WorldWideScience

Sample records for accelerator clean room

  1. Design and construction of the clean room for proton beam accelerator assembly

    The objective of this report is to design, construction and evaluation of clean room for proton beam accelerator assembly. The design conditions o Class : 1,000(1,000 ea ft3), o Flow Rate : 200 m3/h m2, o Temperature : 22 deg C±2, o Humidity : 55%±5. The main design results are summarized as follows: o Air-handling unit : Cooling Capacity : 13,500 kcal/h, Heating Capacity : 10,300 kcal/h, Humidity Capacity : 4 kg/h, Flow Rate : 150 CMM o Air Shower : Flow Rate : 35 CMM, Size : 1500 x 1000 x 2200, Material : In-steel, Out-SUS304, Filter : PRE + HEPA, AIR Velocity : 25 m/s o Relief Damper : Size : Φ250, Casing : SS41, Blade : AL, Shaft : SUS304, Weight Ring : SS41, Grill : AL o HEPA Filter Box : Filter Box Size : 670 x 670 x 630, Filter Size : 610 x 610 x 150, Frame: Poly Wood, Media : Glass Fiber, Filter Efficiency : 0.3μm, 99.97%, Separator : AL, Flow Rate : 17 CMM, Damper Size : Φ300 Following this report will be used important data for the design, construction, operation and maintenance of the clean room, for high precision apparatus assembly laboratory

  2. 'How To' Clean Room Video

    McCarty, Kaley Corinne

    2013-01-01

    One of the projects that I am completing this summer is a Launch Services Program intern 'How to' set up a clean room informational video. The purpose of this video is to go along with a clean room kit that can be checked out by employees at the Kennedy Space Center and to be taken to classrooms to help educate students and intrigue them about NASA. The video will include 'how to' set up and operate a clean room at NASA. This is a group project so we will be acting as a team and contributing our own input and ideas. We will include various activities for children in classrooms to complete, while learning and having fun. Activities that we will explain and film include: helping children understand the proper way to wear a bunny suit, a brief background on cleanrooms, and the importance of maintaining the cleanliness of a space craft. This project will be shown to LSP management and co-workers; we will be presenting the video once it is completed.

  3. Clean-room robot implementation

    A robot has been incorporated in a clean room operation in which vacuum tube parts are cleaned just prior to final assembly with a 60 lb/in2 blast of argon gas. The robot is programmed to pick up the parts, manipulate/rotate them as necessary in the jet pattern and deposit them in a tray precleaned by the robot. A carefully studied implementation plan was followed in the procurement, installation, modification and programming of the robot facility. An unusual configuration of one tube part required a unique gripper design. A study indicated that the tube parts processed by the robot are 12% cleaner than those manually cleaned by an experienced operator

  4. True Cost of Amateur Clean rooms

    Ramsey, W. Lawrence

    2005-01-01

    This viewgraph document reviews the cost factors for clean rooms that are not professionally built, monitored or maintained. These amateur clean rooms are built because scientist and engineers desire to create a clean room to build a part of an experiment that requires a clean room, and the program manager is looking to save money. However, in the long run these clean rooms may not save money, as the cost of maintenance may be higher due to the cost of transporting the crews, and if the materials were of lesser quality, the cost of modifications may diminish any savings, and the product may not be of the same quality. Several examples are shown of the clean rooms that show some of the problems that can arise from amateur clean rooms.

  5. SRF Clean Rooms and Cryomodule Assembly

    Federal Laboratory Consortium — Three primary cleanroom facilities used for the SRF cryomodule production program are available. All 3 clean rooms have class 10 and class 100 areas. The largest is...

  6. Clean Industrial Room for Drift Tube Assembling

    Glonti, GL; Evtoukhovitch, P G; Kroa, G; Manz, A; Potrap, I N; Rihter, P; Stoletov, G D; Tskhadadze, E G; Chepurnov, V F; Chirkov, A V; Shelkov, G A

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has been confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volum (\\sim 190 m^3), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2 %). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer.

  7. I'm dreaming of a white clean room...

    Katarina Anthony

    2014-01-01

    New HIE-ISOLDE cryomodules are now under construction in a state-of-the-art clean room facility in SM18.   The HIE-ISOLDE clean rooms in SM18. HIE-ISOLDE is set to be the world's leading nuclear physics site, ultimately accelerating radioactive nuclei to an impressive 10 MeV/u. Helping the facility reach this energy are new superconducting cryomodules, the first quarter-wave cavity module to be assembled at CERN and necessitating a custom clean-room in SM18. At a towering five metres tall, the new clean room houses a custom assembly frame and associated equipment, moving the components of the 6 tonne cryomodules both vertically and horizontally while they are being assembled. "Each cryomodule is made up of some 10,000 parts, which have come from across the continents to be assembled here," says CERN TE engineer Lloyd Williams, who is managing quality assurance for the project. "Each part is checked by the CERN team, catalogued and thoroughly cleaned, befor...

  8. Solvent-free cleaning using a centrifugal cryogenic pellet accelerator

    Haines, J.R.; Fisher, P.W.; Foster, C.A.

    1995-06-01

    An advanced centrifuge that accelerates frozen CO{sub 2} pellets to high speeds for surface cleaning and paint removal is being developed at the Oak Ridge National Laboratory. The centrifuge-based accelerator was designed, fabricated, and tested under a program sponsored by the Warner Robins Air Logistics Center, Robins Air Force Base, Georgia. In comparison to the more conventional compressed air ``sandblast`` pellet accelerators, the centrifugal accelerator system can achieve higher pellet speeds, has precise speed control, and is more than ten times as energy efficient. Furthermore, the use of frozen CO{sub 2} pellets instead of conventional metal, plastic, sand, or other abrasive materials that remain solid at room temperature, minimizes the waste stream. This apparatus has been used to demonstrate cleaning of various surfaces, including removal of paint, oxide coatings, metal coatings, organic coatings, and oil and grease coatings from a variety of surfaces. The design and operation of the apparatus is discussed.

  9. Elements of Clean-room Technology and Contamination Control

    J. C. Kapoor; Meenakshi Gupta

    2003-01-01

    The heart of the clean room is the high efticiency particualte air (HEPA)/ultra-low penetration air (ULPA) filter, which provides the highest level of air cleaning ever achieved by a singleprocess step. Filter technology has seen tremendous growth in terms of ultimate performance and air handling capacity. Mere installation of ULPA filters of 99.99995 per cent efficiency for 0.2 um aerosol is not sufficient for achieving the desired performance of a clean room. Other design aspects like flow ...

  10. Clean room installations in a radiopharmaceutical facility

    The standards of radiopharmaceuticals on the facility, working environment and preparation control strategy are yet to be generated. In general, radiopharmaceuticals have short half-lives and emit gamma radiation. Due to its unique characteristics, its preparation has to be made in the fume hood and hot cell to avoid radiation exposure to workers. Considering radiation protection, the working environment has to be maintained under negative pressure so that dispersion of radiopharmaceuticals should be avoided. On the contrary, a positively pressurized working environment gives clean atmosphere and prevents contamination with harmful microorganisms during preparation. Hence, it is required to harmonize for mentioned contradictory conditions in preparation of radiopharmaceuticals for the safety of workers and its quality assurance as well. Therefore, it is reasonable that good manufacturing practice for radiopharmaceutical production facility should be constituted according to the standards for production of biological agents accompanied with a radiation shielding

  11. CMS inner detector assembled in a clean room

    Serge Bellegarde

    2006-01-01

    The inner detector for the CMS experiment is assembled in a specially designed clean room. These rooms are sealed so that impurities in the air do not get trapped in the detector while it is being assembled. This inner detector will eventually be installed at the heart of the CMS experiment, taking measurements of particles produced in the collision of either proton or lead beams.

  12. Elements of Clean-room Technology and Contamination Control

    J.C. Kapoor

    2003-07-01

    Full Text Available The heart of the clean room is the high efticiency particualte air (HEPA/ultra-low penetration air (ULPA filter, which provides the highest level of air cleaning ever achieved by a singleprocess step. Filter technology has seen tremendous growth in terms of ultimate performance and air handling capacity. Mere installation of ULPA filters of 99.99995 per cent efficiency for 0.2 um aerosol is not sufficient for achieving the desired performance of a clean room. Other design aspects like flow fields, face velocity, number of air changes, make-up air fractions and precise control of other environmental parameters (temperature, humidity, airflow, noise, vibrations, electrostatic discharge, etc. are equally important.

  13. Spanish Government delegation in the ISR workshop clean room

    1982-01-01

    A Spanish Government delegation visited CERN before Spain rejoined CERN as a Member State(in 1983). Some delegates were particularly interested in advanced technologies. The picture shows them in the ISR workshop clean room looking at components of vacuum chambers for experiments. From left to right: a delegate, Director-General Herwig Schopper demonstrating the lightness of a titanium chamber, another delegate, the Spanish Minister of Industry and Energy Mr.Ignacio Bayon Marine and Romeo Perin. See also 8202369.

  14. Some problems on rf breakdown in room temperature accelerator structure, a possible criterion

    The discussion is confined to high gradient, room-temperature accelerators which have clean well-finished cavity surfaces and good vacuum conditions. Breakdown-initiating mechanisms due to ''cold'' field electron emission occurring at isolated sites on broad-area cavity surfaces, where the field is enhanced, are described. The influences of an alternating field and transition time tunneling are taken into account. The thermal instability resulting in vacuum voltage breakdown is hypothesized to derive a new criterion for room-temperature accelerator structure. 18 refs., 5 figs

  15. Applying a Wearable Voice-Activated Computer to Instructional Applications in Clean Room Environments

    Graves, Corey A.; Lupisella, Mark L.

    2004-01-01

    The use of wearable computing technology in restrictive environments related to space applications offers promise in a number of domains. The clean room environment is one such domain in which hands-free, heads-up, wearable computing is particularly attractive for education and training because of the nature of clean room work We have developed and tested a Wearable Voice-Activated Computing (WEVAC) system based on clean room applications. Results of this initial proof-of-concept work indicate that there is a strong potential for WEVAC to enhance clean room activities.

  16. Evaluating The Operation Of Three Air Cleaners Working Individually In A Clean Room

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian;

    2011-01-01

    The use of portable air cleaners is becoming increasingly popular in many countries including Denmark. Portable air cleaners are known for not only removing but also generating particles and gases. To clarify this, three air cleaning technologies were evaluated. They were nonthermal plasma......, photochemical air purifier and corona discharge ionizer. The concentrations of ultrafine particles, ozone and total volatile organic compounds were measured both in a duct and in a clean room. It was found that the studied air cleaning technologies increased the ozone level in the clean room and the duct. The...... increase of ozone level in the clean room was more than that was measured in the duct. Additionally, it was found that the number of ultrafine particles in the room increased due to the generated ozone. The number of generated particles changed with the season. The study leads to the recommendation that...

  17. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    Adams, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Arent, Douglas J. [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Locklin, Ken [Impax Asset Management Group (United Kingdom)

    2016-04-01

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort is needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.

  18. Microbial diversity in European and South American spacecraft assembly clean rooms

    Moissl-Eichinger, Christine; Stieglmeier, Michaela; Schwendner, Petra

    Spacecraft assembly clean rooms are unique environments for microbes: Due to low nutri-ent levels, desiccated, clean conditions, constant control of humidity and temperature, these environments are quite inhospitable to microbial life and even considered "extreme". Many procedures keep the contamination as low as possible, but these conditions are also highly se-lective for indigenous microbial communities. For space missions under planetary protection requirements, it is crucial to control the contaminating bioburden as much as possible; but for the development of novel cleaning/sterilization methods it is also important to identify and characterize (understand) the present microbial community of spacecraft clean rooms. In prepa-ration for the recently approved ESA ExoMars mission, two European and one South American spacecraft assembly clean rooms were analyzed with respect to their microbial diversity, using standard procedures, new cultivation approaches and molecular methods, that should shed light onto the presence of planetary protection relevant microorganisms. For this study, the Her-schel Space Observatory (launched in May 2009) and its housing clean rooms in Friedrichshafen (Germany), at ESTEC (The Netherlands) and CSG, Kourou (French Guyana) were sampled during assembly, test and launch operations. Although Herschel does not demand planetary protection requirements, all clean rooms were in a fully operating state during sampling. This gave us the opportunity to sample the microbial diversity under strict particulate and molecular contamination-control. Samples were collected from spacecraft and selected clean room surface areas and were subjected to cultivation assays (32 different media), molecular studies (based on 16S rRNA gene sequence analysis) and quantitative PCR. The results from different strategies will be compared and critically discussed, showing the advantages and limits of the selected methodologies. This talk will sum up the lessons

  19. Laminated primary ceiling barriers for medical accelerator rooms

    In this work the performance of a number of laminated shields used as the primary ceiling barrier for high-energy accelerator rooms was investigated. The neutron and photon dose equivalent rates were measured outside each shield. Based on the measured photon level and the calculated x-ray leakage level the dose equivalent rate due to photons produced by neutron interactions with the shield materials was estimated. Shielding parameters for polyethylene were established for photons and neutrons. It was found that the barriers designed using the techniques given in an NCRP report suffered from excessive radiation leakage. (author)

  20. Occupational doses due to photoneutrons in medical linear accelerators rooms

    Medical linear accelerators, with maximum photon energies above 10 MeV, are becoming of common use in Brazil. Although desirable in the therapeutic point of view, the increase in photon energies causes the generation of undesired neutrons, which are produced through nuclear reactions between photons and the high Z target nuclei of the materials that constitute the accelerator head. In this work, MCNP simulation was undertaken to examine the neutron equivalent doses around the accelerators head and at the entrance of medical linear accelerators treatment rooms, some of them licensed in Brazil by the National Regulatory Agency (CNEN). The simulated neutron dose equivalents varied between 2 e 26 μ Sv/GyRX, and the results were compared with calculations performed with the use of some semi-empirical equations found in literature. It was found that the semi-empirical equations underestimate the simulated neutron doses in the majority of the cases, if compared to the simulated values, suggesting that these equations must be revised, due to the increasing number of high energy machines in the country. (author)

  1. Characterization of predominant bacteria isolates from clean rooms in a pharmaceutical production unit

    2007-01-01

    Aims: To screen for the predominant bacteria strains distributed in clean rooms and to analyze their phylogenetic relationships. Methods and Results: The bacteria distributed in air, surfaces and personnel in clean rooms were routinely monitored using agar plates. Five isolates frequently isolated from the clean rooms of an aseptic pharmaceutical production workshop were selected based on their colony and cell morphology characteristics. Their physiological and biochemical properties, as well as partial 16S rDNA sequences, were analyzed. Results showed that all the five isolates belong to Gram positive bacteria, of which three were Staphylococcus, one Microbacterium and one Bacillus species. Sensitivity tests for these bacteria isolates to 3 disinfectants showed that isolate F03 was obtuse, and had low susceptivity to UV irradiation, while isolates F02, F01 and F04 were not sensitive to phenol treatment. Isolates F04, F01 and F05 were resistant to chlorhexidine gluconate. Conclusion: Bacteria widely distributed in clean rooms are mainly a group of Gram positive strains, showing high resistance to selected disinfectants. Significance and impact of the study: Clean rooms are essential in aseptic pharmaceutical and food production. Screening bacteria isolates and identifying them is part of good manufacturing practices, and will aid in finding a more effective disinfection method.

  2. Performance evaluation of control room HVAC and air cleaning systems under accident conditions

    In light water reactors, control rooms and technical support centers must be designed to provide habitable environments in accordance with the requirements specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. Therefore, the effectiveness of HVAC and air cleaning system designs with respect to plant operator protection has to be evaluated by the system designer. Guidance for performing the analysis has been previously given in ANSI/ASME N509-1980 as well as in presentations at past Air Cleaning Conferences. The previous work is extended and the methodology used in a generic, interactive computer program that performs Main Control Room and Technical Support Center (TSC) habitability analyses for LWR nuclear power plants is presented. For given accident concentrations of radionuclides or hazardous gases in the outdoor air intakes and plant spaces surrounding the Main Control Room (or TSC), the program models the performance of the HVAC and air cleaning system designs, and determines control room (or TSC) contaminant concentrations and plant operator protection factors. Calculated or actual duct leakage, air cleaning efficiency, and airborne contamination are taken into account. Flexibility of the model allows for the representation of most control rooms (or TSC) and associated HVAC and air cleaning system conceptual designs that have been used by the US architect/engineers. The program replaced tedious calculations to determine the effects of HVAC ductwork and equipment leakage and permits (1) parametric analyses of various HVAC system design options early in the conceptual phase of a project, and (2) analysis of the effects of leakage test results on contaminant room concentrations, and therefore operator doses

  3. Education and research at clean room laboratory for silicon device technology at Masaryk University

    Mikulík, P.; Humlíček, J.; Kulha, P.; Hovorka, Miloš; Kadlec, Filip

    Warsaw: University of Warsaw, 2010. s. 242. ["Jaszowiec" International School and Conference on the Physics of Semiconductors /39./. 19.06.2010-24.06.2010, Krynica Zdroj] Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z10100520 Keywords : silicon * clean room * microelectronics laboratory Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Education and research at clean room laboratory for silicon device technology at Masaryk University

    Mikulík, P.; Humlíček, J.; Hovorka, Miloš; Kulha, P.; Kadlec, F.

