geometry and feature detectability can be developed. Monte Carlo methods can be used to explore the effect of neutron scattering on the results obtained with the ray-tracing technique. Fast neutrons are detected indirectly via neutron-nucleon scattering reactions. Using hydrogen-rich scintillators and relying on the recoil protons to ionise the scintillator material is the most sensitive technique available. The efficiency, geometry and composition of these scintillators influence the detectability of features in fast neutron radiography. These scintillator properties have a di...

  7. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies

  8. An overview of U.S. activities in fast reactors and accelerator driven systems

    This report reviews the activities of Fast Flux Test Facility (FFTF), describes EBR-II spent fuel treatment. Advanced accelerator applications were related to research and development of fuel cycle, namely system studies, fuels, separations, physics, materials. The work on Accelerator Driven Test Facility design has been stopped

  9. Control of high power IGBT modules in the active region for fast pulsed power converters

    Cravero, J M; Garcia Retegui, R; Maestri, S; Uicich, G

    2014-01-01

    At CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.

  10. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity

  11. Equipment for controlling test benches charged particle accelerator pulse power supply systems

    Composition of the off-line and manual control device system designed for experimental testing the pulse supply systems of charged particle accelereators is considered. The system includes following devices: a manual remote control desk, a sysnchronization device with fibre-optical commutation programmed pulse shape generator digital sources of reference voltage. Performances of all these devices are presented. 1 ref

  12. Fast assembly of ordered block copolymer nanostructures through microwave annealing.

    Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M

    2010-11-23

    Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy. PMID:20964379

  13. Shock-Accelerated Flying Foil Diagnostic with a Chirped Pulse Spectral Interferometry

    陈建平; 李儒新; 曾志男; 王兴涛; 程传福; 徐至展

    2003-01-01

    A shock-accelerated flying foil is diagnosed with a chirped pulse spectral interferometry. The shock is pumped by a 1.2ps chirped laser pulse with a power of~1014 W/cm2 at 785nm irradiating on a 500nm aluminium film and detected by a probe pulse split from the pump based on a Michelson spectral interferometry. A flying foil of~5.595×10-6 g in~400 μm diameter was accelerated to~165 nm away from the initial target rear surface at~1.83 km/s before ablation.

  14. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness

  15. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    Yoon, K. H.; Lee, C. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness.

  16. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    Buxiang Zheng

    2014-02-01

    Full Text Available The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter, ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm2.

  17. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm2

  18. Fiber-optic control system for LAE 10 accelerator and pulse radiolysis experimental set

    The LAE 10 accelerator is used in nanosecond pulse radiolysis experiments as a source of 10 ns pulses of high energy electrons. The accelerator system was elaborated in the years 1991-1993. Inseparable connections of the optical fiber marrow with E/O and O/E converters (executed in welding technique) ensured a high stability of the optical parameters at a very long time. The preparation of connections needed adoption of expensive instrumentation from an optoelectronic laboratory in Warsaw. In presented paper authors describe their own action to improve operation of the LAE 10 accelerator existing in the Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

  19. Powerful nanosecond pulsed generators for linear induction accelerators at JINR

    The paper presents a review of nanosecond pulse generator schemes for LIA developed at the JINR. The main feature of these schemes consists in the use of relatively low-voltage generators (V∼20-50 kV) with low-resistance output impedance (R∼0.5 Ω). A high power in nanosecond pulses (W∼1 GW) is produced by nonlinear compression schemes with distributed parameters which compress electromagnetic energy in time

  20. Thor: Modeling of a Megabar Class Pulsed Power Accelerator

    Haill, T. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Stygar, W. A.; Brown, J. L.; Davis, J.-P.; Waisman, E. M.

