WorldWideScience

Sample records for accelerator neutrino physics

  1. Strategies for Future Accelerator Neutrino Physics

    Accelerator neutrino (ν) physics has come back to the forefront, with the discovery of ν transitions, our first and unique window beyond the standard model. The experimental program to provide a complete map of the ν mixing matrix, including its far reaching CP violation sector, and test its unitarity constraints is likely to extend over several future decades, as it has been for quark mixing. So far, conventional ν beams based on pion (π) decay have been used and more are already being planned, at higher power (superbeams), in Japan and the US, in conjunction with larger or novel detectors. Superbeams have limited potential, however. Novel very intense beams of ν parents, longer lived than π's, accelerated and then coasted in a decay storage ring replacing the π decay tunnel, promise the ultimate reach. R and D for muon decay ring (ν factory) and ion decay ring (betabeam) experiments is thus a decisive task today.

  2. European Strategy for Accelerator-Based Neutrino Physics

    Bertolucci, Sergio; Cervera, Anselmo; Donini, Andrea; Dracos, Marcos; Duchesneau, Dominique; Dufour, Fanny; Edgecock, Rob; Efthymiopoulos, Ilias; Gschwendtner, Edda; Kudenko, Yury; Long, Ken; Maalampi, Jukka; Mezzetto, Mauro; Pascoli, Silvia; Palladino, Vittorio; Rondio, Ewa; Rubbia, Andre; Rubbia, Carlo; Stahl, Achim; Stanco, Luca; Thomas, Jenny; Wark, David; Wildner, Elena; Zito, Marco

    2012-01-01

    Massive neutrinos reveal physics beyond the Standard Model, which could have deep consequences for our understanding of the Universe. Their study should therefore receive the highest level of priority in the European Strategy. The discovery and study of leptonic CP violation and precision studies of the transitions between neutrino flavours require high intensity, high precision, long baseline accelerator neutrino experiments. The community of European neutrino physicists involved in oscillation experiments is strong enough to support a major neutrino long baseline project in Europe, and has an ambitious, competitive and coherent vision to propose. Following the 2006 European Strategy for Particle Physics (ESPP) recommendations, two complementary design studies have been carried out: LAGUNA/LBNO, focused on deep underground detector sites, and EUROnu, focused on high intensity neutrino facilities. LAGUNA LBNO recommends, as first step, a conventional neutrino beam CN2PY from a CERN SPS North Area Neutrino Fac...

  3. A Staged Muon Accelerator Facility For Neutrino and Collider Physics

    Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

    2015-01-01

    Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

  4. Neutrino physics

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  5. Neutrino Physics

    Gil-Botella, I

    2013-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

  6. Neutrino physics

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  7. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  8. Neutrino Physics

    Romanino, Andrea

    2012-01-01

    These lectures aim at providing a pedagogical overview of neutrino physics. We will mostly deal with standard neutrinos, the ones that are part of the Standard Model of particle physics, and with their standard dynamics, which is enough to understand in a coherent picture most of the rich data available. After introducing the basic theoretical framework, we will illustrate the experimental determination of the neutrino parameters and their theoretical implications, in particular for the origin of neutrino masses.

  9. Neutrino physics

    The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers

  10. Neutrino physics and astrophysics

    The plenary reports of Neutrino '80 are presented by experts in neutrino physics and astrophysics. Their International Conference on Neutrino Physics and Astrophysics was held in Erice (Italy), June 23 through 28, 1980. The proceedings include reviews of part research, the history of neutrino research and coverage of recent results and theoretical speculations. Topics include high- and low-energy neutrino astrophysics, weak charged and neutral currents, low and intermediate weak interactions, neutrino oscillations, and parity violation in atoms and nuclei conservation laws. Weak interactions in lepton-lepton and lepton-nucleon collisions, beam dump experiments, new theoretical ideas, and future developments in accelerators and detectors are also included. The topics are introduced by a historical perspective section and then grouped under the headings of neutrino astrophysics, weak charged currents, weak neutral currents, low and intermediate energy interactions, conservation laws, weak interactions in electron and hadron experiments, and a final section on future accelerator, new neutrino detection technology and concluding remarks

  11. European facilities for accelerator neutrino physics: perspectives for the decade to come

    Battiston, R; Migliozzi, P; Terranova, F

    2009-01-01

    Very soon a new generation of reactor and accelerator neutrino oscillation experiments - Double Chooz, Daya Bay, Reno and T2K - will seek for oscillation signals generated by the mixing parameter theta_13. The knowledge of this angle is a fundamental milestone to optimize further experiments aimed at detecting CP violation in the neutrino sector. Leptonic CP violation is a key phenomenon that has profound implications in particle physics and cosmology but it is clearly out of reach for the aforementioned experiments. Since late 90's, a world-wide activity is in progress to design facilities that can access CP violation in neutrino oscillation and perform high precision measurements of the lepton counterpart of the Cabibbo-Kobayashi-Maskawa matrix. In this paper the status of these studies will be summarized, focusing on the options that are best suited to exploit existing European facilities (firstly CERN and the INFN Gran Sasso Laboratories) or technologies where Europe has a world leadership. Similar consid...

  12. John Adams Lecture | Accelerator-Based Neutrino Physics: Past, Present and Future by Kenneth Long | 8 December

    2014-01-01

    John Adams Lecture: Accelerator-Based Neutrino Physics: Past, Present and Future by Dr. Kenneth Long (Imperial College London & STFC).   Monday, 8 December 2014 from 2 p.m. to 4 p.m. at CERN ( 503-1-001 - Council Chamber ) Abstract: The study of the neutrino is the study of physics beyond the Standard Model. We now know that the neutrinos have mass and that neutrino mixing occurs causing neutrino flavour to oscillate as neutrinos propagate through space and time. Further, some measurements can be interpreted as hints for new particles known as sterile neutrinos. The measured values of the mixing parameters make it possible that the matter-antimatter (CP) symmetry may be violated through the mixing process. The consequences of observing CP-invariance violation in neutrinos would be profound. To discover CP-invariance violation will require measurements of exquisite precision. Accelerator-based neutrino sources are central to the future programme and advances in technique are required ...

  13. Solar neutrinos and neutrino physics

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  14. Neutrino Physics

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  15. Neutrino Physics

    Langacker, Paul; Erler, Jens; Peinado, Eduardo

    2005-01-01

    The theoretical and experimental bases of neutrino mass and mixing are reviewed. A brief chronological evolution of the weak interactions, the electroweak Standard Model, and neutrinos is presented. Dirac and Majorana mass terms are explained as well as models such as the seesaw mechanism. Schemes for two, three and four neutrino mixings are presented.

  16. Neutrino mass and mixing, and non-accelerator experiments

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  17. Neutrino Physics with JUNO

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter,...

  18. Accelerator Neutrino Programme at FERMILAB

    The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOA. The major experiment in the beamline to DUSEL will be LBNE. (author)

  19. Experimental Neutrino Physics

    Zuber, K.

    2008-01-01

    It's been a remarkable decade in neutrino physics. Ten years ago this summer, at the 1998 neutrino conference in Takayama, the Super-Kamiokande collaboration reported the observation of neutrinos changing flavor, thereby establishing the existence of neutrino mass. A few years later, the SNO experiment solved the long-standing solar neutrino problem demonstrating that it too was due to neutrino oscillation. Just a few years after that, these effects were confirmed and the oscillation paramete...

  20. Future short-baseline sterile neutrino searches with accelerators

    A number of experimental anomalies in neutrino oscillation physics point to the existence of at least one light sterile neutrino. This hypothesis can be precisely tested using neutrinos from reactors, radioactive isotopes, and particle accelerators. The focus of these proceedings is on future dedicated short-baseline sterile neutrino searches using accelerators

  1. Accelerator studies of neutrino oscillations

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  2. Neutrino Physics with JUNO

    An, Fengpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Herve; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Goger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cecile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Mollenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M; McDonough, William F; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Bjorn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frederic; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical cor...

  3. Physics of Neutrino Oscillation

    Mondal, Spandan

    2015-01-01

    The Standard Model of particle physics describes neutrinos as massless, chargeless elementary particles that come in three different flavours. However, recent experiments indicate that neutrinos not only have mass, but also have multiple mass eigenstates that are not identical to the flavour states, thereby indicating mixing. As an evidence of mixing, neutrinos have been observed to change from one flavour to another during their propagation, a phenomenon called neutrino oscillation. We have studied the reasons and derived the probabilities of neutrino flavour change, both in vacuum and in matter. We have also studied the parameters affecting this probability. We have discussed the special case of two-neutrino oscillations. Lastly, we have discussed some basic properties of neutrinos that are reflected in the previous derivations and highlighted a few relevant open problems. To begin with, we have also studied the relevant topics in introductory High Energy Physics and Quantum Mechanics to familiarize with th...

  4. Introduction to neutrino physics

    Totsuka, Y

    2003-01-01

    An elementary particle 'neutrino' was born in Pauli's conjecture 70 years ago. Its study has made remarkable contributions to establishing the weak interactions and the electro-weak unification theory. Recently much interest has been directed to investigating the intrinsic properties of the neutrinos and important experimental results on their masses and mixings were obtained. This article introduces several experiments that have made breakthroughs in neutrino physics. Also presented is a personal view of what should be done in future to further develop neutrino physics. This article is devoted to Professor Koshiba's 2002 Nobel Prize in physics. (author)

  5. Neutrino physics with JUNO

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  6. Neutrino physics from Cosmology

    Hannestad, Steen

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties.

  7. Neutrino physics from Cosmology

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties.

  8. Physics at neutrino factories

    Peach, Kenneth J

    2001-01-01

    There is increasing interest in using intense neutrino beams from a high-energy muon storage ring-the Neutrino Factory-to make precise measurements of the lepton mixing matrix, including the T-violating phase, as well as a diverse programme of other physics.

  9. Summary: Neutrinos and nonaccelerator physics

    This paper contains brief synopsis of the following major topics discussed in the neutrino and nonaccelerator parallel sessions: dark matter; neutrino oscillations at accelerators and reactors; gamma-ray astronomy; double beta decay; solar neutrinos; and the possible existence of a 17-KeV neutrino

  10. Neutrino physics: tomorrow's directions

    Full text: Over the last few years there has been a spurt of development in neutrino physics. New experimental results have challenged existing theories. What are the puzzles today and what might be their solutions? First, we take a quick tour of some of the experimental results. Then we turn to the theoretical attempts to address these. In the end, we discuss some of the open issues and the planned experiments with special focus on the India-based Neutrino Observatory (INO) project

  11. Highlights on experimental neutrino physics

    Full text: In the last years a remarkable progress was achieved in a deeper understanding of neutrino sector. Nowadays we know all mixing angles and mass splits which govern the neutrino oscillation phenomena. The parameters of neutrino mixing were measured by combining results of different experimental approaches including accelerator beams, nuclear reactors, radiative decays and astrophysical neutrinos. Nevertheless, there are open questions which can be viewed as key points to consolidate our knowledge on the intrinsic properties of neutrinos such as mass hierarchy and the existence of a CP violation in leptonic sector. To answer these questions and also to improve the precision of the already known mixing parameters, a series of huge experimental efforts are being set up, even in a world-wide scale in some cases. In this presentation I will review the current knowledge of the fundamental properties of neutrinos and the experimental scenario in which we expect, in a time frame of a decade, to find missing pieces in the leptonic sector. The findings can strengthen the foundations of the Standard Model as well as open very interesting paths for new physics. (author)

  12. Neutrinos and physics beyond the desert

    Valle, José W F

    1997-01-01

    I review the observational status of neutrino physics, including the present hints for neutrino mass and the ways to reconcile the solar and atmospheric neutrino data with the existence of a hot dark matter component, and the possible hints from LSND. I also briefly discuss the electroweak symmetry breaking sector of the Standard Model (SM), focussing on supersymmetric models with broken R-parity and spontaneously broken lepton number. I discuss some of the signals expected at future accelerators such as LEP II and LHC. They serve to illustrate how neutrino mass effects may be testable not only at underground and nuclear physics installations but also at high energy collider experiments.

  13. Searching for Physics beyond the Standard Model with Accelerator Neutrino Experiments

    Louis, William C [Los Alamos National Laboratory

    2008-01-01

    The MiniBooNE experiment at Fermilab was designed to test the LSND evidence for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations . The first MiniBooNE oscillation result in neutrino mode shows no significant excess of events at higher energies (E{sub {nu}} > 475 MeV), although a sizeable excess is observed at lower energies (E{sub {nu}}< 475 MeV). The lack of a significant excess at higher energies allows MiniBooNE to rule out simple 2 - {nu} oscillations as an explanation of the LSND signal. However, the low-energy excess is presently unexplained. Additional antineutrino data and NuMI data may allow the collaboration to determine whether the excess is due, for example, to a neutrino neutral-current radiative interaction or to neutrino oscillations involving sterile neutrinos. If the excess is consistent with being due to sterile neutrinos, then future experiments at FNAL (BooNE) or ORNL (OscSNS) could prove their existence.

  14. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled 'Neutrino Mass and Oscillation', 'High Energy Neutrino Astrophysics', 'Detection of Dark Matter', 'Search for Strange Quark Matter', and 'Magnetic Monopole Searches'. The report is introduced by a survey of the field and a brief description of each of the author's papers

  15. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    He, Yudong [California Univ., Berkeley, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  16. Neutrino physics at reactors

    Reviewing experiments with neutrinos from reactors seems at first to be a simple task, since there were only few. But almost all of them address fundamental questions in particle physics and are of great relevance. This paper reports on these experiments which made use of some of the most sophisticated techniques available at the time they were designed. In these two respects new proposed experiments re in the tradition of the older ones

  17. Theoretical Aspects of Neutrino Physics

    Recent years have seen an extraordinary breakthrough in neutrino physics. Compelling experimental evidence indicates that, contrary to earlier believes, this fundamental particles have non zero masses and mix. Such properties are manifested in the oscillation phenomena in neutrino fluxes produced within the Sun, by cosmic rays, and in nuclear plants on the Earth, among other astrophysical and terrestrial sources. In these lecture we provide a short introduction to neutrino properties, mainly intended to give some basic elements of the physics of neutrino oscillations for beginners. We also discuss some of the theoretical questions raised on particle physics by the discovery of neutrino masses and mixings

  18. Eighty years of neutrino physics

    This is a pedagogical overview of neutrino physics from the invention of neutrino by Pauli in 1930 to the precise measurement of neutrino mass and mixing parameters via neutrino oscillation experiments in recent years. I have tried to pitch it at the level of undergraduate students, occasionally cutting corners to avoid the use of advanced mathematical tools. I hope it will be useful in introducing this exciting field to a broad group of young physicists. (author)

  19. Neutrinos in particle physics, astronomy and cosmology

    ''Neutrinos in Particle Physics, Astronomy and Cosmology'' provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. This book is intended for researchers and graduate students in the fields of particle physics, particle astrophysics and cosmology. (orig.)

  20. Working group report: Neutrino and astroparticle physics

    Raj Gandhi; Kamales Kar; S Uma Sankar; Abhijit Bandyopadhyay; Rahul Basu; Pijushpani Bhattacharjee; Biswajoy Brahmachari; Debrupa Chakraborti; M Chaudhury; J Chaudhury; Sandhya Choubey; E J Chun; Atri Desmukhya; Anindya Datta; Gautam Dutta; Sukanta Dutta; Raj Gandhi; Anjan Giri; Sourendu Gupta; Srubabati Goswami; Kamales Kar; Namit Mahajan; H S Mani; A Mukherjee; Biswarup Mukhopadhyaya; S N Nayak; M Randhawa; Subhendu Rakshit; Asim K Ray; Amitava Raychaudhuri; D P Roy; Probir Roy; Suryadeep Roy; Shiv Sethi; G Sigl; Arunansu Sil; N Nimai Singh; S Uma Sankar; Mark Vagins; Urjit Yagnik

    2003-02-01

    This is the report of neutrino and astroparticle physics working group at WHEPP-7. Discussions and work on CP violation in long baseline neutrino experiments, ultra high energy neutrinos, supernova neutrinos and water Cerenkov detectors are discussed.

  1. Neutrinos in Nuclear Physics

    McKeown, R D

    2014-01-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  2. Neutrinos in Nuclear Physics

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  3. Subpanel on accelerator-based neutrino oscillation experiments

    Neutrinos are among nature's fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called open-quotes mixing.close quotes The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary

  4. Neutrino phenomenology and unparticle physics

    Barranco, J; Miranda, O G; Moura, C A; Rashba, T I

    2009-01-01

    We show how neutrino data can be used in order to constrain the free parameters of possible extensions to the standard model of elementary particles (SM). For definiteness, we focus in the recently proposed unparticle scenario. We show that neutrino data, in particular the MUNU experiment, can set stronger bounds than previous reported limits in the scale dimension parameter for certain region (d > 1.5). We compute the sensitivity of future neutrino experiments to unparticle physics such as future neutrino-electron scattering detectors, coherent neutrino-nuclei scattering as well as the ILC . In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks.Finally our results are compared with the current astrophysical limits.

  5. Sterile Neutrino and Accelerating Universe

    Hung, P. Q.

    2000-01-01

    If all three neutrino oscillation data were to be confirmed in the near future, it is probable that one might need a sterile neutrino, in addition to the three active ones. This sterile neutrino, nu_S, would be very light with mass m_{nu_S} less than or equal to 1 eV or even with m_{\

  6. Research in Neutrino Physics

    Busenitz, Jerome [The University of Alabama

    2014-09-30

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main

  7. Non-accelerator neutrino mass searches

    Zuber, K.

    2000-01-01

    The current status of non-accelerator based searches for effects of a non-vanishing neutrino mass is reviewed. Beside the direct kinematical methods this includes searches for magnetic moments and a discussion of the solar neutrino problem. Double beta decay is not included.

  8. New phenomena in neutrino physics

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  9. New phenomena in neutrino physics

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  10. Neutrino Physics (theory)

    Langacker, Paul

    2004-01-01

    Nonzero neutrino masses are the first definitive need to extend the standard model. After reviewing the basic framework, I describe the status of some of the major issues, including tests of the basic framework of neutrino masses and mixings; the question of Majorana vs. Dirac; the spectrum, mixings, and number of neutrinos; models, with special emphasis on constraints from typical superstring constructions (which are not consistent with popular bottom-up assumptions); and other implications.

  11. Proposal of the next global accelerator neutrino facility for Europe to build or help build

    Blondel, A.

    2012-01-01

    European Strategy for accelerator-based Neutrino Physics Prepared by the program committee of the European Neutrino “Town Meeting” Massive neutrinos reveal physics beyond the Standard Model, which could have deep consequences for our understanding of the Universe. Their study should therefore receive the highest level of priority in the European Strategy. Among the many neutrino questions that experiments in different physics domains can answer, the discovery and study of leptonic CP violatio...

  12. Lepton physics versus neutrino mass

    The relationship between the strength of lepton flavour violating processes and the magnitude of the neutrino mass is rather model dependent. I review this question within different neutrino mixing models including superstring inspired models. Processes such as μ→e+γ, μ→3e, μ-e conversion in nuclei, etc. as well as lepton flavour violating Z0 decays can occur even if the physical neutrinos are strictly massless. As a result, the corresponding rates are unconstrained by bounds on the neutrino mass that follow from laboratory, astrophysics and cosmology and can therefore be large. Leptonic CP violation may also occur even when the physical neutrinos are strictly massless. (orig.)

  13. The physics of relic neutrinos

    We report on the main results presented at the workshop on the Physics of Relic Neutrinos. The study of relic neutrinos involves a broad spectrum of problems in particle physics, astrophysics and cosmology. Features of baryogenesis and leptogenesis could be imprinted in the properties of the relic neutrino sea. Relic neutrinos played a crucial role in the big bang nucleosynthesis. Being the hot component of the dark matter, they have participated in the structure formation in the universe. Although the direct detection of the sea seems impossible at this stage, there could be various indirect manifestations of these neutrinos which would allow us to study the properties of the sea both in the past and at the present epoch. (author)

  14. Solar Neutrino Physics

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters

  15. Solar Neutrino Physics

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  16. Accelerator design concept for future neutrino facilities

    Apollonio, M; Blondel, A; Bogacz, A; Brooks, S; Campagne, Jean-Eric; Caspar, D; Cavata, C; Chimenti, P; Cobb, J; Dracos, M; Edgecock, R; Efthymiopoulos, I; Fabich, A; Fernow, R; Filthaut, F; Gallardo, J; Garoby, R; Geer, S; Gerigk, F; Hanson, G; Johnson, R; Johnstone, C; Kaplan, D; Keil, E; Kirk, H; Klier, A; Kurup, A; Lettry, J; Long, K; Machida, S; McDonald, K; Méot, F; Mori, Y; Neuffer, D; Palladino, V; Palmer, R; Paul, K; Poklonskiy, A; Popovic, M; Prior, C; Rees, G; Rossi, C; Rovelli, T; Sandström, R; Sevior, R; Sievers, P; Simos, N; Torun, Y; Vretenar, M; Yoshimura, K; Zisman, M S

    2009-01-01

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and super-beam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  17. Accelerator Design Concept for Future Neutrino Facilities

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  18. Accelerator-based neutrino oscillation experiments

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  19. Luminescent Bolometer and Neutrino Physics

    Gonzalez-Mestres, Luis

    1997-01-01

    The luminescent bolometer, proposed in 1988, is now seriously considered for several applications in nuclear and particle physics: dark matter searches, double beta decays, low energy neutrino physics, heavy ion physics... It is also a very promising device for basic condensed-matter physics and chemistry experiments, and may lead to astrophysical applications. The luminescent bolometer is based on the simultaneous detection of light and phonons, allowing for particle identification and for a...

  20. Neutrino Physics at DPF 2013

    Harris, Deborah A

    2013-01-01

    The field of neutrino physics was covered at DPF 2013 in 32 talks, including three on theoretical advances and the remainder on experiments that spanned at least 17 different detectors. This summary of those talks cannot do justice to the wealth of information presented, but will provide links to other material where possible. There were allso two plenary session contributions on neutrino physics at this meeting: the current status of what we know about neutrino (oscillation) physics was outlined by Huber, and the next steps in long baseline oscillation expeirments were described by Fleming. This article covers a subset of the topics discussed at the meeting, with emphasis given to those talks that showed data or new results.

  1. Neutrino physics at LAMPF

    There are three neutrino experiments at LAMPF in various stages of completion or development. E225, the study of electron-neutrino electron scattering, which completed data taking in December 1986 and has just about completed all its analysis. E645, a search for /bar /nu///sub μ/ → /bar /nu///sub e/ oscillation, is in its third and final year of data taking. The Large Cerenkov Detector (LCD), associated with E1015, has undergone extensive scientific and technical review and we are presently trying to obtain the necessary funds to build the detector, beam line, and target. In the following, each of these experiments will be briefly discussed. Before doing so, it is useful to show the characteristics of the neutrino spectrum resulting from the decay of π+ at rest. It is also useful to realize that, on average, an 800-MeV proton from LAMPF produces about 0.1 π+ decaying at rest. 16 refs., 5 figs., 4 tabs

  2. Neutrino physics at Gran Sasso Laboratory

    Bettini, A

    2001-01-01

    Experiments in underground laboratories have shown strong evidence of physics beyond the standard model. The anomalies observed in electron-neutrinos from the Sun and muon-neutrinos from cosmic rays interactions in the atmosphere can be explained if neutrino oscillate and are massive. The physics program at the Gran Sasso Laboratory that we are defining will be focussed on the next phase of neutrino physics with a complementary set of experiments on the muon-neutrino beam from CERN (CNGS project), on solar neutrinos, on atmospheric neutrinos and on neutrinos from supernova explosion. The relevant thermonuclear cross-sections will be measured. The Majorana vs. Dirac nature of electron neutrinos will be explored with the search for neutrino-less double beta decays in different isotopes. (13 refs).

  3. Neutrino physics in the spotlight

    2009-01-01

    Following on from the Council recommendation made in Lisbon in 2006 and responding to the needs of a large community of scientists, CERN will organize the European Strategy for Future Neutrino Physics workshop on 1-3 October. One of the main goals of the workshop is to start establishing a roadmap for the coherent participation of Europe in neutrino physics."The format of the workshop will consist of invited talks to present the current situation and future possibilities; unlike other workshops, 30% of the time will be reserved for discussion", explains Ewa Rondio from the organising committee. "Resources for future neutrino experiments will be difficult to acquire. A coordinated approach and the participation of a large community of interested scientists are undoubtedly crucial factors". The workshop will be the opportunity to highlight the areas where substantial research and development activities are required in order to design the facilities of the next decade. "The w...

  4. The future of neutrino physics

    2009-01-01

    On 1-3 October, CERN held the first workshop to discuss the strategy that Europe should follow in the field of neutrino physics. Many members of the neutrino physics community from all over the world participated in the workshop, demonstrating the vitality and interest of this research field. The European Strategy for Future Neutrino Physics workshop is the second of a series of workshops organized by CERN to coordinate efforts and define strategies for the future of physics research in Europe. The first workshop was organized in May; it outlined the best projects that have excellent scientific goals and for which CERN’s facilities are unique. Currently, these projects are being discussed within the community and in the CERN scientific committees. The same bottom-up approach was taken for the organisation of this second workshop that focussed on neutrino physics. More than 250 people participated and 44 posters were presented in a separate session. Unlike in the first workshop, the focus was not on specif...

  5. Hadron production measurements to constrain accelerator neutrino beams

    Korzenev, Alexander

    2014-01-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the neutrino flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted lat...

  6. Physics Potential of Solar Neutrino Experiments

    Balantekin, A. B.; Yuksel, H.

    2003-01-01

    We discuss the physics potential of the solar neutrino experiments i) To explore the parameter space of neutrino mass and mixings; ii) To probe the physics of the Sun; iii) To explore nuclear physics of the neutrino-target interactions. Examples are given for these three classes.

  7. Low-energy neutrino physics and neutrino mass

    Boehm, F.; Vogel, P.

    1984-01-01

    Among the principal concerns in neutrino physics today are the questions of whether neutrinos are massive and, if so, whether the neutrinos emitted in a weak decay are pure or mixed quantum states. The concept of mixed neutrinos has been with us for more than 20 years, having first been introduced by Maki et al (1) and by Pontecorvo (2) following demonstration in 1962 that more than one type (flavor) of neutrino existed. After having been dormant for some time, the interest in these issues wa...

  8. Recent developments in neutrino physics

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of bar νe mass via beta endpoint studies; status of solar neutrino observations; status of ''17-keV neutrino'' reports; and the use of νp elastic scattering to determine the ''strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs

  9. Neutrino oscillations, seesaw mechanism and the quest for new physics

    Miranda, O G

    2016-01-01

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, have brought neutrino physics to the precision era. Apart from dedicated leptonic CP violation studies, upcoming experiments should probe the unitarity of the lepton mixing matrix. These will shed light on the scale of new physics, such as the seesaw scale, and thereby guide us towards what could be the next step in particle physics. Moreover these efforts may also bring the key to elucidate some of the current cosmological puzzles.

  10. Working group report: Astroparticle and neutrino physics

    Raj Gandhi; Subhendra Mohanty; Tarun Souradeep; S Agarwalla; K Bhattacharya; B Brahmachari; R Crittenden; S Goswami; P Ghoshal; M Lindner; H S Mani; S Mitra; S Pascoli; S Panda; R Rangarajan; S Ray; T Roy Choudhury; R Saha; S Sarkar; A Srivastava; R Sheth; S Uma Sankar; U Yajnik

    2006-10-01

    The working group on astroparticle and neutrino physics at WHEPP-9 covered a wide range of topics. The main topics were neutrino physics at INO, neutrino astronomy and recent constraints on dark energy coming from cosmological observations of large scale structure and CMB anisotropy.

  11. Experimental Neutrino Physics: Final Report

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  12. Neutrinos, a window on new physics

    van Holten, J W

    2014-01-01

    This paper reviews some aspects of the physics of neutrinos, in particular neutrino masses and the issue of Dirac versus Majorana neutrinos. The see-saw mechanism is described and it is argued that the Majorana nature of neutrinos can be tested by measuring the invisible decays of the Higgs particle, as its decay into neutrinos is determined by their Yukawa couplings, i.e. the Dirac masses, rather than the physical Majorana masses. The measurement would allow us to probe the scale M of the large Majorana masses for right-handed singlet neutrinos. The optimal machine for performing such a measurement would be a future electron-positron collider.

  13. Neutrino physics with IceCube

    The IceCube Neutrino Observatory is an ice Cherenkov detector under construction at the South Pole, Antarctica. When completed, the physical volume of the detector will be approximately one km3. The Observatory will be sensitive to a number of topics in fundamental neutrino physics, such as neutrino oscillations and decay, by virtue of its ability to distinguish neutrino flavours over a wide range of neutrino energies. We present the status of the construction of the Observatory, some recent analysis results, a brief discussion of its sensitivity to fundamental neutrino parameters and planning currently underway for low and high energy extensions to the baseline array

  14. The neutrino factory and related accelerator R and D

    A muon-based neutrino factory, encompassing high power proton accelerators, innovations in rapid acceleration techniques for unstable particles, and initiatives such as ionisation cooling, provides a rich and varied source of high-energy R and D. Over the last ten years, the UK has played a leading role in progress towards a large-scale neutrino facility, both at national and international level, and now seeks to move to the next phase with preparation of an International Design Study report for publication in 2010. The basic principles of the project are outlined here, with emphasis on the major problems still to be overcome. Much of the development work relates to other areas of accelerator science - such as spallation neutron sources, used for research in condensed matter physics - and the way in which such projects interact and benefit from each other is also described

  15. Physics Needs for Future Accelerators

    Lykken, J D

    2000-01-01

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  16. Neutrino physics with an intense \

    Henning, R

    2010-01-01

    We study some of the physics potential of an intense $1\\,\\mathrm{MCi}$ $^{51}\\mathrm{Cr}$ source combined with the {\\sc Majorana Demonstrator} enriched germanium detector array. The {\\sc Demonstrator} will consist of detectors with ultra-low radioactive backgrounds and extremely low energy thresholds of~$\\sim 400\\,\\mathrm{eV}$. We show that it can improve the current limit on the neutrino magnetic dipole moment. We briefly discuss physics applications of the charged-current reaction of the $^{51}\\mathrm{Cr} neutrino with the $^{73}\\mathrm{Ge} isotope. Finally, we argue that the rate from a realistic, intense tritium source is below the detectable limit of even a tonne-scale HPGe experiment

  17. Muon Acceleration Concepts for Future Neutrino Factory

    Bogacz, Slawomir Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.

  18. PREFACE: Nobel Symposium 129 on Neutrino Physics

    Bergström, Lars; Botner, Olga; Carlson, Per; Hulth, Per Olof; Ohlsson, Tommy

    2005-01-01

    Nobel Symposium 129 on Neutrino Physics was held at Haga Slott in Enköping, Sweden during August 19 24, 2004. Invited to the symposium were around 40 globally leading researchers in the field of neutrino physics, both experimental and theoretical. In addition to these participants, some 30 local researchers and graduate students participated in the symposium. The dominant theme of the lectures was neutrino oscillations, which after several years were recently verified by results from the Super-Kamiokande detector in Kamioka, Japan and the SNO detector in Sudbury, Canada. Discussion focused especially on effects of neutrino oscillations derived from the presence of matter and the fact that three different neutrinos exist. Since neutrino oscillations imply that neutrinos have mass, this is the first experimental observation that fundamentally deviates from the standard model of particle physics. This is a challenge to both theoretical and experimental physics. The various oscillation parameters will be determined with increased precision in new, specially designed experiments. Theoretical physics is working intensively to insert the knowledge that neutrinos have mass into the theoretical models that describe particle physics. It will probably turn out that the discovery of neutrino oscillations signifies a breakthrough in the description of the very smallest constituents of matter. The lectures provided a very good description of the intensive situation in the field right now. The topics discussed also included mass models for neutrinos, neutrinos in extra dimensions as well as the `seesaw mechanism', which provides a good description of why neutrino masses are so small. Also discussed, besides neutrino oscillations, was the new field of neutrino astronomy. Among the questions that neutrino astronomy hopes to answer are what the dark matter in the Universe consists of and where cosmic radiation at extremely high energies comes from. For this purpose, large neutrino

  19. Neutrino physics with nuclear reactors

    This is a lecture given at the Gif Summer School held in 1992 in Montpellier. It contains three chapters. These are devoted to neutrino oscillations, to the nuclear reactors used as neutrino sources, and to the experiments performed with neutrinos from nuclear reactors, respectively. The first chapter offers a theoretical frame, the second discusses the investigation capabilities of nuclear reactors as neutrino sources while the last one describes the experimental aspects. These aspects are related to the neutrino flux measurement and the flavor oscillation, the search for neutrino oscillation, the neutrino scattering on electrons, the neutrino decay, the coherent neutrino scattering on nuclei and the electron neutrino-electron antineutrino oscillations implied by the Majorana nature of neutrinos. In concluding the author points to the possible ways of refining these extremely subtle experiments, which will be approached in the near future. 117 refs., 9 figs., 11 tabs

  20. Particle physics confronts the solar neutrino problem

    This review has four parts. In Part I, we describe the reactions that produce neutrinos in the sun and the expected flux of those neutrinos on the earth. We then discuss the detection of these neutrinos, and how the results obtained differ from the theoretical expectations, leading to what is known as the solar neutrino problem. In Part II, we show how neutrino oscillations can provide a solution to the solar neutrino problem. This includes vacuum oscillations, as well as matter enhanced oscillations. In Part III, we discuss the possibility of time variation of the neutrino flux and how a magnetic moment of the neutrino can solve the problem. WE also discuss particle physics models which can give rise to the required values of magnetic moments. In Part IV, we present some concluding remarks and outlook for the recent future

  1. On the physics of massive neutrinos

    Zuber, K.

    1998-01-01

    Massive neutrinos open up the possibility for a variety of new physical phenomena. Among them are oscillations and double beta decay. Furthermore they influence several fields from particle physics to cosmology. In this article the concept of massive neutrinos is given and the current status of experimental research is extensively reviewed. This includes astrophysical studies of solar, supernova and very high energy neutrinos. Future perspectives are also outlined.

  2. Neutrino Factory: Physics and R and D Status

    In recent years exciting experimental discoveries have shown that neutrino flavors oscillate, and hence that neutrinos have nonzero masses and mixings. The Standard Model needs to be modified to accommodate neutrino mass terms, which require either the existence of right-handed neutrinos to create Dirac mass terms, and/or a violation of lepton number conservation to create Majorana mass terms. The observation that neutrino masses and mass-splittings are tiny compared to the masses of any of the other fundamental fermions suggests radically new physics, which perhaps originates at the GUT or Planck Scale, or perhaps indicates the existence of new spatial dimensions. Whatever the origin of the observed neutrino masses and mixings is, it will certainly require a profound extension to our picture of the physical world. The first step towards understanding this new physics is to pin down the measurable parameters, and address the first round of basic questions: (1) Are there only three neutrino flavors, or do light sterile neutrinos exist? Are there any other deviations to three-flavor mixing? (2) There is one angle θ13 in the mixing matrix which is unmeasured. Is it non-zero? (3) We don't know the mass-ordering of the neutrino mass eigenstates. There are two possibilities, the so-called ''normal'' or ''inverted'' hierarchies. Which is right? (4) There is one complex phase (delta) in the mixing matrix which is accessible to neutrino oscillation measurements. If both θ13 and sin (delta) are non-zero there will be CP Violation in the lepton sector. Is sin (delta) non-zero? (5) What precisely is the value of the lightest neutrino mass and are neutrino masses generated by Majorana mass terms, Dirac mass terms, or both? All of these questions, with the exception of the last one, can in principle be addressed by accelerator-based neutrino oscillation experiments. However, getting all of the answers will not be easy, and will require the right experimental tools. A Neutrino

  3. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the delta m**2 about equals 1-eV**2 region

    Schmitz, David W.; /Columbia U.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the {Delta}m{sup 2} {approx} 1 eV{sup 2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  4. PREFACE: Neutrino physics at spallation neutron sources

    Avignone, F. T.; Chatterjee, L.; Efremenko, Y. V.; Strayer, M.

