WorldWideScience

Sample records for accelerator controls infrastructure

  1. Diamon2- Improved Monitoring of CERN’s Accelerator Controls Infrastructure

    Buczak, W; Ehm, F; Jurcso, P; Mitev, M

    2014-01-01

    Monitoring of heterogeneous systems in large organizations like CERN is always challenging. CERN's accelerators infrastructure includes large number of equipment (servers, consoles, FECs, PLCs), some still running legacy software like LynxOS 4 or Red Hat Enterprise Linux 4 on older hardware with very limited resources. DIAMON2 is based on CERN Common Monitoring platform. Using Java industry standards, notably Spring, Ehcache and the Java Message Service, together with a small footprint C++ -based monitoring agent for real time systems and wide variety of additional data acquisition components (SNMP, JMS, JMX etc.), DIAMON2 targets CERN’s environment, providing easily extensible, dynamically reconfigurable, reliable and scalable monitoring solution. This article explains the evolution of the CERN diagnostics and monitoring environment until DIAMON2, describes the overall system’s architecture, main components and their functionality as well as the first operational experiences with the new system, observed...

  2. 77 FR 36903 - Accelerating Broadband Infrastructure Deployment

    2012-06-20

    ... Infrastructure Development Through More Efficient and Effective Permitting and Environmental Review). (b) The..., Washington, June 14, 2012. [FR Doc. 2012-15183 Filed 6-19-12; 8:45 am] Billing code 3295-F2-P ... Documents#0;#0; ] Executive Order 13616 of June 14, 2012 Accelerating Broadband Infrastructure Deployment...

  3. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparato...

  4. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society.

  5. Technical infra-structure for accelerators in Brazil

    A minimal technical support infra-structura for, operation, maintenance and development suitable to a multi-user laboratory is presented. The costs of this infra-structure are 1.300 MCr$ in equipment and 700 MCr$ in people. A coordinated utilization of a particle accelerator network existing in the country and its corresponding costs are shown. Considerations in relation to the local of the sinchrotron radiation laboratory implantation are done. (L.C.)

  6. Controllable Laser Ion Acceleration

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  7. Review of EuCARD project on accelerator infrastructure in Europe

    Romaniuk, Ryszard S.

    2013-01-01

    The aim of big infrastructural and research programs (like pan-European Framework Programs) and individual projects realized inside these programs in Europe is to structure the European Research Area - ERA in this way as to be competitive with the leaders of the world. One of this projects in EuCARD (European Coordination of Accelerator Research and Development) with the aim to structure and modernize accelerator, (including accelerators for big free electron laser machines) research infrastructure. This article presents the periodic development of EuCARD which took place between the annual meeting, April 2012 in Warsaw and SC meeting in Uppsala, December 2012. The background of all these efforts are achievements of the LHC machine and associated detectors in the race for new physics. The LHC machine works in the regime of p-p, Pb-p, Pb-Pb (protons and lead ions). Recently, a discovery by the LHC of Higgs like boson, has started vivid debates on the further potential of this machine and the future. The periodic EuCARD conference, workshop and meetings concern building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The aim of the discussion is not only summarize the current status but make plans and prepare practically to building new infrastructures. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. Accelerator technology is intensely developed in all developed nations and regions of the world. The EuCARD project contains a lot of subjects related directly and indirectly to photon

  8. Network infrastructure control for virtual campuses

    Cardoso, Igor Duarte

    2014-01-01

    This dissertation provides a way to merge Cloud Computing infrastructures with traditional or legacy network deployments, leveraging the best in both worlds and enabling a logically centralized control for it. A design/architecture is proposed to extend existing Cloud Computing software stacks so they are able to manage networks outside the Cloud Computing infrastructure, by extending the internal, virtualized network segments. This is useful in a variety of use cases such a...

  9. Infrastructure of the Gemini Observatory control system

    Gillies, Kim K.; Walker, Shane

    1998-07-01

    Construction of the first Gemini 8-m telescope is well underway. The software that provides the user interface and high-level control of the observatory, the observatory control system (OCS), is also proceeding on track. The OCS provides tools that assist the astronomer from the proposal submission phase through planning, observation execution, and data review. A capable and flexible software infrastructure is required to support this comprehensive approach. New software technologies and industry standards have played a large part in the implementation of this infrastructure. For instance, the use of CORBA has provided many benefits in the software including object distribution, an interface definition language, and implementation language independence. In this paper, we describe the infrastructure of the OCS that supports observation planning and execution. Important software decisions and interfaces that allow Internet access and the ability to substitute alternate implementations easily are discussed as a model for other similar projects.

  10. The CERN accelerators controls convergence project

    Van den Eynden, Marc

    1999-01-01

    Summary form only given. The CERN PS and SL Accelerators controls groups have started in March 1998 a convergence effort aimed at building a common controls infrastructure for year 2001. The first activities concentrated on the definition of an object oriented Accelerator Device Model and Application Programming Interface (API) aimed at offering to high level application software developers a narrow and coherent view of the accelerator components. Efforts have also started to build the underlying middleware architecture that will support this model, including services based on the publish- subscribe paradigm. This presentation will highlight some aspects of this Accelerator Device model as seen form the application software level. A logical view of the associated middleware architecture that will transport Accelerator device data will also be discussed.

  11. Broadband accelerator control network

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  12. LANSCE Control System front-end and infrastructure hardware upgrades

    The Los Alamos Neutron Science Center (LANSCE) linear accelerator drives user facilities for isotope production, proton radiography, ultra-cold neutrons, weapons neutron research and various sciences using neutron scattering. The LANSCE Control System which is in part more than 40 years old provides control and data monitoring for most devices in the linac and for some of its associated experimental-area beam lines. In Fiscal Year 2011, the control system went through an upgrade process that affected different areas of the LANSCE Control System. We improved our network infrastructure and we converted part of our front-end control system hardware to Allen Bradley ControlsLogix 5000 and National Instruments Compact RIO programmable automation controller (PAC). In this paper, we will discuss what we have done, what we have learned about upgrading the existing control system and how this will affect our future plans. (authors)

  13. CARE Coordinated Accelerator Research in Europe: integrating activity implemented as integrated infrastructure initiative

    Aleksan, R

    2009-01-01

    The main objective of the CARE project was to generate a structured and integrated European area in the field of accelerator research and related R&D. A set of integrating activities involving the largest European infrastructure laboratories and their user communities “active in accelerator R&D”, including industrial partners was established with the following general objectives: 1) To optimise the use of existing infrastructures for improving the European knowledge on accelerator physics  By promoting a coherent and coordinated utilization and development of infrastructures and to facilitate the access to accelerators and test facilities for carrying accelerator studies  By understanding accelerator operation and reliability issues 2) To tackle new or state-of-the-art technologies in a more co-ordinated and collaborative approach  By developing a coherent and coordinated accelerator R&D program in Europe and carrying out joint R&D projects allowing one to enhance the existing (or...

  14. Distributed control in the electricity infrastructure

    Different driving forces push the electricity production towards decentralization. As a result, the current electricity infrastructure is expected to evolve into a network of networks, in which all system parts communicate with each other and influence each other. Multiagent systems and electronic markets form an appropriate technology needed for control and coordination tasks in the future electricity network. We present the PowerMatcher, a market-based control concept for supply demand matching (SDM) in electricity networks. In a simulation study we show the ability of this approach to raise the simultaneousness of electricity production and consumption within (local) control clusters. This control concept can be applied in different business cases like reduction of imbalance costs in commercial portfolios or virtual power plant operation of distributed generators. Two PowerMatcher-based field test configurations are described, one currently in operation, one currently under construction

  15. CERN Front-End Software Architecture for Accelerator Controls

    Arruat, M; Guerrero, A; Jackson, S; Ludwig, M; Nougaret, J L

    2003-01-01

    To overcome the current diversity in AB front end equipment software and pave the way towards LHC for efficient development, diagnostic and maintenance in this area, the CERN Accelerator Controls group launched in April 2003 a project to develop the new CERN accelerator standard infrastructure for front end software. This development is based on the infrastructure recently born to handle the SPS beam measurement systems and extends it to handle the PS and SPS multi-cycling schemes, the future requirements needed for LHC as well as providing a good backward compatibility with the existing infrastructures. The project, approach and first deliverables are presented.

  16. Vibration control in accelerators

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  17. Hacking control systems, switching… accelerators off?

    Computer Security Team

    2013-01-01

    In response to our article in the last Bulletin, we received the following comment: “Wasn’t Stuxnet designed to stop the Iranian nuclear programme? Why then all this noise with regard to CERN accelerators? Don’t you realize that ‘computer security’ is not the raison d'être of CERN?”. Thank you for this golden opportunity to delve into this issue.   Given the sophistication of Stuxnet, it might have been hard to detect such a targeted attack against CERN, if at all. But this is not the point. There are much simpler risks for our accelerator complex and infrastructure. And, while “‘computer security’ is [indeed] not the raison d' être”, it is our collective responsibility to keep this risk at bay.   Examples? Just think of a simple computer virus infecting Windows-based control PCs connected to the accelerator network (the Technical Network, &ld...

  18. INFRASTRUCTURE

    A.Gaddi

    2011-01-01

    Between the end of March to June 2011, there has been no detector downtime during proton fills due to CMS Infrastructures failures. This exceptional performance is a clear sign of the high quality work done by the CMS Infrastructures unit and its supporting teams. Powering infrastructure At the end of March, the EN/EL group observed a problem with the CMS 48 V system. The problem was a lack of isolation between the negative (return) terminal and earth. Although at that moment we were not seeing any loss of functionality, in the long term it would have led to severe disruption to the CMS power system. The 48 V system is critical to the operation of CMS: in addition to feeding the anti-panic lights, essential for the safety of the underground areas, it powers all the PLCs (Twidos) that control AC power to the racks and front-end electronics of CMS. A failure of the 48 V system would bring down the whole detector and lead to evacuation of the cavern. EN/EL technicians have made an accurate search of the fault, ...

  19. Accelerator control systems in China

    Three accelerator facilities were built in the past few years, the 2.8 GeV electron positron collider BEPC, the heavy ion SSC cyclotron accelerator HIRFL and the 800 MeV synchrotron radiation storage ring HESYRL. Aimed at different research areas, they represent a new generation of accelerator in China. This report describes the design philosophy, the structure, performance as well as future improvements of the control systems of the these facilities. (author)

  20. Efficient control of accelerator maps

    Boreux, Jehan; Carletti, Timoteo; Skokos, Charalampos; Papaphilippou, Yannis; Vittot, Michel

    2011-01-01

    Recently, the Hamiltonian Control Theory was used in [Boreux et al.] to increase the dynamic aperture of a ring particle accelerator having a localized thin sextupole magnet. In this letter, these results are extended by proving that a simplified version of the obtained general control term leads to significant improvements of the dynamic aperture of the uncontrolled model. In addition, the dynamics of flat beams based on the same accelerator model can be significantly improved by a reduced c...

  1. Robust control of accelerators

    Joel, W.; Johnson, D.; Chaouki, Abdallah T.

    1991-07-01

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modelling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this article, we report on our research progress. In section 1, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section 2, the results of our proof-of-principle experiments are presented. In section 3, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf. without demodulating, compensating, and then remodulating.

  2. A portable accelerator control toolkit

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development

  3. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  4. Centralized digital control of accelerators

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors

  5. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  6. Personal computers in accelerator control

    Anderssen, P. S.

    1988-07-01

    The advent of the personal computer has created a popular movement which has also made a strong impact on science and engineering. Flexible software environments combined with good computational performance and large storage capacities are becoming available at steadily decreasing costs. Of equal importance, however, is the quality of the user interface offered on many of these products. Graphics and screen interaction is available in ways that were only possible on specialized systems before. Accelerator engineers were quick to pick up the new technology. The first applications were probably for controllers and data gatherers for beam measurement equipment. Others followed, and today it is conceivable to make personal computer a standard component of an accelerator control system. This paper reviews the experience gained at CERN so far and describes the approach taken in the design of the common control center for the SPS and the future LEP accelerators. The design goal has been to be able to integrate personal computers into the accelerator control system and to build the operator's workplace around it.

  7. INFRASTRUCTURE

    Andrea Gaddi.

    The various water-cooling circuits ran smoothly over the summer. The overall performance of the cooling system is satisfactory, even if some improvements are possible, concerning the endcap water-cooling and the C6F14 circuits. In particular for the endcap cooling circuit, we aim to lower the water temperature, to provide more margin for RPC detectors. An expert-on-call piquet has been established during the summer global run, assuring the continuous supervision of the installations. An effort has been made to collect and harmonize the existing documentation on the cooling infrastructures at P5. The last six months have seen minor modifications to the electrical power network at P5. Among these, the racks in USC55 for the Tracker and Sniffer systems, which are backed up by the diesel generator in case of power outage, have been equipped with new control boxes to allow a remote restart. Other interventions have concerned the supply of assured power to those installations that are essential for CMS to run eff...

  8. INFRASTRUCTURE

    A. Gaddi

    2011-01-01

    During the last winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages were completed. On the surface, the site cooling facility has passed the annual maintenance process that includes the cleaning of the two evaporative cooling towers, the maintenance of the chiller units and the safety checks on the software controls. In parallel, CMS teams, reinforced by PH-DT group personnel, have worked to shield the cooling gauges for TOTEM and CASTOR against the magnetic stray field in the CMS Forward region, to add labels to almost all the valves underground and to clean all the filters in UXC55, USC55 and SCX5. Following the insertion of TOTEM T1 detector, the cooling circuit has been branched off and commissioned. The demineraliser cartridges have been replaced as well, as they were shown to be almost saturated. New instrumentation has been installed in the SCX5 PC farm cooling and ventilation network, in order to monitor the performance of the HVAC system...

  9. Modern control techniques for accelerators

    Goodwin, R.W.; Shea, M.F.

    1984-05-01

    Beginning in the mid to late sixties, most new accelerators were designed to include computer based control systems. Although each installation differed in detail, the technology of the sixties and early to mid seventies dictated an architecture that was essentially the same for the control systems of that era. A mini-computer was connected to the hardware and to a console. Two developments have changed the architecture of modern systems: (a) the microprocessor and (b) local area networks. This paper discusses these two developments and demonstrates their impact on control system design and implementation by way of describing a possible architecture for any size of accelerator. Both hardware and software aspects are included.

  10. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to

  11. INDIRECT ACCELERATED ADAPTIVE FUZZY CONTROLLER

    ZHU Liye; FANG Yuan; ZHANG Weidong

    2008-01-01

    According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To satisfy with system performance, an indirect accelerated adaptive fuzzy (IAAF) controller is proposed, and its general form is presented. The general form IAAF controller ensures necessary control criteria and system's global stability using Lyapunov Theorem. It has been proved that the close-loop system error converges to a small neighborhood of equilibrium point. The optimal IAAF controller is derived to guarantee the process's shortest settling time. Simulation results indicate the IAAF controller make the system more stable, accurate, and fast.

  12. Centralized digital control of accelerators

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  13. Radiation control in accelerator facilities

    In view of radiation control, particle accelerator facilities have posed various problems involving radiation (mainly neutron) leakage, occupational exposure, environmental aspects in the surrounding area, and waste management. The intent of the workshop was to discuss these problems. This report contains nine topics that were presented and discussed: (1) Radiation safety system for the AVF cyclotron and the cyclotron cascade project at the Research Center for Nuclear Physics, Osaka University; (2) Calculation for the shielding design in the RIKEN Ring Cyclotron Facility; (3) Shielding design method for high-energy protons in the National Laboratory for High-energy Physics (KEK); (4) Radiation safety programme for the uses of medical accelerators in the National Institute of Radiological Sciences; (5) Development of the new stack air monitor; (6) Environmental radiation monitoring in the vicinity of the intense 14 Mev neutron source facility; (7) Radiation control around the KEK-proton synchroton; (8) Radiation safety control system for the RIKEN Ring Cyclotron; (9) Evaluation of radioactivity and skyshine induced by neutron production in an accelerator facility. (Namekawa, K.)

  14. Infrastruktura akceleratorowa w Europie - EuCARD 2011 (Accelerator infrastructure in Europe), Elektronika, vol.52, no 8/2011, pp.117-120

    Romaniuk, R S

    2011-01-01

    The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the annual meeting of the EuCARD – European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement – control networks of l...

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  16. INFRASTRUCTURE

    A. Gaddi and P. Tropea

    2011-01-01

    Most of the work relating to Infrastructure has been concentrated in the new CSC and RPC manufactory at building 904, on the Prevessin site. Brand new gas distribution, powering and HVAC infrastructures are being deployed and the production of the first CSC chambers has started. Other activities at the CMS site concern the installation of a new small crane bridge in the Cooling technical room in USC55, in order to facilitate the intervention of the maintenance team in case of major failures of the chilled water pumping units. The laser barrack in USC55 has been also the object of a study, requested by the ECAL community, for the new laser system that shall be delivered in few months. In addition, ordinary maintenance works have been performed during the short machine stops on all the main infrastructures at Point 5 and in preparation to the Year-End Technical Stop (YETS), when most of the systems will be carefully inspected in order to ensure a smooth running through the crucial year 2012. After the incide...