    2015-06-01

    Thor is a compact, economical machine to drive megabar-class shockless compression material physics experiments and multi-mega-ampere HEDP experiments for the physics community. It is capable of driving peak currents up to 7 MA with rise times of 200-500 ns, resulting in material pressures between 1 to 5 Mbar depending upon the load design, and incorporates a pulse tailoring capability required to maintain shockless loading of many materials. Thor is modular in nature with 200 capacitive bricks triggered in groups by independent, de-coupled switches. The current pulse at the load is a simple linear combination of the 200 time-shifted basis pulses. This enables a variety of experiments including shockless compression experiments using smooth ramped pulses, shock-ramp compression experiments using tailored pulses, and strength measurement experiments using flat top pulses. This paper overviews the Thor design and describes an equivalent circuit model of the machine that drives MHD simulations of the load region. 3D ALEGRA MHD simulations explore topics such as the uniformity of the magnetic field along the stripline load and the design modifications to improve uniformity. Optimized current drives and simulations of the aforementioned applications are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's NNSA under Contract DE-AC04-94AL85000.

  1. Comparison of scaling laws with PIC simulations for proton acceleration with long wavelength pulses

    We have performed a survey of proton acceleration induced by long wavelength pulses to explore their peak energy dependence on the pulse intensity, target thickness and density. The simulations carried out with the PIC code ALADYN for a circularly polarized pulse have been compared with the scaling laws for radiation pressure acceleration (RPA) in the thick target and thin target regimes known as hole boring (HB) and relativistic mirror (RM) respectively. Since the critical density scales as λ-2, longer wavelength pulses allow to work with low density targets several microns thick and with moderate laser power. Under these conditions is possible to enter the RM region, where the key parameter is the ratio α between twice laser energy and the mirror rest energy; the corresponding acceleration efficiency is given by α/(1+α). For a fixed intensity the minimum thickness of the target, and consequently the highest acceleration, is determined by the threshold of self induced transparency. In this case the number of accelerated particles scales with λ whereas the total energy does not depend on it. The agreement of PIC simulations with RPA and RM scalings, including the transition regions, suggests that these scalings can safely be used as the first step in the parametric scans also for large wavelength pulses such as CO2 lasers, to explore possible alternatives to short wavelength very high power Ti:Sa lasers for proton acceleration.

  2. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  3. MR imaging of the eye with a special ocular coil and fast pulse sequences

    This paper reports that to optimize MR imaging of the eye by using a special ocular coil and fast pulse sequences. Twenty-three patients with suspected ocular pathology underwent MR imaging by using a special surface coil (n = 23) and either conventional spin-echo techniques of newly developed fast pulse sequences (n = 8, ultrafast spoiled GRASS; n = 5, fast spin echo) to obtain high-resolution images (1.5 - 3.0-mm section thicknesses, 6-8-cm field of view). Technically acceptable examinations were acquired in 22/23 patients by using the methods described above. The use of the fast pulse sequences drastically reduced image degradation from associated eye motion. The ocular pathology studied in these patients included retinal tumors (especially uveal melanomas and nevi), retinal detachments, discoform degeneration, anterior proliferative vitreoretinopathy, and macular degeneration with retinal and subretinal hemorrhage

  4. Polarization effect of a Gaussian laser pulse on magnetic field influenced electron acceleration in vacuum

    Ghotra, Harjit Singh; Kant, Niti

    2016-04-01

    Electron acceleration by a laser pulse in the presence of azimuthal magnetic field in vacuum has been analyzed. The azimuthal magnetic field influences the trajectory of an accelerated electron during the laser electron interaction in vacuum. The electron trajectory in the absence and presence of azimuthal magnetic field with a linearly polarized (LP) and circularly polarized (CP) laser pulses is analyzed. Due to the presence of azimuthal magnetic field, a confined trajectory of accelerated electron is observed in the direction of propagation of laser pulse. Resonance between the electron and the laser field occurs at optimum values of magnetic field, electron gains high energy from the laser and gets accelerated in the direction of propagation of laser pulse. The azimuthal magnetic field keeps the electron motion close to the axis parallel to the direction of propagation due to which the electron gains and retains high energy for longer distances. The electron energy gain is relatively higher with a CP laser pulse than that with LP laser pulse. The high energy gain of about 2   GeV is observed with a CP laser pulse of peak intensity 2.74 ×1020   W /cm2 in the presence of azimuthal magnetic field of 534   kG .