    2003-11-01

    Unique because of their super-light masses and tiny interaction cross sections, neutrinos combine fundamental physics on the scale of the miniscule with macroscopic physics on the scale of the cosmos. Starting from the ignition of the primal p-p chain of stellar and solar fusion reactions that signal star-birth, these elementary leptons (neutrinos) are also critical players in the life-cycles and explosive deaths of massive stars and the production and disbursement of heavy elements. Stepping beyond their importance in solar, stellar and supernova astrophysics, neutrino interactions and properties influence the evolution, dynamics and symmetries of the cosmos as a whole. Further, they serve as valuable probes of its material content at various levels of structure from atoms and nuclei to valence and sea quarks. In the light of the multitude of physics phenomena that neutrinos influence, it is imperative to enhance our understanding of neutrino interactions and properties to the maximum. This is accentuated by the recent evidence of finite neutrino mass and flavour mixing between generations that reverberates on the plethora of physics that neutrinos influence. Laboratory experiments using intense neutrino fluxes would allow precision measurements and determination of important neutrino reaction rates. These can then complement atmospheric, solar and reactor experiments that have enriched so valuably our understanding of the neutrino and its repertoire of physics applications. In particular, intermediate energy neutrino experiments can provide critical information on stellar and solar astrophysical processes, along with advancing our knowledge of nuclear structure, sub-nuclear physics and fundamental symmetries. So where should we look for such intense neutrino sources? Spallation neutron facilities by their design are sources of intense neutrino pulses that are produced as a by-product of neutron spallation. These neutrino sources could serve as unique laboratories

  5. Neutrinos: The Big Question and Physics Opportunities

    Strauss, Thomas

    2015-01-01

    This article summarises a talk given at the 2014 Palermo workshop on Astrophysics. It covers a short review on the neutrino physics status and the potential physics opportunities of future experiments. During the last year our knowledge on the neutrino oscillation parameter $\\sin^2\\theta_{13}$ improved dramatically, and the large value opened the way to oscillation experiments sensitive to possible CP-violation. The first high-energetic neutrinos in the TeV range were detected in the IceCube experiment, while the Planck collaboration set further limits on the number of active neutrinos from cosmological constraints. Over the next years the Katrin will investigate the beta decay of Tritium to study the absolute neutrino mass scale, while new experiments will investigate the potential sterile neutrino scenario which could explain the event excess of the MiniBooNE and LSND experiment.

  6. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  7. Academic Training: Neutrino Physics, Present and Future

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29, 30 November, 1st December, from 11:00 to 12:00 - TH Auditorium, bldg 4 - 3 - 006 Neutrino Physics, Present and Future B. KAYSER / Fermilab, USA Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny....

  8. Academic Training: Neutrino Physics, Present and Future

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29, 30 November, 1st December, from 11:00 to 12:00 - TH Auditorium, bldg 4 - 3 - 006 Neutrino Physics, Present and Future B. KAYSER, Fermilab, USA Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny....

  9. Nuclear physics accelerator facilities

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  10. Neutrinos and Physics Beyond the Standard Model

    Valle, José W F

    1997-01-01

    A brief sketch is made of the present observational status of neutrino physics, with emphasis on the hints that follow from solar and atmospheric neutrino observations, as well as cosmological data on the amplitude of primordial density fluctuations. I also briefly review the ways to account for the observed anomalies and some of their implications.

  11. Neutrino Interactions Importance for Nuclear Physics

    Amaro, J. E.; Maieron, C.; Valverde, M.; Nieves, J.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udias, J. M.

    2009-01-01

    We review the general interplay between Nuclear Physics and neutrino-nucleus cross sections at intermediate and high energies. The effects of different reaction mechanisms over the neutrino observables are illustrated with examples in calculations using several nuclear models and ingredients.

  12. Neutrino physics at a muon collider

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed

  13. Dimensional deconstruction and neutrino physics

    We present a simple observation for neutrino mixings and masses which arise naturally in dimensional deconstruction models. There are two essential ingredients of such models: (i) the presence of a symmetry mediated by the link fields which results in the neutrino mixings to be maximal; and (ii) a large deconstruction scale which gives rise to a small neutrino mass, similar in feature to the seesaw mechanism

  14. Dimensional Deconstruction and Neutrino Physics

    Balaji, K R S

    2005-01-01

    We present a simple observation for neutrino mixings and masses which arises naturally in dimensional deconstruction models. There are two essential ingredients of such models: (i) the presence of a symmetry mediated by the link fields which results in the neutrino mixings to be maximal; and (ii) a deconstruction scale which for large values gives rise to a small neutrino mass, similar in feature to the seesaw mechanism.

  15. Physics Potential of Very Intense Conventional Neutrino Beams

    Gómez-Cadenas, J J; Burguet-Castell, J; Casper, David William; DOnega, M; Gilardoni, S S; Hernández, Pilar; Mezzetto, Mauro

    2001-01-01

    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.

  16. Neutrinos

    de Gouvea, A; Scholberg, K; Zeller, G P; Alonso, J; Bernstein, A; Bishai, M; Elliott, S; Heeger, K; Hoffman, K; Huber, P; Kaufman, L J; Kayser, B; Link, J; Lunardini, C; Monreal, B; Morfin, J G; Robertson, H; Tayloe, R; Tolich, N; Abazajian, K; Akiri, T; Albright, C; Asaadi, J; Babu, K S; Balantekin, A B; Barbeau, P; Bass, M; Blake, A; Blondel, A; Blucher, E; Bowden, N; Brice, S J; Bross, A; Carls, B; Cavanna, F; Choudhary, B; Coloma, P; Connolly, A; Conrad, J; Convery, M; Cooper, R L; Cowen, D; da Motta, H; de Young, T; Di Lodovico, F; Diwan, M; Djurcic, Z; Dracos, M; Dodelson, S; Efremenko, Y; Ekelof, T; Feng, J L; Fleming, B; Formaggio, J; Friedland, A; Fuller, G; Gallagher, H; Geer, S; Gilchriese, M; Goodman, M; Grant, D; Gratta, G; Hall, C; Halzen, F; Harris, D; Heffner, M; Henning, R; Hewett, J L; Hill, R; Himmel, A; Horton-Smith, G; Karle, A; Katori, T; Kearns, E; Kettell, S; Klein, J; Kim, Y; Kim, Y K; Kolomensky, Yu; Kordosky, M; Kudenko, Yu; Kudryavtsev, V A; Lande, K; Lang, K; Lanza, R; Lau, K; Lee, H; Li, Z; Littlejohn, B R; Lin, C J; Liu, D; Liu, H; Long, K; Louis, W; Luk, K B; Marciano, W; Mariani, C; Marshak, M; Mauger, C; McDonald, K T; McFarland, K; McKeown, R; Messier, M; Mishra, S R; Mosel, U; Mumm, P; Nakaya, T; Nelson, J K; Nygren, D; Gann, G D Orebi; Osta, J; Palamara, O; Paley, J; Papadimitriou, V; Parke, S; Parsa, Z; Patterson, R; Piepke, A; Plunkett, R; Poon, A; Qian, X; Raaf, J; Rameika, R; Ramsey-Musolf, M; Rebel, B; Roser, R; Rosner, J; Rott, C; Rybka, G; Sahoo, H; Sangiorgio, S; Schmitz, D; Shrock, R; Shaevitz, M; Smith, N; Smy, M; Sobel, H; Sorensen, P; Sousa, A; Spitz, J; Strauss, T; Svoboda, R; Tanaka, H A; Thomas, J; Tian, X; Tschirhart, R; Tully, C; Van Bibber, K; Van de Water, R G; Vahle, P; Vogel, P; Walter, C W; Wark, D; Wascko, M; Webber, D; Weerts, H; White, C; White, H; Whitehead, L; Wilson, R J; Winslow, L; Wongjirad, T; Worcester, E; Yokoyama, M; Yoo, J; Zimmerman, E D

    2013-01-01

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  17. Physics prospects of future neutrino oscillation experiments in Asia

    Hagiwara, K

    2004-01-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the poten...

  18. Reactor Neutrino Physics -- An Update

    Boehm, Felix

    1999-01-01

    We review the status and the results of reactor neutrino experiments. Long baseline oscillation experiments at Palo Verde and Chooz have provided limits for the oscillation parameters while the recently proposed Kamland experiment at a baseline of more than 100km is now in the planning stage. We also describe the status of neutrino magnetic moment experiments at reactors.

  19. Neutrino physics and precision cosmology

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos.

  20. Neutrino physics and precision cosmology

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  1. Evidence and Search for Sterile Neutrinos at Accelerators

    W. C. Louis

    2013-01-01

    Full Text Available The LSND short-baseline neutrino experiment has published evidence for antineutrino oscillations at a mass scale of ~1 eV2. The MiniBooNE experiment, designed to test this evidence for oscillations at an order of magnitude higher neutrino energy and distance, observes excesses of events in both neutrino mode and antineutrino mode. While the MiniBooNE neutrino excess has a neutrino energy spectrum that is softer than expected from LSND, the MiniBooNE antineutrino excess is consistent with neutrino oscillations and with the LSND oscillation signal. When combined with oscillation measurements at the solar and atmospheric mass scales, assuming that the LSND and MiniBooNE signals are due to neutrino oscillations, these experiments imply the existence of more than three neutrino mass states and, therefore, one or more sterile neutrinos. Such sterile neutrinos, if proven to exist, would have a big impact on particle physics, nuclear physics, and astrophysics and would contribute to the dark matter of the universe. Future experiments under construction or proposed at Fermilab, ORNL, CERN, and in Japan will provide a definitive test of short-baseline neutrino oscillations and will have the capability of proving the existence of sterile neutrinos.

  2. Working group report: Neutrino and astroparticle physics

    Srubabati Goswami; Raghavan Rangarajan; K Agashe; A Bandyopadhyay; K Bhattacharya; B Brahmachari; C Burgess; E J Chun; D Choudhury; P K Das; A Dighe; A Godbole; S Goswami; N Gupta; M Kaplinghat; D Indumathi; J Forshaw; Y Y Keum; B Layek; D Majumdar; N Mahajan; P Mehta; R N Mohapatra; N Mondal; S More; N Nir; S Pakvasa; M K Parida; M Ravikumar; G Rajasekaran; P Ramadevi; R Rangarajan; S D Rindani; D P Roy; P Roy; N Sahu; A samanta; Y Shadmi; A M Srivastava; S Uma Sankar; R Vaidya; U Yajnik

    2004-12-01

    This is the report of neutrino and astroparticle physics working group at WHEPP-8. We present the discussions carried out during the workshop on selected topics in the above fields and also indicate progress made subsequently. The neutrino physics subgroup studied the possibilities of constraining neutrino masses, mixing and CPT violation in lepton sector from future experiments. Neutrino mass models in the context of Abelian horizontal symmetries, warped extra dimensions and in the presence of triplet Higgs were studied. Effect of threshold corrections on radiative magnification of mixing angles was investigated. The astroparticle physics subgroup focused on how various particle physics inputs affect the CMBR fluctuation spectrum, and on brane cosmology. This report also contains an introduction on how to use the publicly available code CMBFAST to calculate the CMBR fluctuations.

  3. Accelerator and radiation physics

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  4. Accelerator physics and technology research toward future multi-MW proton accelerators

    Shiltsev, V; Romanenko, A; Valishev, A; Zwaska, R

    2015-01-01

    Recent P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program. Operation, upgrade and development of the accelerators for the near-term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss accelerator physics and technology research toward future multi-MW proton accelerators.

  5. JUNO: a General Purpose Experiment for Neutrino Physics

    Grassi, Marco

    2016-01-01

    JUNO is a 20 kt Liquid Scintillator Antineutrino Detector currently under construction in the south of China. This report reviews JUNO's physics programme related to all neutrino sources but reactor antineutrinos, namely neutrinos from supernova burst, solar neutrinos and geoneutrinos.

  6. Neutrino discoveries lead to precision measurements

    Altmann, M

    2002-01-01

    The science of neutrino physics has reached a watershed, with discovery giving way to precision measurements. The author reports from the XXth International Conference on Neutrino Physics and Astrophysics. Topics covered are low-energy neutrinos, atmospheric neutrinos, long-baseline experiments, accelerator experiments, neutrino properties, neutrinos in astrophysics and cosmology, dark matter and neutrino telescopes.

  7. An Experimental Program in Neutrinos, Nucleon Decay and Astroparticle Physics Enabled by the Fermilab Long-Baseline Neutrino Facility

    Diwan, Milind; Elbnf Collaboration

    2015-04-01

    A Letter of Intent has been submitted by a new International Team to pursue an accelerator-based long-baseline neutrino experiment, as well as neutrino astrophysics and nucleon decay, with an approximately 40-kt (fiducial) modular liquid argon TPC (LAr-TPC) detector located deep underground and a high-resolution near detector. Several independent worldwide efforts, developed through years of detailed studies, are converging around the opportunity provided by the megawatt neutrino beam facility planned at Fermilab and by the new significant expansion with improved access at the Sanford Underground Research Facility in South Dakota, 1,300 km from Fermilab. The principle goals of this experiment are: a comprehensive investigation of neutrino oscillations to test CP violation in the lepton sector, determine the ordering of the neutrino masses, and test the three-neutrino paradigm; to perform a broad set of neutrino scattering measurements with the near detector; and to exploit the large, high-resolution, underground far detector for non-accelerator physics topics including atmospheric neutrino measurements, searches for nucleon decay, and measurement of astrophysical neutrinos especially those from a core-collapse supernova.

  8. Nuclear physics accelerator facilities

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  9. Nuclear Physics accelerator facilities

    The Nuclear Physics program requires the existence and effective operation of large and complex accelerator facilities. These facilities provide the variety of projectile beams upon which virtually all experimental nuclear research depends. Their capability determine which experiments can be performed and which cannot. Seven existing accelerator facilities are operated by the Nuclear Physics program as national facilities. These are made available to all the Nation's scientists on the basis of scientific merit and technical feasibility of proposals. The national facilities are the Clinton P. Anderson Meson Physics Facility (LAMPF) at Los Alamos National Laboratory; the Bates Linear Accelerator Center at Massachusetts Institute of Technology; the Bevalac at Lawrence Berkeley Laboratory; the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory; the ATLAS facility at Argonne National Laboratory; the 88-Inch Cyclotron at Lawrence Berkeley Laboratory; the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory. The Nuclear Physics Injector at the Stanford Linear Accelerator Center (SLAC) enables the SLAC facility to provide a limited amount of beam time for nuclear physics research on the same basis as the other national facilities. To complement the national facilities, the Nuclear Physics program supports on-campus accelerators at Duke University, Texas A and M University, the University of Washington, and Yale University. The facility at Duke University, called the Triangle Universities Nuclear Laboratory (TUNL), is jointly staffed by Duke University, North Carolina State University, and the University of North Carolina. These accelerators are operated primarily for the research use of the local university faculty, junior scientists, and graduate students

  10. Neutrino factory and beta beam: accelerator options for future neutrino experiments

    Zisman, Michael S.

    2012-06-03

    Two accelerator options for producing intense neutrino beams a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions are described. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science.

  11. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters

  12. Physics prospects of future neutrino oscillation experiments in Asia

    Hagiwara, Kaoru [Theory Division, KEK, Tsukuba 305-0801 (Japan)

    2004-12-15

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Cerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying {nu}{sub {mu}}->{nu}{sub e} and {nu}-bar {sub {mu}}->{nu}-bar {sub e} oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Cerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the

  13. Physics prospects of future neutrino oscillation experiments in Asia

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Cerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying νμ->νe and ν-bar μ->ν-bar e oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Cerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the three neutrino model parameters

  14. Physics prospects of future neutrino oscillation experiments in Asia

    Hagiwara, Kaoru

    2004-12-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Čerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying ν→ν and ν→ν oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Čerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the three neutrino model parameters.

  15. Flavor physics: kaons, charm, beauty, taus and neutrinos

    The summary of the presentations at the workshop on Heavy Flavor Physics, Part II at the International Lecture and Workshop Series: ''Frontiers in Contemporary Physics: Fundamental Particles and Interactions'' should include a wide variety of topics in flavor physics. This paper provides a brief selection from each presentation to give a flavor of the session. Results on the production and decays of taus, kaons, charm and beauty particles are reported. The results from several experiments that have looked for neutrino oscillations at accelerator based experiments are also discussed, including new results from LSND using neutrinos produced in pion decay in flight. Projections and plans for several ongoing and future experiments in flavor physics are discussed

  16. Long baseline accelerator neutrino experiments present and future

    Rubbia, André

    2000-01-01

    A nu /sub mu / disappearance effect has been seen in atmospheric neutrino experiments. This has led to the "evidence for neutrino oscillations". The next problem in neutrino physics is to perform the right experiment(s) to elucidate in a comprehensive way the pattern of neutrino masses and mixings. The long baseline experiments will play a fundamental role at settling definitively the question of flavor oscillation and at measuring with good precision the oscillation parameters. The CERN-NGS beam coupled with the proposed ICANOE and OPERA detectors is the only programme capable of sensitive tau and electron appearance searches. (14 refs).

  17. Collection and acceleration of muons for the neutrino factory project

    The neutrino factory project is an international cooperation project of a complex of accelerators aimed at the production of an intense flow of neutrinos from the decay of a muon beam. After an introduction to this project and a general presentation of the accelerator complex, this research thesis reports transmission investigations performed on a quadric-polar muon collecting canal, recalls the concepts of dynamic beam in a circular accelerator, and describes and comments the different types of Fixed Field Alternating Gradient (FFAG) accelerators considered for the acceleration of muons. It discusses the development of the Zgoubi's corpuscular optics code in terms of trajectory tracing method for FFAG accelerators. Finally, it reports and comments results of a numerical simulation of beam dynamics performed on muon FFAG accelerators

  18. Non-accelerator particle physics

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are currently engaged in construction of the MACRO detector, an Italian-American collaborative research instrument with a total particle acceptance of 10,000 m2sr, which will perform a sensitive search for magnetic monopoles using excitation-ionization methods. Other major objective of the MACRO experiment are to search for astrophysical high energy neutrinos expected to be emitted by such objects as Vela X-1, LMC X-4 and SN-1987A and to search for low energy neutrino bursts from gravitational stellar collapse. We are also working on BOREX, a liquid scintillation solar neutrino experiment and GRANDE, a proposed very large area surface detector for astrophysical neutrinos, and on the development of new techniques for liquid scintillation detection

  19. Solar neutrino physics in the nineties

    Wilkerson, J.F.

    1990-12-31

    The decade of the 1990`s should prove to be landmark period for the study of solar neutrino physics. Current observations show 2--3 times fewer neutrinos coming from the sun than are theoretically expected. As we enter the decade, new experiments are poised to attempt and discover whether this deficit is a problem with our understanding of how the sun works, is a hint of new neutrino properties beyond those predicted by the standard model of particle physics, or perhaps a combination of both. This paper will briefly review the current status of the field and point out how future measurements should help solve this interesting puzzle. 11 refs., 3 figs., 1 tab.

  20. Pulsar acceleration by asymmetric emission of sterile neutrinos

    Nardi, E; Nardi, Enrico; Zuluaga, Jorge I.

    2001-01-01

    A convincing explanation for the observed pulsar large peculiar velocities is still missing. We argue that any viable particle physics solution would most likely involve the resonant production of a non-interacting neutrino $\

  1. Physics of neutrino flavor transformation through matter-neutrino resonances

    Wu, Meng-Ru; Qian, Yong-Zhong

    2015-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  2. Neutrino physics at very high energies

    Sciulli, F.; Barish, B.; Ford, W.; Oddone, P.; Peck, C.; /Caltech; Maschke, A.; /Fermilab; Barish, B.; /Caltech

    1970-06-01

    NAL presents the opportunity to expand our knowledge of neutrino interactions from energies of less than 10 GeV up to more than 300 GeV. We propose an exploratory experiment which is designed to emphasize the physics of very high energy interactions ({approx}300 GeV).

  3. Selected Topics in Majorana Neutrino Physics

    Maiani, Luciano

    2014-01-01

    Starting from the original Majorana's article of 1937, the see-saw mechanism is illustrated, first for one and later for three neutrino generations, and neutrinoless double beta decay is considered. Neutrino mixing and oscillations in three flavors are described. The Yukawa couplings to the Higgs field of quarks and leptons are considered, their transformation properties under the corresponding flavor groups are spelled and the principle of Minimal Flavor Violation is illustrated, in connection with possible new physics beyond the Standard Theory. The idea that the Yukawa couplings may be the vacuum expectation value of some new fields is introduced and natural extrema of potentials which are invariant under quark and lepton flavor groups are characterized. A recent result indicating large mixing of almost degenerate neutrinos is derived from the heavy lepton invariance under flavor ${\\cal O}(3)$.

  4. Probing Exotic Physics With Supernova Neutrinos

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  5. Heavy neutrinos in particle physics and cosmology

    Drewes, Marco

    2015-01-01

    Neutrinos are the only particles in the Standard Model of particle physics that have only been observed with left handed chirality to date. If right handed neutrinos exist, they would not only explain the observed neutrino oscillations, but could also be responsible for several phenomena in cosmology, including the baryon asymmetry of the universe, dark matter and dark radiation. A crucial parameter in this context is their Majorana mass, which in principle could lie anywhere between the eV scale and GUT scale. The implications for experiments and cosmology strongly depend on the choice of the mass scale. We review recent progress in the phenomenology of right handed neutrinos with different masses, focusing on scenarios in which the mass is at least a keV. We emphasise the possibility to discover heavy neutrinos that are responsible for the baryon asymmetry of the universe via low scale leptogenesis in near future experiments, such as LHC, BELLE II, SHiP, FCC-ee or CEPC.

  6. Hadron production measurements to constrain accelerator neutrino beams

    Korzenev, Alexander

    2015-07-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming xF scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments - NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) - are reviewed.

  7. Hadron production measurements to constrain accelerator neutrino beams

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming xF scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments – NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) – are reviewed

  8. Pionic Photons and Neutrinos from Cosmic Ray Accelerators

    Halzen, Francis

    2011-01-01

    Identifying the accelerators that produce the Galactic and extragalactic cosmic rays has been a priority mission of several generations of high energy gamma ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes, and the construction of CTA, a ground-based gamma ray detector that will map and study candidate sources with unprecedented precision. In this paper, we revisit the prospects for revealing the sources of the cosmic rays by a multiwavelength approach; after reviewing the methods, we discuss supernova remnants, gamma ray bursts, active galaxies and GZK neutrinos in some detail.

  9. Neutrino Experiments and Their Implications

    Balantekin, A. B.

    2004-01-01

    Recent developments in solar, reactor, and accelerator neutrino physics are reviewed. Implications for neutrino physics, solar physics, nuclear two-body physics, and r-process nucleosynthesis are briefly discussed.

  10. Neutrino oscillation study in the muon neutrino → electron neutrino channel at the Brookhaven accelerator

    The E816 experiment described in this thesis is devoted to a neutrino oscillation search at the Brookhaven AGS. The method used here is to look with a fine grained calorimeter for the appearence of electron neutrino in a muon neutrino beam. After recalling the theoretical treatment of the neutrino mass problem, the experimental phenomenology of massive neutrinos and more specifically neutrino oscillations is reviewed. The experiment itself is then extensively described, both on the technical side (detector, beam, simulation) and on the analysis side. In particular the statistical separation of the electromagnetic showers from electrons - our signal - and from photons - our background - treated in detail. The present analysis is based on 2/3 of the final statistics and it leads to the - preliminary - observation of an electron excess in the neutrino interactions yielding 19 ± 15.6 (stat) ± 7 (syst)

  11. VLHC accelerator physics

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  12. Physics of neutrino flavor transformation through matter–neutrino resonances

    Meng-Ru Wu

    2016-01-01

    Full Text Available In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  13. Non-accelerator particle physics

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the νIMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs

  14. Physics Needs for Future Accelerators

    Lykken, Joseph D.

    2000-01-01

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics dr...

  15. Post-acceleration study for neutrino super-beam at CSNS

    WU Yang; TANG Jing-Yu

    2013-01-01

    A post-acceleration system based on the accelerators at CSNS (China Spallation Neutron Source) is proposed to build a super-beam facility for neutrino physics.Two post-acceleration schemes,one using superconducting dipole magnets in the main ring and the other using room temperature magnets,have been studied,both to achieve the final proton energy of 128 GeV and the beam power of 4 MW by taking 10% of the CSNS beam from the neutron source.The main design features and the comparison for the two schemes are presented.The CSNS super-beam facility will be very competitive in long-baseline neutrino physics studies,compared with other super-beam facilities proposed in the world.

  16. Childhood and youth of neutrino physics: some reminiscences

    History of neutrino physics, which is devided into four periods is presented briefly. The first period (1896-1930)- neutrino physics origin. The second period (1930 - the beginning of 1050tth) - childhood of neurino physics. The third period (1941-1959) - youth of neutrino physics. The fourth period(1960 - the beginning of 1980th) - maturity of neutrino physics. The following achievements are considered in detail: the neutrino prediction by W.Pauli; the development of the theory of beta decay by E.Fermi and the problem of the real neutrality of electrically neutral fermions by E.Majorana. The problem of neutrino detection by means of chlorine-argon method is discussed. Some data, obtained in physics of high-energy neutrinos are described

  17. Cosmic neutrinos as a probe of TeV-scale physics

    Ultra-high energy cosmic neutrinos are versatile probes of astrophysics, astronomy, and particle physics. They represent the messengers of hadronic processes in cosmic accelerators and survive the propagation through the interstellar medium practically unscathed. We investigate the neutrino fluxes associated with optically thin proton sources which provide a diagnostic of the transition between galactic and extragalactic cosmic rays. The center of mass energies in collisions of these cosmic neutrinos with atomic nuclei in the atmosphere or the Earth's interior easily exceed those so far reached in man-made accelerators. We discuss the prospects of observing supersymmetric neutrino interactions with Cherenkov telescopes and speculate about a neutrino component in extremely high energy cosmic rays from exotic interactions in the atmosphere. (orig.)

  18. Workshop on low energy neutrino physics

    The main topics of the workshop are: the determination of the neutrino mixing angle theta-13, the experiments concerning the monitoring of reactors based on the measurement of neutrino spectra, solar neutrinos, supernovae neutrinos, geo-neutrinos, neutrino properties, neutrinoless double beta decay and future low energy neutrino detectors. This document gathers together the program of the workshop, the slides of the presentations, some abstracts and some posters

  19. Neutrino and Z gauge boson physics

    Larios, F. [Departamento de Fisica Aplicada, CINVESTAV-Merida, A.P. 73, 97310 Merida, Yucatan (Mexico); Perez, M. A. [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000, Mexico D.F (Mexico)

    2013-06-12

    We present a short review of the physics of neutrino-photon interactions and the rare decays of the Z and Z Prime gauge bosons. In particular, we emphasize on processes induced by the anomalous trilinear and quartic vertices VVV and VVVV, where V=Z,Z Prime or a photon, within the Standard Model (SM), the 331 model and some extensions of the SM. We also include the phenomenological and experimental limits reported for these couplings.

  20. Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande

    Asfandiyarov, Ruslan; Blondel, Alain; Bravar, Alessandro; Haegel, Leïla; Haesler, Alexis; Karadzhov, Yordan Ivanov; Korzenev, Alexander; Martin Mari, Carlos; Noah Messomo, Etam Albert; Ravonel Salzgeber, Melody; Rayner, Mark; Scantamburlo, Enrico; Collaboration,, , CMS

    2015-01-01

    Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the...

  1. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (Beta Beams), one based on decays of stored muon beams (Neutrino Factory), and one based on the decays of an intense pion beam (Superbeam). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  2. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  3. Connecting neutrino physics with dark matter

    The origin of neutrino masses and the nature of dark matter are two in most pressing open questions in modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the seesaw mechanism, as in the majoron and sterile neutrino scenarios. We present the theoretical motivation for both models and discuss their phenomenology, confronting the predictions of these scenarios with cosmological and astrophysical observations. Finally, we discuss the possibility that the stability of dark matter originates from a flavor symmetry of the leptonic sector. We review a proposal based on an A4 flavor symmetry. (paper)

  4. Magnetic micro-calorimeters for neutrino physics

    Metallic magnetic micro-calorimeters are energy dispersive detectors operated at temperatures below 0.1 Kelvin. Their resolving power E/ ΔE approaching 5000, the intrinsic response time well below 1 μs and the excellent linearity make magnetic micro-calorimeters very attractive for numerous experiments. With such detectors we have performed the first high resolution calorimetric measurements of the 163Ho electron capture spectrum. The achieved performance motivated the formation of the international collaboration ECHo (Electron Capture in 163Ho) to investigate the electron neutrino mass in the sub-eV range using the 163Ho. For the search of neutrinoless double beta decay in 100Mo with scintillating crystals, we have developed photon and phonon detectors based on metallic magnetic calorimeters to be used in the experiments AMoRE and LUMINEU. In this talk, the ECHo experiment as well as the other applications of metallic magnetic calorimeters for neutrino physics will be discussed.

  5. Gamma Rays and Neutrinos from a Powerful Cosmic Accelerator

    Mannheim, K

    1993-01-01

    Recent measurements of gamma rays from the powerful quasar 3C273 by the Compton Gamma Ray Observatory show that a powerful cosmic accelerator must be operating. In this paper the evidence for proton acceleration is collected with the result that (i) the gamma ray spectrum should flatten slightly above a few GeV and that (ii) high energy neutrinos from the decay of photomesons are difficult to observe, although the power carried by these particles is as large as the gamma ray power. However, the power is concentrated at energies in the EeV range, whereas in the TeV-PeV range neutrinos from pp and p$\\alpha$ collisions dominate due to their steeper spectrum. Consequently, the flux of cosmic neutrinos from flat spectrum radio sources such as 3C273 in the energy range relevant for proposed underwater or underice detectors could be much lower than inferred from assuming the same spectrum for gamma rays and neutrinos.

  6. Neutrinos from Cosmic Accelerators including Magnetic Field and Flavor Effects

    Walter Winter

    2012-01-01

    Full Text Available We review the particle physics ingredients affecting the normalization, shape, and flavor composition of astrophysical neutrinos fluxes, such as different production modes, magnetic field effects on the secondaries (muons, pions, and kaons, and flavor mixing, where we focus on pγ interactions. We also discuss the interplay with neutrino propagation and detection, including the possibility to detect flavor and its application in particle physics, and the use of the Glashow resonance to discriminate pγ from pp interactions in the source. We illustrate the implications on fluxes and flavor composition with two different models: (1 the target photon spectrum is dominated by synchrotron emission of coaccelerated electrons and (2 the target photon spectrum follows the observed photon spectrum of gamma-ray bursts. In the latter case, the multimessenger extrapolation from the gamma-ray fluence to the expected neutrino flux is highlighted.

  7. The Intermediate Neutrino Program

    Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  8. Particle Physics Meets Cosmology -- The Search for Decaying Neutrinos.

    Henry, Richard C.

    1982-01-01

    Detection of neutrino decay may have profound consequences for both particle physics and cosmology, providing a deep connection between physics of the very large and physics of the very small. Describes this link and discusses the nature and status of the search for decaying neutrinos. (Author/JN)

  9. Nuclear Physics and Astrophysics of Neutrino Oscillations

    Balantekin, A B

    2016-01-01

    For a long time very little experimental information was available about neutrino properties, even though a minute neutrino mass has intriguing cosmological and astrophysical implications. This situation has changed in recent decades: intense experimental activity to measure many neutrino properties took place. Some of these developments and their implications for astrophysics and cosmology are briefly reviewed with a particular emphasis on neutrino magnetic moments and collective neutrino oscillations

  10. Accelerator-based Short-baseline Neutrino Oscillation Experiments

    Gollapinni, Sowjanya

    2015-01-01

    Over the last two decades, several experiments have reported anomalous results that could be hinting at the exciting possibility of sterile neutrino states in the $eV^{2}$ mass scale. Liquid Argon Time Projection Chambers (LArTPCs) are a particularly promising technology to explore this physics due to their fine-grained tracking and exceptional calorimetric capabilities. The MicroBooNE experiment, a 170 ton LArTPC scheduled to start taking data very soon with Fermilab's Booster Neutrino Beam (BNB), will combine LArTPC development with the main physics goal of understanding the low-energy electromagnetic anomaly seen by the MiniBooNE experiment. Looking towards the future, MicroBooNE will become a part of the \\textit{short-baseline neutrino} program which expands the physics capabilities of the BNB in many important ways by adding additional LArTPC detectors to search for light sterile neutrinos and bring a definitive resolution to the set of existing experimental anomalies. This paper will give an overview of...

  11. Effects of Beyond Standard Model Physics on GRB Neutrinos

    Moharana, Reetanjali

    2013-01-01

    The nondetection of neutrinos coming from Gamma Ray Bursts (GRBs) by the IceCube experiment has raised serious questions on our understanding of GRB's and the mechanism of neutrino flux production in them. Motivated by this and the need for a precise calculation for GRB neutrino flux, here we study the effects of beyond standard model physics on the GRB neutrino flux. In the internal shock model of GRB, high energy neutrinos are expected from muon, pion and kaon decays. Using the latest best fit neutrino oscillation parameters, we compute the expected flux on earth for standard as well as non-standard oscillation scenarios. Among the non-standard scenarios, we consider neutrino decay, pseudo-dirac nature of neutrinos and presence of one eV scale light sterile neutrino. Incorporating other experimental bounds on these new physics scenarios, we show that neutrino decay scenario can significantly alter the neutrino flux on earth from the expected ones whereas the corresponding changes for pseudo-dirac and steril...

  12. Physics Projects for a Future CERN-LNGS Neutrino Programme

    Picchi, P

    1999-01-01

    We present an overview of the future projects concerning the neutrino oscillation physics in Europe. Recently a joint CERN-LNGS scientific committee has reviewed several proposals both for the study of atmospheric neutrinos and for long (LBL) and short baseline (SBL) neutrino oscillation experiments. The committee has indicated the priority that the European high energy physics community should follows in the field of neutrino physics, namely a new massive, atmospheric neutrino detector and a nu_tau appearance campaign exploiting the new CERN-LNGS Neutrino Facility (NGS), freshly approved by CERN and INFN. The sensitivity and the discovery potential of the whole experimental program in the Super-Kamiokande allowed region are discussed.

  13. Accelerator science in medical physics

    Peach, K.; Wilson, P.; Jones, B

    2011-01-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered sin...

  14. Current and future constraints on neutrino physics from cosmology

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, we review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties

  15. Particle accelerator physics

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  16. Future accelerators (?)

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made

  17. Future accelerators (?)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  18. Neutrino and astroparticle physics: Working group report

    S Mohanty; U A Yajnik

    2000-07-01

    The contributions made to the Working Group activities on neutrinos and astrophysics are summarized in this article. The topics discussed were inflationary models in Raman–Sundrum scenarios, ultra high energy cosmic rays and neutrino oscillations in 4 flavour and decaying neutrino models

  19. Planck-scale physics and neutrino masses

    We discuss gravitationally induced masses and mass splittings of Majorana, Zeldovich-Konopinski-Mahmoud and Dirac neutrinos. Among other implications, these effects can provide a solution of the solar neutrino puzzle. In particular, we show how this may work in the 17 keV neutrino picture. (author). 18 refs

  20. Physics from solar neutrinos in dark matter direct detection experiments

    David G. Cerdeño; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Boehm, Céline

    2016-01-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos...

  1. Physics prospects of future neutrino oscillation experiments in Asia

    Hagiwara, Kaoru

    2004-01-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of...