  17. INFRASTRUCTURE

    A. Gaddi and P. Tropea

    2012-01-01

    The CMS Infrastructures teams are preparing for the LS1 activities. A long list of maintenance, consolidation and upgrade projects for CMS Infrastructures is on the table and is being discussed among Technical Coordination and sub-detector representatives. Apart from the activities concerning the cooling infrastructures (see below), two main projects have started: the refurbishment of the SX5 building, from storage area to RP storage and Muon stations laboratory; and the procurement of a new dry-gas (nitrogen and dry air) plant for inner detector flushing. We briefly present here the work done on the first item, leaving the second one for the next CMS Bulletin issue. The SX5 building is entering its third era, from main assembly building for CMS from 2000 to 2007, to storage building from 2008 to 2012, to RP storage and Muon laboratory during LS1 and beyond. A wall of concrete blocks has been erected to limit the RP zone, while the rest of the surface has been split between the ME1/1 and the CSC/DT laborat...

  18. Trends in accelerator control systems

    Over the years, we have seen a revolution in control systems that has followed the ever decreasing cost of computer power and memory. It started with the data gathering, when people distrusted the computer to perform control actions correctly, through the stage of using a computer to perform control actions correctly, through the stage of using a computer system to provide a convenient remote look and adjust facility, to the present day, when more and more emphasis is being placed on using a computer system to simulate or model all or parts of the accelerator, feed in the required performance and calling for the computers to set the various parameters and then measure the actual performance, with iteration if necessary. The progress that has been made in the fields of architecture, communications, computers, interface, software design and operator interface is reviewed

  19. INFRASTRUCTURE

    A. Gaddi

    2012-01-01

    The CMS Infrastructures teams are constantly ensuring the smooth operation of the different services during this critical period when the detector is taking data at full speed. A single failure would spoil hours of high luminosity beam and everything is put in place to avoid such an eventuality. In the meantime however, the fast approaching LS1 requires that we take a look at the various activities to take place from the end of the year onwards. The list of infrastructures consolidation and upgrade tasks is already long and will touch all the services (cooling, gas, inertion, powering, etc.). The definitive list will be available just before the LS1 start. One activity performed by the CMS cooling team that is worth mentioning is the maintenance of the cooling circuits at the CMS Electronics Integration Centre (EIC) at building 904. The old chiller has been replaced by a three-units cooling plant that also serves the HVAC system for the new CSC and RPC factories. The commissioning of this new plant has tak...

  20. INFRASTRUCTURE

    Andrea Gaddi

    2010-01-01

    In addition to the intense campaign of replacement of the leaky bushing on the Endcap circuits, other important activities have also been completed, with the aim of enhancing the overall reliability of the cooling infrastructures at CMS. Remaining with the Endcap circuit, the regulating valve that supplies cold water to the primary side of the circuit heat-exchanger, is not well adapted in flow capability and a new part has been ordered, to be installed during a stop of LHC. The instrumentation monitoring of the refilling rate of the circuits has been enhanced and we can now detect leaks as small as 0.5 cc/sec, on circuits that have nominal flow rates of some 20 litres/sec. Another activity starting now that the technical stop is over is the collection of spare parts that are difficult to find on the market. These will be stored at P5 with the aim of reducing down-time in case of component failure. Concerning the ventilation infrastructures, it has been noticed that in winter time the relative humidity leve...

  1. INFRASTRUCTURE

    Andrea Gaddi

    With all the technical services running, the attention has moved toward the next shutdown that will be spent to perform those modifications needed to enhance the reliability of CMS Infrastructures. Just to give an example for the cooling circuit, a set of re-circulating bypasses will be installed into the TS/CV area to limit the pressure surge when a circuit is partially shut-off. This problem has affected especially the Endcap Muon cooling circuit in the past. Also the ventilation of the UXC55 has to be revisited, allowing the automatic switching to full extraction in case of magnet quench. (Normally 90% of the cavern air is re-circulated by the ventilation system.) Minor modifications will concern the gas distribution, while the DSS action-matrix has to be refined according to the experience gained with operating the detector for a while. On the powering side, some LV power lines have been doubled and the final schematics of the UPS coverage for the counting rooms have been released. The most relevant inte...

  2. INFRASTRUCTURE

    A. Gaddi

    The long winter shut-down allows for modifications that will improve the reliability of the detector infrastructures at P5. The annual maintenance of detector services is taking place as well. This means a full stop of water-cooling circuits from November 24th with a gradual restart from mid January 09. The annual maintenance service includes the cleaning of the two SF5 cooling towers, service of the chiller plants on the surface, and the cryogenic plant serving the CMS Magnet. In addition, the overall site power is reduced from 8MW to 2MW, compatible with the switchover to the Swiss power network in winter. Full power will be available again from end of January. Among the modification works planned, the Low Voltage cabinets are being refurbished; doubling the cable sections and replacing the 40A circuit breakers with 60A types. This will reduce the overheating that has been experienced. Moreover, two new LV transformers will be bought and pre-cabled in order to assure a quick swap in case of failure of any...

  3. INFRASTRUCTURE

    Andrea Gaddi

    2010-01-01

    During the last six months, the main activity on the cooling circuit has essentially been preventive maintenance. At each short machine technical stop, a water sample is extracted out of every cooling circuit to measure the induced radioactivity. Soon after, a visual check of the whole detector cooling network is done, looking for water leaks in sensitive locations. Depending on sub-system availability, the main water filters are replaced; the old ones are inspected and sent to the CERN metallurgical lab in case of suspicious sediments. For the coming winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages are foreseen. A few faulty valves, found on the muon system cooling circuit, will be replaced; the cooling gauges for TOTEM and CASTOR, in the CMS Forward region, will be either changed or shielded against the magnetic stray field. The demineralizer cartridges will be replaced as well. New instrumentation will also be installed in the SCX5 PC farm ...

  4. INFRASTRUCTURE

    A. Gaddi and P. Tropea

    2013-01-01

      Most of the CMS infrastructures at P5 will go through a heavy consolidation-work period during LS1. All systems, from the cryogenic plant of the superconducting magnet to the rack powering in the USC55 counting rooms, from the cooling circuits to the gas distribution, will undergo consolidation work. As announced in the last issue of the CMS Bulletin, we present here one of the consolidation projects of LS1: the installation of a new dry-gas plant for inner detectors inertion. So far the oxygen and humidity suppression inside the CMS Tracker and Pixel volumes were assured by flushing dry nitrogen gas evaporated from a large liquid nitrogen tank. For technical reasons, the maximum flow is limited to less than 100 m3/h and the cost of refilling the tank every two weeks with liquid nitrogen is quite substantial. The new dry-gas plant will supply up to 400 m3/h of dry nitrogen (or the same flow of dry air, during shut-downs) with a comparatively minimal operation cost. It has been evaluated that the...

  5. RoadRunner: Infrastructure-less vehicular congestion control

    Gao, Jason Hao; Peh, Li-Shiuan

    2014-01-01

    RoadRunner is an in-vehicle app for traffic congestion control without costly roadside infrastructure, instead judiciously harnessing vehicle-to-vehicle communications, cellular connectivity, and onboard computation and sensing to enable large-scale traffic congestion control at higher penetration and finer granularity than previously possible. RoadRunner limits the number of vehicles in a congested region or road by requiring each to possess a token for entry. Tokens can circulate and be reu...

  6. Research of Virtual Accelerator Control System

    DongJinmei; YuanYoujin; ZhengJianhua

    2003-01-01

    A Virtual Accelerator is a computer process which simulates behavior of beam in an accelerator and responds to the accelerator control program under development in a same way as an actual accelerator. To realize Virtual Accelerator, control system should provide the same program interface to top layer Application Control Program, it can make 'Real Accelerator' and 'Virtual Accelerator'use the same GUI, so control system should have a layer to hide hardware details, Application Control Program access control devices through logical name but not through coded hardware address. Without this layer, it is difficult to develop application program which can access both 'Virtual' and 'Real' Accelerators using same program interfaces. For this reason, we can create CSR Runtime Database which allows application program to access hardware devices and data on a simulation process in a unified way. A device 'is represented as a collection of records in CSR Runtime Database. A control program on host computer can access devices in the system only through names of record fields, called channel.

  7. INFRASTRUCTURE

    Andrea Gaddi

    The various water-cooling circuits have been running smoothly since the last maintenance stop. The temperature set-points are being tuned to the actual requests from sub-detectors. As the RPC chambers seem to be rather sensitive to temperature fluctuations, the set-point on the Barrel and Endcap Muon circuits has been lowered by one degree Celsius, reaching the minimum temperature possible with the current hardware. A further decrease in temperature will only be possible with a substantial modification of the heat exchanger and related control valve on the primary circuit. A study has been launched to investigate possible solutions and related costs. The two cooling skids for Totem and Castor have been installed on top of the HF platform. They will supply demineralized water to the two forward sub-detectors, transferring the heat to the main rack circuit via an on-board heat exchanger. A preliminary analysis of the cooling requirements of the SCX5 computer farm has been done. As a first result, two precision...

  8. INFRASTRUCTURES

    Andrea Gaddi

    2013-01-01

    One of the most important tasks for LS1 was achieved this autumn when all the electronics racks in the USC55 counting rooms were switched from the standard powering network to the CMS low-voltage UPS. This long-sought move will prevent fastidious power cuts of the CMS electronics in case of short power glitches on the main powering network, as already assured to the detector front-end electronics in UXC55. In the same time, a study to update the dedicated UPS units for some crucial detector sub-systems, as the Magnet Control System (MCS), the Detector Safety System (DSS) and the IT Network Star-points, has been lunched. A new architecture, with fully redundant UPS units, able to assure power supply in case of long network outage (up to a maximum of five hours, in the case of the Magnet) has been recently presented by the EN-EL group and is currently under evaluation. The dry-gas plant recently commissioned in SH5 has passed a first test in order to understand the time needed to switch from dry-air to dry-n...

  9. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  10. Electron beam accelerator energy control system

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  11. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise.

    Ridge, Justin T; Rodriguez, Antonio B; Joel Fodrie, F; Lindquist, Niels L; Brodeur, Michelle C; Coleman, Sara E; Grabowski, Jonathan H; Theuerkauf, Ethan J

    2015-01-01

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR. PMID:26442712

  12. Robust rf control of accelerators

    The problem of controlling the variations in the rf power systems can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. One can design wither a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and therefore, shall not be pursued. In contrast, the robust control method leads to simplified hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico has led to the development and implementation of a new rf power feedback system. In this paper, we report on our research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, results of our proof-of-principle experiments are presented. In section three, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf without demodulating, compensating, and then remodulating

  13. Robust RF control of accelerators

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. One can design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. The research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new rf power feedback system. In this paper, the authors report on their research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, the results of their proof-of principle experiments are represented. In section three, they describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of their approach is that the control hardware is implemented directly in rf without demodulating, compensating, and the remodulating

  14. Update on the CERN Computing and Network Infrastructure for Controls (CNIC)

    Lueders, S

    2007-01-01

    Over the last few years modern accelerator and experiment control systems have increasingly been based on commercial-off-the-shelf products (VME crates, PLCs, SCADA systems, etc.), on Windows or Linux PCs, and on communication infrastructures using Ethernet and TCP/IP. Despite the benefits coming with this (r)evolution, new vulnerabilities are inherited too: Worms and viruses spread within seconds via the Ethernet cable, and attackers are becoming interested in control systems. Unfortunately, control PCs cannot be patched as fast as office PCs. Even worse, vulnerability scans at CERN using standard IT tools have shown that commercial automation systems lack fundamental security precautions: Some systems crashed during the scan, others could easily be stopped or their process data be altered. During the two years following the presentation of the CNIC Security Policy at ICALEPCS2005, a "Defense-in-Depth" approach has been applied to protect CERN's control systems. This presentation will give a review of its th...

  15. Control problems in very large accelerators

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have the same types of control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. It is the purpose of this paper to look at the special control problems of large accelerators, which the author shall arbitrarily define as those with a length or circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system

  16. Control problems in very large accelerators

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have similar control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. Both of these factors must be taken into account in determining the optimum way of carrying out the control functions. Small machines should use standard equipment and software for control as much as possible, as special developments for small quantities cannot normally be justified if all costs are taken into account. On the other hand, the very great number of devices needed for a large machine means that, if special developments can result in simplification, they may make possible an appreciable reduction in the control equipment costs. It is the purpose of this report to look at the special control problems of large accelerators, which the author shall arbitarily define as those with a length of circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system. Most of the first part of this report was presented as a paper to the 1985 Particle Accelerator Conference. It has now been extended to include a discussion on the special case of the controls for the SSC

  17. Common control system for the CERN accelerators

    The PS and SPS Accelerator Control Systems are becoming obsolete and need urgent rejuvenation. After a control users forum, where users expressed their needs, two main Working Groups were set up, consisting of Control and Equipment Specialists and experienced Machine Operators. One Working Group studied the architecture and the front-end processing and the other a common approach to the application software needed to run the CERN accelerator complex. The paper presents the technical conclusion of their work and the policy to implement it, taking into account the necessity to operate both machines without interruption of the Physics Program. (author)

  18. Accelerator control systems without minicomputers

    A paper given last year described in general terms a plan for the control of a large machine using assemblies of microcomputer units which simulate a conventional minicomputer by multiprocessing. In every other way the SPS control philosophy is followed. The design of a model assembly has allowed us to learn something about the protocols needed inside and between assemblies, as well as to assess more accurately what level of technology it is reasonable to apply. In any control system of this kind it would be desirable to allow engineering contributions from a variety of sources, and yet ensure the homogeneity needed for the system to remain reliable and comprehensible. Methods of achieving this are discussed. (Auth.)

  19. An Accelerator Control Middle Layer Using MATLAB

    Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab--the Accelerator Toolbox (AT) for machine simulations, LOCO for accelerator calibration, Matlab Channel Access Toolbox (MCA) for EPICS connections, and the Middle Layer. This paper will describe the ''middle layer'' software toolbox that resides between the high-level control applications and the low-level accelerator control system. This software was a collaborative effort between ALS (LBNL) and SPEAR3 (SSRL) but easily ports to other machines. Five accelerators presently use this software. The high-level Middle Layer functionality includes energy ramp, configuration control (save/restore), global orbit correction, local photon beam steering, insertion device compensation, beam-based alignment, tune correction, response matrix measurement, and script-based programs for machine physics studies

  20. Evolution of control systems for accelerators

    The author reviews the development of control systems for accelerators. After an historical survey and a general introduction the hardware and software of such systems is described. As example the control system of the CERN SP5 is considered. Finally an outlook is given to future developments with special regards to the LEP storage ring. (HSI)

  1. The BNL Accelerator Test Facility control system

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  2. Towards MRI-guided linear accelerator control: gating on an MRI accelerator

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  3. PLOCAN, an Off-shore environmentally sustainable infrastructure to accelerate ocean research, development and innovation at increasing depths.

    Hernández Brito, Joaquín; Delory, Eric; Llinás, Octavio

    2010-01-01

    The Canary Islands Oceanic Platform (PLOCAN) is a public infrastructure for research, development and innovation in the fields of ocean science and technology at increasing depths. Located East of Gran Canaria Island (Canary Islands, Spain), PLOCAN will provide rapid access to great depths at short distance from the shore, accelerating research and the generation of water column and deep-ocean knowledge. Specifically, PLOCAN will host a permanent deep-sea observatory, be a t...

  4. Accelerating community development through provision of rural infrastructure: An appraisal of the third national Fadama development project in Ondo State

    R. O. Akinbamowo; E. O. Atanda

    2014-01-01

    This paper presents an appraisal of the performance of the National Fadama Development Programme (FADAMA III) towards accelerating community infrastructural development in Ondo State, Nigeria, based on the author's practical assessment and oral interviews of project participants as well as a collection of secondary data in form of reports and surveys produced by the Fadama III Project in Ondo State during the implementation period. The secondary data collected include the status of the differ...

  5. Controllability of intense-laser ion acceleration

    Shigeo; Kawata; Toshihiro; Nagashima; Masahiro; Takano; Takeshi; Izumiyama; Daiki; Kamiyama; Daisuke; Barada; Qing; Kong; Yan; Jun; Gu; Ping; Xiao; Wang; Yan; Yun; Ma; Wei; Ming; Wang; Wu; Zhang; Jiang; Xie; Huiran; Zhang; Dongbo; Dai

    2014-01-01

    An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intenselaser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.

  6. Computer networks in future accelerator control systems

    Some findings of a study concerning a computer based control and monitoring system for the proposed ISABELLE Intersecting Storage Accelerator are presented. Requirements for development and implementation of such a system are discussed. An architecture is proposed where the system components are partitioned along functional lines. Implementation of some conceptually significant components is reviewed

  7. Application of Smalltalk language for accelerator control

    This paper describes the results of studies for object-oriented control system creation. Using VisualWorks environment based on Smalltalk we created a set of programs, such as Control Model Editor, Control Model Scanner and Control Views, for developing and running an object-oriented model of an accelerator. Our system allows the user to easily create a class library which can be used to develop a number of control programs. The object model defines the object under control, the control logic and graphics for displaying control objects' states. Our experience shows that object-oriented software development is faster compared with traditional languages, and provides more functionality. VisualWorks is a multiplatform environment, and all applications can be ported to different operating systems with only minor changes. VisualWorks also provides high performance, which is important for time-critical control applications. (orig.)