    Praha: IOP AS CR, 2012 - (Fejfar, A.; Vetushka, A.) ISBN 978-80-260-0619-0. [Physics at Nanoscale. IUVSTA International Summer School /10./. Devět skal (CZ), 30.05.2012-04.06.2012] Institutional support: RVO:68081731 Keywords : silicon device technology * education and research * clean room laboratory Subject RIV: BH - Optics, Masers, Lasers

  5. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  6. Clean laboratories and clean rooms for analysis of radionuclides and trace elements

    requirements are summarized of clean laboratory environments, for construction materials as well as for materials used during routine analysis, maintenance, and pitfalls in the analysis of radionuclides and elements at trace- and ultra trace levels. Current methodologies and practices are described for planning the installation of a clean environment as well as protocols for maximizing the benefit-to-cost ratio and for achieving QA/QC. Special emphasis is given to the analysis of radionuclides, and measurement of trace, minor and major elements using nuclear and related analytical techniques such as NAA and XRF. Also included are papers contributed by experts from India, the Netherlands, the United States of America and the IAEA Laboratories, Seibersdorf

  7. Cleaning Hospital Room Surfaces to Prevent Health Care-Associated Infections: A Technical Brief.

    Han, Jennifer H; Sullivan, Nancy; Leas, Brian F; Pegues, David A; Kaczmarek, Janice L; Umscheid, Craig A

    2015-10-20

    The cleaning of hard surfaces in hospital rooms is critical for reducing health care-associated infections. This review describes the evidence examining current methods of cleaning, disinfecting, and monitoring cleanliness of patient rooms, as well as contextual factors that may affect implementation and effectiveness. Key informants were interviewed, and a systematic search for publications since 1990 was done with the use of several bibliographic and gray literature resources. Studies examining surface contamination, colonization, or infection with Clostridium difficile, methicillin-resistant Staphylococcus aureus, or vancomycin-resistant enterococci were included. Eighty studies were identified-76 primary studies and 4 systematic reviews. Forty-nine studies examined cleaning methods, 14 evaluated monitoring strategies, and 17 addressed challenges or facilitators to implementation. Only 5 studies were randomized, controlled trials, and surface contamination was the most commonly assessed outcome. Comparative effectiveness studies of disinfecting methods and monitoring strategies were uncommon. Future research should evaluate and compare newly emerging strategies, such as self-disinfecting coatings for disinfecting and adenosine triphosphate and ultraviolet/fluorescent surface markers for monitoring. Studies should also assess patient-centered outcomes, such as infection, when possible. Other challenges include identifying high-touch surfaces that confer the greatest risk for pathogen transmission; developing standard thresholds for defining cleanliness; and using methods to adjust for confounders, such as hand hygiene, when examining the effect of disinfecting methods. PMID:26258903

  8. Education and research at clean room laboratory for silicon device technology at Masaryk University

    Mikulík, P.; Humlíček, J.; Kulha, P.; Hovorka, Miloš; Kadlec, Filip

    Rožnov pod Radhoštěm: TECON Scientific s.r.o, 2010, s. 455-456. ISBN 978-80-254-7361-0. [SILICON 2010 /12./. Rožnov pod Radhoštěm (CZ), 02.11.2010-05.11.2010] R&D Projects: GA AV ČR(CZ) IAA100100907 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z10100520 Keywords : clean room * microelectronic * silicon device technology Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  9. Accelerator driven radiation clean nuclear power system conceptual research symposium

    The R and D of ADS (Accelerators Driven Subcritical System) in China introduced. 31 theses are presented. It includes the basic principle of ADS, accelerators, sub-critical reactors, neutron physics, nuclear data, partitioning and transmutation

  10. Air cleaning in clean rooms. Super-cleaning of mini-environments by UV/photoelectron method; Clean room ni okeru kuki seijo. UV/hikari denshiho ni yoru kyokusho kukan no cho clean ka

    Fujii, T.; Suzuki, T. [Ebara Research Co. Ltd., Kanagawa (Japan); Sakamoto, K. [Saitama Univearsity, Saitama (Japan); Yokoyama, Ss.; Hirose, M. [Hiroshima University, Hiroshima (Japan)

    2000-04-20

    Prevention of wafer surface contamination is an important issue in semiconductor manufacturing as such contamination decreases LSI productivity. Although particulate contamination in work rooms is being reduced by newer cleanroom techniques, there are still sources of particulate contaminants, such as wafer delivering systems, wafer stockers, and load-lock chambers. Not only fine particles but also gaseous contaminants need to be controlled. The following introduces an outlook on various methods of removing such particle and gaseous contaminants. (author)

  11. Abrasive blast cleaning method for the renewal of worn-out acceleration tubes

    The degradation of the electrical properties of acceleration tubes emerging with performance time is known to be assigned mainly to impurities and surface breakdown tracks appearing on the inner surface of the insulators. Consequently, a radical treatment for removing the surface layer may result in a renewal of the tube. An abrasive blast cleaning procedure has been used on a set of worn-out acceleration tube units. The cleaned tube exhibited its original electrical characteristics and it has been used for more than 4000 h of operation up to the maximum rated voltage of our 5 MV electrostatic accelerator without any observable degradation. XRF and PIXE analytical measurements performed on used and blast-treated insulators as well as on electrode and pump oil samples reveal the contribution of elementary processes in the acceleration tube to the ageing of the tube and indicate the effectness of the blasting process used for the re-establishment of clean surface conditions. (orig.)

  12. Research on cw electron accelerators using room-temperature rf structures: Annual report

    This joint NBS-Los Alamos project of ''Research on CW Electron Accelerators Using Room-Temperature RF Structures'' began seven years ago with the goal of developing a technology base for cw electron accelerators. In this report we describe our progress during FY 1986 and present our plans for completion of the project. First, however, it is appropriate to review the past contributions of the project, describe its status, and indicate its future benefits

  13. Study of ultra-clean surfaces for accelerator structures

    For a TeV energy physics R and D on electron/positron linear colliders has been conducted hard at many laboratories from technologies of both normal conducting and superconducting. The high field gradient issue is a key to realize such a machine. Field emission limits seriously field gradient of rf cavities. Its cure is to eliminate particle contamination on cavity surfaces. It is a common issue in both normal conducting and superconducting cavities. We have started to study ultra-clean surfaces of niobium and copper applying semiconductor technologies. In this paper several results by various rinsing methods are presented and its relation with cavity performance is discussed. (author)

  14. Standard Test Method for Sizing and Counting Particulate Contaminant In and On Clean Room Garments

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers the determination of detachable particulate contaminant 5 m or larger, in and on the fabric of clean room garments. 1.2 This test method does not apply to nonporous fabrics such as Tyvek or Gortex. It only applies to fabrics that are porous such as cotton or polyester. 1.3 The values stated in SI units are to be regarded as the standard. The inch-pound values given in parentheses are for information only. 1.4 This test method provides not only the traditional optical microscopic analysis but also a size distribution and surface obscuration analysis for particles on a fine-textured membrane filter or in a tape lift sample. It utilizes transmitted illumination to render all particles darker than the background for gray level detection. Particles collected on opaque plates must be transferred to a suitable membrane filter. This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associat...

  15. Report of the consultants meeting on good manufacturing practices and clean room requirements for radiopharmaceuticals

    carried out in special facilities often with shielding and remote handling to protect the operators from radiation exposure. There are international norms for radiation exposure allowed for radiation workers and strong national organizations for monitoring and implementing radiation protection measures. Being part of the national nuclear programmes, radiopharmaceutical production has been from the very beginning subjected to regulations of radioactive material handling, transportation and use. However, the systems of surveillance and control for pharmaceutical products have not been implemented in many places to the same extent as for radiation protection. There are also technical difficulties in harmonizing the requirements of radiation safety and pharmaceutical safety. Simultaneously, there have been several technical developments in the field of Quality Assurance of pharmaceuticals. The concepts of Good Manufacturing Practices (GMP) and the requirements for clean rooms define quality of air for pharmaceutical production areas. Efforts have been made in recent years to apply these concepts also to radiopharmaceutical production. Significant progress appears to have been made in the developed countries and in the technology needed to fulfil these standards. The technical problems in upgrading the facilities of radioisotope laboratories to conform with the clean air requirements and the cost involved are still to be clearly understood in many developing countries. In many countries the regulatory authorities apply the same set of regulations for radiopharmaceuticals as for other pharmaceuticals. Some guidelines for radiopharmaceuticals have been published, e.g. Scandinavian, US FDA, Australian, Canadian and EU guidelines. No such guidelines are yet available from international agencies such as the International Atomic Energy Agency (IAEA) or World Health Organization (WHO). A guideline from an international body of this nature would be very useful for institutions working

  16. Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room

    Newcombe, David A.; La Duc, Myron T.; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2008-10-01

    In an effort to minimize the probability of forward contamination of pristine extraterrestrial environments, the National Aeronautics and Space Administration requires that all US robotic spacecraft undergo assembly, testing and launch operations (ATLO) in controlled clean-room environments. This study examines the impact of ATLO activity on the microbial diversity and overall bioburden contained within the air of the clean-room facility in which the Mars Exploration Rovers (MERs) underwent final preparations for launch. Air samples were collected from several facility locations and traditional culture-based and molecular methodologies were used to measure microbial burden and diversity. Surprisingly, the greatest estimates of airborne bioburden, as derived from ATP content and cultivation assays, were observed prior to the commencement of MER ATLO activities. Furthermore, airborne microbial diversity gradually declined from the initiation of ATLO on through to launch. Proteobacterial sequences were common in 16S rDNA clone libraries. Conspicuously absent were members of the Firmicutes phylum, which includes the genus Bacillus. In previous studies, species of this genus were repeatedly isolated from the surfaces of spacecraft and clean-room assembly facilities. Increased cleaning and maintenance initiated immediately prior to the start of ATLO activity could explain the observed declines in both airborne bioburden and microbial diversity.

  17. Towards a common monitoring system for the accelerator and technical control rooms at CERN

    Arduini, Gianluigi; Bätz, M; Carron de la Morinais, J M; Manglunki, Django; Priestnall, K; Robin, G; Ruette, M; Sollander, P

    2000-01-01

    The communication and coordination between the CERN accelerator and technical control rooms will be a critical issue for an efficient operation of the LHC and its injectors, which are expected to provide also beams for fixed target experiments, for detector component tests and for other activities including machine development. Early detection of faults in the accelerator and technical infrastructure (electricity, cooling, etc.) and their possible consequences on operation are useful not only to prevent major breakdowns but also to recover from them and to reschedule efficiently machine operation to satisfy the overall beam time requests from the different and concurrent users. To meet these requirements a method to define and provide common monitoring tools for all the actors involved in machine operation has been established. This method has been applied to the SPS accelerator and is being implemented in the PS complex and in the SPS experimental areas.

  18. Laboratory installation for cleaning of exhausted gases by irradiation with accelerated electrons

    A laboratory installation for the cleaning of exhaust gas containing NOx and SO2, using electron beams generated by the linear accelerator ALIN-10 (6.23 MeV) was developed in the Electron Accelerator Laboratory, Institute of Laser Plasma and Radiation Physics. The aim of this method is to obtain simultaneous removal by precipitation with ammonia of NOx and SO2 exhaust gases from fossil-fuel power plants and iron steel industry. The main successive stages of this process are: obtaining of gaseous mixture, heating of dry gaseous mixture, evaporation of ammonia, irradiation with electron beams and filtration. (author) 2 Figs.; 2 Tabs.; 5 Refs

  19. Estimation of neutron backgrounds at neutron target room in JAERI 20 MV Tandem Accelerator Facility

    Two-dimensional discrete-ordinates codes have been used to calculate neutron backgrounds in the neutron target room and dose-equivalent rate outside of the JAERI 20 MV Tandem Accelerator building. The energy range of source neutrons used for the calculations was from 10 to 40 MeV. It is shown that the background neutrons at the position of the neutron detector in the target room are mainly composed of the floor-scattered neutrons, and with increase of the energy of source neutrons it becomes difficult to shield the neutron detector against the floor-scattered neutrons. It is also shown that the thickness of the concrete wall of the building is sufficient to reduce the dose-equivalent rate outside of the building. (author)

  20. Seismic simulation and functional performance evaluation of a safety related, seismic category I control room emergency air cleaning system

    Under a nuclear contract MSA was required to design, manufacture, seismically test and functionally test a complete Safety Related, Seismic Category I, Control Room Emergency Air Cleaning System before shipment to the Yankee Atomic Electric Company, Yankee Nuclear Station in Rowe, Massachusetts. The installation of this system was required to satisfy the NRC requirements of NUREG-0737, Section III, D.3.4, ''Control Room Habitability''. The filter system tested was approximately 3 ft. wide by 8 ft. high by 18 ft. long and weighed an estimated 8300 pounds. It had a design flow rate of 3000 SCFM and contained four stages of filtration - prefilters, upstream and downstream HEPA filters and Type II sideload charcoal adsorber cells. The filter train design followed the guidelines set forth by ANSI/ASME N509-1980. Seismic Category I Qualification Testing consisted of resonance search testing and triaxial random multifrequency testing. In addition to ANSI/ASME N510-1980 testing, triaxial response accelerometers were placed at specific locations on designated prefilters, HEPA filters, charcoal adsorbers and test canisters along with accelerometers at the corresponding filter seal face locations. The purpose of this test was to demonstrate the integrity of the filters, filter seals, and monitor seismic response levels which is directly related to the system's ability to function during a seismic occurrence. The Control Room Emergency Air Cleaning System demonstrated the ability to withstand the maximum postulated earthquake for the plant site by remaining structurally sound and functional

  1. The construction of a process line for high efficiency silicon solar cells under clean-room conditions

    The aim of this research project was to plan, construct and test a clean-room technology laboratory for the manufacturing of silicon solar cells with 20% efficiency (1.5AM). In addition to the establishment of the laboratory, there existed the case of establishing the material and technological fundamentals of high-efficiency solar cells, testing and optimizing all stages of production as well as constructing test stands for accompanying characterisation work. The following final report describes the construction of the laboratory and characterisation systems, the material elements of high-efficiency solar cells as well as the most important results of solar cell production and optimisation. (orig./BWI)

  2. Evaluation of neutron doses beyond of primary shielding of rooms housing clinical linear accelerators

    The growing need to build radiotherapy rooms in places with lack of available space leads to the necessity of unconventional solutions for the shielding projects. In most cases, adding metals to the primary barriers is the best way to shield the rooms properly. However, when photons with energies equal to or great than 10 MeV interact with nuclei of materials with high atomic number, neutrons are ejected and can result in a problem of radioprotection both inside and outside the room. Currently, the only empirical formula existing in the literature to assess the dose equivalent due to neutrons beyond the laminated barriers works only under very specific conditions, and a validation of this formula had not yet been done. In this work, the Monte Carlo code MCNPX was used to verify the validity of the above formula for cases of primary barriers containing lead or iron sheets in rooms that house linear accelerators with 10, 15 and 18 MV. Moreover, such a code was used to evaluate the coefficient of neutron production and tenth-value layer for neutrons in concrete, both parameters that directly influence the equation studied. The study results showed that over 90% of the values compared between the formula and the simulations present discrepancies above 100%, which led to conclude that the formula from the literature produces values that do not match the reality. In addition, there were inconsistencies in the parameters that make up the formula, leading to a need to review this formula in order to build a new model that will better represent the real case. (author)

  3. Selected works of basic research on the physics and technology of accelerator driven clean nuclear power system

    38 theses are presented in this selected works of basic research on the physics and technology of accelerator driven clean nuclear power system. It includes reactor physics and experiment, accelerators physics and technology, nuclear physics, material research and partitioning. 13 abstracts, which has been presented on magazines home and abroad, are collected in the appendix

  4. Clean room for the production of cold kits: two year experience with the production of kits for 99mTc radiopharmaceuticals

    A new clean room has been designed and constructed at Radiopharmaceuticals Programme, BRIT keeping in view the functional aspects for the production of 'cold' kits for the preparation of 99mTc radiopharmaceuticals for supply to nuclear medicine centers and is in operation, since October, 2008. This clean room is the first clean room in the country designed exclusively for cold kit production. The clean room was validated and trial batches were produced and quality controlled prior to put it in regular production operation. The clean environment is maintained by separate AHU (air handling unit) located out side the clean room. A technical crew maintain the AHU unit and maintain record of parameters such as humidity, air flow, blower speed, chiller temperature etc. During a typical batch production not more than two persons are present in the formulation room. The formulated solution (filtered through 0.22μ membrane filter) is passed though a pass box between the formulation and dispensing area. The no. of people allowed in the dispensing area which is a critical area of class 100 is restricted to not more than four that too no person is allowed to be in between direct flow of HEPA filtered air and the dispensing table. The number of vials to be dispensed is arranged in trays and 1 ml of the formulated sterile solution is dispensed into each vial and the vials are transferred in to the lyophilization chamber. Sterile vials are introduced into class 100 area and the vials are removed after lyophilization though a pass box. After lyophilization vials are sealed with aluminum caps and stored at 2-10 deg C. Since the commissioning of the new clean room, about 120 batches of 10 different kit products were prepared and 1,20,000 kit vials were supplied to various hospitals for nuclear medicine investigation

  5. Evaluating The Operation Of Three Air Cleaners Working Individually In A Clean Room

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian; Johnson, Matthew S.

