WorldWideScience

Sample records for accelerator control system

  1. Accelerator control systems in China

    Three accelerator facilities were built in the past few years, the 2.8 GeV electron positron collider BEPC, the heavy ion SSC cyclotron accelerator HIRFL and the 800 MeV synchrotron radiation storage ring HESYRL. Aimed at different research areas, they represent a new generation of accelerator in China. This report describes the design philosophy, the structure, performance as well as future improvements of the control systems of the these facilities. (author)

  2. Trends in accelerator control systems

    Over the years, we have seen a revolution in control systems that has followed the ever decreasing cost of computer power and memory. It started with the data gathering, when people distrusted the computer to perform control actions correctly, through the stage of using a computer to perform control actions correctly, through the stage of using a computer system to provide a convenient remote look and adjust facility, to the present day, when more and more emphasis is being placed on using a computer system to simulate or model all or parts of the accelerator, feed in the required performance and calling for the computers to set the various parameters and then measure the actual performance, with iteration if necessary. The progress that has been made in the fields of architecture, communications, computers, interface, software design and operator interface is reviewed

  3. Research of Virtual Accelerator Control System

    DongJinmei; YuanYoujin; ZhengJianhua

    2003-01-01

    A Virtual Accelerator is a computer process which simulates behavior of beam in an accelerator and responds to the accelerator control program under development in a same way as an actual accelerator. To realize Virtual Accelerator, control system should provide the same program interface to top layer Application Control Program, it can make 'Real Accelerator' and 'Virtual Accelerator'use the same GUI, so control system should have a layer to hide hardware details, Application Control Program access control devices through logical name but not through coded hardware address. Without this layer, it is difficult to develop application program which can access both 'Virtual' and 'Real' Accelerators using same program interfaces. For this reason, we can create CSR Runtime Database which allows application program to access hardware devices and data on a simulation process in a unified way. A device 'is represented as a collection of records in CSR Runtime Database. A control program on host computer can access devices in the system only through names of record fields, called channel.

  4. Accelerator control systems without minicomputers

    A paper given last year described in general terms a plan for the control of a large machine using assemblies of microcomputer units which simulate a conventional minicomputer by multiprocessing. In every other way the SPS control philosophy is followed. The design of a model assembly has allowed us to learn something about the protocols needed inside and between assemblies, as well as to assess more accurately what level of technology it is reasonable to apply. In any control system of this kind it would be desirable to allow engineering contributions from a variety of sources, and yet ensure the homogeneity needed for the system to remain reliable and comprehensible. Methods of achieving this are discussed. (Auth.)

  5. Electron beam accelerator energy control system

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  6. Evolution of control systems for accelerators

    The author reviews the development of control systems for accelerators. After an historical survey and a general introduction the hardware and software of such systems is described. As example the control system of the CERN SP5 is considered. Finally an outlook is given to future developments with special regards to the LEP storage ring. (HSI)

  7. The BNL Accelerator Test Facility control system

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  8. Computer networks in future accelerator control systems

    Some findings of a study concerning a computer based control and monitoring system for the proposed ISABELLE Intersecting Storage Accelerator are presented. Requirements for development and implementation of such a system are discussed. An architecture is proposed where the system components are partitioned along functional lines. Implementation of some conceptually significant components is reviewed

  9. Common control system for the CERN accelerators

    The PS and SPS Accelerator Control Systems are becoming obsolete and need urgent rejuvenation. After a control users forum, where users expressed their needs, two main Working Groups were set up, consisting of Control and Equipment Specialists and experienced Machine Operators. One Working Group studied the architecture and the front-end processing and the other a common approach to the application software needed to run the CERN accelerator complex. The paper presents the technical conclusion of their work and the policy to implement it, taking into account the necessity to operate both machines without interruption of the Physics Program. (author)

  10. Control system for the NBS microtron accelerator

    As various subsystems of the National Bureau of Standards/Los Alamos racetrack microtron accelerator are being brought on-line, we are gaining experience with some of the innovations implemented in the control system. Foremost among these are the joystick-based operator controls, the hierarchical distribution of control system intelligence, and the independent secondary stations, permitting sectional stand-alone operation. The result of the distributed database philosophy and parallel data links has been very fast data updates, permitting joystick interaction with system elements. The software development was greatly simplified by using the hardware arbitration of several parallel processors in the Multibus system to split the software tasks into independent modules

  11. Present SLAC accelerator computer control system features

    The current functional organization and state of software development of the computer control system of the Stanford Linear Accelerator is described. Included is a discussion of the distribution of functions throughout the system, the local controller features, and currently implemented features of the touch panel portion of the system. The functional use of our triplex of PDP11-34 computers sharing common memory is described. Also included is a description of the use of pseudopanel tables as data tables for closed loop control functions

  12. Control system modelling for superconducting accelerator

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set- Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation. (orig.)

  13. The new accelerator control system of GANIL

    The new computer control system is conducting the heavy ion accelerator GANIL from the beginning of 1993 and has reached a state of routine operation. It was carried out to supersede the obsolete initial system and to cope with the harsh experimental conditions required by the very high intensity beams envisioned for the next future. Hardware and software implementations, as well as human interface, are presented. Emphasis is placed on the three-layer distributed architecture adopted. An ETHERNET local area network (LAN) links the basic components: a VAX/VMS cluster, XWINDOWS interfaced operator consoles, VAXELN driven CAMAC crate controllers and programmable logic controllers for front end controls. Also data management with the INGRES relational database management system (RDBMS), as well as operating software written in ADA language, are described. First experience with the new control system is reported. Finally, trend considerations are addressed. (author) 8 refs., 6 figs

  14. Automated control system in charged particle accelerators

    A general approach to the design of automated radiation safety systems at charged particle accelerators is described. Parameters of high-energy electron accelerators of the Kharkov Physics and Engineering Institute are presented. Characteristics of the surrounding radiation fields are given. Ionizing radiation transducers which can be used in automated systems are considered. Local radiation monitoring station based on the LUE-2000 accelerator of the institute is described. 9 refs.; 4 figs.; 1 tab

  15. Industrial influences on an accelerator control system

    Industrial applications of a control system package have extended from industrial research to process control. While the requirements of these applications have much in common with accelerator controls, there are always extensions, different emphases, and additional requirements. These often add to the applicability of the software in all fields and certainly keep the development team challenged. This paper discusses some of the influences that industrial applications such as power distribution monitoring, casting and rolling mills, and aircraft engine testing have on software originally designed for scientific research. We also discuss some of the differences in the software development process between development for in-house use and development for sales and industrial use. (Author) ref., fig

  16. Artificial intelligence approach to accelerator control systems

    An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms

  17. Accelerator optimization using a network control and acquisition system

    Accelerator optimization requires detailed study of many parameters, indicating the need for remote control and automated data acquisition systems. A control and data acquisition system based on a network of commodity PCs and applications with standards based inter-application communication is being built for the l'OASIS accelerator facility. This system allows synchronous acquisition of data at high (> 1 Hz) rates and remote control of the accelerator at low cost, allowing detailed study of the acceleration process

  18. Open Hardware For CERN's Accelerator Control Systems

    van der Bij, E; Ayass, M; Boccardi, A; Cattin, M; Gil Soriano, C; Gousiou, E; Iglesias Gonsálvez, S; Penacoba Fernandez, G; Serrano, J; Voumard, N; Wlostowski, T

    2011-01-01

    The accelerator control systems at CERN will be renovated and many electronics modules will be redesigned as the modules they will replace cannot be bought anymore or use obsolete components. The modules used in the control systems are diverse: analog and digital I/O, level converters and repeaters, serial links and timing modules. Overall around 120 modules are supported that are used in systems such as beam instrumentation, cryogenics and power converters. Only a small percentage of the currently used modules are commercially available, while most of them had been specifically designed at CERN. The new developments are based on VITA and PCI-SIG standards such as FMC (FPGA Mezzanine Card), PCI Express and VME64x using transition modules. As system-on-chip interconnect, the public domain Wishbone specification is used. For the renovation, it is considered imperative to have for each board access to the full hardware design and its firmware so that problems could quickly be resolved by CERN engineers or its ...

  19. Adaptive, Nonlinear Model Predictive Control for Accelerator Feedback Control Systems

    Variations in systems dynamics and modeling uncertainty(due to unmodeled systems behavior and/or presence of disturbances),have posed significant challenges to the effective luminosity and orbit control in accelerators.Problems of similar nature occur in a wide variety of other applications from chemical processes to power plants to financial systems.Adaptive control has long been pursued as a possible solution,but difficulties with online model identification and robust implementation of the adaptive control algorithms has prevented their widespread application.In general developing and maintaining appropriate models is the key to the success of any deployed control solution.Meanwhile the performance of the control system is contingent on the responsiveness of the control algorithm to the inevitable deviations of the model from the actual system.This project uses neural networks to detect significant changes in system behavior,and develops an optimal model-predictive-based adaptive control algorithm that enables the robust implementation of an effective control strategy that is applicable in a wide range of applications.Simulation studies were conducted to clearly demonstrate the feasibility and benefits of implementing model predictive control technology in accelerator control problems.The requirements for an effective commercial product that can meet the challenge of optimal model-predictive-based adaptive control technology were developed.A prototype for the optimal model-predictive-based adaptive control algorithm was developed for a well-known nonlinear temperature control problem for gas-phase reactors that proved the feasibility of the proposed approach.This research enables a commercial party to leverage the knowledge gained through collaboration with a national laboratory to develop new system identification and optimal model-predictive-based adaptive control software to address current and future challenges in process industries,power systems

  20. Concurrent control system for the JAERI tandem accelerator

    Concurrent processing with a multiprocessor system is introduced to the particle accelerator control system region. The control system is a good application in both logical and physical aspects. A renewal plan of the control system for the JAERI tandem accelerator is discussed. (author)

  1. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

  2. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations.

  3. Hacking control systems, switching… accelerators off?

    Computer Security Team

    2013-01-01

    In response to our article in the last Bulletin, we received the following comment: “Wasn’t Stuxnet designed to stop the Iranian nuclear programme? Why then all this noise with regard to CERN accelerators? Don’t you realize that ‘computer security’ is not the raison d'être of CERN?”. Thank you for this golden opportunity to delve into this issue.   Given the sophistication of Stuxnet, it might have been hard to detect such a targeted attack against CERN, if at all. But this is not the point. There are much simpler risks for our accelerator complex and infrastructure. And, while “‘computer security’ is [indeed] not the raison d' être”, it is our collective responsibility to keep this risk at bay.   Examples? Just think of a simple computer virus infecting Windows-based control PCs connected to the accelerator network (the Technical Network, &ld...

  4. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  5. Status of the KEKB accelerator control system development

    KEKB, an asymmetric electron-positron collider, is in the last phase of its construction. The status of the development and installation of the control system for the KEKB will be reported in this paper. Installation of the basic equipment for the KEKB accelerator control system, including FDDI network cables between the central control room and sub-control rooms, was finished in spring 1997. This basic system is now being used for the development of software for the KEKB accelerator control system. Extension of the system for the first commissioning is scheduled later this year. The KEKB accelerator control system is based on the EPICS (Experimental Physics and Industrial Control System) tool kits for accelerator control system. EPICS tool kits uses the variant of so-called 'standard model' of an accelerator control system. Use of EPICS tool kits reduces needs for the development of basic software. Relational database is another key component in the KEKB accelerator control system. An end user interface using the WWW browser is developed and is under the field test. Power supply controller board has been developed and tested. The board uses ARCnet as the communication interface to the VME controller module in the KEKB accelerator control system. (author)

  6. Control system for particle accelerator in LabVIEW

    Vitorovič, Miha

    2011-01-01

    The thesis presents the implementation of a control system for particle accelerator in the LabVIEW development environment. The first chapter gives an overview of the operation of the synchrotron accelerator and its parts. The second chapter describes how control system controls the accelerator. The third chapter gives an overview of the LabVIEW development environment, graphical language G and explains how graphical programs are written. It also lists some limitations of the language and how...

  7. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  8. Design of control system for accelerator

    Laboratory of Nuclear Science in Tohoku University has made a plan to construct a pulse beam stretcher boostering (STB) the fiscal year from 1995 to 1996. STB has two characteristic functions, one of them is pulse beam stretcher function to change 250 MeV pulse electron beam from Linac to direct current' beam and another is booster ring one to increase from 250 MeV to 1.2 GeV beam. Today, the detailed design is going to proceed. The subjects of control system are the direct current electromagnet, the pulse electromagnet, RF system, the vacuum system, the beam monitor system, the triggered system and the inter rock system. We will construct a control program of our own making. Another characteristic function is to adopt the directional object data base. The construction of hardware and software and the future planning are explained. (S.Y.)

  9. Distributed computer controls for accelerator systems

    A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multi-user Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implementation with four months with a computer and instrumentation cost of approximately $100K. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking and operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the efficient implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. 3 refs

  10. The intelligent gate control for the induction acceleration system in the KEK digital accelerator

    The renovation of the KEK PS-Booster as a digital accelerator (DA) is going on. Our plan is to accelerate Argon ion beam in the KEK-DA using the induction acceleration system, which was developed at KEK. An outline of the acceleration scenario is described and a necessary control system fully integrating the induction acceleration devices is given in details. For the induction acceleration in the KEK-DA, beam monitors and front-end processors to pick up information of the beam timing with accuracy are quite important. R and D works of those components are discussed. (author)

  11. The KN-3000 particle accelerator control expert system (PACES)

    The particle accelerator control expert system (PACES) is a computer-based operator aid, retrofitted to a model KN-3000 Van de Graaff accelerator, that is used during the start-up, steady state and shut-down phases of the accelerator. Using PACES, the operator can control the accelerator through a graphical control panel, or call upon an expert system to perform automatic start-up or shut-down. PACES then automatically stabilizes and optimizes particle beam parameters. PACES is also able to detect, diagnose and respond to operating faults, such as high-voltage sparks, vacuum system failure or loss of source gas. This paper demonstrates the novel features and utility of the PACES artificial intelligence accelerator controller

  12. Techniques for increasing the reliability of accelerator control system electronics

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics

  13. Computer Based Dose Control System on Linear Accelerator

    The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

  14. Rf control system for a rocket-borne accelerator

    The Beam Experiments Aboard Rockets (BEAR) accelerator experiment imposes several nonstandard requirements on the rf control system. The experiment is entirely hands-off and must operate under local computer control. The rf control system must be extremely reliable, which implies excellence in design and fabrication as well as redundancy whenever possible. This paper describes the design of the frequency-source, frequency-control, and amplitude-control systems for the BEAR experiment

  15. Control system analysis for the perturbed linear accelerator rf system

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  16. Development of new elements of automated control systems linear accelerator

    For monitoring systems and control of linear electron accelerators have been designed, manufactured and introduced new elements instead of physically and morally outdated. This family of analog-to-digital converters ADC 01, ADC-02 ADC-03, ADC-05 ADC-06 have been developed in cooperation with the KNURE, and synchronizer for linear accelerator LUE-60M, designed forces of employees the research complex ''ACCELERATOR'' KIPT. Purpose, characteristics, technical description, block diagrams of family of analog-to-digital converters ADC01...ADC06 and of synchronizer of linear accelerator LUE-60M is presented in a report. These devices are developed on a new element base and inculcated in automated control systems of linear accelerators.

  17. Control and accelerating voltage automatic pulse acquisition system for ''LIU-5/5000'' linear accelerators

    A system prowiding continuous control and automatic correction of actuation of accelerating voltage pulse generators of a linear induction accelerator is described. TGI-2500/50 thyratrons are switching elements of the generators. Shaped pulses have a bell form, their duration on the foundation constitues 300 ns. The device operation is based on the determination of a sign of time error between generator and reference pulses. Depending on the error sign performed is correction of the delay value included into the actuation circuit of the corresponding generator. Such operation is accomplished in each working pulse of the accelerator. Data on the delay condition go to the digital panel and digital print-out. Technical characteristics of the system are the following: 56 cynchronization channels, 155 ns control interval, 5 ns control pitch, error of the error determination is not worse than +-2.5 ns. The system permitted to improve accelerated beam stability and to simplify accelerator tuning and control

  18. IPNS Chopper Control and Accelerator Interface Systems

    Several of the instruments at the Intense Pulsed Neutron Source (IPNS) at Argonne use rotating Fermi choppers. The techniques used to control the speed and phase of these rotating devices are discussed

  19. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario

  20. Linear IFMIF prototype accelerator (LIPAc) control system: design and development

    Calvo Pinto, Julio

    2014-01-01

    Distributed real time control systems in scientific instruments, such as particle accelerators or telescopes, have emerged as a solution to control multiple interconnected devices, which required constant attention and observation, along with a complete integration of each of its parts. This enhancement is provided by the intense technological development that control devices have suffered in recent years. With respect to the control software, libraries and applications have also emerged in r...

  1. Integrating a commercial industrial control system to the accelerator control system: a case study

    At CERN a large number of systems providing services (cooling and ventilation, cryogenics, electricity distribution, personnel and building safety, etc.) are controlled by industrial PLCs. A commercial supervision package is used as a gateway to the accelerator control system. The integration of such a system in the CERN accelerator control environment addresses issues such as the connection to control-rooms and desktop computers, alarm logging and remote or alien man-machine interfaces. The paper describes the components of the system and reports the first operational experience. ((orig.))

  2. A distributed control system for picosecond accelerator at SINAP

    CAO Hong-Ping; CHEN Huan-Guang; LI De-Ming

    2005-01-01

    The picosecond accelerator (PA) is a low energy electron linear accelerator facility under commissioning,which is built for the experiment of ps level pulse radiolysis in Shanghai Institute of Applied Physics (SINAP). A practical distributed DA&C system for this facility has been developed. In view of the upgrading-ability and maintainability of the control system and controlled devices, Advantech(c) distributed intelligent DA&C products are adopted into the control system. ADAM 5000/TCPs with the protocol of Modbus/TCP are employed to accomplish data acquisition and device control. The PC-compatible programmable logic controller, ADAM-5511, is also adopted to handle the interlocks and the emergency events. On the software side, the integrated software package Kingview(c)V6.5, which friendly supports all Advantech products, has been used to develop the upper layer control logic and process the data. This paper describes the control system design and system architecture. The intelligent ADAM controllers and the software platform are also discussed in detail.