  8. STUXNET and the Impact on Accelerator Control Systems

    Lüders, S

    2011-01-01

    2010 has seen wide news coverage of a new kind of computer attack, named "Stuxnet", targeting control systems. Due to its level of sophistication, it is widely acknowledged that this attack marks the very first case of a cyber-war of one country against the industrial infrastructure of another, although there is still much speculation about the details. Worse yet, experts recognize that Stuxnet might just be the beginning and that similar attacks, eventually with much less sophistication, but with much more collateral damage, can be expected in the years to come. Stuxnet was targeting a special model of the Siemens 400 PLC series. Similar modules are also deployed for accelerator controls like the LHC cryogenics or vacuum systems as well as the detector control systems in LHC experiments. Therefore, the aim of this presentation is to give an insight into what this new attack does and why it is deemed to be special. In particular, the potential impact on accelerator and experiment control sys...

  9. An Accelerator Control Middle Layer Using MATLAB

    Matlab is an interpretive programming language originally developed for convenient use with the LINPACK and EISPACK libraries. Matlab is appealing for accelerator physics because it is matrix-oriented, provides an active workspace for system variables, powerful graphics capabilities, built-in math libraries, and platform independence. A number of accelerator software toolboxes have been written in Matlab -- the Accelerator Toolbox (AT) for model-based machine simulations, LOCO for on-line model calibration, and Matlab Channel Access (MCA) to connect with EPICS. The function of the MATLAB ''MiddleLayer'' is to provide a scripting language for machine simulations and on-line control, including non-EPICS based control systems. The MiddleLayer has simplified and streamlined development of high-level applications including configuration control, energy ramp, orbit correction, photon beam steering, ID compensation, beam-based alignment, tune correction and response matrix measurement. The database-driven Middle Layer software is largely machine-independent and easy to port. Six accelerators presently use the software package with more scheduled to come on line soon

  10. HEPTech Academia – Industry Matching Event on Control Systems for Accelerators and Detectors

    Anastasios Charitonidis (FP/KT), on behalf of the organizing committee

    2013-01-01

    The HEPTech AIME (Academia – Industry Matching Event) on Controls for accelerators and detectors will take place from 2 to 3 December in Athens, Greece.   The HEPTech network invites you to Demokritos NCSR to participate in an event that aims to bring together Academia and Industry to share ideas and potential applications of Controls Technology. The event will provide an overview of current Controls Systems for large scale projects including the LHC, the CMS and ATLAS detectors, medical accelerator facilities and contributions from companies active in these fields. CERN Computer Centre. The programme will also address some of the challenges faced by future High Energy Physics projects in the controls area and provide a glimpse into the future requirements of research infrastructures such as the European Spallation Source (ESS), and the Extreme Light Infrastructure (ELI), while exploring different possible approaches to the commercialisation of controls technology. The event ...

  11. Workshop Engages PCs in Accelerator Controls

    To discuss the rapidly growing and changing use of personal computers (PCs) in accelerator control systems, 80 accelerator controls specialists from 26 institutions in North America, Europe and Asia attended the 6. International Workshop on Personal Computers and Particle Accelerator Controls, PCaPAC2006, held October 24-27 at Jefferson Lab in Newport News, Virginia. PCs have become increasingly applicable to the control of accelerators as their computing capacities have increased exponentially over the last 10 years. Capabilities that once required the power available only from expensive, small-market systems offered by DEC, Sun or IBM can now be obtained with commodity hardware offered by many vendors. The price/performance ratio presented by any standard PC makes a compelling case for using PC hardware in accelerator controls wherever possible. The PCaPAC meeting underscored the importance of collaborative control system development. Several talks focused on additions to three such systems, TINE, TANGO and EPICS. The diverse contributions to these toolkits, both in content and source, demonstrate the power of leveraged software development across a number of facilities. TINE originated in DESY's desire to give users a unified software bus above disparate underlying platforms. TINE discussions at PCaPAC centered on the toolkit's interface layers, including address redirection and integration with other control systems. TANGO has been a collaborative effort from its inception. Based on CORBA, this open-source controls toolkit is a registered project in the source forge system. The workshop TANGO presentation discussed contributions from four TANGO institutions, and mentioned a broad range of new tools, from user interface applications to code generators and database integration software. EPICS, which was started at LANL in the 1980s, includes contributions from dozens of institutions around the world. EPICS-related PCaPAC discussions included virtual machines at

  12. Intelligent monitoring, control, and security of critical infrastructure systems

    Polycarpou, Marios

    2015-01-01

    This book describes the challenges that critical infrastructure systems face, and presents state of the art solutions to address them. How can we design intelligent systems or intelligent agents that can make appropriate real-time decisions in the management of such large-scale, complex systems? What are the primary challenges for critical infrastructure systems? The book also provides readers with the relevant information to recognize how important infrastructures are, and their role in connection with a society’s economy, security and prosperity. It goes on to describe state-of-the-art solutions to address these points, including new methodologies and instrumentation tools (e.g. embedded software and intelligent algorithms) for transforming and optimizing target infrastructures. The book is the most comprehensive resource to date for professionals in both the private and public sectors, while also offering an essential guide for students and researchers in the areas of modeling and analysis of critical in...

  13. Present SLAC accelerator computer control system features

    The current functional organization and state of software development of the computer control system of the Stanford Linear Accelerator is described. Included is a discussion of the distribution of functions throughout the system, the local controller features, and currently implemented features of the touch panel portion of the system. The functional use of our triplex of PDP11-34 computers sharing common memory is described. Also included is a description of the use of pseudopanel tables as data tables for closed loop control functions

  14. Control system for the NBS microtron accelerator

    As various subsystems of the National Bureau of Standards/Los Alamos racetrack microtron accelerator are being brought on-line, we are gaining experience with some of the innovations implemented in the control system. Foremost among these are the joystick-based operator controls, the hierarchical distribution of control system intelligence, and the independent secondary stations, permitting sectional stand-alone operation. The result of the distributed database philosophy and parallel data links has been very fast data updates, permitting joystick interaction with system elements. The software development was greatly simplified by using the hardware arbitration of several parallel processors in the Multibus system to split the software tasks into independent modules

  15. Object oriented programming interfaces for accelerator control

    Several years ago, the AGS controls group was given the task of developing software for the RHIC accelerator. Like the AGS, the RHIC control system needs to control and monitor equipment distributed around a relatively large geographic area. A local area network connects this equipment to a collection of UNIX workstations in a central control room. Similar software had been developed for the AGS about a decade earlier, but isn't well suited for RHIC use for a number of reasons. Rather than adapt the AGS software for RHIC use, the controls group opted to start with a clean slate. To develop software that would address the shortcomings of the AGS software, while preserving the useful features that evolved through years of use. A current trend in control system design is to provide an object oriented programming interface for application developers. This talk will discuss important aspects and features of object oriented application programming interfaces (APIs) for accelerator control systems, and explore why such interfaces are becoming the norm

  16. Accelerator controls at CERN: Some converging trends

    CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of 'Technical Boards', mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way. (orig.)

  17. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

  18. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations.

  19. Control system modelling for superconducting accelerator

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set- Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation. (orig.)

  20. The new accelerator control system of GANIL

    The new computer control system is conducting the heavy ion accelerator GANIL from the beginning of 1993 and has reached a state of routine operation. It was carried out to supersede the obsolete initial system and to cope with the harsh experimental conditions required by the very high intensity beams envisioned for the next future. Hardware and software implementations, as well as human interface, are presented. Emphasis is placed on the three-layer distributed architecture adopted. An ETHERNET local area network (LAN) links the basic components: a VAX/VMS cluster, XWINDOWS interfaced operator consoles, VAXELN driven CAMAC crate controllers and programmable logic controllers for front end controls. Also data management with the INGRES relational database management system (RDBMS), as well as operating software written in ADA language, are described. First experience with the new control system is reported. Finally, trend considerations are addressed. (author) 8 refs., 6 figs

  1. Controlled rolling and accelerated cooling of steel

    Ranta, H.; Korhonen, A.S.; Partinen, S.

    1993-12-31

    The subproject `Controlled Rolling and Cooling of Steel` was carried out at the Helsinki University of Technology in the Laboratory of Processing and Heat Treatment of Materials during the years 1989-91. The work described here was a part of a SULA-project. The aim of the project at the Helsinki University of Technology was to study controlled rolling and accelerated cooling and the temperature and strain distributions in the steel during rolling. Modelling of accelerated cooling is important in ensuring that the desired shape and mechanical properties of steel are obtained without additional heat treatment. When no additional heat treatments are needed after the rolling process, it is possible to increase the volume of production and to save time and money. Mathematical models were studied and developed to describe the processes and to make it possible to predict the shape and mechanical properties of the final product. Models are also needed to study the influence of various processing parameters. Since full-scale experiments are expensive, a laboratory-scale cooling line for hot rolling experiments was constructed. During this project numerous hot forming and accelerated cooling experiments were carried out

  2. Controls for a Pulsed Ion Accelerator Using Apache Cassandra (No-SQL) and ZMQ

    Persaud, A; Stettler, M W; Vytla, V K

    2015-01-01

    We report on updates to the accelerator controls for the Neutral Drift Compression Experiment II, a pulsed accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra (No-SQL) backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as adding ZMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZMQ also allows easy access using other programming languages, such as Python.

  3. Industrial influences on an accelerator control system

    Industrial applications of a control system package have extended from industrial research to process control. While the requirements of these applications have much in common with accelerator controls, there are always extensions, different emphases, and additional requirements. These often add to the applicability of the software in all fields and certainly keep the development team challenged. This paper discusses some of the influences that industrial applications such as power distribution monitoring, casting and rolling mills, and aircraft engine testing have on software originally designed for scientific research. We also discuss some of the differences in the software development process between development for in-house use and development for sales and industrial use. (Author) ref., fig

  4. Accelerating community development through provision of rural infrastructure: An appraisal of the third national Fadama development project in Ondo State

    R. O. Akinbamowo

    2014-04-01

    Full Text Available This paper presents an appraisal of the performance of the National Fadama Development Programme (FADAMA III towards accelerating community infrastructural development in Ondo State, Nigeria, based on the author's practical assessment and oral interviews of project participants as well as a collection of secondary data in form of reports and surveys produced by the Fadama III Project in Ondo State during the implementation period. The secondary data collected include the status of the different classes of small-scale community-owned infrastructure, productive assets and Fadama Users Groups/Fadama Community Associations (FUG/FCA access to these infrastructures. In addition, the study reported on the means of access to agricultural product market, value additions to the agricultural commodities produced by the FUGs and changes in income from sales associated with value-added products. Data collected were analysed using basic descriptive statistics. The results of the study show that crop production is the primary occupation for a large proportion of the groups, accounting for over 45.1% of total FUG, Fishery and Livestock production each make up 12%. A look at the available Productive Small-scale Community-owned Infrastructure across FCAs in the 18 LGAs of the State from the study show that seven new access roads were constructed; 46 feeder roads were rehabilitated; and 22 markets facilities were provided. Seven culverts and four foot bridges were constructed along with several assets to service the enterprises. Generally, the results indicate that income decreased at the project preparation stage only to stabilise and peak as the enterprises are consolidated. Average income of $692.35, $561.42, $194.79 and $100.39 for crop production, livestock, fishing and Non-Farm enterprises were obtained.

  5. Adaptive, Nonlinear Model Predictive Control for Accelerator Feedback Control Systems

    Variations in systems dynamics and modeling uncertainty(due to unmodeled systems behavior and/or presence of disturbances),have posed significant challenges to the effective luminosity and orbit control in accelerators.Problems of similar nature occur in a wide variety of other applications from chemical processes to power plants to financial systems.Adaptive control has long been pursued as a possible solution,but difficulties with online model identification and robust implementation of the adaptive control algorithms has prevented their widespread application.In general developing and maintaining appropriate models is the key to the success of any deployed control solution.Meanwhile the performance of the control system is contingent on the responsiveness of the control algorithm to the inevitable deviations of the model from the actual system.This project uses neural networks to detect significant changes in system behavior,and develops an optimal model-predictive-based adaptive control algorithm that enables the robust implementation of an effective control strategy that is applicable in a wide range of applications.Simulation studies were conducted to clearly demonstrate the feasibility and benefits of implementing model predictive control technology in accelerator control problems.The requirements for an effective commercial product that can meet the challenge of optimal model-predictive-based adaptive control technology were developed.A prototype for the optimal model-predictive-based adaptive control algorithm was developed for a well-known nonlinear temperature control problem for gas-phase reactors that proved the feasibility of the proposed approach.This research enables a commercial party to leverage the knowledge gained through collaboration with a national laboratory to develop new system identification and optimal model-predictive-based adaptive control software to address current and future challenges in process industries,power systems

  6. Accelerator optimization using a network control and acquisition system

    Accelerator optimization requires detailed study of many parameters, indicating the need for remote control and automated data acquisition systems. A control and data acquisition system based on a network of commodity PCs and applications with standards based inter-application communication is being built for the l'OASIS accelerator facility. This system allows synchronous acquisition of data at high (> 1 Hz) rates and remote control of the accelerator at low cost, allowing detailed study of the acceleration process

  7. Artificial intelligence approach to accelerator control systems

    An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms

  8. Modern computer networks and distributed intelligence in accelerator controls

    Appropriate hardware and software network protocols are surveyed for accelerator control environments. Accelerator controls network topologies are discussed with respect to the following criteria: vertical versus horizontal and distributed versus centralized. Decision-making considerations are provided for accelerator network architecture specification. Current trends and implementations at Fermilab are discussed

  9. The intelligent gate control for the induction acceleration system in the KEK digital accelerator

    The renovation of the KEK PS-Booster as a digital accelerator (DA) is going on. Our plan is to accelerate Argon ion beam in the KEK-DA using the induction acceleration system, which was developed at KEK. An outline of the acceleration scenario is described and a necessary control system fully integrating the induction acceleration devices is given in details. For the induction acceleration in the KEK-DA, beam monitors and front-end processors to pick up information of the beam timing with accuracy are quite important. R and D works of those components are discussed. (author)

  10. Innovative Digitally Controlled Particle Accelerator Magnet Power Supply

    Nielsen, Rasmus Ørndrup; Bidoggia, Benoit; Maheshwari, Ram Krishan; Török, Lajos

    Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described.......Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described....

  11. Intelligent control system for the KEK digital accelerator

    Studies are being conducted to develop a digital accelerator capable of accelerating ions with any charge state, based on the concept of the induction synchrotron. The digital accelerator is a modification of the KEK 500 MeV booster which employs induction acceleration. The digital accelerator is operated at a repetition rate of 10 Hz. The accelerating pulse voltage is dynamically varied from 0 V to 2.4 kV. A novel technique combining the pulse trigger control and intermittent operation of multi-acceleration cells is developed. The acceleration scheme of the digital accelerator is verified by using computer simulations and it is demonstrated at our test facility by using a beam simulator to mimic a circulating beam-bunch signal in the KEK digital accelerator.

  12. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise

    Justin T. Ridge; Rodriguez, Antonio B.; F. Joel Fodrie; Niels L. Lindquist; Brodeur, Michelle C.; Coleman, Sara E.; Grabowski, Jonathan H.; Ethan J. Theuerkauf

    2015-01-01

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species’ ability to maintain their position r...

  13. MANAGEMENT AND CONTROL OF FACULTY INFRASTRUCTURE USING SNMP PROTOCOL

    Saje, Tadeja

    2013-01-01

    Thesis presents a system to monitor and control computer systems and other devices. The system uses SNMP protocol. It permits better analyze, control and resolution of failures in operation of our systems. SNMP protocol is communication layer between controller and controlled device. Presented will be theoretical basis and security issues of SNMP. Practical part will be implementation of simple control system.

  14. Operational protocols for controlling accelerator equipment

    The equipment used to operate an accelerator is varied. However, the different devices may be divided into a limited number of classes for which operational protocols can be defined. Operational protocols permit: (i) a uniform operation, (ii) a clear definition of responsibility between the various specialists, (iii) independent development of programs and use of the most appropriate technology, (iv) the change of hardware and the transportability of software, and (v) the fabrication of devices by industry for general use. An operational protocol should be independent of any given control system and it must not be confused with a transmission protocol. As a first step, one defines an operational model of the device to be controlled. The model must represent a high-level description of the device as seen by the user. It will be characterized by a set of parameters and a set of rules. Although the particular requirements of specialists are not included in the operational protocol, allowances should be made for them. Emphasis will be placed on studies carried out on power converters and beam instrumentation. A general-purpose control message architecture is reported. (orig.)

  15. Operational protocols for controlling accelerator equipment

    Bailey, R.; Baribaud, G.; Benincasa, G.P.; Burla, P.; Casalegno, L.; Coudert, G.; Gelato, G.; Kuhn, H.K.; Saban, R.; Spinks, A. (European Organization for Nuclear Research, Geneva (Switzerland). LEP Div.)

    1990-08-01

    The equipment used to operate an accelerator is varied. However, the different devices may be divided into a limited number of classes for which operational protocols can be defined. Operational protocols permit: (i) a uniform operation, (ii) a clear definition of responsibility between the various specialists, (iii) independent development of programs and use of the most appropriate technology, (iv) the change of hardware and the transportability of software, and (v) the fabrication of devices by industry for general use. An operational protocol should be independent of any given control system and it must not be confused with a transmission protocol. As a first step, one defines an operational model of the device to be controlled. The model must represent a high-level description of the device as seen by the user. It will be characterized by a set of parameters and a set of rules. Although the particular requirements of specialists are not included in the operational protocol, allowances should be made for them. Emphasis will be placed on studies carried out on power converters and beam instrumentation. A general-purpose control message architecture is reported. (orig.).

  16. Accelerator diagnosis and control by Neural Nets

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs

  17. Network information attacks on the control systems of power facilities belonging to the critical infrastructure

    Loginov, E. L.; Raikov, A. N.