    2011-01-01

    The use of portable air cleaners is becoming increasingly popular in many countries includingDenmark. Portable air cleaners are known for not only removing but also generating particles andgases. To clarify this, three air cleaning technologies were evaluated. They were nonthermalplasma, photochemical air purifier and corona discharge ionizer. The concentrations of ultrafineparticles, ozone and total volatile organic compounds were measured both in a duct and in a cleanroom. It was found that...

  6. Simultaneous extraction, derivatization and clean-up of sterols from soil using accelerated solvent extraction

    A one-step extraction, derivatization and clean-up technique for the determination of sterols in soil by accelerated solvent extraction (ASE) is presented. In this method, in situ derivatization of sterols using 99 % N, O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) + 1 % trimethylchlorosilane (TMCS) was carried out inside the extraction cell. The extracts were analyzed by gas chromatography with mass spectrometry detector (GC-MSD) and gas chromatography with flame ionization detector (GC-FID). The effects of solvent, sorbent and temperature on the in situ derivatization of sterols were investigated using Ottawa sand fortified at 50 ppm sterol mixture (cholestrol, stigmasterol and stigmastanol). The extraction performed using dichloromethane at extraction pressure of 1500 p.s.i, temperature 60 degree Celsius and static extraction time of 15 min gave recoveries from 87 to 96 %. The effect of several types of sorbents as on-line clean-up by inclusion of sorbents in the extraction cell on the extraction efficiencies were investigated using spiked soil sample. Increase in static extraction time significantly improved the recoveries of the analytes. The utilization of integrated extraction, derivatization and clean-up strategy simplify and shorten the sample preparation step in an analysis. (author)

  7. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  8. Some folded issues related to over-shielded and unplanned rooms for medical linear accelerators - A case study

    Muhammad, Wazir; Ullah, Asad; Hussain, Amjad; Ali, Nawab; Alam, Khan; Khan, Gulzar; Matiullah; Maeng, Seongjin; Lee, Sang Hoon

    2015-08-01

    A medical linear accelerator (LINAC) room must be properly shielded to limit the outside radiation exposure to an acceptable safe level defined by individual state and international regulations. However, along with this prime objective, some additional issues are also important. The current case-study was designed to unfold the issues related to over-shielded and unplanned treatment rooms for LINACs. In this connection, an apparently unplanned and over-shielded treatment room of 610 × 610 cm2 in size was compared with a properly designed treatment room of 762 × 762 cm2 in size ( i.e., by following the procedures and recommendations of the IAEA Safety Reports Series No. 47 and NCRP 151). Evaluation of the unplanned room indicated that it was over-shielded and that its size was not suitable for total body irradiation (TBI), although the license for such a treatment facility had been acquired for the installed machine. An overall 14.96% reduction in the total shielding volume ( i.e., concrete) for an optimally planned room as compared to a non-planned room was estimated. Furthermore, the inner room's dimensions were increased by 25%, in order to accommodate TBI patients. These results show that planning and design of the treatment rooms are imperative to avoid extra financial burden to the hospitals and to provide enough space for easy and safe handling of the patients. A spacious room is ideal for storing treatment accessories and facilitates TBI treatment.

  9. Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room

    Dose escalation with high-energy X rays of medical linear accelerators (linacs) in radiotherapy offers several distinct advantages over the lower energy photons. However, owing to photoneutron reactions, interaction of high-energy photons (>8 MV) with various high-Z nuclei of the materials in the linac head components produces unavoidable neutrons. The aim of this study was to evaluate the photoneutron dose equivalent per unit therapeutic X-ray dose of 18 MV, GE Saturne 20 linac in the treatment room using Monte Carlo (MC) MCNP linac head full simulation as well as thermoluminescence dosemeter measurements. This machine is one of the old linac models manufactured by General Electric Company; however, it is widely used in the developing countries because of low cost and simple maintenance for radiotherapy applications. The results showed a significant photoneutron dose from Saturne 20 linac head components especially at distances near the linac head (<150 cm). Results of this work could be used in several applications, especially designing bunker and entrance door shielding against neutrons produced by photoneutron reactions in GE Saturne 20. However, a detailed cost optimisation for a specific room would require a dedicated calculation. (authors)

  10. Clean Coal Technologies: Accelerating Commercial and Policy Drivers for Deployment [Russian Version

    NONE

    2008-07-01

    Coal is and will remain the world’s most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry’s considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol’s Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbonconstrained world.

  11. Improvement of high-voltage performance of acceleration tubes by cleaning the walls with a high-pressure water jet

    Takeuchi, S. E-mail: takeuchi@tandem.tokai.jaeri.go.jp; Nakanoya, T.; Kabumoto, H.; Yoshida, T

    2003-11-11

    We cleaned electrostatic accelerator tubes by applying a high-pressure water jet and examined their high-voltage performances at 1 and 3 MV. The cleaning was very effective in reducing discharge activities at their rated voltages. We did some experimental investigations with the tubes and their ceramic insulators. We found that removal of microparticles loosely bound on the vacuum-side ceramic surfaces had an important effect in eliminating the discharge activities.

  12. Control system and environmental parameters monitoring of the Tandetron Accelerator clean room

    A control system and monitoring of humidity and temperature implemented by means of a system based on a microcontroller, an intelligent sensor and a stage of power for the actuators handling is described. The change of the levels of reference of the control system and the monitoring of the physical controlled variables can be carried out from any connected computer to a local net or Internet. (Author)

  13. Occupational hazards control of hazardous substances in clean room of semiconductor manufacturing plant using CFD analysis.

    Li, Jianfeng; Zhou, Ya-Fei

    2015-02-01

    The manufacturing processes in chip industries are complex, and many kinds of raw materials and solvents of different nature are used, most of which are highly toxic and dangerous. During the machine preventive maintenance period, these toxic and harmful substances will escape from the sealed reaction chamber to the clean workshop environment and endanger the health of the workers on-site, resulting in occupational diseases. From the perspective of prevention, the spread and prediction of hydrochloric acid (HCl) that escaped from the metal-etching chamber during maintenance were studied in this article. The computational fluid dynamics technology was used for a three-dimensional numerical simulation of the indoor air velocity field and the HCl concentration field, and the simulation results were then compared with the on-site monitoring data to verify the correctness and feasibility. The occupational hazards and control measures were analyzed based on the numerical simulation, and the optimal control measure was obtained. In this article, using the method of ambient air to analyze the occupational exposure can provide a new idea to the field of occupational health research in the integrated circuit industry and had theoretical and practical significance. PMID:23293134

  14. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: ► Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. ► Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. ► Calculations: Monte Carlo simulations with the MCNP code. ► Measured and calculated figure-of-merit parameters in agreement with those of IAEA. ► Initial MCNP dose calculations for a treatment room to define future design actions.

  15. On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers

    Treuer, H.; Hoevels, M.; Luyken, K.; Gierich, A.; Kocher, M.; Müller, R.-P.; Sturm, V.

    2000-08-01

    We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.

  16. Microbiological monitoring of clean rooms in development of vaccines Monitoramento microbiológico de áreas classificadas em desenvolvimento de vacinas

    Carla Lílian de Agostini Utescher; Marcia Regina Franzolin; Luiz Rachid Trabulsi; Valderez Gambale

    2007-01-01

    The aim of the present work was to evaluate an environmental monitoring program for clean rooms, or classified environments, involved in the filling and quality control of biological products produced by Butantan Institute, São Paulo, Brazil. This monitoring established the quantification, characterization and seasonality of the microorganisms in air and operators and, moreover, determined the alert and action limits. The total detectable microbial number showed some contrasts in installed ai...

  17. Tests of an environmental and personnel safe cleaning process for BNL accelerator and storage ring components

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its UHV components during and after construction. A new UHV cleaning process, which had to be environmentally and personnel safe, was needed to replace the harsh, unfriendly process which was still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on Photon Stimulated Desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel and oxygen free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 ev. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 1022 and 1023 photons per meter for a PSD measurement. Desorption yields for H2, CO, CO2, CH4 and H2O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories

  18. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2016-07-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation

  19. Air-born contamination caused in a high-energy proton accelerator room

    Surface contamination caused during the operation of 12-GeV proton synchrotron, KEK have been studied by gamma-ray spectrometry and imaging plate technique. The surface of accelerator component was wiped with the filter paper. PSL value of imaging plate contacted on the filter paper decreased according to the half-life of 2 weeks. Therefore, it was assumed that 32P might be produced from Ar by the high-energy protons and neutrons and deposited on the accelerator components. (author)

  20. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  1. Research on cw electron accelerators using room-temperature rf structures. Annual report

    Highlights reported include: measurement of the 100 keV chopped beam emittance, completion of installation of the entire 5 MeV injector linac system with all rf power and drive, extensive field mapping of one end magnet, completion of construction of the 12 MeV linac for the racetrack microtron (RTM), installation of most of the control system, and first acceleration of beam to 5 MeV. Plans for completion of the project are discussed. When the RTM is operating, it is expected to have many unique performance characteristics, including the cw nature of the beam, high current, easily variable energy over a wide range, excellent emittance, and small energy spread. Plans for future uses in the areas of nuclear physics, dosimetry research and standards, accelerator development, and free electron laser research are discussed. 19 refs

  2. The different grading of 'clean rooms'; Les differents classements des ''salles propres''

    Desjardins, C.

    2000-03-01

    The grading of clean rooms is performed according to precise criteria depending on the intended purpose of the rooms. Validation of this grading is different depending on the country. In this paper, the author proposes a synthesis of the different technical points which can give help in making a choice: grading families (particulates, biological hazards, risks, good manufacturing practices, contamination kinetics, air-flow), validation of grading (French and foreign standards, 'as built', 'at rest' and 'operational' grading), grading based on particulates (different classes, choice for a given class, consistency between definitions, extra-grading), grading based on microorganisms (efficiency of filters), grading based on air flow (integral or partial laminar flow, turbulent flow), grading based on air flow rates (different types of air, mixing ratio, new air inflow ratio). (J.S.)

  3. Bed-integrated local exhaust ventilation system combined with local air cleaning for improved IAQ in hospital patient rooms

    Bivolarova, Mariya Petrova; Melikov, Arsen Krikor; Mizutani, Chiyomi;

    2016-01-01

    the exposure to body generated bio-effluents in a hospital room was determined. Full-scale experiments were conducted in a climate chamber furnished as a single-bed patient room. Two heated dummies were used to simulate a patient and a doctor in the room. The patient was lying on a bed equipped with...... the VM. The patient's body was covered with either a cotton sheet or with the ACF material used as a blanket. Ammonia gas released from the patient's groins simulated the body generated bio-effluents. At the location of the groins the surface area of the VM was perforated through which the...... efficiently reduced the generated bio-effluents in the room with about 70%. Reduction in the exposure to body-emitted ammonia was up to 96% when the VM was operated at only 1.5 L/s and the ACF was used as a blanket....

  4. Study on contamination control in a minienvironment inside clean room for yield enhancement based on particle concentration measurement and airflow CFD simulation

    Noh, Kwang-Chul [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea); Kim, Hyuk-Soon; Oh, Myung-Do [Department of Mechanical and Information Engineering, University of Seoul, Seoul 130-743 (Korea)

    2010-04-15

    A study was carried out to look for the source of contamination and examine the route of contaminant transfer in the minienvironment applied in LCD process clean room of Korea. As the minienvironment model, one of the clean room with much large space and low particle concentration was selected to investigate. Firstly, the particle concentrations were measured without any information on the source and the route of contaminants transfer. Through considering the results of particle measurements and CFD simulations simultaneously, however, it was revealed that the critical contamination source was the stocker and the contaminants were transferred by the airflow pattern in this study. As an improvement action, reducing the airflow rate of exhaust fans and installing additional fan filter units (FFUs) were carried out. As a result, the velocity distribution was improved and the particle concentration was reduced in the target minievironment. Also, the defect rate related to this minienvironment decreased. With the help of the experimental and the numerical tools, the effective method for contamination control was developed. Furthermore, this article provides recommendation for future work to improve the yield and save the energy consumption simultaneously. (author)

  5. Activation products in a treatment room of a 15 MV linear accelerator for medical use

    De Leon M, H. A.; Soto B, T. G.; Rivera P, E.; Hernandez D, V. M.; Vega C, H. R., E-mail: asa_15@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    Linacs working above 8 MV produce an undesirable neutron field mainly through ({gamma}, n) nuclear reactions. Due to room-return effect inside the vault there is a thermal neutron flux that is constant regarded the distance to the isocenter. When thermal neutrons collide with the bunker walls and the Linac head some radioisotopes are induced in the concrete, wedges and collimators due to neutron and photon activation. The aim of this work is to study the induced radioisotopes in concrete samples and a wedge, which emits gamma-ray during its decay, the presence of this protons will represent a radiological risk for the patient. Induced radioisotopes were studied with a 15 MV Linac, and a gamma-ray spectrometer with a Nal(Tl) scintillator where 846.8, 1368.6 and 1778.8 keV gamma-rays were observed, these photons are produced during the decay of {sup 54}Mn, {sup 24}Na and {sup 28}Al respectively, being in agreement with radionuclides reported in the literature. (Author)

  6. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-01

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required. PMID:17868819

  7. Improved eradication of Clostridium difficile spores from toilets of hospitalized patients using an accelerated hydrogen peroxide as the cleaning agent

    Dueck Christine

    2010-09-01

    Full Text Available Abstract Background C. difficle spores in the environment of patients with C. difficile associated disease (CDAD are difficult to eliminate. Bleach (5000 ppm has been advocated as an effective disinfectant for the environmental surfaces of patients with CDAD. Few alternatives to bleach for non-outbreak conditions have been evaluated in controlled healthcare studies. Methods This study was a prospective clinical comparison during non-outbreak conditions of the efficacy of an accelerated hydrogen peroxide cleaner (0.5% AHP to the currently used stabilized hydrogen peroxide cleaner (0.05% SHP at manufacturer recommended use-dilution with respect to spore removal from toilets in a tertiary care facility. The toilets used by patients who had diarrhea with and without C. difficile associated disease (CDAD were cultured for C. difficile and were monitored using an ultraviolet mark (UVM to assess cleaning compliance on a daily basis 5 days per week. A total of 243 patients and 714 samples were analysed. The culture results were included in the analysis only if the UVM audit from the same day confirmed that the toilet had been cleaned. Results Our data demonstrated that the efficacy of spore killing is formulation specific and cannot be generalized. The OxivirTB® AHP formulation resulted in statistically significantly (p = 0.0023 lower levels of toxigenic C. difficile spores in toilets of patients with CDAD compared to the SHP formulation that was routinely being used (28% vs 45% culture positive. The background level of toxigenic C. difficile spores was 10% in toilets of patients with diarrhea not due to CDAD. The UVM audit indicated that despite the enhanced twice-daily cleaning protocol for CDAD patients cleaning was not achieved on approximately 30 - 40% of the days tested. Conclusion Our data indicate that the AHP formulation evaluated that has some sporicidal activity was significantly better than the currently used SHP formulation. This AHP