  2. The Standard Model of Particle Physics. Neutrino Oscillations

    Giacomelli, Giorgio

    2009-01-01

    The Standard Model (SM) of Particle Physics was tested to great precision by experiments at the highest energy colliders (LEP, Hera, Tevatron, SLAC). The only missing particle is the Higgs boson, which will be the first particle to be searched for at the new Large Hadron Collider (LHC) at CERN. The SM anticipated that there are 3 types of left handed neutrinos. Experiments on atmospheric and solar neutrinos (made in Japan, Italy, Canada, Russia and the US) have shown the existence of neutrino...

  3. Physics Potential of a Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Abe, K; Andreopoulos, C; Anghel, I; Ariga, A; Ariga, T; Asfandiyarov, R; Askins, M; Back, J J; Ballett, P; Barbi, M; Barker, G J; Barr, G; Bay, F; Beltrame, P; Berardi, V; Bergevin, M; Berkman, S; Berry, T; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bolognesi, S; Boyd, S B; Bravar, A; Bronner, C; Cafagna, F S; Carminati, G; Cartwright, S L; Catanesi, M G; Choi, K; Choi, J H; Collazuol, G; Cowan, G; Cremonesi, L; Davies, G; De Rosa, G; Densham, C; Detwiler, J; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Emery, S; Ereditato, A; Fernández, P; Feusels, T; Finch, A; Fitton, M; Friend, M; Fujii, Y; Fukuda, Y; Fukuda, D; Galymov, V; Ganezer, K; Gonin, M; Gumplinger, P; Hadley, D R; Haegel, L; Haesler, A; Haga, Y; Hartfiel, B; Hartz, M; Hayato, Y; Hierholzer, M; Hill, J; Himmel, A; Hirota, S; Horiuchi, S; Huang, K; Ichikawa, A K; Iijima, T; Ikeda, M; Imber, J; Inoue, K; Insler, J; Intonti, R A; Irvine, T; Ishida, T; Ishino, H; Ishitsuka, M; Itow, Y; Izmaylov, A; Jamieson, B; Jang, H I; Jiang, M; Joo, K K; Jung, C K; Kaboth, A; Kajita, T; Kameda, J; Karadhzov, Y; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, J Y; Kim, S B; Kishimoto, Y; Kobayashi, T; Koga, M; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W R; Kudenko, Y; Kutter, T; Kuze, M; Labarga, L; Lagoda, J; Laveder, M; Lawe, M; Learned, J G; Lim, I T; Lindner, T; Longhin, A; Ludovici, L; Ma, W; Magaletti, L; Mahn, K; Malek, M; Mariani, C; Marti, L; Martin, J F; Martin, C; Martins, P P J; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; Mezzetto, M; Minakata, H; Minamino, A; Mine, S; Mineev, O; Miura, M; Monroe, J; Mori, T; Moriyama, S; Mueller, T; Muheim, F; Nakahata, M; Nakamura, K; Nakaya, T; Nakayama, S; Needham, M; Nicholls, T; Nirkko, M; Nishimura, Y; Noah, E; Nowak, J; Nunokawa, H; O'Keeffe, H M; Okajima, Y; Okumura, K; Oser, S M; O'Sullivan, E; Ovsiannikova, T; Owen, R A; Oyama, Y; Pérez, J; Pac, M Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Pistillo, C; Playfer, S; Posiadala-Zezula, M; Poutissou, J -M; Quilain, B; Quinto, M; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A; Redij, A; Retiere, F; Riccio, C; Richard, E; Rondio, E; Rose, H J; Ross-Lonergan, M; Rott, C; Rountree, S D; Rubbia, A; Sacco, R; Sakuda, M; Sanchez, M C; Scantamburlo, E; Scholberg, K; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Shaikhiev, A; Shimizu, I; Shiozawa, M; Short, S; Sinnis, G; Smy, M B; Sobczyk, J; Sobel, H W; Stewart, T; Stone, J L; Suda, Y; Suzuki, Y; Suzuki, A T; Svoboda, R; Tacik, R; Takeda, A; Taketa, A; Takeuchi, Y; Tanaka, H A; Tanaka, H K M; Tanaka, H; Terri, R; Thompson, L F; Thorpe, M; Tobayama, S; Tolich, N; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vagins, M R; Vasseur, G; Vogelaar, R B; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilson, J R; Xin, T; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Zito, M

    2015-01-01

    Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW $\\times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56\\times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam, it is expected that the leptonic $CP$ phase $\\delta_{CP}$ can be determined to better than 19 degrees for all possible values of $\\delta_{CP}$, and $CP$ violation can be establis...

  4. Invisible Higgs decays and neutrino physics

    A wide class of neutrino physics motivated models are characterized by the spontaneous violation of a global U(1) lepton number symmetry at or below the electroweak scale by an SU(2)xU(1) singlet vacuum expectation value < or ∼O(1) TeV. In all these models the main Higgs decay channel is likely to be 'invisible', e.g. h→JJ, where J denotes the associated weakly interacting pseudoscalar Goldstone boson - the majoron. This leads to events with large missing energy that could be observable at LEP and affect the Higgs mass bounds obtained, as well as lead to novel ways to search for Higgs bosons and high-energy supercolliders such as the LHC/SSC. (orig.)

  5. Workshop: Neutrino telescopes

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  6. Neutrino Oscillation Physics Potential of the T2K Experiment

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodr'iguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; King, S; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Riccio, C; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; S'anchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shaker, F; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-01-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle $\\theta_{13}$ have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal $\\sin^22\\theta_{23}$, the octant of $\\theta_{23}$, and the mass hierarchy, in addition to the measurements of $\\delta_{CP}$, $\\sin^2\\theta_{23}$, and $\\Delta m^2_{32}$, for various combinations of $\

  7. The Nuclear Physics of Solar and Supernova Neutrino Detection

    Haxton, W. C.

    1999-01-01

    This talk provides a basic introduction for students interested in the responses of detectors to solar, supernova, and other low-energy neutrino sources. Some of the nuclear physics is then applied in a discussion of nucleosynthesis within a Type II supernova, including the r-process and the neutrino process.

  8. Particle Physics Seminar: Towards 3+1 Neutrino Mixing

    Geneva University

    2011-01-01

    GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday  12 October  2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium “Towards 3+1 Neutrino Mixing” Par Prof. Carlo Giunti, INFN Torino I will review the recent experimental indications in favor of  short-baseline neutrino oscillations. I will discuss their interpretation in the framework of neutrino mixing schemes with one or more sterile neutrinos which have masses around the eV scale. Taking into account also cosmological constraints, I will present arguments in favor of 3+1 neutrino mixing with one sterile neutrino at the eV scale. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor

  9. Future perspectives in neutrino physics: The Laguna-LBNO case

    Buizza Avanzini, M

    2013-01-01

    LAGUNA-LBNO is a Design Study funded by the European Commission to develop the de- sign of a deep underground neutrino observatory; its physics program involves the study of neutrino oscillations at long baselines, the investigation of the Grand Unication of elemen- tary forces and the detection of neutrinos from known and unknown astrophysical sources. Building on the successful format and on the ndings of the previous LAGUNA Design Study, LAGUNA-LBNO is more focused and is specically considering Long Baseline Neutrino Oscil- lations (LBNO) with neutrino beams from CERN. Two sites, Frejus (in France at 130 km) and Pyhasalmi (in Finland at 2300 km), are being considered. Three dierent detector technolo- gies are being studied: Water Cherenkov, Liquid Scintillator and Liquid Argon. Recently the LAGUNA-LBNO consortium has submitted an Expression of Interest for a very long baseline neutrino experiment, selecting as a rst priority the option of a Liquid Argon detector at Pyhasalmi.

  10. Nuclear physics accelerator facilities

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  11. An Absence of Neutrinos Associated with Cosmic Ray Acceleration in Gamma-Ray Bursts

    Abbasi, R; Abu-Zayyad, T; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Besson, D Bertrand D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Buitink, S; Caballero-Mora, K S; Carson, M; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; Silva, A H Cruz; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Degner, T; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Dunkman, M; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, B; Homeier, A; Hoshina, K; Huelsnitz, W; Hülβ, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nowicki, S C; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Heros, C Pérez de los; Piegsa, A; Pieloth, D; Posselt, J; Price, P B; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rizzo, A; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Smith, M W E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Stüer, M; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M

    2012-01-01

    Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

  12. Accelerator physics and modeling: Proceedings

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings

  13. Solar neutrino physics with Borexino I

    Ludhova, L; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Avanzini, M Buizza; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Nef, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kayunov, A; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolenksy, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Perasso, S; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, P A; Sabelnikov, A; Saldanha, R; Salvo, C; Schoenert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; Von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2012-01-01

    Borexino is a large-volume liquid scintillator detector installed in the underground halls of the Laboratori Nazionali del Gran Sasso in Italy. After several years of construction, data taking started in May 2007. The Borexino phase I ended after about three years of data taking. Borexino provided the first real time measurement of the $^{7}$Be solar neutrino interaction rate with accuracy better than 5% and confirmed the absence of its day-night asymmetry with 1.4% precision. This latter Borexino results alone rejects the LOW region of solar neutrino oscillation parameters at more than 8.5 $\\sigma$ C.L. Combined with the other solar neutrino data, Borexino measurements isolate the MSW-LMA solution of neutrino oscillations without assuming CPT invariance in the neutrino sector. Borexino has also directly observed solar neutrinos in the 1.0-1.5 MeV energy range, leading to the first direct evidence of the $pep$ solar neutrino signal and the strongest constraint of the CNO solar neutrino flux up to date. Borexi...

  14. A theoretical perspective on neutrino physics

    A survey of sin2 θW, ρ, CKM matrix, and axial-isoscalar neutral current measurements via neutrino scattering is presented. Loop effects due to heavy top or a fourth generation are described. Neutrino oscillations are discussed in a three generation mixing framework and some motivation for νμ → ντ oscillation searches is given. 15 refs., 1 tab

  15. Mass of neutrino and particle physics

    Yanagida, T

    2003-01-01

    We give a brief review on the seesaw mechanism in a grand unified theory which predicts small neutrino masses. In the seesaw mechanism the lepton-number conservation is broken and neutrinos have Majorana type masses. We also explain why the lepton-number nonconservation can be an origin of the baryon-number asymmetry in the present universe. (author)

  16. Physics possibilities at India-based Neutrino Observatory

    S Uma Sankar; INO Collaboration

    2006-10-01

    In this talk I review the physics possible at India-based Neutrino Observatory (INO). I discuss the improvement in the precision of currently known quantities and the possibility measuring the presently unknown quantities.

  17. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual

    Andreopoulos, Costas [Univ. of Liverpool (United Kingdom). Dept. of Physics; Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Particle Physics Dept.; Barry, Christopher [Univ. of Liverpool (United Kingdom). Dept. of Physics; Dytman, Steve [Univ. of Pittsburgh, PA (United States). Dept. of Physics and Astronomy; Gallagher, Hugh [Tufts Univ., Medford, MA (United States). Dept. of Physics and Astronomy; Golan, Tomasz [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Rochester, NY (United States). Dept. of Physics and Astronomy; Hatcher, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Perdue, Gabriel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarba, Julia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-10-20

    GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.

  18. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual

    Andreopoulos, Costas; Dytman, Steve; Gallagher, Hugh; Golan, Tomasz; Hatcher, Robert; Perdue, Gabriel; Yarba, Julia

    2015-01-01

    GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.

  19. Accelerator science in medical physics.

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future. PMID:22374548

  20. PREFACE: 1st Franco-Algerian Workshop on Neutrino Physics

    Mebarki, N.; Mimouni, J.; Vanucci, F.; Aissaoui, H.

    2015-04-01

    The first Franco-Algerian workshop on neutrino physics was held on 22-23 October 2013 at the University of Mentouri, Constantine, Algeria. It was jointly organized by the Laboratory of Mathematical and Subatomic Physics (LPMS) and the Direction of Scientific Research (DGRSTD) for the Algerian side, and for the French part by the IN2P3, CNRS and CEA IRFU. It is one of a series of international scientific meetings organized every two years by the LPMS at Constantine on high energy physics (theoretical, nuclear physics, classical and quantum cosmology, astrophysics, mathematical physics and quantum computing etc...) to maintain a high quality in scientific research and education at Algerian universities. This specific meeting brought together experts in particle physics, astrophysics and cosmology from France and Algeria. It touched upon several theoretical, phenomenological as well as experimental aspects of the neutrinos. The workshop participants were mostly young researchers from many universities and research institutes in Algeria. The physics of neutrinos is a very active field in particle physics, hence the importance for the High Energy community in Algeria to gain expertise in this ''strategic'' area at the intersection of various topics in theoretical physics and high energy astrophysics (SM physics, CP violation, in general, SNe explosions, baryogenesis...). The neutrino proposed by Pauli back in 1930 as a ''desperate remedy'' to save the law of energy conservation in beta decay had a bright early history. Discovered in 1956 in the Cowan-Reines experiment despite all odds, this elusive particle which enabled us to understand the chiral nature of the weak interactions which later lead to the electro-weak unification finally appears to hold a key role in understanding subatomic physics as well as the structure and structuration of the Universe. It is also, after the discovery of the Higgs particle at the LHC in 2012, the only grey area left today in the

  1. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  2. A silicon detector for neutrino physics

    Kokkonen, J

    2002-01-01

    In order to demonstrate the feasibility of conducting future muon neutrino - tau neutrino oscillation searches using a high-resolution, large-area silicon microstrip detector, the Silicon TARget (STAR) detector was built. STAR was installed in the NOMAD short baseline neutrino oscillation experiment at the CERN SPS neutrino beam, where it recorded approximately 10000 neutrino interactions during the operation of the detector in the period 1997-98. It consists of five layers of silicon detectors interleaved with four layers of passive boron carbide as the target. The target mass is 45 kg, while the total silicon surface area is 1.14 square-meters and contains 32000 readout channels. The individual modules have a length of 72 cm, the longest built to date. The detection of tau particles, produced in tau neutrino charged-current interactions, would require a tracking detector with a precision of a few tens of microns in order to measure the position of the neutrino interaction vertex as well as the impact parame...

  3. Megaton Modular Multi-Purpose Neutrino Detector for a Program of Physics in the Homestake DUSEL

    Diwan, M V; Marciano, W; Viren, B; Svoboda, R; Frati, W; Lande, K; Mann, A K; Van Berg, R; Klein, J R

    2003-01-01

    This is a preliminary version of a formal proposal by the 3M collaboration to construct a megaton, modular, multipurpose (3M) neutrino detector for a program of experiments in neutrino physics. The detector components will be located in chambers approximately 7000 ft below the Earth's surface in the Homestake Mine at Lead, South Dakota, to carry out experiments on neutrino oscillations directed toward the principal experimental goal of the program, viz., the issue of CP-invariance violation in the lepton sector of elementary particles, an issue that has been the subject of study in the quark sector for several decades. The principal physics goal of this program also requires a moderately intense neutrino beam from an accelerator located a long distance from the detector array, such as the 2540 km distance of BNL from Homestake. The construction plan for that neutrino beam is at http://nwg.phy.bnl.gov/. Other experimental searches that do not require the accelerator-generated beam can be carried out with the 3...

  4. Neutrino Factory

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  5. Theoretical and Phenomenological Status of Neutrino Physics: A Brief Review

    We present an overview of recent progress in the theoretical and phenomenological studies of neutrino masses, lepton avor mixing, and CP violation. Firstly, We discuss the status of neutrino mass with in the Standard Model (SM) of particle physics. Then the possible ways in which neutrino mass terms can be included in the SM are discussed. The inclusion of new physics beyond the SM inevitably brings new parameters which are not constrained by the present experimental data on neutrino masses and mixing angles and, thus, are free parameters of the theory. We, also, discuss various theoretically motivated phenomenological approaches which can be used to reduce the number of free parameters and, thus, provide an excellent tool to understand the underlying physics of neutrino masses and mixings. Current experimental constraints on the neutrino mass spectrum and the lepton avor mixing parameters, including the recent observation of nonzero θ13, have been summarized. Finally, We discuss the renewed interest in the possible existence of one or more sterile neutrinos and their phenomenology

  6. Light Sterile Neutrinos in Particle Physics: Experimental Status

    Lasserre, Thierry

    2014-01-01

    Most of the neutrino oscillation results can be explained by the three-neutrino paradigm. However several anomalies in short baseline oscillation data could be interpreted by invoking a hypothetical fourth neutrino, separated from the three standard neutrinos by a squared mass difference of more than 0.1 eV$^2$. This new neutrino, often called sterile, would not feel standard model interactions but mix with the others. Such a scenario calling for new physics beyond the standard model has to be either ruled out or confirmed with new data. After a brief review of the anomalous oscillation results we discuss the world-wide experimental proposal aiming to clarify the situation.

  7. Metal-loaded organic scintillators for neutrino physics

    Buck, Christian

    2016-01-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  8. Neutrino mass in elementary-particle physics and in big bang cosmology

    Some theoretical aspects of a nonzero value for the neutrino rest mass and its possible implications for physics are discussed. The nature of the neutrino mass is analyzed, as well as the physical consequences that may derive from the existence of new helicity states for the neutrino or from lepton charge nonconservation if the mass is of Dirac or Majorana character, respectively. Massive neutrinos are examined in the context of grand unified theories combining the weak, strong, and electromagnetic interactions. Searches for neutrino-mass effects in β decay and for neutrino oscillations are reviewed. Several astrophysical effects of the neutrino mass are described: solar-neutrino oscillations, the decay of primordial neutrinos, the feasibility of detecting massive primordial neutrinos experimentally. The predictions of big bang theory regarding the neutrino number density in the universe are analyzed, and a discussion is given of the influence neutrino oscillations might have on the neutrino density and on cosmological nucleosynthesis

  9. Infancy and youth of neutrino physics: some recollections

    The lecture on the history of neutrino physics is given. It is a collection of a few short, stories. Two of these, about Pauli and Fermi. A story about Ma orana work on Majorana fermions, which is following, has been covered much less extensively. There follow a few recollections, related to the experimental and theoretical work of the author in proposing and developing the Cl-A method of neutrino detection, in establishing the notion of weak processes and in proposing a new type of weak interaction investigations - high energy neutrino experiments

  10. Constraints on New Physics from Long Baseline Neutrino Oscillation Experiments

    Honda, Minako; Kao, Yee; Okamura, Naotoshi; Pronin, Alexey; Takeuchi, Tatsu

    2007-01-01

    New physics beyond the Standard Model can lead to extra matter effects on neutrino oscillation if the new interactions distinguish among the three flavors of neutrino. In a previous paper, we argued that a long-baseline neutrino oscillation experiment in which the Fermilab-NUMI beam in its high-energy mode is aimed at the planned Hyper-Kamiokande detector would be capable of constraining the size of those extra effects, provided the vacuum value of \\sin^2 2\\theta_{23} is not too close to one....

  11. Compensation Techniques in Accelerator Physics

    Sayed, Hisham Kamal [Old Dominion Univ., Norfolk, VA (United States)

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  12. Physics from solar neutrinos in dark matter direct detection experiments

    Cerdeño, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Bœhm, Céline

    2016-01-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle sin2θWto date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neu...

  13. The physics of neutrino cross sections: theoretical studies

    Alvarez-Ruso, Luis

    2016-01-01

    The present status of neutrino cross section physics is reviewed focusing on the recent theoretical developments in quasielastic scattering, multi-nucleon contributions to the inclusive scattering and pion production on nucleons and nuclei. A good understanding of these processes is crucial to meet the precision needs of neutrino oscillation experiments. Some of the challenges that arise in the consistent description of MiniBooNE and MINERvA recent data are discussed.

  14. The Acceleration Scale, Modified Newtonian Dynamics and Sterile Neutrinos

    Diaferio, Antonaldo; Angus, Garry W.

    General relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the universe is dark, namely, it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^{-10} m s^{-2}. In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining MOND with hot dark matter made of sterile neutrinos seems to be able to describe most of the astrophysical phenomenology, from the power spectrum of the cosmic microwave background anisotropies to the dynamics of dwarf galaxies. Whether there exists a yet unknown covariant theory that contains general relativity and Newtonian gravity in the weak field limit and MOND as the ultra-weak field limit is still an open question.

  15. Neutrino scattering physics with the SHiP Experiment

    Di Crescenzo, Antonia

    2016-01-01

    SHiP (Search for Hidden Particles) is a new general purpose fixed target facility, proposed at the CERN SPS accelerator. In its initial phase the 400 GeV protons beam will be dumped on a heavy target with the aim of integrating $2 \\times 10^{20}$ pot in five years. A dedicated detector downstream the target will allow to probe a variety of models with the light long-lived exotic particles and masses below O(10) GeV/c2. Another dedicated detector will allow the study of active neutrino cross-sections and angular distributions. In particular, the neutrino deep-inelastic cross-sections will be performed with a statistics 1000 times larger than currently available, with the extraction of the F4 and F5 structure functions, never measured so far. Tau neutrinos will be distinguished by anti-neutrinos, thus providing the first observation of the tau anti-neutrino. With muon neutrinos it will be possible to study the strangeness content of the nucleon.

  16. Neutrino scattering physics with the SHiP Experiment

    AUTHOR|(CDS)2083090

    2015-01-01

    SHiP (Search for Hidden Particles) is a new general purpose fixed target facility, proposed at the CERN SPS accelerator. In its initial phase the 400 GeV protons beam will be dumped on a heavy target with the aim of integrating 2 × 1020 pot in five years. A dedicated detector downstream the target will allow to probe a variety of models with the light long-lived exotic particles and masses below O(10) GeV/c2. Another dedicated detector will allow the study of active neutrino cross-sections and angular distributions. In particular, the neutrino deep-inelastic cross-sections will be performed with a statistics 1000 times larger than currently available, with the extraction of the F4 and F5 structure functions, never measured so far. Tau neutrinos will be distinguished by anti-neutrinos, thus providing the first observation of the tau anti-neutrino. With muon neutrinos it will be possible to study the strangeness content of the nucleon.

  17. Particle physics meets cosmology - The search for decaying neutrinos

    Henry, R. C.

    1982-01-01

    The fundamental physical implications of the possible detection of massive neutrinos are discussed, with an emphasis on the Grand Unified Theories (GUTs) of matter. The Newtonian and general-relativistic pictures of the fundamental forces are compared, and the reduction of electromagnetic and weak forces to one force in the GUTs is explained. The cosmological consequences of the curved-spacetime gravitation concept are considered. Quarks, leptons, and neutrinos are characterized in a general treatment of elementary quantum mechanics. The universe is described in terms of quantized fields, the noninteractive 'particle' fields and the force fields, and cosmology becomes the study of the interaction of gravitation with the other fields, of the 'freezing out' of successive fields with the expansion and cooling of the universe. While the visible universe is the result of the clustering of the quark and electron fields, the distribution of the large number of quanta in neutrino field, like the mass of the neutrino, are unknown. Cosmological models which attribute anomalies in the observed motions of galaxies and stars to clusters or shells of massive neutrinos are shown to be consistent with a small but nonzero neutrino mass and a universe near the open/closed transition point, but direct detection of the presence of massive neutrinos by the UV emission of their decay is required to verify these hypotheses.

  18. Project X and its connection to neutrino physics

    Project X is a new high intensity proton source that is being planned at Fermilab to usher in a new era of high intensity physics. The high intensity frontier can provide a wealth of new measurements--the most voracious consumer of protons is the long baseline neutrino program, but with the proton source upgrades being planned there are even more protons available than current neutrino targets can withstand. Those protons can provide a rich program on their own of muon physics and neutrino scattering physics that is complimentary to the long baseline program. In this article we discuss the physics motivation for Project X that comes from these short baseline experiments, and also the status of the design of this new source and what it will take to move forward on that design

  19. Project X and its connection to neutrino physics

    Harris, Deborah; Jansson, Andreas; /Fermilab

    2008-10-01

    Project X is a new high intensity proton source that is being planned at Fermilab to usher in a new era of high intensity physics. The high intensity frontier can provide a wealth of new measurements--the most voracious consumer of protons is the long baseline neutrino program, but with the proton source upgrades being planned there are even more protons available than current neutrino targets can withstand. Those protons can provide a rich program on their own of muon physics and neutrino scattering physics that is complimentary to the long baseline program. In this article we discuss the physics motivation for Project X that comes from these short baseline experiments, and also the status of the design of this new source and what it will take to move forward on that design.

  20. Neutrino physics and the mirror world: how exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment

    Evidence for ν-barμ → ν-bare oscillations has been reported at LAMPF using the LSND detector. Further evidence for neutrino mixing comes from the solar neutrino deficit and the atmospheric neutrino anomaly. All of these anomalies require new physics. It is shown that all of these anomalies can be explained if the standard model is enlarged so that an unbroken parity symmetry can be defined. This explanation holds independently of the actual model for neutrino masses. Thus, it is argued that parity symmetry is not only a beautiful candidate for a symmetry beyond the standard model, but it can also explain the known neutrino physics anomalies. 41 refs

  1. Neutrino physics and the mirror world: How exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly, and the LSND experiment

    Important evidence for neutrino oscillations comes from the solar neutrino deficit and the atmospheric neutrino anomaly. Further evidence for bar νμ→ bar νe oscillations has been reported at LAMPF using the LSND detector. All of these anomalies require new physics. We show that all of these anomalies can be explained if the standard model is enlarged so that an unbroken parity symmetry can be defined. This explanation holds independently of the actual model for neutrino masses. Thus, we argue that parity symmetry is not only a beautiful candidate for a symmetry beyond the standard model, but it can also explain the known neutrino physics anomalies

  2. Analytical tools in accelerator physics

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  3. Physics from solar neutrinos in dark matter direct detection experiments

    Cerdeño, David G; Jubb, Thomas; Machado, Pedro A N; Vincent, Aaron C; hm, Céline Bøe

    2016-01-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos, and use these estimates to infer errors on future measurements of the neutrino fluxes, weak mixing angle and solar observables, as well as to constrain new physics in the neutrino sector. The combined rates of solar neutrino events in second generation experiments (SuperCDMS and LZ) can yield a measurement of the pp flux to 2.5% accuracy via electron recoil, and slightly improve the boron-8 flux determination. Assuming a low-mass argon phase, projected tonne-scale experiments like DARWIN can reduce the uncertainty on bo...

  4. 182th International School of Physics "Enrico Fermi" : Neutrino Physics and Astrophysics

    Ludhova, L

    2012-01-01

    This book contains chapters based on 9 of the lectures delivered at the Enrico Fermi School of Physics "Neutrino Physics and Astrophysics", held from 25 of July to 5 August 2011. The event was organized by the Italian Physical Society (SIF) jointly with the International School of Astro-particle Physics (ISAPP), a network whose aim is to build up an astro-particle community of both astrophysicists and particle physicists. Included are chapters on Neutrino oscillation physics (B. Kayser); Double-beta decay (E. Fiorini); Light neutrinos in cosmology (S. Pastor); Neutrinos and the stars (G.G. Raffelt); High energy neutrinos and cosmic rays (G. Sigl); Methods and problems in low-energy neutrino experiments (G. Ranucci); Methods and problems in neutrino observatories (M. Ribordy); New technologies in neutrino physics (L. Oberauer); and Perspectives of underground physics (A. Bettini). These are a followed by a section on the results presented in the form of posters by the Ph.D. students attending the school. The b...

  5. Computer programs in accelerator physics

    Three areas of accelerator physics are discussed in which computer programs have been applied with much success: i) single-particle beam dynamics in circular machines, i.e. the design and matching of machine lattices; ii) computations of electromagnetic fields in RF cavities and similar objects, useful for the design of RF cavities and for the calculation of wake fields; iii) simulation of betatron and synchrotron oscillations in a machine with non-linear elements, e.g. sextupoles, and of bunch lengthening due to longitudinal wake fields. (orig.)

  6. Health physics practices at research accelerators

    A review is given of the uses of particle accelerators in health physics, the text being a short course given at the Health Physics Society Ninth Midyear Topical Symposium in February, 1976. Topics discussed include: (1) the radiation environment of high energy accelerators; (2) dosimetry at research accelerators; (3) shielding; (4) induced activity; (5) environmental impact of high energy accelerators; (6) population dose equivalent calculation; and (7) the application of the ''as low as practicable concept'' at accelerators

  7. What do solar neutrino experiments teach us about physics?

    The predictions of the standard model (solar and electroweak) for solar neutrino experiments will be described, with special emphasis on quantitative estimates of the uncertainties in the predictions. An argument--which uses detailed Monte Carlo studies of the solar-model-predictions--will be presented which demonstrates that the existing solar neutrino experiments cannot be reconciled unless new weak interaction physics changes the shape of the 8Be neutrino energy spectrum. Additional arguments that suggest that new physics is required will be summarized. The predictions for next-generation experiments that are independent of details of solar models will be highlighted. An urgent appeal will be made for performing a measurement of the p(7Be, γ)8B reaction using a radioactive beam of 7Be

  8. The micro-physics of neutrino transport at extreme density

    Reddy, S. (Sanjay)

    2004-01-01

    Production and propagation of neutrinos in hot and dense matter plays an important role in the thermal evolution of neutron stars. In this article we review the micro-physics that influences weak interaction rates in dense matter containing nucleons, leptons and or quarks. We show that these rates depend sensitively on the strong and electromagnetic correlations between baryons. We present new results, obtained using molecular dynamics, for the response of dense plasma of heavy ions. Neutrino rates are also shown to be sensitive to the phase structure of matter at extreme density. We highlight recent calculations of neutrino rates in dense color superconducting phases of quark matter. We present a brief discussion of how these differences may affect the early evolution of a neutron star. Neutrinos play an important role in stellar evolution. By virtue of their weak interactions with matter neutrinos provide a mechanism for energy loss from the dense stellar interiors. In neutron stars, neutrino emission is the dominant cooling mechanism from the their birth in a supernova explosion until several thousand years of subsequent evolution. In this talk, we present an overview of some of the nuclear/particle physics issues that play a role in understanding the rate of propagation and production of neutrinos inside neutron stars. The calculation of these rates are of current interest since several research groups are embarking on large scale numerical simulations of supernova and neutron star evolution. Even moderate changes in the nuclear microphysics associated with the weak interaction rates at high density can impact macroscopic features that are observable.

  9. CP asymmetry in Neutrino Oscillations and New Physics1

    The CP asymmetry in neutrino oscillations, assuming new physics at production and/or detection processes, is analyzed. We compute this CP asymmetry using the standard quantum field theory within a general new physics scenario that may generate new sources of CP and flavor violation. Well known results for the CP asymmetry are reproduced in the case of V-A operators, and additional contributions from new physics operators are derived.

  10. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  11. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  12. Acceleration and propagation of cosmic radiation. Production, oscillation and detection of neutrinos

    In recent years, the old problem of cosmic-ray acceleration and propagation has become alive again, with the discovery of the diffusive shock acceleration mechanism, and with the first measurements of the cosmic-ray antiproton flux, which appears to be higher than expected. I have shown that the new acceleration mechanism was slow and I have calculated the maximum energy that can be reached by particles accelerated in various astrophysical sites. I have also studied in detail a cosmic-ray propagation model which takes into account the antiproton measurements. Neutrino astronomy is a field much more recent and in rapid expansion, thanks to a convergence of interests between astrophysicists and elementary particle physicists. Several large neutrino detectors already exist; really huge ones are in project. I have studied the possible impact of the high energy (> 1 TeV) neutrino astronomy on models of cosmic-ray sources such as Cygnus X3. Comparing the low energy (∼ 10 MeV) cosmic-ray antineutrinos with other sources of neutrinos and antineutrinos (sun, supernova, earth...), I have pointed out that the antineutrino background resulting from all the nuclear power-stations of the planet was sizeable. This background is a nuisance for some astrophysical applications but could be useful for studies on vacuum or matter neutrino oscillations (MSW effect). I have also examined the MSW effect in another context: the travel through the earth of neutrinos from the supernova explosion SN1987a

  13. Implications of a new light gauge boson for neutrino physics

    Boehm, Celine

    2004-01-01

    We study the impact of light gauge bosons on neutrino physics. We show that they can explain the NuTeV anomaly and also escape the constraints from neutrino experiments if they are very weakly coupled and have a mass of a few GeV. Lighter gauge bosons with stronger couplings could explain both the NuTeV anomaly and the positive anomalous magnetic moment of the muon. However, in the simple model we consider in this paper (say a purely vectorial extra U(1) current), they appear to be in conflic...

  14. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations

  15. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    Akerib, D.; Arnold, R.; Balantekin, A.; Barabash, A.; Barnabe, H.; Baroni, S.; Baussan, E.; Bellini, F.; Bobisut, F.; Bongrand, M.; Brofferio, Ch.; Capolupo, A.; Carrara Enrico; Caurier, E.; Cermak, P.; Chardin, G.; Civitarese, O.; Couchot, F.; Kerret, H. de; Heros, C. de los; Detwiler, J.; Dracos, M.; Drexlin, G.; Efremenko, Y.; Ejiri, H.; Falchini, E.; Fatemi-Ghomi, N.; Finger, M.Ch.; Finger Miroslav, Ch.; Fiorillo, G.; Fiorini, E.; Fracasso, S.; Frekers, D.; Fushimi, K.I.; Gascon, J.; Genest, M.H.; Georgadze, A.; Giuliani, A.; Goeger-Neff, M.; Gomez-Cadenas, J.J.; Greenfield, M.; H de Jesus, J.; Hallin, A.; Hannestad, St.; Hirai, Sh.; Hoessl, J.; Ianni, A.; Ieva, M.B.; Ishihara, N.; Jullian, S.; Kaim, S.; Kajino, T.; Kayser, B.; Kochetov, O.; Kopylov, A.; Kortelainen, M.; Kroeninger, K.; Lachenmaier, T.; Lalanne, D.; Lanfranchi, J.C.; Lazauskas, R.; Lemrani, A.R.; Li, J.; Mansoulie, B.; Marquet, Ch.; Martinez, J.; Mirizzi, A.; Morfin Jorge, G.; Motz, H.; Murphy, A.; Navas, S.; Niedermeier, L.; Nishiura, H.; Nomachi, M.; Nones, C.; Ogawa, H.; Ogawa, I.; Ohsumi, H.; Palladino, V.; Paniccia, M.; Perotto, L.; Petcov, S.; Pfister, S.; Piquemal, F.; Poves, A.; Praet, Ch.; Raffelt, G.; Ramberg, E.; Rashba, T.; Regnault, N.; Ricol, J.St.; Rodejohann, W.; Rodin, V.; Ruz, J.; Sander, Ch.; Sarazin, X.; Scholberg, K.; Sigl, G.; Simkovic, F.; Sousa, A.; Stanev, T.; Strolger, L.; Suekane, F.; Thomas, J.; Titov, N.; Toivanen, J.; Torrente-Lujan, E.; Tytler, D.; Vala, L.; Vignaud, D.; Vitiello, G.; Vogel, P.; Volkov, G.; Volpe, C.; Wong, H.; Yilmazer, A

    2006-07-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations.

  16. Proceedings of the summer school on physics with neutrinos

    The Summer School on physics with neutrinos concentrated on a particularly rewarding topic on the intersection between particle and astrophysics. Although the neutrino has been postulated as early as 1930 in the famous letter by Pauli the intriguing particle poses challenging problems to the present day. The speakers did not spare any effort in creating an atmosphere of stimulating scientific exchange. The participating young and old enjoyed the presence of Jack Steinberger who presented a talk on the history of the neutrino and contributed in many other ways to the meeting. Apart from the lectures and seminars that are mostly reflected in these proceedings there were also a number of extra seminars on topics ranging from special nuclear reactions to the extinction of life in the universe, adding to the breadth of the presentations. (author) figs., tabs., refs

  17. Proceedings of the summer school on physics with neutrinos

    Locher, M.P. [ed.