    2015-04-01

    The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.

  18. Open Hardware For CERN's Accelerator Control Systems

    van der Bij, E; Ayass, M; Boccardi, A; Cattin, M; Gil Soriano, C; Gousiou, E; Iglesias Gonsálvez, S; Penacoba Fernandez, G; Serrano, J; Voumard, N; Wlostowski, T

    2011-01-01

    The accelerator control systems at CERN will be renovated and many electronics modules will be redesigned as the modules they will replace cannot be bought anymore or use obsolete components. The modules used in the control systems are diverse: analog and digital I/O, level converters and repeaters, serial links and timing modules. Overall around 120 modules are supported that are used in systems such as beam instrumentation, cryogenics and power converters. Only a small percentage of the currently used modules are commercially available, while most of them had been specifically designed at CERN. The new developments are based on VITA and PCI-SIG standards such as FMC (FPGA Mezzanine Card), PCI Express and VME64x using transition modules. As system-on-chip interconnect, the public domain Wishbone specification is used. For the renovation, it is considered imperative to have for each board access to the full hardware design and its firmware so that problems could quickly be resolved by CERN engineers or its ...

  19. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  20. Automated control system in charged particle accelerators

    A general approach to the design of automated radiation safety systems at charged particle accelerators is described. Parameters of high-energy electron accelerators of the Kharkov Physics and Engineering Institute are presented. Characteristics of the surrounding radiation fields are given. Ionizing radiation transducers which can be used in automated systems are considered. Local radiation monitoring station based on the LUE-2000 accelerator of the institute is described. 9 refs.; 4 figs.; 1 tab

  1. An Accelerator Control Middle Layer Using MATLAB

    Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

    2005-01-01

    Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab -- the Accelerator Toolbox (AT) for mach...

  2. Control system for particle accelerator in LabVIEW

    Vitorovič, Miha

    2011-01-01

    The thesis presents the implementation of a control system for particle accelerator in the LabVIEW development environment. The first chapter gives an overview of the operation of the synchrotron accelerator and its parts. The second chapter describes how control system controls the accelerator. The third chapter gives an overview of the LabVIEW development environment, graphical language G and explains how graphical programs are written. It also lists some limitations of the language and how...

  3. Regulatory infrastructure for the control of radiation sources in Madagascar

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no. 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no. 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This body is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Waste Management.The paper includes an overview of the Regulatory infrastructure and the organizations of radiation protection in Madagascar. (author)

  4. Concurrent control system for the JAERI tandem accelerator

    Concurrent processing with a multiprocessor system is introduced to the particle accelerator control system region. The control system is a good application in both logical and physical aspects. A renewal plan of the control system for the JAERI tandem accelerator is discussed. (author)

  5. Status of the KEKB accelerator control system development

    KEKB, an asymmetric electron-positron collider, is in the last phase of its construction. The status of the development and installation of the control system for the KEKB will be reported in this paper. Installation of the basic equipment for the KEKB accelerator control system, including FDDI network cables between the central control room and sub-control rooms, was finished in spring 1997. This basic system is now being used for the development of software for the KEKB accelerator control system. Extension of the system for the first commissioning is scheduled later this year. The KEKB accelerator control system is based on the EPICS (Experimental Physics and Industrial Control System) tool kits for accelerator control system. EPICS tool kits uses the variant of so-called 'standard model' of an accelerator control system. Use of EPICS tool kits reduces needs for the development of basic software. Relational database is another key component in the KEKB accelerator control system. An end user interface using the WWW browser is developed and is under the field test. Power supply controller board has been developed and tested. The board uses ARCnet as the communication interface to the VME controller module in the KEKB accelerator control system. (author)

  6. Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks

    Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

  7. Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks

    Hartman, Steven M [ORNL

    2012-01-01

    Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

  8. Control and accelerating voltage automatic pulse acquisition system for ''LIU-5/5000'' linear accelerators

    A system prowiding continuous control and automatic correction of actuation of accelerating voltage pulse generators of a linear induction accelerator is described. TGI-2500/50 thyratrons are switching elements of the generators. Shaped pulses have a bell form, their duration on the foundation constitues 300 ns. The device operation is based on the determination of a sign of time error between generator and reference pulses. Depending on the error sign performed is correction of the delay value included into the actuation circuit of the corresponding generator. Such operation is accomplished in each working pulse of the accelerator. Data on the delay condition go to the digital panel and digital print-out. Technical characteristics of the system are the following: 56 cynchronization channels, 155 ns control interval, 5 ns control pitch, error of the error determination is not worse than +-2.5 ns. The system permitted to improve accelerated beam stability and to simplify accelerator tuning and control

  9. Torque-based optimal acceleration control for electric vehicle

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  10. Controlling Hazardous Releases while Protecting Passengers in Civil Infrastructure Systems

    Rimer, Sara P.; Katopodes, Nikolaos D.

    2015-11-01

    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research develops a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. A computational fluid dynamics model is developed of a simplified public space characterized by a long conduit (e.g. airport terminal) with unidirectional ambient flow that is capable of detecting and mitigating the hazardous contaminant (via boundary ports) over several time horizons using model predictive control optimization. Additionally, a physical prototype is built to test the real-time feasibility of this computational flow control model. The prototype is a blower wind-tunnel with an elongated test section with the capability of sensing (via digital camera) an injected `contaminant' (propylene glycol smoke), and then mitigating that contaminant using actuators (compressed air operated vacuum nozzles) which are operated by a set of pressure regulators and a programmable controller. Finally, an agent-based model is developed to simulate ``agents'' (i.e. building occupants) as they evacuate a public space, and is coupled with the computational flow control model such that agents must interact with a dynamic, threatening environment. NSF-CMMI #0856438.

  11. Managing Infrastructure in the ALICE Detector Control System

    Lechman, M; Bond, P M; Chochula, P.Ch; Kurepin, A N; Pinazza, O; Rosinsky, P; Kurepin, A N; Pinazza, O

    2014-01-01

    The main role of the ALICE Detector Control System (DCS) is to ensure safe and efficient operation of one of the large high energy physics experiments at CERN. The DCS design is based on the commercial SCADA software package WinCC Open Architecture.

  12. Towards a common monitoring system for the accelerator and technical control rooms at CERN

    Arduini, Gianluigi; Bätz, M; Carron de la Morinais, J M; Manglunki, Django; Priestnall, K; Robin, G; Ruette, M; Sollander, P

    2000-01-01

    The communication and coordination between the CERN accelerator and technical control rooms will be a critical issue for an efficient operation of the LHC and its injectors, which are expected to provide also beams for fixed target experiments, for detector component tests and for other activities including machine development. Early detection of faults in the accelerator and technical infrastructure (electricity, cooling, etc.) and their possible consequences on operation are useful not only to prevent major breakdowns but also to recover from them and to reschedule efficiently machine operation to satisfy the overall beam time requests from the different and concurrent users. To meet these requirements a method to define and provide common monitoring tools for all the actors involved in machine operation has been established. This method has been applied to the SPS accelerator and is being implemented in the PS complex and in the SPS experimental areas.

  13. Delayless acceleration measurement method for motion control applications

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  14. Smart control panel: Developing conventional domestic infrastructures into ambient media

    Li, Andol X; Bonner, John V.H.

    2009-01-01

    In this paper, we present novel development of domestic central heating control panel from conventional wall-mounted device to ambient media. We perform cycles of designs and evaluations in order to refine the understanding of the new media. Based on that we investigate potential methodologies to develop conventional devices into ambient media and, explore types of massages which may be provided by new ambient media.

  15. The KN-3000 particle accelerator control expert system (PACES)

    The particle accelerator control expert system (PACES) is a computer-based operator aid, retrofitted to a model KN-3000 Van de Graaff accelerator, that is used during the start-up, steady state and shut-down phases of the accelerator. Using PACES, the operator can control the accelerator through a graphical control panel, or call upon an expert system to perform automatic start-up or shut-down. PACES then automatically stabilizes and optimizes particle beam parameters. PACES is also able to detect, diagnose and respond to operating faults, such as high-voltage sparks, vacuum system failure or loss of source gas. This paper demonstrates the novel features and utility of the PACES artificial intelligence accelerator controller

  16. NODAL - The second life of the accelerator control language

    NODAL has been a popular interpreter language for accelerator controls since the beginning of the 1970s. NODAL has been rewritten in the C language to be easily portable to the different computer platforms which are in use in accelerator controls. The paper describes the major features of this new version of NODAL, the major software packages which are available through this implementation, the platforms on which it is currently running, and some relevant performances. The experience gained during the rejuvenation project of the CERN accelerator control systems is presented. The benefit of this is discussed, in particular in a view of the prevailing strong constraints in personnel and money resources. ((orig.))

  17. Application of Kalman filter in the accelerator power control

    In order to boost accelerator controlling accuracy and improve beam quality, a best filtering method that is Kalman filter was proposed. In the article given general model of the accelerator power and used Matlab to modeling the Kalman filter on the accelerator power model and simulate. Compared the chart of filtering effect, showed that Kalman filter can effectively filter out the effect of random noise. After kalman filtering, Mean square error of the control system was reduced to 23% of the original, Kalman filter especially can reduce the impact of the peak pulse to make the control accuracy improve. (authors)

  18. Techniques for increasing the reliability of accelerator control system electronics

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics

  19. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  20. Computer Based Dose Control System on Linear Accelerator

    The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

  1. Development of new elements of automated control systems linear accelerator

    For monitoring systems and control of linear electron accelerators have been designed, manufactured and introduced new elements instead of physically and morally outdated. This family of analog-to-digital converters ADC 01, ADC-02 ADC-03, ADC-05 ADC-06 have been developed in cooperation with the KNURE, and synchronizer for linear accelerator LUE-60M, designed forces of employees the research complex ''ACCELERATOR'' KIPT. Purpose, characteristics, technical description, block diagrams of family of analog-to-digital converters ADC01...ADC06 and of synchronizer of linear accelerator LUE-60M is presented in a report. These devices are developed on a new element base and inculcated in automated control systems of linear accelerators.

  2. Controlling electron injection in laser plasma accelerators using multiple pulses

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  3. Down-ramp injection and independently controlled acceleration of electrons in a tailored laser wakefield accelerator

    Hansson, M.; Davoine, X.; Ekerfelt, H.; Svensson, K.; Persson, A.; Wahlström, C.-G.; Lundh, O.; 10.1103/PhysRevSTAB.18.071303

    2015-01-01

    We report on a study on controlled injection of electrons into the accelerating phase of a plasma wakefield accelerator by tailoring the target density distribution using two independent sources of gas. The tailored density distribution is achieved experimentally by inserting a narrow nozzle, with an orifice diameter of only 400  μm , into a jet of gas supplied from a 2 mm diameter nozzle. The combination of these two nozzles is used to create two regions of different density connected by a density gradient. Using this setup we show independent control of the charge and energy distribution of the bunches of accelerated electron as well as decreased shot-to-shot fluctuations in these quantities compared to self-injection in a single gas jet. Although the energy spectra are broad after injection, simulations show that further acceleration acts to compress the energy distribution and to yield peaked energy spectra.

  4. Control and optimization of a staged laser-wakefield accelerator

    Golovin, G.; Banerjee, S.; Chen, S.; Powers, N.; Liu, C.; Yan, W.; Zhang, J.; Zhang, P.; Zhao, B.; Umstadter, D.

    2016-09-01

    We report results of an experimental study of laser-wakefield acceleration of electrons, using a staged device based on a double-jet gas target that enables independent injection and acceleration stages. This novel scheme is shown to produce stable, quasi-monoenergetic, and tunable electron beams. We show that optimal accelerator performance is achieved by systematic variation of five critical parameters. For the injection stage, we show that the amount of trapped charge is controlled by the gas density, composition, and laser power. For the acceleration stage, the gas density and the length of the jet are found to determine the final electron energy. This independent control over both the injection and acceleration processes enabled independent control over the charge and energy of the accelerated electron beam while preserving the quasi-monoenergetic character of the beam. We show that the charge and energy can be varied in the ranges of 2-45 pC, and 50-450 MeV, respectively. This robust and versatile electron accelerator will find application in the generation of high-brightness and controllable x-rays, and as the injector stage for more conventional devices.

  5. Critical Infrastructure Modeling: An Approach to Characterizing Interdependencies of Complex Networks & Control Systems

    Stuart Walsh; Shane Cherry; Lyle Roybal

    2009-05-01

    Critical infrastructure control systems face many challenges entering the 21st century, including natural disasters, cyber attacks, and terrorist attacks. Revolutionary change is required to solve many existing issues, including gaining greater situational awareness and resiliency through embedding modeling and advanced control algorithms in smart sensors and control devices instead of in a central controller. To support design, testing, and component analysis, a flexible simulation and modeling capability is needed. Researchers at Idaho National Laboratory are developing and evaluating such a capability through their CIPRsim modeling and simulation framework.

  6. Interdependency control : compensation strategies for the inherent vulnerability of critical infrastructure networks

    Today's increasingly interacting national critical infrastructures (NCIs) can tolerate most stochastic local disturbances. However, they are extremely fragile under global disturbances, as the latter may either push the whole system into a critical state or reveal many unexpected hidden interdependencies, inducing or triggering cascading failures among all possible layers. This robust yet fragile duality is an inherent vulnerability of modern infrastructures. It is therefore expected that weather-related disasters will be more frequent under a changing climate. This paper proposed an interdependency control strategy (ICS) that would maintain the survival of the most critical services, and compensate for this inherent vulnerability during emergency states. The paper also proposed a generalized adjacency matrix (GAM) to represent the physical interdependencies intra/inter of various infrastructure networks. The vulnerable section in the network can be identified, based on computed results of GAM, number of islands in the network, and influence domain(s) of each component. These features render ICS more effective and convincing. Last, the paper proposed a survivability index for isolated sub-networks and described relevant measures for improving this index during the four phases of emergency management. It was concluded that the proposed strategy is an effective means to reduce the inherent vulnerability and increase the resiliency of these critical infrastructures networks. 20 refs., 5 figs

  7. Rf control system for a rocket-borne accelerator

    The Beam Experiments Aboard Rockets (BEAR) accelerator experiment imposes several nonstandard requirements on the rf control system. The experiment is entirely hands-off and must operate under local computer control. The rf control system must be extremely reliable, which implies excellence in design and fabrication as well as redundancy whenever possible. This paper describes the design of the frequency-source, frequency-control, and amplitude-control systems for the BEAR experiment

  8. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Data Archiving and Quality Control

    He, Boliang; Fan, Dongwei; Li, Changhua; Xiao, Jian; Yu, Ce; Wang, Chuanjun; Cao, Zihuang; Chen, Junyi; Yi, Weimin; Li, Shanshan; Mi, Linying; Yang, Sisi

    2014-01-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences){\\url{http://astrocloud.china-vo.org}}\\citep{O8-5_Cui_adassxxiv}. To archive the astronomical data in China, we present the implementation of the astronomical data archiving system (ADAS). Data archiving and quality control are the infrastructure for the AstroCloud. Throughout the data of the entire life cycle, data archiving system standardized data, transferring data, logging observational data, archiving ambient data, And storing these data and metadata in database. Quality control covers the whole process and all aspects of data archiving.

  9. Accelerator Control and Global Networks State of the Art

    Gurd, D P

    2004-01-01

    As accelerators increase in size and complexity, demands upon their control systems increase correspondingly. Machine complexity is reflected in complexity of control system hardware and software and careful configuration management is essential. Model-based procedures and fast feedback based upon even faster beam instrumentation are often required. Managing machine protection systems with tens of thousands of inputs is another significant challenge. Increased use of commodity hardware and software introduces new issues of security and control. Large new facilities will increasingly be built by national (e.g. SNS) or international (e.g. a linear collider) collaborations. Building an integrated control system for an accelerator whose development is geographically widespread presents particular problems, not all of them technical. Recent discussions of a “Global Accelerator Network” include the possibility of multiple remote control rooms and no more night shifts. Based upon current experien...

  10. Smart Grid, Smart Controllers and Home Energy Automation—Creating the Infrastructure for Future

    Abhishek Khanna

    2012-01-01

    Integration of unpredictable renewable power sources into the Grid is leading to the development of wide area control algorithms and smart grid. Smart meters are the first step in the building a smart consumer interface. Much more, however, would be required in building a smart grid than just smart meters. This paper explores the conceptual architecture of smart grid. It highlights the need for additional infrastructure to realize full potential of smart grid. The information presented in thi...

  11. Optimal railway infrastructure maintenance and repair policies to manage risk under uncertainty with adaptive control

    Romera, Rosario; Carretero Pérez, Jesús; Pérez, Jose M.; González, Javier

    2006-01-01

    The aim of this paper is to apply two adaptive control formulations under uncertainty, say open-loop and closed-loop, to the process of developing maintenance and repair policies for railway infrastructures. To establish the optimal maintenance and repair policies for railway lines, we use a previous design of risk model based on two factors: the criticality and the deterioration ratios of the facilities. Thus, our theory benefits from the Reliability Centered Management methodology applicati...

  12. Implementing Role Based Access Controls using X.509 Privilege Management - the PERMIS Authorisation Infrastructure

    Chadwick, David W; Otenko, Alexander

    2004-01-01

    This paper describes the PERMIS role based access control infrastructure that uses X.509 attribute certificates (ACs) to store the users roles. Users roles can be assigned by multiple widely distributed management authorities (called Attribute Authorities in X.509), thereby easing the burden of management. All the ACs can be stored in one or more LDAP directories, thus making them widely available. The PERMIS distribution includes a Privilege Allocator GUI tool, and a bulk loader tool, that a...