  8. Presentation of a semiempirical method for the calculation of doses due to neutrons and capture gamma rays inside high energy accelerators rooms

    Full text: Medical electron accelerators operating above 10 MeV produce radiation beams that are contaminated with neutrons. Therefore, shielding design for high energy accelerator rooms must consider the neutron component of the radiation field. In this paper a semiempirical method is presented to calculate doses due to neutrons and capture gamma rays inside the room and the maze. The calculation method is based on the knowledge of the neutron yield Q (neutrons/Gy of photons at isocenter) and the average energy of the primary beam of neutrons Eo (MeV). The method constitutes an appropriate tool for shielding facilities evaluation. The accuracy of the method has been contrasted with data obtained from the literature and an excellent correlation among the calculations and the measured values was achieved. In addition, the method has been used in the verification of experimental data corresponding to a 15 MeV linear accelerator installed in the country with similar results. (author)

  9. Re-injection accelerates groundwater clean up at Fernald, Fluor Fernald, Inc

    A successful one year long, field scale demonstration of the use of groundwater re-infection at Fernald was recently completed bringing DOE one step closer to achieving an accelerated site remediation (DOE 2000). The demonstration marks the end of a several year effort to evaluate whether: re-injection could be conducted efficiently at Fernald, and if the approved aquifer remedy at Fernald would benefit by incorporating re-infection. Evaluation of re-injection technology involved not only technical considerations, but also participation and cooperation of regulators and stakeholders. The demonstration was considered to be unique in that it was integrated into the design of the current approved aquifer remedy and utilized the existing remediation infrastructure. Information collected during the demonstration indicated that re-injection wells could be operated efficiently at Fernald and that the current approved groundwater remedy should be modified to include the use of re-injection

  10. Investigation of the Contamination Control in a Cleaning Room with a Moving AGV by 3D Large-Scale Simulation

    Qing-He Yao

    2013-01-01

    Full Text Available The motions of the airflow induced by the movement of an automatic guided vehicle (AGV in a cleanroom are numerically studied by large-scale simulation. For this purpose, numerical experiments scheme based on domain decomposition method is designed. Compared with the related past research, the high Reynolds number is treated by large-scale computation in this work. A domain decomposition Lagrange-Galerkin method is employed to approximate the Navier-Stokes equations and the convection diffusion equation; the stiffness matrix is symmetric and an incomplete balancing preconditioned conjugate gradient (PCG method is employed to solve the linear algebra system iteratively. The end wall effects are readily viewed, and the necessity of the extension to 3 dimensions is confirmed. The effect of the high efficiency particular air (HEPA filter on contamination control is studied and the proper setting of the speed of the clean air flow is also investigated. More details of the recirculation zones are revealed by the 3D large-scale simulation.

  11. Experimental research of dose distribution and protection for mobile intra-operative radiotherapy accelerator in operating room

    Objective: To study the dose distribution characteristics for mobile intra-operative radiotherapy accelerator (Mobetron) in an operating room, and to provide basic data for developing appropriate radiation protection measures and protection standard. Methods: For most commonly used electron energy 9 MeV, TLD dosimeters were placed at 50, 100, 150 and 200 cm high plane, respectively. For each plane,the measurement points were selected at every 50 cm from the central axis at every 45° at eight different directions. Also different electron energies, such as 4, 6, 9 and 12 MeV, were taken into consideration at the plane at 100 cm height. After 10 Gy with a dose rate of 10 Gy/min were delivered, the TLD dosimeters were used to read out the data. Results: For 9 MeV, at the phantom plane (100 cm high plane), the average doses were 169, 756, 395 and 241 μSv at 50, 100, 150 and 200 cm from the central axis,respectively. The maximum deviation between the doses at 50 cm from the central axis in different angles and their average values were 9.1%. In the identical angle, the average doses of 50, 100, 150 and 200 cm high planes at the distance of 100 cm from central axis were 527, 756, 570 and 141 μSv, respectively. For the energies of 4, 6, 9 and 12 MeV, the average doses were 573, 486, 689 and 781 μSv at 100 cm from the central axis at 90° of 100 cm high plane. Conclusions: For the same energy,the dose values at different directions were decreased by the minus exponential function law with the distance. The doses were uniformly distributed at different directions at the same distance from the central axis. The doses on the plane of 100 cm height were much higher than those at other heights,and the dose values were increased with the election energy. (authors)

  12. Tests of an environmental and personnel safe cleaning process for Brookhaven National Laboratory accelerator and storage ring components

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its ultrahigh vacuum (UHV) components during and after construction. A new UHV cleaning process, which has to be environmentally and personnel safe, is needed to replace the harsh, unfriendly process which is still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on photon stimulated desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel, and oxygen-free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 eV. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils, and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 1022 and 1023 photons per meter for a PSD measurement. Desorption yields for H2, CO, CO2, CH4, and H2O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories. After modification, the new UHV cleaning process was accepted by BNL

  13. Accelerator

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  14. Measurement of the neutron spectrum in a room with an accelerator Varian 2300C/D Linac using the Bonner multisphere spectrometer

    The generated neutron field varies considerably and depends on the beam energy, on the shielding of the accelerator, on the filters for beam homogeneity, and also on the mobile collimators and geometry of irradiation. The estimation of the component relative to the photoneutrons has practical interest for evaluation of the radiological risks for the workers and for the patient as well. Due to the high frequency magnetic field, and to the photon abundance resulting of the escape and scattering at treatment room, those measurements present some difficulties. Measurements of the neutron fields can be made with a Bonner spectrometer. Those system was calibrated with referred neutron standard sources and used for make measurements on a spot of the room where a Variant 2300C/D Linac is installed. The unfolding process used the BUNKI computer code for determination of the neutron spectra at the measurement spot

  15. Occupational doses due to photoneutrons in medical linear accelerators rooms; Doses ocupacionais devido a neutrons em salas de aceleradores lineares de uso medico

    Soares, Alessandro Facure Neves de Salles

    2006-04-15

    Medical linear accelerators, with maximum photon energies above 10 MeV, are becoming of common use in Brazil. Although desirable in the therapeutic point of view, the increase in photon energies causes the generation of undesired neutrons, which are produced through nuclear reactions between photons and the high Z target nuclei of the materials that constitute the accelerator head. In this work, MCNP simulation was undertaken to examine the neutron equivalent doses around the accelerators head and at the entrance of medical linear accelerators treatment rooms, some of them licensed in Brazil by the National Regulatory Agency (CNEN). The simulated neutron dose equivalents varied between 2 e 26 {mu} Sv/Gy{sub RX}, and the results were compared with calculations performed with the use of some semi-empirical equations found in literature. It was found that the semi-empirical equations underestimate the simulated neutron doses in the majority of the cases, if compared to the simulated values, suggesting that these equations must be revised, due to the increasing number of high energy machines in the country. (author)

  16. Effect of cleaning and disinfection in dental treatment room%口腔诊疗环境清洁消毒效果的研究

    苏静; 张涛; 赵红

    2012-01-01

    目的 了解北京地区口腔诊疗环境现状,探讨提高口腔诊疗环境清洁消毒效果的方法及监测手段.方法 采用三磷酸腺苷(ATP)生物荧光检测法监测分层随机抽取的125所口腔医疗机构环境表面清洁现状,采用平行对照研究比较卡瓦布和乙醇棉的清洁消毒效果,分析菌落计数法与ATP生物荧光法数值的相关性.结果 采用ATP方法对医师侧操作台面、医师侧灯把手、患者左侧扶手分别对125份标本进行检测,医师侧操作台面合格率为45.6%;卡瓦布和乙醇棉经菌落计数法检测消毒合格率达100.0%,经ATP生物荧光检测法检测,合格率为50.0%;ATP法测定数值(RLU)与菌落计数法所计算的菌落形成单位(CFU)无明确相关性.结论 卡瓦布可以有效用于物体表面清洁消毒,口腔诊疗环境清洁状况需要加强监管,ATP生物荧光检测法可以作为快速监测的手段.%OBJECTIVE To identify the contamination status of general surface in dental treatment room in Beijing and to research on the disinfection and monitoring methods to improve the effect of environment cleaning. METHODS By means of ATP bioluminescence method, the contamination of object surfaces in 125 stratified randomly samples from Beijing dental clinics was evaluated. A parallel control study was conducted to compare the effect of alcohol gauze and CaviWipes. The correlation between the detected data of ATP bioluminescence method and plate culture method was analyzed. RESULTS With ATP bioluminescence method, among 125 groups of dental unit surface samples including light handle aside dentist, panel plate aside dentist and left armrest, the qualified rate in panel plate aside dentist was 45. 6%. With plate culture method, the qualified rate of alcohol gauze and CaviWipes was 100. 0%. The 1g RLU of bioluminescence method was not significantly associated with the lgCFU of plate-culture method. CONCLUSION CaviWipes can be effectively used in the

  17. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    Isakson, K.; Vessell, A.L.

    1994-07-01

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ``best alternatives``: Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases.

  18. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ''best alternatives'': Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases

  19. Microbiological monitoring of clean rooms in development of vaccines Monitoramento microbiológico de áreas classificadas em desenvolvimento de vacinas

    Carla Lílian de Agostini Utescher

    2007-12-01

    Full Text Available The aim of the present work was to evaluate an environmental monitoring program for clean rooms, or classified environments, involved in the filling and quality control of biological products produced by Butantan Institute, São Paulo, Brazil. This monitoring established the quantification, characterization and seasonality of the microorganisms in air and operators and, moreover, determined the alert and action limits. The total detectable microbial number showed some contrasts in installed air purification systems and in the operational impact on adopted procedures. The typical microbial population consisted of Staphylococcus sp, Micrococcus sp, Bacillus sp and Penicillium sp. The highest microorganism concentration occurred during summer and springtime. The established internal alert and action limits supported the operational procedures. Therefore, the environmental monitoring program is recommended for other laboratories involved in the production of vaccines, hyperimmune sera and biopharmaceuticals.O presente trabalho teve por objetivo avaliar um programa de monitoramento microbiológico ambiental para áreas limpas, ou ambientes classificados, envolvidas na produção, envasamento e controle dos imunobiológicos produzidos pelo Instituto Butantan. Este monitoramento permitiu a quantificação, a caracterização e a sazonalidade da população microbiana presente no ar e nos operadores, e a determinação dos limites de alerta e ação. O número total de bactérias detectáveis revelou diferenças nos sistemas de purificação de ar instalados e o impacto operacional ocasionado pelos procedimentos realizados. A população microbiana característica foi composta por bactérias dos gêneros Staphylococcus sp, Micrococcus sp, Bacillus sp e por fungos filamentosos do gênero Penicillium sp. A maior concentração de microrganismos ocorreu nos períodos de verão e primavera. Os limites internos de alerta e ação estabelecidos asseguram os

  20. Monitoring and evalution on the envirov mental clean level of hemodlalysis room%血液透析中心环境清洁水平的监测和改善

    唐钦妹; 郭淑霞; 叶亚莉; 黄文碧; 黄向红

    2013-01-01

    Objective Adenosine triphosphate (ATP) bioluminescence and microbiological culture methods were used for evaluation of cleaning procedure changed before or after in hemodialysis room. These provide a real-time and effective method on monitoring and evaluation of the environmental clean level of hemodialysis room. Methods Choose five sites from the hemodiaylsis room and use ATP bioluminescence and microbiological culture methods to monitor and record the clean level of those sites before and after changing clean procedure, comparison of two results and evaluation of a new clean procedure. Results The mean of ATP bioluminescence method before changing clean procedure respectively is 788. 310. 530.600 and 900RLU, after cleaning procedure changed is 176. 130. 120. 220 and 239RLU. The mean of microbiological culture method respectively is 12. 4. 9. 6 and 8cfu, after cleaning procedure changed is 2. 1. 1. 1 and 2cfu. The surface contaminated level of homedialysis room was significantly reduced, the monitoring results of ATP bioluminescence are similar with microbiological culture method. Conclusions Effectively surface cleaning procedure can dramatically reduced the surface contaminated condition, ATP bioluminescence is much more quick and efficient technology used in monitoring and evaluation on the nosocomial environmental clean level.%目的 通过三磷酸腺苷(ATP)荧光监测法和微生物培养法去评价血液透析中心环境清洁程序改进前后的清洁水平变化情况,为血液透析中心环境清洁和监测提供一个实时有效的方法. 方法 选择透析室5个环境位点,通过ATP荧光监测法和微生物培养法去监测5个位点的清洁水平,通过改进现有的清洁方式再次进行监测并比较两次监测结果,评价改进后的清洁程序.结果 改进前5个监测位点ATP测量均值为788、310、530、600和900RLU,改进后清洁程序ATP测量均值176、130、1 20、220和239RLU.改进前微生

  1. Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultra-thin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-In-Cell (PIC) computer simulations of proton acceleration in the Directed Coulomb e...

  2. Monte Carlo simulation for the production of neutrons inside the labyrinth function rooms radiotherapy in head rotation of medical linear accelerator use and energy operation

    This work consists of an analysis, through computer simulation using the Monte Carlo method, the production of neutrons generated by the interaction of the beam with useful materials that are heavy in head-accelerated linear medical use. We developed a computer model of the head of the linear accelerator Varian, where there was the ambient dose equivalent due to the neutrons H*(10)n the plane of the patient and the region of the labyrinth bunker for several angles of operating at energies of 10, 15, 18 MV. It was found that production of neutrons in the plane of the patient has direct dependency with increasing beam energy useful, since the labyrinth it appears that besides energy the operating angle also has a direct influence on the production of neutrons in the region of the labyrinth, consequently the door. Therefore, a survey of H*(10)n at various angles with different operating ranges of energy contributes to better planning studies concerning shielding doors in rooms radiotherapy. (author)

  3. Accelerating total body irradiation with large field modulated arc therapy in standard treatment rooms without additional equipment

    Polednik, Martin; Lohr, Frank; Ehmann, Michael; Wenz, Frederik [Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Department of Radiation Oncology, Mannheim (Germany)

    2015-11-15

    The aim of this study was to develop a generic and ultra-efficient modulated arc technique for treatment with total body irradiation (TBI) without additional equipment in standard treatment rooms. A continuous gantry arc between 300 and 70 composed of 26 subarcs (5 per subarc) using a field size of 40 x 40 cm{sup 2} was used to perform the initial beam data measurements. The profile was measured parallel to the direction of gantry rotation at a constant depth of 9 cm (phantom thickness 18 cm). Beam data were measured for single 5 subarcs, dissecting the individual contribution of each subarc to a certain measurement point. The phantom was moved to 20 measurement positions along the profile. Then profile optimization was performed manually by varying the weighting factors of all segments until calculated doses at all points were within ± 1 %. Finally, the dose distribution of the modulated arc was verified in phantom thicknesses of 18 and 28 cm. The measured profile showed a relative mean dose of 99.7 % [standard deviation (SD) 0.7 %] over the length of 200 cm at a depth of 9 cm. The measured mean effective surface dose (at a depth of 2 cm) was 102.7 % (SD 2.1 %). The measurements in the 28 cm slab phantom revealed a mean dose of 95.9 % (SD 2.9 %) at a depth of 14 cm. The mean dose at a depth of 2 cm was 111.9 % (SD 4.1 %). Net beam-on-time for a 2 Gy fraction is approximately 8 min. This highly efficient modulated arc technique for TBI can replace conventional treatment techniques, providing a homogeneous dose distribution, dosimetric robustness, extremely fast delivery, and applicability in small treatment rooms, with no need for additional equipment. (orig.) [German] Das Ziel dieses Projekts war die Entwicklung einer generischen, hocheffizienten und modulierten Rotationsbestrahlungstechnik fuer Ganzkoerperbestrahlung (TBI, ''total body irradiation''), die ohne zusaetzliches Equipment in Standartbehandlungsraeumen angewendet werden kann. Ein

  4. Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    Bulanov, Stepan S; Bychenkov, Valery Yu; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultra-thin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-In-Cell (PIC) computer simulations of proton acceleration in the Directed Coulomb explosion regime from ultra-thin double-layer (heavy ions / light ions) foils of different thicknesses were performed under the anticipated experimental conditions for Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microns (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the ma...