    1996-11-01

    The Summer School on physics with neutrinos concentrated on a particularly rewarding topic on the intersection between particle and astrophysics. Although the neutrino has been postulated as early as 1930 in the famous letter by Pauli the intriguing particle poses challenging problems to the present day. The speakers did not spare any effort in creating an atmosphere of stimulating scientific exchange. The participating young and old enjoyed the presence of Jack Steinberger who presented a talk on the history of the neutrino and contributed in many other ways to the meeting. Apart from the lectures and seminars that are mostly reflected in these proceedings there were also a number of extra seminars on topics ranging from special nuclear reactions to the extinction of life in the universe, adding to the breadth of the presentations. (author) figs., tabs., refs.

  18. Special Issue on "Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015" in Nuclear Physics B

    Ohlsson, Tommy

    2016-07-01

    In 2015, the Nobel Prize in Physics was awarded jointly to Takaaki Kajita from the Super-Kamiokande Collaboration and Arthur B. McDonald from the SNO Collaboration "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Furthermore, the Daya Bay, K2K and T2K, KamLAND, SNO, and Super-Kamiokande Collaborations shared the Fundamental Physics Breakthrough Prize the same year. In order to celebrate this successful and fruitful year for neutrino oscillations, the editors and the publisher of Nuclear Physics B decided to publish a Special Issue on neutrino oscillations. We invited prominent scientists in the area of neutrino physics that relates to neutrino oscillations to write contributions for this Special Issue, which was open to both original research articles as well as review articles. The authors of this Special Issue consist of e.g. the two Nobel Laureates, International Participants of the Nobel Symposium 129 on Neutrino Physics at Haga Slott in Enköping, Sweden (August 19-24, 2004), selected active researchers, and members from large experimental collaborations with major results in the last ten years. In total, this Special Issue consists of 28 contributions. Please note that the cover of this Special Issue contains a figure from each of the 26 contributions that have figures included.

  19. Neutrino Physics with Non-Standard Interactions at INO

    Choubey, Sandhya; Ohlsson, Tommy; Tiwari, Deepak

    2015-01-01

    Non-standard neutrino interactions (NSI) involved in neutrino propagation inside Earth matter could potentially alter atmospheric neutrino fluxes. In this work, we look at the impact of these NSI on the signal at the ICAL detector to be built at the India-based Neutrino Observatory (INO). We show how the sensitivity to the neutrino mass hierarchy of ICAL changes in the presence of NSI. The mass hierarchy sensitivity is shown to be rather sensitive to the NSI parameters $\\epsilon_{e\\mu}$ and $\\epsilon_{e\\tau}$, while the dependence on $\\epsilon_{\\mu\\tau}$ and $\\epsilon_{\\tau\\tau}$ is seen to be very mild, once the $\\chi^2$ is marginalised over oscillation and NSI parameters. If the NSI are large enough, the event spectrum at ICAL is expected to be altered and this can be used to discover new physics. We calculate the lower limit on NSI parameters above which ICAL could discover NSI at a given C.L. from 10 years of data. If NSI were too small, the null signal at ICAL can constrain the NSI parameters. We give up...

  20. Unifying physics of accelerators, lasers and plasma

    Seryi, Andrei

    2015-01-01

    Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators.

  1. Hawking Radiation of Weyl Neutrinos in a Rectilinearly Non-uniformly Accelerating Kinnersley Black Hole

    Wu, S Q; Xu, Cai

    2002-01-01

    Quantum thermal effect of Weyl neutrinos in a rectilinearly non-uniformly accelerating Kinnersley black hole is investigated by using the generalized tortoise coordinate transformation. The equation that determines the location, the Hawking temperature of the event horizon and the thermal radiation spectrum of neutrinos are derived. Our results show that the location and the temperature of the event horizon depend not only on the time but also on the angle.

  2. Hawking radiation of Weyl neutrinos in a rectilinearly non-uniformly accelerating Kinnersley black hole

    吴双清; 蔡勖

    2002-01-01

    The quantum thermal effect of Weyl neutrinos in a rectilinearly non-uniformly accelerating Kinnersley black holeis investigated using the generalized tortoise coordinate transformation. The equations that determine the location, theHawking temperature of the event horizon and the thermal radiation spectrum of neutrinos are derived. Our resultsshow that the location and the temperature of the event horizon depend not only on the time but also on the angle.

  3. Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes

    Shoemaker, Ian M

    2015-01-01

    The flavor of cosmic neutrinos may help unveil their sources and could reveal the presence of new physics in the neutrino sector. We consider the impacts of next-generation neutrino detectors, including the planned upgrade to neutrino detector--IceCube-Gen2, which is well-positioned to make dramatic improvements in both flavor and spectral measurements. We show that various models in neutrino physics beyond the Standard Model, such as neutrino decay, pseudo-Dirac states, and neutrino self-scattering, may be found or strongly constrained at IceCube-Gen2 and KM3NeT. We find that the additional flavor discriminants given by Glashow resonance events and so-called "double-bang" topologies improve the ability to access the flavor of the cosmic high-energy neutrinos and probe the BSM physics. In addition, although the details depend on source properties, Glashow resonance events have the additional feature of being able to inform us of the relative strengths of neutrino and antineutrino emission, which may help us d...

  4. High Energy Neutrinos as a Probe for New Physics and Astrophysics

    Bugaev, E. V.

    2005-01-01

    A review of the recent achievements in high energy neutrino physics and, partly, neutrino astrophysics is presented. It is argued that experiments with high energy neutrinos of natural origin can be used for a search of new physics effects beyond the electroweak scale.

  5. Physics potential of the CERN-MEMPHYS neutrino oscillation project

    We consider the physics potential of CERN based neutrino oscillation experiments consisting of a Beta Beam (βB) and a Super Beam (SPL) sending neutrinos to MEMPHYS, a 440 kt water Cerenkov detector at Frejus, at a distance of 130 km from CERN. The θ13 discovery reach and the sensitivity to CP violation are investigated, including a detailed discussion of parameter degeneracies and systematical errors. For βB and SPL sensitivities similar to the ones of the phase II of the T2K experiment (T2HK) are obtained, where the results for the CERN-MEMPHYS experiments are less affected by systematical uncertainties. We point out that by a combination of data from βB and SPL a measurement with antineutrinos is not necessary and hence the same physics results can be obtained within about half of the measurement time compared to one single experiment. Furthermore, it is shown how including data from atmospheric neutrinos in the MEMPHYS detector allows to resolve parameter degeneracies and, in particular, provides sensitivity to the neutrino mass hierarchy and the octant of θ23. (author)

  6. Future Accelerator Challenges in Support of High-Energy Physics

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  7. Short-Baseline Neutrino Physics using the NOvA Near Detector and the Booster Neutrino Beam

    Dharmapalan, Ranjan

    2016-03-01

    The NOvA Near Detector (ND) is a low Z, nearly-fully active tracking detector, capable of 3D reconstruction of neutrino-induced interactions, situated at Fermilab, about 1 km from the NuMI neutrino beam target. Due to its positioning 14.6 mrad off the beam axis, the detector samples a narrow-band neutrino beam peaked at 2 GeV. NOvA's ND L/E greatly overlaps with the L/E range of the recent MiniBooNE experiment on the Booster neutrino beamline at Fermilab, thus making the NOvA ND an ideal tool to test a sterile neutrino hypothesis in this L/E regime and to study the low-energy excess reported by MiniBooNE. Due to the large off-axis angle (160 mrad) with respect to the Booster neutrino beamline, the NOvA ND will also observe high energy (1.4 GeV) kaon decay-in-flight neutrinos from the Booster neutrino beamline, at about 800 meters from the target. In addition, this unique `two beams in one detector' setup enables a cross-check of the energy calibration and of the measurement of neutrino cross sections at different neutrino energies in the same detector. We discuss physics capabilities and present sensitivity studies within such an experimental setup.

  8. Evidence for new physics in high energy neutrino collisions

    For many years it has been recognised that neutrinos are a rather unique tool for studying particle interactions at very high energies. The neutrino is a simple point-like particle that only interacts weakly and thus provides the opportunity to investigate 'new' phenomena in weak interaction at high energies. New and as yet undiscovered particles may be produced by neutrinos and may be observed in high energy collisons, for example W-bosons or heavy leptons. If the target consists of hadrons these collisions may yield basic information about the structure of hadrons. Experimental work at Caltech Fermilab is described, the object of which is a search for new phenomena arising from neutrino investigations. A class of neutrino interactions has been discovered involving two muons in the final state, not readily explainable, although so far most results tend to fit the predictions of a simple quark-parton model. The main purpose here is to comment on this work. The most striking features are that both muons are relatively energetic, the two muons are of opposite sign, the μ-is more energetic than the μ+, and the energy observed in the interaction is very large. It has been established that both muons are prompt, and the question is discussed as to whether matters can be explained by decays of known short-lived particles yielding leptons - this is found to be untenable. The most likely explanation seems to be the production of a new particle. One possibility is that something new in the weak interaction is produced, for example, a new heavy lepton. Another possibility is that a new state is formed in the hadron system, and it is thought that a new hadronic state of mass 2 to 4 GeV is responsible. It is concluded that recent observations of 2μ events induced by neutrinos definitely imply new and as yet unexplained physics. (U.K.)

  9. Accelerator and Technical Sector Seminar: Future neutrino facilities: the neutrino factory

    2012-01-01

    Thursday 19.January 2012 at 14:15  -  IT Auditorium (bldg. 31 3-004) Future neutrino facilities: the neutrino factory by Gersende Prior / University of Geneva and CERN EN/MEF The neutrino factory is one of the proposed designs for a future intense neutrino beam facility. In its current layout, a high-power proton beam impinges on an Hg jet target producing pions, decaying in turn into muons. In order to reduce the particle beam emittance, the muon transverse momentum is reduced through ionization cooling by a technically demanding set-up made of closely-packed RF cavities alternating with absorbers. In this talk I will present the motivation for building an intense neutrino beam and some of the proposed neutrino facilities' design. I will discuss the challenges inherent to the cooling of muons, possible optimization of the current baseline and the on-going R&D. ________________ ATS Seminars Organisers: H. Burkhardt (BE), S. Sgobba (EN), G. deRijk (TE)

  10. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 1

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  11. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 2

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  12. Acceleration and propagation of cosmic rays. Production, oscillation and detection of neutrinos

    This thesis is devoted to studies on cosmic rays and neutrinos, particles astrophysically relevant. In recent years, the old problem of cosmic-ray acceleration and propagation has become alive again, with the discovery of the diffusive shock acceleration mechanism, and with the first measurements of the cosmic-ray antiproton flux, which appears to be higher than expected. I have shown that the new acceleration mechanism was slow and I have calculated the maximum energy that can be reached by particles accelerated in various astrophysical sites. I have also studied in detail a cosmic-ray propagation model which takes into account the antiproton measurements. Neutrino astronomy is a field much more recent and in rapid expansion, thanks to a convergence of interests between astrophysicists and elementary particle physicists. Several large neutrino detectors already exist; really huge ones are in project. I have studied the possible impact of the high energy (> 1 TeV) neutrino astronomy on models of cosmic-ray sources such as Cygnus X3. Comparing the low energy (∼ 10 MeV) cosmic-ray antineutrinos with other sources of neutrinos and antineutrinos (sun, supernova, earth ...), I have pointed out that the antineutrino background resulting from all the nuclear power-stations of the planet was sizeable. This background is a nuisance for some astrophysical applications but could be useful for studies on vacuum or matter neutrino oscillations (MSW effect). I have also examined the MSW effect in another context: the travel through the earth of neutrinos from the supernova explosion SN1987a

  13. CAS CERN Accelerator School: Second general accelerator physics course

    The course on general accelerator physics given at Aarhus is basically a repeat of that organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in September 1984 and whose proceedings were published as CERN Yellow Report 85-19 (1985). However, the opportunity was taken to improve or extend certain subjects while introducing new ones and it is these which are included in the present proceedings. The lectures treated here include accelerator optics, insertions, image and space charge forces, neutralisation, diagnostics and intra-beam scattering while the seminar programme includes a number of specialised accelerator topics. Reports on a separate series of seminars organised by the University of Aarhus, Denmark, and devoted to advanced technology arising from general accelerator physics are also included, as well as errata to CERN 85-19. (orig.)

  14. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  15. Experimental Results on Neutrino Oscillations Using Atmospheric, Solar and Accelerator Beams

    The innermost secrets of the mysterious neutrino are being revealed in underground detectors. Recent data on atmospheric neutrinos, primarily from the Super-Kamiokande experiment, confirm the neutrino flavor mixing and non-zero masses. The high precision measurement of angular distribution allows to determine the value of Δm2 between 0.0013 eV2 and 0.0054 eV2 at 90% c.l. Studies of up-down asymmetries in different event samples indicate that νμ↔ντ oscillations are more likely explanation of the data than νμ↔νs. The deficit of the observed solar neutrino flux compared to the predictions of the standard solar model, often interpreted by neutrino oscillations, is further studied in the SuperKamiokande detector. The energy spectrum is measured above 5.5 MeV for the Sun's positions above and below the horizon. A day-night effect is observed at a statistical significance of 2 σ. The K2K (KEK to Kamioka) is the first long-baseline neutrino-oscillation experiment. During runs in 1999 the first 3 events were observed in the SuperKamiokande detector caused by neutrinos produced at the KEK accelerator at a distance of 250 km. The predicted number of events without any oscillations is 12.3+1.7-1.9. (author)

  16. Probing new physics with underground accelerators and radioactive sources

    New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g. Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars ϕ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the 0+ excited state of 16O populated via a (p,α) reaction on fluorine and from radioactive 144Ce decay where the scalar is produced in the de-excitation of 144Nd⁎, which occurs along the decay chain. Subsequent scattering on electrons, e(ϕ,γ)e, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental setup can cover new territory for masses 250 keV≤mϕ≤2me and couplings to protons and electrons, 10−11≤gegp≤10−7. This parameter space is motivated by explanations of the “proton charge radius puzzle”, thus this strategy adds a viable new physics component to the neutrino and nuclear astrophysics programs at underground facilities

  17. Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    Adams, T; Bugel, L; Camilleri, L; Conrad, J M; De Gouvêa, A; Fisher, P H; Formaggio, J A; Jenkins, J; Karagiorgi, G; Kobilarcik, T R; Kopp, S; Kyle, G; Loinaz, W A; Mason, D A; Milner, R; Moore, R; Morfín, J G; Nakamura, M; Naples, D; Nienaber, P; Olness, F I; Owens, J F; Pate, S F; Pronin, A; Seligman, W G; Shaevitz, M H; Schellman, H; Schienbein, I; Syphers, M J; Tait, T M P; Takeuchi, T; Tan, C Y; Van de Water, R G; Yamamoto, R K; Yu, J Y

    2008-01-01

    This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes $\

  18. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential

    Long, Andrew J; Sabancilar, Eray

    2014-01-01

    We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of $\\Delta \\sim$ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum, $m_1 \\simeq m_2 \\simeq m_3 = m_\

  19. Element-Loaded Organic Scintillators For Neutrino Physics

    Full text: Plastic and liquid scintillators are widely used for different fundamental and engineering applications. The interest to these materials is connected with their advantages as compared with inorganic scintillators: - ast response; - high stability to different actions (radiation resistance, photo resistance, thermo resistance, moisture resistance); - relative simplicity of construction of detectors of any shape and configuration; - possibility of large-scale detectors construction; - relatively low cost; - possibility of using of simple methods of decreasing of radioactive impurities concentrations. The element composition of scintillation material defines its registration efficiency. The molecular nature of luminescence of organic scintillators discovers the possibilities for creating on their base the wide spectrum of detecting systems suitable for solving different physical problems. The present review is devoted to material science of organic scintillators containing metals of III-rd group of Periodic Table, such as indium, itterbium, gadolinium and neodymium. These scintillators are interesting for different brunches of neutrino physics: search for double ?-decay, search for neutrino oscillations, registration of Solar neutrinos. The common approaches and different examples of design and production of such scintillators are discussed in present work. The special consideration is given to interrelation of composition and properties of organic scintillators. (authors)

  20. Physics potential of the CERN-MEMPHYS neutrino oscillation project

    Campagne, J E; Mezzetto, Mauro; Schwetz, T

    2007-01-01

    We consider the physics potential of CERN based neutrino oscillation experiments consisting of a Beta Beam (BB) and a Super Beam (SPL) sending neutrinos to MEMPHYS, a 440 kt water Cerenkov detector at Frejus, at a distance of 130 km from CERN. The $\\theta_{13}$ discovery reach and the sensitivity to CP violation are investigated, including a detailed discussion of parameter degeneracies and systematical errors. For BB and SPL sensitivities similar to the ones of the phase II of the T2K experiment (T2HK) are obtained, where the results for the CERN-MEMPHYS experiments are less affected by systematical uncertainties. We point out that by a combination of data from BB and SPL a measurement with antineutrinos is not necessary and hence the same physics results can be obtained within about half of the measurement time compared to one single experiment. Furthermore, it is shown how including data from atmospheric neutrinos in the MEMPHYS detector allows to resolve parameter degeneracies and, in particular, provides...

  1. Applied Anti-neutrino Physics 2013

    2013-01-01

    This year, the 9th annual Applied Antineutrino Physics Workshop will be hosted by Sejong University, at the COEX conference center in Seoul South Korea. The workshop will be held on November 1(Friday) - 2(Saturday), 2013. Conveniently for many travelers, it takes place directly after and at the same venue as the 2013 IEEE Nuclear Science Symposium (http://www.nss-mic.org/2013/NSSMain.asp) Applied Antineutrino Physics describes an ensemble of experimental and theoretical efforts which aim to use the antineutrino signal from nuclear reactors, and from the Earth itself, in order to address practical problems in nonproliferation and geology respectively. Since the 2004 inception of these workshops, groups worldwide have made considerable advances in defining and expanding the field, garnering interest from the International Atomic Energy Agency (IAEA), which administers the worlds most important nonproliferation regime, and from the geology/geophysics community. This meeting will focus on the current activi...

  2. Constraints on New Physics from Various Neutrino Experiments

    Pronin, Alexey

    2008-01-01

    In this thesis we consider a number of past, present, and future neutrino experiments designed to test physics beyond the Standard Model. First, we analyze potential new physics explanations of the NuTeV anomaly and check their compatibility with the most recent experimental data. The models we consider are: gauged Lmu-Ltau, gauged B-3Lmu, and S1, S3, V1, V3 leptoquarks. We find that only the triplet leptoquark models can explain NuTeV and be compatible with the data from other experiments a...

  3. Higgs Effects in Neutrino Physics and Heavy Quark Systems

    Rashed, Ahmed Mohammed Mostafa

    This work presents a study of the effects of multi-Higgs doublets on the properties of neutrino sector and heavy quark systems. The phenomenological implications of multi-Higgs models, which contain multi-Higgs doublets, in the neutrino and quark sector are discussed in this dissertation. The two-Higgs-doublet model (2HDM), in which two Higgs doublets are introduced, is the simplest extension to the scalar sector of the standard model (SM). A new boson state was recently seen in the CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC Apparatus) experiments at the LHC (Large Hadron Collider). We investigate the multi-Higgs models contributions in understanding various phenomena in the neutrino sector. Introducing a model to explain the neutrino oscillation phenomenon within the framework of multi-Higgs doublets is considered. We introduce different flavor symmetries in the lepton sector and study the phenomenological consequences in both the scalar and lepton sectors. The leptonic mixing in the symmetric limit can be, among other structures, the bi-maximal (BM) or the tri-bimaximal (TBM) mixing. We find that a mixing model with 2-3 flavor symmetry can explain the nonzero θ13 measurements. In our study, neutrino masses were proposed where its smallness is not due to the seesaw mechanism, i.e. not inversely proportional to some large mass scale. It comes from a one-loop mechanism with dark matter in the loop consisting of singlet Majorana fermions within a model with A4 flavor symmetry. A relevant point of interest in the neutrino sector is the study of the nonstandered interactions and its implications to neutrino oscillation. Here, we introduce the nonstandard interaction effects at the detectors of neutrino oscillation experiments and the impact of extracting the neutrino mixing angles is studied. The extractions of the atmospheric mixing angle θ23 rely on the standard model cross sections for nutau + N → tau- + X in nu tau appearance experiments. Corrections

  4. Neutrinos herald possible new physics in Japan

    2011-01-01

    There’s an embarrassment of choice for my message this week. Firstly, it was great to see a press release from the Japanese T2K (Tokai to Kamioka) experiment on 15 June, signalling not only potentially great physics, but also that the Japanese physics community is getting back on its feet after the earthquake and tsunami. Back home, the LHC is running beautifully...    Crossing the inverse femtobarn threshold so early into this years run is wonderful achievement, and augurs well for the summer conferences. We’ve now reached the stage where a single LHC fill is delivering as much data as the entire 2010 run. And finally, when Council met this week, I was pleased to announce that CERN has received formal confirmation from all five applicants for membership, opening the way to CERN welcoming new members soon. A busy two weeks, then, but what I’d like to focus on is the new result from Japan.   Simply stated, the T2K result shows the first indication of...

  5. Present and future neutrino physics research at the Los Alamos Meson Physics Facility

    The Los Alamos Meson Physics Facility is currently the site of two neutrino experiments. A measurement of elastic scattering of electron-neutrinos on electrons is providing confirmation of the destructive interference between the weak neutral and charged currents predicted in the standard electroweak theory. A search for the appearance of /bar/ν//sub e/ is being carried out at the LAMPF beam stop, as well. The status of this experiment is described. A major new initiative is being undertaken to measure neutrino-electron scattering in a large water Cerenkov detector. This meaurement will be precise enough to provide, in combination with the meaurements to be performed at the new generation of high-energy electron-positron colliers, the first experimental study of the standard electrowak theory at the level of one-loop radiative corrections. The detector will also be a vehicle for neutrino-oscillation searches, measurement of neutrinos from supernovae, and other fundamental physics. The apparatus will consist of a neutrino production target and shield surrounded by a water Cerenkov detector. The fiducial volume of water will be approximately 7000 tons, viewed by approximately 13000 20 cm diameter photomultiplier tubes. 11 refs., 6 figs

  6. New accelerators in high-energy physics

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  7. Requirements for a new detector at the South Pole receiving an accelerator neutrino beam

    Tang, Jian; Winter, Walter

    2012-01-01

    There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detection threshold and a huge fiducial mass for the neutrino detection. This initiative is known as "Phased IceCube Next Generation Upgrade" (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Such an experiment would be unique in the sense...

  8. Accelerator Physics Branch annual technical report, 1989

    The report describes, in a series of separate articles, the achievements of the Accelerator Physics Branch for the calendar year 1989. Work in basic problems of accelerator physics including ion sources, high-duty-factor rf quadrupoles, coupling effects in standing wave linacs and laser acceleration is outlined. A proposal for a synchrotron light source for Canada is described. Other articles cover the principal design features of the IMPELA industrial electron linac prototype, the cavities developed for the HERA complex at DESY, Hamburg, West Germany, and further machine projects that have been completed

  9. CAS CERN Accelerator School second advanced accelerator physics course

    The advanced course on general accelerator physics given in West Berlin closely followed that organised by the CERN Accelerator School at Oxford in September 1985 and whose proceedings were published as CERN Yellow Report 87-03 (1987). However, certain subjects were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include particle-photon interactions, high-brilliance lattices and single/multiple Touschek effect, while the seminars are on the major accelerators presently under construction or proposed for the near future, applications of synchrotron radiation, free-electron lasers, cosmic accelerators and crystal beams. Also included are errata, and addenda to some of the lectures, of CERN 87-03. (orig.)

  10. CAS CERN Accelerator School. Third advanced accelerator physics course

    The third version of the CERN Accelerator School's (CAS) advanced course on General Accelerator Physics was given at Uppsala University from 18-29 September, 1989. Its syllabus was based on the previous courses held in Oxford, 1985 and Berlin, 1987 whose proceedings were published as CERN Yellow Reports 87-03 and 89-01 respectively. However, the opportunity was taken to emphasize the physics of small accelerators and storage rings, to present some topics in new ways, and to introduce new seminars. Thus the lectures contained in the present volume include chromaticity, dynamic aperture, kinetic theory, Landau damping, ion-trapping, Schottky noise, laser cooling and small ring lattice problems while the seminars include interpretation of numerical tracking, internal targets and living with radiation. (orig.)

  11. FFAGs: Front-end for neutrino factories and medical accelerators

    Mori, Yoshiharu

    The idea of Fixed Field Alternating Gradient (FFAG) accelerator was originated by different people and groups in the early 1950s. It was independently introduced by Ohkawa [Ohkawa (1953)], Symon et al. [Symon et al. (1956)], and Kolomensky [Kolomensky and Lebedev (1966)] when the strong Alternate Gradient (AG) focusing and the phase stability schemes were applied to particle acceleration. The first FFAG electron model was developed in the MURA accelerator project led by Kerst and Cole in the late 1950s. Since then, they have fabricated several electron models in the early 1960s [Symon et al. (1956)]. However, the studies did not lead to a single practical FFAG accelerator for the following 50 years. Because of the difficulties of treating non-linear magnetic field and RF acceleration for non-relativistic particles, the proton FFAG, especially, was not accomplished until recently. In 2000, the FFAG concept was revived with the world's first proton FFAG (POP) which was developed at KEK [Aiba (2000); Mori (1999)]. Since then, in many places [Berg (2004); Johnstone et al. (2004); Mori (2011); Ruggiero (2004); Trbojevic (2004)], FFAGs have been developed and constructed...

  12. Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Ahmed, Shakeel; Hasan, Rashid; Salim, Mohammad; Singh, S K; Inbanathan, S S R; Singh, Venktesh; Subrahmanyam, V S; Behera, Shiba Prasad; Chandratre, Vinay B; Dash, Nitali; Datar, Vivek M; Kashyap, V K S; Mohanty, Ajit K; Pant, Lalit M; Chatterjee, Animesh; Choubey, Sandhya; Gandhi, Raj; Ghosh, Anushree; Tiwari, Deepak; Ajmi, Ali; Sankar, S Uma; Behera, Prafulla; Chacko, Aleena; Jafer, Sadiq; Libby, James; Raveendrababu, K; Rebin, K R; Indumathi, D; Meghna, K; Lakshmi, S M; Murthy, M V N; Pal, Sumanta; Rajasekaran, G; Sinha, Nita; Agarwalla, Sanjib Kumar; Khatun, Amina; Mehta, Poonam; Bhatnagar, Vipin; Kanishka, R; Kumar, A; Shahi, J S; Singh, J B; Ghosh, Monojit; Ghoshal, Pomita; Goswami, Srubabati; Gupta, Chandan; Raut, Sushant; Bhattacharya, Sudeb; Bose, Suvendu; Ghosal, Ambar; Jash, Abhik; Kar, Kamalesh; Majumdar, Debasish; Majumdar, Nayana; Mukhopadhyay, Supratik; Saha, Satyajit; Acharya, B S; Banerjee, Sudeshna; Bhattacharya, Kolahal; Dasgupta, Sudeshna; Devi, Moon Moon; Dighe, Amol; Majumder, Gobinda; Mondal, Naba K; Redij, Asmita; Samuel, Deepak; Satyanarayana, B; Thakore, Tarak; Ravikumar, C D; Vinodkumar, A M; Gangopadhyay, Gautam; Raychaudhuri, Amitava; Choudhary, Brajesh C; Gaur, Ankit; Kaur, Daljeet; Kumar, Ashok; Kumar, Sanjeev; Naimuddin, Md; Bari, Waseem; Malik, Manzoor A; Singh, Jyotsna; Krishnaveni, S; Ravikumar, H B; Ranganathaiah, C; Mahapatra, Swapna; Biswas, Saikat; Chattopadhyay, Subhasis; Ganai, Rajesh; Ghosh, Tapasi; Viyogi, Y P

    2015-01-01

    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substant...

  13. General accelerator physics. Proceedings. Vol. 1

    This course on accelerator physics is the first in a series of two, which is planned by the CERN Accelerator School. Starting at the level of a science graduate, this course covers mainly linear theory. The topics include: transverse and longitudinal beam dynamics, insertions, coupling, transition, dynamics of radiating particles, space-charge forces, neutralization, beam profiles, luminosity calculations in colliders, longitudinal phase-space stacking, phase-displacement acceleration, transfer lines, injection and extraction. Some more advanced topics are also introduced: coherent instabilities in coasting beams, general collective phenomena, quantum lifetime, and intra-beam scattering. The seminar programme is based on two themes: firstly, the sub-systems of an accelerator and, secondly, the uses to which accelerators are put. (orig.)

  14. General accelerator physics. Proceedings. Vol. 2

    This course on accelerator physics is the first in a series of two, which is planned by the CERN Accelerator School. Starting at the level of a science graduate, this course covers mainly linear theory. The topics include: transverse and longitudinal beam dynamics, insertions, coupling, transition, dynamics of radiating particles, space-charge forces, neutralization, beam profiles, luminosity calculations in colliders, longitudinal phase-space stacking, phase-displacement acceleration, transfer lines, injection and extraction. Some more advanced topics are also introduced: coherent instabilities in coasting beams, general collective phenomena, quantum lifetime, and intra-beam scattering. The seminar programme is based on two themes: firstly, the sub-systems of an accelerator and, secondly, the uses to which accelerators are put. (orig.)

  15. CAS CERN Accelerator School third general accelerator physics course

    The general course on accelerator physics given in Salamanca, Spain, closely followed those organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in 1984, and at Aarhus, Denmark in 1986 and whose proceedings were published as CERN Yellow Reports 85-19 (1985) and 87-10 (1987) respectively. However, certain topics were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include beam-cooling concepts, Liouville's theorem and emittance, emittance dilution in transfer lines, weak-betatron coupling, diagnostics, while the seminars are on positron and electron sources, linac structures and the LEP L3 experiment, together with industrial aspects of particle accelerators. Also included are errata and addenda to the Yellow Reports mentioned above. (orig.)

  16. CAS CERN Accelerator School: Fourth general accelerator physics course

    The fourth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at KFA, Juelich, from 17 to 28 September 1990. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, and Salamanca 1988, and whose proceedings were published as CERN Reports 85-19, 87-10, and 89-05, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. All of these appear in the present proceedings, which include lectures or seminars on the history and applications of accelerators, phase space and emittance, chromaticity, beam-beam effects, synchrotron radiation, radiation damping, tune measurement, transition, electron cooling, the designs of superconducting magnets, ring lattices, conventional RF cavities and ring RF systems, and an introduction to cyclotrons. (orig.)

  17. New physics with ultra-high-energy neutrinos

    Now that PeV neutrinos have been discovered by IceCube, we optimistically entertain the possibility that neutrinos with energy above 100 PeV exist. We evaluate the dependence of event rates of such neutrinos on the neutrino-nucleon cross section at observatories that detect particles, atmospheric fluorescence, or Cherenkov radiation, initiated by neutrino interactions. We consider how (i) a simple scaling of the total standard model neutrino-nucleon cross section, (ii) a new elastic neutral current interaction, and (iii) a new completely inelastic interaction, individually impact event rates

  18. W.K.H. Panofsky Prize in Experimental Particle Physics Talk: 40 Years of Neutrino Physics--A Personal History

    Beier, Eugene

    2010-02-01

    In the past forty years neutrino physics has made great advances. Some of the steps and missteps that were taken on the path from the 1960's to the present will be discussed. Particular attention will be given to the development of solar neutrino physics. )

  19. The Acceleration and Storage of Radioactive Ions for a Neutrino Factory

    Autin, Bruno; Hancock, S; Haseroth, H; Jansson, A; Köster, U; Lindroos, M; Russenschuck, Stephan; Wenander, F; Grieser, M

    2003-01-01

    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.

  20. Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to $20\\times10^{21}$ POT

    Abe, K; Antonova, M; Aoki, S; Ariga, A; Autiero, D; Ban, S; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Berardi, V; Berkman, S; Bhadra, S; Bienstock, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Avanzini, M Buizza; Calland, R G; Campbell, T; Cao, S; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hansen, D; Harada, J; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Hiraki, T; Hiramoto, A; Hirota, S; Hogan, M; Holeczek, J; Hosomi, F; Huang, K; Ichikawa, A K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Lamoureux, M; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Lou, T; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakanishi, Y; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Novella, P; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Guerra, E S Pinzon; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radermacher, T; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Steinmann, J; Stewart, T; Stowell, P; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-01-01

    Recent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of $7.8\\times 10^{21}$ protons-on-target to $20\\times 10^{21}$ protons-on-target,aiming at initial observation of CP violation with 3$\\,\\sigma$ or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.

  1. India-based neutrino observatory (INO): Physics reach and status report

    We present a review of the physics reach and current status of the proposed India-based Neutrino Observatory (INO). We briefly outline details of the INO location and the present status of detector development. We then present the physics goals and simulation studies of the main detector, the magnetised Iron Calorimeter (ICAL) detector, to be housed in INO. The ICAL detector would make precision measurements of neutrino oscillation parameters with atmospheric neutrinos including a measurement of the neutrino mass hierarchy. Additional synergies with other experiments due to the complete insensitivity of ICAL to the CP phase are also discussed

  2. Oscillations, Neutrino Masses and Scales of New Physics

    Barenboim Szuchman, Gabriela Alejandra; Scheck, Florian

    1999-01-01

    We show that all the available experimental information involving neutrinos can be accounted for within the framework of already existing models where neutrinos have zero mass at tree level, but obtain a small Dirac mass by radiative corrections.

  3. Intrinsic neutrino properties: As deduced from cosmology, astrophysics, accelerator and non-accelerator experiments

    I review the intrinsic properties of neutrinos as deduced from cosmological, astrophysical, and laboratory experiments. Bounds on magnetic moments and theoretical models which yield large moments but small masses are briefly discussed. The MSW solution to the solar neutrino problem is reviewed in light of the existing data from the 37Cl and Kamiokande II experiments. The combined data disfavor the adiabatic solution and tend to support either the large angle solution or the nonadiabatic one. In the former case the 71Ga signal will be suppressed by the same factor as for 37Cl, and in the latter case the suppression factor could be as large as 10 or more. 41 refs

  4. Accelerator based atomic physics experiments: an overview

    Atomic Physics research with beams from accelerators has continued to expand and the number of papers and articles at meetings and in journals reflects a steadily increasing interest and an increasing support from various funding agencies. An attempt will be made to point out where interdisciplinary benefits have occurred, and where applications of the new results to engineering problems are expected. Drawing from material which will be discussed in the conference, a list of the most active areas of research is presented. Accelerator based atomic physics brings together techniques from many areas, including chemistry, astronomy and astrophysics, nuclear physics, solid state physics and engineering. An example is the use of crystal channeling to sort some of the phenomena of ordinary heavy ion stopping powers. This tool has helped us to reach a better understanding of stopping mechanisms with the result that now we have established a better base for predicting energy losses of heavy ions in various materials

  5. Review of U.S. Neutrino Factory Studies

    We summarize the status of the two U.S. feasibility studies carried out by the Neutrino Factory and Muon Collider Collaboration (NFMCC) along with recent improvements to Neutrino Factory design developed during the American Physical Society (APS) Neutrino Physics Study. Suggested accelerator topics for the International Scoping Study (ISS) are also indicated

  6. Review of U.S. Neutrino Factory Studies

    Zisman, Michael S.

    2005-01-01

    We summarize the status of the two U.S. feasibility studies carried out by the Neutrino Factory and Muon Collider Collaboration (NFMCC) along with recent improvements to Neutrino Factory design developed during the American Physical Society (APS) Neutrino Physics Study. Suggested accelerator topics for the International Scoping Study (ISS) are also indicated.

  7. Accelerator Data for Cosmic Ray Physics

    Albrow, M.G.

    2010-01-01

    I present selected examples of accelerator data, mainly from hadron colliders, that are relevant for understanding cosmic ray showers. I focus on the forward region, $x_{Feynman} > 0.05$, where high energy data are scarce, since the emphasis in collider physics became high-$p_T$ phenomena.

  8. The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos

    Antonaldo DiaferioUniversita' di Torino and INFN Torino; Angus, Garry W.

    2015-01-01

    General Relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the Universe is dark, namely it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^(-10) m/s^2. In the standa...