  3. Monitoring and control system of the Saclay electron linear accelerator

    A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper.

  4. Quick setup of test unit for accelerator control system

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  5. Personal computer control system for small size tandem accelerator

    As the analysis apparatus using tandem accelerator has a lot of control parameter, numbers of control parts set on control panel are so many to make the panel more complex and its operativity worse. In order to improve these faults, development and design of a control system using personal computer for the control panel mainly constituted by conventional hardware parts were tried. Their predominant characteristics are shown as follows: 1) To make the control panel construction simpler and more compact, because the hardware device on the panel surface becomes the smallest limit as required by using a personal computer for man-machine interface. 2) To make control speed more rapid, because sequence control is closed within each block by driving accelerator system to each block and installing local station of the sequencer network at each block. 3) To make expandability larger, because of few improvement of the present hardware by interrupting the sequencer local station into the net and correcting image of the computer when increasing a new beamline. And, 4) to make control system cheaper, because of cheaper investment and easier programming by using the personal computer. (G.K.)

  6. An Integrated Enterprise Accelerator Database for the SLC Control System

    Since its inception in the early 1980's, the SLC Control System has been driven by a highly structured memory-resident real-time database. While efficient, its rigid structure and file-based sources makes it difficult to maintain and extract relevant information. The goal of transforming the sources for this database into a relational form is to enable it to be part of a Control System Enterprise Database that is an integrated central repository for SLC accelerator device and Control System data with links to other associated databases. We have taken the concepts developed for the NLC Enterprise Database and used them to create and load a relational model of the online SLC Control System database. This database contains data and structure to allow querying and reporting on beamline devices, their associations and parameters. In the future this will be extended to allow generation of EPICS and SLC database files, setup of applications and links to other databases such as accelerator maintenance, archive data, financial and personnel records, cabling information, documentation etc. The database is implemented using Oracle 8i. In the short term it will be updated daily in batch from the online SLC database. In the longer term, it will serve as the primary source for Control System static data, an R and D platform for the NLC, and contribute to SLC Control System operations

  7. The new control system of the Saclay linear accelerator

    A new control system for the Safety Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors: one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran

  8. Intelligent control system for the KEK digital accelerator

    Studies are being conducted to develop a digital accelerator capable of accelerating ions with any charge state, based on the concept of the induction synchrotron. The digital accelerator is a modification of the KEK 500 MeV booster which employs induction acceleration. The digital accelerator is operated at a repetition rate of 10 Hz. The accelerating pulse voltage is dynamically varied from 0 V to 2.4 kV. A novel technique combining the pulse trigger control and intermittent operation of multi-acceleration cells is developed. The acceleration scheme of the digital accelerator is verified by using computer simulations and it is demonstrated at our test facility by using a beam simulator to mimic a circulating beam-bunch signal in the KEK digital accelerator.

  9. High performance/low cost accelerator control system

    Implementation of a high performance computer control system tailored to the requirements of the SuperHILAC accelerator is described. This system uses a distributed (star-type) structure with fiber optic data links; multiple CPU's operate in parallel at each node. A large number (20) of the latest 16-bit microcomputer boards are used to get a significant processor bandwidth (exceeding that of many mini-computers) at a reasonable price. Because of the large CPU bandwidth, software costs and complexity are significantly reduced and programming can be less real-time critical. In addition all programming can be in a high level language. Dynamically assigned and labeled knobs together with touch-screens allow a flexible operator interface. An X-Y vector graphics system allows display and labeling of real-time signals as well as general plotting functions. Both the accelerator parameters and the graphics system can be driven from BASIC interactive programs in addition to the pre-canned user routines. This allows new applications to be developed quickly and efficiently by physicists, operators, etc. The system, by its very nature and design, is easily upgraded (via next generation of boards) and repaired (by swapping of boards) without a large hardware support group. This control system is now being tested on an existing beamline and is performing well. The techniques used in this system can be readily applied to industrial control systems

  10. Precise RF control system of the SCSS test accelerator

    We present development and performance of the low-level rf control system of the SCSS test accelerator. The low-level rf system consists of IQ modulators / demodulators and VME waveform generators / digitizers. Recent improvements of them established high-resolution phase and amplitude setting capabilities of 0.01 degree and 0.01%, respectively. In addition, temperature drifts of the injector acceleration cavities were reduced by tuning a precise temperature regulation system. The temperature fluctuation was improved to be 0.01 K rms. As a result, the rf phase and amplitude stabilities of sub-harmonic buncher cavities were achieved to be 0.02 degree rms and 0.03% rms, respectively. The saturated FEL radiation in the wavelength region of 50-60 nm is stably generated by this improvement. (author)

  11. Customizable software architectures in the accelerator control system environment

    Mejuev, I; Kadokura, E

    2001-01-01

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user customization has been extensively researched in applied computer science from HCI and software engineering perspectives. Customization allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user customization in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. We introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of a distributed monitoring application for the 12 GeV KEK Proton Synchrotron as an example. T...

  12. STUXNET and the Impact on Accelerator Control Systems

    Lüders, S

    2011-01-01

    2010 has seen wide news coverage of a new kind of computer attack, named "Stuxnet", targeting control systems. Due to its level of sophistication, it is widely acknowledged that this attack marks the very first case of a cyber-war of one country against the industrial infrastructure of another, although there is still much speculation about the details. Worse yet, experts recognize that Stuxnet might just be the beginning and that similar attacks, eventually with much less sophistication, but with much more collateral damage, can be expected in the years to come. Stuxnet was targeting a special model of the Siemens 400 PLC series. Similar modules are also deployed for accelerator controls like the LHC cryogenics or vacuum systems as well as the detector control systems in LHC experiments. Therefore, the aim of this presentation is to give an insight into what this new attack does and why it is deemed to be special. In particular, the potential impact on accelerator and experiment control sys...

  13. RF low level control system at SCSS prototype accelerator

    The constriction of XFEL facilities is under progress at the SPring-8 site. The SCSS prototype accelerator to check the feasibility of XFEL is in operation. And the amplification of VUV light having a wavelength of 49 nm was observed in June. The stability and controllability requirements on an RF phase and amplitude, concerning with the RF system of the prototype accelerator, are less than 1 degree and 0.3%. To satisfy the requirements, we developed a low noise RF signal source, and an IQ (In phase and in Quardrature) modulator and an IQ demodulator. The RF phase and amplitude are controlled by the IQ modulator. The detection of them are performed by using the IQ demodulator. Both IQ functions of them are handled by VME DAC and ADC boards developed by us. Furthermore, the DAC module can handle the adaptive control method. We confirmed, that these instruments satisfied the requirements, by the beam test. The configuration of the RF low level system, its performance, and the preliminary results of the adaptive control experiment are described in this paper. (author)

  14. Overview of Fermi National Accelerator Lab Control System

    Various facets of the control of the Fermilab accelerators, in particular the Tevatron, are presented. Since Fermilab contains a superconducting machine and a sophisticated injection complex, much of the controls functionality will of necessity be the same at the SSC. The various functions required at a large laboratory are discussed; these include computer-based fire and security alarms and a cable television system, as well as computer networks connected to accelerator hardware components. A description is given of that hardware, of which much is Camac but with considerable computer backplane bus equipment also present. A large fraction of the controls hardware has access to high precision real-time clocks. Our various networks are introduced, with the physical layer being a combination of copper and more modern optic cables, with the primary intercomputer link being Token Ring. A description of the computers is presented - basically these consist of operators' consoles, host VAXs, and link driving front ends. The software effort is detailed, with emphasis on consoles and microprocessors where the majority of effort has been placed. Future plans for the system are presented briefly. 3 refs., 2 figs., 2 tabs

  15. Global Accelerator Network, Control Systems And Beam Diagnostics

    Raich, U

    2003-01-01

    Falling funds force all accelerator centers to look for new sources of financing and for the most efficient way of implementing new projects. This very often leads to collaborations between institutes scattered around the globe, a problem well known to big high energy physics experiments. The collaborations working on big detectors e.g. for LHC started thinking about detector acquisition and control systems which can be remotely used from their respective home institutes with minimal support on the spot. This idea was taken up by A. Wagner from DESY for the TESLA machine, who proposed the “Global Accelerator Network” (GAN) enabling users from around the world to run an accelerator remotely. Questions around this subject that immediately come to mind Is the GAN only relevant to big labs ? Or is it reasonable e.g. for operators or engineers in charge to do certain manipulations from home? Are our instruments ready for the GAN? Does the fact of being “GAN ready” increa...

  16. Upgrade of the Control System of the IFUNAM's Pelletron Accelerator

    Macias, R; Ortiz, M E; López, K; Huerta, A; Verde, M C

    2001-01-01

    In 1995 a 9SDH-2 Pelletron from NEC was installed at IFUNAM (Instituto de Fisica, Universidad Nacional Autonoma de Mexico). Two beam lines have been operational since then and two new lines have been built. In order to perform the planned projects in this grown facility, an upgrading of the original manual control system is required. The proposed new control system takes advantage of the existing devices and incorporates the electronics needed for the newer beam lines. The control software from NEC, has been modified to accommodate the larger requirements. It runs on the same dedicated computer but receives commands from a new installed host. Both computers communicate through a local network sharing the accelerator database. The new host computer also handles all parameters related to the new lines. In the future, the old computer will be replaced in order to expand the possibilities of the system and use a friendlier graphical interface. In this work we present the changes made to the control software, the ...

  17. An artificial intelligence approach to accelerator control systems

    An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms

  18. Database application research in real-time data access of accelerator control system

    The control system of Shanghai Synchrotron Radiation Facility (SSRF) is a large-scale distributed real-time control system, It involves many types and large amounts of real-time data access during the operating. Database system has wide application prospects in the large-scale accelerator control system. It is the future development direction of the accelerator control system, to replace the differently dedicated data structures with the mature standardized database system. This article discusses the application feasibility of database system in accelerators based on the database interface technology, real-time data access testing, and system optimization research and to establish the foundation of the wide scale application of database system in the SSRF accelerator control system. Based on the database interface technology, real-time data access testing and system optimization research, this article will introduce the application feasibility of database system in accelerators, and lay the foundation of database system application in the SSRF accelerator control system. (authors)

  19. Tailorable software architectures in the accelerator control system environment

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user tailorability has been extensively researched in applied computer science from HCl and software engineering perspectives. Tailorability allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user tailorability in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. In this work we introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of distributed monitoring application for 12 GeV KEK Proton Synchrotron as an example. The software prototypes used in this work are based on a generic tailoring platform (VEDICI), which allows decoupling of tailoring interfaces and runtime components. While representing a reusable application-independent framework, VEDICI can be potentially applied for tailoring of arbitrary compositional Web-based applications

  20. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms

  1. Design of time control system of high current proton linear accelerator

    The high current proton linear accelerator with high duty ratio will be used in accelerator driven sub-critical system. Time control system of high current proton linear accelerator is introduced. During accelerator operation, the system provides necessary trigger and clock signal. Accuracy and stability of the system has important implications for operation of the linear accelerator. Design of serial communication hardware based on ALTERA company cyclone Ⅲ FPGA, programming of serial communication drivers and functional modules, and implement of human-computer interface based on LabVIEW are realized. The testing results show that the whole system meets requirements of time control system of the high current proton accelerator. (authors)

  2. Distributed Networked Control System for Power Supply System of the Accelerator Based on Canopen Protocol

    Network based control system for a power supply unit of the linear accelerator was developed. Front-end level of the system is based on CAN fieldbus with CANopen and CANEX application level protocols. Both local and remote control foe each CANopen node is provided. Level 2 control stations of the system are ARM9 CPU based machines, operating under Linux OS

  3. Tuners, microphonics, and control systems in superconducting accelerating structures

    Manufacturing tolerances, thermal stresses, acoustic noise, and cooling fluid pressure fluctuations all conspire to make the field in the cavity not precisely what the accelerator physicist has in mind. Tuners and control systems are the tools used to fight back: they regulate the field in the cavity to the desired magnitude and phase. Amplitude and phase stabilities are usually of greater concern in superconducting cavities than in copper cavities. The key to achieving a stable gradient and phase is feedback. A probe must be placed in the cavity itself to sense the present cavity status. Electronic control is then given the responsibility to correct for any measured disturbance. The electronic modulation of forward power has been implemented in a number of ways. Perhaps the easiest implementation to understand has two separate control loops, one for amplitude and one for phase (phase-amplitude loops). Other major electronic control devices include complex phasor modulator (CPM-amplitude loops), vector loop, and variable reactance. 'Slow' tuners are used when the tuning range of the 'fast' tuner plus electronic tuning is not enough to compensate for unpredictability or drift in the static frequency setting. (N.K.)

  4. FPGA Mezzanine Cards for CERN’s Accelerator Control System

    Alvarez, P R; Lewis, J; Serrano, J; Wlostowski, T

    2009-01-01

    Field Programmable Gate Arrays (FPGAs) have become a key player in modern real time control systems. They offer determinism, simple design, high performance and versatility. A typical hardware architecture consists of an FPGA interfaced with a control bus and a variable number of digital IOs, ADCs and DACs depending on the application. Until recently the low-cost hardware paradigm has been using mezzanines containing a front end interface plus custom logic (typically an FPGA) and a local bus that interfaces the mezzanine to a carrier. As FPGAs grow in size and shrink in price, hardware reuse, testability and bus access speed could be improved if the user logic is moved to the carrier. The new FPGA Mezzanine Card (FMC) Vita 57 standard is a good example of this new paradigm. In this paper we present a standard kit of FPGA carriers and IO mezzanines for accelerator control. Carriers form factors will be VME, PCI and PCIe. The carriers will feature White Rabbit support for accurate synchronization of distributed...

  5. Design of a Normal Acceleration and Angle of Attack Control System for a Missile Having Front and Rear Control Surfaces

    Ochi, Yoshimasa

    Precise normal acceleration control is essential for missile guidance. Missiles with both front and rear control surfaces have a higher ability to control normal acceleration than missiles with front or rear control surfaces only. From the viewpoint of control, however, the control problem becomes a two-input-one-output problem, where generally control input cannot be determined uniquely. This paper proposes controlling angle of attack as well as normal acceleration, which makes the problem a two-input-two-output one and determines the controls uniquely. Normal acceleration command is given by a guidance system, but angle of attack command must be generated in accordance to the acceleration command without affecting the normal acceleration control. This paper also proposes such a command generator for angle of attack. Computer simulation is conducted using a nonlinear missile model to investigate the effectiveness of the control system along with control systems designed using three other methods.

  6. High-performance control system for a heavy-ion medical accelerator

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species

  7. A high performance control system for a heavy ion medical accelerator

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species

  8. A Study of the Design of Acceleration Control System for Missiles

    Kajita, Takanori; Eguchi, Hirofumi

    A 2-degrees of freedom PID controller is designed for a maneuvering acceleration control system. This design method is based on the combination of PID and IPD controller. Results show that (1) IP controller is superior to PI controller for the damper loop controller, (2) the selection of PI or IP controller as for the acceleration controller depends on the tradeoffs between the responsibility and the reduction of inverse response.

  9. The CEBAF [Continuous Electron Beam Accelerator Facility] control system architecture

    The focus of this paper is on CEBAF's computer control system. This control system will utilize computers in a distributed, networked configuration. The architecture, networking and operating system of the computers, and preliminary performance data are presented. We will also discuss the design of the operator consoles and the interfacing between the computers and CEBAF's instrumentation and operating equipment

  10. Computational means of the new control system for the U-70 accelerating complex

    Computational means of the new control system (CS) of the U-70 accelerating complex are described. The last includes the LU-30 linear accelerator, U-15 booster ring injector, U-70 main accelerator, systems for fast and slow beam extraction. The new integrated CS is based on the standard three-level architecture. Control of the CS network is realized with a special computer, fulfilling also the security functions

  11. Evolution and development of the Oak Ridge 25URC tandem accelerator control system

    Since acceptance of the 25URC accelerator in 1982, we have continued to develop and improve both the accelerator control system and associated software. In this paper, we describe these improvements and also discuss how our experience with the present system would influence the architecture and design of future, similar systems

  12. A flexible graphic display system for accelerator control

    A flexible graphic display system for controlling the KEK Photon Factory storage ring has been developed. A VME computer locally controls the graphic display system and communicates with the host control computer through a RS-232C link. Graphic pictures are prepared in the local system by an interactive operation using either a tablet or a keyboard. The host control computer is free from any load due to graphics processing. In an on-line operation, pictures are displayed and modified by simple command strings from the host computer. A 'picture stack' method has been developed for this graphics system. The latest demanded picture always has top priority to be presented on each display monitor. Previous pictures are saved in a stack and can reappear when the current picture has been freed. (author)

  13. Computer network for on-lne control system of the IHEP ring accelerator

    A block-diagram for computer network of the IHEP ring accelerator control system is substantiated. The interface card for ES-1010 computer is described, it operates simultaneously on 4 channels. The system software for computer network is considered

  14. A distributed control system status report of the munich accelerator control

    A system of computers connected by a local area network (ARCNET) controls the Munich accelerator facility. This includes ion sources, the tandem accelerator, the beam transport system, the gas handling plant, parts of experimental setup and also an ion source test bench. ARCNET is a deterministic multi-master network with arbitrary topology, using coax cables and optical fibers. Crates with single board computers and I/O-boards (analog, parallel or serial digital), dependent on the devices being controlled, are distributed all over the building. Personal computers serve as user interfaces. The LAN communication protocol is a client/server protocol. Communication language and programming language for the single board computers is Forth. The user mode drivers in the personal computers are also written in Forth. The tools for the operators are MS-Windows applications, programmed in Forth, C++ or Visual Basic. Links to MS-Office applications are available, too