  5. Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio

    CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the

  6. The effect analysis of concentrated cleaning and disinfection in the supply room to the anesthesia laryngoscope in the operating room%手术室麻醉喉镜供应室集中清洗及消毒效果分析

    卢春红

    2013-01-01

    目的探讨手术室的麻醉喉镜在经过供应室集中清洗、消毒之后的效果,分析其方法的应用性。方法 A组回顾性抽取分析我院于2011年1月至12月经手术室手工清洗、浸泡并消毒的麻醉喉镜200片。B组抽取2012年1月至2013年4月经供应室集中用全自动喷淋式清洗消毒机按标准流程清洗、高压蒸汽灭菌的麻醉喉镜200片。所有的麻醉镜片均采用目测法、带光源的放大镜检测法及细菌培养计数法鉴定消毒效果,并记录镜片的损耗率。结果 A组和B组麻醉喉镜片,目测法、带光源的放大镜检测法及细菌培养计数法合格率分别是95.50%和100.00%、91.00%和98.50%,87.50%和96.50%,均具有显著性差异。麻醉喉镜片损耗率为98.00%和99.31%,不具有显著性差异。结论麻醉喉镜片由供应室集中清洗、消毒灭菌效果优于手工清洗方法。不但保证了麻醉喉镜彻底清洗的效果和灭菌质量,而且人力和物质资源得到了共享,为医院节约了医疗成本,降低医疗风险,保证患者安全。%Objective: To explore effect of concentrated cleaning and disinfection in the supply room to the anesthesia laryngoscope in the operating room, and to analyze the applications of the methods. Methods: 200 pieces of anesthesia laryngoscope which were cleaned manual y, soaked and disinfected were selected in the group A. While 200 pieces of anesthesia laryngoscope which were cleaned and disinfected concentratedly with automatic spray cleaning machine according to standard procedures, high-pressure steam sterilization were selected in the group B. Al anesthesia laryngoscope were identified by the visual method, magnifying glass with light detection and the bacterial culture counting method, and their loss rate were recorded. Results: The pass percent of group A and group B in the verification of the visual method, magnifying glass with light detection and the bacterial culture counting

  7. Dust explosion accident in IC cleanroom and its prevention by automation; IC seizo clean room deno haiki duct funjin bakuhatsu jiko to jidoka ni yoru saihatsu boshi

    Harada, H. [Mitsubishi Corp., Tokyo (Japan)

    1998-09-30

    This paper describes dust explosion accident in IC cleanroom and its prevention measures. A dust explosion occurred during periodical cleaning works of dust deposits in an exhaust duct of plasma CVD system in an IC factory in Toyama Prefecture in August, 1996, which killed one worker. Dust was removed by flowing a large amount of air in the duct from the end of duct. This dust is combustible, and it was well known that a dust explosion occurs when mixed with air. Nitrogen gas is used for the transport of powders with high risk of explosion, such as wheat flour and toner, and the full automatic operation is adopted. The prevention of this accident is to adopt automation based on the principle of powder transportation. A safety detection-type safety system has been proposed so as to remove the dust deposits in the duct automatically as well as to detect the deposition conditions in the duct. Based on the comparison between monitoring data of operation in an exhaust duct and past data, operation conditions of duct can be confirmed to ensure the safety by stopping the CVD system urgently when safety can not be confirmed. 14 refs., 1 fig.

  8. Control system and environmental parameters monitoring of the Tandetron Accelerator clean room; Sistema de control y monitoreo de parametros ambientales del cuarto limpio del acelerador Tandetron

    Mejia V, M.E.; Garcia H, J.M.; Flores M, J. [ININ, Departamento de Sistemas Electronicos, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: mmejia@nuclear.inin.mx

    2007-07-01

    A control system and monitoring of humidity and temperature implemented by means of a system based on a microcontroller, an intelligent sensor and a stage of power for the actuators handling is described. The change of the levels of reference of the control system and the monitoring of the physical controlled variables can be carried out from any connected computer to a local net or Internet. (Author)

  9. Intraoperative radiotherapy in the theatre room with electron beams: technical and dosimetric description of Sordina LIAC accelerator; Radioterapia intraoperatoria en quirofano con haces de electrones: descripcion tecnica y dosimetrica del acelerador dedicado Sordina LIAC

    Sendon del Rio, J. R.; Ayala Lazaro, R.; Gomez Cores, S.; Garcia Hernandez, M. J.; Polo Cezon, R.; Jimenez Rojas, R.; Lopez Bote, M. A.

    2015-05-01

    n this work we show our experience during the commissioning of a mobile electron-beam accelerator dedicated to intraoperative radiation therapy in the theatre room. The linac is a Sordina LIAC 12 MeV model with a hard-docking applicator system. We describe the linac, the measurement methods and the specific dosimetry. The dosimetric behavior is also discussed. Differences with other applicator systems can be explained from the particular head design of the linac. (Author)

  10. 供应室对器械的清洗消毒灭菌的质量监测管理探究%Cleaning Supply Room Disinfection and Sterilization of Instruments of Quality Monitoring and Management Inquiry

    刁蓓蓓

    2015-01-01

    目的 探讨研究供应室对器械清洗消毒灭菌的质量检测管理.方法 利用调查问卷表的形式进行调查分析,把2014年3月~2015年2月予以全面且系统的质量监测管理作为研究阶段,抽取调查表共80份;将2012年3月~2013年2月未实施质量监测管理时期作为对照阶段,抽取调查表共80份,对比分析两个阶段器械性能完好满意情况和器械清洗消毒灭菌合格情况.结果 研究阶段器械性能完好满意度为96.27%,器械清洗消毒灭菌合格率为100.0%;对照阶段器械性能完好满意度为83.75%,器械清洗消毒灭菌合格率为87.5%,数据比较差异明显(P<0.05).结论从研究结果来看,供应室在器械清洗消毒灭菌中,加强质量监测管理,可提高器械清洗消毒灭菌合格率,减轻环境污染,保证患者安全.%Objective To evaluate research on equipment cleaning supply room disinfection and sterilization quality control management.Methods The survey questionnaire form of investigation and analysis, the March 2014~ February 2015 to be comprehensive quality monitoring and management system as the research stage, taking a total of 80 questionnaires; the March 2012~2013 February We may not implemented quality monitoring and management time as a control stage, taking a total of 80 questionnaires, comparative analysis of the two stages of instrument performance and satisfaction with good cleaning and disinfection equipment sterilization qualified situation.Results The study period instrument performance intact satisfaction 96.27%, cleaning and disinfection equipment sterilization pass rate of 100%; the control stage equipment performance intact satisfaction 83.75%, cleaning and disinfection equipment sterilization pass rate of 87.5%, the difference was obvious data (P<0.05).Conclusion From the research Results , the supply chamber cleaning and disinfection equipment sterilization, strengthen quality monitoring and management, cleaning and disinfection

  11. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil

    2016-01-01

    Objectives The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Design Before-after trial. Setting Newly built community hospital. Intervention 90 minute training refresher with surface-specific performance results. Methods Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. Results 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. Conclusion At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences. PMID

  12. AVESTAR Center for clean energy plant operators of the future

    Zitney, S.

    2012-01-01

    Clean energy plants in the modern grid era will increasingly exploit carbon capture, utilization, and storage (CCUS), fuel/product flexibility, and load following. Integrated power/process plants will require next generation of well-trained engineering and operations professionals. High-fidelity dynamic simulators are well suited for training, education, and R&D on clean energy plant operations. Combining Operator Training System (OTS) with 3D virtual Immersive Training System (ITS) enables simultaneous training of control room and plant field operators of the future. Strong collaboration between industry, academia, and government is required to address advanced R&D challenges. AVESTAR Center brings together simulation technology and world-class expertise focused on accelerating development of clean energy plants and operators of the future.

  13. Plasma Cleaning

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  14. Hypoxia Room

    Federal Laboratory Consortium — The Hypoxia Room is a 8x8x8 ft. clear vinyl plastic and aluminum frame construction enclosure located within USAREIM laboratory 028. The Hypoxia Room (manufactured...

  15. Economic and energy benefits in clean rooms, case of study: natural illumination and insulating capacity of the lagging; Beneficios economicos y energeticos en cuartos limpios, caso de estudio: iluminacion natural y capacidad aislante de la envolvente

    Torres Rodriguez, Agustin; Morillon Galvez, David [Universidad Nacional Autonoma de Mexico (Mexico)

    2009-01-15

    The objective of the present article is to show the electrical energy saving in clean rooms used to make pharmaceutical products using natural illumination instead of using fluorescent lamps. A study is performed in steady state of the heat load of buildings during three hours in order to observe the thermal its thermal behavior. And it is observed that at 1:00 o'clock p.m. the greatest heat load appears. With the global heat transference coefficients proposed in the official Mexican Norm NOM-008-ENER-2001 the heat load by conduction and convection of the building is estimated. Finally a bimonthly economic study of the energy saving of energy of the air conditioning system was realized with the system of artificial lighting and the system of natural illumination. All this study was realized in a site with temperate climate (Fraccionamiento Industrial Xalostoc, Ecatepec de Morelos, Estado de Mexico). [Spanish] El objetivo del presente articulo es mostrar el ahorro de energia electrica en cuartos limpios utilizados para elaborar productos farmaceuticos utilizando iluminacion natural en ves de utilizar lamparas fluorescentes. Se realiza un estudio en estado estable de la carga de calor de edificios para tres horas con la finalidad de observar el comportamiento termico de este. Y se observa que a las 13:00 horas se presenta la mayor carga de calor. Con los coeficientes globales de transferencia de calor propuestos en la norma oficial mexicana NOM-008-ENER-2001 se estima la carga de calor por conduccion y conveccion del edificio. Finalmente se realizo un estudio economico bimestral del ahorro de energia del sistema de aire acondicionado con el sistema de iluminacion artificial y con el sistema de iluminacion natural. Todo este estudio se realizo en un sitio con clima templado (fraccionamiento industrial Xalostoc, Ecatepec de Morelos Estado de Mexico).

  16. Clean data

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  17. Geometrically focused neutral beam accelerators

    A more reliable 40 kV, 65 A power supply drain at 0.4 A/cm2, neutral-beam accelerator was developed for the Tandem Mirror Experiment (TMX). Multiple slotted aperture grids of 60% transparency are fabricated from refractory metal wires mounted to form a spherical surface. This geometrically focuses the beam by aiming individual beamlets at the center of curvature of the spherical grid (r = 3.2 m). We attain greater reliability and faster conditioning with geometrical focusing than with the previous technique of electrostatically steering beamlets to a common point. Electrostatic steering, accomplished by offsetting grid wires, is satisfactory if the offset of a beamlet is much less than the distance from the beamlet to the grids. It was found that Pierce Angle entrance grids performed better if sharper edged. A redesigned accelerator grid support structure reduced the number of ceramic-to-metal vacuum joints, and eliminated O rings between precisely aligned parts. The suppressor grid feedthrough is required to withstand a maximum voltage of 15 kV occurring during breakdown, greatly exceeding the operating voltage of 1.5 kV. Convenient fabrication and assembly techniques have been developed. Assembly of accelerators and plasma sources in a clean room appears to reduce the conditioning time. Following the successful testing of the prototype, eight 40 kV accelerators were built for TMX. Furthermore, ten 20 kV versions were built that are modifiable to 40 kV by exchanging the entrance grid

  18. Calculation of the structural shielding of the radiotherapy treatment room equipped with a linear accelerator type Tomo therapy Hi-Art in the Oncology Center of Chihuahua, Mexico

    The helicoid tomo therapy is an external radiotherapy system of modulated intensity, guided by image, in which the radiation is imparted to the patient using a narrow radiation beam in helicoid form, in a similar way to the scanning process with a computerized tomography. The tomo therapy equipment (Tomo Therapy Hi-Art) consists in an electrons linear accelerator with acceleration voltages of 6 MV for treatment and 3.5 MV for image, coupled to a ring that turn around the patient as this is transferred through this ring in perpendicular sense to the radiation beam. The radiation beam is narrow because has the maximum size of 5 x 40 cm2 in the isocenter. The intensity modulation of the beam is carried out with a binary dynamic collimator of 64 crisscross sheets, and the guide by image though a system of megavoltage computerized tomography. Opposed to the radiation beam, also coupled to the rotational ring, a group of lead plates exists with a total thickness of 13 cm that acts as barrier of the primary radiation beam. The special configuration of the tomography equipment makes to have the following characteristics: 1) the presence of the lead barrier of the equipment reduces the intensity of the primary beam that reaches the bunker walls in considerable way, 2) the disperse and leakage radiations are increased with regard to a conventional accelerator due to the increase in the necessary irradiation time to produce modulated intensity fields by means of the narrow radiation beam. These special characteristics of the tomo therapy equipment make that particularities exist in the application of the formulations for structural shielding calculations that appears in the NCRP reports 49, NCRP 151 and IAEA-SRS-47. For this reason, several researches have development analytic models based on geometric considerations of continuous rotation of the equipment ring to determine the shielding requirements for the primary beam, the dispersed and leakage radiation in tomo therapy

  19. RLA room 20 cleanout and stabilization

    This engineering report documents the decontamination and stabilization of the Rupture Loop Annex located in room 20 of the 309 building's Plutonium Recycle Test Reactor. Low level, mixed, and recyclable waste was removed from the room. Smearable contamination was removed and/or fixed in place with paint. The RLA was cleaned out and stabilized to meet the Environmental Restoration Contractor's turnover criteria

  20. Adjoint acceleration of Monte Carlo simulations using SCALE: A radiation shielding evaluation of the neutron generator room at Missouri S&T

    Sharma, Manish K.; Alajo, Ayodeji B.; Liu, Xin

    2015-08-01

    A deuterium-deuterium accelerator-type neutron generator was installed in the Nuclear Engineering Department at Missouri University of Science and Technology (Missouri S&T). This generator is shielded by different hydrogenated and non-hydrogenated materials to reduce the dose rates in the vicinity of the facility. In the work presented in this paper, both SCALE6 and MCNP5 radiation transport codes were used to conduct two independent simulations. The new shielding analysis tool of SCALE6-MAVRIC, with the automatic variance reduction technique of SCALE6, was utilized to estimate and compare the dose rates from the unbiased MCNP simulation. The ultimate goal of this study was to compare the computational effectiveness offered by employing the MAVRIC sequence in the modeling of the neutron generator facility at Missouri S&T.

  1. Air Cleaning Technologies

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  2. Memory's Room.

    Carruthers, Mary

    1999-01-01

    Describes the Liberal Arts Studiolo from the Ducal Palace at Guibbio, Italy. Discusses how the room's design and decoration mirrors its educational uses. Notes that the object of education was to provide the young person with a kind of mental library of materials that could be drawn upon quickly. (RS)

  3. Control room lay-out

    TRIUMF (Tri-University Meson Facility) is Canada's national laboratory for particle and nuclear physics. There are 6 accelerators and 3 Control Rooms at TRIUMF. The main control room serves the big cyclotron, the 500 MeV, and the adjacent experiment. The 42 MeV and two 32 MeV ones are production dedicated. These cyclotrons belong to a private company but are operated by TRIUMF staff from ATG (Applied Technology Group) Control Room. The last is ISAC (Isotope Acceleration and Separation) Control Room, from which the LINAC is controlled. Research areas cover theoretical (2 subjects), pure (5 subjects) and applied (8 subjects) physics. In the early '70s, as the 500 MeV was being completed, the first Control Room was built in the main accelerator building. The recent topics covered by this paper are proton and pion therapy, what are the operator's duties?, the CP42, TR30 and TR13 cyclotron control rooms, the ISAC control systems including control room modification. Due to the nature of an operator's job, the Control Room layout is pretty important. This is true for any work environment, but when working shifts it becomes essential. Lots of time and effort, not to mention money, were spent to figure out the optimum configuration. It seems to me that the key factor in the control room layout is versatility, and this is because it has to keep happy a group of people with different inclinations, which have a tendency to become quite moody after the second night shift. No matter what, there will still be unhappy people, but we are trying our best. (Y. Tanaka)

  4. Contact cleaning of polymer film solar reflectors

    Sansom, Christopher; Fernández-García, Aránzazu; Sutter, Florian; Almond, Heather; King, Peter

    2016-05-01

    This paper describes the accelerated ageing of polymer film reflecting surfaces under the conditions to be found during contact cleaning of Concentrating Solar Power (CSP) collectors in the presence of dust and sand particles. In these situations, contact cleaning using brushes and water is required to clean the reflecting surfaces. Whilst suitable for glass reflectors, this paper discusses the effects of existing cleaning processes on the optical and visual properties of polymer film surfaces, and then describes the development of a more benign but effective contact cleaning process for cleaning polymer reflectors. The effects of a range of cleaning brushes are discussed, with and without the presence of water, in the presence of sand and dust particles from selected representative locations. Reflectance measurements and visual inspection shows that a soft cleaning brush with a small amount of water can clean polymer film reflecting surfaces without inflicting surface damage or reducing specular reflectance.