  9. Mass varying neutrinos, quintessence, and the accelerating expansion of the Universe

    We analyze the mass varying neutrino scenario. We consider a minimal model of massless Dirac fermions coupled to a scalar field, mainly in the framework of finite-temperature quantum field theory. We demonstrate that the mass equation we find has nontrivial solutions only for special classes of potentials, and only within certain temperature intervals. We give most of our results for the Ratra-Peebles dark energy (DE) potential. The thermal (temporal) evolution of the model is analyzed. Following the time arrow, the stable, metastable, and unstable phases are predicted. The model predicts that the present Universe is below its critical temperature and accelerates. At the critical point, the Universe undergoes a first-order phase transition from the (meta)stable oscillatory regime to the unstable rolling regime of the DE field. This conclusion agrees with the original idea of quintessence as a force making the Universe roll towards its true vacuum with a zero Λ term. The present mass varying neutrino scenario is free from the coincidence problem, since both the DE density and the neutrino mass are determined by the scale M of the potential. Choosing M∼10-3 eV to match the present DE density, we can obtain the present neutrino mass in the range m∼10-2-1 eV and consistent estimates for other parameters of the Universe.

  10. Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam

    Tang, Jian

    2011-01-01

    There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detection threshold and a huge fiducial mass for the neutrino detection. This initiative is known as "Phased IceCube Next Generation Upgrade" (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Such an experiment would be unique in the sense that it would be the only neutrino beam where the baseline crosses the Earth's core. We study the detector requirements for a beta beam, a neutrino factory beam, and a superbeam, where we consider both the cases of small theta_13 and large theta_13, as suggested by the recent T2K hint. We illustrate that a flavor-clean beta beam best suits the requirements of such a detector, in particular, that PINGU may replace a magic baseline detector for small values of theta_13 -- even in the absence of any energy resolution capabi...

  11. The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos

    Diaferio, Antonaldo

    2012-01-01

    General Relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the Universe is dark, namely it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^(-10) m/s^2. In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining ...

  12. Department of Accelerator Physics and Technology: Overview

    problems with DKFZ Heidelberg, where she participates in the development so called scanning collimators. As a result of a collaboration with LNF INFN Frascati, apart from two travelling wave RF structures now operated in the CTF3 experiment at CERN, one additional TW structure was made in our Department. It serves as an experimental unit for further study of TW technology. The collaboration with the DESY TESLA-FEL Project during the past years concerned mainly the RF accelerating super-conducting superstructures. This work ended with good results; it was reported in a common international oral session held during PAC2003 in Portland, USA. The superstructures have a chance to be mass-produced if the TESLA Superconducting Collider gets international financial approval. The work on RF vacuum windows upgrading against the multipactor effects in high power couplers was continued at DESY till the end of 2003. The original new technologies of thin TiN coating of ceramic windows were applied using newly constructed coating set-up. The summary of our 2003 results on coating will be presented in the TESLA Report 2004-02. A prerequisite of practising Accelerator Physics is understanding its importance in the wider context. Looking to professional literature on accelerators applications, one finds that in the developed world roughly 20000 accelerators exist (excluding electron units below 0.2 MeV) and yearly this number increases by at least 10%. More than half are used for material modification and roughly 30 % in radiotherapy. The most advanced technically and technologically are accelerators for subatomic physics and synchrotron radiation sources, where the total number of existing or under construction machines surpasses 200. New solutions, new technologies, cost reductions are still being investigated. So, in spite of difficult financial conditions, there is real motivation to keep accelerator physics alive in our Institute. (author)

  13. Physics at a future Neutrino Factory and super-beam facility

    Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B. L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.; Umasankar, S.; Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.; Pascoli, S.; Geer, S.; Campagne, J. E.; Rolinec, M.; Blondel, A.; Campanelli, M.; Kopp, J.; Lindner, M.; Peltoniemi, J.; Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.; Dracos, M.; Whisnant, K.; Casper, D.; Chen, Mu-Chun; Popov, B.; Aysto, J.; Marfatia, D.; Okada, Y.; Sugiyama, H.; Jungmann, K.; Lesgourgues, J.; Zisman, M.; Tortola, M. A.; Friedland, A.; Davidson, S.; Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.; Lopez-Pavon, J.; Rigolin, S.; Mondal, N.; Palladino, V.; Filthaut, F.; Albright, C.; de Gouvea, A.; Kuno, Y.; Nagashima, Y.; Mezzetto, M.; Lola, S.; Langacker, P.; Baldini, A.; Nunokawa, H.; Meloni, D.; Diaz, M.; King, S. F.; Zuber, K.; Akeroyd, A. G.; Grossman, Y.; Farzan, Y.; Tobe, K.; Aoki, Mayumi; Murayama, H.; Kitazawa, N.; Yasuda, O.; Petcov, S.; Romanino, A.; Chimenti, P.; Vacchi, A.; Smirnov, A. Yu; Couce, E.; Gomez-Cadenas, J. J.; Hernandez, P.; Sorel, M.; Valle, J. W. F.; Harrison, P. F.; Lunardini, C.; Nelson, J. K.; Barger, V.; Everett, L.; Huber, P.; Winter, W.; Fetscher, W.; van der Schaaf, A.

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams

  14. Constraining New Physics with a Positive or Negative Signal of Neutrino-less Double Beta Decay

    Bergstrom, Johannes; Ohlsson, Tommy

    2011-01-01

    We investigate numerically how accurately one could constrain the strengths of different short-range contributions to neutrino-less double beta decay in effective field theory. Depending on the outcome of near-future experiments yielding information on the neutrino masses, the corresponding bounds or estimates can be stronger or weaker. A particularly interesting case, resulting in strong bounds, would be a positive signal of neutrino-less double beta decay that is consistent with complementary information from neutrino oscillation experiments, kinematical determinations of the neutrino mass, and measurements of the sum of light neutrino masses from cosmological observations. The keys to more robust bounds are improvements of the knowledge of the nuclear physics involved and a better experimental accuracy.

  15. Neutrino mass hierarchy determination and other physics potential of medium-baseline reactor neutrino oscillation experiments

    Kettell, Steve; Qian, Xin; Yeh, Minfang; Zhang, Chao; Lin, Cheng-Ju; Luk, Kam-Biu; Johnson, Randy; Littlejohn, Bryce; Learned, John; Maricic, Jelena; Peng, Jen-Chieh; Betts, Russell; White, Chrisopher; Dye, Stephen; Lau, Kwong; Liu, Dawei; McDonald, Kirk; Napolitano, Jim; Detwiler, Jason; Tolich, Nikolai; Zhao, Tianchi; McKeown, Robert D; Wang, Wei; Balantekin, A B; Band, Henry; Cherwinka, Jeff; Heeger, Karsten M

    2013-01-01

    Medium-baseline reactor neutrino oscillation experiments (MBRO) have been proposed to determine the neutrino mass hierarchy (MH) and to make precise measurements of the neutrino oscillation parameters. With sufficient statistics, better than $\\sim 3% / \\sqrt{E(MeV)}$ energy resolution and well understood energy non-linearity, MH can be determined by analyzing oscillation signals driven by the atmospheric mass-squared difference in the survival spectrum of reactor antineutrinos. With such high performance MBRO detectors, oscillation parameters, such as $\\sin^22\\theta_{12}$, $\\Delta m^2_{21}$, and $\\Delta m^2_{32}$, can be measured to sub-percent level, which enables a future test of the PMNS matrix unitarity to $\\sim$1% level and helps the forthcoming neutrinoless double beta decay experiments to constrain the allowed $\\langle m_{\\beta \\beta} \\rangle$ values. Combined with results from the next generation long-baseline beam neutrino and atmospheric neutrino oscillation experiments, the MH determination sensiti...

  16. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  17. Department of Accelerator Physics and Technology: Overview

    ' laboratory. Additional radiation shielding was constructed and the computer assisted system for dosimetric monitoring was installed. Three experimental set-ups for electron and photon beam diagnostics are in course of installation and running -at: 4-5 MeV, 10-15 MeV, and 20 MeV. The 20 MeV unit will also be used for generation and metrology of narrow photon beams applicable in stereotactic radiosurgery. Preliminary design works are advanced, oriented, undertaken on an important project - high-power electron accelerators for radiation technology (10 MeV, 20-50 kW). Financial support for this task is still pending. A substantial part of the Department's activity was oriented to an international collaboration with accelerator physics centres. Two works completed in 1997 were extended in 1998: microwave pulsed generator destined for short beam bunches diagnostics was installed and put in operation at INFN-Frascati; 27 pieces of polarized ''door-knob'' r.f. couplers for superconducting cavities in HERA ring were installed and put in operation. In the course of 1998 we got the message from DESY, that couplers are working well and brought desirable improvement in operation reliability. The new item of collaboration with DESY, is design, construction and r.f. measurements of a copper model of accelerating ''superstructure'' for TESLA collider. If successful, the use of niobium ''superstructure'' can shorten by about a few kilometres the length of the TESLA linear accelerator. First four 1 m sections of model structures were sent to DESY at the end of 1998. The next four are in preparation. Some results of work done in 1998 were presented at conferences in Caen, Stockholm and Cracow

  18. Department of Accelerator Physics and Technology: Overview

    Pachan, M. [The Andrzej Soltan Institute for Nuclear Studies, Otwock-Swierk (Poland)

    1999-10-01

    ` laboratory. Additional radiation shielding was constructed and the computer assisted system for dosimetric monitoring was installed. Three experimental set-ups for electron and photon beam diagnostics are in course of installation and running -at: 4-5 MeV, 10-15 MeV, and 20 MeV. The 20 MeV unit will also be used for generation and metrology of narrow photon beams applicable in stereotactic radiosurgery. Preliminary design works are advanced, oriented, undertaken on an important project - high-power electron accelerators for radiation technology (10 MeV, 20-50 kW). Financial support for this task is still pending. A substantial part of the Department`s activity was oriented to an international collaboration with accelerator physics centres. Two works completed in 1997 were extended in 1998: microwave pulsed generator destined for short beam bunches diagnostics was installed and put in operation at INFN-Frascati; 27 pieces of polarized ``door-knob`` r.f. couplers for superconducting cavities in HERA ring were installed and put in operation. In the course of 1998 we got the message from DESY, that couplers are working well and brought desirable improvement in operation reliability. The new item of collaboration with DESY, is design, construction and r.f. measurements of a copper model of accelerating ``superstructure`` for TESLA collider. If successful, the use of niobium ``superstructure`` can shorten by about a few kilometres the length of the TESLA linear accelerator. First four 1 m sections of model structures were sent to DESY at the end of 1998. The next four are in preparation. Some results of work done in 1998 were presented at conferences in Caen, Stockholm and Cracow

  19. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential

    We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of Δ ∼ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum, m1 ≅ m2 ≅ m3 = mν ∼> 0.1 eV. These neutrinos are non-relativistic today; detecting them would be a unique opportunity to probe this unexplored kinematical regime. The signature of neutrino capture is a peak in the electron spectrum that is displaced by 2 mν above the beta decay endpoint. The signal would exceed the background from beta decay if the energy resolution is Δ ∼< 0.7 mν . Interestingly, the total capture rate depends on the origin of the neutrino mass, being ΓD ≅ 4 and ΓM ≅ 8 events per year (for a 100 g tritium target) for unclustered Dirac and Majorana neutrinos, respectively. An enhancement of the rate of up to O(1) is expected due to gravitational clustering, with the unique potential to probe the local overdensity of neutrinos. Turning to more exotic neutrino physics, PTOLEMY could be sensitive to a lepton asymmetry, and reveal the eV-scale sterile neutrino that is favored by short baseline oscillation searches. The experiment would also be sensitive to a neutrino lifetime on the order of the age of the universe and break the degeneracy between neutrino mass and lifetime which affects existing bounds

  20. CAS Accelerator Physics held in Erice, Italy

    CERN Accelerator School

    2013-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Superconductivity for Accelerators, held at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy from 24 April-4 May, 2013.   Photo courtesy of Alessandro Noto, Ettore Majorana Foundation and Centre for Scientific Culture. Following a handful of summary lectures on accelerator physics and the fundamental processes of superconductivity, the course covered a wide range of topics related to superconductivity and highlighted the latest developments in the field. Realistic case studies and topical seminars completed the programme. The school was very successful with 94 participants representing 23 nationalities, coming from countries as far away as Belorussia, Canada, China, India, Japan and the United States (for the first time a young Ethiopian lady, studying in Germany, attended this course). The programme comprised 35 lectures, 3 seminars and 7 hours of case study. The case studies were p...

  1. Primordial Nucleosynthesis and Neutrino Physics Beyond the Standard Model

    Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan, E-mail: miele@na.infn.it, E-mail: pisanti@na.infn.it, E-mail: sarikas@na.infn.it [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte S.Angelo, Via Cinthia, 80126, Napoli (Italy)

    2010-11-01

    The present status of standard Big Bang Nucleosynthesis (BBN) is here reviewed by comparing the theoretical predictions with the observational estimates of light nuclei abundances. In particular, the analysis reports the expected ranges for baryon fraction and effective number of neutrinos as obtained by BBN only. The comparison is also performed in case of a more detailed analysis of neutrino decoupling by assuming initial degenerate neutrino distributions and oscillation mechanism as well.

  2. Research in theoretical nuclear and neutrino physics. Final report

    Sarcevic, Ina [Univ. of Arizona, Tucson, AZ (United States). Dept. of Physics

    2014-06-14

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  3. Research in theoretical nuclear and neutrino physics. Final report

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  4. CAS Accelerator Physics (Ion Sources) in Slovakia

    CAS School

    2012-01-01

    The CERN Accelerator School (CAS) and the Slovak University of Technology jointly organised a specialised course on ion sources, held at the Hotel Senec, Senec, Slovakia, from 29 May to 8 June, 2012.   Following some background lectures on accelerator physics and the fundamental processes of atomic and plasma physics, the course covered a wide range of topics related to ion sources and highlighted the latest developments in the field. Realistic case studies and topical seminars completed the programme. The school was very successful, with 69 participants representing 25 nationalities. Feedback from the participants was extremely positive, reflecting the high standard of the lectures. The case studies were performed with great enthusiasm and produced some excellent results. In addition to the academic programme, the participants were able to take part in a one-day excursion consisting of a guided tour of Bratislava and free time. A welcome event was held at the Hotel Senec, with s...

  5. Early history of physics with accelerators

    The early history of physics at accelerators is reviewed, with emphasis on three experiments which have had a profound influence on our veiw of the structure of matter: The Franck and Hertz experiment opening practical ways of studying nuclear disintegration, and the discovery of the del++ isobar of the proton by Fermi and collaborators, revealing structure in the nucleon. Fermi's work is illustrated by pages from his notebooks

  6. KfK KARLSRUHE/RUTHERFORD APPLETON: New neutrino physics

    Full text: The Karlsruhe-Rutherford Medium Energy Neutrino Experiment (KARMEN) at the UK Rutherford Appleton Laboratory's ISIS spallation neutron facility studies the interactions of neutrinos with nuclei in an energy range of particular importance for neutrino astrophysics. After its first three years of datataking the German/British experiment has analysed more than 1000 neutrino- nucleus interactions. The spectroscopic quality of neutrino data complemented by an extremely low background allows reliable cross section measurements down to 10-42 cm2 as well as precision tests of the standard model. Having reached its design value of 200 microamps average proton beam current at 800 MeV, ISIS is the world's most powerful pulsed medium energy neutrino source. The proton beam stop delivers extremely short but intense bursts of neutrinos. A prompt burst of 30 MeV muon neutrinos from pion decay at rest is followed by a pulse of electron and muon antineutrinos from muon decay at rest with energies up to 53 MeV. This allows separation of different neutrino 'flavours' by time measurement. In addition, cosmic ray background is highly suppressed. Neutrinos are detected by a 60 ton high resolution liquid scintillation calorimeter 17.5 m from the beam stop and housed in a massive 6000 ton iron blockhouse. Consisting entirely of hydrocarbons, the calorim eter is an all active target of carbon- 12 and hydrogen nuclei. Nuclear excitations by neutrino interactions with carbon-12 nuclei through weak charged or neutral currents can be identified by the subsequent deexcitation processes. At beam stop energies nuclear charged current reactions can only be induced by electron neutrinos. A prototype example is the charged current transition from carbon-12 to the ground state of nitrogen-12. The delayed coincidence of this reaction allows clear identification of electron neutrinos. The flux-averaged as well as the energy dependence of the absorption cross-section both

  7. Standard physics solution to the solar neutrino problem?

    Dar, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Physics

    1996-11-01

    The {sup 8}B solar neutrino flux predicted by the standard solar model (SSM) is consistent within the theoretical and experimental uncertainties with that at Kamiokande. The Gallium and Chlorine solar neutrino experiments, however, seem to imply that the {sup 7}Be solar neutrino flux is strongly suppressed compared with that predicted by the SSM. If the {sup 7}Be solar neutrino flux is suppressed, still it can be due to astrophysical effects not included in the simplistic SSM. Such effects include short term fluctuations or periodic variation of the temperature in the solar core, rotational mixing of {sup 3}He in the solar core, and dense plasma effects which may strongly enhance p-capture by {sup 7}Be relative to e-capture. The new generation of solar observations which already look non stop deep into the sun, like Superkamiokande through neutrinos, and SOHO and GONG through acoustic waves, may point at the correct solution. Only Superkamiokande and/or future solar neutrino experiments, such as SNO, BOREXINO and HELLAZ, will be able to find out whether the solar neutrino problem is caused by neutrino properties beyond the minimal standard electroweak model or whether it is just a problem of the too simplistic standard solar model. (author) 1 fig., 3 tabs., refs.

  8. The impact of Borexino on the solar and neutrino physics

    Bellini, Gianpaolo

    2016-07-01

    The Borexino detector is characterized by a very low background level due to an unprecedented radio-purity, which allows to study the entire spectrum of solar neutrinos from very low energies (∼150 keV). The solar neutrino rates from pp, 7Be, pep, 8B (with a threshold down to 3 MeV) and a stringent limit of the CNO cycle rate have been already measured. In addition evidences of a null day/night asymmetry and of the solar neutrino flux seasonal variation have been reached. The contribution provided until now by Borexino in understanding the neutrino oscillation phenomenon concerns the first evidence of the oscillation in vacuum and the determination of the νe survival probability in vacuum: these results validate the paradigmatic MSW model in the vacuum regime. The Borexino results are also in good agreement with the Standard Solar Model predictions, but the metallicity puzzle is still unsolved. In addition the pp flux measured by Borexino shows a good agreement with the Solar luminosity. Evidence of geo-neutrinos has been also obtained at the level of 5.9σ C.L. Borexino is still taking data in order to: upgrade the precision of the solar neutrino rates already measured, increase the sensitivity to the neutrino flux from the CNO cycle and hopefully measure it (very challenging), and test the existence of very short base-line neutrino oscillations.

  9. Neutrino cosmology

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  10. First accelerator-based physics of 2014

    Katarina Anthony

    2014-01-01

    Experiments in the East Area received their first beams from the PS this week. Theirs is CERN's first accelerator-based physics since LS1 began last year.   For the East Area, the PS performs a so-called slow extraction, where beam is extracted during many revolution periods (the time it take for particles to go around the PS, ~2.1 μs). The yellow line shows the circulating beam current in the PS, decreasing slowly during the slow extraction, which lasts 350 ms. The green line is the measured proton intensity in the transfer line toward the East Area target. Although LHC physics is still far away, we can now confirm that the injectors are producing physics! In the East Area - the experimental area behind the PS - the T9 and T10 beam lines are providing beams for physics. These beam lines serve experiments such as AIDA - which looks at new detector solutions for future accelerators - and the ALICE Inner Tracking System - which tests components for the ALICE experiment. &qu...

  11. Neutrino and dark matter physics with sub-keV germanium detectors

    Arun Kumar Soma; Lakhwinder Singh; Manoj Kumar Singh; Venktesh Singh; Henry T Wong; on behalf of the TEXONO Collaboration

    2014-11-01

    Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor Neutrino Laboratory. Highlights of the physics motivation, our R&D programme, as well as the status and plans are presented.

  12. Nuclear physics accelerator facilities of the world

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  13. Lecture Notes on Topics in Accelerator Physics

    These are lecture notes that cover a selection of topics, some of them under current research, in accelerator physics. I try to derive the results from first principles, although the students are assumed to have an introductory knowledge of the basics. The topics covered are: (1) Panofsky-Wenzel and Planar Wake Theorems; (2) Echo Effect; (3) Crystalline Beam; (4) Fast Ion Instability; (5) Lawson-Woodward Theorem and Laser Acceleration in Free Space; (6) Spin Dynamics and Siberian Snakes; (7) Symplectic Approximation of Maps; (8) Truncated Power Series Algebra; and (9) Lie Algebra Technique for nonlinear Dynamics. The purpose of these lectures is not to elaborate, but to prepare the students so that they can do their own research. Each topic can be read independently of the others

  14. CAS Introduction to Accelerator Physics in Spain

    CERN Bulletin

    2012-01-01

    The CERN Accelerator School (CAS) and the University of Granada jointly organised a course called "Introduction to Accelerator Physics" in Granada, Spain, from 28 October to 9 November, 2012.   The course attracted over 200 applicants, of whom 139 were selected to attend. The students were of 25 different nationalities, coming from countries as far away as Australia, China, Guatemala and India. The intensive programme comprised 38 lectures, 3 seminars, 4 tutorials where the students were split into three groups, a poster session and 7 hours of guided and private study. Feedback from the students was very positive, praising the expertise of the lecturers, as well as the high standard and quality of their lectures. CERN's Director-General, Rolf Heuer, gave a public lecture at the Parque de las Ciencias entitled "The Large Hadron Collider: Unveiling the Universe". In addition to the academic programme, the students had the opportunity to visit the well...

  15. Physics Reach of DUNE with a Light Sterile Neutrino

    Agarwalla, Sanjib Kumar; Palazzo, Antonio

    2016-01-01

    We investigate the implications of one light eV scale sterile neutrino on the physics potential of the proposed long-baseline experiment DUNE. If the future short-baseline experiments confirm the existence of active-sterile oscillations, and the new mixing angles ($\\theta_{14}, \\theta_{24}, \\theta_{34}$) turn out to be comparable to $\\theta_{13}$, then it can have significant impact on mass hierarchy (MH) and CP-violation (CPV) searches at DUNE. We find that the MH sensitivity still remains above 5$\\sigma$ if the three new mixing angles are all close to $\\theta_{13}$. In contrast, it can decrease to 4$\\sigma$ if the least constrained mixing angle $\\theta_{34}$ is close to its upper limit $\\sim 30^0$. We also assess the sensitivity to the CPV induced both by the standard CP-phase $\\delta_{13} \\equiv \\delta$, and the new CP-phases $\\delta_{14}$ and $\\delta_{34}$. In the 3+1 scheme, the discovery potential of CPV induced by $\\delta_{13}$ gets substantially deteriorated compared to the 3$\

  16. Essay: Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  17. Neutrino Flux from Cosmic Ray Accelerators in the Cygnus Spiral Arm of the Galaxy

    Anchordoqui, Luis A; Montaruli, T; O'Murchadha, A; Anchordoqui, Luis; Halzen, Francis; Montaruli, Teresa; Murchadha, Aongus O'

    2006-01-01

    Intriguing evidence has been accumulating for the production of cosmic rays in the Cygnus region of the Galactic plane. We here show that the IceCube experiment can produce incontrovertible evidence for cosmic ray acceleration by observing neutrinos from the decay of charged pions accompanying the TeV photon flux observed in the HEGRA, Whipple, Tibet and Milagro experiments. Our assumption is that the TeV photons observed are the decay products of neutral pions produced by cosmic ray accelerators in the nearby spiral arm of the Galaxy. Because of the proximity of the sources, IceCube will obtain evidence at the 5sigma level in 10 years of observation.

  18. Sudbury Neutrino Observatory

    Beier, E. W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in Jan. 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical Cl-37 and Ga-71 experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  19. Accelerator physics studies for the SSC

    In the spring of 1984, a reference designs study (RDS) was carried out to identify the issues and to provide a crude cost estimate of the SSC. Following the RDS, a Central Design Group was formed in October to perform the detailed design RandD for construction of the SSC. This paper is a brief review of progress made on the accelerator physics studies since October 1984. For major issues not discussed here, many of them of great importance, the RDS report is still the valid source of information

  20. Neutrino Factory R&D - a global perspective

    Foster, B.

    2002-01-01

    The current world status of plans for future particle-physics accelerators and accelerator research and development is outlined. The developments for a neutrino factory are placed in this context. Finally, a specific initiative relevant for Europe is discussed.

  1. High Energy Neutrino Physics with Liquid Scintillation Detectors

    Learned, John G

    2009-01-01

    Large liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region (as for example, KamLAND and Borexino). Herein we describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrinos interactions, from the cosmic rays and as a long baseline neutrino detector. Generally when people have considered large new instruments such as Hanohano and LENA, they have abandoned the possibility of doing useful measurements with higher energy neutrino interactions since these produce enough light to illuminate every photomultiplier tube, and the scintillation light is isotropic. Here we take into account Fermat's principle, which tells us that indeed the first light to reach the PMTs will be on or near the lightcone, the "Fermat surface", and that directional track information is available. Moreover we have realized that particle type distinction is possible (quasi-elastic muons from electrons). In fact the resolution from a ...

  2. Light new physics in coherent neutrino-nucleus scattering experiments

    deNiverville, Patrick; Ritz, Adam

    2015-01-01

    Experiments aiming to detect coherent neutrino-nucleus scattering present opportunities to probe new light weakly-coupled states, such as sub-GeV mass dark matter, in several extensions of the Standard Model. These states can be produced along with neutrinos in the collisions of protons with the target, and their production rate can be enhanced if there exists a light mediator produced on-shell. We analyze the sensitivity reach of several proposed experiments to light dark matter interacting with the Standard Model via a light vector mediator coupled to the electromagnetic current. We also determine the corresponding sensitivity to massless singlet neutrino-type states with interactions mediated by the baryon number current. In both cases we observe that proposed coherent neutrino-nucleus scattering experiments, such as COHERENT at the SNS and CENNS at Fermilab, will have sensitivity well beyond the existing limits.

  3. Multimegawatt DAE$\\delta$ALUS Cyclotrons for Neutrino Physics

    Abs, M; Alonso, J R; Barletta, W A; Barlow, R; Calabretta, L; Calanna, A; Campo, D; Celona, L; Conrad, J M; Gammino, S; Kleeven, W; Koeth, T; Maggiore, M; Okuno, H; Piazza, L A C; Seidel, M; Shaevitz, M H; Stingelin, L; Yang, J J; Yeck, J

    2012-01-01

    DAE$\\delta$ALUS (Decay-At-rest Experiment for $\\delta_{CP}$ studies At the Laboratory for Underground Science) provides a new approach to the search for CP violation in the neutrino sector. High-power continuous-wave proton cyclotrons efficiently provide the necessary proton beams with an energy of up to 800 MeV to create neutrinos from pion and muon decay-at-rest. The experiment searches for $\\bar{\

  4. Models for neutrino mass and physics beyond standard model

    Ahriche, Amine; Nasri, Salah

    2015-01-01

    In this work, we report on recent analysis of three-loop models of neutrino mass with dark matter. We discuss in detail the model of Krauss-Nasri-Trodden (KNT) [1], showing that it offers a viable solution to the neutrino mass and dark matter problems, and describe observable experimental signals predicted by the model. Furthermore, we show that the KNT model belongs to a larger class of three-loop models that can differ from the KNT approach in interesting ways.

  5. Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams

    Altmannshofer, Wolfgang; Pospelov, Maxim; Yavin, Itay

    2014-01-01

    The production of a mu+mu- pair from the scattering of a muon-neutrino off the Coulomb field of a nucleus, known as neutrino trident production, is a sub-weak process that has been observed in only a couple of experiments. As such, we show that it constitutes an exquisitely sensitive probe in the search for new neutral currents among leptons, putting the strongest constraints on well-motivated and well-hidden extensions of the Standard Model gauge group, including the one coupled to the difference of the lepton number between the muon and tau flavor, L_mu-L_tau. The new gauge boson, Z', increases the rate of neutrino trident production by inducing additional $(\\bar\\mu \\gamma_\\alpha \\mu)(\\bar\

  6. Solar neutrino physics: Sensitivity to light dark matter particles

    Lopes, Ilidio

    2013-01-01

    Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radius of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely 8B neutrino fluxes, we find that non-annihilating dark matter particl...

  7. Testing for New Physics: Neutrinos and the Primordial Power Spectrum

    Canac, Nicolas; Abazajian, Kevork N; Easther, Richard; Price, Layne C

    2016-01-01

    We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of $\\mathrm{H}_0$ and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in $\\log k$. Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-pr...

  8. Neutrino physics with multi-ton scale liquid xenon detectors

    Baudis, L; Kish, A; Manalaysay, A; Undagoitia, T Marrodan; Schumann, M

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7-Be neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2x10^-48 cm^2 and WIMP masses around 50 GeV, for an assumed 99.5% rejectio...

  9. Department of Accelerator Physics and Technology: Overview

    features and technology of execution. At the end of the year, the contract was concluded, and in summer 2002 two ordered sections will be completed. In view of money shortages, the problem emerges for the coming year, to discuss and to define the future role of accelerator physics and technology in our Institute. (author)

  10. Physics at a future Neutrino Factory and super-beam facility

    Bandyopadhyay, A; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umansankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, Silvia; Geer, S; Rolinec, M; Blondel, A; Campanelli, M; Kopp, J; Lindner, M; Peltoniemi, J; Dornan, P J; Long, K; Matsushita, T; Rogers, C; Uchida, Y; Dracos, M; Whisnant, K; Casper, D; Chen, Mu-Chun; Popov, B; Aysto, J; Marfatia, D; Okada, Y; Sugiyama, H; Jungmann, K; Lesgourgues, J; Murayama, France H; Zisman, M; Tortola, M A; Friedland, A; Antusch, S; Biggio, C; Donini, A; Fernandez-Martinez, E; Gavela, B; Maltoni, M; Lopez-Pavon, J; Rigolin, S; Mondal, N; Palladino, V; Filthaut, F; Albright, C; de Gouvea, A; Kuno, Y; Nagashima, Y; Mezzetoo, M; Lola, S; Langacker, P; Baldini, A; Nunokawa, H; Meloni, D; Diaz, M; King, S F; Zuber, K; Akeroyd, A G; Grossman, Y; Farzan, Y; Tobe, K; Aoki, Mayumi; Kitazawa, N; Yasuda, O; Petcov, S; Romanino, A; Chimenti, P; Vacchi, A; Smirnov, A Yu; Couce, Italy E; Gomez-Cadenas, J J; Hernandez, P; Sorel, M; Valle, J W F; Harrison, P F; Lundardini, C; Nelson, J K; Barger, V; Everett, L; Huber, P; Winter, W; Fetscher, W; van der Schaaf, A

    2009-01-01

    The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, beta-beam facilities, and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide ...

  11. Long baseline neutrino oscillation experiment at the AGS. Physics design report

    The authors present a design for a multi-detector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the νμ, disappearance channel and the νμ ↔ νe appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68km from the AGS neutrino source. Observed depletion of the νμ flux (via quasi-elastic muon neutrino events, νμn → μ-p) in the far detectors not attended by an observed proportional increase of the νe flux (via quasi-elastic electron neutrino events, νen → e-p) in those detectors will be prima facie evidence for the oscillation channel νμ ↔ ντ. The experiment is directed toward exploration of the region of the neutrino oscillation parameters Δm2 and sin22θ, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy (∼ 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors

  12. Neutrino properties

    Valle, José W F

    1996-01-01

    A brief sketch is made of the present observational status of neutrino properties, with emphasis on the hints from solar and atmospheric neutrinos, as well as cosmological data on the amplitude of primordial density fluctuations. Implications of neutrino mass in particle accelerators, astrophysics and cosmology are discussed.

  13. Low-energy neutrino and dark matter physics with sub-keV germanium detectors

    A K Soma; L Singh; M K Singh; V Singh; H T Wong

    2012-11-01

    The TEXONO-CDEX Collaboration (Taiwan experiment on neutrino–China dark matter experiment) explores high-purity germanium (HPGe) detection technology to develop a sub-keV threshold detector for pursuing studies on low mass weakly interacting massive particles (WIMPs), properties of neutrino and the possibilities of neutrino-nucleus coherent scattering observation. This article will introduce the facilities of newly established China Jing-Ping Underground Laboratory (CJPL), preliminary result of cosmic ray background studies at CJPL, the dark matter studies pursued at Kuo-Sheng Neutrino Laboratory (KSNL) and research efforts to accomplish our physics goals.

  14. Cosmic Neutrino Pevatrons: A Brand New Pathway to Astronomy, Astrophysics, and Particle Physics

    Anchordoqui, Luis A; Cholis, Ilias; Goldberg, Haim; Hooper, Dan; Kusenko, Alexander; Learned, John G; Marfatia, Danny; Pakvasa, Sandip; Paul, Thomas C; Weiler, Thomas J

    2013-01-01

    The announcement by the IceCube Collaboration of the observation of 28 cosmic neutrino candidates has been greeted with a great deal of justified excitement. The data reported so far depart by 4.3\\sigma from the expected atmospheric neutrino background, which raises the obvious question: "Where in the Cosmos are these neutrinos coming from?" We review the many possibilities which have been explored in the literature to address this question, including origins at either Galactic or extragalactic celestial objects. For completeness, we also briefly discuss new physics processes which may either explain or be constrained by IceCube data.

  15. Department of Accelerator Physics and Technology - Overview

    The activities of P-10 Department in year 2005 were devoted to: - development of radiographic 4 MeV electron accelerator, - development of accelerating and deflecting types travelling (TW) and standing wave (SW) RF structures for electrons and ions, - MC simulations applied to photon and ion radiotherapy The compact 6 MeV electron linac constructed in Department P-10 was put in the beginning of reported year into experimental operation. The request for permission to use ionisation source (6 MeV linac) was submitted to National Atomic Energy Agency. On the basis of all necessary documents the permission for routine using of our linac was granted. Actually the e/X conversion tungsten target has been moved from vacuum to air. To improve the safety of accelerator operation, the new collimator and some shielding walls were added. Two regimes of operation are actually possible: X ray output beam or electron beam depending on user demand. Some old non-reliable sub-units of accelerator were replaced, and energy and intensity optimisation for e-/X-ray conversion were made. The MC calculations of photon beams produced on e-/X converter were repeated taking into account the new collimator and additional shields. The triode gun, originally thought of as a part of 6/15 MeV medical accelerator is still on long term tests showing excellent performance; it was twice opened to air to confirm the possibility of repeated formation of gun dispenser cathode. New pulse modulator was routinely used in these tests. The sublimation set-up designed and made in our Department for the TiN coating of accelerator components underwent successfully the technological test including coating quality of several ceramic RF power vacuum windows. Within the German heavy ion therapy program the DKFZ Heidelberg is responsible for medical physics problems of treatment planning and modeling of ion beams for GSI Radiotherapy Facility. The MC simulations are used to calibrate the X-ray CT scanners to obtain

  16. ICFA neutrino panel report

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  17. Neutrino trident production: a powerful probe of new physics with neutrino beams.