  15. Evolution of the Argonne Tandem Linear Accelerator System (ATLAS) control system

    Given that the Argonne Tandem Linear Accelerator System (ATLAS) recently celebrated its 25. anniversary, this paper will explore the past, present, and future of the ATLAS Control System, and how it has evolved along with the accelerator and control system technology. ATLAS as we know it today, originated with a Tandem Van de Graff in the sixties. With the addition of the Booster section in the late seventies, came the first computerized control. ATLAS itself was placed into service on June 25, 1985, and was the world's first superconducting linear accelerator for ions. Since its dedication as a National User Facility, more than a thousand experiments by more than 2,000 users worldwide, have taken advantage of the unique capabilities it provides. Today, ATLAS continues to be a user facility for physicists who study the particles that form the heart of atoms. Its most recent addition, CARIBU (Californium Rare Isotope Breeder Upgrade), creates special beams that feed into ATLAS. ATLAS is similar to a living organism, changing and responding to new technological challenges and research needs. As it continues to evolve, so does the control system: from the original days using a DEC PDP-11/34 computer and two CAMAC crates, to a DEC Alpha computer running Vsystem software and more than twenty CAMAC crates, to distributed computers and VME systems. Future upgrades are also in the planning stages that will continue to evolve the control system. (authors)

  16. Phase and amplitude control system for Stanford Linear Accelerator

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  17. Overview of the control system for the IFMIF/EVEDA accelerator

    The accelerator for Engineering Validation and Engineering Design Activity (EVEDA) of International Fusion Materials Irradiation Facility (IFMIF) will produce 9 MeV/125 mA CW beam. The IFMIF/EVEDA accelerator consists of Injector, RFQ, the first section of SC HWR Linac, etc. The control system for the IFMIF/EVEDA accelerator consists of Personnel Protection System (PPS), Machine Protection System (MPS), Central Control System (CCS), Local Area Network (LAN), Timing System (TS) and Local Control System (LCS). The PPS, MPS, CCS, LAN and TS have been developed by JAEA, and the LCS has been charged by EU. For these JAEA tasks, the design scenario taking into account of radio-activation, the development status and the development schedule for each accelerator components (Injector, RFQ, SC HWR linac, RF system, etc.) are presented in details. (author)

  18. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  19. Thermionic gun control system for the CEBAF [Continuous Electron Beam Accelerator Facility] injector

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  20. Optimizing a mobile robot control system using GPU acceleration

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  1. Fast digital feedback control systems for accelerator RF system using FPGA

    Feedback control system plays important role for proper injection and acceleration of beam in particle accelerators by providing the required amplitude and phase stability of RF fields in accelerating structures. Advancement in the field of digital technology enables us to develop fast digital feedback control system for RF applications. Digital Low Level RF (LLRF) system offers the inherent advantages of Digital System like flexibility, adaptability, good repeatability and reduced long time drift errors compared to analog system. To implement the feedback control algorithm, I/Q control scheme is used. By properly sampling the down converted IF signal using fast ADC we get accurate feedback signal and also eliminates the need of two separate detectors for amplitude and phase detection. Controller is implemented in Vertex-4 FPGA. Codes for control algorithms which controls the amplitude and phase in all four quadrants with good accuracy are written in the VHDL. I/Q modulator works as common actuator for both amplitude and phase correction. Synchronization between RF, LO and ADC clock is indispensable and has been achieved by deriving the clock and LO signal from RF signal itself. Control system has been successfully tested in lab with phase and amplitude stability better then ±1% and ±1° respectively. High frequency RF signal is down converted to IF using the super heterodyne technique. Super heterodyne principal not only brings the RF signal to the Low IF frequency at which it can be easily processed but also enables us to use the same hardware and software for other RF frequencies with some minor modification. (author)

  2. Operation status of EPICS IOC works on various systems in KEKB accelerator control system

    At the KEKB, many accelerator equipments are controlled by EPICS based control system. EPICS(Experimental Physics and Industrial Control System) is a toolkit to construct control systems. At the time of KEKB operation started, EPICS IOC(Input Output Controller) could execute on VxWorks OS only. So we use VME computers with VxWorks OS as IOC. However, recently, EPICS IOC is able to execute on multi-platform, for example, Linux, Windows and Mac OS X.We introduced EPICS IOC which worked in not only VME computer with VxWorks but also Linux PC, PLC CPU with Linux and Windows-based Oscilloscope. In this paper, we will present status of EPICS IOC works on various systems in KEKB. (author)

  3. 77 FR 22637 - Federal Motor Vehicle Safety Standards; Accelerator Control Systems

    2012-04-16

    ... driven portion of hybrid vehicles. Finally, the 2002 NPRM proposed a new procedure which would use engine... to recalls, most notably the Jan. 2010 recall of accelerator pedal assemblies in Toyota vehicles . We... CFR Part 571 Federal Motor Vehicle Safety Standards; Accelerator Control Systems; Proposed Rule...

  4. Redundancy scheme for multi-layered accelerator control system

    The control system for SRS Indus-2 has three-layered architecture. There are VMEbus based stations at the lower two layers that are controlled by their respective CPU board. The 'Profibus' fieldbus standard is used for communication between these VME stations distributed in the field. There is a Profibus controller board at each station to implement the communication protocol. The mode of communication is master-slave (command-response) type. This paper proposes a scheme to implement redundancy at the lower two layers namely Layer-2 (Supervisory Layer / Profibus-master) and Layer-3 (Equipment Unit Interface Layer / Profibus-slave). The redundancy is for both the CPU and the communication board. The scheme uses two CPU boards and two Profi controller boards at each L-3 station. This helps in decreasing any downtime resulting either from CPU faults or communication board faults that are placed in the field area. Redundancy of Profi boards provides two active communication channels between the stations that can be used in different ways thereby increasing the availability on a communication link. Redundancy of CPU boards provides certain level of auto fault-recovery as one CPU remains active and the other CPU remains in standby mode, which takes over the control of VMEbus in case of any fault in the main CPU. (author)

  5. The Ground Test Accelerator control system database: Configuration, run-time operation, and access

    A database is used to implement the interface between the control system and the accelerator and to provide flexibility in configuring the I/O. This flexibility is necessary to allow the control system to keep pace with the changing requirements that are inherent in an experimental environmental environment. This is not achieved without cost. Problems often associated with using databases are painful data entry, poor performance, and embedded knowledge of the database structure in code throughout the control system. This report describes how the database configuration, access, conversion, and execution in the Ground Test Accelerator (GTA) Control System overcome these problems. 2 figs

  6. Equipment for controlling test benches charged particle accelerator pulse power supply systems

    Composition of the off-line and manual control device system designed for experimental testing the pulse supply systems of charged particle accelereators is considered. The system includes following devices: a manual remote control desk, a sysnchronization device with fibre-optical commutation programmed pulse shape generator digital sources of reference voltage. Performances of all these devices are presented. 1 ref

  7. The operator console for accelerator control systems on a virtual machine

    TBy progress of computer technology, the performance of PC is growing and the price is low. PC is used for control of a small-scale accelerator facility from the merit of availability and low price. However, the reliability of PC is lower than the computer for factories, such as VME, cPCI, and TCA. It seems that using virtual PC has an advantage in maintenance of an accelerator control system. This paper describes the advantage and problem of virtual PC for accelerator control. (author)

  8. On-line system for control of vacuum pump stations of an accelerating complex

    On-line system for control of vacuum pump stations of the heavy ion accelerator is described. Block diagram of hardware part of the system is considered and main functions of software are described. ELEKTRONIKA MS-0507 microcomputer is used for control. The developed system of control is oriented to CAMAC, VECTOR standards and it allows to use microcomputer of another type at application of the respective controller

  9. Status of the Advanced Photon Source and its accelerator control system

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  10. On designing a control system for a new generation of accelerators

    A well-conceived plan of attack is essential to the task of designing a control system for a large accelerator. Several aspects of such a plan have been investigated during recent work at LAMPF on design strategies for an Advanced Hadron Facility control system. Aspects discussed in this paper include: identification of requirements, creation and enforcement of standards, interaction with users, consideration of commercial controls products, integration with existing control systems, planning for continual change, and establishment of design reviews. We emphasize the need for the controls group to acquire and integrate accelerator design information from the start of the design process. We suggest that a controls design for a new generation of accelerators be done with a new generation of software tools. 12 refs

  11. Database Foundation For The Configuration Management Of The CERN Accelerator Controls Systems

    Zaharieva, Z; Peryt, M

    2011-01-01

    The Controls Configuration Database (CCDB) and its interfaces have been developed over the last 25 years in order to become nowadays the basis for the Configuration Management of the Controls System for all accelerators at CERN. The CCDB contains data for all configuration items and their relationships, required for the correct functioning of the Controls System. The configuration items are quite heterogeneous, depicting different areas of the Controls System – ranging from 3000 Front-End Computers, 75 000 software devices allowing remote control of the accelerators, to valid states of the Accelerators Timing System. The article will describe the different areas of the CCDB, their interdependencies and the challenges to establish the data model for such a diverse configuration management database, serving a multitude of clients. The CCDB tracks the life of the configuration items by allowing their clear identification, triggering of change management processes as well as providing status accounting and aud...

  12. Non-linear stochastic optimal control of acceleration parametrically excited systems

    Wang, Yong; Jin, Xiaoling; Huang, Zhilong

    2016-02-01

    Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.

  13. Program-adapted system for control of accelerators for national economy

    To unify control, interlocking and signalling systems (CIS) for accelerators of applied purporses results of CIS tests and checking of its algorithmic principles are given. A logic unit of CIS is made on the base of a specialized computing system. Control of accelerator systems were carried out on a special small-sized panel in the form of monocircuit. Realized apparatus part and fast response of controlling device have determined the following restrictions in a volume of processed data: quantity of binary data transducers-128, quantity of binary executive elements-32, quantity of program commands in mass memory-600, mean time of data processingf - 2s

  14. Digital low-level RF control system for high intensity proton RFQ accelerator

    The resonant frequency of the high intensity proton RFQ accelerator at the Institute of High Energy Physics is 352.2 MHz, and the control precision of the accelerating field is ± 1 degree in phase, respectively. In order to accomplish these requirements, a digital low-level RF (LLRF) control system is adopted. This system includes three parts: the accelerating field amplitude and phase control, the cavity resonant frequency control and the high power interlock protection. The down-conversion of the cavity sampling signal and the up-conversion of the feedback excitation signal are realized by the analog devices. The real time feedback control of amplitude and phase adopts digital I/Q demodulation, and is assembled in a FPGA block, where three DSP blocks are used for communication and cooperate the FPGA to process data. The online debugging result satisfies the requirements of the control precision. (authors)

  15. High Power RF Test of the Digital Feedback Control System for the PEFP Accelerator

    To control the RF field in the accelerating cavity for the PEFP (Proton Engineering Frontier Project) proton accelerator, a digital feedback control system has been developed. The stability requirements of the RF field are ±1% in amplitude and ± .deg. in phase. The digital feedback control system is based on the commercial FPGA PMC board hosted in VME board. The analog front-end was also developed which contains the IQ modulator, RF mixer, attenuators etc. To check the performance of the digital feedback control system, low power test with a dummy cavity has been performed with an intentional perturbation and shown that the feedback system rejected the perturbation as expected. High power RF test with a klystron has been performed and an accelerating field profile was measured. In addition, the pulse-to-pulse stability was checked by pulse operation with 0.1 Hz repetition rate. The detailed high power test results will be given in this paper

  16. Implementing portable channel access server software in the KEKB accelerator control system

    KEKB (KEK B-factory) accelerators are under construction and the control computer system for them is also in the last phase of installation. KEKB accelerators are composed of two storage rings, namely, HER (High Energy Ring for electrons of 8 GeV) and LER (Low Energy Ring for positrons of 3.5 GeV). These rings are placed in the underground tunnel in which former TRISTAN electron-positron colliding accelerator was. We have been constructing control system for KEKB from the scratch based on EPICS (Experimental Physics and Industrial Control Systems). But, for the injector linac, its control computer system was rejuvenated just a few years ago and it is not an EPICS based system but an original one. To operate KEKB accelerators, tuning of the linac as the injector for the KEKB rings is thought to be very essential. Ideally, KEKB control system can control both KEKB rings and linac. And both operators at linac control room and at KEKB control room should be able to monitor and adjust equipment of the other accelerators. For that purpose, we have to develop suitable method in between two systems to communicate with each other. In the EPICS collaborations, there is a Portable CA (Channel Access) Server for EPICS developed at Los Alamos National Laboratory for SUN workstations. We decided to modify it for our purposes and have been implementing it to KEKB control system step by step. And now, we can monitor and set magnetic field of Q-magnets in the linac, control beam transport magnets in the linac beam line, control klystrons, and measure beam positions by strip-line monitors through EPICS. In the near future, other equipment of the linac will be added to the CA server before the commissioning of the KEKB rings. (author)

  17. The control system of CERN accelerators vacuum (current status and recent improvements)

    The vacuum control system of most of the CERN accelerators is based on Siemens PLCs and on PVSS SCADA. After the transition from the LHC commissioning phase to its regular operation, there has been a number of additions and improvements to the vacuum control system. They were driven by new technical requirements and by feedback from the accelerator operators and vacuum specialists. New control functions have been implemented in the PLCs; new tools have been developed for the SCADA, while its ergonomic and navigation have been enhanced. (authors)

  18. The Control System of CERN Accelerators Vacuum (Current Status and Recent Improvements)

    Gomes, P; Blanchard, S; Boccioli, M; Girardot, G; Vestergard, H; Kopylov, L; Mikheev, M

    2011-01-01

    The vacuum control system of most of the CERN accelerators is based on Siemens PLCs and on PVSS SCADA. After the transition from the LHC commissioning phase to its regular operation, there has been a number of additions and improvements to the vacuum control system. They were driven by new technical requirements and by feedback from the accelerator operators and vacuum specialists. New control functions have been implemented in the PLCs; new tools have been developed for the SCADA, while its ergonomics and navigation have been enhanced.

  19. Database foundation for the configuration management of the CERN accelerator controls systems

    The Controls Configuration Database (CCDB) and its interfaces have been developed over the last 25 years in order to become nowadays the basis for the Configuration Management of the Control System for all accelerators at CERN. The CCDB contains data for all configuration items and their relationships, required for the correct functioning of the Control System. The configuration items are quite heterogeneous, depicting different areas of the Control System - ranging from 3000 Front-End Computers, 75000 software devices allowing remote control of the accelerators, to valid states of the Accelerators Timing System. The article will describe the different areas of the CCDB, their inter-dependencies and the challenges to establish the data model for such a diverse configuration management database, serving a multitude of clients. The CCDB tracks the life of the configuration items by allowing their clear identification, triggering of change management processes as well as providing status accounting and audits. This required the development and implementation of a combination of tailored processes and tools. The Controls System is a data-driven one - the data stored in the CCDB is extracted and propagated to the controls hardware in order to configure it remotely. Therefore a special attention is placed on data security and data integrity as an incorrectly configured item can have a direct impact on the operation of the accelerators. (authors)

  20. PROLOG language application for alarm system realization in accelerator control

    Such PROLOG features as backtracking, matching and recursive data representation are powerful tools for ALARM system realization. Although the main idea is the possibility to describe some technical system in recursive form, backtracking and matching are ideal for processing recursive data structures. This paper represents a technique which would allow PROLOG language application for ALARM system realization using an example of the KEK LINAC magnet system. The technique is based on an object-oriented internal data representation in terms of objects, properties, relations and knowledge conception. In addition, each property value is characterized by a typical 'time life'. (author)

  1. Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks

    Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

  2. Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks

    Hartman, Steven M [ORNL

    2012-01-01

    Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

  3. Automatic Control System of Ion Electrostatic Accelerator and Anti-Interference Measures

    An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network communication with the purpose to improve the intelligence level of the accelerator and to enhance the ability of monitoring, collecting and recording parameters. In view of the control system' structure, some anti-interference measures have been adopted after analyzing the interference sources. The measures in hardware include controlling the position of the corona needle, using surge arresters, shielding, ground connection and stabilizing the voltage. The measures in terms of software involve inter-blocking protection, soft-spacing, time delay, and diagnostic and protective programs. The electromagnetic compatible ability of the control system has thus been effectively improved

  4. Design and status of the SuperKEKB accelerator control network system

    We have upgraded the accelerator control network system for SuperKEKB, the next generation B-factory experiment in Japan. The new network system has the higher performance based on the wider bandwidth data transfer, and more reliable and redundant network configuration. We have changed the network configuration on the connection of the KEK laboratory network to enhance the network security. We also introduced the VLAN segmentation into the new network system. For the SuperKEKB construction, the new wireless network system has installed into the whole 3 km circumference accelerator tunnel. (author)

  5. Broadband accelerator control network

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  6. Artificial intelligence research in particle accelerator control systems for beam line tuning

    Pieck, Martin [Los Alamos National Laboratory

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  7. VME control system for synchrotrons of Heavy Ion Medical Accelerator in Chiba

    Beam of accelerated ions such as carbon, neon, argon etc., is called heavy ion beam. When heavy ion beam irradiates a human body, its interaction with tissues becomes strong sharply at the certain depth which is determined by its energy. Heavy ion is expected to be very effective and suitable radiotherapy tool because it can hit a deep-seated cancer while a damage to normal organs along the path will be minimal. HIMAC(Heavy Ion Medical Accelerator in Chiba), now under construction in National Institute of Radiological Sciences, is the first accelerator facility that is dedicated to heavy ion radiotherapy in the world. This paper describes about Timing System and Magnet Power Supply Control System of HIMAC synchrotron. These are among VME-based control systems, of which Hitachi Zosen Corp. is in charge, under subcontract through Hitachi Ltd. (author)

  8. Asynchronous data change notification between database server and accelerator controls system

    Database data change notification (DCN) is a commonly used feature. Not all database management systems (DBMS) provide an explicit DCN mechanism. Even for those DBMS's which support DCN (such as Oracle and MS SQL server), some server side and/or client side programming may be required to make the DCN system work. This makes the setup of DCN between database server and interested clients tedious and time consuming. In accelerator control systems, there are many well established software client/server architectures (such as CDEV, EPICS, and ADO) that can be used to implement data reflection servers that transfer data asynchronously to any client using the standard SET/GET API. This paper describes a method for using such a data reflection server to set up asynchronous DCN (ADCN) between a DBMS and clients. This method works well for all DBMS systems which provide database trigger functionality. Asynchronous data change notification (ADCN) between database server and clients can be realized by combining the use of a database trigger mechanism, which is supported by major DBMS systems, with server processes that use client/server software architectures that are familiar in the accelerator controls community (such as EPICS, CDEV or ADO). This approach makes the ADCN system easy to set up and integrate into an accelerator controls system. Several ADCN systems have been set up and used in the RHIC-AGS controls system.