  13. Full predictive control of induction acceleration in the KEK digital accelerator

    The KEK Digital Accelerator is a small-scale induction synchrotron which can accelerate any ion species with their possible charge states from a low energy to high energy, no using a large scale injector. It is so busy to carry out beam commissioning now, after installing new position monitors in April. An ion beam is accelerated and confined with induction cells that are 1-to-1 and 2-to-1 pulse transformers, respectively. The induction acceleration system has technical limitations, such as constant and maximum output voltage, finite pulse length, and maximum repetition rate. These limitations are overcome by introducing multiple induction cells and by gate controlling of the solid-state switching power supply to drive the induction cell. This is carried out by a completely programmed FPGA code maneuvering the gate trigger. (author)

  14. IPNS Chopper Control and Accelerator Interface Systems

    Several of the instruments at the Intense Pulsed Neutron Source (IPNS) at Argonne use rotating Fermi choppers. The techniques used to control the speed and phase of these rotating devices are discussed

  15. Readout control for high luminosity accelerators

    In this article we discuss some aspects of data acquisition at high luminosities and offer a set of design principles concerning readout control electronics and related software. As an example we include a brief description of a data transfer and processing system for future hadron colliders, featuring a transputer-based crate controller and a set of readout cards. This is a simplified and more efficient version of our design recently published in Nuclear Instruments and Methods. (orig.)

  16. Readout control for high luminosity accelerators

    Belusevic, R.; Nixon, G.

    1991-09-01

    In this article we discuss some aspects of data acquisition at high luminosities and offer a set of design principles concerning readout control electronics and related software. As an example we include a brief description of a data transfer and processing system for future hadron colliders, featuring a transputer-based crate controller and a set of readout cards. This is a simplified and more efficient version of our design recently published in Nuclear Instruments and Methods. [A295 (1991) 391].

  17. Readout control for high luminosity accelerators

    Belusevic, R.; Nixon, G. (University Coll., London (UK). Dept. of Physics and Astronomy)

    1991-09-15

    In this article we discuss some aspects of data acquisition at high luminosities and offer a set of design principles concerning readout control electronics and related software. As an example we include a brief description of a data transfer and processing system for future hadron colliders, featuring a transputer-based crate controller and a set of readout cards. This is a simplified and more efficient version of our design recently published in Nuclear Instruments and Methods. (orig.).

  18. Accelerators for Physics Experiments : From Diagnostics and Control to Design

    Wildner, Elena

    2008-01-01

    This thesis develops techniques of control-methods, optimization, and diagnostics of accelerator equipment and the produced particle beams with emphasis on the Large Hadron Collider (LHC) project at CERN. From a solid knowledge of the characteristics of the manufactured accelerator equipment gained from in-depth measurements and analysis of measured data, a link to an enhanced equipment design can be made. These techniques will be demonstrated in applications related to the LHC magnet product...

  19. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario

  20. Development of a fast voltage control method for electrostatic accelerators

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed

  1. Development of a fast voltage control method for electrostatic accelerators

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-11

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  2. General man-machine interface used in accelerators controls

    A large community is now using Workstations as Accelerators Computer Controls Interface, through the concepts of windows - menus - synoptics - icons. Some standards were established for the CERN-PS control systems rejuvenation. The Booster-to-PS transfer and injection process is now entirely operated with these tools. This application constitutes a global environment providing the users with the controls, analysis, visualization of a part of an accelerator. Individual commands, measurements, and specialized programs including complex treatments are available in a homogeneous frame. Some months of experience in current operation have shown that this model can be extended to the whole project. (author)

  3. Linear IFMIF prototype accelerator (LIPAc) control system: design and development

    Calvo Pinto, Julio

    2014-01-01

    Distributed real time control systems in scientific instruments, such as particle accelerators or telescopes, have emerged as a solution to control multiple interconnected devices, which required constant attention and observation, along with a complete integration of each of its parts. This enhancement is provided by the intense technological development that control devices have suffered in recent years. With respect to the control software, libraries and applications have also emerged in r...

  4. Discovery Mondays "Controlling the accelerators: tracking the protons"

    2007-01-01

    Le Centre de contrôle des accélérateurs du CERN.Like a train of particles that picks up speed every time it passes a set of points, by the time they collide the protons and ions in the LHC will have followed their path through the six stages of the CERN accelerator complex, picking up speed at each stage. Operating the controls of this huge complex designed to accelerate the infinitesimally small are its peerless controllers. From the CERN Control Centre, they will be on duty day and night to accelerate the "wagon-loads" of particles, ensuring that they stay on track and lining them up for head-on collisions. At the next Discovery Monday you will discover the path taken by the particles through the accelerator chain. You will gain an insight into the complex work performed by those controlling the particles and learn more about the CERN accelerator complex and its Control Centre. Hop on board for a speed-of-light tour of the C...

  5. Design of control system for accelerator

    Laboratory of Nuclear Science in Tohoku University has made a plan to construct a pulse beam stretcher boostering (STB) the fiscal year from 1995 to 1996. STB has two characteristic functions, one of them is pulse beam stretcher function to change 250 MeV pulse electron beam from Linac to direct current' beam and another is booster ring one to increase from 250 MeV to 1.2 GeV beam. Today, the detailed design is going to proceed. The subjects of control system are the direct current electromagnet, the pulse electromagnet, RF system, the vacuum system, the beam monitor system, the triggered system and the inter rock system. We will construct a control program of our own making. Another characteristic function is to adopt the directional object data base. The construction of hardware and software and the future planning are explained. (S.Y.)

  6. Distributed computer controls for accelerator systems

    A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multi-user Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implementation with four months with a computer and instrumentation cost of approximately $100K. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking and operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the efficient implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. 3 refs

  7. Controllability in Multi-Stage Laser Ion Acceleration

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  8. Nodal the second life of the accelerator control language

    Cuisinier, G; Ribeiro, P; Kagarmanov, A; Kovaltsov, V I

    1993-01-01

    Nodal is a popular interpreter language for accelerator controls since the beginning of the 70's. Nodal has been rewritten in the C language to be easily portable to the different computer platforms which are in use in today's accelerator controls. The paper describes the major features of this new version of Nodal, the major software packages which are available through this implementation, the platforms on which it is currently running, and some relevant performances.The paper presents the major domains of usage of Nodal and its capability for these classes of applications. The experience gained during the rejuvenation project of the CERN accelerator control systems is presented. The benefit of this use is discussed, in particular with a view to the prevailing strong constraints in personnel and money resources.

  9. New control architecture for the SPS accelerator at CERN

    The Control System for the 450 Gev proton accelerator SPS at CERN was conceived and implemented some 18 years ago. The 16 Bit minicomputers with their proprietary operating system and interconnection with a dedicated network do not permit the use of modern workstations, international communication standards and industrial software packages. The upgrading of the system has therefore become necessary. After a short review of the history and the current state of the SPS control system, the paper describes how CERN's new control architecture, which will be common to all accelerators, will be realized at the SPS. The migration path ensuring a smooth transition to the final system is outlined. Once the SPS upgrade is complete and following some enhancements to the LEP control system, the operator in the SPS/LEP control center will be working in a single uniform control environment. (author)

  10. CDP - Adaptive Supervisory Control and Data Acquisition (SCADA) Technology for Infrastructure Protection

    Marco Carvalho; Richard Ford

    2012-05-14

    Supervisory Control and Data Acquisition (SCADA) Systems are a type of Industrial Control System characterized by the centralized (or hierarchical) monitoring and control of geographically dispersed assets. SCADA systems combine acquisition and network components to provide data gathering, transmission, and visualization for centralized monitoring and control. However these integrated capabilities, especially when built over legacy systems and protocols, generally result in vulnerabilities that can be exploited by attackers, with potentially disastrous consequences. Our research project proposal was to investigate new approaches for secure and survivable SCADA systems. In particular, we were interested in the resilience and adaptability of large-scale mission-critical monitoring and control infrastructures. Our research proposal was divided in two main tasks. The first task was centered on the design and investigation of algorithms for survivable SCADA systems and a prototype framework demonstration. The second task was centered on the characterization and demonstration of the proposed approach in illustrative scenarios (simulated or emulated).

  11. The impact of new computer technology on accelerator control

    This paper describes some recent developments in computing and stresses their application in accelerator control systems. Among the advances that promise to have a significant impact are (1) low cost scientific workstations; (2) the use of ''windows'', pointing devices and menus in a multi-tasking operating system; (3) high resolution large-screen graphics monitors; (4) new kinds of high bandwidth local area networks. The relevant features are related to a general accelerator control system. For example, this paper examines the implications of a computing environment which permits and encourages graphical manipulation of system components, rather than traditional access through the writing of programs or ''canned'' access via touch panels

  12. Regulatory infrastructure for the control of radiation sources in the Africa region: Status, needs and programmes

    In recent years, several African countries have taken steps towards creating or strengthening legal, administrative and technical mechanisms for the regulation and control of peaceful uses of nuclear technology, and towards improving the effectiveness and sustainability of radiation protection measures based on international standards. This stems from a growing awareness that a proper national infrastructure is a prerequisite for the implementation of safety standards to achieve and maintain the desired level of protection and safety, particularly in such sectors as public health and industry. Also, other issues of global and regional interest, such as the control of radiation sources, including the handling of hazardous waste, and response capabilities in the case of a radiological emergency, have contributed to a better perception of risks associated with deficiencies in or lack of adequate national radiation protection control mechanisms. Too often, however, this awareness has not been matched with adequate progress in the establishment of a regulatory framework for the control of radiation sources. This paper presents a summary of the current status of radiation protection infrastructure in all African Member States. On a background of still existing weaknesses and challenges, an overview of the Agency's response to assistance needs and programmes in this field is discussed. (author)

  13. Resonance control for a cw [continuous wave] accelerator

    A resonance-control technique is described that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  14. A count rate based contamination control standard for electron accelerators

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  15. High performance current controller for particle accelerator magnets supply

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig;

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used in...

  16. Application of embedded EPICS to SuperKEKB accelerator control

    Recently, more and more modern frontend controllers tend to be equipped with high-performance CPUs running Operating Systems (OSs). It opens the way for running the core program of Experimental Physics and Industrial Control System (EPICS) on such controllers, which directly interface the various devices of accelerator components. Embedding the EPICS core program on the controllers (Embedded EPICS) has two major advantages. One is that it enables Channel Access (CA) clients to reach the front-most part of the control system directly. The other is that the rich functionality of EPICS core program becomes available at the exact part where the I/O signals to be handled comes in and/or goes out. As a result, Embedded EPICS allows us to make full use of existing software, i.e. the Channel Access library and EPICS core program, to the full extent to reduce the effort for developing and maintaining control software and, hence, to improve the reliability of the system. For this reason, parts of the control system of SuperKEKB accelerator are under renewal based on Embedded EPICS. It includes monitoring the personal protection system, a newly developed digital low level RF control system, the vacuum control system, and a specific part of the magnet power supply control system. This paper describes the configurations and features of the Embedded EPICS-based control subsystems. (author)

  17. Monitoring and Control of Urban Critical Infrastructures: A Novel Approach to System Design and Data Fusion

    Mario La Manna

    2015-02-01

    Full Text Available The monitoring and control of urban critical infrastructures consists of the protection of assets such as houses, offices, government and private buildings, with low cost, high quality and high dependability. In order to satisfy all these requirements at the same time, the control of a number of assets has to be performed by means of automated systems based on networks of heterogeneous sensors. This new concept idea is based on the use of unmanned operations at each of the many remote assets (each asset is monitored through a network of sensors and a man-in-the-loop automated control in a central site (Operational Center, which performs alarm detection and system management.

  18. A Cache Considering Role-Based Access Control and Trust in Privilege Management Infrastructure

    ZHANG Shaomin; WANG Baoyi; ZHOU Lihua

    2006-01-01

    PMI(privilege management infrastructure) is used to perform access control to resource in an E-commerce or E-government system. With the ever-increasing need for secure transaction, the need for systems that offer a wide variety of QoS (quality-of-service) features is also growing. In order to improve the QoS of PMI system, a cache based on RBAC(Role-based Access Control) and trust is proposed. Our system is realized based on Web service. How to design the cache based on RBAC and trust in the access control model is described in detail. The algorithm to query role permission in cache and to add records in cache is dealt with. The policy to update cache is introduced also.

  19. Towards full automation of accelerators through computer control

    Gamble, J; Kemp, D; Keyser, R; Koutchouk, Jean-Pierre; Martucci, P P; Tausch, Lothar A; Vos, L

    1980-01-01

    The computer control system of the Intersecting Storage Rings (ISR) at CERN has always laid emphasis on two particular operational aspects, the first being the reproducibility of machine conditions and the second that of giving the operators the possibility to work in terms of machine parameters such as the tune. Already certain phases of the operation are optimized by the control system, whilst others are automated with a minimum of manual intervention. The authors describe this present control system with emphasis on the existing automated facilities and the features of the control system which make it possible. It then discusses the steps needed to completely automate the operational procedure of accelerators. (7 refs).

  20. Quick setup of test unit for accelerator control system

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  1. Personal computer control system for small size tandem accelerator

    As the analysis apparatus using tandem accelerator has a lot of control parameter, numbers of control parts set on control panel are so many to make the panel more complex and its operativity worse. In order to improve these faults, development and design of a control system using personal computer for the control panel mainly constituted by conventional hardware parts were tried. Their predominant characteristics are shown as follows: 1) To make the control panel construction simpler and more compact, because the hardware device on the panel surface becomes the smallest limit as required by using a personal computer for man-machine interface. 2) To make control speed more rapid, because sequence control is closed within each block by driving accelerator system to each block and installing local station of the sequencer network at each block. 3) To make expandability larger, because of few improvement of the present hardware by interrupting the sequencer local station into the net and correcting image of the computer when increasing a new beamline. And, 4) to make control system cheaper, because of cheaper investment and easier programming by using the personal computer. (G.K.)

  2. A distributed control system for picosecond accelerator at SINAP

    CAO Hong-Ping; CHEN Huan-Guang; LI De-Ming

    2005-01-01

    The picosecond accelerator (PA) is a low energy electron linear accelerator facility under commissioning,which is built for the experiment of ps level pulse radiolysis in Shanghai Institute of Applied Physics (SINAP). A practical distributed DA&C system for this facility has been developed. In view of the upgrading-ability and maintainability of the control system and controlled devices, Advantech(c) distributed intelligent DA&C products are adopted into the control system. ADAM 5000/TCPs with the protocol of Modbus/TCP are employed to accomplish data acquisition and device control. The PC-compatible programmable logic controller, ADAM-5511, is also adopted to handle the interlocks and the emergency events. On the software side, the integrated software package Kingview(c)V6.5, which friendly supports all Advantech products, has been used to develop the upper layer control logic and process the data. This paper describes the control system design and system architecture. The intelligent ADAM controllers and the software platform are also discussed in detail.

  3. Controls and Beam Diagnostics for Therapy-Accelerators

    Eickhoff, H

    2000-01-01

    During the last four years GSI has developed a new procedure for cancer treatment by means of the intensity controlled rasterscan-method. This method includes active variations of beam parameters during the treatment session and the integration of 'on-line' PET monitoring. Starting in 1997 several patients have been successfully treated within this GSI experimental cancer treatment program; within this program about 350 patients shall be treated in the next 5 years. The developments and experiences of this program accompanied by intensive discussions with the medical community led to a proposal for a hospital based light ion accelerator facility for the clinic in Heidelberg. An essential part for patients treatments is the measurement of the beam properties within acceptance and constancy tests and especially for the rasterscan method during the treatment sessions. The presented description of the accelerator controls and beam diagnostic devices mainly covers the requests for the active scanning method, which...

  4. Monitoring and control system of the Saclay electron linear accelerator

    A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper.

  5. Measurements and simulation of controlled beamfront motion in the Laser Controlled Collective Accelerator

    Yao, R.L.; Destler, W.W.; Striffler, C.D.; Rodgers, J.; Scgalov, Z.

    1989-01-01

    In the Laser Controlled Collective Accelerator, an intense electron beam is injected at a current above the vacuum space charge limit into an initially evacuated drift tube. A plasma channel, produced by time-sequenced, multiple laser beam ionization of a solid target on the drift tube wall, provides the necessary neutralization to allow for effective beam propagation. By controlling the rate of production of the plasma channel as a function of time down the drift tube, control of the electron beamfront can be achieved. Recent experimental measurements of controlled beamfront motion in this configuration are presented, along with results of ion acceleration experiments conducted using two different accelerating gradients. These results are compared with numerical simulations of the system in which both controlled beamfront motion and ion acceleration is observed consistent with both design expectations and experimental results. 5 refs., 6 figs.