    Altmannshofer, Wolfgang; Gori, Stefania; Pospelov, Maxim; Yavin, Itay

    2014-08-29

    The production of a μ+ μ- pair from the scattering of a muon neutrino off the Coulomb field of a nucleus, known as neutrino trident production, is a subweak process that has been observed in only a couple of experiments. As such, we show that it constitutes an exquisitely sensitive probe in the search for new neutral currents among leptons, putting the strongest constraints on well-motivated and well-hidden extensions of the standard model gauge group, including the one coupled to the difference of the lepton number between the muon and tau flavor, Lμ-Lτ. The new gauge boson Z', increases the rate of neutrino trident production by inducing additional (μγαμ)(νγ(α)ν) interactions, which interfere constructively with the standard model contribution. Existing experimental results put significant restrictions on the parameter space of any model coupled to muon number Lμ, and disfavor a putative resolution to the muon g-2 discrepancy via the loop of Z' for any mass mZ'≳400  MeV. The reach to the models' parameter space can be widened with future searches of the trident production at high-intensity neutrino facilities such as the LBNE. PMID:25215977

  18. Department of Accelerator Physics and Technology - Overview

    Full text: The work of Department P-10 in 2004 included the following subjects: - development of radiographic 4 MeV electron accelerator, - physical and technological problems related to the development of accelerating and deflecting types travelling and standing wave RF structures and their subsystems, - MC simulations applied to radiotherapy; continuation study of photon beams with the use of BEAMnrc Monte Carlo codes, - minor works concerning the C-30 cyclotron: the modifications of an H- external ion source and actualisation our list for cyclotron upgrading. The compact 6 MeV electron linac constructed in Department P-10 was mounted on an experimental stand, equipped with necessary auxiliary systems (pulsed high power RF supply, focusing and beam measuring system, cooling and temperature stabilising and safety system) and put into preliminary operation. The output energy and current intensity of the structure were measured and compared with the calculated values. The computational codes written in our Department during realisation of the 6/15 MeV project were used for that purpose, giving satisfactory agreement of calculations with measurements. The accelerator can be operated in electron or X-ray mode depending on demand. In 2004 all sub-units of the accelerator were operationally tested and intensity optimisation for e-/X-ray conversion was made. As the linac is thought primarily as a tool for radiographic services which may be offered by the Department, a number of X-ray exposures to radiographic films has been made in order to check its usability and the quality of pictures. The MC calculations of photon beams produced on the e-/X converter were made to complete the design of radiographic facility. Apart from radiography, the output beams of electrons and/or X-rays can also be used for studies in dosimetry, radiation effects in electronic components, neutron production in RT low energy linacs and so on. The TiN coating of accelerator components, in

  19. Department of Accelerator Physics and Technology - Overview

    Full text: In 2007 we covered the following subjects: · miniaturization of electron linear accelerating structures, · calculations, construction and measurements of a proton accelerating structure operated at high RF frequency, · study of the photon and electron spectra of photon beams using BEAMnrc Monte Carlo codes, · preparatory works for participation in the international X-FEL project, · preparing a Proposal for the Polish Hadron Therapy Project; participation in meetings of the Consortium for the National Center of Hadron Therapy, · development and exploitation of experimental set-ups in Department P-10 (3 electron linacs, TiN deposition unit, triode electron gun measuring stand). The aim of electron accelerating structures is the search for electron accelerator miniaturization, especially for IORT accelerators. At higher frequencies, much higher accelerating fields can be applied and as the wavelength becomes shorter, the overall size of the structure and various components become smaller. Two RF frequency regions are investigated, the C-band region covering 4 to 8 GHz and X-band covering 8 to 12 GHz. In 2006, the main physical parameters of 5720 MHz SW side coupled structures were studied, as well as the availability of necessary microwave high power equipment. In 2007, further optimization of the accelerating structure was approached, the beam dynamics calculated and mechanical design of a prototype prepared. The prototype of a compact proton linac is under study and construction in ENEA-Frascati as an alternative to a cyclotron or synchrotron offered by specialized industries. Generally, linacs are characterized by the ease of beam extraction, and very good beam quality and simple energy changes. Compactness is achieved by very high operating RF frequency of 3 GHz. As a continuation of previous work, all manufacturing tests were finished and the documentation of subsection 2 was closed. In July 2007, the structure subsection 2 was completed and

  20. The Unruh effect and oscillating neutrinos

    Ahluwalia, Dharam Vir; Torrieri, Giorgio

    2015-01-01

    We point out that neutrino oscillations imply an ambiguity in the definition of the vacuum and the coupling to gravity, with experimentally observable consequences due to the Unruh effect. In an accelerating frame, the detector should see a bath of mass Eigenstates neutrinos. In inertial processes, neutrinos are produced and absorbed as charge Eigenstates. The two cannot be reconciled by a spacetime coordinate transformation. This makes manifestations of the Unruh effect in neutrino physics a promising probe of both neutrinos and fundamental quantum field theory. In this respect, we suggest $p\\rightarrow n +\\ell^+ + {\

  1. Effects of new physics in neutrino oscillations in matter

    A new flavour-changing electron neutrino interaction with matter would always dominate the νe oscillation probability at sufficiently high neutrino energies. Being suppressed by θ13, the energy scale at which the new effect starts to be relevant may be within the reach of realistic experiments, where the peculiar dependence of the signal with energy could give rise to a clear signature in the νe → ντ channel. The latter could be observed by means of a coarse large magnetized detector exploiting τ → μ decays. We discuss the possibility of identifying or constraining such effects with a high energy neutrino factory. We also comment on the model-independent limits on them

  2. Constraining white dwarf structure and neutrino physics in 47 Tucanae

    Goldsbury, Ryan; Richer, Harvey; Kalirai, Jason; Tremblay, Pier-Emmanuel

    2016-01-01

    We present a robust statistical analysis of the white dwarf cooling sequence in 47 Tucanae. We combine HST UV and optical data in the core of the cluster, Modules for Experiments in Stellar Evolution (MESA) white dwarf cooling models, white dwarf atmosphere models, artificial star tests, and a Markov Chain Monte Carlo (MCMC) sampling method to fit white dwarf cooling models to our data directly. We use a technique known as the unbinned maximum likelihood to fit these models to our data without binning. We use these data to constrain neutrino production and the thickness of the hydrogen layer in these white dwarfs. The data prefer thicker hydrogen layers $(q_\\mathrm{H}=3.2\\e{-5})$ and we can strongly rule out thin layers $(q_\\mathrm{H}=10^{-6})$. The neutrino rates currently in the models are consistent with the data. This analysis does not provide a constraint on the number of neutrino species.

  3. Constraining White Dwarf Structure and Neutrino Physics in 47 Tucanae

    Goldsbury, R.; Heyl, J.; Richer, H. B.; Kalirai, J. S.; Tremblay, P. E.

    2016-04-01

    We present a robust statistical analysis of the white dwarf cooling sequence in 47 Tucanae. We combine Hubble Space Telescope UV and optical data in the core of the cluster, Modules for Experiments in Stellar Evolution (MESA) white dwarf cooling models, white dwarf atmosphere models, artificial star tests, and a Markov Chain Monte Carlo sampling method to fit white dwarf cooling models to our data directly. We use a technique known as the unbinned maximum likelihood to fit these models to our data without binning. We use these data to constrain neutrino production and the thickness of the hydrogen layer in these white dwarfs. The data prefer thicker hydrogen layers ({q}{{H}}=3.2× {10}-5) and we can strongly rule out thin layers ({q}{{H}}={10}-6). The neutrino rates currently in the models are consistent with the data. This analysis does not provide a constraint on the number of neutrino species.

  4. Cosmological and astrophysical neutrino mass measurements

    Abazajian, K.N.; Calabrese, E.; Cooray, A.;

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  5. Cosmological and Astrophysical Neutrino Mass Measurements

    Abazajian, K N; Cooray, A; De Bernardis, F; Dodelson, S; Friedland, A; Fuller, G M; Hannestad, S; Keating, B G; Linder, E V; Lunardini, C; Melchiorri, A; Miquel, R; Pierpaoli, E; Pritchard, J; Serra, P; Takada, M; Wong, Y Y Y

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.

  6. Neutrino mass and physics beyond the Standard Model

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states

  7. Neutrino beams and experiments

    After a brief review of the early history of neutrino experiments, the principle of neutrino beams at proton accelerators is described and a survey of neutrino experiments since 1963 is given. ((orig.))

  8. Pulsed power accelerator for material physics experiments

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  9. How Unequal Fluxes of High Energy Astrophysical Neutrinos and Antineutrinos can Fake New Physics

    Nunokawa, Hiroshi; Funchal, Renata Zukanovich

    2016-01-01

    Flavor ratios of very high energy astrophysical neutrinos, which can be studied at the Earth by a neutrino telescope such as IceCube, can serve to diagnose their production mechanism at the astrophysical source. The flavor ratios for neutrinos and antineutrinos can be quite different as we do not know how they are produced in the astrophysical environment. Due to this uncertainty the neutrino and antineutrino flavor ratios at the Earth also could be quite different. Nonetheless, it is generally assumed that flavor ratios for neutrinos and antineutrinos are the same at the Earth, in fitting the high energy astrophysical neutrino data. This is a reasonable assumption for the limited statistics for the data we currently have. However, in the future the fit must be performed allowing for a possible discrepancy in these two fractions in order to be able to disentangle different production mechanisms at the source from new physics in the neutrino sector. To reinforce this issue, in this work we show that a wrong as...

  10. Sterile Neutrino Search with MINOS

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  11. Sterile Neutrino Search with MINOS

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Δms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  12. Neutrino Masses

    Weinheimer, Christian

    2013-01-01

    The various experiments on neutrino oscillation evidenced that neutrinos have indeed non-zero masses but cannot tell us the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double $\\beta$-decay and the direct neutrino mass search by investigating single $\\beta$-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments with different techniques are being constructed, commissioned or are even running, which aim for a sensitivity on the neutrino ...

  13. Search for Sterile Neutrinos at Long and Short Baselines

    Stanco, Luca

    2016-01-01

    Neutrino physics is currently suffering from lack of knowledge from at least four major ingredients. One of them is the presence or not of new sterile neutrino states at the mass scale of around 1 eV. Settling this point should be the highest priority for the neutrino community. We will discuss the state-of-the art of experimental searches for sterile neutrinos with accelerators, both at long and short baselines.

  14. Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton–nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates

  15. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    Hanussek, Marja

    2012-05-15

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  16. Status and neutrino oscillation physics potential of the Hyper-Kamiokande Project in Japan

    De Rosa, Gianfranca; Hyper-Kamiokande Protocollaboration

    2016-05-01

    Hyper-Kamiokande (Hyper-K), a proposed one-megaton water Cherenkov detector to be built in Japan, is the logical continuation of the highly successful program of neutrino (astro) physics and proton decay using the water Cherenkov technique. In its baseline design, the Hyper-K detector consists of two cylindrical tanks lying side-by-side, the outer dimensions of each tank being 48m × 54m × 250m. The inner detector region will be instrumented with 99,000 20-inch photo-sensors. An international proto-collaboration has been intensively working on the R&D of key components such as optimization of cavern, tank construction, development of high performance photo-sensors, design of new near detectors and improvements to the J-PARC neutrino beam. Hyper-K will study the CP asymmetry in neutrino oscillations using the neutrino and anti-neutrino beams produced at J-PARC. With an exposure of 7.5 MW × 107 seconds, CP violating parameter delta can be measured to better than 19 degrees at all values of delta, and CP violation can be detected with more than 3 sigma significance for 76% of the values. An overview of the status of project and the studies of the sensitivity of this detector to physics quantities governing neutrino oscillation is presented.

  17. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  18. Exploring hadron physics in black hole formations: A new promising target of neutrino astronomy

    The detection of neutrinos from massive stellar collapses can teach us a great deal not only about source objects but also about microphysics working deep inside them. In this study we discuss quantitatively the possibility to extract information on the properties of dense and hot hadronic matter from neutrino signals coming out of black-hole-forming collapses of nonrotational massive stars. Based on our detailed numerical simulations we evaluate the event numbers for SuperKamiokande, with neutrino oscillations fully taken into account. We demonstrate that the event numbers from a Galactic event are large enough not only to detect but also to distinguish one hadronic equation of state from another by our statistical method, assuming the same progenitor model and nonrotation. This means that the massive stellar collapse can be a unique probe into hadron physics and will be a promising target of the nascent neutrino astronomy.

  19. Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II

    IceCube Collaboration; Klein, Spencer; Collaboration, IceCube

    2009-06-02

    The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.

  20. Atmospheric neutrinos and discovery of neutrino oscillations

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. (author)

  1. Theoretical Results on Neutrinos

    Zhou, Shun

    2015-01-01

    In this talk, I first summarize our current knowledge about the fundamental properties of neutrinos and emphasize the remaining unsolved problems in neutrino physics. Then, recent theoretical results on neutrino mass models are introduced. Different approaches to understanding tiny neutrino masses, lepton flavor mixing and CP violation are presented. Finally, I report briefly some new progress in the studies of astrophysical neutrinos, including keV sterile neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos.

  2. Are Neutrinos Democratic?

    Karl, G

    2002-01-01

    We generalize the notion of democratic mixing matrices for neutrinos and propose a scheme in which the electron neutrino is a superposition of three different mass eigenstates with equal weights. This scheme accounts for the recent SNO results as well as atmospheric muon neutrino and electron neutrino data. The outcomes of reactor neutrino and accelerator experiments are also discussed.

  3. Neutrino radiation hazards: A paper tiger

    Neutrinos are present in the natural environment due to terrestrial, solar, and cosmic sources and are also produced at accelerators both incidentally and intentionally as part of physics research programs. Progress in fundamental physics research has led to the creation of beams of neutrinos of ever-increasing intensity and/or energy. The large size and cost associated with these beams attracts, and indeed requires, public interest, support, and some understanding of the 'exotic' particles produced, including the neutrinos. Furthermore, the very word neutrino ('little neutral one', as coined by Enrico Fermi) can lead to public concern due to confusion with 'neutron', a word widely associated with radiological hazards. Adding to such possible concerns is a recent assertion, widely publicized, that neutrinos from astronomical events may have led to the extinction of some biological species. Presented here are methods for conservatively estimating the dose equivalent due to neutrinos as well as an assessment of the possible role of neutrinos in biological extinction processes. It is found that neutrinos produced by the sun and modern particle accelerators produce inconsequential dose equivalent rates. Examining recent calculations concerning neutrinos incident upon the earth due to stellar collapse, it is concluded that it is highly unlikely that these neutrinos caused the mass extinctions of species found in the paleontological record. Neutrino radiation hazards are, then, truly a 'paper tiger'. 14 refs., 1 fig., 1 tab

  4. Muon Colliders: the Ultimate Neutrino Beamlines

    It is shown that muon decays in straight sections of muon collider rings will naturally produce highly collimated neutrino beams that can be several orders of magnitude stronger than the beams at existing accelerators. We discuss possible experimental setups and give a very brief overview of the physics potential from such beamlines. Formulae are given for the neutrino event rates at both short and long baseline neutrino experiments in these beams

  5. Physics and technical development of accelerators

    About 90 registered participants delivered more than 40 scientific papers. A great part of these presentations were of general interest about running projects such as CIME accelerator at Ganil, IPHI (high intensity proton injector), ESRF (European source of synchrotron radiation), LHC (large hadron collider), ELYSE accelerator at Orsay, AIRIX, and VIVITRON tandem accelerator. Other presentations highlighted the latest technological developments of accelerator components: superconducting cavities, power klystrons, high current injectors..

  6. Neutrino astronomy

    In recent years, there has been considerable discussion on the field called neutrino astronomy which represents exciting prospect in that it deals with the radiations which are distinct from electromagnetic spectra. Because of the unique, enormously long interaction mean free path of neutrinos, this field can in principle give extremely valuable complementary information about the universe, in particular about the conditions in the core of the sun and the energy balance and extent of the galaxy. Remarkable difference is observed when outlining of the development of neutrino astronomy is attempted in a manner similar to that for radio astronomy. The development on solar neutrinos, calculation of solar neutrino flux, solar neutrino search experiments, efforts to resolve the discrepancy between theory and experiment concerning the neutrinos from the sun, chemistry consideration, nuclear physics problems, astrophysical calculation, neutrino physics and other physical accomplishments are reviewed in the report. (Iwase, T.)

  7. CAS Accelerator Physics (RF for Accelerators) in Denmark

    Barbara Strasser

    2010-01-01

    The CERN Accelerator School (CAS) and Aarhus University jointly organised a specialised course on RF for Accelerators, at the Ebeltoft Strand Hotel, Denmark from 8 to 17 June 2010.   Caption The challenging programme focused on the introduction of the underlying theory, the study and the performance of the different components involved in RF systems, the RF gymnastics and RF measurements and diagnostics. This academic part was supplemented with three afternoons dedicated to practical hands-on exercises. The school was very successful, with 100 participants representing 25 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants were able to visit a small industrial exhibition organised by Aarhus University and take part in a one-day excursion consisting of a visit of the accelerators operated ...

  8. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    Bolozdynya, A; Efremenko, Y; Garvey, G T; Gudkov, V; Hatzikoutelis, A; Hix, W R; Louis, W C; Link, J M; Markoff, D M; Mills, G B; Patton, K; Ray, H; Scholberg, K; Van de Water, R G; Virtue, C; White, D H; Yen, S; Yoo, J

    2012-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  9. Diffuse ultra-high energy neutrino fluxes and physics beyond the Standard Model

    We study spectral distortions of diffuse ultra-high energy (UHE) neutrino flavour fluxes resulting due to physics beyond the Standard Model (SM). Even large spectral differences between flavours at the source are massaged into a common shape at earth by SM oscillations, thus, any significant observed spectral differences are an indicator of new physics present in the oscillation probability during propagation. Lorentz symmetry violation (LV) and neutrino decay are examples, and result in significant distortion of the fluxes and of the well-known bounds on them, which may allow UHE detectors to probe LV parameters, lifetimes and the mass hierarchy over a broad range.

  10. The Physics Potential of Future Long Baseline Neutrino Oscillation Experiments

    Lindner, M.

    2002-01-01

    We discuss in detail different future long baseline neutrino oscillation setups and we show the remarkable potential for very precise measurements of mass splittings and mixing angles. Furthermore it will be possible to make precise tests of coherent forward scattering and MSW effects, which allow to determine the sign of $\\Delta m^2$. Finally strong limits or measurements of leptonic CP violation will be possible, which is very interesting since it is most likely connected to the baryon asym...

  11. lhc phenomenology and neutrino physics in gut inspired susy models

    Reichert, Laslo Alexander

    2014-01-01

    En la primera parte de la tesis investigamos un modelo supersimetrico con un mecanismo seesaw para explicar las masas de los neutrinos. Implementamos el modelo en SPheno que nos permitió calcular observables de LHC (Large Hardron Collider) como por ejemplo los ``Edge observables''. Con la ayuda de estos observables pudimos reconstruir el espectro de masa de una teoría como SUSY y compararlo con los resultados de los experimentos. Como no hemos observado SUSY en ningún experime...

  12. Hidden interactions of sterile neutrinos as a probe for new physics

    Tabrizi, Zahra; Peres, O. L. G.

    2016-03-01

    Recent results from neutrino experiments show evidence for light sterile neutrinos which do not have any Standard Model interactions. In this work, we study the hidden interaction of sterile neutrinos with an "MeV-scale" gauge boson (the νsHI model) with mass MX and leptonic coupling gl' . By performing an analysis on the νsHI model using the data of the MINOS neutrino experiment, we find that the values above GX/GF=92.4 are excluded by more than 2 σ C.L., where GF is the Fermi constant and GX is the field strength of the νsHI model. Using this model, we can also probe other new physics scenarios. We find that the region allowed by the (g -2 )μ discrepancy is entirely ruled out for MX≲100 MeV . Finally, the secret interaction of sterile neutrinos has been to solve a conflict between the sterile neutrinos and cosmology. It is shown here that such an interaction is excluded by MINOS for gs'>1.6 ×10-2 . This exclusion, however, does depend on the value of gl'.

  13. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ(σmν) = 16 meV and σ(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics - the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046

  14. Progress and open questions in the physics of neutrino cross sections at intermediate energies

    New and more precise measurements of neutrino cross sections have renewed interest in a better understanding of electroweak interactions on nucleons and nuclei. This effort is crucial to achieving the precision goals of the neutrino oscillation program, making new discoveries, like the CP violation in the leptonic sector, possible. We review the recent progress in the physics of neutrino cross sections, putting emphasis on the open questions that arise in the comparison with new experimental data. Following an overview of recent neutrino experiments and future plans, we present some details about the theoretical development in the description of (anti)neutrino-induced quasielastic (QE) scattering and the role of multi-nucleon QE-like mechanisms. We cover not only pion production in nucleons and nuclei but also other inelastic channels including strangeness production and photon emission. Coherent reaction channels on nuclear targets are also discussed. Finally, we briefly describe some of the Monte Carlo event generators, which are at the core of all neutrino oscillation and cross-section measurements. (paper)

  15. Neutrino physics from the cosmic microwave background and large scale structure

    Abazajian, K. N.; Arnold, K.; Austermann, J. E.; Benson, B. A.; Bischoff, C.; Brock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Chang, C. L.

    2015-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmν)(σmν) = 16 meV and σ (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of NeffNeff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that View the MathML sourceNeff=3.046.

  16. Neutrino astrophysics

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  17. Reactor Neutrinos

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  18. NEUTRINOS: Mysterious Particles with Fascinating Features, which led to the Physics Nobel Prize 2015

    Aguilar-Arevalo, Alexis

    2016-01-01

    The most abundant particles in the Universe are photons and neutrinos. Both types of particles are whirling around everywhere, since the early Universe. Hence the neutrinos are all around us, and permanently pass through our planet and our bodies, but we do not notice: they are extremely elusive. They were suggested as a theoretical hypothesis in 1930, and discovered experimentally in 1956. Ever since their properties keep on surprising us; for instance, they are key players in the violation of parity symmetry. In the Standard Model of particle physics they appear in three types, known as "flavors", and since 1998/9 we know that they keep on transmuting among these flavors. This "neutrino oscillation" implies that they are massive, contrary to the previous picture, with far-reaching consequences. This discovery was awarded the Physics Nobel Prize 2015.

  19. Accelerators and Dinosaurs

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  20. Neutrino Induced Reactions on Nuclei in the Lab and in Stars

    The important role of neutrino induced reactions on nuclei at low and intermediate energies both in accelerator-based experiments in Neutrino Physics and in Neutrino Astrophysics is discussed. After a short description of the theoretical nuclear model we present selected applications to various neutrino experiments. We will focus on the sensitivity of neutral current neutrino scattering to the strangeness content of the nucleon and on the calculation of neutrino induced reactions on 56Fe and 208Pb, which have been discussed as target materials in future neutrino detectors. (author)

  1. Department of Accelerator Physics and Technology - Overview

    ) complex permittivity was measured as a function of RF frequency up to 8 GHz before and after vacuum heating to 1100oC. The design of the absorber vacuum chamber and absorbing ring and copper holder removing the heat was finalized. The technological aspects (stainless steel to be used safely at a temperature of 2K) are still under discussion. The final realization of WP-06 (Work Package 06 as In Kind Contribution) consists of production and delivery to the XFEL site of the total number of 1648 HOM transmission lines and 108 BLAs. Installation and technical commissioning should be completed by the end of 2013. 2) TiN coating vacuum stand for RF components. Studies of TiN anti-multifactor film deposition on ceramic and metallic surfaces were continued in 2010, particularly the impact of ionization phenomena on the transport of Ti vapors. Further measurements of discharge plasma parameters were performed using cylindrical Langmuir probes. The development of the discharge was modeled theoretically. Precise formulas were derived for exposure calculation of the deposited TiN surface films. 3) Participation in the ESS (European Spallation Source) project. In 2010 IPJ continued to participate in the ESS project. Thanks to this cooperation three science theses have been written and defended in the Faculty of Electronics and Information Technology of Warsaw University of Technology. These theses were as follows: The Bead-pull RF measurement system for the Linac 4 prototype This thesis contains a specification of a bead-pull measurement system for drift tube linear accelerator structures such as Linac 4. It consists of the physical basis for the measurement method and the general concept of such systems, as well as a specification of its complete (both hardware and software) implementation for the Linac 4 prototype. It also contains the results of the measurements gained using this system. These results confirmed the validity of the system and allowed conclusions regarding the

  2. Neutrino mass as a signal of TeV scale physics

    Mohapatra, Rabindra N.

    2016-07-01

    If the origin of neutrino masses is due to physics at the TeV scale, it would be of tremendous interest since it can be probed using ongoing collider as well as low energy rare process searches. So, a key question is: could the new physics behind neutrino masses be near the TeV scale? In this brief overview, I present arguments in favor of this possibility by presenting the example of TeV scale left-right symmetric models (LRSM) for neutrino mass based on type I seesaw paradigm. A particular issue with understanding the small neutrino masses in TeV scale LRSM is to understand the suppression of type II seesaw contribution to neutrino masses, which a priori could be much larger than desired. I discuss how using either D-parity breaking or by using supersymmetry, one can suppress these contributions to the desired level in a natural way. Experimental probes of this hypothesis are briefly touched upon. Constraints of supersymmetry and that of successful leptogenesis on the left-right scale are also emphasized. The former provides an upper limit and the latter, a lower limit on mWR.

  3. Neutrino Radar

    Panigrahi, P K

    2002-01-01

    We point out that with improving our present knowledge of experimental neutrino physics it will be possible to locate nuclear powered vehicles like submarines, aircraft carriers and UFOs and detect nuclear testing. Since neutrinos cannot be shielded, it will not be possible to escape these detection. In these detectors it will also be possible to perform neutrino oscillation experiments during any nuclear testing.

  4. Advanced Computing Tools and Models for Accelerator Physics

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  5. Guide to accelerator physics program SYNCH: VAX version 1987. 2

    Parsa, Z.; Courant, E.

    1987-01-01

    This guide is written to accommodate users of Accelerator Physics Data Base BNLDAG::DUAO:(PARSA1). It describes the contents of the on line Accelerator Physics data base DUAO:(PARSA1.SYNCH). SYNCH is a computer program used for the design and analysis of synchrotrons, storage rings and beamlines.

  6. Teaching the history of science in physics classrooms—the story of the neutrino

    Demirci, Neset

    2016-07-01

    Because there is little connection between physics concepts and real life, most students find physics very difficult. In this frontline I have provided a timely link of the historical development using the basic story of neutrino physics and integrated this into introductory modern physics courses in high schools or in higher education. In this way an instructor may be able to build on students’ curiosity in order to enhance the curriculum with some remarkable new physics. Using the history of science in the classroom shapes and improves students’ views and knowledge of the nature of science and increase students’ interest in physics.

  7. Element-loaded organic scintillators for neutron and neutrino physics

    New types of element-loaded (B and Gd) organic scintillators for neutron detection and neutrino experiments have been synthesized recently at JINR. Their optical, spectral, scintillation and radiopurity characteristics are presented and discussed. It is shown that the 5 % B-loaded scintillator has a light output as much as 70 % relative to the unloaded one. The same characteristics for the 3 % Gd-loaded sample is equal to 51 %. Transparency and other properties of the produced scintillators did not change at normal conditions for at least one year

  8. Long baseline neutrino oscillation experiment at the AGS. Physics design report

    Beavis, D.; Carroll, A.; Chiang, I. [Brookhaven National Lab., Long Island, NY (United States); E889 Collaboration

    1995-04-01

    The authors present a design for a multi-detector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the {nu}{sub {mu}}, disappearance channel and the {nu}{sub {mu}} {leftrightarrow} {nu}{sub e} appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68km from the AGS neutrino source. Observed depletion of the {nu}{sub {mu}} flux (via quasi-elastic muon neutrino events, {nu}{sub {mu}}n {yields} {mu}{sup {minus}}p) in the far detectors not attended by an observed proportional increase of the {nu}{sub e} flux (via quasi-elastic electron neutrino events, {nu}{sub e}n {yields} e{sup {minus}}p) in those detectors will be prima facie evidence for the oscillation channel {nu}{sub {mu}} {leftrightarrow} {nu}{sub {tau}}. The experiment is directed toward exploration of the region of the neutrino oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy ({approx} 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.

  9. Neutrino Astrophysics

    Haxton, W. C.

    2000-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric an...

  10. Particle physics candidates for the cosmion solution to the solar neutrino problem

    This paper discuss several particle physics candidates for the cosmic solution to the solar neutrino problem. Some of these candidates are: Cold dark matter; No conserved particle number; Conserved particle number but No cosmic asymmetry; and Conserved particle number and a cosmic asymmetry. Also outlined are their properties and methods of detecting them. 23 refs., 8 figs

  11. Neutrino physics with the SHiP experiment

    AUTHOR|(SzGeCERN)759942

    2015-01-01

    Despite the Standard Model (SM) has been strongly confirmed by the Higgs discovery, several experimental facts are still not explained. The SHiP experiment (Search for Hidden Particles), a beam dump experiment at CERN, aims at the observation of long lived particles very weakly coupled with ordinary matter. These particles of the GeV mass scale, foreseen in many extensions of the SM, might come from the decay of charmed hadrons produced in the collision of a 400 GeV proton beam on a target. High rates of all the three active neutrinos are also expected. For the first time the properties and the cross section of the ντ will be studied thanks to a detector based on nuclear emulsions, with the micrometric resolution needed to identify the tau lepton produced in neutrino interactions. Measuring the charge of the tau daughters, will enable the first observation of the ν ̄τ and the study of its cross section.

  12. KEK workshop on kaon, muon and neutrino physics: summary

    Bryman, D. [TRIUMF, Vancouver, BC (Canada)

    1998-02-01

    A broad range of current work and future possibilities associated with the interactions and properties of kaons, muons and neutrinos was discussed at the workshop with particular emphasis on possibilities for the Japanese Hadron Facility. The recent evidence for the flavor changing neutral current reaction K{sup +} {yields} {pi}{sup +}{nu}{nu}-bar was presented along with prospects for future work. New experiments at BNL, KEK and Fermilab are being developed to study the especially attractive CP-violating channel K{sub L}{sup 0} {yields} {pi}{sup 0}{nu}{nu}-bar. Very sensitive searches for lepton flavor violation in muon decays and muon capture, and measurements aiming at uncovering non-standard model T-violating effects in K{sub {mu}3} decay were also discussed. Several neutrino experiments continue to observe deficits in rates relative to expectations, possibly indicating evidence for oscillations, and promising new initiatives such at the K2K project at KEK are in the works to explore these matters further. Many of the issues raised at the workshop are relevant to the search for an understanding of the three generation spectrum of quarks and leptons i.e. the generation puzzle. (author)

  13. Heavy quark and neutrino physics. Final technical report, FY1994 - FY1998

    This report begins with an overview of KSU history in personnel and funding, creation of infrastructure, and physics. Then brief summaries are given for the following research projects: Fermilab E653: Measuring Charm and Beauty Decays via Hadronic Production in a Hybrid Emulsion Spectrometer; Fermilab E791: Continued Study of Heavy Flavors at TPL; Fermilab E815: Precision Measurements of Neutrino Neutral-Current Interactions Using a Sign-Selected Beam; Fermilab E872/DONUT: Direct Observation of ντ; Fermilab E803/COSMOS: Neutrino Oscillations; KSU at the Fermilab D0 collider; Muon Collider; OJI Progress Report: Multisampling Drift Chamber

  14. Heavy quark and neutrino physics. Final technical report, FY1994--FY1998

    NONE

    1998-12-31

    This report begins with an overview of KSU history in personnel and funding, creation of infrastructure, and physics. Then brief summaries are given for the following research projects: Fermilab E653: Measuring Charm and Beauty Decays via Hadronic Production in a Hybrid Emulsion Spectrometer; Fermilab E791: Continued Study of Heavy Flavors at TPL; Fermilab E815: Precision Measurements of Neutrino Neutral-Current Interactions Using a Sign-Selected Beam; Fermilab E872/DONUT: Direct Observation of {nu}{sub {tau}}; Fermilab E803/COSMOS: Neutrino Oscillations; KSU at the Fermilab D0 collider; Muon Collider; OJI Progress Report: Multisampling Drift Chamber.

  15. Operational aspects of experimental accelerator physics

    During the normal course of high energy storage ring operations, it is customary for blocks of time to be allotted to something called ''machine studies,'' or more simply, just ''studies.'' It is during these periods of time that observations and measurement of accelerator behavior are actually performed. Almost invariably these studies are performed in support of normal machine operations. The machine physicist is either attempting to improve machine performance, or more often trying to recover previously attained ''good'' operation, for example after an extended machine down period. For the latter activity, a good portion of machine studies time is usually devoted to ''beam tuning'' activities: those standard measurements and adjustments required to recover good operations. Before continuing, please note that this paper is not intended to be comprehensive. It is intended solely to reflect one accelerator physicist's impressions as to what goes on in an accelerator control room. Many topics are discussed, some in more detail than others, and it is not the intention that the techniques described herein be applied verbatim to any existing accelerator. It is hoped,, however, that by reading through the various sections, scientists, including accelerator physicists, engineers, and accelerator beam users, will come to appreciate the types of operations that are required to make an accelerator work

  16. Pragmatic Approach to the Little Hierarchy Problem: The Case for Dark Matter and Neutrino Physics

    We show that the addition of real scalars (gauge singlets) to the standard model can both ameliorate the little hierarchy problem and provide realistic dark matter candidates. To this end, the coupling of the new scalars to the standard Higgs boson must be relatively strong and their mass should be in the 1-3 TeV range, while the lowest cutoff of the (unspecified) UV completion must be > or approx. 5 TeV, depending on the Higgs boson mass and the number of singlets present. The existence of the singlets also leads to realistic, and surprisingly reach, neutrino physics. The resulting light neutrino mass spectrum and mixing angles are consistent with the constraints from the neutrino oscillations.

  17. Department of Accelerator Physics and Technology: Overview

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  18. Phenomenology of atmospheric neutrinos

    Fedynitch, Anatoli

    2016-04-01

    The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  19. Phenomenology of atmospheric neutrinos

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  20. From Accelerators to Cosmic Ray Physics

    In the present paper, we discuss the interplay between Collider Physics and Cosmic Ray Physics. In particular we outline the impact of present and future collider measurements and searches in the understanding of several aspects, related with Cosmic Ray Physics problematics. Then, particular attention will be devoted both, on non-perturbative QCD measurements, both on searches for physics beyond the Standard Model.

  1. Neutrino 2004: Collection of Presentations

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  2. Neutrino 2004: Collection of Presentations

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  3. A scheme with two large extra dimensions confronted with neutrino physics

    Maalampi, J; Vilja, I

    2003-01-01

    We investigate a particle physics model in a six-dimensional spacetime, where two extra dimensions form a torus. Particles with Standard Model charges are confined by interactions with a scalar field to four four-dimensional branes, two vortices accommodating ordinary type fermions and two antivortices accommodating mirror fermions. We investigate the phenomenological implications of this multibrane structure by confronting the model with neutrino physics data.

  4. CAS Introduction to Accelerator Physics in Bulgaria

    CERN Bulletin

    2010-01-01

    The CERN Accelerator School (CAS) and the Institute for Nuclear Research & Nuclear Energy (INRNE – Bulgarian Academy of Sciences) jointly organised a course on Introduction to Accelerators, at the Grand Hotel Varna, Bulgaria, from 19 September to 1 October, 2010.   CERN Accelerator School group photo. The course was extremely well attended with 109 participants representing 34 different nationalities, coming from countries as far away as Australia, Canada and Vietnam. The intensive programme comprised 39 lectures, 3 seminars, 4 tutorials where the students were split into three groups, a poster session where students could present their own work, and 7 hours of guided and private study. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. For the first time at CAS, the CERN Director-General, Rolf Heuer, visited the school and presented a seminar entitled...