  5. Forward acceleration and generation of femtosecond, megaelectronvolt electron beams by an ultrafast intense laser pulse

    Xiaofang wang(王晓方); Quandong Wang(汪权东); Baifei Shen(沈百飞)

    2003-01-01

    We present a new mechanism of energy gain of electrons accelerated by a laser pulse. It is shown that when the intensity of an ultrafast intense laser pulse decreases rapidly along the direction of propagation, electrons leaving the pulse experience an action of ponderomotive deceleration at the descending part of a lower-intensity laser field than acceleration at the ascending part of a high-intensity field, thus gain net energy from the pulse and move directly forward. By means of such a mechanism, a megaelectronvolt electron beam with a bunch length shorter than 100 fs could be realized with an ultrafast (≤30 fs),intense (>1019 W/cm2) laser pulse.

  6. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  7. Optical emission spectroscopy observations of fast pulsed capillary discharge plasmas

    Avaria, G.; Ruiz, M.; Guzmán, F.; Favre, M.; Wyndham, E. S.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present time resolved optical emission spectroscopic (OES) observations of a low energy, pulsed capillary discharage (PCD). The optical emission from the capillary plasma and plasma jets emitted from the capillary volume was recorded with with a SpectraPro 275 spectrograph, fitted with a MCP gated OMA system, with 15 ns time resolution. The discharge was operated with different gases, including argon, nitrogen, hydrogen and methane, in a repetitive pulsed discharge mode at 10-50 Hz, with, 10-12 kV pulses applied at the cathode side. The time evolution of the electron density was measured using Stark broadening of the Hβ line. Several features of the capillary plasma dynamics, such as ionization growth, wall effects and plasma jet evolution, are inferred from the time evolution of the optical emission.

  8. Design of light Ⅱ-B pulsed power electron accelerator

    The Light Ⅱ-B was built at the side of the Marx tank of Light Ⅱ-A for X-pinch test, which kept the original capacity of KrF excimer laser, and can be used for relevant researches of X-pinch. It is composed of a Marx generator, a pulse forming line (PFL), a gas-filled switch, a pulse transmission line (PTL), and a copper-sulphate resistive load. The medium of the forming line is deionized water. The input impendence of the pulse forming line is 6 Ω, corresponding to an output impendence of 1.25 Ω for the pulse transfer line. The design of circuit simulation and the debugging results in resistance load were introduced. The results show that the current peak load is about 269 kA, pulse width is about 50 ns, and the current rise tune is less than 30 ns when the load is 1.25 Ω. It indicates that Light Ⅱ-B has the ability to drive low impedance X-pinch experimental line. (authors)

  9. Fast and Thermal Data Testing of U-233 Critical Assemblies

    Data testing has been performed for U-233 fast and thermal benchmarks. Results are presented for both ENDF/B-VI and a modified JENDL-3.2 evaluation. The revised JENDL-3.2 evaluation is summarized and comparisons with ENDF/B-VI and measured values are discussed. Calculated results using both cross section sets are presented for 10 fast benchmarks (reflected and unreflected U-233 metal) and 38 thermal benchmarks (uranyl-nitrate solutions in spherical and cylindrical geometry). Using the revised JENDL-3.2 evaluation, very good results are obtained for the calculated k-effs for almost all of the 48 benchmarks considered in this study. Possible future work is discussed briefly

  10. Pulsed magnetic welding application of fast breeder austenitic pins plugging

    For specific nuclear needs, we had to develop pulsed magnetic welding on high resistivity coefficient alloys as austenitic steels. The magnetic force produced by an explosive inductor is transmitted on weld pieces by the use of an aluminium driver. A theoretical work carried out permitted to compare pulsed magnetic welding with explosive welding. With specific recordings, it was possible to study electrical and magnetical behavior during the active welding phase. By means of these informations, we are able to specify and to realize, with the financial help of ANVAR organization, a low impedance high velocity generator permitting to weld with a non destructible inductor. 6 refs

  11. Research program for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    Barashenkov, V. S.; Buttsev, V. S.; Buttseva, G. L.; Dudarev, S. Ju.; Polanski, A.; Puzynin, I. V.; Sissakian, A. N.