  5. Waiting rooms /

    Taylor, Rachel Lee

    2014-01-01

    Waiting Rooms is a collection of poetry broken into five sections, each containing a separate intention of form and content. These fives sections remain in conversation with the overarching themes of the collection as a whole. This collection maps the multiple types of violence perpetuated against women in domestic and institutional settings, as well as its historical presence in literary fiction/poetry and pop culture entertainment. Taking cues from Modernist poetry, Shakespearean plays, and...

  6. 17 April 2013 - UK Queen Mary University London Principal S. Gaskell in the ATLAS control room at LHC Point 1, LHC tunnel and ATLAS experimental cavern with Collaboration Spokesperson D. Charlton and signing the guest book with CERN Director for Accelerators and Technology S. Myers.

    Maximilien Brice

    2013-01-01

    17 April 2013 - UK Queen Mary University London Principal S. Gaskell in the ATLAS control room at LHC Point 1, LHC tunnel and ATLAS experimental cavern with Collaboration Spokesperson D. Charlton and signing the guest book with CERN Director for Accelerators and Technology S. Myers.

  7. Discussion on air supply velocity of the class Ⅰ clean operating room: Part 5 of the series of research practice of the revision task group of the Architectural technical code for hospital clean operating department%Ⅰ级洁净手术室送风速度的探讨——《医院洁净手术部建筑技术规范》修订组研讨系列课题之五

    牛维乐; 高龙; 王燕芹; 李屹; 党宇

    2013-01-01

    Abstract The revised code adjusts the average air velocity and the measure section height for the velocity in working area in the class Ⅰ clean operating rooms.Carries a theory research in order to obtain air supply velocity and air supply rate corresponding to average air velocity in working area.The results show that the air supply velocity should be up to 0.30 to 0.37 m/s and the air supply rate should be up to 6 800 to 8 400 m3/h for the class Ⅰ clean operating rooms,whose storey height is three meters,in order to obtain the average air velocity of 0.20 to 0.25 m/s in the projection area of air supply face at 1.2 meters from the floor.%修编的《医院洁净手术部建筑技术规范》(报批稿)对Ⅰ级洁净手术室工作区平均风速的检测断面高度和工作区平均风速均有调整.为了获得相应的工作区平均风速对应的送风速度和送风量,进行了理论研究,得出如下结论:对于层高为3.0m的Ⅰ级洁净手术室,为了在距地面1.2m高的送风面投影区域获得0.20~0.25 m/s的工作区平均风速,送风速度需要达到0.30~0.37m/s,送风量需要达到6 800~8 400m3/h.

  8. CEBAF Control Room Renovation

    Spata, Michael; Fanning, Harry; Oren, Tom C

    2005-01-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  9. CEBAF Control Room Renovation

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort

  10. CEBAF Control Room Renovation

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facility's 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week maintenance period with no interruption to beam operations. We present the results of this effort

  11. Clean catch urine sample

    Urine culture - clean catch; Urinalysis - clean catch; Clean catch urine specimen; Urine collection - clean catch ... lips" (labia). You may be given a special clean-catch kit that contains sterile wipes. Sit on ...

  12. accelerating cavity

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  13. Dry Cleaning

    Shirley, Lindsey; Weller, Chanae

    2010-01-01

    Despite its name, commercial dry cleaning is not actually a “dry” process. Clothes are immersed in a solvent, most commonly perchlorethylene (perc), instead of in water. Perc or other similar solvents are effective in the removal of oil and grease-based stains without damaging or shrinking sensitive fabrics, unlike a regular detergents and fabric softeners.

  14. Tracking Clean Energy Progress 2013

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  15. Clean Evidence on Peer Pressure

    Falk, Armin; Ichino, Andrea

    2003-01-01

    While confounding factors typically jeopardize the possibility of using observational data to measure peer effects, field experiments over the potential for obtaining clean evidence. In this paper we measure the output of subjects who were asked to stuff letters into envelopes, with a remuneration completely independent of output. We study two treatments. In the 'pair' treatment two subjects work at the same time in the same room. Peer effects are possible in this situation and imply that out...

  16. CEBAF Control Room Renovation

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations

  17. On clean ideals

    Miaosen Chen; Huanyin Chen

    2003-01-01

    We introduce the notion of clean ideal, which is a natural generalization of clean rings. It is shown that every matrix ideal over a clean ideal of a ring is clean. Also we prove that every ideal having stable range one of a regular ring is clean. These generalize the corresponding results for clean rings.

  18. Evaluation of air cleaning technologies existing in the Danish market

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    Five portable air cleaning technologies including one new technology were evaluated to find their effectiveness in removing ultrafine particles. Measurements were carried out both in a duct and in a test room. The results showed that the technologies that use/create ozone to clean air can increase...... the ozone level significantly in the room. Moreover, they can cause generation of ultrafine particles and consequently increase ultrafine particle concentration in the room. The study suggests using a mechanical filter with low pressure drop as a recommended air cleaning technology in order to remove...

  19. CLEAN CITY

    2006-01-01

    Beijing is making every effort to handle its garbage in an environmentally sound manner Xu Yannian has gotten up at six in the morning each day for many years, so he can be ready when the garbage truck comes at 6:30 to collect the trash from the community in Beijing where he handles rubbish disposal. Xu manages the garbage room, an airtight, 50-square-meter space with more than

  20. Accelerator development in BARC

    Charged particle accelerators have played crucial role in the field of both basic and applied sciences. This has been possible because the accelerators have been extensively utilized from unraveling the secrets of nature to diverse applications such as implantation, material modification, medical diagnostics and therapy, nuclear energy and clean air and water. The development of accelerators in BARC can be categorized in two broad categories namely proton and heavy ion based accelerators and electron based accelerators. The heavy ion accelerators with sufficiently high energies are currently being used for conducting frontline nuclear and allied research whereas the electron accelerators are being routinely used for various industrial applications. Recently, there is a strong interest for developing the high energy and high intensity accelerators due to their possibility of effective utilization towards concept of energy amplification (Accelerator Driven System), incineration nuclear waste and transmutation. This talk will discuss details of the accelerator development program in BARC with particular emphasis on the recent development at Low Energy High Intensity Proton Accelerator (LEHIPA) Facility in Ion Accelerator Development Division, BARC. (author)

  1. Glow discharge cleaning of vacuum switch tubes

    Hayashi, T.; Toya, H. (Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan). Central Research Lab.)

    1991-10-01

    This paper reports that glow discharge cleaning has ben advancing as a means of degassing vacuum chambers constructed for a large accelerator or for nuclear fusion research. To clean the whole surface of parts inside a vacuum switch tube (VST), a new technique is tried which generates glow discharge between the inner electrodes and copper grid surrounding it. Photographic observation reveals that the glow discharge spreads out and cleans the whole surface inside the VST. A breakdown test between the inner electrodes shows the effect of the cleaning with this technique. Higher breakdown voltage between the inner electrodes is attained by performing this glow discharge cleaning in argon rather than hydrogen gas. The difference of the cleaning effect seems to be attributed to that of the energy transfer from ion species to the absorbed molecules and microprotrusions on the surfaces.

  2. Ionization Impact on the Air Cleaning Efficiency in the Interior

    Černecký Jozef; Valentová Karina; Pivarčiová Elena; Božek Pavol

    2015-01-01

    The paper deals with ionization impact on efficient cleaning of air in a measuring chamber which has been cleaned and closed against any outer impacts (e.g. impurities, dust from another room, human odours). Smoking has an impact on the number of positive and negative ions including the concentration of particulate matter PM10. We investigated the ion concentration according to the presence of cigarette smoke in the room and according to the change of lit cigarette distance from the supply of...

  3. P-clean rings

    Weixing Chen

    2006-01-01

    In this paper we unify the structures of various clean rings by introducing the notion of P-clean rings. Some properties of P-clean rings are investigated, which generalize the known results on clean rings, semiclean rings, n-clean rings, and so forth. By the way, we answer a question of Xiao and Tong on n-clean rings in the negative.

  4. Beam Cleaning and Collimation Systems

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  5. r-clean rings

    Ashrafi, Nahid; Nasibi, Ebrahim

    2011-01-01

    An element of a ring R is called clean if it is the sum of an idempotent and a unit. A ring R is called clean if each of its element is clean. An element r \\in R called regular if r = ryr for some y \\in R. The ring R is regular if each of its element is regular. In this paper we define a ring is r-clean if each of its elements is the sum of a regular and an idempotent element. We give some relations between r-clean and clean rings. Finally we investigate some properties of r-clean rings.

  6. Transition to Clean Technology

    Acemoglu, Daron; Akcigit, Ufuk; Hanley, Douglas; Kerr,William Robert

    2014-01-01

    We develop a microeconomic model of endogenous growth where clean and dirty technologies compete in production and innovation-in the sense that research can be directed to either clean or dirty technologies. If dirty technologies are more advanced to start with, the potential transition to clean technology can be difficult both because clean research must climb several steps to catch up with dirty technology and because this gap discourages research effort directed towards clean technologies....

  7. CO2 (dry ice) cleaning system

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  8. Object oriented programming interfaces for accelerator control

    Several years ago, the AGS controls group was given the task of developing software for the RHIC accelerator. Like the AGS, the RHIC control system needs to control and monitor equipment distributed around a relatively large geographic area. A local area network connects this equipment to a collection of UNIX workstations in a central control room. Similar software had been developed for the AGS about a decade earlier, but isn't well suited for RHIC use for a number of reasons. Rather than adapt the AGS software for RHIC use, the controls group opted to start with a clean slate. To develop software that would address the shortcomings of the AGS software, while preserving the useful features that evolved through years of use. A current trend in control system design is to provide an object oriented programming interface for application developers. This talk will discuss important aspects and features of object oriented application programming interfaces (APIs) for accelerator control systems, and explore why such interfaces are becoming the norm

  9. Dosimetry at a 400 keV accelerator

    Miller, A.

    1992-01-01

    Absolute calorimetric dosimetry and relative dose mapping methods are described for a 400 keV electron accelerator used for polymer curing and crosslinking experiments. These methods of dosimetry are also useful at accelerators used in gas cleaning processes.......Absolute calorimetric dosimetry and relative dose mapping methods are described for a 400 keV electron accelerator used for polymer curing and crosslinking experiments. These methods of dosimetry are also useful at accelerators used in gas cleaning processes....

  10. Air Cleaning at the USAEC Y-12 Plant

    This paper describes some of the air-cleaning requirements of production, research, development and biological facilities in the Y-12 area. Problems and their solutions in hazardous-material containment, air cleaning, contamination control, and air pollution control are enumerated. Bioclean and laminar-flow clean rooms, germ-free supply air systems, exhaust systems for handling toxic and radioactive materials, virus containment and exhaust facilities are described. The Plant's practices regarding air cleaning are discussed including standardization of specifications for high-efficiency particulate air filters and mounting frames, DOP testing of air filter systems, and the replacement of sub-standard filter installations. (author)

  11. On Perfectly Clean Rings

    Chen, H.; Halicioglu, S.; Kose, H.

    2013-01-01

    An element $a$ of a ring $R$ is called perfectly clean if there exists an idempotent $e\\in comm^2(a)$ such that $a-e\\in U(R)$. A ring $R$ is perfectly clean in case every element in $R$ is perfectly clean. In this paper, we investigate conditions on a local ring $R$ that imply that $2\\times 2$ matrix rings and triangular matrix rings are perfectly clean. We shall show that for these rings perfect cleanness and strong cleanness coincide with each other, and enhance many known results. We also ...

  12. Weak Nil Clean Rings

    Basnet, Dhiren Kumar; Bhattacharyya, Jayanta

    2015-01-01

    We introduce the concept of a weak nil clean ring, a generalization of nil clean ring, which is nothing but a ring with unity in which every element can be expressed as sum or difference of a nilpotent and an idempotent. Further if the idempotent and nilpotent commute the ring is called weak* nil clean. We characterize all $n\\in \\mathbb{N}$, for which $\\mathbb{Z}_n$ is weak nil clean but not nil clean. We show that if $R$ is a weak* nil clean and $e$ is an idempotent in $R$, then the corner r...

  13. Can Accelerators Accelerate Learning?

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  14. Accelerator-based BNCT

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the 9Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. - Highlights: • The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. • Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. • The present status and recent progress of the Argentine project will be reviewed. • Topics cover intense ion sources, accelerator tubes, transport of intense beams and beam diagnostics, among others

  15. Determination of the neutron spectra in the treatment room of a linear accelerator for radiotherapy; Determinacion de los espectros de neutrones en la sala de tratamiento de un acelerador lineal para radioterapia

    Vega C, H.R. [Universidad Autonoma de Zacatecas, Cuerpo Academico de Radiobiologia, A.P. 336, 98000 Zacatecas (Mexico); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Mendez, R.; Iniguez, M.P. [Depto. de Fisica Teorica, Atomica, Molecular y Nuclear, Universidad de Valladolid, 47011 Valladolid (Spain)

    2003-07-01

    By means of a series of measures and Monte Carlo calculations the dosimetric characteristics of the photoneutrons have been determined that take place in volume to a linear accelerator of radiotherapy of 18 MV, LINAC, mark Siemens Mevatron model. The measures were carried out with thermoluminescent dosemeters TLD 600 and TLD 700 that were naked exposed and confined with cover of Cd and Sn, inside a sphere of paraffin and inside spheres Bonner. (Author)

  16. Room Temperature Superconductivity

    Luiz, Adir Moyses

    2011-01-01

    This is the first book on the subject of room-temperature superconductivity. The main purpose of the book is twofold. First, to show that, under suitable conditions, superconductivity can occur above room temperature. Secondly, to present general guidelines on how to synthesize a room temperature superconductor. The book begins with an introduction into the physics of the superconducting state and superconducting materials. The mechanisms of conventional, half-conventional and unconventional ...

  17. Improving operating room safety

    Garrett Jill; Hurlbert Scott N

    2009-01-01

    Abstract Despite the introduction of the Universal Protocol, patient safety in surgery remains a daily challenge in the operating room. This present study describes one community health system's efforts to improve operating room safety through human factors training and ultimately the development of a surgical checklist. Using a combination of formal training, local studies documenting operating room safety issues and peer to peer mentoring we were able to substantially change the culture of ...

  18. Health Physics counting room

    1970-01-01

    The Health Physics counting room, where the quantity of induced radioactivity in materials is determined. This information is used to evaluate possible radiation hazards from the material investigated.

  19. Cleaning supplies and equipment

    ... gov/ency/patientinstructions/000443.htm Cleaning supplies and equipment To use the sharing features on this page, ... to clean supplies and equipment. Disinfecting Supplies and Equipment Start by wearing the right personal protective equipment ( ...

  20. Plasma accelerators

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  1. The Upstairs Room - Room for Controversy?

    Poole, Mary F.

    1973-01-01

    Doubtless everyone is tired of the subject of censorship; but I do have to give vent to my feelings when they are as intense as they are over the selection of a book as full of profanity as a Newbery honor book ( The Upstairs Room''). (Author/SM)

  2. Linear Accelerators

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  3. Personnel hazards from medical electron accelerator photoneutrons

    For medical accelerators, neutron penetration through the room entry door is the major personnel hazard. Most therapy accelerator rooms are designed with at least a rudimentary maze to avoid the use of massive doors. Often, however, the maze may be similar to those shown in scale outline drawings of some medical electron accelerator rooms where the authors have made neutron measurements outside the doors which were of different thicknesses and compositions. The results are tabulated. It should be noted that there can be significant dose equivalents (H) at the door when a maze is inadequate, and that all three components - fast neutron, thermal neutron, and neutron capture γ rays - can be equally important

  4. Ductless personalized ventilation with local air cleaning

    Dalewski, Mariusz; Vesely, Michal; Melikov, Arsen Krikor

    2012-01-01

    An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks was...... equipped with an activated carbon filter installed at the air intake, while the DPV at the second desk was without such a filter. The air temperature in the occupied zone (1.1 m above the floor) was 29 °C. The pollution load in the room was simulated by PVC floor covering. The subjects assessed...... acceptability of air quality, odour intensity and air freshness at both desks in random order. Lower odour intensity and higher air freshness was reported at the desk with DPV with the activated carbon filter. The results suggest that using local air cleaning devices integrated with DPV may improve perceived...