  9. The Los Alamos accelerator control system data base: A generic instrumentation interface

    Controlling experimental-physics applications requires a control system that can be quickly integrated and easily modified. One aspect of the control system is the interface to the instrumentation. An instrumentation set has been chosen to implement the basic functions needed to monitor and control these applications. A data-driven interface to this instrumentation set provides the required quick integration of the control system. This type of interface is limited by its built-in capabilities. Therefore, these capabilities must provide an adequate range of functions to be of any use. The data-driven interface must support the instrumentation range requird, the events on which to read or control the instrumentation and a method for manipulating the data to calculate terms or close control loops. The database for the Los Alamos Accelerator Control System addresses these requirements. (orig.)

  10. The Datacon Master -- Renovation of a Datacon field bus communications system for accelerator control

    The Datacon system is a serial coaxial transformer isolated communication field bus system used to control and monitor accelerator remote devices. The Datacon field bus has been a BNL accelerator standard since its initial use in 1965. A single Datacon field bus supports up to 256 devices on a multidrop RG62A/U coaxial cable with up to 33 devices or 2,000 feet between repeaters or buffered branches. The forcing factor to renovate was the inability to repair the aging PDP-8E and PDP10 computers. The maintenance on this aging system was costly and the large number of accelerator devices dependent on the Datacon system could not be converted in a reasonable period of time to a new modern field bus. A commercial VMEbus host CPU mated with a custom designed VMEbus SBC event driven serial communications engine featuring a superscaler RISC 32-bit Intel i960 CPU met the design challenge. The commercial VMEbus host runs the VxWorks real-time operating system and connects to UNIX workstations over a Ethernet LAN. The V110 Datacon Master is the custom designed front end computer that integrates an accelerator event time line system with accelerator devices for up to 8 ppm users adding new capabilities

  11. Operating experience with a new accelerator control system based upon microprocessors

    This paper describes the design and operating experience with a high performance control system tailored to the requirements of the SuperHILAC accelerator. A large number (20) of the latest 16-bit microcomputer boards are used in a parallel-distributed manner to get a high system bandwidth. Because of the high bandwidth, software costs and complexity are significantly reduced. The system by its very nature and design is easily upgraded and repaired. Dynamically assigned and labeled knobs, together with touch-panels, allow a flexible and efficient operator interface. An X-Y vector graphics system provides for display and labeling of real-time signals as well as general plotting functions. This control system allows attachment of a powerful auxiliary computer for scientific processing with access to accelerator parameters

  12. Controllable Laser Ion Acceleration

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  13. The distributed control system of Shanghai mini-cyclotron accelerator mass spectrometer (SMCAMS)

    It is mainly introduced the composition, structure, hardware and software designing, function, and the method of communication between the host computer and the ADAM modules of the distributed control system on Shanghai Mini-cyclotron Accelerator Mass Spectrometer (SMCAMS). Some detail problems such as controlling the devices staying on high voltage by ADAM-4541 (RS-485 to Fiber Optic Convertor) and optical fiber are also introduced

  14. HEPTech Academia – Industry Matching Event on Control Systems for Accelerators and Detectors

    Anastasios Charitonidis (FP/KT), on behalf of the organizing committee

    2013-01-01

    The HEPTech AIME (Academia – Industry Matching Event) on Controls for accelerators and detectors will take place from 2 to 3 December in Athens, Greece.   The HEPTech network invites you to Demokritos NCSR to participate in an event that aims to bring together Academia and Industry to share ideas and potential applications of Controls Technology. The event will provide an overview of current Controls Systems for large scale projects including the LHC, the CMS and ATLAS detectors, medical accelerator facilities and contributions from companies active in these fields. CERN Computer Centre. The programme will also address some of the challenges faced by future High Energy Physics projects in the controls area and provide a glimpse into the future requirements of research infrastructures such as the European Spallation Source (ESS), and the Extreme Light Infrastructure (ELI), while exploring different possible approaches to the commercialisation of controls technology. The event ...

  15. Upgrading the control system for the Accelerators at the Svedberg Laboratory

    Two accelerators at The Svedberg Laboratory in Uppsala, the Gustaf Werner cyclotron and the CELSIUS ring, will get a new control system. At present both the cyclotron and the ring have their own control systems based on S99 and PDP-11 minicomputers respectively. There are also a number of subsystems which are controlled separately from the stand-alone PC based consoles (ECR ion source, electron cooler, vacuum system). The goal of the rejuvenation is to integrate all existing control systems and provide the new system with an uniform operators interface based on workstations. The obsolete S99 microcomputers will be substituted with a VME system and all subsystems will be connected to the Ethernet. The upgrade strategy enabling the transformation of the system without any long shut-down period is discussed. Hardware and software planned for the upgrade is presented together with a discussion of expected problems. (author)

  16. Complex Event Processing Approach To Automated Monitoring Of Particle Accelerator And Its Control System

    Karol Grzegorczyk

    2014-01-01

    Full Text Available This article presents the design and implementation of a software component for automated monitoring and diagnostic information analysis of a particle accelerator and its control system. The information that is analyzed can be seen as streams of events. A Complex Event Processing (CEP approach to event processing was selected. The main advantage of this approach is the ability to continuously query data coming from several streams. The presented software component is based on Esper, the most popular open-source implementation of CEP. As a test bed, the control system of the accelerator complex located at CERN, the European Organization for Nuclear Research, was chosen. The complex includes the Large Hadron Collider, the world’s most powerful accelerator. The main contribution to knowledge is by showing that the CEP approach can successfully address many of the challenges associated with automated monitoring of the accelerator and its control system that were previously unsolved. Test results, performance analysis, and a proposal for further works are also presented.

  17. Multichannel computerized control system of current pulses in LIU-30 electron accelerator

    Gerasimov, A I; Kulgavchuk, V V; Pluzhnikov, A V

    2002-01-01

    In LIU-30 power linear pulsed induction electron accelerator (40 MeV, 10 kA, 25 ns) 288 radial lines with water insulation serve as energy accumulators and shapers of accelerating voltage pulses. The lines are charged simultaneously up to 500 kV using a system comprising 72 Arkadiev-Marx screened generators. To control parameter of synchronous pulses of charging current with up to 60 kA amplitude and 0.85 mu s duration in every of 72 charging circuits one applies a computer-aided system. Current pulse is recorded at output of every generator using the Rogowski coil signal from which via a cable line is transmitted to an analog-digital converter, is processed with 50 ns sampling and is recorded to a memory unit. Upon actuation of accelerator the signals are sequentially or selectively displayed and are compared with pulse typical shape

  18. Multichannel computerized control system of current pulses in LIU-30 electron accelerator

    In LIU-30 power linear pulsed induction electron accelerator (40 MeV, 10 kA, 25 ns) 288 radial lines with water insulation serve as energy accumulators and shapers of accelerating voltage pulses. The lines are charged simultaneously up to 500 kV using a system comprising 72 Arkadiev-Marx screened generators. To control parameter of synchronous pulses of charging current with up to 60 kA amplitude and 0.85 μs duration in every of 72 charging circuits one applies a computer-aided system. Current pulse is recorded at output of every generator using the Rogowski coil signal from which via a cable line is transmitted to an analog-digital converter, is processed with 50 ns sampling and is recorded to a memory unit. Upon actuation of accelerator the signals are sequentially or selectively displayed and are compared with pulse typical shape

  19. SNS Accelerator Facility Target Safety and Non-Safety Control Systems

    The SNS is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006 with first beam on target at approximately 200 watts. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix PLCs interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  20. Exploring a new paradigm for accelerators and large experimental apparatus control systems

    The integration of web technologies and web services has been, in the recent years, one of the major trends in upgrading and developing control systems for accelerators and large experimental apparatuses. Usually, web technologies have been introduced to complement the control systems with smart add-on and user friendly services or, for instance, to safely allow access to the control system to users from remote sites. Despite this still narrow spectrum of employment, some software technologies developed for high performance web services, although originally intended and optimized for these particular applications, deserve some features that would allow their deeper integration in a control system and, eventually, using them to develop some of the control system's core components. In this paper we present the conclusion of the preliminary investigations of a new design for an accelerator control system and associated machine data acquisition system (DAQ), based on a synergic combination of network distributed object caching (DOC) and a non-relational key/value database (KVDB). We investigated these technologies with particular interest on performances, namely speed of data storage and retrieve for the distributed caching, data throughput and queries execution time for the database and, especially, how much this performances can benefit from their inherent adaptability. (authors)

  1. A Java-based control system for the Orsay tandem accelerator

    A new control system was designed for the Tandem MP-9 at Orsay. Because of the existing devices located on high voltage platforms and the lack of space inside the accelerator, in-house electronic cards based on micro-controllers and an optical fieldbus were developed to collect data. VME processors under VxWorks, a real time operating system, manage the fieldbus, concentrate the accelerator information and transmit it to the supervisory software through the ethernet network. This software consists of a collection of Java virtual machines (JVM) running on several Unix workstations and PCs under Windows. Some of the Java virtual machines manage apparatus, instruments, local display and connections to an object database and VME concentrators. Others manage general synoptics. JVMs communicate between themselves with RMI protocol and JRPC with VME concentrators. So the supervisory software can be spread over several control stations throughout the network. (author)

  2. A Java-based control system for the Orsay tandem accelerator

    Dominique Delbourg; Gérard Penillault; Tran Khan Tuong; Martial Decourt; Nicole Borome; Henri Harroch; Bertrand Lessellier; Bernard Waast; Jean Pierre Mouffron

    2002-12-01

    A new control system was designed for the tandem MP-9 at Orsay. Because of the existing devices located on high voltage platforms and the lack of space inside the accelerator, in-house electronic cards based on micro-controllers and an optical fieldbus were developed to collect data. VME processors under VxWorks, a real time operating system, manage the fieldbus, concentrate the accelerator information and transmit it to the supervisory software through the ethernet network. This software consists of a collection of Java virtual machines (JVM) running on several Unix work-stations and PCs under Windows. Some of the Java virtual machines manage apparatus, instruments, local display and connections to an object database and VME concentrators. Others manage general synoptics. JVMs communicate between themselves with RMI protocol and JRPC with VME concentrators. So the supervisory software can be spread over several control stations throughout the network.

  3. Cavity control system advanced modeling and simulations for TESLA linear accelerator and free electron laser

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced. The elementary analysis of the cavity resonator on RF (radio frequency) level and low level frequency with signal and power considerations is presented. For the field vector detection the digital signal processing is proposed. The electromechanical model concerning Lorentz force detuning is applied for analyzing the basic features of the system performance. For multiple cavities driven by one klystron the field vector sum control is considered. Simulink model implementation is developed to explore the feedback and feed-forward system operation and some experimental results for signals and power considerations are presented.

  4. On-line control system for KUTI-20 heavy ion collective accelerator

    The structure and design peculiarities of the control system for the first part of the KUTI-20 heavy ion collective accelerator comprising the SILUND-20 linear induction accelerator and Adhesator-20 charged toroide adiabatic generator are considered; electron ring shaping and their loading with ions is realized in the generator. The control system has centralized hierarchial structure with autonomous subsystems. The system includes the SM-4 minicomputer equipped with a set of external devices; the SM-4 is interfaced with two the ''Electronika-60'' and one the KM001 microcomputers by means of the KI021 series interframe communication units. The ''Elektronika-60'' microcomputers are equipped with memory units and interfaces for connection of CAMAC equipment

  5. Power supply and control system of the gun for an electron pulse high-current accelerator

    The control and supply system is described intended for a gun of the EhLIT-L high-current pulsed electron accelerator. The accelerator parameters are as follows: electron energy of 500 KeV, current of 600 A, accelerating voltage semiwave duration of 15 μs, current pulse duration of 0.5 μs, pulse frequency of 5 Hz, max. The required parameters of the master pulse are: voltage of 0 to 60 kV; current up to 200 A; pulse duration of 500 ns; edge duration below 70 ns; amplitude instability +-5%; pulse frequency of 10 Hz, max.; the filament power drain of the gun is 1500 W

  6. Experimental study of liquid-metal target designs of accelerating-controlled systems

    Models of a liquid-metal target of an accelerator-controlled system have been experimentally studied at the Nizhny Novgorod State Technical University to develop an optimal design of the flow part of the target. The main explored variants of liquid-metal targets are: Design with a diaphragm (firm-and-impervious plug) mounted on the pipe tap of particle transport from the accelerator cavity to the working cavity of the liquid-metal target. Design without a diaphragm on the pipe tab of particle transport from the accelerator. The study was carried out in a high-temperature liquid-metal test bench under the conditions close to full-scale ones: the temperature of the eutectic lead-bismuth alloy was 260degC - 400degC, the coolant mass flow was 5-80 t/h, and the rarefaction in the gas cavity was 105 Pa, the coefficient of geometric similarity equal to 1. The experimental studies of hydrodynamic characteristics of flow parts in the designs of targets under full-scale conditions indicated high efficiency of a target in triggering, operating, and deactivating modes. Research and technology instructions for designs of the flow part of the liquid-metal target, the target design as a whole, and the target circuit of accelerator-controlled systems were formulated as a result of the studies. (author)

  7. Development of PLC based chiller control system for 3 MeV DC electron beam accelerator

    A 3 MeV DC electron beam accelerator is under development at Electron beam center, Kharghar, Navi Mumbai. The accelerator has various sections, where heat is generated during operation due to factors contributed by efficiency. The areas that produce heat such as beam dump, HV oscillator, scan horn region etc need to be cooled. A 5TR chiller unit has been installed in a room in the vicinity of the accelerator. Standard chiller unit available in the market do not provide a remote control interface, instead they provide on panel local controllers for the operation of the system. A PLC based interlock has been developed to control all the chiller components such as Cooling tower fan, cooling tower pump, ON/OFF operation of compressor etc. All the components used in chiller unit are interfaced to PLC besides temperature sensor. All machine safety interlock have been introduced by using suitable hardware such as antifreeze coil used to trip compressor in case of control failure may make the ice of water being cooled. The operating point of the chiller has been set to provide water 22-24 degree C. The PLC has been programmed using ladder logic programming method. The system is fully automatic. The system can be operated by setting the set temperature say 22 degree C and temperature hysteresis say 2 degree C. Pressing start button operates different units of the system automatically. Its starts the compressor when the water temperature is 22+2 degree C and stops the compressor when temp reaches at 22 degree C. Any unexpected failure such as 3Phase sequence change/phase failure, over load relay trip, excess temp are indicated by a hooter sound along with fault display on the HMI. A touch screen panel has been provided for human machine interface. This development of control system for chiller sub-system of accelerator has helped us in bringing the chiller unit control from the control room using Ethernet link using Modbus TCP-IP. The implementation of PLC controlled chiller

  8. Complex Event Processing Approach To Automated Monitoring Of Particle Accelerator And Its Control System

    Karol Grzegorczyk; Vito Baggiolini; Krzysztof Zieliński

    2014-01-01

    This article presents the design and implementation of a software component for automated monitoring and diagnostic information analysis of a particle accelerator and its control system. The information that is analyzed can be seen as streams of events. A Complex Event Processing (CEP) approach to event processing was selected. The main advantage of this approach is the ability to continuously query data coming from several streams. The presented software component is based on Esper, the most...

  9. 15th International Conference on Accelerator and Large Experimental Physics Control Systems

    2015-01-01

    ICALEPCS is a biennial series of conferences that is intended to: * Provide a forum for the interchange of ideas and information between control system specialists working on large experimental physics facilities around the world (accelerators, particle detectors, fusion reactors, telescopes, etc.); * Create an archival literature of developments and progress in this rapidly changing discipline; * Promote, where practical, standardization in both hardware and software; Promote collaboration between laboratories, institutes and industry.