    2000-07-01

    This paper presents the research program of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating in the Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna. Mixed-oxide (MOX) fuel (25% PuO2+75% UO2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient keff=0.945, energetic gain G=30, and accelerator beam power of 0.5 kW.

  12. A high-duty-cycle long-pulse electron gun for electron accelerators

    Ebrahim, N. A.; Thrasher, M. H.

    1990-11-01

    We describe the design and operation of a long-pulse (200-300 μs), high-duty-cycle (5%-6%), 8-mm-diam dispenser cathode, electrically isolated, modulating Wehnelt electron gun for applications in a high-average-power electron linear accelerator. The electron optics design was optimized with computer modeling of the electron trajectories and equipotentials. The gun performance was established in a series of experimental measurements in a test stand. Excellent pulse-to-pulse emission current reproducibility and electron-beam pulse profile stability were obtained.

  13. Compact MCP assemblies for mass spectrometers

    We have developed compact microchannel plate (MCP) assemblies which have a high gain, good pulse height resolution and a fast response for MS applications. In this paper, these new assemblies are described referring to their structures, functions and characteristics. (orig.)

  14. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    Zika, M.R.; Adams, M.L.

    2000-02-01

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.

  15. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly

  16. Transport Synthetic Acceleration for Long-Characteristics Assembly-Level Transport Problems

    We apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, we take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. Our main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme.The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. We devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, we define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. We implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; we prove that the long-characteristics discretization yields an SPD matrix. We present results of our acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly

  17. Beam shaping assembly optimization for 7Li(p,n)7Be accelerator based BNCT

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30 mA at about 2.5 MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the 7Li(p,n)7Be neutron production reaction to obtain neutron beams to treat deep seated tumors. - Highlights: • A Beam Shaping Assembly for accelerator based BNCT has been designed. • A conical port for easy patient positioning and the cooling system are included. • Several configurations can deliver tumor doses greater than 55 RBEGy. • Good tumor doses can be obtained in less than 60 min of irradiation time

  18. Electron Acceleration by a Focused Gaussian Laser Pulse in Vacuum

    何峰; 余玮; 陆培祥; 徐涵

    2004-01-01

    By numerically solving the relativistic equations of motion of a single electron in laser fields modeled by a Gaussian laser beam, we get the trajectory and energy of the electron. When the drifting distance is comparable to or even longer than the corresponding Rayleigh length, the evolution of the beam waist cannot be neglected. The asymmetry of intensity in acceleration and deceleration leads to the conclusion that the electron can be accelerated effectively and extracted by the longitudinal ponderomotive force. For intensities above, an electron's energy gain about MeV can be realized, and the energetic electron is parallel with the propagation axis.

  19. Pulse control in an accelerator for heavy-ion fusion

    In induction accelerators proposed for heavy-ion fusion, the ion beam is usually confined longitudinally by an axial electric field tailored to balance the space-charge field. Since generating such electric field 'ears' is costly and imprecise, it is important to know how frequently the ears must be applied and what errors in the waveform are tolerable. For practical parameters, cell breakdown is found to impose the principal limit on the spacing of the acceleration modules applying the ear field. Also, it is demonstrated that ear fields may be approximated in several ways by discrete field steps with little impairment of the longitudinal confinement. (Author) 4 figs., 2 refs

  20. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000∼8000 seconds and time averaged thrust of up to 5000∼6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration

  1. High-flux, extended-pulse accelerators: Final report

    The purpose of the program was to investigate physical phenomena associated with high flux ion beam generation and to develop technology for intense ion beam accelerators with pulselengths in the ms range. At the time the work was initiated, the chief area of application for the technology was ion implantation and materials modification

  2. Simulation and experimental study of the solid pulse forming lines for dielectric wall accelerator

    ZHAO Quan-Tang; YUAN Ping; ZHANG Zi-Min; CAO Shu-Chun; SHEN Xiao-Kang; LIU Ming; JING Yi; ZHAO Hong-Wei