  5. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics

    Historically, progress in particle physics has largely been determined by development of more capable particle accelerators. This trend continues today with the recent advent of high-luminosity electron-positron colliders at KEK and SLAC operating as 'B factories', the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking to the future, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. A 20-50 GeV muon storage ring could serve as a copious source of well-characterized electron neutrinos or antineutrinos (a Neutrino Factory), providing beams aimed at detectors located 3000-7500 km from the ring. Such long baseline experiments are expected to be able to observe and characterize the phenomenon of charge-conjugation-parity (CP) violation in the lepton sector, and thus provide an answer to one of the most fundamental questions in science, namely, why the matter-dominated universe in which we reside exists at all. By accelerating muons to even higher energies of several TeV, we can envision a Muon Collider. In contrast with composite particles like protons, muons are point particles. This means that the full collision energy is available to create new particles. A Muon Collider has roughly ten times the energy reach of a proton collider at the same collision energy, and has a much smaller footprint. Indeed, an energy frontier Muon Collider could fit on the site of an existing laboratory, such as Fermilab or BNL. The challenges of muon-beam accelerators are related to the facts that (1) muons are produced as a tertiary beam, with very large 6D phase space, and (2) muons are unstable, with a lifetime at rest of only 2 microseconds. How these challenges are accommodated in the accelerator design will be described. Both a

  6. Neutrino Data and Neutrino-Antineutrino Transition

    Alexeyev, E N

    2005-01-01

    A problem, whether a neutrino-antineutrino transition could be responsible for the muon neutrino deficit found in underground experiments (Super-Kamiokande, MACRO, Soudan 2) and in the accelerator long-baseline K2K experiment, is discussed in this paper. The intention of the work is not consideration of concrete models for muon neutrino-antineutrino transition but a desire to attract an attention to another possibility of understanding the nature of the measured muon neutrino deficit in neutrino experiments.

  7. Handbook of accelerator physics and engineering

    Mess, Karl Hubert; Tigner, Maury; Zimmermann, Frank

    2013-01-01

    Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practitioners of the art and science of accelerators.

  8. Department of Accelerator Physics and Technology: Overview

    (full text) In the context of general discussions concerning the activity of the Institute, it was important to look critically at current and future directions at the Department's activity. Attention is given to development of basic accelerator knowledge, realized at home and throughout international collaborations. Of importance is a steady improvement of metrological and experimental basis for accelerator research. Apart of this, some development tendencies were formulated during 1997, oriented to application fields of accelerators. As examples should be named: - medical applications: a) A serious effort was given to an idea of using the existing compact cyclotron C-30 as a source for creation of a diagnostic centre in Swierk. The proposition was formulated in contact with the Nuclear Medicine Department of the Medical Academy, and the ''Brodno'' General Hospital. In spite of declared medical interest in such an installation, the project was not approved, due to lack of proper financial support. b) Model measurements and verification of theoretical assumptions and calculations oriented on the design of a very short, high-gradiented acceleration structure for the low energy accelerator COLINE/1000 were done. This project will enable us to achieve ''source - isocentre distance'', of 1000 mm, instead of existing 800 mm. This is important for therapy. In 1998, this work will be supported by the State Committee for Scientific Research. c) Preliminary discussions, and design approach were undertaken in collaboration with the Centre of Oncology, for elaboration of a movable low-energy accelerator with electron beam output, matched to inter operational irradiation during surgical therapy of tumours. - applications in radiation technology: Comparison of isotope and machine radiation sources indicates that, under Polish conditions it is reasonable to use purpose-oriented high power accelerators. The working group composed of specialists from IChTJ and IPJ prepared the

  9. Beam Physics of Integrable Optics Test Accelerator at Fermilab

    Nagaitsev, S.; Valishev, A.; Danilov, V. V.; Shatilov, D. N.

    2013-01-01

    Fermilab's Integrable Optics Test Accelerator is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on ...

  10. Accelerator physics analysis with interactive tools

    Work is in progress on interactive tools for linear and nonlinear accelerator design, analysis, and simulation using X-based graphics. The BEAMLINE and MXYZPTLK class libraries, were used with an X Windows graphics library to build a program for interactively editing lattices and studying their properties

  11. Linear collider accelerator physics issues regarding alignment

    The next generation of linear colliders will require more stringent alignment tolerances than those for the SLC with regard to the accelerating structures, quadrupoles, and beam position monitors. New techniques must be developed to achieve these tolerances. A combination of mechanical-electrical and beam-based methods will likely be needed

  12. High Current H2+ Cyclotrons for Neutrino Physics: The IsoDAR and DAE \\delta ALUS Projects

    Alonso, Jose R

    2012-01-01

    Using H2+ ions is expected to mitigate the two major impediments to accelerating very high currents in cyclotrons, due to lower space charge at injection, and stripping extraction. Planning for peak currents of 10 particle milliamps at 800 MeV/amu, these cyclotrons can generate adequate neutrino fluxes for Decay-At-Rest (DAR) studies of neutrino oscillation and CP violation. The Injector Cyclotron, at 60 MeV/amu can also provide adequate fluxes of electron antineutrinos from 8Li decay for sterile neutrino searches in existing liquid scintillator detectors at KamLAND or SNO+. This paper outlines programs for designing and building these machines.

  13. SYMMETRY, HAMILTONIAN PROBLEMS AND WAVELETS IN ACCELERATOR PHYSICS

    In this paper the authors consider applications of methods from wavelet analysis to nonlinear dynamical problems related to accelerator physics. In this approach they take into account underlying algebraical, geometrical and topological structures of corresponding problems

  14. Accelerating Innovation: How Nuclear Physics Benefits Us All

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  15. Theses of reports 'IV Conference of high energy physics, nuclear physics and accelerators'

    Theses of report on IV Conference of high energy physics, nuclear physics and accelerators include basic research in intermediate and high energies studies of nuclear structure in charged particles, advances in accelerator techniques and charged particle accumulators; interaction of ultra-relativistic particles with monocrystals; detector physics

  16. Cosmic Acceleration, Dark Energy and Fundamental Physics

    Turner, Michael S.; Huterer, Dragan

    2007-01-01

    A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic (p\\sim -rho), very smooth form of energy called ``dark energy'' accounting for about 75% of the Universe. The ``simplest'' explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however...

  17. The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups

    Akiri, T; Andrews, M; Arisaka, K; Arrieta-Diaz, E; Artuso, M; Bai, X; Balantekin, B; Baller, B; Barletta, W; Barr, G; Bass, M; Beck, A; Becker, B; Bellini, V; Benhar, O; Berger, B; Bergevin, M; Berman, E; Berns, H; Bernstein, A; Beroz, F; Bhatnagar, V; Bhuyan, B; Bionta, R; Bishai, M; Blake, A; Blaufuss, E; Bleakley, B; Blucher, E; Blusk, S; Boehnlein, D; Bolton, T; Brack, J; Bradford, R; Breedon, R; Bromberg, C; Brown, R; Buchanan, N; Camilleri, L; Campbell, M; Carr, R; Carminati, G; Chen, A; Chen, H; Cherdack, D; Chi, C; Childress, S; Choudhary, B; Church, E; Cline, D; Coleman, S; Corey, R; D'Agostino, M; Davies, G; Dazeley, S; De Jong, J; DeMaat, B; Demuth, D; Dighe, A; Djurcic, Z; Dolph, J; Drake, G; Drozhdin, A; Duan, H; Duyang, H; Dye, S; Dykhuis, T; Edmunds, D; Elliott, S; Enomoto, S; Escobar, C; Felde, J; Feyzi, F; Fleming, B; Fowler, J; Fox, W; Friedland, A; Fujikawa, B; Gallagher, H; Garilli, G; Garvey, G; Gehman, V; Geronimo, G; Gill, R; Goodman, M; Goon, J; Gorbunov, D; Gran, R; Guarino, V; Guarnaccia, E; Guenette, R; Gupta, P; Habig, A; Hackenberg, R; Hahn, A; Hahn, R; Haines, T; Hans, S; Harton, J; Hays, S; Hazen, E; He, Q; Heavey, A; Heeger, K; Hellauer, R; Himmel, A; Horton-Smith, G; Howell, J; Huber, P; Hurh, P; Huston, J; Hylen, J; Insler, J; Jaffe, D; James, C; Johnson, C; Johnson, M; Johnson, R; Johnson, W; Johnston, W; Johnstone, J; Jones, B; Jostlein, H; Junk, T; Junnarkar, S; Kadel, R; Kafka, T; Kaminski, D; Karagiorgi, G; Karle, A; Kaspar, J; Katori, T; Kayser, B; Kearns, E; Kettell, S; Khanam, F; Klein, J; Kneller, J; Koizumi, G; Kopp, J; Kopp, S; Kropp, W; Kudryavtsev, V; Kumar, A; Kumar, J; Kutter, T; Lackowski, T; Lande, K; Lane, C; Lang, K; Lanni, F; Lanza, R; Latorre, T; Learned, J; Lee, D; Lee, K; Li, Y; Linden, S; Ling, J; Link, J; Littenberg, L; Loiacono, L; Liu, T; Losecco, J; Louis, W; Lucas, P; Lunardini, C; Lundberg, B; Lundin, T; Makowiecki, D; Malys, S; Mandal, S; Mann, A; Mann, A; Mantsch, P; Marciano, W; Mariani, C; Maricic, J; Marino, A; Marshak, M; Maruyama, R; Mathews, J; Matsuno, S; Mauger, C; McCluskey, E; McDonald, K; McFarland, K; McKeown, R; McTaggart, R; Mehdiyev, R; Melnitchouk, W; Meng, Y; Mercurio, B; Messier, M; Metcalf, W; Milincic, R; Miller, W; Mills, G; Mishra, S; MoedSher, S; Mohapatra, D; Mokhov, N; Moore, C; Morfin, J; Morse, W; Moss, A; Mufson, S; Musser, J; Naples, D; Napolitano, J; Newcomer, M; Norris, B; Ouedraogo, S; Page, B; Pakvasa, S; Paley, J; Paolone, V; Papadimitriou, V; Parsa, Z; Partyka, K; Pavlovic, Z; Pearson, C; Perasso, S; Petti, R; Plunkett, R; Polly, C; Pordes, S; Potenza, R; Prakash, A; Prokofiev, O; Qian, X; Raaf, J; Radeka, V; Raghavan, R; Rameika, R; Rebel, B; Rescia, S; Reitzner, D; Richardson, M; Riesselman, K; Robinson, M; Rosen, M; Rosenfeld, C; Rucinski, R; Russo, T; Sahijpal, S; Salon, S; Samios, N; Sanchez, M; Schmitt, R; Schmitz, D; Schneps, J; Scholberg, K; Seibert, S; Sergiampietri, F; Shaevitz, M; Shanahan, P; Shaposhnikov, M; Sharma, R; Simos, N; Singh, V; Sinnis, G; Sippach, W; Skwarnicki, T; Smy, M; Sobel, H; Soderberg, M; Sondericker, J; Sondheim, W; Spitz, J; Spooner, N; Stancari, M; Stancu, I; Stewart, J; Stoler, P; Stone, J; Stone, S; Strait, J; Straszheim, T; Striganov, S; Sullivan, G; Svoboda, R; Szczerbinska, B; Szelc, A; Talaga, R; Tanaka, H; Tayloe, R; Taylor, D; Thomas, J; Thompson, L; Thomson, M; Thorn, C; Tian, X; Toki, W; Tolich, N; Tripathi, M; Trovato, M; Tseung, H; Tzanov, M; Urheim, J; Usman, S; Vagins, M; Van Berg, R; Van de Water, R; Varner, G; Vaziri, K; Velev, G; Viren, B; Wachala, T; Walter, C; Wang, H; Wang, Z; Warner, D; Webber, D; Weber, A; Wendell, R; Wendt, C; Wetstein, M; White, H; White, S; Whitehead, L; Willis, W; Wilson, R J; Winslow, L; Ye, J; Yeh, M; Yu, B; Zeller, G; Zhang, C; Zimmerman, E; Zwaska, R

    2011-01-01

    In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011.

  18. Study on the Neutrino Oscillation with a Next Generation Medium-Baseline Reactor Experiment

    For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angle θ13, providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements of θ12,Δm122, and mass hierarchy will be explored. The precise measurement of θ13 would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package

  19. Proceedings of the XXXI International Meeting on Fundamental Physics. B-Physics, Astroparticle Physics and Neutrino Physics. Soto de Cangas, Asturias, spain, 24-28 February, 2003

    The XXXIth International Meeting on Fundamental Physics was held in La Pasera Resort at soto de Cangas (Asturias, Spain) from February 24-28, 2003. The meeting was devoted to experimental and theoretical issues of high energy physics, with special reference to beauty physics, astroparticle and neutrino physics. The major topics, as well as some special talks on Fundamental Physics at Low Energy Experiments and computing for the new era of High Energy Physics Experiments, were developed in a series of course lectures. Short contributions concerning the state of the art in those topics, as well as the last LEP results, and medical applications of the high energy detector developments, were also given. The meeting was sponsored by the Ministerio de Ciencia y Tecnologia, the Consejo Superior de Investigaciones Cientificas, the Universidades de Cantabria y Oviedo, the Principado de Asturias and the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas. (Author)

  20. Accelerator physics analysis with an integrated toolkit

    Work is in progress on an integrated software toolkit for linear and nonlinear accelerator design, analysis, and simulation. As a first application, ''beamline'' and ''MXYZPTLK'' (differential algebra) class libraries, were used with an X Windows graphics library to build an user-friendly, interactive phase space tracker which, additionally, finds periodic orbits. This program was used to analyse a theoretical lattice which contains octupoles and decapoles to find the 20th order, stable and unstable periodic orbits and to explore the local phase space structure

  1. A CERN-based high-intensity high-energy proton source for long baseline neutrino oscillation experiments with next-generation large underground detectors for proton decay searches and neutrino physics and astrophysics

    Rubbia, A

    2010-01-01

    The feasibility of a European next-generation very massive neutrino observatory in seven potential candidate sites located at distances from CERN ranging from 130 km to 2300 km, is being considered within the LAGUNA design study. The study is providing a coordinated technical design and assessment of the underground research infrastructure in the various sites, and its coherent cost estimation. It aims at a prioritization of the sites within summer 2010 and a start of operation around 2020. In addition to a rich non-accelerator based physics programme including the GUT-scale with proton decay searches, the detection of a next-generation neutrino superbeam tuned to measure the flavor-conversion oscillatory pattern (i.e. 1st and 2nd oscillation maxima) would allow to complete our understanding of the leptonic mixing matrix, in particular by determining the neutrino mass hierarchy and by studying CP-violation in the leptonic sector, thereby addressing the outstanding puzzle of the origin of the excess of matter ...

  2. A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Group, Hyper-Kamiokande Working; :; Abe, K; Aihara, H.; Andreopoulos, C.; Anghel, I.; Ariga, A.; Ariga, T.(Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, 3012 , Bern, Switzerland); Asfandiyarov, R; Askins, M.; Back, J. J.; P. Ballett; Barbi, M.; Barker, G J; Barr, G.

    2014-01-01

    Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from ...

  3. Initial report from the ICFA Neutrino Panel

    Cao, J; Duchesneau, D; Funchal, R; Geer, S; Kim, S B; Kobayashi, T; Long, K; Maltoni, M; Mezzetto, M; Mondal, N; Shiozawa, M; Sobczyk, J; Tanaka, H A; Wascko, M; Zeller, G

    2014-01-01

    In July 2013 ICFA established the Neutrino Panel with the mandate "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development a neutrino factory as a future intense source of neutrinos for particle physics experiments". This, the Panel's Initial Report, presents the conclusions drawn by the Panel from three regional "Town Meetings" that took place between November 2013 and February 2014. After a brief introduction and a short summary of the status of the knowledge of the oscillation parameters, the report summarises the approved programme and identifies opportunities for the development of the field. In its conclusions, the Panel recognises that to maximise the discovery potential of the accelerator-based neutrino-oscillation programme it will be essential to exploit the infrastructures that exist at CERN, FNAL and J-PARC and the expertise and resources that reside in laboratories and institutes ar...

  4. Probing New Physics with Underground Accelerators and Radioactive Sources

    Izaguirre, Eder; Pospelov, Maxim

    2014-01-01

    New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars $\\phi$ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the $0^+$ excited state of $^{16}$O populated via a $(p,\\alpha)$ reaction on fluorine and from radioactive $^{144}$Ce decay where the scalar is produced in the de-excitation of $^{144}$Nd$^*$, which occurs along the decay chain. Subsequent scattering on electrons, $e(\\phi,\\gamma)e$, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental set-up can cover new territory for masses $250\\, {\\rm keV}\\leq m_\\phi \\leq 2 m_e$ and couplings to protons and electrons, $10^{-11} < g_e...

  5. Physics of high energy particle accelerators. AIP conference proceedings No. 127

    Topics covered in this workshop include accelerator physics, particle physics, and new acceleration methods. Eighteen lectures were presented. Individual abstracts were prepared separately for the data base

  6. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    Kyberd, P.; Smith, D.R.; /Brunel U.; Coney, L.; /UC, Riverside; Pascoli, S.; /Durham U., IPPP; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  7. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  8. High Energy Density Physics and Exotic Acceleration Schemes

    Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  9. Some integral formulations occurring in accelerator physics

    In this paper a powerful and robust analytical-numerical approach to study the electromagnetic interaction between a bunch of particles and the discontinuities of the vacuum chamber of a particle accelerator is discussed. In particular the diffraction of the electromagnetic field created by a bunch of a bunch of charges travelling through an iris and a drift tube is considered. Choosing in both cases a spectral transform of the current density distribution on the scatterer as unknowns, an effective numerical model is obtained. These unknowns have to satisfy a system of dual integral equations. A general procedure to transform this system into only one Fredholm integral equation of the second kind (in the case of the iris) or to a system of linear algebraic equations by means of a Neumann series (in the case of the drift tube) is described. These models allow to compute the longitudinal coupling impedance with a good accuracy either in the low frequency limit or in the high frequency limit

  10. Physics Performance of a Low-Luminosity Low Energy Neutrino Factory

    Christensen, Eric; Huber, Patrick

    2013-01-01

    We investigate the minimal performance, in terms of beam luminosity and detector size, of a neutrino factory to achieve a competitive physics reach for the determination of the mass hierarchy and the discovery of leptonic CP violation. We find that a low luminosity of $10^{20}$ useful muon decays per year and 5\\,GeV muon energy aimed at a 10\\,kton magnetized liquid argon detector placed at 1300\\,km from the source provides a good starting point. This result relies on $\\theta_{13}$ being large and assumes that the so-called platinum channel can be used effectively. We find that such a minimal facility would perform significantly better than phase~I of the LBNE project and thus could constitute a reasonable step towards a full neutrino factory.

  11. Report of the HEPAP subpanel on major detectors in non-accelerator particle physics

    The subpanel on Major Detectors in Non-Accelerator Particle Physics was formed in February 1989 as the result of a letter from Robert Hunter, Director, Office of Energy Research, to Francis Low, Chairman of HEPAP. A copy of the letter is included in the Appendix to this report. The letter referred to the previous report of HEPAP Subpanel on High Energy Gamma Ray and Neutrino Astronomy which had found that several groups of scientists were working on promising new ideas and proposals in non-accelerator high energy physics and astrophysics; this report recommended that panel be formed to evaluate large projects in these areas of science when specific proposals were received by the funding agencies. In concurring with the recommendation, the request to establish this new Subpanel included the following specific charge: Within the context of changing world wide high energy physics activities and opportunities, review as necessary and evaluate the following major research proposals which have been submitted to the Department of Energy and/or to the National Science foundation: DUMAND II, GRANDE, and the Fly's Eye Upgrade

  12. Theoretical developments in supernova neutrino physics : mass corrections and pairing correlators

    Volpe, Cristina

    2016-01-01

    We highlight the progress in our understanding of how neutrinos change their flavor in astrophysical environments, in particular effects from the neutrino self-interaction. We emphasize extended descriptions of neutrino propagation in massive stars that are beyond the current one based on the mean-field approximation. The extended equations include, in particular, corrections from (anti)neutrino-(anti)neutrino pairing correlations and from the neutrino mass. We underline open issues and challenges.

  13. Physics opportunities with relativistic heavy ion accelerators

    The physics motivation for a relativistic heavy ion collider with energies of 100 GeV/amu x 100 GeV/amu for nuclei of A-200 are (1) this will allow the production in the laboratory of a new state of matter - the quark gluon plasma, (2) the study of such interactions will provide an experimental test of statistical quantum chromodynamics (QCD), i.e., a look at the properties of the QCD vacuum at large distances, (3) such reactions will simulate the conditions of the early universe, and (4) such a collider will allow us to delve into the unknown. If history is any guide then it is clear that any time one can increase an important physics parameter by a factor of 10 (and in this case a factor of 100 over what is presently being done) then do it. At present the Bevalac at Berkeley is the premier facility for the study of heavy ions with a center of mass capability of 1 GeV/amu x 1 GeV/amu. In the near term this capability will be increased at the AGS at BNL (6 GeV/amu x 6 GeV/amu) and at the CERN SPS (10 GeV/amu x 10 GeV/amu). 5 figs

  14. An introduction to the physics of high energy accelerators

    This book is an outgrowth of a course given by the authors at various universities and particle accelerator schools. It starts from the basic physics principles governing particle motion inside an accelerator, and leads to a full description of the complicated phenomena and analytical tools encountered in the design and operation of a working accelerator. The book covers acceleration and longitudinal beam dynamics, transverse motion and nonlinear perturbations, intensity dependent effects, emittance preservation methods and synchrotron radiation. These subjects encompass the core concerns of a high energy synchrotron. The authors apparently do not assume the reader has much previous knowledge about accelerator physics. Hence, they take great care to introduce the physical phenomena encountered and the concepts used to describe them. The mathematical formulae and derivations are deliberately kept at a level suitable for beginners. After mastering this course, any interested reader will not find it difficult to follow subjects of more current interests. Useful homework problems are provided at the end of each chapter. Many of the problems are based on actual activities associated with the design and operation of existing accelerators

  15. Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning.

    Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu

    2009-02-01

    We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and the baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming a large hierarchy among the mass scales. Tiny neutrino masses are generated at the three-loop level due to the exact Z2 symmetry, by which the stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments. PMID:19257506

  16. Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning

    Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu

    2008-01-01

    We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming unnatural hierarchy among the mass scales. Tiny neutrino masses are generated at the three loop level due to the exact $Z_2$ symmetry, by which stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for suc...

  17. Neutrino masses

    Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany); Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, D-01069 Dresden (Germany)

    2013-09-15

    The various experiments on neutrino oscillation evidence that neutrinos have indeed non-zero masses but cannot provide the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double {beta}-decay and the direct neutrino mass search by investigating single {beta}-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments using different techniques are being constructed, commissioned, or are even running, which aim for a sensitivity on the neutrino mass of O(100) meV. The principal methods and these experiments are discussed in this short review. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Solar Neutrinos

    Bellini, G.; Ranucci, G.

    2010-01-01

    Solar neutrino investigation has represented one of the most active field of particle physics over the past decade, accumulating important and sometimes unexpected achievements. After reviewing some of the most recent impressive successes, the future perspectives of this exciting area of neutrino research will be discussed.

  19. Evolutionary algorithm for the neutrino factory front end design

    Poklonskiy, Alexey A.; /Michigan State U.; Neuffer, David; /Fermilab

    2009-01-01

    The Neutrino Factory is an important tool in the long-term neutrino physics program. Substantial effort is put internationally into designing this facility in order to achieve desired performance within the allotted budget. This accelerator is a secondary beam machine: neutrinos are produced by means of the decay of muons. Muons, in turn, are produced by the decay of pions, produced by hitting the target by a beam of accelerated protons suitable for acceleration. Due to the physics of this process, extra conditioning of the pion beam coming from the target is needed in order to effectively perform subsequent acceleration. The subsystem of the Neutrino Factory that performs this conditioning is called Front End, its main performance characteristic is the number of the produced muons.

  20. CAS Accelerator Physics (High-Power Hadron Machines) in Spain

    CAS

    2011-01-01

    The CERN Accelerator School (CAS) and ESS-Bilbao jointly organised a specialised course on High-Power Hadron Machines, held at the Hotel Barceló Nervión in Bilbao, Spain, from 24 May to 2 June, 2011.   CERN Accelerator School students. After recapitulation lectures on the essentials of accelerator physics and review lectures on the different types of accelerators, the programme focussed on the challenges of designing and operating high-power facilities. The particular problems for RF systems, beam instrumentation, vacuum, cryogenics, collimators and beam dumps were examined. Activation of equipment, radioprotection and remote handling issues were also addressed. The school was very successful, with 69 participants of 22 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants w...

  1. Handling and Transport of Oversized Accelerator Components and Physics Detectors

    Prodon, S; Guinchard, M; Minginette, P

    2006-01-01

    For cost, planning and organisational reasons, it is often decided to install large pre-built accelerators components and physics detectors. As a result surface exceptional transports are required from the construction to the installation sites. Such heavy transports have been numerous during the LHC installation phase. This paper will describe the different types of transport techniques used to fit the particularities of accelerators and detectors components (weight, height, acceleration, planarity) as well as the measurement techniques for monitoring and the logistical aspects (organisation with the police, obstacles on the roads, etc). As far as oversized equipment is concerned, the lowering into the pit is challenging, as well as the transport in tunnel galleries in a very scare space and without handling means attached to the structure like overhead travelling cranes. From the PS accelerator to the LHC, handling systems have been developed at CERN to fit with these particular working conditions. This pap...

  2. LEHIPA: a high current low energy accelerator in nuclear physics

    The Low Energy High Intensity Proton Accelerator (LEHIPA) is a 20 MeV, 10 mA, CW proton linear accelerator, being developed as a front-end for the Accelerator Driven Reactor System (ADRS) programme. Recently the first part of the accelerator has been commissioned, delivering a 1.25 MeV pulsed proton beam. The current and energy of LEHIPA will systematically be increased over the next one year. LEHIPA will be capable of delivering intense pulsed and CW beams of few mA current. Provision can be made for providing beam at intermediate energies such as 3 MeV (after the RFQ), 6 MeV, 10 MeV and 15 MeV, in addition to the final energy of 20 MeV. The present status and future capabilities of LEHIPA will be discussed, from the perspective of nuclear physics experiments that can be planned at this facility

  3. The neutrino in all its states - Seminar dedicated to Jacques Bouchez - Slides of the presentations

    The present scientific seminar, organized in the memory of Jacques Bouchez is centered on neutrino physics and presents the state of the art on experiments, on future projects and on the theory of neutrinos (oscillations and MSW effect). This document is made up of the slides of 7 presentations: 1) The achievements of J.Bouchez; 2) Reactor neutrino experiments from Bugey to double-Chooz (via RENO and Daya-Bay); 3) Neutrinos and accelerators: on the way toward the third flavor (NOMA, OPERA and T2K experiments); 4) Neutrino oscillations and MSW effect; 5) Some statistical questions in neutrino physics; 6) Long baseline oscillations: towards Japan future neutrino oscillation experiments; and 7) Next generation of neutrino oscillation experiments. (A.C.)

  4. A new neutrino source for the study of the solar neutrino physics in the vacuum-matter transition region

    Shin, Jae Won

    2016-01-01

    Production of a neutrino source through proton induced reaction is studied by using the particle transport code, GEANT4. Unstable isotope such as $^{27}$Si can be produced when $^{27}$Al target is bombarded by 15 MeV energetic proton beams. Through the beta decay process of the unstable isotope, a new electron-neutrino source in the 1.0 $\\sim$ 5.0 MeV energy range is obtained. Proton induced reactions are simulated with JENDL High Energy File 2007 (JENDL/HE-2007) data and other nuclear data. For radioactive decay processes, we use "G4RadioactiveDecay" model based on the Evaluated Nuclear Structure Data File (ENSDF). We suggest target systems required for future's solar neutrino experiments, in particular, for the vacuum-matter transition region. As for the detection system of the new neutrino source, we evaluate reaction rates for available radiochemical detectors and LENA type scintillator detector. Possibility of detecting sterile neutrinos is also discussed.

  5. Sterile neutrinos

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  6. CAS CERN accelerator school: 5. general accelerator physics course. Vol. 2. Proceedings

    The fifth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at the University of Jyvaeskylae, Finland, from 7 to 18 September 1992. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, Salamanca 1988 and Juelich 1990, and whose proceedings were published as CERN Reports 85-19, 87-10, 89-05 and 91-04, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. As far as the proceedings of this school are concerned the opportunity was taken not only to include the lectures presented but also to select and revise the most appropriate chapters from the previous similar schools. In this way the present volumes constitute a rather complete introduction to all aspects of the design and construction of particle accelerators, including optics, emittance, luminosity, longitudinal and transverse beam dynamics, insertions, chromaticity, transfer lines, resonances, accelerating structures, tune shifts, coasting beams, lifetime, synchrotron radiation, radiation damping, beam-beam effects, diagnostics, cooling, ion and positron sources, RF and vacuum systems, injection and extraction, conventional, permanent and superconducting magnets, cyclotrons, RF linear accelerators, microtrons, as well as applications of particle accelerators (including therapy) and the history of accelerators. See hints under the relevant topics. (orig.)

  7. Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks

    Racah, Evan; Sadowski, Peter; Bhimji, Wahid; Tull, Craig; Oh, Sang-Yun; Baldi, Pierre; Prabhat,

    2016-01-01

    Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. In this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networks can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.

  8. Proposal for an Experimental Program in Neutrino Physics and Proton Decay in the Homestake Laboratory

    Diwan, M; Cline, David B; Frati, W; Heeger, K; Huber, P; Kettell, S; Kirk, T; Lande, K; Lanou, R E; Lee, W Y; Leland, W; Lesko, K; Littenberg, L S; Mann, A K; Marciano, W; Marfatia, D; McDonald, K T; Parsa, Z; Samios, Nicholas P; Van Berg, R; White, S; Heeger, Karsten

    2006-01-01

    This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. We have included some contingency factors. Nevertheless, we recognize that much more extensive documentation and contingency estimates will be needed for a full technical design report. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant from Homestake) and BNL (2540 km dista...

  9. The SHiP experiment and its detector for neutrino physics

    Buonaura, Annarita

    2016-01-01

    SHIP is a new general purpose fixed target facility, proposed at the CERN SPS accelerator. In its initial phase the 400GeV proton beam will be dumped on a heavy target with the aim of integrating $2 \\times 10^{20}$ pot in 5 years. A detector downstream of the target will allow to search long-lived exotic particles with masses below O(10) GeV/c2 forseen in extension of the Standard Model. Another dedicated detector, that will be the focus of this talk, will allow to study active neutrino cross- sections and angular distributions. The neutrino detector consists of an emulsion target, based on the Emulsion Cloud Chamber technology fruitfully employed in the OPERA experiment. The Emulsion Cloud Chamber will be placed in a magnetic field, with the so-called Compact Emulsion spectrometer, a few cm thick chamber for the charge and momentum measurement of hadrons. This will provide the leptonic number measurement also in the hadronic tau decay channels. The detector will be hybrid, using nuclear emulsions and electr...

  10. Neutrino Physics without Neutrinos: Recent results from the NEMO-3 experiment and plans for SuperNEMO

    CERN. Geneva

    2015-01-01

    The observation of neutrino oscillations has proved that neutrinos have mass. This discovery has renewed and strengthened the interest in neutrinoless double beta decay experiments which provide the only practical way to determine whether neutrinos are Majorana or Dirac particles. The recently completed NEMO-3 experiment, located in the Laboratoire Souterrain de Modane in the Frejus Tunnel, was an experiment searching for neutrinoless double beta decays using a powerful technique for detecting a two-electron final state by employing an apparatus combining tracking, calorimetry, and the time-of-flight measurements. We will present latest results from NEMO-3 and will discuss the status of SuperNEMO, the next generation experiment that will exploit the same experimental technique to extend the sensitivity of the current search.

  11. Future long-baseline neutrino oscillations: View from North America

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility

  12. Future Long-Baseline Neutrino Oscillations: View from North America

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  13. Future long-baseline neutrino oscillations: View from North America

    Wilson, Robert J., E-mail: wilson@colostate.edu [Department of Physics, Colorado State University, Fort Collins, CO 80523-1875 (United States)

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  14. Quasielastic neutrino and antineutrino interaction at the Serpukhov accelerator (IHEP-ITEP collaboration)

    Preliminary results on the energy dependence of quasielastic differential and total cross-sections for neutrino and antineutrino scattering in the νsub(μ)n → μ-p and anti νsub(μ)p → μ+n interactions in the energy region 3 <= E <= 30 GeV obtined in the aluminium spark chamber detector are presented. The data are compared with the predictions of classical V-A theory with current vector conservation assumption. The best fit parameters for axial mass are Msub(A)=1.00+-0.07 and Msub(A)=1.04+-0.08 from the neutrino and antineutrino data respectively. It is shown that experimental data are in good agreement with the predictions of the standart V-A theory

  15. Neutrino mass and physics beyond the Standard Model; Masse des Neutrinos et Physique au-dela du Modele Standard

    Hosteins, P

    2007-09-15

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states.

  16. Accelerator Measurements of the Askaryan effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors

    Gorham, P. W.; Saltzberg, D.; Field, R. C.; Guillian, E.; Milincic, R.; Walz, D.(RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany); Williams, D.

    2004-01-01

    We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large scale ultra-high energy neutrino detectors: rock salt (halit...

  17. Advances of dense plasma physics with particle accelerators

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  18. The origin of IceCube's neutrinos: Cosmic ray accelerators embedded in star forming calorimeters

    Waxman, E

    2015-01-01

    The IceCube collaboration reports a detection of extra-terrestrial neutrinos. The isotropy and flavor content of the signal, and the coincidence, within current uncertainties, of the 50 TeV to 2 PeV flux and the spectrum with the Waxman-Bahcall bound, suggest a cosmological origin of the neutrinos, related to the sources of ultra-high energy, $>10^{10}$ GeV, cosmic-rays (UHECR). The most natural explanation of the UHECR and neutrino signals is that both are produced by the same population of cosmological sources, producing CRs (likely protons) at a similar rate, $E^2d\\dot{n}/dE\\propto E^{0}$, over the [$1$ PeV,$10^{11}$ GeV] energy range, and residing in "calorimetric" environments, like galaxies with high star formation rate, in which $E/Z<100$ PeV CRs lose much of their energy to pion production. A tenfold increase in the effective mass of the detector at $\\gtrsim100$ TeV is required in order to significantly improve the accuracy of current measurements, to enable the detection of a few bright nearby sta...

  19. Problems of high-energy physics and development of accelerators

    The prosent status of the quantum field theory is considered in brief. The unsolved problems and forecasts of the weak and strong interaction theory are enumerated. It is shown that using accelerators of a new generation (pp(p anti p) storage rings with beams at approximately 1 TeV energy, proton accelerators of approximately 10 TeV energy, electron-positron rings at approximately 100 GeV energy), the theoretical schemes of the elementary-particle physics will be specified, as well as experiments on studying strong interactions of hadrons will be carried out and an intermediate boson will be discovered

  20. Health physics manual of good practices for accelerator facilities

    It is hoped that this manual will serve both as a teaching aid as well as a useful adjunct for program development. In the context of application, this manual addresses good practices that should be observed by management, staff, and designers since the achievement of a good radiation program indeed involves a combined effort. Ultimately, radiation safety and good work practices become the personal responsibility of the individual. The practices presented in this manual are not to be construed as mandatory rather they are to be used as appropriate for the specific case in the interest of radiation safety. As experience is accrued and new data obtained in the application of this document, ONS will update the guidance to assure that at any given time the guidance reflects optimum performance consistent with current technology and practice.The intent of this guide therefore is to: define common health physics problems at accelerators; recommend suitable methods of identifying, evaluating, and managing accelerator health physics problems; set out the established safety practices at DOE accelerators that have been arrived at by consensus and, where consensus has not yet been reached, give examples of safe practices; introduce the technical literature in the accelerator health physics field; and supplement the regulatory documents listed in Appendix D. Many accelerator health physics problems are no different than those at other kinds of facilities, e.g., ALARA philosophy, instrument calibration, etc. These problems are touched on very lightly or not at all. Similarly, this document does not cover other hazards such as electrical shock, toxic materials, etc. This does not in any way imply that these problems are not serious. 160 refs

  1. The solar neutrinos epopee

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  2. Optical alignment to set a skewed beamline for neutrino research at the LAMPF accelerator

    The Los Alamos Meson Physics Facility (LAMPF) consists of a linear accelerator with multiple target systems, where the particle beam is being switched into separate channels to be aimed at discrete terminals to perform a variety of functions. The beam is always enclosed in an evacuated pipe with directional changes following simple geometric patterns along vertical or horizontal reference lines. Beam steering and focusing is accomplished with magnets surrounding the evacuated beam tubes. In a novel application it was necessry to cut into an existing beam tube and add a line which was to be skewed in a compound angle to clear the existing equipment and fit into the limited space provided in the beam tunnel. Alignment of the skewed beamline was accomplished by setting optical reference lines and planes to calculated beam centerlines and positioning the beam pipes and most magnets to these references using special centering fixtures. This paper describes the combined use of the optical tooling and surveying technology as applied to the marking of the components and positioning of subassemblies in the reference grid. Auxiliary targets and alignment fixtures were developed to facilitate the unique procedures and are described. Design and measured alignment tolerances are compared

  3. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    Fischer, Richard P. [Naval Research Lab., Washington, DC (United States); Gold, Steven H. [Naval Research Lab., Washington, DC (United States)

    2016-07-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements in the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.