  5. Computer vision based room interior design

    Ahmad, Nasir; Hussain, Saddam; Ahmad, Kashif; Conci, Nicola

    2015-12-01

    This paper introduces a new application of computer vision. To the best of the author's knowledge, it is the first attempt to incorporate computer vision techniques into room interior designing. The computer vision based interior designing is achieved in two steps: object identification and color assignment. The image segmentation approach is used for the identification of the objects in the room and different color schemes are used for color assignment to these objects. The proposed approach is applied to simple as well as complex images from online sources. The proposed approach not only accelerated the process of interior designing but also made it very efficient by giving multiple alternatives.

  6. Virtual Seminar Room

    Forchhammer, Søren Otto; Fosgerau, Anders; Hansen, Peter Søren Kirk;

    1999-01-01

    The initial design considerations and research goals for an ATM network based virtual seminar room with 5 sites are presented.......The initial design considerations and research goals for an ATM network based virtual seminar room with 5 sites are presented....

  7. ALICE’s new meeting room

    2009-01-01

    There’s no reason to be late for a meeting in Wonderland (Point 2) anymore as ALICE gets a brand new conference room and a ‘clean up’. The new ALICE conference room.You won’t find Building 3294 on the CERN map yet, but it is already being used. If you follow the white rabbit just inside the entrance at point 2, you will find a new conference room and office space for 12 people. "Previously at Point 2 we’ve had very little office space at all. Our old conference room was inside the main building, SX2, but it was cramped and extremely noisy," explained Frank Cliff from ALICE. "As soon as they turned on the overhead cranes you could barely hear yourself think!" The plans for the new building were drawn up by the Civil Engineering Group, and construction started in August last year. The building was completed and already in use before Christmas. The 109 square metre conference room can fit up to 60 people and is fully equipped...

  8. Gas bubbling cleaning method

    The present invention concerns a gas bubbling cleaning method for objects to be cleaned having complicate shapes such as reactor equipments. For instance, air is used as the gas, while water is used as the cleaning fluid. A jetting air is jetted out to an object to be cleaned from an air bubbling nozzle disposed below the object. This constitutes air/water two phase flow near the object to be cleaned, to generate a three dimensional circulating flow. The distance between the inner wall surface of a cleaning vessel and the object to be cleaned is set to greater than 5 mm, and the ratio between the air flow rate and the horizontal cross section of the cleaning vessel is set to 0.1 to 0.4m/sec. This enables to enter an appropriate amount of bubbles to the air at the inside of the object to be cleaned having a complicate shape. Accordingly, deposits adhered to the inside of the object to be cleaned can be eliminated and cleaned effectively. (I.N.)

  9. Workshop on Accelerator Operation (WAO 2001)

    The 3rd Workshop on Accelerator Operation (WAO 2001) followed earlier workshops in 1996 and 1998. Most topics relevant for the efficient and effective operation of accelerators were covered. These included the tools and utilities necessary in the control rooms; the organization of accelerator operation (process monitoring, shift work, stress); the monitoring of beam quality; safety issues and standards; and questions particularly relevant for superconducting accelerators, in particular cryogenics. (author)

  10. Preperation for a Clean Surface

    Aurimas Ralys; Valdemar Prokopovič; Vytautas Striška

    2013-01-01

    The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitati...

  11. Preperation for a Clean Surface

    Aurimas Ralys

    2012-12-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  12. Prizes awarded in fiscal 1999 by the Minister for International Trade and Industry on factories having applied excellent energy management. Energy conservation by installing fuel cell power generation facilities utilizing methane gas generated from waste water treatment plants / Improvements toward a clean room and energy saving air conditioning system; 1999 nendo energy kanri yuryo kojo tsusho sangyo daijin hyosho jusho. 1999 nendo shigen energy sho chokan hyosho jusho

    NONE

    2000-04-01

    In order to achieve energy conservation in a waste water treatment plant in a brewery factories, an anaerobic treatment facility was introduced, and a fuel cell power generation facility effectively utilizing methane gas generated from the anaerobic waste water treatment plant was installed. This has resulted in large reduction in the operating number of blowers in the waste water treatment facility of activated sludge system. In addition, electric power, steam, and hot water generated from the fuel cells are effectively utilized as the factory utility. In energy conservation in an optical communication device manufacturing factory, the fan filter unit system was adopted, having been changed from the circulation air conditioner, a conventional type air conditioning system. The present system is a circulation system integrating the fan with the filter, making it possible to circulate air in the room to perform control of temperature, humidity, and dust in a clean room. Thus, the system has eliminated the circulating air conditioner, and reduced the air conditioner capacity by 42% and power consumption by 58.6% compared with those in the conventional circulation system. (NEDO)

  13. Convection From a Slender Cylender in a Ventilated Room

    Heiselberg, Per Kvols; Sandberg, M.

    1990-01-01

    with a negative buoyancy was supplied. The vertical distribution of both temperature and contamination in the room was measured as a function of the heat load and the air flow rate. The contaminant distribution showed a clear stratification between clean and contaminated air, while the temperature was...... measurements in the boundary layer flow around a heated vertical slender cylinder in a full-scale test room with displacement ventilation. Both velocity and temperature profiles in the boundary layer flow were recorded. The room was ventilated by a low velocity diffuser, standing on the floor, from which air...

  14. Particle accelerators and the environment

    This paper deals with particle accelerators as radiation sources utilizing radiation processing technology in application shaving environmental impact. A survey of electron beam (EB) accelerators used mainly in radiation processing technology is presented. Emphasis is given to processes like waste stream treatment as in off-gas cleaning in fossil-fuelled power plants, waste incinerators and industrial ventilation system. Also, application to waste management refers to disinfection of waste and sludge, besides other treatments. Another environment-related application of EB treatment is in waste prevention, known as clean technology as in desulph-erization of coal and of natural gas. The second category of clean technology is the production of polymers; like curing and cross linking

  15. Chemical cleaning of UK AGR boilers

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  16. RILIS laser room

    2016-01-01

    Footage of the RILIS laser room at ISOLDE. The Resonance Ionization Laser Ion Source (RILIS) is a chemically selective ion source which relies on resonant excitation of atomic transitions using tunable laser radiation. This video shows you the laser table with the different lenses and optics as well as an overview of the RILIS laser setup. It also shows laser light with different colors and operation by the RILIS laser experts. The last part of the video shows you the laser path from the RILIS laser room into the ISOLDE GPS separator room where it enters the GPS separator magnet.

  17. The Virtual Dressing Room

    Holte, Michael Boelstoft; Gao, Yi; Petersson, Eva

    2015-01-01

    This paper presents the design and evaluation of a usability and user experience test of a virtual dressing room. First, we motivate and introduce our recent developed prototype of a virtual dressing room. Next, we present the research and test design grounded in related usability and user...... experience studies. We give a description of the experimental setup and the execution of the designed usability and user experience test. To this end, we report interesting results and discuss the results with respect to user-centered design and development of a virtual dressing room....

  18. RILIS laser room HD

    2016-01-01

    Footage of the RILIS laser room at ISOLDE. The Resonance Ionization Laser Ion Source (RILIS) is a chemically selective ion source which relies on resonant excitation of atomic transitions using tunable laser radiation. This video shows you the laser table with the different lenses and optics as well as an overview of the RILIS laser setup. It also shows laser light with different colors and operation by the RILIS laser experts. The last part of the video shows you the laser path from the RILIS laser room into the ISOLDE GPS separator room where it enters the GPS separator magnet.

  19. Films and dark room

    After we know where the radiographic come from, then we must know about the film and also dark room. So, this chapter 5 discusses the two main components for radiography work that is film and dark room, places to process the film. Film are structured with three structured that are basic structured, emulsion and protection structured. So, this film can be classified either with their speed, screen and standard that used. The process to wash the film must be done in dark room otherwise the radiographer cannot get what are they inspected. The processing of film will be discussed briefly in next chapter.

  20. Linear accelerator for tritium production

    For many years now, Los Alamos National Laboratory has been working to develop a conceptual design of a facility for accelerator production of tritium (API). The APT accelerator will produce high energy protons which will bombard a heavy metal target, resulting in the production of large numbers of spallation neutrons. These neutrons will be captured by a low-Z target to produce tritium. This paper describes the latest design of a room-temperature, 1.0 GeV, 100 mA, cw proton accelerator for tritium production. The potential advantages of using superconducting cavities in the high-energy section of the linac are also discussed and a comparison is made with the baseline room-temperature accelerator

  1. Linear accelerator for tritium production

    For many years now, Los Alamos National Laboratory has been working to develop a conceptual design of a facility for accelerator production of tritium (APT). The APT accelerator will produce high energy protons which will bombard a heavy metal target, resulting in the production of large numbers of spallation neutrons. These neutrons will be captured by a low-Z target to produce tritium. This paper describes the latest design of a room-temperature, 1.0 GeV, 100 mA, cw proton accelerator for tritium production. The potential advantages of using superconducting cavities in the high-energy section of the linac are also discussed and a comparison is made with the baseline room-temperature accelerator. copyright 1996 American Institute of Physics

  2. Predicting Acoustics in Class Rooms

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be...

  3. Development of a Tandem-ElectroStatic-Quadrupole accelerator facility for Boron Neutron Capture Therapy (BNCT)

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). An ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.4-2.5 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p,n)7Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.20-1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is one of the technologically simplest and cheapest solutions for optimized AB-BNCT. At present there is no BNCT facility in the world with the characteristics presented in this work. For the accelerator, results on its design, construction and beam transport calculations are discussed. Taking into account the peculiarities of the expected irradiation field, the project also considers a specific study of the treatment room. This study aims at the design of the treatment room emphasizing aspects related to patient, personnel and public radiation protection; dose monitoring; patient positioning and room construction. The design considers both thermal (for the treatment of shallow tumors) and epithermal (for deep-seated tumors) neutron beams entering the room through a port connected to the accelerator via a moderation and neutron beam shaping assembly. Preliminary results of dose calculations for the treatment room design, using the MCNP program, are presented

  4. APT accelerator technology

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  5. Clean Energy Progress Report

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  6. Infrared steam laser cleaning

    Frank, Pascal; Lang, Florian; Mosbacher, Mario; Boneberg, Johannes; Leiderer, Paul

    2008-01-01

    Steam Laser Cleaning with a pulsed infrared laser source is investigated. The infrared light is tuned to the absorption maximum of water (λ = 2.94 µm, 10 ns), whereas the substrates used are transparent (glass, silicon). Thus a thin liquid water layer condensed on top of the contaminated substrate is rapidly heated. The pressure generated during the subsequent phase explosion generates a cleaning force which exceeds the adhesion of the particles. We examine the cleaning threshold in single sh...

  7. Cleaning and surface properties

    Taborelli, M

    2007-01-01

    Principles of precision cleaning for ultra high vacuum applications are reviewed together with the techniques for the evaluation of surface cleanliness. Methods to verify the effectiveness of cleaning procedures are discussed. Examples are presented to illustrate the influence of packaging and storage on the recontamination of the surface after cleaning. Finally, the effect of contamination on some relevant surface properties, like secondary electron emission and wettability is presented.

  8. National Alliance for Clean Energy Incubators New Mexico Clean Energy Incubator

    Roberts, Suzanne S.

    2004-12-15

    The National Alliance for Clean Energy Incubators was established by the National Renewable Energy Laboratory (NREL) to develop an emerging network of business incubators for entrepreneurs specializing in clean energy enterprises. The Alliance provides a broad range of business services to entrepreneurs in specific geographic locales across the U.S. and in diverse clean energy technology areas such as fuel cells, alternative fuels, power generation, and renewables, to name a few. Technology Ventures Corporation (TVC) participates in the Alliance from its corporate offices in Albuquerque, NM, and from its sites in Northern and Southern New Mexico, California, and Nevada. TVC reports on the results of its attempts to accelerate the growth and success of clean energy and energy efficiency companies through its array of business support services. During the period from September 2002 through September 2004, TVC describes contributions to the Alliance including the development of 28 clients and facilitating capital raises exceeding $35M.

  9. Future accelerators (?)

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made

  10. Future accelerators (?)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  11. Accelerating Value Creation with Accelerators

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...

  12. Bedding disposal cabinet for containment of aerosols generated by animal cage cleaning procedures.

    Baldwin, C L; Sabel, F L; Henke, C B

    1976-02-01

    Laboratory tests with aerosolized spores and animal room tests with uranine dye indicate the effectiveness of a prototype bedding disposal cabinet in reducing airborne contamination generated by cage cleaning procedures. PMID:826219

  13. Software Support during a Control Room Upgrade

    Michele Joyce; Michael Spata; Thomas Oren; Anthony Cuffe; Theo McGuckin; Isadoro Carlino; C. Higgins; Harry Fanning; Matthew Bickley; Brian Bevins

    2005-09-21

    In 2004, after 14 years of accelerator operations and commissioning, Jefferson Lab renovated its main control room. Changes in technology and lessons learned during those 14 years drove the control room redesign in a new direction, one that optimizes workflow and makes critical information and controls available to everyone in the control room. Fundamental changes in a variety of software applications were required to facilitate the new operating paradigm. A critical component of the new control room design is a large-format video wall that is used to make a variety of operating information available to everyone in the room. Analog devices such as oscilloscopes and function generators are now displayed on the video wall through two crosspoint switchers: one for analog signals and another for video signals. A new software GUI replaces manual configuration of the oscilloscopes and function generators and helps automate setup. Monitoring screens, customized for the video wall, now make important operating information visible to everyone, not just a single operator. New alarm handler software gives any operator, on any workstation, access to all alarm handler functionality, and multiple users can now contribute to a single electronic logbook entry. To further support the shift to distributed access and control, many applications have been redesigned to run on servers instead of on individual workstations.

  14. Classes of almost clean rings

    Akalan, Evrim; Vas, Lia

    2013-01-01

    A ring is clean (almost clean) if each of its elements is the sum of a unit (regular element) and an idempotent. A module is clean (almost clean) if its endomorphism ring is clean (almost clean). We show that every quasi-continuous and nonsingular module is almost clean and that every right CS and right nonsingular ring is almost clean. As a corollary, all right strongly semihereditary rings, including finite $AW^*$-algebras and noetherian Leavitt path algebras in particular, are almost clean...

  15. Laser surface cleaning

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  16. Green Cleaning Label Power

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…

  17. Clean Energy Manufacturing Initiative

    None

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  18. Cleaning techniques for intense ion beam sources

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE. The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O2 can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated

  19. Nil-clean matrix rings

    S. Breaz; Călugăreanu, G.; Danchev, P.; Micu, T.

    2013-01-01

    We characterize the nil clean matrix rings over fields. As a by product, it is proved that the full matrix rings with coefficients in commutative nil-clean rings are nil-clean, and we obtain a complete characterization of the finite rank Abelian groups with nil clean endomorphism ring and the Abelian groups with strongly nil clean endomorphism ring, respectively.

  20. Room for caring

    Timmermann, Connie; Uhrenfeldt, Lisbeth; Birkelund, Regner

    2015-01-01

    Aim This study explores how seriously ill hospitalized patients' experience and assign meaning to their patient room. Background Modern hospitals and the rational underlying care and treatment of today have their emphasis on diagnosis, cure and treatment. Consequently, aesthetics in the patient...... rooms such as a view of nature or natural light entering the room are often neglected in caring for these patients. Method A phenomenological-hermeneutic study design was applied and data was collected through multiple qualitative interviews combined with observations at a teaching hospital in Denmark......-being, relief and hope for the patients during serious illness. Therefore, these sensory impressions should be thought of as holding palliative potential and should be included as a part of caring for the seriously ill patients....