    2011-01-01

    Two types of pulse forming lines for dielectric wall accelerator (DWA) were investigated preliminarily.By simulation with CST Microwave Studio,the results indicate the pulse forming process,which can help to understand the voltage wave transmission process and optimize the line parameters.Furthermore,the principle of the pulse forming process was proved by experiments and some excellent pulse waveforms were obtained.During the experiments,the Blumlein line and zero integral pulse (ZIP) forming line,constructed with aluminum foil,poly plate and air gap self-closing switch,were tested.The full width at half maximum (FWHM) of the waveform is 16 nanoseconds (BL) and 17 nanoseconds (ZIP line),and the formed pulse voltage amplitude is 5 kV (BL) and +2.2 kV/-1.6 kV (ZIP line).The experiments result coincides well with the simulation.

  3. Portable generator of subnanosecond fast-electron pulses

    A generator is described which uses a capacitor charge-transfer circuit. The capacitor is built into the high-voltage discharger which reduces the inductance of the charge-transfer circuit and provides a 2.5 kiloamp current pulse with a half-height duration of 0.8 nanoseconds in a stock IA-9 electron tube. The average electron energy in the spectrum is 250 KeV

  4. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    presented elsewhere. In the case of an RFQ accelerator, operating in a pulsed bunched mode, a suitable shutter mechanism can be used to effectively isolate the gas target between beam pulses and thus considerably reduce the gas load on a differentially pumped system whilst still maintaining the target at pressures up to ∼1.2 bar. Such a system operating on a 2% duty cycle RFQ system has been implemented. To go to even higher gas pressure or higher accelerator duty cycle, further improvements to the gas target system, in the form of a plasma window, have been investigated and are being implemented. The RFQ linear accelerator presently utilised delivers a maximum average beam current of 100 μA of 3.6-4.9 MeV deuterons, dependent on the phase coupling between the two accelerating cavities. In a 30 mm long deuterium gas cell, operating at a pressure of 1.2 bar, the expected neutron emission is ∼1010s1, into the full solid angle. A maximum neutron energy obtained in the reaction D(d,n)3He would be 8.1 MeV with the spread of ∼750 keV. kinematics, approximately 50% of the primary neutron beam is emitted into a 20 deg. forward cone. This translates to the expected neutron densities in excess of 107 n.s-1cm-2 some 10-20 cm away from the gas cell. Beam quality is high, with the slow neutron and gamma-ray components below 10% of the total primary fast neutron beam. The fast neutron energy spread (and the total neutron output) can be tailored to a specific application by adjusting either the gas cell length or the target gas pressure. The robust design and reasonable cost make the described neutron source a very attractive choice for variety of applications, such as mineral identification, material diagnostics (complementing thermal neutron radiography), and isotope generation. These activities are currently being pursued at NECSA along with close collaboration with academic institutions and industry. (author)

  5. Phase control and intra-pulse phase compensation of the Advanced Photon Source (APS) linear accelerator

    Rf power for the APS linear accelerator is provided by five klystrons, each of which feeds one linac ''sector,'' containing accelerating structures and SLED cavities. A VXI-based subsystem measures the phase of each sector of the linac with respect to a thermally stabilized reference line. The resulting information is used to control a linearized varactor phase shifter. Error correction is done by software, using operator-controllable parameters. A second phase shifter provides an intra-pulse correction to the phase of the klystron drive pulse. When the intra-pulse correction is applied, the resulting phase is flat to within 0.5 degrees after 2.5 μsec. A second correction, made after the PSK trigger to the SLED and during the filling of the accelerating structures, resulted in an energy gain of 5 MeV from a single sector

  6. Ag nanoparticles formed by femtosecond pulse laser ablation in water: self-assembled fractal structures

    Santillán, Jesica M. J. [CONICET La Plata-CIC, Centro de Investigaciones Ópticas (CIOp) (Argentina); Fernández van Raap, Marcela B., E-mail: raap@fisica.unlp.edu.ar; Mendoza Zélis, Pedro; Coral, Diego [CONICET, Instituto de Física La Plata (IFLP) (Argentina); Muraca, Diego [Universidade Estadual de Campinas, Instituto de Física “Gleb Wataghin” (IFGW) (Brazil); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [CONICET La Plata-CIC, Centro de Investigaciones Ópticas (CIOp) (Argentina)