  10. Modular system for the control of complex accelerators using portable software

    When designing the Mainz Microtron control system, care was taken to achieve an expandable system with long-lived application software. A multi-processor system was built from the beginning. The software is split into modules, according to function and position in hierarchy, which are distributed over the computers. The decoupling which results from modularity eases software development and maintainance. RATFOR was chosen as implementation language. With a message system for communication between the modules, several aims were reached at once: (1) symbolic addressing of the accelerator components throughout the software layers, (2) transparent access to I/O devices (CAMAC) at remote computers, (3) multitasking in FORTRAN (and RATFOR) programs, (4) a separating layer for adaptation to different operating systems - essential points for software portability. The system is in operation since April 1979 for the control of MAMI stage I

  11. Spallation Neutron Source Accelerator Facility Target Safety and Non-safety Control Systems

    The Spallation Neutron Source (SNS) is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006, with first beam on target at approximately 200 W. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix Programmable Logic Controllers (PLCs) interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  12. Project and implementation of the control system for the microtron accelerator

    The racetrack microtron under construction at the Instituto de Fisica da Universidade de Sao Paulo, is a recirculated electron accelerator that has a few hundred parameters to be monitored and controlled. These parameters belong to several subsystems like transport, vacuum, RF, and diagnostics. To decrease the cognitive burden of the operator and help him to control the machine a computerized control system was built, pervading all subsystems. This system allows the operator to measure and change the parameters of interest, or alerts him when some of these parameters exceed a pre-defined value. The system was built using the three-layer model methodology: input and output device layer; device server layer; and the user interface layer. In the input and output device layer, several instruments with different communication interfaces were used, either commercial or in-house built. In the device server layer industrial PCs were used. The user interface layer uses a conventional PC running a human-computer interface built with assistance of the Lab Windows/CVI software (National Instruments). The control system must satisfy requirements of flexibility, upgradability and cost, must stand during the accelerator lifetime and allow maintenance by the Lab's technical support. (author)

  13. Instrumentation and control system for the AT-2 accelerator test stand

    A data-driven subroutine package, written for our accelerator test stand (ATS), is described. This flexible package permits the rapid writing and modifying of data acquisition, control, and analysis programs for the many diverse experiments performed on the ATS. These structurally simple and easy to maintain routines help to control administratively the integrity of the ATS through the use of the database. Our operating experience indicates that the original design goals have been met. We describe the subroutines, database, and our experiences with this system

  14. Centralized digital control of accelerators

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors

  15. An improved phase-control system for superconducting low-velocity accelerating structures

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs

  16. A portable accelerator control toolkit

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development

  17. Upgrade of the server architecture for the accelerator control system at the Heidelberg ion therapy center

    The Heidelberg Ion Therapy Center (HIT) is a heavy ion accelerator facility located at the Heidelberg university hospital and intended for cancer treatment with heavy ions and protons. It provides three treatment rooms for therapy of which two using horizontal beam nozzles are in clinical use and the unique gantry with a 360 degrees rotating beam port is currently under commissioning. The proprietary accelerator control system runs on several classical server machines, including a main control server, a database server running Oracle, a device settings modeling server (DSM) and several gateway servers for auxiliary system control. As the load on some of the main systems, especially the database and DSM servers, has become very high in terms of CPU and I/O load, a change to a more up-to-date blade server enclosure with four redundant blades and a 10 Gbit internal network architecture has been decided. Due to budgetary reasons, this enclosure will at first only replace the main control, database and DSM servers and consolidate some of the services now running on auxiliary servers. The internal adaptable network will improve the communication between servers and database. As all blades in the enclosure are configured identically, one dedicated spare blade is used to provide redundancy in case of hardware failure. Additionally we plan to use simulation software to further improve redundancy and consolidate the services running on gateways and to make dynamic load balancing available to account for different performance needs e.g. in commissioning or therapy use of the accelerator. (authors)

  18. Design of a new controller for vacuum interlock system at BARC-TIFR Pelletron Accelerator Facility

    The BARC-TIFR Pelletron Accelerator Facility has been operational for last twenty two years with progressively increased efficiency. The entire beam transport line is maintained under ultra high vacuum (UHV), Turbo Pumps, Getter and Ion Pumps are being used to maintain UHV in beam transport line. Safety of the pumps is ensured by interlocking operation of gate valves with the safe vacuum level. A new type of controller has been designed using CMOS ICs' for vacuum interlock system. Three pneumatically controlled UHV gate valves can be operated from this unit. This unit is interfaced with a multi cold cathode controller (Pfeiffer make) unit and accordingly generates signal to operate three gate valves. This paper presents the design features of the controller and its utilization. (author)

  19. A distributed CAN bus based embedded control system for 750 KeV DC accelerator

    This paper describes a distributed embedded system that uses a high performance mixed signal controller C8051F040 for its DAQ nodes and is based on CAN bus protocol for remote monitoring and controlling of various subsystems of 750 KeV DC accelerator based irradiation facility at RRCAT, Indore. A PC with integrated PCI CAN card communicates with intelligent DAQ nodes over CAN bus and each node is interfaced with a subsystem. An opto isolated SN65HVD230 CAN driver is interfaced between each node and physical bus. Remote frames and message prioritising are used for efficient control. The PC application is developed using LabVIEW 8.6. The proposed system is more reliable and noise immune as compared to previously used systems that initially used a centralized system based on C8051 controller. This was then upgraded to a distributed system that used microcontroller AduC812 and communicated over RS485 link. The new system has been integrated and tested satisfactorily for its designed performance with test jigs that simulated the actual subsystems with a bus length of 75 meters. First the complete scheme of the system is presented, and then the hardware and software designs are discussed. (author)

  20. INDIRECT ACCELERATED ADAPTIVE FUZZY CONTROLLER

    ZHU Liye; FANG Yuan; ZHANG Weidong

    2008-01-01

    According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To satisfy with system performance, an indirect accelerated adaptive fuzzy (IAAF) controller is proposed, and its general form is presented. The general form IAAF controller ensures necessary control criteria and system's global stability using Lyapunov Theorem. It has been proved that the close-loop system error converges to a small neighborhood of equilibrium point. The optimal IAAF controller is derived to guarantee the process's shortest settling time. Simulation results indicate the IAAF controller make the system more stable, accurate, and fast.

  1. A new LabVIEW-based control system for the Naval Research Laboratory Trace Element Accelerator Mass Spectrometer

    A new LabVIEW-based control system for the existing tandem accelerator and new AMS components has been implemented at the Trace Element Accelerator Mass Spectrometry (TEAMS) facility at the Naval Research Laboratory. Through the use of Device Interfaces (DIs) distributed along a fiber optic network, virtually every component of the accelerator system can be controlled from any networked computer terminal as well as remotely via modem or the internet. This paper discusses the LabVIEW-based control software, including remote operation, automatic calculation of ion optical component parameters, beam optimization, and data logging and retrieval

  2. Accelerator system and method of accelerating particles

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  3. Client Server design and implementation issues in the Accelerator Control System environment

    In distributed system communication software design, the Client Server model has been widely used. This paper addresses the design and implementation issues of such a model, particularly when used in Accelerator Control Systems. in designing the Client Server model one needs to decide how the services will be defined for a server, what types of messages the server will respond to, which data formats will be used for the network transactions and how the server will be located by the client. Special consideration needs to be given to error handling both on the server and client side. Since the server usually is located on a machine other than the client, easy and informative server diagnostic capability is required. The higher level abstraction provided by the Client Server model simplifies the application writing, however fine control over network parameters is essential to improve the performance. Above mentioned design issues and implementation trade-offs are discussed in this paper

  4. The application software of the CERN PS accelerator controls system - analysis of its cost and resources

    The CERN PS accelerators have evolved into one of the world's most sophisticated high energy physics facility. The variety of beams and their high repetition rate means that a most sophisticated controls system is required. This reflects on the application software. At the time of the completion of the new control system, nearly 1000 programs, amounting to around 450 000 lines of code, have been developed at the cost of approximately 120 man-years. The span of this software ranges from real-time application programs to special purpose development and management tools. This paper documents the cost, resources and production of this software project. These are analyzed in terms of the structure of the application software. Rules-of-thumb are suggested for estimating the required effort at various phases of the project and to define the implementation strategy. (orig.)

  5. Utilization of Integrated Process Control, Data Capture, and Data Analysis in Construction of Accelerator Systems

    Jefferson Lab has developed a web-based system that integrates commercial database, data analysis, document archiving and retrieval, and user interface software, into a coherent knowledge management product (Pansophy). This product provides important tools for the successful pursuit of major projects such as accelerator system development and construction, by offering elements of process and procedure control, data capture and review, and data mining and analysis. After a period of initial development, Pansophy is now being used in Jefferson Lab's SNS superconducting linac construction effort, as a means for structuring and implementing the QA program, for process control and tracking, and for cryomodule test data capture and presentation/analysis. Development of Pansophy is continuing, in particular data queries and analysis functions that are the cornerstone of its utility

  6. Validation of a new control system for Elekta accelerators facilitating continuously variable dose rate

    Bertelsen, Anders; Lorenzen, Ebbe L; Brink, Carsten

    2011-01-01

    ) as well as BVDR. Using CVDR opposed to BVDR for VMAT has the potential of reducing the treatment time but may lead to lower dosimetric accuracy due to faster moving accelerator parts. Using D7 and a test version of Integrity, differences in ability to control the accelerator, treatment efficiency...

  7. Modern control techniques for accelerators

    Goodwin, R.W.; Shea, M.F.

    1984-05-01

    Beginning in the mid to late sixties, most new accelerators were designed to include computer based control systems. Although each installation differed in detail, the technology of the sixties and early to mid seventies dictated an architecture that was essentially the same for the control systems of that era. A mini-computer was connected to the hardware and to a console. Two developments have changed the architecture of modern systems: (a) the microprocessor and (b) local area networks. This paper discusses these two developments and demonstrates their impact on control system design and implementation by way of describing a possible architecture for any size of accelerator. Both hardware and software aspects are included.

  8. Control system for linear induction accelerator LIA-2: the structure and hardware

    The Power Linear Induction Accelerator (LIA) for flash radiography is commissioned in the Budker Institute of Nuclear Physics (BINP) in Novosibirsk. It is a facility producing pulsed electron beam with energy 2 MeV, current 1 kA and spot size less than 2 mm. Beam quality and reliability are required for radiography experiments. The control system of LIA is functionally divided into four subsystems: pulsed power control subsystem, timing subsystem, waveform recording subsystem and interlock subsystem. Features and structure of distributed control system ensuring these demands are discussed. Control system hardware based on CompactPCI and PMC standards is embedded directly into power pulsed generators. CAN-BUS and Ethernet are used as interconnection protocols. Parameters and essential details for measuring equipment and control electronics produced in BINP and available COTS are presented. LIA was tested at single pulse regime of operation and a diameter of the electron beam less than 1.3 mm was achieved. High reliability of the hardware was demonstrated in an environment of high-voltage discharges

  9. A modified feed-forward control system at the Accelerator Test Facility

    A modified feed-forward control system has been operated at the Brookhaven Accelerator Test Facility to control the phase and amplitude of two high power klystron rf systems used to power a photocathode rf gun and a traveling wave electron linac. The changes to the control algorithm include an improved handling of cross coupling between the amplitude and the phase channels, an improved calibration routine that allows for changes in the matrix elements due to the variable base-line and improved filtering. The modifications to the software include modularity, portability, and user-friendliness. Improvements to the hardware include a linearized phase and amplitude controller with dc biasing for an improved dynamic range. The feed-forward system can handle nonlinear and noninstantaneous systems. With simultaneous regulation of two channels, the phase and the amplitude fluctuations over a time span of more than 3 μS were reduced to less than ±0.2 degree and ±0.2%, from the initial ±2.7 degree and ±1.8%, respectively. copyright 1997 American Institute of Physics

  10. Personal computers in accelerator control

    Anderssen, P. S.

    1988-07-01

    The advent of the personal computer has created a popular movement which has also made a strong impact on science and engineering. Flexible software environments combined with good computational performance and large storage capacities are becoming available at steadily decreasing costs. Of equal importance, however, is the quality of the user interface offered on many of these products. Graphics and screen interaction is available in ways that were only possible on specialized systems before. Accelerator engineers were quick to pick up the new technology. The first applications were probably for controllers and data gatherers for beam measurement equipment. Others followed, and today it is conceivable to make personal computer a standard component of an accelerator control system. This paper reviews the experience gained at CERN so far and describes the approach taken in the design of the common control center for the SPS and the future LEP accelerators. The design goal has been to be able to integrate personal computers into the accelerator control system and to build the operator's workplace around it.

  11. Application of IEEE 1588 to the real-time control system of accelerator

    Background: Time synchronization is one of the core technology of realizing the real-time control of accelerator under the distributed control system architecture. The ordinary crystal frequency deviation of IEEE 1588 causes low synchronous accuracy, which doesn't meet the needs of high precision synchronization. Purpose: This paper proposes an algorithm to improve the synchronization precision caused by the crystal frequency deviation. Methods: According to the basic principle of IEEE 1588 time synchronization, a dynamic frequency compensation (DFC) algorithm module was designed and a test platform was built to verify the feasibility and practicability of the algorithm. The influence of the synchronous cycle and delay jitter of the switch on the synchronization accuracy were analyzed. Results: Experimental results showed the great precision improvement of synchronization after using DFC algorithm. Conclusion: Low synchronous accuracy caused by the crystal frequency deviation can be improved by using DFC algorithm implemented for precision time protocol (PTP) of IEEE 1588. (authors)

  12. Centralized digital control of accelerators

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  13. Robust control of accelerators

    Joel, W.; Johnson, D.; Chaouki, Abdallah T.

    1991-07-01

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modelling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this article, we report on our research progress. In section 1, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section 2, the results of our proof-of-principle experiments are presented. In section 3, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf. without demodulating, compensating, and then remodulating.

  14. Temperature control system for the study of single event effects in integrated circuits using a cyclotron accelerator

    Bakerenkov, A.S., E-mail: as_bakerenkov@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Belyakov, V.V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Kozyukov, A.E. [Joint-Stock Company Institute of Space Device Engineering (JSC ISDE), Moscow (Russian Federation); Pershenkov, V.S.; Solomatin, A.V.; Shurenkov, V.V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-02-11

    The temperature control system for the study of single event disruptions produced by hard ion impacts in integrated circuits is described. Heating and cooling of the irradiated device are achieved using thermoelectric modules (Peltier modules). The thermodynamic performance of the system is estimated. The technique for the numerical estimation of the main parameters of the temperature control system for cooling and heating is considered. The results of a test of the system in a vacuum cell of an accelerator are presented.

  15. Temperature control system for the study of single event effects in integrated circuits using a cyclotron accelerator

    The temperature control system for the study of single event disruptions produced by hard ion impacts in integrated circuits is described. Heating and cooling of the irradiated device are achieved using thermoelectric modules (Peltier modules). The thermodynamic performance of the system is estimated. The technique for the numerical estimation of the main parameters of the temperature control system for cooling and heating is considered. The results of a test of the system in a vacuum cell of an accelerator are presented

  16. Fiber-optic control system for LAE 10 accelerator and pulse radiolysis experimental set

    The LAE 10 accelerator is used in nanosecond pulse radiolysis experiments as a source of 10 ns pulses of high energy electrons. The accelerator system was elaborated in the years 1991-1993. Inseparable connections of the optical fiber marrow with E/O and O/E converters (executed in welding technique) ensured a high stability of the optical parameters at a very long time. The preparation of connections needed adoption of expensive instrumentation from an optoelectronic laboratory in Warsaw. In presented paper authors describe their own action to improve operation of the LAE 10 accelerator existing in the Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

  17. Asynchronous data change notification between database server and accelerator control systems

    Database data change notification (DCN) is a commonly used feature, it allows to be informed when the data has been changed on the server side by another client. Not all database management systems (DBMS) provide an explicit DCN mechanism. Even for those DBMS's which support DCN (such as Oracle and MS SQL server), some server side and/or client side programming may be required to make the DCN system work. This makes the setup of DCN between database server and interested clients tedious and time consuming. In accelerator control systems, there are many well established software client/server architectures (such as CDEV, EPICS, and ADO) that can be used to implement data reflection servers that transfer data asynchronously to any client using the standard SET/GET API. This paper describes a method for using such a data reflection server to set up asynchronous DCN (ADCN) between a DBMS and clients. This method works well for all DBMS systems which provide database trigger functionality. (authors)

  18. Specific features of planning algorithms for dispatching software of a digital computer, operating in an accelerator control system

    The main principles are presented of a program dispatching system (DS) of the computer operating in the control and data acquisition system of the accelerator. The DS is intended for planning and execution of operating program sequence in accordance with the operational features of the accelerator. Modularity and hierarchy principles are the main characteristics of the system. The ''Planner'' module is described. The module regulates inquiries for utilization of the processor and memory and ensures their service. The ''Planner'' operation algorithm provides a simultaneous execution of programs with the processes occurring in the accelerator. The ''Planner'' planning algorithm controls presence of the programs requested and ensures their execution under multiprogram conditions. Brief characteristics of other modules of the DS are given. They are the ''distributor'', ''loader'', and ''interrupter''. Characteristics of the planning algorithms described have been realized in the DS and found in full agreement with all the conditions and limitations of the system

  19. Radiation control in accelerator facilities

    In view of radiation control, particle accelerator facilities have posed various problems involving radiation (mainly neutron) leakage, occupational exposure, environmental aspects in the surrounding area, and waste management. The intent of the workshop was to discuss these problems. This report contains nine topics that were presented and discussed: (1) Radiation safety system for the AVF cyclotron and the cyclotron cascade project at the Research Center for Nuclear Physics, Osaka University; (2) Calculation for the shielding design in the RIKEN Ring Cyclotron Facility; (3) Shielding design method for high-energy protons in the National Laboratory for High-energy Physics (KEK); (4) Radiation safety programme for the uses of medical accelerators in the National Institute of Radiological Sciences; (5) Development of the new stack air monitor; (6) Environmental radiation monitoring in the vicinity of the intense 14 Mev neutron source facility; (7) Radiation control around the KEK-proton synchroton; (8) Radiation safety control system for the RIKEN Ring Cyclotron; (9) Evaluation of radioactivity and skyshine induced by neutron production in an accelerator facility. (Namekawa, K.)

  20. FMIT accelerator vacuum system

    The Fusion Materials Irradiation Test (FMIT) Facility accelerator is being designed to continuously accelerate 100-mA deuterons to 25 MeV. High vacuum pumping of the accelerator structure and beam lines will be done by ion pumps and titanium sublimation pumps. The design of the roughing system includes a Roots blower/mechanical pump package. For economy the size of the system has been designed to operate at 10-6 torr, where beam particle scattering on residual gases is negligible. For minimum maintenance in this neutron factory, the FMIT vacuum system is designed from the point of view of simplicity and reliability

  1. Towards a common monitoring system for the accelerator and technical control rooms at CERN

    Arduini, Gianluigi; Bätz, M; Carron de la Morinais, J M; Manglunki, Django; Priestnall, K; Robin, G; Ruette, M; Sollander, P

    2000-01-01

    The communication and coordination between the CERN accelerator and technical control rooms will be a critical issue for an efficient operation of the LHC and its injectors, which are expected to provide also beams for fixed target experiments, for detector component tests and for other activities including machine development. Early detection of faults in the accelerator and technical infrastructure (electricity, cooling, etc.) and their possible consequences on operation are useful not only to prevent major breakdowns but also to recover from them and to reschedule efficiently machine operation to satisfy the overall beam time requests from the different and concurrent users. To meet these requirements a method to define and provide common monitoring tools for all the actors involved in machine operation has been established. This method has been applied to the SPS accelerator and is being implemented in the PS complex and in the SPS experimental areas.