  4. The Story of the Neutrino

    Rajasekaran, G

    2016-01-01

    This is an elementary review of the history and physics of neutrinos. The story of the discovery of neutrino mass through neutrino oscillations is described in some detail. Experiments on solar neutrinos and atmospheric neutrinos played an important part. Recent advances are summarized and future developments are indicated.

  5. Physics prospects from accelerated radioactive Ions at CERN

    Butler, P A

    2004-01-01

    Through the advent of post-accelerated beams with REX-ISOLDE at CERN, probing nuclear properties using transfer reactions and Coulomb excitation of exotic nuclear species is now possible. REX ISOLDE currently provides beams of energy 2.2 MeV/u (soon be upgraded to 3.1 MeV/u) into the $\\gamma$-ray MINIBALL array, and other instrumentation, at the secondary target position. Examples of research topics currently addressed using REX are presented. Scheduled energy up-grades will increase the physics potential even further. The goal for the next five years will be to accelerate ions up to 5 MeV/A and higher energies. Increase of primary beam intensity will also be achieved in a phased approach, with a significant enhancement provided by the proposed Superconducting Proton Linac as the primary accelerator.

  6. nuSTORM: Neutrinos from Stored Muons

    Soler, F J P

    2015-01-01

    nuSTORM (Neutrinos from STORed Muons) is a proposed storage ring facility to deliver beams of muon antineutrinos and electron neutrinos from positive muon decays (muon neutrinos and electron antineutrinos from negative muon decays), with a central muon momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility will allow searches for eV-scale sterile neutrinos at better than 10 sigma sensitivity, it will be able to provide measurements of neutrino and antineutrino-nucleus scattering cross sections with percent-level precision and will serve as a first step towards developing muon accelerators for particle physics. We report on the physics capabilities of the nuSTORM facility and we specify the main features of its design, which does not require any new technology. The flux of the neutrino beam can be determined with percent-level accuracy to perform cross-section measurements for future neutrino oscillation experiments and to resolve the hints for eV-scale sterile neutrinos. nuSTORM may be considere...

  7. Accelerator physics in ERL based polarized electron ion collider

    Hao, Yue [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  8. Acceleration radiation, transition probabilities, and trans-Planckian physics

    Agulló, Iván; Navarro-Salas, José; Olmo, Gonzalo J.; Parker, Leonard

    2010-01-01

    An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics for the quantum field that originates the created quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities, and local two-point functions. By writing down separate expressions for the spontaneous- and induced-transition pr...

  9. Future Accelerator Challenges in Support of High-Energy Physics

    Zisman, M. S.

    2008-01-01

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams...

  10. Principles and applications of a neutral current detector for neutrino physics and astronomy

    We study neutrino detection through the elastic scattering of neutrinos on nuclei and identification of the recoil energy. The very large value of the cross section compared to previous methods indicates a detector would be relatively light and suggests the possibility of a true 'neutrino observatory'. We examine a realization in terms of the superconducting grain idea, which appears in principle feasible through extension and extrapolation of presently known techniques. Such a detector would permit determination of the neutrino spectrum and should be intensive to neutrino oscillations. Various applications and tests are discussed, including spallation sources, reactors, supernovas, solar and terrestrial neutrinos. A supernova would permit a simple determination of the number of neutrinos and their masses, while for solar neutrinos rates of thousands of S.N.U. are theoretically attainable. A preliminary estimate of the most difficult backgrounds is attempted. (orig.)

  11. Neutrino cosmology

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  12. Role of accelerator mass spectrometry in nuclear physics

    Accelerator Mass Spectrometry (AMS) was developed in nuclear physics laboratories and up to now all experiments were performed at these places. However, AMS is being applied to a variety of fields which have very little to do with nuclear physics. The implications are for its original field can be divided in two domains. First, there are clearly instrumental implications. The overall demand of AMS for high efficiency ion sources, great stability, flexibility, and control of the entire accelerator system is certainly beneficial for the performance of any nuclear physics program. Second, AMS can be conveniently used to determine nuclear quantities of interest when the measurements involves very low radioisotope concentrations. Examples are the half-life measurement of 32Si and the cross section measurement of the 26Mg(p,n)26Al reaction. As the overall detection efficiency will improve there are some interesting problems in nuclear physics and elementary particle physics which are tempting to try. Although most of these experiments are beyond the present capability of AMS, some general aspects are discussed in section 5

  13. Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    The ICAL Collaboration; Ahmed, Shakeel; Athar, M. Sajjad; Hasan, Rashid; Salim, Mohammad; Singh, S.K.; Inbanathan, S. S. R.; Singh, Venktesh; V. S. Subrahmanyam; Behera, Shiba Prasad; Chandratre, Vinay B.; Dash, Nitali; Datar, Vivek M.; Kashyap, V. K. S.; Mohanty, Ajit K.

    2015-01-01

    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino os...

  14. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction

  15. COMPASS, the COMmunity Petascale Project for Accelerator Science and Simulation, a broad computational accelerator physics initiative

    J.R. Cary; P. Spentzouris; J. Amundson; L. McInnes; M. Borland; B. Mustapha; B. Norris; P. Ostroumov; Y. Wang; W. Fischer; A. Fedotov; I. Ben-Zvi; R. Ryne; E. Esarey; C. Geddes; J. Qiang; E. Ng; S. Li; C. Ng; R. Lee; L. Merminga; H. Wang; D.L. Bruhwiler; D. Dechow; P. Mullowney; P. Messmer; C. Nieter; S. Ovtchinnikov; K. Paul; P. Stoltz; D. Wade-Stein; W.B. Mori; V. Decyk; C.K. Huang; W. Lu; M. Tzoufras; F. Tsung; M. Zhou; G.R. Werner; T. Antonsen; T. Katsouleas

    2007-06-01

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  16. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; Wang, H.; Bruhwiler, D.L.; Dechow, D.; Mullowney, P.; Messmer, P.; Nieter, C.; Ovtchinnikov, S.; Paul, K.; Stoltz, P.; Wade-Stein, D.; Mori, W.B.; Decyk, V.; Huang, C.K.; Lu, W.; Tzoufras, M.; Tsung, F.; Zhou, M.; Werner, G.R.; Antonsen, T.; Katsouleas, T.; Morris, B.

    2007-07-16

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  17. COMPASS, the COMmunity Petascale Project for Accelerator Science And Simulation, a Broad Computational Accelerator Physics Initiative

    Cary, J.R.; /Tech-X, Boulder /Colorado U.; Spentzouris, P.; Amundson, J.; /Fermilab; McInnes, L.; Borland, M.; Mustapha, B.; Norris, B.; Ostroumov, P.; Wang, Y.; /Argonne; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; /Brookhaven; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; /LBL, Berkeley; Ng, C.; Lee, R.; /SLAC; Merminga, L.; /Jefferson Lab /Tech-X, Boulder /UCLA /Colorado U. /Maryland U. /Southern California U.

    2007-11-09

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  18. Understanding Supernova Neutrino Physics using Low-Energy Beta-Beams

    Jachowicz, N.; McLaughlin, G.C.

    2005-01-01

    We show that fitting linear combinations of low-energy beta-beam spectra to supernova-neutrino energy-distributions reconstructs the response of a nuclear target to a supernova flux in a very accurate way. This allows one to make direct predictions about the supernova-neutrino signal in a terrestrial neutrino detector.

  19. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  20. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  1. Use of event-level neutrino telescope data in global fits for theories of new physics

    Scott, P.; Savage, C.; Edsjö, J.; IceCube Collaboration

    2012-11-01

    We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.

  2. Use of event-level neutrino telescope data in global fits for theories of new physics

    We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses

  3. Use of event-level neutrino telescope data in global fits for theories of new physics

    Scott, P; Edsjö, J; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Caballero-Mora, K S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Saba, S M; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van Eijndhoven, N; van Der Drift, D; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M

    2012-01-01

    We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock...

  4. From neutrino physics to beam polarisation. A high precision story at the ILC

    In this thesis, we investigate the experimental prospects of studying a supersymmetric model with bilinearly broken R parity at the International Linear Collider. In this model, neutrinos mix with the supersymmetric neutralinos such that neutrino properties can be probed by examining neutralino decays, which incorporate usually a lepton and a W/Z boson. As a study case, we focus on the determination of the atmospheric neutrino mixing angle θ23, which is accessible via the ratio of the neutralino branching ratios BR(χ01→Wμ)/BR(χ01→Wτ). A detailed simulation of the International Large Detector has been performed for all Standard Model backgrounds and for χ01-pair production within a simplified model. The study is based on ILC beam parameters according to the Technical Design Report for a center-of-mass energy of √(s)=500 GeV. From muonic χ01 decays, we find that the χ01 mass can be reconstructed with an uncertainty of δ(mχ01)=(40(stat.)+35(syst.)) MeV for an integrated luminosity of ∫Ldt=500 fb-1. The ratio of branching ratios can be determined to a precision of δ(BR(χ01→Wμ)/BR(χ01→Wτ))=2.9%. Due to this, the atmospheric neutrino mixing angle can be deduced with a precision comparable to modern neutrino experiments. Thus, the ILC is capable to test whether bRPV SUSY is the mechanism of neutrino mass generation. As also shown in the bRPV SUSY study of this thesis, beam polarisation is an important parameter in physics analyses at the ILC. The beam polarisation is measured with two Compton polarimeters per electron/positron beam. In order to achieve the design goal of an envisaged precision of 0.25%, the detector nonlinearity of the used Cherenkov detectors has to be determined very precisely. Herein, the main source of nonlinearity is expected to originate from the involved photomultipliers. For this reason, a differential nonlinearity measurement as well as a linearisation method is developed. The working principle is demonstrated in a

  5. From neutrino physics to beam polarisation. A high precision story at the ILC

    Vormwald, Benedikt

    2014-03-15

    In this thesis, we investigate the experimental prospects of studying a supersymmetric model with bilinearly broken R parity at the International Linear Collider. In this model, neutrinos mix with the supersymmetric neutralinos such that neutrino properties can be probed by examining neutralino decays, which incorporate usually a lepton and a W/Z boson. As a study case, we focus on the determination of the atmospheric neutrino mixing angle θ{sub 23}, which is accessible via the ratio of the neutralino branching ratios BR(χ{sup 0}{sub 1}→Wμ)/BR(χ{sup 0}{sub 1}→Wτ). A detailed simulation of the International Large Detector has been performed for all Standard Model backgrounds and for χ{sup 0}{sub 1}-pair production within a simplified model. The study is based on ILC beam parameters according to the Technical Design Report for a center-of-mass energy of √(s)=500 GeV. From muonic χ{sup 0}{sub 1} decays, we find that the χ{sup 0}{sub 1} mass can be reconstructed with an uncertainty of δ(m{sub χ{sup 0}{sub 1}})=(40(stat.)+35(syst.)) MeV for an integrated luminosity of ∫Ldt=500 fb{sup -1}. The ratio of branching ratios can be determined to a precision of δ(BR(χ{sup 0}{sub 1}→Wμ)/BR(χ{sup 0}{sub 1}→Wτ))=2.9%. Due to this, the atmospheric neutrino mixing angle can be deduced with a precision comparable to modern neutrino experiments. Thus, the ILC is capable to test whether bRPV SUSY is the mechanism of neutrino mass generation. As also shown in the bRPV SUSY study of this thesis, beam polarisation is an important parameter in physics analyses at the ILC. The beam polarisation is measured with two Compton polarimeters per electron/positron beam. In order to achieve the design goal of an envisaged precision of 0.25%, the detector nonlinearity of the used Cherenkov detectors has to be determined very precisely. Herein, the main source of nonlinearity is expected to originate from the involved photomultipliers. For this reason, a differential

  6. Sterile Neutrinos in Cold Climates

    Jones, Benjamin J.P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  7. LOS ALAMOS: New neutrino experiment

    Full text: The Liquid Scintillator Neutrino Detector (LSND) experiment at Los Alamos' Meson Physics Facility (LAMPF) has been designed for a high sensitivity search for oscillations between muon- and electron-type neutrinos and, concurrently, between the corresponding antineutrinos. In addition, the experiment will measure neutrino-proton elastic scattering, thereby determining the strange quark contribution to the proton spin. At low momentum transfer, neutrino-proton elastic scattering is a direct probe of this contribution. The detector tank, filled with 200 tons of dilute liquid scintillator, has 1220 8'' Hamamatsu photomultiplier tubes mounted on the inside, covering 25% of the surface area. The dilute liquid scintillator is a mixture of mineral oil and 0.03 g/l of b-PBD, so that Cherenkov and scintillation light will be detected in an approximate ratio of 1 to 4. The attenuation length of the scintillator is greater than 30 m for wavelengths above 425 nm. After two years of data collection for (anti)neutrino mixing, the upper limits on the square of the mass difference will be 1.7 x 10-2 ev2 for maximal mixing for antineutrinos and 4.0 x 10-2 for neutrinos. Similarly, mixing strengths of 2.7 x 10-4 can be probed for each channel for all squared mass differences above 1eV2. This will provide the best terrestrial limits on oscillations between muon- and electron-type neutrinos. In addition, the neutrino-proton elastic scattering reaction rate will be measured to an accuracy of 10, determining the strange quark contribution to the proton spin to within ±0.05. Other physics goals include measurements of the charged current reactions where the neutrinos produce electrons or muons, the inelastic neutral current reaction where the neutrino stays a neutrino but excites the target, and a search for the 'rare' decays of a neutral pion and an eta into a neutrino-antineutrino pair. The LSND collaboration includes groups from California at

  8. Report of the Solar and Atmospheric Neutrino Working Group

    magnetized detector with flavor and antiflavor sensitivity. Additional priorities are nuclear physics measurements which will reduce the uncertainties in the predictions of the Standard Solar Model, and similar supporting measurements for atmospheric neutrinos (cosmic ray fluxes, magnetic fields, etc.). We note as well that the detectors for both solar and atmospheric neutrino measurements can serve as multipurpose detectors, with capabilities of discovering dark matter, relic supernova neutrinos, proton decay, or as targets for long baseline accelerator neutrino experiments

  9. Report of the Solar and Atmospheric Neutrino Working Group

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-10-22

    large scale water Cerenkov detector, or a magnetized detector with flavor and antiflavor sensitivity. Additional priorities are nuclear physics measurements which will reduce the uncertainties in the predictions of the Standard Solar Model, and similar supporting measurements for atmospheric neutrinos (cosmic ray fluxes, magnetic fields, etc.). We note as well that the detectors for both solar and atmospheric neutrino measurements can serve as multipurpose detectors, with capabilities of discovering dark matter, relic supernova neutrinos, proton decay, or as targets for long baseline accelerator neutrino experiments.

  10. The Tau neutrino

    In the summer 2000 the first direct demonstration of the Tau neutrino was announced. After describing some Physical history lines emphasizing the development of the Neutrino Physics, the article describes the experiment which lead to the direct discovery of the Tau neutrino

  11. After Sno and Before Kamland Present and Future of Solar and Reactor Neutrino Physics

    Aliani, P; Ferrari, R; Picariello, M; Torrente-Lujan, E

    2003-01-01

    We present a short review of the existing evidence in favor of neutrino mass and neutrino oscillations which come from different kinds of experiments. We focus our attention in particular on solar neutrinos, presenting a review of some recent analysis of all available neutrino oscillation evidence in Solar experiments including the recent $SNO CC$ and $NC$ data. We present in detail the power of the reactor experiment KamLAND for discriminating existing solutions to the SNP and giving accurate information on neutrino masses and mixing angles.

  12. Phenomenology of the new physics coming from 2HDMs to the neutrino magnetic dipole moment

    Tarazona, Carlos G; Morales, John; Castillo, Andres

    2015-01-01

    In the framework of a two Higgs doublet model of type I, II and III and a neutrino specific scenario, we calculate the magnetic dipole moment for the different types of neutrino, and compare it with the experimental bounds of their magnetic dipole moments. This is carried out by analyzing diagrams of Cherenkov neutrino decays with a charged Higgs into the loop. The analysis was performed by sweeping the charged Higgs mass and taking into account the experimental constraints for relevant parameters in these 2HDMs; obtaining contributions close to the experimental thresholds for tau neutrinos in the type II case and the neutrino specific scenario above the contribution of standard model, while for electron and muon neutrino the relevant contribution should come from the SM and neutrino specific scenario but keeps out of the reach of forthcoming experiments.

  13. Phenomenology of neutrino physics in the Kaluza-Klein theories of low scale gravity

    Ioannisian, A N

    2001-01-01

    We discuss the phenomenological consequences of theories which describe sterile neutrinos in large extra dimensions. We show that the Kaluza-Klein tower of the singlet neutrinos, albeit tiny individual contribution in electroweak processes, act cumulatively, giving rise to non-universality of the weak interactions of the light neutrinos and to flavour-violating radiative processes. Owing to these non-decoupling effects of th Kaluza--Klein neutrinos, we derive strong constraints on the parameters of the theory that originates from the non-observation of flavour-violating and universality-breaking phenomena. In this theory we propose a four-neutrino model which can reconcile the existing data coming from underground experiments in terms of neutrino oscillations, together with the hint from the LSND experiment and a possible neutrino contribution to the hot dark matter of the Universe.

  14. Neutrino discoveries lead to precision measurements

    Reports of the XX International Conference on Neutrino Physics and Astrophysics (Neutrino-2002, 24 - 30 May, Munich) are discussed. Data on the fundamental investigations into low energy neutrinos, atmospheric neutrinos are demonstrated. Important problems in the field of theoretical and experimental researches in neutrino, among which are changes of absolute values of masses, dipole moments, elucidation of type of neutrino are determined

  15. Physical reach of a neutrino factory in the 2+2 and 3+1 four-family scenario

    We compare the physical reach of a Neutrino Factory in the 2+2 and 3+1 four-family models, with similar results in the two schemes; in both cases huge CP-violating effects can be observed with a near detector in the νμ→ντ channel. We also study the capability of long baseline experiments (optimized for the study of the three-family mixing parameter space) in distinguishing a three (active) neutrino model from a four-family scenario

  16. Heavy Quark and Neutrino Physics. Final report, 2011-2-14

    Horton-Smith, Glenn A. [Kansas State Univ., Manhattan, KS (United States); Bolton, Timothy [Kansas State Univ., Manhattan, KS (United States); Ivanov, Andrew [Kansas State Univ., Manhattan, KS (United States); Maravin, Yurii [Kansas State Univ., Manhattan, KS (United States); Ratra, Bharat [Kansas State Univ., Manhattan, KS (United States)

    2014-07-21

    This final closeout report covers research supported by the ''Heavy Quark and Neutrino Physics'' grant at Kansas State University during the grant's last renewal period, November 1, 2011, through April 30, 2014. The report begins with an overview of the group, its goals and activities, and personnel. Then summaries are given of achievements in each of the three frontiers: Energy Frontier research in the D0 and CMS experiments; Intensity Frontier research in the Double Chooz and ArgoNeuT experiments as well as research and development for MicroBooNE and LBNE; and Cosmic Frontier and Theoretical research. The report concludes with a list of publications supported by this grant in which our group made a significant contribution during the reporting period, followed by a list of students partially or fully supported by the grant who were awarded a PhD during this period.

  17. PROPOSAL FOR AN EXPERIMENT PROGRAM IN NEUTRINO PHYSICS AND PROTON DECAY IN THE HOMESTAKE LABORATORY.

    DIWAN, M.; KETTELL, S.; LITTENBERG, W.; MARIANO, W.; PARSA, Z.; SAMIOS, N.; WHITE, S.; ET AL.

    2006-07-24

    This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant from Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit with a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL. On the other hand the beam from BNL over the larger distance will produce very large matter effects, and consequently a hint of new physics (beyond CP violation) can be better tested with that configuration. In this proposal we focus on the CP violation physics. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. This presentation is not, however, to be taken as a technical design report with the extensive documentation and contingency costs that a TDR usually entails. Nevertheless, some contingency factors have been included in the estimates given here. The essential ideas expressed here were first laid out in a letter of intent to the interim director of the Homestake Laboratory on July 26, 2001. Since that time, the prospect of a laboratory in the Homestake Mine has been realized, and the design of a long baseline neutrino experiment has been refined. The extrapolation

  18. Status of Neutrino Oscillations

    J.W.F. Valle

    2001-01-01

    Solar and atmospheric neutrino data require physics beyond the Standard Model of particle physics. The simplest, most generic, but not yet unique, interpretation of the data is in terms of neutrino oscillations. I summarize the results of the latest three-neutrino oscillation global fit of the data, in particular the bounds on the angle $\\theta_{13}$ probed in reactor experiments. Even though not implied by the data, bi-maximal neutrino mixing emerges as an attractive possibility either in hi...

  19. CAS course on advanced accelerator physics in Trondheim, Norway

    CERN Accelerator School

    2013-01-01

    The CERN Accelerator School (CAS) and the Norwegian University of Science and Technology (NTNU) recently organised a course on advanced accelerator physics. The course was held in Trondheim, Norway, from 18 to 29 August 2013. Accommodation and lectures were at the Hotel Britannia and practical courses were held at the university.   The course's format included lectures in the mornings and practical courses in the afternoons. The lecture programme consisted of 32 lectures supplemented by discussion sessions, private study and tutorials. The practical courses provided "hands-on" experience in three topics: RF measurement techniques, beam instrumentation and diagnostics, and optics design and corrections. Participants selected one of the three courses and followed the chosen topic throughout the course. The programme concluded with seminars and a poster session.  70 students representing 21 nationalities were selected from over 90 applicants, with most participa...

  20. CAS course on Advanced Accelerator Physics in Warsaw

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) and the National Centre for Nuclear Research (NCBJ) recently organised a course on Advanced Accelerator Physics. The course was held in Warsaw, Poland from 27 September to 9 October 2015.    The course followed an established format with lectures in the mornings and practical courses in the afternoons. The lecture programme consisted of 34 lectures, supplemented by private study, tutorials and seminars. The practical courses provided ‘hands-on’ experience of three topics: ‘Beam Instrumentation and Diagnostics’, ‘RF Measurement Techniques’ and ‘Optics Design and Corrections’. Participants selected one of the three courses and followed their chosen topic throughout the duration of the school. Sixty-six students representing 18 nationalities attended this course, with most participants coming from European counties, but also from South Korea, Taiwan and Russia. Feedback from th...

  1. Introduction: the changing face of accelerator target physics and chemistry

    The explosive growth of the small accelerator industry, an offshoot of the expansion of both clinical and research PET imaging, is driving a changing perspective in the field of accelerator targetry. To meet the new demands placed on targetry by the increasingly active and demanding PET institutions it has become necessary to design targets capable of producing large amounts of the four common positron-emitting radionuclides (15O, 13N, 11C, 18F) with unfailing reliability and simplicity. The economic clinical and research survival of PET absolutely relies upon these capabilities. In response to this perceived need, the lion's share of the effort in the field of target physics and chemistry is being directed toward the profuse production of these four common radioisotopes. (author)

  2. Global analyses of neutrino oscillation experiments

    Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2016-07-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  3. Topical problems of accelerator and applied heavy ion physics

    These proceedings contain the articles presented at the named seminar. They deal with high-intensity linacs for heavy ions, the free-electron laser, applications of heavy-ion beams, MEQALAC, the ESR Schottky-diagnosis system, the analysis of GaAs by ion-beam methods, a light-ion synchrotron for cancer therapy, a device for the measurement of the momentum spread of ion beams, the European Hadron facility, the breakdown fields at electrons in high vacuum, a computer program for the calculation of electric quadrupoles, a focusing electrostatic mirror, storage and cooling of Ar beams, the visualization of heavy ion tracks in photographic films, the motion of ions in magnetic fields, the CERN heavy ion program, linear colliders, the beam injection from a linac into a storage ring, negative-ion sources, wake field acceleration, RFQ's, a dense electron target, the matching of a DC beam into the RFQ, electron emission and breakdown in vacuum, and 1-1.5 GeV 300 mA linear accelerator, the production of high-current positive-ion beams, high-current beam experiments at GSI, improvement of the Frankfurt EBIS, the physics of the violin, double layers, beam formation with coupled RFQ's, atomic nitrogen beam for material modification, compact superconducting synchrotron-radiation sources, industrial property rights, a RF ion source for thin film processes, beam-cavity interactions in the RFQ linac, atomic physics with crossed uranium beams, proton linacs, the interdigital H-type structure, injection of H- beams into a RFQ accelerator, the production of MOS devices by ion implantation, the application of RFQ's, the Frankfurt highly-charged ion facility, RF acceleration techniques for beam current drive in tokamaks, space-charge neutralized transport, and storage rings for synchrotron radiation and free electron lasers. (HSI)

  4. Lectures on High-Energy Neutrino Astronomy

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 and 1013 eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of these lectures is as follows: Introduction Cosmic Neutrinos Associated with the Highest Energy Cosmic Rays Why Kilometer-Scale Detectors? Blueprints of Cosmic Accelerators: Gamma Ray Bursts and Active Galaxies High Energy Neutrino Telescopes: Methodologies of Neutrino Detection High Energy Neutrino Telescopes: Status

  5. Readout electronics of physics of accelerating universe camera

    de Vicente, Juan; Castilla, Javier; Jiménez, Jorge; Cardiel-Sas, L.; Illa, José M.

    2014-08-01

    The Physics of Accelerating Universe Camera (PAUCam) is a new camera for dark energy studies that will be installed in the William Herschel telescope. The main characteristic of the camera is the capacity for high precision photometric redshift measurement. The camera is composed of eighteen Hamamatsu Photonics CCDs providing a wide field of view covering a diameter of one degree. Unlike the common five optical filters of other similar surveys, PAUCam has forty optical narrow band filters which will provide higher resolution in photometric redshifts. In this paper a general description of the electronics of the camera and its status is presented.

  6. Lua(Jit) for computing accelerator beam physics

    CERN. Geneva

    2016-01-01

    As mentioned in the 2nd developers meeting, I would like to open the debate with a special presentation on another language - Lua, and a tremendous technology - LuaJit. Lua is much less known at CERN, but it is very simple, much smaller than Python and its JIT is extremely performant. The language is a dynamic scripting language easy to learn and easy to embedded in applications. I will show how we use it in HPC for accelerator beam physics as a replacement for C, C++, Fortran and Python, with some benchmarks versus Python, PyPy4 and C/C++.

  7. Neutrino anomaly and -nucleus interactions

    S K Singh

    2001-08-01

    A review of various calculations of the inclusive quasi-elastic reactions and pion production processes in neutrino reactions for various nuclei at intermediate energies relevant to solar, atmospheric and accelerator neutrinos is presented.

  8. The physics of accelerator driven sub-critical reactors

    S B Degweker; Biplab Ghosh; Anil Bajpal; S D Pranjape

    2007-02-01

    In recent years, there has been an increasing worldwide interest in accelerator driven systems (ADS) due to their perceived superior safety characteristics and their potential for burning actinides and long-lived fission products. Indian interest in ADS has an additional dimension, which is related to our planned large-scale thorium utilization for future nuclear energy generation. The physics of ADS is quite different from that of critical reactors. As such, physics studies on ADS reactors are necessary for gaining an understanding of these systems. Development of theoretical tools and experimental facilities for studying the physics of ADS reactors constitute important aspect of the ADS development program at BARC. This includes computer codes for burnup studies based on transport theory and Monte Carlo methods, codes for studying the kinetics of ADS and sub-critical facilities driven by 14 MeV neutron generators for ADS experiments and development of sub-criticality measurement methods. The paper discusses the physics issues specific to ADS reactors and presents the status of the reactor physics program and some of the ADS concepts under study.

  9. Future Neutrino Long Baseline Experiments

    A new generation of reactor and accelerator neutrino oscillation experiments - Double Chooz, Daya Bay, Reno, T2K and NOA - is ready to start a sensitive search for oscillation signals generated by the mixing parameter θ13. Their output will be a fundamental milestone to optimize further experiments aimed at detecting CP violation in the neutrino sector, a key phenomenon with profound implications in particle physics and cosmology. Since late 90s, a world-wide activity is in progress to design facilities that can access CP violation in neutrino oscillation and perform high precision measurements of the lepton mixing matrix. In this paper the status of these studies will be summarized, focusing on the options that are best suited to exploit existing European facilities. (author)

  10. PINGU: A Vision for Neutrino and Particle Physics at the South Pole

    ,

    2016-01-01

    The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\\theta_{\\rm 23}$ and $\\Delta m^2_{\\rm 32}$, including the octant of $\\theta_{\\rm 23}$ for a wide range of values, and determine the neutrino mass ordering at $3\\sigma$ median significance within 4 years of operation. PINGU's high precision measurement of the rate of ${\

  11. Supernova neutrino physics with xenon dark matter detectors: A timely perspective

    Lang, Rafael F.; McCabe, Christopher; Reichard, Shayne; Selvi, Marco; Tamborra, Irene

    2016-01-01

    Dark matter detectors that utilize liquid xenon have now achieved tonne-scale targets, giving them sensitivity to all flavours of supernova neutrinos via coherent elastic neutrino-nucleus scattering. Considering for the first time a realistic detector model, we simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. We show that the proportional scintillation signal (S2) of a d...

  12. Neutrino Sources and Properties

    Vissani, Francesco

    2014-01-01

    In this lecture, prepared for PhD students, basic considerations on neutrino interactions, properties and sites of production are overviewed. The detailed content is as follows: Sect. 1, Weak interactions and neutrinos: Fermi coupling; definition of neutrinos; global numbers. Sect. 2, A list of neutrino sources: Explanatory note and examples (solar pp- and supernova-neutrinos). Sect. 3, Neutrinos oscillations: Basic formalism (Pontecorvo); matter effect (Mikheev, Smirnov, Wolfenstein); status of neutrino masses and mixings. Sect. 4, Modifying the standard model to include neutrinos masses: The fermions of the standard model; one additional operator in the standard model (Weinberg); implications. One summary table and several exercises offer the students occasions to check, consolidate and extend their understanding; the brief reference list includes historical and review papers and some entry points to active research in neutrino physics.

  13. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  14. Long-Baseline Neutrino Experiments

    Diwan, M V; Qian, X; Rubbia, A

    2016-01-01

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We proceed from the first evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research.

  15. Solar neutrino oscillations

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena

  16. A proposal of reactor physics research of accelerator drive system using transmutation physics experimental Facility

    Reactor physics section of the Atomic Energy Society of Japan (AESJ) recognizes an accelerator driven system (ADS) as the next generation reactor and to promote researches using it. History of this section activity on ADS, outline of Transmutation Physics Experimental Facility in the 'High-Intensity Proton Accelerator Project', a proposal of reactor physics section to the project and future actions of this section are explained. The Transmutation Physics Experimental Facility consists of a fast neutron subcritical system and a nuclear spallation neutron source. The contents of experiments are evaluation of nuclear properties of fast neutron subcritical system driven by nuclear spallation source, verification of operation and control of accelerator driven hybrid system and evaluation of nuclear transmutation characteristics of MA (Minor Actinides) and LLFP (Long-Lived Fission Product). Themes of R and D of ADS contain operation control of ADS, critical control of subcritical system, properties of reactor with nuclear spallation neutron source and nuclear transmutation characteristics. The experimental items are measurement of dynamic characteristics of reactor at beam change, R and D of method of output control and stop, R and D of contentious monitoring method of subcritical multiplication, measurement of dynamic characteristics of behaviors of reactivity, effects on reactor characteristics of high energy neutron, effects on reactor physics of beam duct and large target, nuclear transmutation efficiency and simulation of nuclear transmutation reactor core. (S.Y.)

  17. Methods and problems in neutrino observatories

    Ribordy, M

    2012-01-01

    Gigantic neutrino telescopes are primarily designed to search for very high energy neutrino radiation from the cosmos. Neutrinos travel unhindered over cosmological distances and therefore carry unique undistorted information about its production sites: the most powerful accelerators of hadrons in nature. In these lectures, we present the relevant physics motivations and their specifics. We review methodological aspects of neutrino telescopes: the experimental technique, some of the faced problems and the capabilities in terms of discovery potential, effective area, isolation of a signal from atmospheric backgrounds, etc. Instruments and their operation in various media are described. We also mention the instrumental birth and provide an outlook of the detection technique toward very low and ultra-high energies.

  18. New physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment since eight years - the HEIDELBERG - MOSCOW experiment in Gran Sasso - already now, with the experimental limit of ν> 7Be) solar neutrinos. A GENIUS Test Facility has just been funded and will come into operation by the end of 2001

  19. Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    Mosteiro, P; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Caccianiga, B; Cadonati, L; Calaprice, F; Caminata, A; Cavalcante, P; Chavarria, A; Chepurnov, A; D'Angelo, D; Davini, S; Derbin, A; Empl, A; Etenko, A; Fomenko, K; Franco, D; Gabriele, F; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Gromov, M; Hagner, C; Hungerford, E; Ianni, Al; Ianni, An; Kobychev, V; Korablev, D; Korga, G; Kryn, D; Laubenstein, M; Lehnert, B; Lewke, T; Litvinovich, E; Lombardi, F; Lombardi, P; Ludhova, L; Lukyanchenko, G; Machulin, I; Manecki, S; Maneschg, W; Marcocci, S; Meindl, Q; Meroni, E; Meyer, M; Miramonti, L; Misiaszek, M; Montuschi, M; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Pocar, A; Ranucci, G; Razeto, A; Re, A; Romani, A; Rossi, N; Saldanha, R; Salvo, C; Schoenert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Wang, H; Winter, J; Wojcik, M; Wright, A; Wurm, M; Zaimidoroga, O; Zavatarelli, S; Zuber, K; Zuzel, G

    2015-01-01

    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.

  20. Analytical approximations for matter effects on CP violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV

    Xing, Zhi-zhong; Zhu, Jing-yu

    2016-07-01

    Given an accelerator-based neutrino experiment with the beam energy E ≲ 1 GeV, we expand the probabilities of ν μ → ν e and {overline{ν}}_{μ}to {overline{ν}}_e oscillations in matter in terms of two small quantities Δ21 /Δ31 and A/Δ31, where Δ 21≡ m 2 2 - m 1 2 and Δ 31≡ m 3 2 - m 1 2 are the neutrino mass-squared differences, and A measures the strength of terrestrial matter effects. Our analytical approximations are numerically more accurate than those made by Freund in this energy region, and thus they are particularly applicable for the study of leptonic CP violation in the low-energy MOMENT, ESS νSM and T2K oscillation experiments. As a by-product, the new analytical approximations help us to easily understand why the matter-corrected Jarlskog parameter tilde{J} peaks at the resonance energy E ∗ ≃ 0 .14GeV (or 0 .12 GeV) for the normal (or inverted) neutrino mass hierarchy, and how the three Dirac unitarity triangles are deformed due to the terrestrial matter contamination. We also affirm that a medium-baseline neutrino oscillation experiment with the beam energy E lying in the E ∗ ≲ E ≲ 2 E ∗ range is capable of exploring leptonic CP violation with little matter-induced suppression.