  6. Controlled Electron Injection into Plasma Accelerators and Space Charge Estimates

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 mu m, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread

  7. An Integrated Enterprise Accelerator Database for the SLC Control System

    Since its inception in the early 1980's, the SLC Control System has been driven by a highly structured memory-resident real-time database. While efficient, its rigid structure and file-based sources makes it difficult to maintain and extract relevant information. The goal of transforming the sources for this database into a relational form is to enable it to be part of a Control System Enterprise Database that is an integrated central repository for SLC accelerator device and Control System data with links to other associated databases. We have taken the concepts developed for the NLC Enterprise Database and used them to create and load a relational model of the online SLC Control System database. This database contains data and structure to allow querying and reporting on beamline devices, their associations and parameters. In the future this will be extended to allow generation of EPICS and SLC database files, setup of applications and links to other databases such as accelerator maintenance, archive data, financial and personnel records, cabling information, documentation etc. The database is implemented using Oracle 8i. In the short term it will be updated daily in batch from the online SLC database. In the longer term, it will serve as the primary source for Control System static data, an R and D platform for the NLC, and contribute to SLC Control System operations

  8. Device Configuration Handler for Accelerator Control Applications at Jefferson Lab

    The accelerator control system at Jefferson Lab uses hundreds of physical devices with such popular instrument bus interfaces as Industry Pack (IPAC), GPIB, RS-232, etc. To properly handle all these components, control computers (IOCs) must be provided with the correct information about the unique memory addresses of the used interface cards, interrupt numbers (if any), data communication channels and protocols. In these conditions, the registration of a new control device in the control system is not an easy task for software developers. Because the device configuration is distributed, it requires the detailed knowledge about not only the new device but also the configuration of all other devices on the existing system. A configuration handler implemented at Jefferson Lab centralizes the information about all control devices making their registration user-friendly and very easy to use. It consists of a device driver framework and the device registration software developed on the basis of ORACLE database and freely available scripting tools (perl, php)

  9. MADOCA. Accelerator and beamline control framework developed by SPring-8

    The framework of the SPring-8 control system called MADOCA was developed by an independent standpoint. It consists of a device interface, a middle-ware and a man-machine interface as usual, but satisfying the following conditions: (1) Users are not required to know how the signal cables are connected, (2) The status of the beam and the apparatuses can be recorded and can be seen anytime, and the operational status of the accelerator can be reproduced, (3) Data acquisition for the apparatus can be easily made, and (4) Control programs can be easily written. (K.Y.)

  10. The new control system of the Saclay linear accelerator

    A new control system for the Safety Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors: one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran

  11. Merging AI and numerical modeling for accelerator control

    The authors report the beginnings of an experiment to evaluate the power and limitations of artificial intelligence techniques combined with beam-line modeling for solving problems in accelerator control. Using the Knowledge Engineering Environment (KEE) system, they have built a knowledge base that describes the characteristics and the relationships of about 30 devices in a typical accelerator beam line. Each device in the line is categorized and pertinent attributes for each category are defined. Specific values for each device are assigned in the knowledge base to represent static characteristics. Device-specific slots are also provided for dynamic attributes. The definition of these slots reflects the data type and any limitations or restrictions on the range of the data. The authors model relationships between the various beam-line devices using the techniques of rules, active values, and object-oriented models. The knowledge base provides a framework for analyzing faults and offering suggestions to assist in tuning, based on information provided by the accelerator physicists (domain experts) responsible for designing and tuning this beam line. Our knowledge base has a powerful graphical interface. It allows the operator to mouse on an icon for a particular icon in the schematic of the beam line and obtain device-specific information and control over that device. The beam optics code Transport is used to model the beam line numerically. 11 refs., 7 figs

  12. WAN environment test for joint development of accelerator control programs

    By the heightening of the processing capability of personal computers, also in the field of accelerator control, the system using personal computers as the main body can be constructed. Also it has become possible to supplement functions by combining different applications and offering the means of communication between applications by operating systems. At present, new accelerators are planned in Laboratory of Nuclear Science, Tohoku University, and National Laboratory for High Energy Physics, and the development environment using WAN was prepared for the purposes of the OMT analysis of accelerator domain from the viewpoint of control, the joint verification of the programs being made, and the efficient exchange of information. Windows NT was adopted, and its features are shown. The environment was constructed by using the personal computer on which Windows NT functions, and the specification of the used personal computer is shown. The performance was measured by using this environment, and its method and the results are reported. The operation mode for hereafter is explained. The construction of the development environment using Windows NT was completed with good results. (K.I.)

  13. Precise RF control system of the SCSS test accelerator

    We present development and performance of the low-level rf control system of the SCSS test accelerator. The low-level rf system consists of IQ modulators / demodulators and VME waveform generators / digitizers. Recent improvements of them established high-resolution phase and amplitude setting capabilities of 0.01 degree and 0.01%, respectively. In addition, temperature drifts of the injector acceleration cavities were reduced by tuning a precise temperature regulation system. The temperature fluctuation was improved to be 0.01 K rms. As a result, the rf phase and amplitude stabilities of sub-harmonic buncher cavities were achieved to be 0.02 degree rms and 0.03% rms, respectively. The saturated FEL radiation in the wavelength region of 50-60 nm is stably generated by this improvement. (author)

  14. Customizable software architectures in the accelerator control system environment

    Mejuev, I; Kadokura, E

    2001-01-01

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user customization has been extensively researched in applied computer science from HCI and software engineering perspectives. Customization allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user customization in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. We introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of a distributed monitoring application for the 12 GeV KEK Proton Synchrotron as an example. T...

  15. Accelerator

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  16. Complex envelope control of pulsed accelerating fields in superconducting cavities

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  17. RF low level control system at SCSS prototype accelerator

    The constriction of XFEL facilities is under progress at the SPring-8 site. The SCSS prototype accelerator to check the feasibility of XFEL is in operation. And the amplification of VUV light having a wavelength of 49 nm was observed in June. The stability and controllability requirements on an RF phase and amplitude, concerning with the RF system of the prototype accelerator, are less than 1 degree and 0.3%. To satisfy the requirements, we developed a low noise RF signal source, and an IQ (In phase and in Quardrature) modulator and an IQ demodulator. The RF phase and amplitude are controlled by the IQ modulator. The detection of them are performed by using the IQ demodulator. Both IQ functions of them are handled by VME DAC and ADC boards developed by us. Furthermore, the DAC module can handle the adaptive control method. We confirmed, that these instruments satisfied the requirements, by the beam test. The configuration of the RF low level system, its performance, and the preliminary results of the adaptive control experiment are described in this paper. (author)

  18. Magnetically Controlled Plasma Waveguide For Laser Wakefield Acceleration

    Froula, D H; Divol, L; Davis, P; Palastro, J; Michel, P; Leurent, V; Glenzer, S H; Pollock, B; Tynan, G

    2008-05-14

    An external magnetic field applied to a laser plasma is shown produce a plasma channel at densities relevant to creating GeV monoenergetic electrons through laser wakefield acceleration. Furthermore, the magnetic field also provides a pressure to help shape the channel to match the guiding conditions of an incident laser beam. Measured density channels suitable for guiding relativistic short-pulse laser beams are presented with a minimum density of 5 x 10{sup 17} cm{sup -3} which corresponds to a linear dephasing length of several centimeters suitable for multi-GeV electron acceleration. The experimental setup at the Jupiter Laser Facility, Lawrence Livermore National Laboratory, where a 1-ns, 150 J 1054 nm laser will produce a magnetically controlled channel to guide a < 75 fs, 10 J short-pulse laser beam through 5-cm of 5 x 10{sup 17} cm{sup -3} plasma is presented. Calculations presented show that electrons can be accelerated to 3 GeV with this system. Three-dimensional resistive magneto-hydrodynamic simulations are used to design the laser and plasma parameters and quasi-static kinetic simulations indicate that the channel will guide a 200 TW laser beam over 5-cm.

  19. Global Accelerator Network, Control Systems And Beam Diagnostics

    Raich, U

    2003-01-01

    Falling funds force all accelerator centers to look for new sources of financing and for the most efficient way of implementing new projects. This very often leads to collaborations between institutes scattered around the globe, a problem well known to big high energy physics experiments. The collaborations working on big detectors e.g. for LHC started thinking about detector acquisition and control systems which can be remotely used from their respective home institutes with minimal support on the spot. This idea was taken up by A. Wagner from DESY for the TESLA machine, who proposed the “Global Accelerator Network” (GAN) enabling users from around the world to run an accelerator remotely. Questions around this subject that immediately come to mind Is the GAN only relevant to big labs ? Or is it reasonable e.g. for operators or engineers in charge to do certain manipulations from home? Are our instruments ready for the GAN? Does the fact of being “GAN ready” increa...

  20. Integrating a commercial industrial control system to the accelerator control system: a case study

    At CERN a large number of systems providing services (cooling and ventilation, cryogenics, electricity distribution, personnel and building safety, etc.) are controlled by industrial PLCs. A commercial supervision package is used as a gateway to the accelerator control system. The integration of such a system in the CERN accelerator control environment addresses issues such as the connection to control-rooms and desktop computers, alarm logging and remote or alien man-machine interfaces. The paper describes the components of the system and reports the first operational experience. ((orig.))

  1. MobileCoDaC – A transportable control, data acquisition and communication infrastructure for Wendelstein 7-X

    Highlights: • MobileCoDaC is a transportable CoDaC infrastructure for Wendelstein 7-X. • It allows in situ testing and commissioning of components to be used at W7-X by providing W7-X CoDaC infrastructure. • It has been used successfully for test and commissioning of the HEXOS diagnostic at Forschungszentrum Jülich. - Abstract: MobileCoDaC is a test bed allowing in situ testing and commissioning the control and data acquisition of components to be operated at Wendelstein 7-X. It is a minimized replica of the functionality of the complete W7-X CoDaC infrastructure and can be operated independently. MobileCoDaC contains a set of W7-X CoDaC servers, network infrastructure, and accessories for remote access. All hardware is mounted in a single transportable rack system. Moreover, it provides the software infrastructure and user applications for experiment preparation, experiment operation, trouble shooting and experiment data access. MobileCoDaC has been operated successfully for test and commissioning of the control and data acquisition of the HEXOS (high efficiency extreme ultraviolet overview spectrometer) diagnostic at Forschungszentrum Jülich

  2. High performance/low cost accelerator control system

    Implementation of a high performance computer control system tailored to the requirements of the SuperHILAC accelerator is described. This system uses a distributed (star-type) structure with fiber optic data links; multiple CPU's operate in parallel at each node. A large number (20) of the latest 16-bit microcomputer boards are used to get a significant processor bandwidth (exceeding that of many mini-computers) at a reasonable price. Because of the large CPU bandwidth, software costs and complexity are significantly reduced and programming can be less real-time critical. In addition all programming can be in a high level language. Dynamically assigned and labeled knobs together with touch-screens allow a flexible operator interface. An X-Y vector graphics system allows display and labeling of real-time signals as well as general plotting functions. Both the accelerator parameters and the graphics system can be driven from BASIC interactive programs in addition to the pre-canned user routines. This allows new applications to be developed quickly and efficiently by physicists, operators, etc. The system, by its very nature and design, is easily upgraded (via next generation of boards) and repaired (by swapping of boards) without a large hardware support group. This control system is now being tested on an existing beamline and is performing well. The techniques used in this system can be readily applied to industrial control systems

  3. Overview of Fermi National Accelerator Lab Control System

    Various facets of the control of the Fermilab accelerators, in particular the Tevatron, are presented. Since Fermilab contains a superconducting machine and a sophisticated injection complex, much of the controls functionality will of necessity be the same at the SSC. The various functions required at a large laboratory are discussed; these include computer-based fire and security alarms and a cable television system, as well as computer networks connected to accelerator hardware components. A description is given of that hardware, of which much is Camac but with considerable computer backplane bus equipment also present. A large fraction of the controls hardware has access to high precision real-time clocks. Our various networks are introduced, with the physical layer being a combination of copper and more modern optic cables, with the primary intercomputer link being Token Ring. A description of the computers is presented - basically these consist of operators' consoles, host VAXs, and link driving front ends. The software effort is detailed, with emphasis on consoles and microprocessors where the majority of effort has been placed. Future plans for the system are presented briefly. 3 refs., 2 figs., 2 tabs

  4. Design of a Normal Acceleration and Angle of Attack Control System for a Missile Having Front and Rear Control Surfaces

    Ochi, Yoshimasa

    Precise normal acceleration control is essential for missile guidance. Missiles with both front and rear control surfaces have a higher ability to control normal acceleration than missiles with front or rear control surfaces only. From the viewpoint of control, however, the control problem becomes a two-input-one-output problem, where generally control input cannot be determined uniquely. This paper proposes controlling angle of attack as well as normal acceleration, which makes the problem a two-input-two-output one and determines the controls uniquely. Normal acceleration command is given by a guidance system, but angle of attack command must be generated in accordance to the acceleration command without affecting the normal acceleration control. This paper also proposes such a command generator for angle of attack. Computer simulation is conducted using a nonlinear missile model to investigate the effectiveness of the control system along with control systems designed using three other methods.

  5. Initial investigation using statistical process control for quality control of accelerator beam steering

    Able Charles M; Hampton Carnell J; Baydush Alan H; Munley Michael T

    2011-01-01

    Abstract Background This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC) to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated). Methods Steering coil currents (SCC) for the transverse and radial planes are set such that a reproducibly useful photon or electron...

  6. An artificial intelligence approach to accelerator control systems

    An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms

  7. Computer control of large accelerators design concepts and methods

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references

  8. Computer control of large accelerators design concepts and methods

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references.

  9. API manager implementation and its use for Indus accelerator control

    The control system software needed for operation of Indus accelerators is coupled to the underlying firmware and hardware of the control system by the Application Programming Interface (API) manager. In the three layered architecture of Indus control system, PVSS-II SCADA is being used at the layer-1(L1) for control and monitoring of various sub-systems. The layer-2(L2) consists of VME bus based system. The API manager plays a crucial role in interfacing the L1 and L2 of the control system. It has to interact with both the PVSS database and the L2. In order to access the PVSS database it uses the PVSS API, a C++ class library, whereas in order to access the L2 custom functions have been built. Several other custom functionalities have also been implemented. The paper presents the important aspects of the API manager like its implementation, its interface mechanism to the lower layer and features like configurability, reusable classes, multithreading capability etc. (author)

  10. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms

  11. Technical infrastructure monitoring at CERN

    Stowisek, Jan; Suwalska, Anna

    2006-01-01

    The Technical Infrastructure Monitoring system (TIM) is used to monitor and control CERN's technical services from the CERN Control Centre (CCC). The system's primary function is to provide CCC operators with reliable real-time information about the state of the laboratory's extensive and widely distributed technical infrastructure. TIM is also used to monitor all general services required for the operation of CERN's accelerator complex and the experiments. A flexible data acquisition mechanism allows TIM to interface with a wide range of technically diverse installations, using industry standard protocols wherever possible and custom designed solutions where needed. The complexity of the data processing logic, including persistence, logging, alarm handling, command execution and the evaluation of datadriven business rules is encapsulated in the system's business layer. Users benefit from a suite of advanced graphical applications adapted to operations (synoptic views, alarm consoles, data analysis tools etc....

  12. Tailorable software architectures in the accelerator control system environment

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user tailorability has been extensively researched in applied computer science from HCl and software engineering perspectives. Tailorability allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user tailorability in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. In this work we introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of distributed monitoring application for 12 GeV KEK Proton Synchrotron as an example. The software prototypes used in this work are based on a generic tailoring platform (VEDICI), which allows decoupling of tailoring interfaces and runtime components. While representing a reusable application-independent framework, VEDICI can be potentially applied for tailoring of arbitrary compositional Web-based applications

  13. Design of time control system of high current proton linear accelerator

    The high current proton linear accelerator with high duty ratio will be used in accelerator driven sub-critical system. Time control system of high current proton linear accelerator is introduced. During accelerator operation, the system provides necessary trigger and clock signal. Accuracy and stability of the system has important implications for operation of the linear accelerator. Design of serial communication hardware based on ALTERA company cyclone Ⅲ FPGA, programming of serial communication drivers and functional modules, and implement of human-computer interface based on LabVIEW are realized. The testing results show that the whole system meets requirements of time control system of the high current proton accelerator. (authors)

  14. Tuners, microphonics, and control systems in superconducting accelerating structures

    Manufacturing tolerances, thermal stresses, acoustic noise, and cooling fluid pressure fluctuations all conspire to make the field in the cavity not precisely what the accelerator physicist has in mind. Tuners and control systems are the tools used to fight back: they regulate the field in the cavity to the desired magnitude and phase. Amplitude and phase stabilities are usually of greater concern in superconducting cavities than in copper cavities. The key to achieving a stable gradient and phase is feedback. A probe must be placed in the cavity itself to sense the present cavity status. Electronic control is then given the responsibility to correct for any measured disturbance. The electronic modulation of forward power has been implemented in a number of ways. Perhaps the easiest implementation to understand has two separate control loops, one for amplitude and one for phase (phase-amplitude loops). Other major electronic control devices include complex phasor modulator (CPM-amplitude loops), vector loop, and variable reactance. 'Slow' tuners are used when the tuning range of the 'fast' tuner plus electronic tuning is not enough to compensate for unpredictability or drift in the static frequency setting. (N.K.)

  15. Upgrade of the Control System of the IFUNAM's Pelletron Accelerator

    Macias, R; Ortiz, M E; López, K; Huerta, A; Verde, M C

    2001-01-01

    In 1995 a 9SDH-2 Pelletron from NEC was installed at IFUNAM (Instituto de Fisica, Universidad Nacional Autonoma de Mexico). Two beam lines have been operational since then and two new lines have been built. In order to perform the planned projects in this grown facility, an upgrading of the original manual control system is required. The proposed new control system takes advantage of the existing devices and incorporates the electronics needed for the newer beam lines. The control software from NEC, has been modified to accommodate the larger requirements. It runs on the same dedicated computer but receives commands from a new installed host. Both computers communicate through a local network sharing the accelerator database. The new host computer also handles all parameters related to the new lines. In the future, the old computer will be replaced in order to expand the possibilities of the system and use a friendlier graphical interface. In this work we present the changes made to the control software, the ...