  2. WindoWorks: A flexible program for computerized testing of accelerator control system electronic circuit boards

    Since most accelerator control system circuit boards reside in a commercial bus architecture, such as CAMAC or VMEbus, a computerized test station is needed for exercising the boards. This test station is needed for the development of newly designed prototypes, for commissioning newly manufactured boards, for diagnosing boards which have failed in service, and for long term testing of boards with intermittent failure problems. WindoWorks was created to address these needs. It is a flexible program which runs on a PC compatible computer and uses a PC to bus crate interface. WindoWorks was designed to give the user a flexible way to test circuit boards. Each test is incapsulated into a window. By bringing up several different windows the user can run several different tests simultaneously. The windows are sizable, and moveable. They have data entry boxes so that the test can be customized to the users preference. The windows can be used in conjunction with each other in order to create supertests. There are several windows which are generic. They can be used to test basic functions on any VME (or CAMAC) board. There are other windows which have been created to test specific boards. New windows for testing specific boards can be easily created by a Pascal programmer using the WindoWorks framework

  3. Vibration control in accelerators

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  4. A control system on production line of 200 kV self-shielded electron accelerator coating solidification

    A description on a control system on production line of 200 kV self-shielded electron accelerator coating solidification, including interface module assignment, the methods of mouse operation, chinese display in english DOS is presented. Although it is designed for special use, yet transformation for other purpose is very simple

  5. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  6. Research on feedback system of synchrotron accelerator

    It is a very complex problem to use feedback control system in synchrotron accelerator. Some scientists design feedback control system to make high energy beam stable in synchrotron accelerator, but it is very rare to see theoretically analysis feedback system in synchrotron accelerator by using new concept of control model. One new feedback control model is a fresh idea to discuss the feedback system more deeply. A topic about feedback control system discussed here will be useful for synchrotron accelerator design and operation. It is an good idea for some scientists and technician to continue study. (authors)

  7. The Advanced Light Source Accelerator Control System at Ten Years from Commissioning

    Biocca, A.; Brown, W.; Domning, E.; Fowler, K; Jacobson, S; McDonald, J.; Molinari, P.; Robb, A; Shalz, L.; Spring, J; Timossi, C.

    2001-01-01

    The Advanced Light Source was commissioned 10 years ago using the newly constructed control system. Further experience with the control system was reported in 1993. In this publication, we report on recent experience with the operation and especially growth of the computer control system and expansion to accommodate the new superconducting bend magnets and fast orbit feedback for the ALS electron storage ring.

  8. Acceleration feedback control (AFC) enhanced by disturbance observation and compensation (DOC) for high precision tracking in telescope systems

    Wang, Qiang; Cai, Hua-Xiang; Huang, Yong-Mei; Ge, Liang; Tang, Tao; Su, Yan-Rui; Liu, Xiang; Li, Jin-Ying; He, Dong; Du, Sheng-Ping; Ling, Yu

    2016-08-01

    In this paper, a cascade acceleration feedback control (AFC) enhanced by a disturbance observation and compensation (DOC) method is proposed to improve the tracking precision of telescope systems. Telescope systems usually suffer some uncertain disturbances, such as wind load, nonlinear friction and other unknown disturbances. To ensure tracking precision, an acceleration feedback loop which can increase the stiffness of such a system is introduced. Moreover, to further improve the tracking precision, we introduce the DOC method which can accurately estimate the disturbance and compensate it. Furthermore, the analysis of tracking accuracy used by this method is proposed. Finally, a few comparative experimental results show that the proposed control method has excellent performance for reducing the tracking error of a telescope system.

  9. open-quote BUBBANET close-quote - A high performance network for the SSC Accelerator Control System

    The Superconducting Super Collider Laboratory imposes particularly strict requirements on data networks used in the control and monitoring of accelerator equipment. These requirements are a consequence of the large size (approximately 100 km of accelerators), large number of control points (544,000), and the complexity of the equipment. An overview of the technical systems to be monitored and the projected data rates is presented, emphasizing systems with stringent data communications requirements. The authors can characterize these requirements in terms of expected network traffic, network throughput or average latency. Analysis of these traffic patterns as applied to different network architectures will aid in identifying the essential components of the final network architecture which meets or exceeds these requirements. They will report on the design decisions and initial results of performance tests on the controls communications network

  10. Cavity digital control testing system by Simulink step operation method for TESLA linear accelerator and free electron laser

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced in this paper. The FPGA -- Field Programmable Gate Array technology has been implemented for digital controller stabilizing cavity field gradient. The cavity SIMULINK model has been applied to test the hardware controller. The step operation method has been developed for testing the FPGA device coupled to the SIMULINK model of the analog real plant. The FPGA signal processing has been verified according to the required algorithm of the reference MATLAB controller. Some experimental results have been presented for different cavity operational conditions.

  11. Control system and environmental parameters monitoring of the Tandetron Accelerator clean room

    A control system and monitoring of humidity and temperature implemented by means of a system based on a microcontroller, an intelligent sensor and a stage of power for the actuators handling is described. The change of the levels of reference of the control system and the monitoring of the physical controlled variables can be carried out from any connected computer to a local net or Internet. (Author)

  12. Efficient control of accelerator maps

    Boreux, Jehan; Carletti, Timoteo; Skokos, Charalampos; Papaphilippou, Yannis; Vittot, Michel

    2011-01-01

    Recently, the Hamiltonian Control Theory was used in [Boreux et al.] to increase the dynamic aperture of a ring particle accelerator having a localized thin sextupole magnet. In this letter, these results are extended by proving that a simplified version of the obtained general control term leads to significant improvements of the dynamic aperture of the uncontrolled model. In addition, the dynamics of flat beams based on the same accelerator model can be significantly improved by a reduced c...

  13. Use of the TACL [Thaumaturgic Automated Control Logic] system at CEBAF [Continuous Electron Beam Accelerator Facility] for control of the Cryogenic Test Facility

    A logic-based control software system, called Thaumaturgic Automated Control Logic (TACL), is under development at the Continuous Electron Beam Accelerator Facility in Newport News, VA. The first version of the software was placed in service in November, 1987 for control of cryogenics during the first superconducting RF cavity tests at CEBAF. In August, 1988 the control system was installed at the Cryogenic Test Facility (CTF) at CEBAF. CTF generated liquid helium in September, 1988 and is now in full operation for the current round of cavity tests. TACL is providing a powerful and flexible controls environment for the operation of CTF. 3 refs

  14. Vacuum control system of the synchrotron light source PF-AR and progress of the accelerator commissioning

    Tanimoto, Y; Nogami, T; Hori, Y

    2003-01-01

    Upgrading project of the synchrotron light source PF-AR was carried out in 2001, and vacuum system was entirely renewed to realize longer beam lifetime and higher stored current. Vacuum control system was unified to the EPICS, which had been already adopted in the KEKB and the injector linear-accelerator control systems. In this system, all of the vacuum devices of the PF-AR except for rough pumps can be controlled and monitored remotely on graphical operation panels. Commissioning of the upgraded PF-AR started successfully in January 2002, and the beam lifetime has been getting longer as the vacuum ducts cleaning process with synchrotron radiation has progressed. In November 2002, the lifetime of a 6.5 GeV-50 mA single-bunched beam is 900 minutes, which is 6 times as long as the value of the old PF-AR. (author)

  15. Micro-controller based fiber optic data telemetry system for the ion source of low energy accelerator facility at BARC

    The Low Energy Accelerator Facility (LEAF) is a 50 keV, high intensity, negative ion accelerator facility that has been set up indigenously at Nuclear Physics Division, BARC. This facility is capable of delivering a wide range of negative ion beams of both light and heavy ions across the periodic table using a SNICS II (Source of Negative Ion by Caesium Sputtering) source. A micro-controller based control and monitoring system has been developed exclusively for the ion source parameters of LEAF. The data control and monitoring system mainly targets acquiring the data from the field in the terms of parameters such as voltages and currents. There are processes which need to be monitored continuously in order to keep certain parameters under check. The microcontroller based fiber optic data telemetry system allows us to perform the aforesaid task. The voltages can be controlled and monitored by providing the inputs and receiving the feedback through a user friendly graphic user interface. With this system one can control the status as well as analog value of the high voltage power supplies like extractor, cathode, filament, focus line heater and oven. This system consists of Fiber optic transceiver, which is connected on serial port (RS 232C) of microcontroller as well as RS232 port of PC. The whole control system is reliable even in noisy environments including RF and worse EMI conditions. This compact modular design is implemented using low cost devices and allows easy and fast maintainability. In the paper, the details of the system are presented. (author)

  16. A simple, digitally controlled, automatic, hysteresis free, high precision energy scanning system for Van de Graaff type accelerators. Pt. 1

    A digitally controlled energy scanning system is described which may be coupled in a simple and inexpensive way to any accelerator which is high voltage stabilized by a beam position sensing 'slit control' system like all single ended or tandem Van de Graaff type machines. The basic idea is to 'fool' the existing stabilization system by deflecting the beam at two well chosen points through small angles using electrostatic deflection plates biased to variable voltages U. It is shown that the ensuing terminal potential variation δV is linearly related to U, the system acting as a U -> δV closed loop feedback amplifier with a gain G0 set only by the beam trajectory in the analyzing magnet and between the plates. G0 is hence independent of acceleration potential, beam particle mass or charge state, the long term stability of G0 being set only by mechanical components. The calibration can thus be made once and for all. The system is strictly hysteresis free and provides means of varying the bombarding energy in small precisely equal steps in a fast and reproducible way. (orig./WL)

  17. BLED: a top-down approach to accelerator control system design

    In many existing controls projects the central database/inventory was introduced late in the project, usually to support installation or maintenance activities. Thus construction of this database was done in a bottom-up fashion by reverse engineering of the installation. However, there are several benefits if the central database is introduced early in the machine design, such as the ability to simulate the system as a whole without having all the IOCs in place, it can be used as an input to the installation/commissioning plan, or act as an enforcer of certain conventions and quality processes. Based on our experience with control systems, we have designed a central database BLED, which is used for storage of machine configuration and parameters as well as control system configuration, inventory, and cabling. The first implementation of BLED supports EPICS, meaning it is capable of storage and generation of EPICS templates and substitution files as well as archive, alarm and other configurations. With a goal in mind to provide functionality of several existing central databases (IRMIS, SNS db, DBSF etc.) a lot of effort has been made to design the database in a way to handle extremely large set-ups, consisting of millions of control system points. Furthermore, BLED also stores the lattice data, thus providing additional information (e.g. survey data) required by different engineering groups. The lattice import/export tools among others support MAD and TraceWin tools formats which are widely used in the machine design community. (author)

  18. Development of control system for critical parameters of medical device sterilization at an electron accelerator

    The hard- and software interfaces that provide on-line control and archiving of the basic parameters of the medical device sterilization (electron energy, beam current, width and shape of the beam scan, the conveyor speed and the absorbed dose in the treated products) have been developed at a radiation-industrial installation LU-10 of NSC KIPT. The main primary sensor of the control system is a stack-type monitor-absorber of the beam located behind the line of movement of the processed objects. Continuous monitoring of the processing parameters is performed by measuring and analyzing the currents from the plates of the monitor in a mode of ''radiation shadow'' created by irradiated objects. The structure of the control system, how it works and the calibration procedures for measuring channels are described.

  19. Better dynamic closed loop control of the PSB rf accelerating system

    Gelato, G.; Magnani, L.

    1977-06-01

    The introduction of pulse-to-pulse modulation (PPM) in the Proton Synchrotron Booster (PSB) requires that a large number of settings be changed on a pulse-to-pulse basis, imposing a very heavy load on the control system and the operators. Many systems, originally not designed for this type of operation, have to be modified either to accept new settings every cycle (values to be adjusted by the operators, switching to be performed by the control system), or to be self-adaptive, i.e., automatically adjusting to the required conditions. The second approach seems preferable, if feasible without excessive increase in complexity or decrease in reliability. In some cases it was actually possible to reduce the complexity and increase the reliability. The modifications in the beam control system are discussed. While reviewing the system's design, additional improvements were found to be possible at moderate cost: they were also, or will be, introduced, and are mentioned accordingly. Mention is made also of a relatively simple method of longitudinal stabilization which has been tested at the PSB.

  20. Better dynamic closed loop control of the PSB rf accelerating system

    The introduction of pulse-to-pulse modulation (PPM) in the Proton Synchrotron Booster (PSB) requires that a large number of settings be changed on a pulse-to-pulse basis, imposing a very heavy load on the control system and the operators. Many systems, originally not designed for this type of operation, have to be modified either to accept new settings every cycle (values to be adjusted by the operators, switching to be performed by the control system), or to be self-adaptive, i.e., automatically adjusting to the required conditions. The second approach seems preferable, if feasible without excessive increase in complexity or decrease in reliability. In some cases it was actually possible to reduce the complexity and increase the reliability. The modifications in the beam control system are discussed. While reviewing the system's design, additional improvements were found to be possible at moderate cost: they were also, or will be, introduced, and are mentioned accordingly. Mention is made also of a relatively simple method of longitudinal stabilization which has been tested at the PSB

  1. Control problems in very large accelerators

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have the same types of control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. It is the purpose of this paper to look at the special control problems of large accelerators, which the author shall arbitrarily define as those with a length or circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system

  2. An Accelerator Control Middle Layer Using MATLAB

    Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab--the Accelerator Toolbox (AT) for machine simulations, LOCO for accelerator calibration, Matlab Channel Access Toolbox (MCA) for EPICS connections, and the Middle Layer. This paper will describe the ''middle layer'' software toolbox that resides between the high-level control applications and the low-level accelerator control system. This software was a collaborative effort between ALS (LBNL) and SPEAR3 (SSRL) but easily ports to other machines. Five accelerators presently use this software. The high-level Middle Layer functionality includes energy ramp, configuration control (save/restore), global orbit correction, local photon beam steering, insertion device compensation, beam-based alignment, tune correction, response matrix measurement, and script-based programs for machine physics studies

  3. Software problems of on-line control system of the multi-section linear electron accelerator and some estimations of its efficiency

    Problems of software management of automation control system of electron linac, the main purpose of which is to ensure data acquisition, processing and representation for all the levels of accelerating complex control, are considered. The software comprises 14 computer codes with total volume of about 13 thousand commands and it is oriented for the following task conduction: the accelerator operation control, diagnostics, failure forecasting and investigation of the accelerator systems, forecasting of the accelerator operation on the whole, repair work planning. The system efficiency is estimated on the basis of data recieved during several years of test and industrial operation. Thus, operation cycles during 1975-1977 when the first stage of information-measurement system reached its designed capacity, the average time of mean-cycles-between-failures increased by 30%. About half the time of mean-cycles-between-failures may be referred to the direct or indirect effects caused by the information-measurement system

  4. Temperature measurement and control system of the superconducting accelerator - nuclotron elements

    The system provides the temperature measurement of magnetic elements, nitrogen shield and some non-structure elements of Nuclotron in more than 600 control points. As temperature sensors the serial resistors TVO are used. The 7th power polynomial describes the resistance dependence of the element's temperature. Under such condition the measurement accuracy at the cryogenic temperature (∼ 4 K) is about ∼ 0,8%. The system is based on the computer INDUSTRIAL PC, connected to the Nuclotron local computer network. The measuring electronic apparatus is made in PC and CAMAC standards. The system provides the measurement of the helium pressure in direct and back flows, the helium and nitrogen levels and pressure in the separators and in the tank, as well. The measured results are stored on the network server disk to permit the observation of the current and archive information by means of any Nuclotron local network computer. (author)

  5. Development of the nanometer order vibration control system for advanced accelerators

    For the International Linear Collider (ILC) project, we must align electromagnets near the IR (Interaction Region) by the accuracy of 1 nm. This is because the beams are stopped down to several nm in the vertical direction to improve its luminosity. Therefore, the plinth that was able to align in 1 nm accuracy was produced. Six piezo actuators are built into the plinth, and we can adjust the position by these expansion and contraction. However, the ground vibration with the amplitude of several nm that are originated by traffic and waves obstructs the alignment. Therefore, we developed the vibration control system to deny this ground vibration. This is a feedback system that denies the vibration of the plinth by moving the piezo actuator at high speed. It is understood that the vibration with the amplitude more than the nm order is limited to the frequency band of 30 Hz or less. So the speed of the feedback system is enough if it is about 50 Hz. The displacement of the plinth is monitored with the electrostatic capacity type displacement sensor, and data is processed by PLC (Programmable Logic Controller). We can succeed to confirm the operation, and weaken the vibration of about 100 nm to about 20 nm for 10 - 20 Hz. However, the system has the delay of 8 ms. So our system is too slow to feed back for 50 Hz vibration. And the displacement sensor with a laser interferometer is scheduled to be developed to improve accuracy because the electrostatic capacity type displacement sensor's resolution is about 20 nm. (author)

  6. Control problems in very large accelerators

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have similar control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. Both of these factors must be taken into account in determining the optimum way of carrying out the control functions. Small machines should use standard equipment and software for control as much as possible, as special developments for small quantities cannot normally be justified if all costs are taken into account. On the other hand, the very great number of devices needed for a large machine means that, if special developments can result in simplification, they may make possible an appreciable reduction in the control equipment costs. It is the purpose of this report to look at the special control problems of large accelerators, which the author shall arbitarily define as those with a length of circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system. Most of the first part of this report was presented as a paper to the 1985 Particle Accelerator Conference. It has now been extended to include a discussion on the special case of the controls for the SSC

  7. Accelerator vacuum system elements

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  8. The equipment access software for a distributed UNIX-based accelerator control system

    This paper presents a generic equipment access software package for a distributed control system using computers with UNIX or UNIX-like operating systems. The package consists of three main components, an application Equipment Access Library, Message Handler and Equipment Data Base. An application task, which may run in any computer in the network, sends requests to access equipment through Equipment Library calls. The basic request is in the form Equipment-Action-Data and is routed via a remote procedure call to the computer to which the given equipment is connected. In this computer the request is received by the Message Handler. According to the type of the equipment connection, the Message Handler either passes the request to the specific process software in the same computer or forwards it to a lower level network of equipment controllers using MIL1553B, GPIB, RS232 or BITBUS communication. The answer is then returned to the calling application. Descriptive information required for request routing and processing is stored in the real-time Equipment Data Base. The package has been written to be portable and is currently available on DEC Ultrix, LynxOS, HPUX, XENIX, OS-9 and Apollo domain. ((orig.))