    2015-02-15

    We report for the first time on the formation of self-assembled fractals of spherical Ag nanoparticles (Nps) fabricated by femtosecond pulse laser ablation of a solid silver target in water. Fractal structures grew both in two and three Euclidean dimensions (d). Ramified-fractal assemblies of 2 nm height and 5–14 μm large, decorated with Ag Nps of 3 nm size, were obtained in a 2d geometry when highly diluted drops of colloidal suspension were dried at a fast heating rate over a mica substrate. When less-diluted drops were dried at slow heating rate, isolated single Nps or rosette-like structures were formed. Fractal aggregates about 31 nm size in 3d geometry were observed in the as-prepared colloidal suspension. Electron diffraction and optical extinction spectroscopy (OES) analyses performed on the samples confirmed the presence of Ag and Ag{sub 2}O. The analysis of the optical extinction spectrum, using the electrostatic approximation of Mie theory for small spheres, showed the existence of Ag bare core, Ag–Ag{sub 2}O and air–Ag core–shell Nps, Ag–Ag{sub 2}O being the most frequent type [69 % relative abundance (r.a.)]. Core-size and shell-thickness distribution was derived from OES. In situ scattering measurements of the Ag colloidal suspension, carried out by small-angle X-ray scattering, indicate a mass fractal composed of packaged 〈D{sub SAXS}〉 = (5 ± 1) nm particles and fractal dimension d{sub f} = 2.5. Ex situ atomic force microscopy imaging displayed well-ramified structures, which, analyzed with box-counting method, yield a fractal dimension d{sub f} = 1.67. The growing behavior of these 2d and 3d self-assembled fractals is consistent with the diffusion-limited aggregation model.

  7. Storage and retrieval of light pulses in atomic media with 'slow' and 'fast' light

    We report experimental evidence that light storage, understood as the controlled release of a light pulse by an atomic sample dependent on the past presence of a writing pulse, is not restricted to small-group-velocity media but can also occur in a negative-group-velocity medium. We present a numerical modeling in close agreement with our observations and a simple physical picture applicable to light storage experiments in both 'slow' and 'fast' light media

  8. A fast rise time high voltage pulse generator for bounded-wave EMP simulator

    A high voltage pulse generator with fast rise time is developed. The output wave of this generator is presented. The electromagnetic environment with 1.2 ns or 2.8 ns rise time and 50 ns pulse width can be produced when this generator is connected to bounded-wave EMP simulator which is used to investigate the EMP coupling effects of electrical equipment. (authors)

  9. Measurement of low calorific value of coal by pulse fast-thermal neutron analysis

    The principle of pulse fast-thermal neutron analysis (PFTNA) is introduced. PFTNA is mainly composed of the pulsed neutron generator and the BGO detector. The low calorific value of coal is measured. The multiple linear regression method is applied to deal with data solving the interferential problem of multiple elements. The results show that the error of low calorific value by PFTNA comparing with the chemical analysis is less than 0.4 MJ/kg. (authors)

  10. Fast electron transport and heating in ultraintense laser pulse interaction with solid targets

    Koenig, Michel; Amiranoff, Francois; Baton, Sophie; Gremillet, Laurent; Martinolli, Emanuele; Batani, Dimitri; Bernardinello, Andrea; Greison, Gabriella; Hall, Tom; Rabec Le Gloahec, Marc; Rousseaux, Christophe; Santos, Joao

    2000-10-01

    In the context of the fast electron transport in solid matter and the fast ignitor scheme, we report on results from ultraintense laser pulse interaction with thick targets. Experiments have been performed at LULI with the 100 TW CPA Nd:glass laser, at intensities up to a few 10^19 W/cm^2. Images obtained from classical and chirped-pulse time-resolved reflectometry diagnostics of the back-side target give evidence of the rear surface heating; the geometry and the dynamics of the energy deposition of the relativistic electrons flux into matter are also inferred.