  16. Control system analysis for the perturbed linear accelerator rf system

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  17. Development of synchrotron control for Heavy-Ion Medical Accelerators

    Kadowaki, T., E-mail: kadowaki@aec-beam.co.jp [Accelerator Engineering Corporation (AEC), 3-8-5 Konakadai, Inage, Chiba 263-0043 (Japan); Iwata, Y., E-mail: y_iwata@nirs.go.jp [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Noda, K., E-mail: noda_k@nirs.go.jp [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Takada, E., E-mail: takada@nirs.go.jp [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Shirai, T., E-mail: t_shirai@nirs.go.jp [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Furukawa, T., E-mail: t_furu@nirs.go.jp [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Uchiyama, H., E-mail: aechebt@nirs.go.jp [Accelerator Engineering Corporation (AEC), 3-8-5 Konakadai, Inage, Chiba 263-0043 (Japan); Fujimoto, T., E-mail: t.fujimoto@aec-beam.co.jp [Accelerator Engineering Corporation (AEC), 3-8-5 Konakadai, Inage, Chiba 263-0043 (Japan)

    2011-12-15

    The power supplies for the main bending and quadrupole magnets of the Heavy-Ion Medical Accelerator (HIMAC) in Chiba are controlled by preset current and voltage patterns, which are created by a pattern-creation program. It has been observed that a deviation between the preset current and the actual one becomes very large when newly created patterns are applied to the power supplies. This deviation is attributed to the incorrect parameters used for calculations of the voltage pattern in the pattern-creation program. In order to reduce the deviation, we have analyzed the values of resistance and inductance using the actual data of the current and voltage patterns. As a result, more than 10% difference was found between the conventional and newly calculated parameters. By applying the new parameters to the pattern-creation program a reduction of the deviation was confirmed.

  18. Beam control in the ETA-II linear induction accelerator

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-II induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused by a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 2π. (Author) 5 figs., 11 refs

  19. Development of synchrotron control for Heavy-Ion Medical Accelerators

    The power supplies for the main bending and quadrupole magnets of the Heavy-Ion Medical Accelerator (HIMAC) in Chiba are controlled by preset current and voltage patterns, which are created by a pattern-creation program. It has been observed that a deviation between the preset current and the actual one becomes very large when newly created patterns are applied to the power supplies. This deviation is attributed to the incorrect parameters used for calculations of the voltage pattern in the pattern-creation program. In order to reduce the deviation, we have analyzed the values of resistance and inductance using the actual data of the current and voltage patterns. As a result, more than 10% difference was found between the conventional and newly calculated parameters. By applying the new parameters to the pattern-creation program a reduction of the deviation was confirmed.

  20. A Study of the Design of Acceleration Control System for Missiles

    Kajita, Takanori; Eguchi, Hirofumi

    A 2-degrees of freedom PID controller is designed for a maneuvering acceleration control system. This design method is based on the combination of PID and IPD controller. Results show that (1) IP controller is superior to PI controller for the damper loop controller, (2) the selection of PI or IP controller as for the acceleration controller depends on the tradeoffs between the responsibility and the reduction of inverse response.

  1. FPGA Mezzanine Cards for CERN’s Accelerator Control System

    Alvarez, P R; Lewis, J; Serrano, J; Wlostowski, T

    2009-01-01

    Field Programmable Gate Arrays (FPGAs) have become a key player in modern real time control systems. They offer determinism, simple design, high performance and versatility. A typical hardware architecture consists of an FPGA interfaced with a control bus and a variable number of digital IOs, ADCs and DACs depending on the application. Until recently the low-cost hardware paradigm has been using mezzanines containing a front end interface plus custom logic (typically an FPGA) and a local bus that interfaces the mezzanine to a carrier. As FPGAs grow in size and shrink in price, hardware reuse, testability and bus access speed could be improved if the user logic is moved to the carrier. The new FPGA Mezzanine Card (FMC) Vita 57 standard is a good example of this new paradigm. In this paper we present a standard kit of FPGA carriers and IO mezzanines for accelerator control. Carriers form factors will be VME, PCI and PCIe. The carriers will feature White Rabbit support for accurate synchronization of distributed...

  2. The TDAQ Analytics Dashboard: a real-time web application for the ATLAS TDAQ control infrastructure

    Lehmann Miotto, Giovanna; Magnoni, Luca; Sloper, John Erik

    2011-12-01

    The ATLAS Trigger and Data Acquisition (TDAQ) infrastructure is responsible for filtering and transferring ATLAS experimental data from detectors to mass storage systems. It relies on a large, distributed computing system composed of thousands of software applications running concurrently. In such a complex environment, information sharing is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking, the streams of messages sent by applications and data published via information services are constantly monitored by experts to verify the correctness of running operations and to understand problematic situations. To simplify and improve system analysis and errors detection tasks, we developed the TDAQ Analytics Dashboard, a web application that aims to collect, correlate and visualize effectively this real time flow of information. The TDAQ Analytics Dashboard is composed of two main entities that reflect the twofold scope of the application. The first is the engine, a Java service that performs aggregation, processing and filtering of real time data stream and computes statistical correlation on sliding windows of time. The results are made available to clients via a simple web interface supporting SQL-like query syntax. The second is the visualization, provided by an Ajax-based web application that runs on client's browser. The dashboard approach allows to present information in a clear and customizable structure. Several types of interactive graphs are proposed as widgets that can be dynamically added and removed from visualization panels. Each widget acts as a client for the engine, querying the web interface to retrieve data with desired criteria. In this paper we present the design, development and evolution of the TDAQ Analytics Dashboard. We also present the statistical analysis computed by the application in this first period of high energy data taking operations for the ATLAS experiment.

  3. A Multi-Domain Access Control Infrastructure Based on Diameter and EAP

    Ben Ayed, Souheil; Teraoka, Fumio

    The evolution of Internet, the growth of Internet users and the new enabled technological capabilities place new requirements to form the Future Internet. Many features improvements and challenges were imposed to build a better Internet, including securing roaming of data and services over multiple administrative domains. In this research, we propose a multi-domain access control infrastructure to authenticate and authorize roaming users through the use of the Diameter protocol and EAP. The Diameter Protocol is a AAA protocol that solves the problems of previous AAA protocols such as RADIUS. The Diameter EAP Application is one of Diameter applications that extends the Diameter Base Protocol to support authentication using EAP. The contributions in this paper are: 1) first implementation of Diameter EAP Application, called DiamEAP, capable of practical authentication and authorization services in a multi-domain environment, 2) extensibility design capable of adding any new EAP methods, as loadable plugins, without modifying the main part, and 3) provision of EAP-TLS plugin as one of the most secure EAP methods. DiamEAP Server basic performances were evaluated and tested in a real multi-domain environment where 200 users attempted to access network using the EAP-TLS method during an event of 4 days. As evaluation results, the processing time of DiamEAP using the EAP-TLS plugin for authentication of 10 requests is about 20ms while that for 400 requests/second is about 1.9 second. Evaluation and operation results show that DiamEAP is scalable and stable with the ability to handle more than 6 hundreds of authentication requests per second without any crashes. DiamEAP is supported by the AAA working group of the WIDE Project.

  4. The TDAQ Analytics Dashboard: a real-time web application for the ATLAS TDAQ control infrastructure

    The ATLAS Trigger and Data Acquisition (TDAQ) infrastructure is responsible for filtering and transferring ATLAS experimental data from detectors to mass storage systems. It relies on a large, distributed computing system composed of thousands of software applications running concurrently. In such a complex environment, information sharing is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking, the streams of messages sent by applications and data published via information services are constantly monitored by experts to verify the correctness of running operations and to understand problematic situations. To simplify and improve system analysis and errors detection tasks, we developed the TDAQ Analytics Dashboard, a web application that aims to collect, correlate and visualize effectively this real time flow of information. The TDAQ Analytics Dashboard is composed of two main entities that reflect the twofold scope of the application. The first is the engine, a Java service that performs aggregation, processing and filtering of real time data stream and computes statistical correlation on sliding windows of time. The results are made available to clients via a simple web interface supporting SQL-like query syntax. The second is the visualization, provided by an Ajax-based web application that runs on client's browser. The dashboard approach allows to present information in a clear and customizable structure. Several types of interactive graphs are proposed as widgets that can be dynamically added and removed from visualization panels. Each widget acts as a client for the engine, querying the web interface to retrieve data with desired criteria. In this paper we present the design, development and evolution of the TDAQ Analytics Dashboard. We also present the statistical analysis computed by the application in this first period of high energy data taking operations for the ATLAS experiment.

  5. Database application research in real-time data access of accelerator control system

    The control system of Shanghai Synchrotron Radiation Facility (SSRF) is a large-scale distributed real-time control system, It involves many types and large amounts of real-time data access during the operating. Database system has wide application prospects in the large-scale accelerator control system. It is the future development direction of the accelerator control system, to replace the differently dedicated data structures with the mature standardized database system. This article discusses the application feasibility of database system in accelerators based on the database interface technology, real-time data access testing, and system optimization research and to establish the foundation of the wide scale application of database system in the SSRF accelerator control system. Based on the database interface technology, real-time data access testing and system optimization research, this article will introduce the application feasibility of database system in accelerators, and lay the foundation of database system application in the SSRF accelerator control system. (authors)

  6. Preliminary research on safety and control characteristics of accelerator driven reactor

    The safety and control characteristics of accelerator driven reactor are studied with calculation and simulation running. The results show that the prompt criticality for accelerator driven reactor does not easily happen, its safety characteristics are better than critical reactor's, the higher the subcritical degree, the better the safety. The control loop of accelerator driven reactor has a little time constant, a little overshoot, and short regulating time, its control characteristics are also better than critical reactor's

  7. Large Scale Investments in Infrastructure : Competing Policy regimes to Control Connections

    Otsuki, K.; Read, M.L.; Zoomers, E.B.

    2016-01-01

    This paper proposes to analyse implications of large-scale investments in physical infrastructure for social and environmental justice. While case studies on the global land rush and climate change have advanced our understanding of how large-scale investments in land, forests and water affect natur

  8. High-performance control system for a heavy-ion medical accelerator

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species

  9. A high performance control system for a heavy ion medical accelerator

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species

  10. Implementation to spanish protocol of quality control of accelerators to daily control of electron beams

    A revised procedure for daily control of the electron beams to make measurements more meaningful physically, having a better reproducibility and more in line with the recommendations of the Spanish Protocol for Quality Control in Electron Linear Accelerators Clinical Use. The daily quality control beams of high energy electrons that had been done so far was the finding that the record of a series of measures (symmetry, uniformity, stability, energy, beam central dose) were within tolerance values established. The amendment is to check the beam quality by directly measuring changes in absorption depth at which the dose is reduced to half its maximum value, R50.

  11. Bike Infrastructures

    Silva, Victor; Harder, Henrik; Jensen, Ole B.; Madsen, Jens Chr. Overgaard

    Bike Infrastructures aims to identify bicycle infrastructure typologies and design elements that can help promote cycling significantly. It is structured as a case study based research where three cycling infrastructures with distinct typologies were analyzed and compared. The three cases are Ves......, the findings of this research project can also support bike friendly design and planning, and cyclist advocacy....

  12. Computational means of the new control system for the U-70 accelerating complex

    Computational means of the new control system (CS) of the U-70 accelerating complex are described. The last includes the LU-30 linear accelerator, U-15 booster ring injector, U-70 main accelerator, systems for fast and slow beam extraction. The new integrated CS is based on the standard three-level architecture. Control of the CS network is realized with a special computer, fulfilling also the security functions

  13. A distributed control system status report of the munich accelerator control

    A system of computers connected by a local area network (ARCNET) controls the Munich accelerator facility. This includes ion sources, the tandem accelerator, the beam transport system, the gas handling plant, parts of experimental setup and also an ion source test bench. ARCNET is a deterministic multi-master network with arbitrary topology, using coax cables and optical fibers. Crates with single board computers and I/O-boards (analog, parallel or serial digital), dependent on the devices being controlled, are distributed all over the building. Personal computers serve as user interfaces. The LAN communication protocol is a client/server protocol. Communication language and programming language for the single board computers is Forth. The user mode drivers in the personal computers are also written in Forth. The tools for the operators are MS-Windows applications, programmed in Forth, C++ or Visual Basic. Links to MS-Office applications are available, too

  14. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  15. Infrastructure sensing.

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  16. Telecom infrastructure leasing

    Slides to accompany a discussion about leasing telecommunications infrastructure, including radio/microwave tower space, radio control buildings, paging systems and communications circuits, were presented. The structure of Alberta Power Limited was described within the ATCO group of companies. Corporate goals and management practices and priorities were summarized. Lessons and experiences in the infrastructure leasing business were reviewed

  17. Medium Access Control for Thermal Energy Harvesting in Advanced Metering Infrastructures

    Vithanage, Madava D.; Fafoutis, Xenofon; Andersen, Claus Bo; Dragoni, Nicola

    In this paper we investigate the feasibility of powering wireless metering devices, namely heat cost allocators, by thermal energy harvested from radiators. The goal is to take a first step toward the realization of Energy-Harvesting Advanced Metering Infrastructures (EH-AMIs). While traditional...... the potential energy that can be harvested from Low Surface Temperature (LST) radiators. The experiments are based on a developed Energy-Harvesting Heat Cost Allocator (EH-HCA) prototype. On the basis of this measured power budget, we model and analytically compare the currently used Medium Access...

  18. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  19. Pulse control in an accelerator for heavy-ion fusion

    In induction accelerators proposed for heavy-ion fusion, the ion beam is usually confined longitudinally by an axial electric field tailored to balance the space-charge field. Since generating such electric field 'ears' is costly and imprecise, it is important to know how frequently the ears must be applied and what errors in the waveform are tolerable. For practical parameters, cell breakdown is found to impose the principal limit on the spacing of the acceleration modules applying the ear field. Also, it is demonstrated that ear fields may be approximated in several ways by discrete field steps with little impairment of the longitudinal confinement. (Author) 4 figs., 2 refs

  20. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan

  1. Development of Grid Control Electron Gun for Multi-energy Irradiation Accelerator

    HAN; Guang-wen; ZHU; Zhi-bin; WANG; Shu-xian

    2012-01-01

    <正>In the project of multi-energy electron irradiation accelerator, It is necessary to adjust the electron beam pulse inject to the accelerating tube. Under the same conditions of the injection energy, the grid controlled electron gun was used in the accelerator. Using cathode-grid assembly, after the simulation of electron optics program design, we manufactured focus electrode, the anode, and built an experiment

  2. Sync control of X-ray pulse in ICT driven by linear accelerator

    It is very important to synchronize the ray pulse frequency of accelerator with data acquisition cycle of Industrial Computed Tomography (ICT) when using accelerator as ray source. This paper analyzes the original signal of CT and designs a sync control circuit which can make the accelerator produce respectively 2, 3 or 4 X-ray pulses in one data acquisition cycle. The minimum average rate of X-ray intensity can meet the requirement of image reconstruction for high density material

  3. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams

    Bolton, P. R.; Borghesi, M. (Massimo); Brenner, C.; Carroll, D C; Martinis, C.; Fiorini, F.; Flacco, A.; Floquet, V; J. Fuchs; Gallegos, P.; Giove, D.; Green, J S; Green, S; Jones, B.; Kirby, D.

    2014-01-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented...

  4. Control of Rhyzopertha dominica (Fabricius) infesting wheat through accelerated electrons

    Based on the findings of this paper, it could be recommended that wheat has to be irradiated with accelerated electrons with the dose of 250 Gy, so as to make it completely safe against the development of eventually existing R. dominica populations

  5. Interface control document for tank waste remediation system privatization phase 1 infrastructure support Project W-519

    This document describes the functional and physical interfaces between the Tank Waste Remediation System (TWRS) Privatization Phase 1 Infrastructure Project W-519 and the various other projects (i.e., Projects W-314, W-464, W-465, and W-520) supporting Phase 1 that will require the allocation of land in and about the Privatization Phase 1 Site and/or interface with the utilities extended by Project W-519. Project W-519 will identify land use allocations and upgrade/extend several utilities in the 200-East Area into the Privatization Phase 1 Site (formerly the Grout Disposal Compound) in preparation for the Privatization Contractors (PC) to construct treatment facilities. The project will upgrade/extend: Roads, Electrical Power, Raw Water (for process and fire suppression), Potable Water, and Liquid Effluent collection. The replacement of an existing Sanitary Sewage treatment system that may be displaced by Phase 1 site preparation activities may also be included

  6. Missile Acceleration Controller Design using PI and Time-Delay Adaptive Feedback Linearization Methodology

    Lee, Chang-Hun; Seo, Min-Guk; Tahk, Min-Jea; Lee, Jin-Ik; Jun, Byung-Eul

    2012-01-01

    A straight forward application of feedback linearization to the missile autopilot design for acceleration control may be limited due to the nonminimum characteristics and the model uncertainties. As a remedy, this paper presents a cascade structure of an acceleration controller based on approximate feedback linearization methodology with a time-delay adaptation scheme. The inner loop controller is constructed by applying feedback linearization to the approximate system which is a minimum phas...