  9. Definition of the loading of process digital computer, used in the same class of accelerator control systems

    A relationship has been studied between computer loading on the one part and the properties of the parameter under control and discrete interval value on the other part. The computer loading is characterized by an inquiry probability value per calculation of the correcting signal. A mathematic expressing has been obtained which determined the inquiry probability. The expression is a multidimensional integral. The Monte-Carlo method has been employed for computation of the integral. A structural diagram of the algorithm is presented which elaborates the method so as to compute the probability. An error of the method has been assessed. The algorithm has been employed on the M-220 computer. The results obtained confirm correctness of the suggested methods of determination of the computer loading for operation in the accelerator control system

  10. Application of Smalltalk language for accelerator control

    This paper describes the results of studies for object-oriented control system creation. Using VisualWorks environment based on Smalltalk we created a set of programs, such as Control Model Editor, Control Model Scanner and Control Views, for developing and running an object-oriented model of an accelerator. Our system allows the user to easily create a class library which can be used to develop a number of control programs. The object model defines the object under control, the control logic and graphics for displaying control objects' states. Our experience shows that object-oriented software development is faster compared with traditional languages, and provides more functionality. VisualWorks is a multiplatform environment, and all applications can be ported to different operating systems with only minor changes. VisualWorks also provides high performance, which is important for time-critical control applications. (orig.)

  11. Acceleration Feedback-Based Active and Semi-Active Seismic Response Control of Rail-Counterweight Systems of Elevators

    Rildova

    2005-01-01

    Full Text Available Based on the observations in the past earthquake events, the traction elevators in buildings are known to be vulnerable to earthquake induced ground motions. Among several components of an elevator, the counterweight being heaviest is also known to be more susceptible than others. The inertial effects of the counterweight can overstress the guide rails on which it moves. Here we investigate to use the well-known acceleration feedback-based active and semi-active control methods to reduce stresses in the rails. The only way a control action can be applied to a moving counterweight-rail system is through a mass damper placed in the plane of the counterweight. For this, a part of the counterweight mass can be configured as a mass damper attached to a small actuator for an active scheme or to a magneto-rheological damper for a semi-active scheme. A comprehensive numerical study is conducted to evaluate the effectiveness of the proposed configuration of control system. It is observed that the two control schemes are effective in reducing the stress response by about 20 to 25% and improve the system fragility over a good range of seismic intensities.

  12. Accelerator modeling system for the future

    Many computer programs and a variety of models exist for the design of accelerator lattices and the correction of errors. Many physicists contributed to this work by developing codes to suit a variety of machines. At present, we are integrating some of these codes into a unified framework to design and control any type of machine. We will refer to this system of interactive accelerator design, control, and analysis codes as the All-In-One Modeling system (AIM). This paper will explore the utilities of AIM for future accelerator modeling and control. As an example, we will describe a procedure to produce both a linear and a nonlinear model for SPEAR

  13. A Relational Database Model for Managing Accelerator Control System Software at Jefferson Lab

    The operations software group at the Thomas Jefferson National Accelerator Facility faces a number of challenges common to facilities which manage a large body of software developed in-house. Developers include members of the software group, operators, hardware engineers and accelerator physicists.One management problem has been ensuring that all software has an identified owner who is still working at the lab. In some cases, locating source code for ''orphaned'' software has also proven to be difficult. Other challenges include ensuring that working versions of all operational software are available, testing changes to operational software without impacting operations, upgrading infrastructure software (OS, compilers, interpreters, commercial packages, share/freeware, etc), ensuring that appropriate documentation is available and up to date, underutilization of code reuse, input/output file management,and determining what other software will break if a software package is upgraded. This paper will describe a relational database model which has been developed to track this type of information and make it available to managers and developers.The model also provides a foundation for developing productivity-enhancing tools for automated building, versioning, and installation of software. This work was supported by the U.S. DOE contract No. DE-AC05-84ER40150

  14. Workshop Engages PCs in Accelerator Controls

    To discuss the rapidly growing and changing use of personal computers (PCs) in accelerator control systems, 80 accelerator controls specialists from 26 institutions in North America, Europe and Asia attended the 6. International Workshop on Personal Computers and Particle Accelerator Controls, PCaPAC2006, held October 24-27 at Jefferson Lab in Newport News, Virginia. PCs have become increasingly applicable to the control of accelerators as their computing capacities have increased exponentially over the last 10 years. Capabilities that once required the power available only from expensive, small-market systems offered by DEC, Sun or IBM can now be obtained with commodity hardware offered by many vendors. The price/performance ratio presented by any standard PC makes a compelling case for using PC hardware in accelerator controls wherever possible. The PCaPAC meeting underscored the importance of collaborative control system development. Several talks focused on additions to three such systems, TINE, TANGO and EPICS. The diverse contributions to these toolkits, both in content and source, demonstrate the power of leveraged software development across a number of facilities. TINE originated in DESY's desire to give users a unified software bus above disparate underlying platforms. TINE discussions at PCaPAC centered on the toolkit's interface layers, including address redirection and integration with other control systems. TANGO has been a collaborative effort from its inception. Based on CORBA, this open-source controls toolkit is a registered project in the source forge system. The workshop TANGO presentation discussed contributions from four TANGO institutions, and mentioned a broad range of new tools, from user interface applications to code generators and database integration software. EPICS, which was started at LANL in the 1980s, includes contributions from dozens of institutions around the world. EPICS-related PCaPAC discussions included virtual machines at

  15. The Spallation Neutron Source accelerator system design

    Henderson, S., E-mail: stuarth@fnal.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Abraham, W. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Aleksandrov, A. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allen, C. [Techsource, Inc., 1475 Central Avenue, Suite 250, Los Alamos, NM 87544-3291 (United States); Alonso, J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Arenius, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Arthur, T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Assadi, S. [Techsource, Inc., 1475 Central Avenue, Suite 250, Los Alamos, NM 87544-3291 (United States); Ayers, J.; Bach, P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Badea, V. [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States); Battle, R. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Beebe-Wang, J. [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States); Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); and others

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ∼100 high-power RF power systems, a 2 K cryogenic plant, ∼400 DC and pulsed power supply systems, ∼400 beam diagnostic devices and a distributed control system handling ∼100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  16. An Accelerator Control Middle Layer Using MATLAB

    Matlab is an interpretive programming language originally developed for convenient use with the LINPACK and EISPACK libraries. Matlab is appealing for accelerator physics because it is matrix-oriented, provides an active workspace for system variables, powerful graphics capabilities, built-in math libraries, and platform independence. A number of accelerator software toolboxes have been written in Matlab -- the Accelerator Toolbox (AT) for model-based machine simulations, LOCO for on-line model calibration, and Matlab Channel Access (MCA) to connect with EPICS. The function of the MATLAB ''MiddleLayer'' is to provide a scripting language for machine simulations and on-line control, including non-EPICS based control systems. The MiddleLayer has simplified and streamlined development of high-level applications including configuration control, energy ramp, orbit correction, photon beam steering, ID compensation, beam-based alignment, tune correction and response matrix measurement. The database-driven Middle Layer software is largely machine-independent and easy to port. Six accelerators presently use the software package with more scheduled to come on line soon

  17. Robust rf control of accelerators

    The problem of controlling the variations in the rf power systems can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. One can design wither a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and therefore, shall not be pursued. In contrast, the robust control method leads to simplified hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico has led to the development and implementation of a new rf power feedback system. In this paper, we report on our research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, results of our proof-of-principle experiments are presented. In section three, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf without demodulating, compensating, and then remodulating

  18. Robust RF control of accelerators

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. One can design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. The research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new rf power feedback system. In this paper, the authors report on their research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, the results of their proof-of principle experiments are represented. In section three, they describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of their approach is that the control hardware is implemented directly in rf without demodulating, compensating, and the remodulating

  19. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  20. Upgrade of accelerator radiation safety system for SPring-8

    The accelerator safety interlock system to protect persons from the radiation damages has been operated in SPring-8. The accelerator safety interlock system is monitoring the condition of safety equipment. If the condition is unsafe, the system stops the electron beam. The accelerator safety interlock system currently running is based on the operation mode control. Since the operation mode based system is quite complex, the system has some problems. Therefore, we are planning to construct new accelerator safety interlock system. We'll report the situation of current accelerator safety interlock system and the conceptual design of new accelerator safety interlock system. (author)

  1. Lorentz contraction and accelerated systems

    Tartaglia, Angelo; Ruggiero, Matteo Luca

    2003-01-01

    The paper discusses the problem of the Lorentz contraction in accelerated systems, in the context of the special theory of relativity. Equal proper accelerations along different world lines are considered, showing the differences arising when the world lines correspond to physically connected or disconnected objects. In all cases the special theory of relativity proves to be completely self-consistent

  2. Lorentz contraction and accelerated systems

    The paper discusses the problem of the Lorentz contraction in accelerated systems, in the context of the special theory of relativity. Equal proper accelerations along different world lines are considered, showing the differences arising when the world lines correspond to physically connected or disconnected objects. In all cases the special theory of relativity proves to be completely self-consistent

  3. Object oriented programming interfaces for accelerator control

    Several years ago, the AGS controls group was given the task of developing software for the RHIC accelerator. Like the AGS, the RHIC control system needs to control and monitor equipment distributed around a relatively large geographic area. A local area network connects this equipment to a collection of UNIX workstations in a central control room. Similar software had been developed for the AGS about a decade earlier, but isn't well suited for RHIC use for a number of reasons. Rather than adapt the AGS software for RHIC use, the controls group opted to start with a clean slate. To develop software that would address the shortcomings of the AGS software, while preserving the useful features that evolved through years of use. A current trend in control system design is to provide an object oriented programming interface for application developers. This talk will discuss important aspects and features of object oriented application programming interfaces (APIs) for accelerator control systems, and explore why such interfaces are becoming the norm

  4. A variable acceleration calibration system

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  5. The development of accelerator mass spectroscopy system

    Mitarai, Shiro; Machida, Atsushi; Iwata, Yasunao; Tsubusaki, Yoshihiro; Tanaka, Katsuhiko; Maeda, Toyokazu; Nakajima, Takao [Kyushu Univ., Fukuoka (Japan)

    2001-02-01

    Inverse PIXE method was applied to the differentiation of Chlorine 36 and Sulfur 36. The contaminated soil from the USSR nuclear test site was measured. Terminal potential of the tandem accelerator was controlled by GVM. A new AMS system, using time-of flight method is under development. The development of beam buncher and beam chopper for the system is briefly described. (A. Yamamoto)

  6. JAERI accelerator driven system project

    In Japan a national program called OMEGA was started in 1988 for research and development of new technologies for partitioning and transmutation of nuclear waste. Under this program JAERI is carrying out research and development for proton accelerator-driven transmutation, together with transmutation with fast burner reactor and advanced partitioning technology. Two types of accelerator driven transmutation systems are proposed: a solid system and a molten-salt system. An outline of the OMEGA program and the partitioning and transmutation studies at JAERI are presented in this report

  7. A flexible and testable software architecture: applying presenter first to a device server for the DOOCS accelerator control system of the European XFEL

    Presenter First (PF) uses a variant of Model View Presenter design pattern to add implementation flexibility and to improve testability of complex event-driven applications. It has been introduced in the context of GUI applications, but can easily be adapted to server applications. This paper describes how Presenter First methodology is used to develop a device server for the Programmable Logic Controls (PLC) of the European XFEL undulator systems, which are Windows PCs running PLC software from Beckhoff. The server implements a ZeroMQ message interface to the PLC allowing the DOOCS accelerator control system of the European XFEL to exchange data with the PLC by sending messages over the network. Our challenge is to develop a well-tested device server with a flexible architecture that allows integrating the server into other accelerator control systems like EPICS. (author)

  8. Development of a knowledge-based control system for a model FN Van de Graaff accelerator: An operator's perspective

    In light of the manpower- and monetary restraint situation at the FN Tandem Accelerator facility of McMaster University and the difficulty in acquiring experienced personnel to operate and maintain the machine, an approach to solving this problem has been to firstly construct and operate a computer based knowledge system. This passive expert system directs an experienced or inexperienced person in the operation of the accelerator and helps diagnose many simple problems incurring in day-to-day operation. The system leads the person on a step by step diagnostic journey to the solution of the problem or at least to a reasonable response that will protect personnel and equipment until qualified experts can be contacted. The expert system contains all the required formulae, log readings, safety procedures and operating procedures in either database or knowledge base forms that are used to set the sequential steps in the consultation mode of the diagnostician. As the completion of this system nears, phase two will be initiated with the development of an active expert system where the interfacing of all machine variables will allow direct parameter assignments. At this time, the interface between expert system and operator of the machine will no longer require a human, except in a supervisory capacity. (orig.)

  9. Development of an embedded system for a multi-channel high voltage control and monitoring in 1.7 MV Tandetron accelerator

    A 1.7MV Tandetron accelerator at Materials Science Group of IGCAR is regularly used for carrying out radiation damage studies, particle irradiation based materials research. A dual beam irradiation facility is being setup which uses heavy ion beam from the 1.7 MV Tandetron accelerator through the 30 ° beam line and helium ion beam from a 400 kV accelerator. In the beam line, a set of beam handling devices such as quadrupole focus lens and electrostatic steerers with +/-30 kV and +/-10 kV power supplies are used to focus and steer the ion beam. A PIC16F877A microcontroller (UC) based embedded system has been developed to facilitate remote control and monitoring of these power supplies from the control PC of the Tandetron accelerator, resulting in improved focusing and fine tuning of the ion beam. The prototype of the embedded system was designed, developed, tested and installed in the beam line. The system works satisfactorily and is under regular use. Working principle, design details, salient features of the embedded system are discussed in the paper. (author)

  10. Delayless acceleration measurement method for motion control applications

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  11. Torque-based optimal acceleration control for electric vehicle

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  12. Accelerator management system using GIS

    We developed accelerator management systems using Web-based GIS (Geographical Information Systems). GIS unifies location related data like position of equipment, drawings, images etc. and displays them on interactive map on web browsers. GIS can be used various phenomena, machine management, map-drawing management, asset management and scheduler etc. We build two systems, one is equipment management system of SPring-8 and another is real-time alarm display system for SCSS prototype 250 MeV linac. We describe those systems in this paper. (author)

  13. Quality control of virtual wedge in a linear electron accelerator with a computerized radiography system (CR); Control de calidad de la cuna virtual en un acelerador lineal de electrones mediante un sistema de radiografia competerizada (CR)

    Ordiales, J. M.; Alvarez, F. J.; Falero, B.

    2011-07-01

    For quality control of the virtual wedge there are several systems on the market as arrays of detectors or ionization chambers, linear or 2D configuration, radiochromic films or digital imaging systems incorporated in electron linear accelerators (ALE ). The present work aims at implementing a system of Computed Radiography (CR) for a routine check of the virtual wedge.

  14. The Study of Expert System Utilization for the Accelerator Operation

    The utilization of expert system in the accelerator laboratory has been studied. The study covers the utilization of expert system in the setting up experiment (tuning parameter), controlling system, safety or warning system. The results study shows, that using the expert system in the accelerator would be easy to operate the accelerator for user and operator. Increasing the skill of expert system could be updated without logical mechanism modification. (author)

  15. An Accelerator Control Middle Layer Using MATLAB

    Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

    2005-01-01

    Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab -- the Accelerator Toolbox (AT) for mach...

  16. The ILC control system

    Since the last ICALEPCS, a small multi-region team has developed a reference design model for a control system for the International Linear Collider as part of the ILC Global Design Effort. The scale and performance parameters of the ILC accelerator require new thinking in regards to control system design. Technical challenges include the large number of accelerator systems to be controlled, the large scale of the accelerator facility, the high degree of automation needed during accelerator operations, and control system equipment requiring 'Five Nines' availability. The R and D path for high availability touches the control system hardware, software, and overall architecture, and extends beyond traditional interfaces into the technical systems. Software considerations for HA include fault detection through exhaustive out-of-band monitoring and automatic state migration to redundant systems, while the telecom industry's emerging ATCA standard - conceived, specified, and designed for High Availability - is being evaluated for suitability for ILC front-end electronics.

  17. Development of a postal system for dosimetry quality control performed in photon beams produced by linear accelerators of clinical use

    In this work a different system is proposed which is able to verify the absorbed depth dose given at two different depths, the irradiation field homogeneity and its coincidence with the light field of the machine, the source to surface distance used and the beam nominal energy. These radiation field parameters are very important in the tumour treatment and they may help in the determination of the error sources of the absorbed depth dose. The system developed uses a water phantom, LiF thermoluminescent dosemeters and a radiographic film to evaluate such parameters. The postal system developed in this work has been tested in linear accelerators of 4 to 18 MV with good results. (author)

  18. The CERN accelerators controls convergence project

    Van den Eynden, Marc

    1999-01-01

    Summary form only given. The CERN PS and SL Accelerators controls groups have started in March 1998 a convergence effort aimed at building a common controls infrastructure for year 2001. The first activities concentrated on the definition of an object oriented Accelerator Device Model and Application Programming Interface (API) aimed at offering to high level application software developers a narrow and coherent view of the accelerator components. Efforts have also started to build the underlying middleware architecture that will support this model, including services based on the publish- subscribe paradigm. This presentation will highlight some aspects of this Accelerator Device model as seen form the application software level. A logical view of the associated middleware architecture that will transport Accelerator device data will also be discussed.

  19. NODAL - The second life of the accelerator control language

    NODAL has been a popular interpreter language for accelerator controls since the beginning of the 1970s. NODAL has been rewritten in the C language to be easily portable to the different computer platforms which are in use in accelerator controls. The paper describes the major features of this new version of NODAL, the major software packages which are available through this implementation, the platforms on which it is currently running, and some relevant performances. The experience gained during the rejuvenation project of the CERN accelerator control systems is presented. The benefit of this is discussed, in particular in a view of the prevailing strong constraints in personnel and money resources. ((orig.))