  7. Longitudinal Acceleration Tracking Control of Low Speed Heavy-Duty Vehicles

    WANG Yuejian; BIN Yang; LI Keqiang

    2008-01-01

    This paper presents a model matching control (MMC) method based on the sliding mode control(SMC) method for longitudinal acceleration tracking control in a vehicular stop-and-go cruise control system.The nonlinearity of the vehicle acceleration response at low speeds was analyzed to develop a transfer function model of the vehicle longitudinal dynamics using the least-mean-square system identification technique.This transfer function was then used to design the MMC controller,including an SMC feedback compensator.The system combines the advantages of the two control methods with robust control and rapid response.Simulations show that the controller enhances the rapid trackability to the vehicle acceleration and improves the system's robustness at low speeds compared with conventional PID MMC controllers.

  8. The operator console for accelerator control systems on a virtual machine

    TBy progress of computer technology, the performance of PC is growing and the price is low. PC is used for control of a small-scale accelerator facility from the merit of availability and low price. However, the reliability of PC is lower than the computer for factories, such as VME, cPCI, and TCA. It seems that using virtual PC has an advantage in maintenance of an accelerator control system. This paper describes the advantage and problem of virtual PC for accelerator control. (author)

  9. Evolution and development of the Oak Ridge 25URC tandem accelerator control system

    Since acceptance of the 25URC accelerator in 1982, we have continued to develop and improve both the accelerator control system and associated software. In this paper, we describe these improvements and also discuss how our experience with the present system would influence the architecture and design of future, similar systems

  10. 77 FR 22637 - Federal Motor Vehicle Safety Standards; Accelerator Control Systems

    2012-04-16

    ... driven portion of hybrid vehicles. Finally, the 2002 NPRM proposed a new procedure which would use engine... to recalls, most notably the Jan. 2010 recall of accelerator pedal assemblies in Toyota vehicles . We... CFR Part 571 Federal Motor Vehicle Safety Standards; Accelerator Control Systems; Proposed Rule...

  11. Validation of a new control system for Elekta accelerators facilitating continuously variable dose rate

    Bertelsen, Anders; Lorenzen, Ebbe L; Brink, Carsten

    2011-01-01

    ) as well as BVDR. Using CVDR opposed to BVDR for VMAT has the potential of reducing the treatment time but may lead to lower dosimetric accuracy due to faster moving accelerator parts. Using D7 and a test version of Integrity, differences in ability to control the accelerator, treatment efficiency...

  12. Control of seeding phase for a cascaded laser wakefield accelerator with gradient injection

    We demonstrated experimentally the seeding-phase control for a two-stage laser wakefield accelerator with gradient injection. By optimizing the seeding phase of electrons into the second stage, electron beams beyond 0.5 GeV with a 3% rms energy spread were produced over a short acceleration distance of ∼2 mm. Peak energy of the electron beam was further extended beyond 1 GeV by lengthening the second acceleration stage to 5 mm. Time-resolved magnetic field measurements via magneto-optical Faraday polarimetry allowed us to monitor the processes of electron seeding and acceleration in the second stage

  13. Real-time Optical Network for Accelerator Control

    Lee, Keun

    2012-06-27

    The timing requirements of a modern accelerator complex call for several features. The first is a system for high precision relative timing among accelerator components. Stabilized fiber links have already been demonstrated to achieve sub-10 femtoseconds relative timing precision. The second is a system for timing distribution of absolute time with sufficient precision to identify a specific RF bucket. The White Rabbit technology is a promising candidate to deliver the absolute time that is linked to the GPS clock. In this study we demonstrated that these two technologies can be combined in a way that the absolute time information can be delivered to the stabilized fiber link system. This was accomplished by researching the design of the stabilized fiber and White Rabbit systems and devising adaptation modules that facilitate co-existence of both systems in the same FPGA environment. We built a prototype system using off-the-shelf products and implemented a proof-of-concept version of the FPGA firmware. The test verified that the White Rabbit features operate correctly under the stabilized fiber system environment. This work demonstrates that turn-key femtosecond timing systems with absolute time information can be built cost effectively and deployed in various accelerator environments. This will lead to many new applications in chemistry, biology and surface dynamics, to name a few.

  14. Efficiency of transport infrastructure and ICT development

    Yoon, Chang-Ho; Na, Kyoung-Youn

    2013-01-01

    This study examines the impact of ICT growth on the productivity effects of transportation infrastructure. Using dynamic panel data of OECD member countries, the study finds econometrically meaningful results on examining the complementarity between ICT and transportation infrastructures. The network effect of growth of motorway infrastructure in advanced countries tends to accelerate when the ICT network grows beyond a certain threshold level.

  15. Computer network for on-lne control system of the IHEP ring accelerator

    A block-diagram for computer network of the IHEP ring accelerator control system is substantiated. The interface card for ES-1010 computer is described, it operates simultaneously on 4 channels. The system software for computer network is considered

  16. Thermionic gun control system for the CEBAF [Continuous Electron Beam Accelerator Facility] injector

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  17. Infrastructure and regulatory control for radiation protection in the nuclear industry in India

    The Atomic Energy Regulatory Board (AERB), constituted in November 1983 by the Government of India, carries out certain safety and regulatory functions envisaged under the Atomic Energy Act, 1962. The paper describes the legal provisions, responsibilities, structure and organization of AERB, with special emphasis on radiation protection. The responsibilities of the Board cover nuclear, radiological and industrial safety within the installations of the Department of Atomic Energy and radiological safety in the manifold applications of radioisotopes and radiation sources within the country. An adequate and competent infrastructure has been built to cater to the diverse radiation protection requirements of all nuclear installations in India, arising at different stages from site selection to day-to-day operation. The paper describes the multilevel review which is carried out by the Board prior to issue of authorization for nuclear installations. A number of safety codes, guides and manuals have been prepared to provide specific guidance to design, construction and operating organizations of nuclear power plants. The Regulatory Board receives considerable support from the Health and Safety Group of Bhabha Atomic Research Centre in discharging its responsibility with regard to radiation protection surveillance. The Safety Review Committee of AERB monitors the safety status of all nuclear fuel cycle facilities in operation. In addition, periodic inspections of the installations are carried out. AERB has conducted an in-depth study of specific areas of operational safety of nuclear power plants. AERB ensures that the radiation exposures of workers and radioactive releases to the environment are kept as low as reasonably achievable (ALARA) and that the installations maintain at all times a capability to handle local, site and off-site emergencies. (author). 3 figs

  18. Software and cyber-infrastructure development to control the Observatorio Astrofísico de Javalambre (OAJ)

    Yanes-Díaz, A.; Antón, J. L.; Rueda-Teruel, S.; Guillén-Civera, L.; Bello, R.; Jiménez-Mejías, D.; Chueca, S.; Lasso-Cabrera, N. M.; Suárez, O.; Rueda-Teruel, F.; Cenarro, A. J.; Cristobal-Hornillos, D.; Marin-Franch, A.; Luis-Simoes, R.; López-Alegre, G.; Rodríguez-Hernández, M. A. C.; Moles, M.; Ederoclite, A.; Varela, J.; Vazquez Ramió, H.; Díaz-Martín, M. C.; Iglesias-Marzoa, R.; Maicas, N.; Lamadrid, J. L.; Lopez-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.

    2014-07-01

    The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys with two unprecedented telescopes of unusually large fields of view: the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. CEFCA engineering team has been designing the OAJ control system as a global concept to manage, monitor, control and maintain all the observatory systems including not only astronomical subsystems but also infrastructure and other facilities. In order to provide quality, reliability and efficiency, the OAJ control system (OCS) design is based on CIA (Control Integrated Architecture) and OEE (Overall Equipment Effectiveness) as a key to improve day and night operation processes. The OCS goes from low level hardware layer including IOs connected directly to sensors and actuators deployed around the whole observatory systems, including telescopes and astronomical instrumentation, up to the high level software layer as a tool to perform efficiently observatory operations. We will give an overview of the OAJ control system design and implementation from an engineering point of view, giving details of the design criteria, technology, architecture, standards, functional blocks, model structure, development, deployment, goals, report about the actual status and next steps.

  19. Digital low-level RF control system for high intensity proton RFQ accelerator

    The resonant frequency of the high intensity proton RFQ accelerator at the Institute of High Energy Physics is 352.2 MHz, and the control precision of the accelerating field is ± 1 degree in phase, respectively. In order to accomplish these requirements, a digital low-level RF (LLRF) control system is adopted. This system includes three parts: the accelerating field amplitude and phase control, the cavity resonant frequency control and the high power interlock protection. The down-conversion of the cavity sampling signal and the up-conversion of the feedback excitation signal are realized by the analog devices. The real time feedback control of amplitude and phase adopts digital I/Q demodulation, and is assembled in a FPGA block, where three DSP blocks are used for communication and cooperate the FPGA to process data. The online debugging result satisfies the requirements of the control precision. (authors)

  20. On designing a control system for a new generation of accelerators

    A well-conceived plan of attack is essential to the task of designing a control system for a large accelerator. Several aspects of such a plan have been investigated during recent work at LAMPF on design strategies for an Advanced Hadron Facility control system. Aspects discussed in this paper include: identification of requirements, creation and enforcement of standards, interaction with users, consideration of commercial controls products, integration with existing control systems, planning for continual change, and establishment of design reviews. We emphasize the need for the controls group to acquire and integrate accelerator design information from the start of the design process. We suggest that a controls design for a new generation of accelerators be done with a new generation of software tools. 12 refs

  1. Distributed Networked Control System for Power Supply System of the Accelerator Based on Canopen Protocol

    Network based control system for a power supply unit of the linear accelerator was developed. Front-end level of the system is based on CAN fieldbus with CANopen and CANEX application level protocols. Both local and remote control foe each CANopen node is provided. Level 2 control stations of the system are ARM9 CPU based machines, operating under Linux OS

  2. Operations Structure for the Management, Control and Support of the INFN-GRID/Grid.It Production Infrastructure

    Vistoli, M C; Calzolari, F; Vistoli, Maria Cristina; Gaido, Luciano; Calzolari, Federico

    2006-01-01

    Moving from a National Grid Testbed to a Production quality Grid service for the HEP applications requires an effective operations structure and organization, proper user and operations support, flexible and efficient management and monitoring tools. Moreover the middleware releases should be easily deployable using flexible configuration tools, suitable for various and different local computing farms. The organizational model, the available tools and the agreed procedures for operating the national/regional grid infrastructures that are part of the world-wide EGEE grid as well as the interconnection of the regional operations structures with the global management, control and support structure play a key role for the success of a real production grid. In this paper we describe the operations structure that we are currently using at the Italian Grid Operation and Support Center. The activities described cover monitoring, management and support for the INFN-GRID/Grid.It production grid (spread over more than 3...

  3. Overview of the control system for the IFMIF/EVEDA accelerator

    The accelerator for Engineering Validation and Engineering Design Activity (EVEDA) of International Fusion Materials Irradiation Facility (IFMIF) will produce 9 MeV/125 mA CW beam. The IFMIF/EVEDA accelerator consists of Injector, RFQ, the first section of SC HWR Linac, etc. The control system for the IFMIF/EVEDA accelerator consists of Personnel Protection System (PPS), Machine Protection System (MPS), Central Control System (CCS), Local Area Network (LAN), Timing System (TS) and Local Control System (LCS). The PPS, MPS, CCS, LAN and TS have been developed by JAEA, and the LCS has been charged by EU. For these JAEA tasks, the design scenario taking into account of radio-activation, the development status and the development schedule for each accelerator components (Injector, RFQ, SC HWR linac, RF system, etc.) are presented in details. (author)

  4. Initial investigation using statistical process control for quality control of accelerator beam steering

    Able Charles M

    2011-12-01

    Full Text Available Abstract Background This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated. Methods Steering coil currents (SCC for the transverse and radial planes are set such that a reproducibly useful photon or electron beam is available. SCC are sampled and stored in the control console computer each day during the morning warm-up. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar-R process control charts (PCC. The weekly average and range values (subgroup n = 5 for each steering coil were used to develop the PCC. SCC from September 2009 (annual calibration until two weeks following a beam steering failure in June 2010 were evaluated. PCC limits were calculated using the first twenty subgroups. Appropriate action limits were developed using conventional SPC guidelines. Results PCC high-alarm action limit was set at 6 standard deviations from the mean. A value exceeding this limit would require beam scanning and evaluation by the physicist and engineer. Two low alarms were used to indicate negative trends. Alarms received following establishment of limits (week 20 are indicative of a non-random cause for deviation (Xbar chart and/or an uncontrolled process (R chart. Transverse angle SCC for 6 MV and 15 MV indicated a high-alarm 90 and 108 days prior to equipment failure respectively. A downward trend in this parameter continued, with high-alarm, until failure. Transverse position and radial angle SCC for 6 and 15 MV indicated low-alarms starting as early as 124 and 116 days prior to failure, respectively. Conclusion Radiotherapy clinical efficiency and accelerator beam consistency may be improved by

  5. Initial investigation using statistical process control for quality control of accelerator beam steering

    This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC) to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated). Steering coil currents (SCC) for the transverse and radial planes are set such that a reproducibly useful photon or electron beam is available. SCC are sampled and stored in the control console computer each day during the morning warm-up. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar-R) process control charts (PCC). The weekly average and range values (subgroup n = 5) for each steering coil were used to develop the PCC. SCC from September 2009 (annual calibration) until two weeks following a beam steering failure in June 2010 were evaluated. PCC limits were calculated using the first twenty subgroups. Appropriate action limits were developed using conventional SPC guidelines. PCC high-alarm action limit was set at 6 standard deviations from the mean. A value exceeding this limit would require beam scanning and evaluation by the physicist and engineer. Two low alarms were used to indicate negative trends. Alarms received following establishment of limits (week 20) are indicative of a non-random cause for deviation (Xbar chart) and/or an uncontrolled process (R chart). Transverse angle SCC for 6 MV and 15 MV indicated a high-alarm 90 and 108 days prior to equipment failure respectively. A downward trend in this parameter continued, with high-alarm, until failure. Transverse position and radial angle SCC for 6 and 15 MV indicated low-alarms starting as early as 124 and 116 days prior to failure, respectively. Radiotherapy clinical efficiency and accelerator beam consistency may be improved by instituting SPC methods to monitor the beam steering process

  6. Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration

    Pollock, B B; Froula, D H; Tynan, G R; Divol, L; Davis, P; Palastro, J P; Price, D; Glenzer, S H

    2008-08-28

    In order to produce multi-Gev electrons from Laser Wakefield Accelerators, we present a technique to guide high power laser beams through underdense plasma. Experimental results from the Jupiter Laser Facility at the Lawrence Livermore National Laboratory that show density channels with minimum plasma densities below 5 x 10{sup 17} cm{sup -3} are presented. These results are obtained using an external magnetic field (<5 T) to limit the radial heat flux from a pre-forming laser beam. The resulting increased plasma pressure gradient produces a parabolic density gradient which is tunable by changing the external magnetic field strength. These results are compared with 1-D hydrodynamic simulations, while quasi-static kinetic simulations show that for these channel conditions 90% of the energy in a 150 TW short pulse beam is guided over 5 cm and predict electron energy gains of 3 GeV.

  7. The Ground Test Accelerator control system database: Configuration, run-time operation, and access

    A database is used to implement the interface between the control system and the accelerator and to provide flexibility in configuring the I/O. This flexibility is necessary to allow the control system to keep pace with the changing requirements that are inherent in an experimental environmental environment. This is not achieved without cost. Problems often associated with using databases are painful data entry, poor performance, and embedded knowledge of the database structure in code throughout the control system. This report describes how the database configuration, access, conversion, and execution in the Ground Test Accelerator (GTA) Control System overcome these problems. 2 figs

  8. The CEBAF [Continuous Electron Beam Accelerator Facility] control system architecture

    The focus of this paper is on CEBAF's computer control system. This control system will utilize computers in a distributed, networked configuration. The architecture, networking and operating system of the computers, and preliminary performance data are presented. We will also discuss the design of the operator consoles and the interfacing between the computers and CEBAF's instrumentation and operating equipment

  9. Database Foundation For The Configuration Management Of The CERN Accelerator Controls Systems

    Zaharieva, Z; Peryt, M

    2011-01-01

    The Controls Configuration Database (CCDB) and its interfaces have been developed over the last 25 years in order to become nowadays the basis for the Configuration Management of the Controls System for all accelerators at CERN. The CCDB contains data for all configuration items and their relationships, required for the correct functioning of the Controls System. The configuration items are quite heterogeneous, depicting different areas of the Controls System – ranging from 3000 Front-End Computers, 75 000 software devices allowing remote control of the accelerators, to valid states of the Accelerators Timing System. The article will describe the different areas of the CCDB, their interdependencies and the challenges to establish the data model for such a diverse configuration management database, serving a multitude of clients. The CCDB tracks the life of the configuration items by allowing their clear identification, triggering of change management processes as well as providing status accounting and aud...

  10. Control of linear accelerator noise in the Los Alamos free-electron laser (FEL)

    The Los Alamos FEL requires tight control of the amplitudes and phases of the fields in two linear accelerator tanks to obtain stable lasing. The accelerator control loops must establish constant, stable, repeatable amplitudes and phases of the rf fields and must have excellent bandwidth to control high-frequency noise components. A model of the feedback loops has been developed that agrees well with measurements and allows easy substitution of components and circuits, thus reducing breadboarding requirements. The model permits both frequency and time-domain analysis. This paper describes the accelerator control scheme and our model and discusses the control of noise in feedback loops, showing how low-frequency-noise components (errors) can be corrected, but high-frequency-noise components (errors) are actually amplified by the feedback circuit. Measurements of noise in both open- and closed-loop modes are shown and comparison is made with results from the model calculations