  20. Application of Kalman filter in the accelerator power control

    In order to boost accelerator controlling accuracy and improve beam quality, a best filtering method that is Kalman filter was proposed. In the article given general model of the accelerator power and used Matlab to modeling the Kalman filter on the accelerator power model and simulate. Compared the chart of filtering effect, showed that Kalman filter can effectively filter out the effect of random noise. After kalman filtering, Mean square error of the control system was reduced to 23% of the original, Kalman filter especially can reduce the impact of the peak pulse to make the control accuracy improve. (authors)

  1. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging

    2009-01-01

    A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage, friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian) control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach, and the performance is validated by simulation.

  2. Accelerator as a repairable system

    An accelerator is a prime example of a repairable system which is the type of device that can be restored to a fully operational condition via a process of repair other than replacement of the entire system. Since repairable systems can fail two or more times, the analysis of their reliability focuses on predicting the trends in the pattern of failures and repairs rather than the time to first failure. Thus, it needs to focus on the underlying random processes rather than the probability distribution function of the component failures. This paper summarises the analysis methods available today and proposes an approach to development of a simulation. (author)

  3. Accelerator Control and Global Networks State of the Art

    Gurd, D P

    2004-01-01

    As accelerators increase in size and complexity, demands upon their control systems increase correspondingly. Machine complexity is reflected in complexity of control system hardware and software and careful configuration management is essential. Model-based procedures and fast feedback based upon even faster beam instrumentation are often required. Managing machine protection systems with tens of thousands of inputs is another significant challenge. Increased use of commodity hardware and software introduces new issues of security and control. Large new facilities will increasingly be built by national (e.g. SNS) or international (e.g. a linear collider) collaborations. Building an integrated control system for an accelerator whose development is geographically widespread presents particular problems, not all of them technical. Recent discussions of a “Global Accelerator Network” include the possibility of multiple remote control rooms and no more night shifts. Based upon current experien...

  4. Accelerator diagnosis and control by Neural Nets

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs

  5. Lattice design of FELI accelerator system

    FELI is constructing an S-band linac accelerator system for generating wide range FEL (Free Electron Laser). The accelerator system has for lasing sections, almost isochronous offsetting lattices, and returning lattices. This paper describes the lattice design. (author)

  6. GPUs as Storage System Accelerators

    Al-Kiswany, Samer; Ripeanu, Matei

    2012-01-01

    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detectio...

  7. New control architecture for the SPS accelerator at CERN

    The Control System for the 450 Gev proton accelerator SPS at CERN was conceived and implemented some 18 years ago. The 16 Bit minicomputers with their proprietary operating system and interconnection with a dedicated network do not permit the use of modern workstations, international communication standards and industrial software packages. The upgrading of the system has therefore become necessary. After a short review of the history and the current state of the SPS control system, the paper describes how CERN's new control architecture, which will be common to all accelerators, will be realized at the SPS. The migration path ensuring a smooth transition to the final system is outlined. Once the SPS upgrade is complete and following some enhancements to the LEP control system, the operator in the SPS/LEP control center will be working in a single uniform control environment. (author)

  8. The impact of new computer technology on accelerator control

    This paper describes some recent developments in computing and stresses their application in accelerator control systems. Among the advances that promise to have a significant impact are (1) low cost scientific workstations; (2) the use of ''windows'', pointing devices and menus in a multi-tasking operating system; (3) high resolution large-screen graphics monitors; (4) new kinds of high bandwidth local area networks. The relevant features are related to a general accelerator control system. For example, this paper examines the implications of a computing environment which permits and encourages graphical manipulation of system components, rather than traditional access through the writing of programs or ''canned'' access via touch panels

  9. Superconducting linear accelerator system for NSC

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  10. Operational protocols for controlling accelerator equipment

    The equipment used to operate an accelerator is varied. However, the different devices may be divided into a limited number of classes for which operational protocols can be defined. Operational protocols permit: (i) a uniform operation, (ii) a clear definition of responsibility between the various specialists, (iii) independent development of programs and use of the most appropriate technology, (iv) the change of hardware and the transportability of software, and (v) the fabrication of devices by industry for general use. An operational protocol should be independent of any given control system and it must not be confused with a transmission protocol. As a first step, one defines an operational model of the device to be controlled. The model must represent a high-level description of the device as seen by the user. It will be characterized by a set of parameters and a set of rules. Although the particular requirements of specialists are not included in the operational protocol, allowances should be made for them. Emphasis will be placed on studies carried out on power converters and beam instrumentation. A general-purpose control message architecture is reported. (orig.)

  11. Operational protocols for controlling accelerator equipment

    Bailey, R.; Baribaud, G.; Benincasa, G.P.; Burla, P.; Casalegno, L.; Coudert, G.; Gelato, G.; Kuhn, H.K.; Saban, R.; Spinks, A. (European Organization for Nuclear Research, Geneva (Switzerland). LEP Div.)

    1990-08-01

    The equipment used to operate an accelerator is varied. However, the different devices may be divided into a limited number of classes for which operational protocols can be defined. Operational protocols permit: (i) a uniform operation, (ii) a clear definition of responsibility between the various specialists, (iii) independent development of programs and use of the most appropriate technology, (iv) the change of hardware and the transportability of software, and (v) the fabrication of devices by industry for general use. An operational protocol should be independent of any given control system and it must not be confused with a transmission protocol. As a first step, one defines an operational model of the device to be controlled. The model must represent a high-level description of the device as seen by the user. It will be characterized by a set of parameters and a set of rules. Although the particular requirements of specialists are not included in the operational protocol, allowances should be made for them. Emphasis will be placed on studies carried out on power converters and beam instrumentation. A general-purpose control message architecture is reported. (orig.).

  12. Study of technical and economic feasibility of using a portal dosimetry system for quality control of linear accelerators; Estudio de viabilidad tecnica y economica del uso de un sistema de dosimetria portal para el control de calidad de aceleradores lineales

    Fax, X.; Piro, N.; Sanchez, N.; Toribio, I.; Hermida, M.; Seioane, A.; Saez, J.; Beltran, M.

    2011-07-01

    We have studied the feasibility of Varian portal vision system AS500-II, dosimetry calibration mode, as a substitute for radiochromic plates in quality control tests that required the use of such film. Over a period of two months have been analyzed both the dosimetric characteristics of the system and the mechanical positioning. In addition there has been a financial estimate of annual savings that would result from replacing the radiochromic film by the portal system in a multi-energy accelerator.

  13. Vacuum system for Advanced Test Accelerator

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  14. Vacuum system for Advanced Test Accelerator

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10-6 torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing

  15. PLC-based control system for 10 MeV linear accelerator (LCS) at EBC Kharghar, BARC

    Currently the 10 MeV Linac is being used for different research and industrial applications. The control system in operation was developed using CAMAC based Data Acquisition System (DAS) and Hard-wired Interlock System. It is proposed to replace the CAMAC system with a state-of-the-art indigenously developed Programmable Logic Controller (PLC) that is verified to the level of a Class IB computer-based system used in nuclear power plants. A PLC node comprises of two VME bus based CPU boards (PowerPC MPC7447, 600MHz) working in redundant mode. The inputs and outputs are common to both CPUs. The I/O boards are hot swappable and intelligent. An intelligent Ethernet board is used for communication with a PC running the SCADA software and industry standard communication protocols drivers. The PLC hardware and software has undergone rigorous verification and validation. A user-friendly 'Application Development Environment' is provided to the process engineer for building the application using pre-defined function blocks. The LCS developed using PLC is to be used for operating the Linac irradiation facility, remotely as well as locally in a fail-safe mode, with sequential start-up and sequential shut-down. Apart from system status monitoring, data archiving, alarm generation and setpoint adjustments, it monitors the important parameters and trips the Gun Modulator High Voltage (GM HV), the Klystron Modulator High Voltage (KM HV) and the Electron Gun Power Supply (EG PS) on fault conditions. (author)

  16. Controllability of intense-laser ion acceleration

    Shigeo; Kawata; Toshihiro; Nagashima; Masahiro; Takano; Takeshi; Izumiyama; Daiki; Kamiyama; Daisuke; Barada; Qing; Kong; Yan; Jun; Gu; Ping; Xiao; Wang; Yan; Yun; Ma; Wei; Ming; Wang; Wu; Zhang; Jiang; Xie; Huiran; Zhang; Dongbo; Dai

    2014-01-01

    An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intenselaser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.

  17. Control system and environmental parameters monitoring of the Tandetron Accelerator clean room; Sistema de control y monitoreo de parametros ambientales del cuarto limpio del acelerador Tandetron

    Mejia V, M.E.; Garcia H, J.M.; Flores M, J. [ININ, Departamento de Sistemas Electronicos, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: mmejia@nuclear.inin.mx

    2007-07-01

    A control system and monitoring of humidity and temperature implemented by means of a system based on a microcontroller, an intelligent sensor and a stage of power for the actuators handling is described. The change of the levels of reference of the control system and the monitoring of the physical controlled variables can be carried out from any connected computer to a local net or Internet. (Author)

  18. Application of embedded EPICS to SuperKEKB accelerator control

    Recently, more and more modern frontend controllers tend to be equipped with high-performance CPUs running Operating Systems (OSs). It opens the way for running the core program of Experimental Physics and Industrial Control System (EPICS) on such controllers, which directly interface the various devices of accelerator components. Embedding the EPICS core program on the controllers (Embedded EPICS) has two major advantages. One is that it enables Channel Access (CA) clients to reach the front-most part of the control system directly. The other is that the rich functionality of EPICS core program becomes available at the exact part where the I/O signals to be handled comes in and/or goes out. As a result, Embedded EPICS allows us to make full use of existing software, i.e. the Channel Access library and EPICS core program, to the full extent to reduce the effort for developing and maintaining control software and, hence, to improve the reliability of the system. For this reason, parts of the control system of SuperKEKB accelerator are under renewal based on Embedded EPICS. It includes monitoring the personal protection system, a newly developed digital low level RF control system, the vacuum control system, and a specific part of the magnet power supply control system. This paper describes the configurations and features of the Embedded EPICS-based control subsystems. (author)

  19. General man-machine interface used in accelerators controls

    A large community is now using Workstations as Accelerators Computer Controls Interface, through the concepts of windows - menus - synoptics - icons. Some standards were established for the CERN-PS control systems rejuvenation. The Booster-to-PS transfer and injection process is now entirely operated with these tools. This application constitutes a global environment providing the users with the controls, analysis, visualization of a part of an accelerator. Individual commands, measurements, and specialized programs including complex treatments are available in a homogeneous frame. Some months of experience in current operation have shown that this model can be extended to the whole project. (author)

  20. Towards full automation of accelerators through computer control

    Gamble, J; Kemp, D; Keyser, R; Koutchouk, Jean-Pierre; Martucci, P P; Tausch, Lothar A; Vos, L

    1980-01-01

    The computer control system of the Intersecting Storage Rings (ISR) at CERN has always laid emphasis on two particular operational aspects, the first being the reproducibility of machine conditions and the second that of giving the operators the possibility to work in terms of machine parameters such as the tune. Already certain phases of the operation are optimized by the control system, whilst others are automated with a minimum of manual intervention. The authors describe this present control system with emphasis on the existing automated facilities and the features of the control system which make it possible. It then discusses the steps needed to completely automate the operational procedure of accelerators. (7 refs).

  1. Development of the power system for accelerator

    The 100-MeV proton linac needs 4 modulators whose specification is as follows, -115kV, 55A, and 9%. The development of the modulators were successfully finished and installed at Gyeongju site of KAERI. One of them was used and successfully tested in the 20-MeV linac operation at Daejeon site. The klystron is used to supply the high power RF into the accelerating structure. There are 2 klystrons for 20-MeV part of the linac and 7 klystrons from 20-MeV to 100-MeV region. The maximum voltage is ?105kV, the peak power is 1.6 MW, and the duty is 9%. All of the 7 klystrons have been fabricated, tested and installed. The high power RF system includes circulators, dummy lodes, RF windows, and wave-guides. The development of the high power RF components was finished and they were installed at the Gyeongju site. The 11 sets of RCCS (resonant control cooling system) will be used to control the cooling water temperature inside the accelerating structure. The temperature range of the cooling water covers between 21 .deg. C and 33 .deg. C with the 0.1 .deg. C control. All RCCSs were installed in the klystron gallery. Purposes of the 20-MeV linac operation at Daejeon site of KAERI (2007∼2011) are to supply proton beams to user, to porve the accelerator performance, to test the developed components including LLRF, diagnostics, and control system, and to measure the proton beam properties. During the period, the total number of samples reaches to 1,603 and the average machine availability becomes 96.2%. The 20-MeV linac was disassembled, moved and installed at Gyeongju site after finishing the test operation

  2. Full predictive control of induction acceleration in the KEK digital accelerator

    The KEK Digital Accelerator is a small-scale induction synchrotron which can accelerate any ion species with their possible charge states from a low energy to high energy, no using a large scale injector. It is so busy to carry out beam commissioning now, after installing new position monitors in April. An ion beam is accelerated and confined with induction cells that are 1-to-1 and 2-to-1 pulse transformers, respectively. The induction acceleration system has technical limitations, such as constant and maximum output voltage, finite pulse length, and maximum repetition rate. These limitations are overcome by introducing multiple induction cells and by gate controlling of the solid-state switching power supply to drive the induction cell. This is carried out by a completely programmed FPGA code maneuvering the gate trigger. (author)

  3. Data logging system upgrade for Indus accelerator

    An accelerator has various subsystems like Magnet Power Supply, Beam Diagnostics and Vacuum etc. which are required to work in a stable manner to ensure required machine performance. Logging of system parameters at a faster rate plays a crucial role in analysing and understanding machine behaviour. Logging all the machine parameters consistently at the rate of typically more than 1 Hz has been the aim of a recent data logging system upgrade. Nearly ten thousand parameters are being logged at varying intervals of one second to one minute in Indus accelerator complex. The present logging scheme is augmented to log all these parameters at a rate equal to or more than 1 Hz. The database schema is designed according to the data type of the parameter. The data is distributed into historical table and intermediate table which comprises of recent data. Machine control applications read the parameter values from the control system and store them into the text files of finite time duration for each sub-system. The logging application of each sub-system passes these text files to database for bulk insertion. The detail design of database, logging scheme and its architecture is presented in the paper. (author)

  4. Control system integration

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  5. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging

    LIU YanJie; LI Teng; SUN LiNing

    2009-01-01

    A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage,friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian)control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach,and the performance is validated by simulation.

  6. Framework for control system development

    Control systems being developed for the present generation of accelerators will need to adapt to changing machine and operating state conditions. Such systems must also be capable of evolving over the life of the accelerator operation. In this paper we present a framework for the development of adaptive control systems

  7. Introducing a system for automated control of rotation axes, collimator and laser adjustment for a medical linear accelerator

    Winkler, Peter [Department of Radiation Oncology, Karl-Franzens University Medical School, Auenbruggerplatz 32, 8036-Graz (Austria); Bergmann, Helmar [Department of Biomedical Engineering and Physics, University of Vienna (Austria); Stuecklschweiger, Georg [Department of Radiation Oncology, Karl-Franzens University Medical School, Auenbruggerplatz 32, 8036-Graz (Austria); Guss, Helmuth [Department of Radiation Oncology, Karl-Franzens University Medical School, Auenbruggerplatz 32, 8036-Graz (Austria)

    2003-05-07

    Mechanical stability and precise adjustment of rotation axes, collimator and room lasers are essential for the success of radiotherapy and particularly stereotactic radiosurgery with a linear accelerator. Quality assurance procedures, at present mainly based on visual tests and radiographic film evaluations, should desirably be little time consuming and highly accurate. We present a method based on segmentation and analysis of digital images acquired with an electronic portal imaging device (EPID) that meets these objectives. The method can be employed for routine quality assurance with a square field formed by the built-in collimator jaws as well as with a circular field using an external drill hole collimator. A number of tests, performed to evaluate accuracy and reproducibility of the algorithm, yielded very satisfying results. Studies performed over a period of 18 months prove the applicability of the inspected accelerator for stereotactic radiosurgery.

  8. Introducing a system for automated control of rotation axes, collimator and laser adjustment for a medical linear accelerator

    Winkler, Peter; Bergmann, Helmar; Stuecklschweiger, Georg; Guss, Helmuth

    2003-05-01

    Mechanical stability and precise adjustment of rotation axes, collimator and room lasers are essential for the success of radiotherapy and particularly stereotactic radiosurgery with a linear accelerator. Quality assurance procedures, at present mainly based on visual tests and radiographic film evaluations, should desirably be little time consuming and highly accurate. We present a method based on segmentation and analysis of digital images acquired with an electronic portal imaging device (EPID) that meets these objectives. The method can be employed for routine quality assurance with a square field formed by the built-in collimator jaws as well as with a circular field using an external drill hole collimator. A number of tests, performed to evaluate accuracy and reproducibility of the algorithm, yielded very satisfying results. Studies performed over a period of 18 months prove the applicability of the inspected accelerator for stereotactic radiosurgery.

  9. Accelerator controls at CERN: Some converging trends

    CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of 'Technical Boards', mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way. (orig.)

  10. Nodal the second life of the accelerator control language

    Cuisinier, G; Ribeiro, P; Kagarmanov, A; Kovaltsov, V I

    1993-01-01

    Nodal is a popular interpreter language for accelerator controls since the beginning of the 70's. Nodal has been rewritten in the C language to be easily portable to the different computer platforms which are in use in today's accelerator controls. The paper describes the major features of this new version of Nodal, the major software packages which are available through this implementation, the platforms on which it is currently running, and some relevant performances.The paper presents the major domains of usage of Nodal and its capability for these classes of applications. The experience gained during the rejuvenation project of the CERN accelerator control systems is presented. The benefit of this use is discussed, in particular with a view to the prevailing strong constraints in personnel and money resources.