  1. Distributed UHV system for the folded tandem ion accelerator facility at BARC

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) Facility at the Nuclear Physics Division, BARC is operational and accelerated beams of both light and heavy ions are being used extensively for basic and applied research. An average vacuum of the order of 10-8-10-9 Torr is maintained for maximum beam transmission and minimum beam energy spreads. The FOTIA vacuum system comprises of about 55 meter long, 100 mm diameter beam lines including various diagnostic devices, two accelerating tubes and four narrow vacuum chambers. The cross sections of the vacuum chambers are 14mm x 24mm for 180 deg., 38mm x 60mm and 19 x 44 mm for the and 70 deg. and 90 deg. bending magnets and Switching chambers respectively. All the beam line components are UHV compatible, fabricated from stainless steel 304L grade material fitted with metal gaskets. The total volume ∼5.8 x 105 cm3 and surface area of 4.6 x 104 cm2, interspersed with total 18 pumping stations. The accelerating tubes are subjected to very high voltage gradient, 20.4 kV/cm, which requires a hydrocarbon free and clean vacuum for smooth operation of the accelerator. Vacuum interlocks are provided to various devices for safe operation of the accelerator. Specially designed sputter ion pumps for higher environmental pressure of 8 atmospheres are used to pump the accelerating tubes and the vacuum chamber for the 180 deg. bending magnet. Fast acting valves are provided for isolating main accelerator against accidental air rush from rest of the beam lines. All the vacuum readings are displayed locally and are also available remotely through computer interface to the Control Room. Vacuum system details are described in this paper

  2. accelerating cavity from LEP

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  3. Cleaning Process Development for Metallic Additively Manufactured Parts

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  4. A new main control room for the AGS complex

    A new Main Control Room (MCR) has been built to control the accelerators of the AGS Complex. A new physical environment was produced to better control light, sound, temperature, and traffic. New control consoles were built around the work-stations that make up the distributed control system. Equipment placement within consoles and console placement within the room reflect attention to the ''human factors'' needs of the operator. 1 ref., 2 figs

  5. Clean coal technologies

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  6. Local control room

    1972-01-01

    Local control room in the ejection building : all electronics pertaining to proton distribution and concomitants such as beam gymnastics and diagnostics at high energies will eventually be gathered here. Shown is the first of two rows of fast ejection electronic racks. It includes only what is necessary for operation.

  7. Room to manoeuvre

    Woof, M.

    2000-10-01

    Room and pillar mining is the best mining method for some situations and the use of the latest continuous miners can pay dividends. Mines in South Africa and the USA have shown high productivity. The advantages of this method are outlined. Major manufacturers such as Joy, Long Airdox and Voest Alpine are all investing in continuous monitoring to maximise productivity. 4 photos.

  8. PS Control Room

    1963-01-01

    The good old PS Control Room, all manual. For each parameter, a knob or a button to control it; for each, a light or meter or oscilloscope to monitor it; carefully written pages serve as the data bank; phones and intercom for communication. D.Dekkers is at the microphone, M.Valvini sits in front.

  9. Operating Room Status Monitoring System

    Kane, Francis R.

    1982-01-01

    A system has been devised at The Medical College of Virginia to schedule, monitor, and display the status of twenty-four operating rooms. A switch in each room indicates room status. Room status is matched with scheduling information to provide an airport-like display on 16 video monitors placed about the operating room area. Management and medical information is captured by the system.

  10. Generalization of Strongly Clean Rings

    Singh, Abhay K.

    2012-01-01

    In this paper, strongly clean ring defined by W. K. Nicholson in 1999 has been generalized to n-strongly clean, {\\Sigma}-strongly clean and with the help of example it has been shown that there exists a ring, which is n-strongly clean and {\\Sigma}-strongly clean but not strongly clean. It has been shown that for a commutative ring R formal power series R[(x)] of R is n-strongly clean if and only if R is n- strongly clean. We also discussed the structure of homomorphic image of n- strongly cle...

  11. Laser accelerator

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  12. Fabrication method for a room temperature hydrogen sensor

    Seal, Sudipta (Inventor); Shukla, Satyajit V. (Inventor); Ludwig, Lawrence (Inventor); Cho, Hyoung (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  13. Clean Water Act

    National Oceanic and Atmospheric Administration, Department of Commerce — The Clean Water Act (CWA) establishes the basic structure for regulating discharges of pollutants into U.S. waters and regulating quality standards for surface...

  14. Nuclear air cleaning

    This report briefly describes the history of the use of high- efficiency particulate air filters for air cleaning at nuclear installations in the United States and discusses future uses of such filters

  15. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    Baptista, Tatyana S.; Batista, Vanessa; Gomes, Antonio; Matsuda, Margareth; Fukumori, Neuza; Araujo, Elaine B. de, E-mail: tsbaptista@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  16. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  17. Room for improvement

    Storvang, Pia; Dalby, Mette Strømgaard

    2015-01-01

    from a project with four Danish medium-sized manufacturing companies aiming to become more competitive in the European export market. In the project, one challenge was how to convey results from customer interviews and user studies from the researcher team (which in all instances included a company...... manager) to the development team in each company. We chose to collaboratively build a ‘war room’ in each of the companies to make sense of research materials and establish design principles for products that would better align with customer needs.......This paper develops the notion of a project war room as an innovation practice in companies. We argue that the consistent use of a project war room, in which customer and user research serves as a background for design work, improve the quality of product innovation. We describe our experiences...

  18. Air Distribution in Rooms

    Nielsen, Peter V.

    The research on air distribution in rooms is often done as full-size investigations, scale-model investigations or by Computational Fluid Dynamics (CFD). New activities have taken place within all three areas and this paper draws comparisons between the different methods. The outcome of the l......EA sponsored research "Air Flow Pattern within Buildings" is used for comparisons in some parts of the paper because various types of experiments and many countries are involved....

  19. LIBO accelerates

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  20. Accelerator Applications Support Nuclear Science and Technology

    Accelerators are machines that use high voltages to produce artificial radiation in the form of beams of energetic particles. They are more versatile and safer than radioactive sources because the energy can be varied, and when the accelerator is turned off, so is the radiation. Accelerators are used for diverse applications such as to treat cancer, analyse artwork and old artefacts, clean up waste effluent gases, produce computer chips and map the structure of proteins. Accelerator technology makes a valuable contribution to the technological progress of a country, which in turn can also contribute to a country’s economic development

  1. Ductless personalized ventilation with local air cleaning

    Dalewski, Mariusz; Vesely, Michal; Melikov, Arsen Krikor

    2012-01-01

    An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks was equipped with an activated carbon filter installed at the air intake, while the DPV at the second desk was without such a filter. The air temperature in the occupied zone (1.1 m above the floor) was 29 °C....

  2. Induction accelerators

    Takayama, Ken

    2011-01-01

    A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.

  3. IDEA Clean Energy Application Center

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  4. Clean Elements in Abelian Rings

    Angelina Y M Chin

    2009-04-01

    Let be a ring with identity. An element in is said to be clean if it is the sum of a unit and an idempotent. is said to be clean if all of its elements are clean. If every idempotent in is central, then is said to be abelian. In this paper we obtain some conditions equivalent to being clean in an abelian ring.

  5. Effectiveness of ultraviolet devices and hydrogen peroxide systems for terminal room decontamination: Focus on clinical trials.

    Weber, David J; Rutala, William A; Anderson, Deverick J; Chen, Luke F; Sickbert-Bennett, Emily E; Boyce, John M

    2016-05-01

    Over the last decade, substantial scientific evidence has accumulated that indicates contamination of environmental surfaces in hospital rooms plays an important role in the transmission of key health care-associated pathogens (eg, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Clostridium difficile, Acinetobacter spp). For example, a patient admitted to a room previously occupied by a patient colonized or infected with one of these pathogens has a higher risk for acquiring one of these pathogens than a patient admitted to a room whose previous occupant was not colonized or infected. This risk is not surprising because multiple studies have demonstrated that surfaces in hospital rooms are poorly cleaned during terminal cleaning. To reduce surface contamination after terminal cleaning, no touch methods of room disinfection have been developed. This article will review the no touch methods, ultraviolet light devices, and hydrogen peroxide systems, with a focus on clinical trials which have used patient colonization or infection as an outcome. Multiple studies have demonstrated that ultraviolet light devices and hydrogen peroxide systems have been shown to inactivate microbes experimentally plated on carrier materials and placed in hospital rooms and to decontaminate surfaces in hospital rooms naturally contaminated with multidrug-resistant pathogens. A growing number of clinical studies have demonstrated that ultraviolet devices and hydrogen peroxide systems when used for terminal disinfection can reduce colonization or health care-associated infections in patients admitted to these hospital rooms. PMID:27131140

  6. Is dry cleaning all wet?

    Chemical solvents from dry cleaning, particularly perchloroethylene (perc), have contributed to groundwater contamination, significant levels of air pollution in and around cleaners, and chemical accumulation in food. Questions are being raised about the process of cleaning clothes with chemical, and other less toxic cleaning methods are being explored. The EPA has focused attention on the 50 year old Friedburg method of cleaning, Ecoclean, which uses no dangerous chemicals and achieves comparable results. Unfortunately, the cleaning industry is resistant to change, so cutting back on amount of clothes that need dry cleaning and making sure labels aren't exaggerating when they say dry clean only, is frequently the only consumer option now

  7. Chemical cleaning processes - present and future

    Corrosion products and impurities can accumulate in the secondary side of steam generators causing accelerated corrosion, steam flow disruption and heat transfer loss. Traditionally, chemical cleaning processes have been performed using multi-step processes that employ relatively concentrated reagents (e.g. EPRI-SGOG, 10-20 wt.%), that are applied at elevated temperatures. The use of such reagents dictates the use of large and relatively complex reagent handling systems for both reagent preparation and disposal. The significant duration and cost of each chemical clean has dictated that these cleaning processes are only applied on a remedial basis. An assessment of existing technology was carried out and improvements to the EPRI-SGOG processes are being developed. Results of these assessments are reported. Advanced processes are being developed by Atomic Energy of Canada Limited that use lower concentrations of reagents, require shorter application times and generate lower amounts of waste. This technology can be used on a preventive basis to keep steam generators clean. Included are: A dilute regenerative process that is applied during shutdown. The dilute reagent is continuously recirculated and regenerated during the cleaning process, resulting in shorter application times using modular and portable equipment. The low reagent concentration results in a significantly reduced waste volume. For deposits containing both magnetite and copper a pseudo one-step process (using the same base electrolyte and pH) is used with alternate addition of oxidizing or reducing agents; A dilute on-line process that can be used while the reactor is operating. Such a process would be used on a periodic basis and dislodged oxides removed by blowdown or by mechanical means; Additives that can be used to keep steam generators clean. A demonstration of this technology is currently being planned. Details of these technologies will be described. (author)

  8. Clean Assembly Practices to Prevent Contamination and Damage to Optics

    A key lesson learned from the earliest optics installed in the National Ignition Facility (NIF) was that the traditional approach for maintaining cleanliness, such as the use of cleanrooms and associated garments and protocols, is inadequate. Assembly activities often negate the benefits provided by cleanrooms, and in fact generate contamination with high damage potential. As a result, NIF introduced ''clean assembly protocols'' and related practices to supplement the traditional clean room protocols. These new protocols included ''clean-as-you-go'' activities and regular bright light inspections. Introduction of these new protocols has greatly reduced the particle contamination found on more recently installed optics. In this paper we will describe the contamination mechanisms we have observed and the details of the clean assembly protocols we have successfully introduced to mitigate them

  9. Computerized Operating Room Information System

    Helsel, Philip; Smith, R. Brian; Albin, Maurice

    1983-01-01

    In order to pursue greater efficiency of overall anesthesia resources and provide a database for operating room (O.R.) utilization, we have developed and implemented a computerized operating room information system (C.O.R.I.S.).

  10. Laser cleaning of Rakowicze sandstone

    Nijland, T.G.; Wijffels, T.J.

    2003-01-01

    Decisions about the cleaning of natural stone should always be made within the awareness of direct and indirect damage that may be the result of cleaning. During the last decade, laser cleaning of objects and monuments of natural stone has become increasingly popular. Whereas a considerable amount of literature has been devoted to the effect of laser cleaning on marble and limestone, research into the effects on sandstone is limited. In the present paper, the effect of two cleaning methods, v...

  11. LensClean revisited

    Wucknitz, O

    2004-01-01

    We discuss the LensClean algorithm which for a given gravitational lens model fits a source brightness distribution to interferometric radio data in a similar way as standard Clean does in the unlensed case. The lens model parameters can then be varied in order to minimize the residuals and determine the best model for the lens mass distribution. Our variant of this method is improved in order to be useful and stable even for high dynamic range systems with nearly degenerated lens model parameters. Our test case B0218+357 is dominated by two bright images but the information needed to constrain the unknown parameters is provided only by the relatively smooth and weak Einstein ring. The new variant of LensClean is able to fit lens models even in this difficult case. In order to allow the use of general mass models with LensClean, we develop the new method LenTil which inverts the lens equation much more reliably than any other method. This high reliability is essential for the use as part of LensClean. Finally...

  12. Radiation Protection Elephants in the Room

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial elephants in the room. They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of

  13. Application of electron accelerator worldwide

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  14. Self-cleaning geopolymer concrete - A review

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  15. Making room for volunteers

    Nielsen, Rasmus Kleis

    2012-01-01

    If campaigns do not accommodate this view, all but a hard core of regulars and fired-up partisans will drift away, leaving it for staffers and hired hands to do all the hard work of identifying voters, canvassing people by foot and by phone, and turning out the vote. [...] ironically, a campaign...... that is singleminded in its instrumental pursuit of victory can thus be less effective than one that is more accommodating- a campaign that makes room for volunteers by accepting that, unlike staffers, they come to politics with a different perspective and conception of what is and ought to be going on....

  16. Room in the wall

    Woof, M.

    2003-10-01

    Room and pillar techniques have a place in longwall mines. Speaking at Voest Alpine's recent mining symposium in Australia, Jim Bryja, senior vice president of RAG's US Eastern Operations said that gateroad development is becoming the major cost driver in longwall mines. The article gives highlights from some papers presented at the symposium, including those by Professor Horst Wagner of Leoben University. Andrew Myors of Newstan Colliery, NSW, Australia, discussed benefits of the latest continuous miners - his paper is reported in some detail. 2 photos.

  17. On The Living Room

    Thomas Richards

    2013-03-01

    Full Text Available This text discusses the work The Living Room, directed by the author, and reflects on its meanings and functions. The article confronts problems performance raises in relation to contemporary social life, bringing forward the isolation of life today and the possibilities performance offers to fight it. We problematise the crisis experienced by the author and the consequent creation of the work as a mobile performative device in relation to the staging space. Finally, the work questions the forms of interaction and type of participation possible in performance.

  18. Oxidised cosmic acceleration

    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R-ring vanishes everywhere, or if R-ring and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R-ring everywhere vanishing, exceeding the bound implies the NEC is violated. If R-ring does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions

  19. Design to neutron shielding for medical LINAC therapy room

    Objective: To study the source of neutron in the therapy room and the essence of neutron scattering, to analyze the change patten of neutron dose in the therapy room as well as in the maze so as to design the shielding. Methods: Based on the measurement of the neutron flux for concerning points at the patient plane caused by a running 15 MeV accelerator and referred to NCRP report 79, this paper carried out the radiation protection design and calculation. Results: When X-ray produced by medical accelerator reached certain energy, photonuclear reaction is the main source of neutron contamination in medical accelerator room. The main target of protection is the scattered neutron that comes to inside entrance of the maze and the γ-ray caused by them. As a result neutron contamination has nothing to do with the therapeutic effect, but only to increase the dose commitment for relevant person. Conclusions: Neutron contamination has nothing to do with therapeutic effect, but only to increase the dose commitment for relevant person. Under certain conditions, it may also cause radiation insult to them. Therefore, certain attention should be paid the hazard caused by neutron external exposure, at the same time shielding design and evaluation should be implemented against the neutron contamination in medical accelerator room. (authors)

  20. The Clean Air Act

    The Clean Air Act amendments alter the complex laws affecting atmospheric pollution and at the same time have broad implications for energy. Specifically, the Clean Air Act amendments for the first time deal with the environmental problem of acid deposition in a way that minimizes energy and economic impacts. By relying upon a market-based system of emission trading, a least cost solution will be used to reduce sulfur dioxide (SO2) emissions by almost 40 percent. The emission trading system is the centerpiece of the Clean Air Act (CAA) amendments effort to resolve energy and environmental interactions in a manner that will maximize environmental solutions while minimizing energy impacts. This paper will explore how the present CAA amendments deal with the emission trading system and the likely impact of the emission trading system and the CAA amendments upon the electric power industry

  1. On f-clean rings and f-clean elements

    Ali H. Handam

    2011-01-01

    An associative ring R with identity is called f -clean ring if every element in R is the sum of an idempotent and a full element. In this paper, various basic properties of f -clean rings and f -clean elements are proved. Also, we give some new charaterizations of f -clean rings. In addition, we prove that the ring of skew Hurwitz series T = (HR, σ) where σ is an automorphism of R is f -clean if and only if R is f -clean.

  2. CLEANING OF FRENCH SITES

    Mauro Nonis

    2002-01-01

    In the last two weeks some cleaning problems have been remarked in several CERN buildings on the French part of CERN sites. This is mainly due to the start up of the new cleaning contract from the 1st July. These problems are not related to a budgetary reduction of the activity. We excuse for the malfunctions that have been created to CERN community and we assure you that we have taken all the needed measures to solve the problem in the shortest delay. Mauro Nonis (ST/FM)

  3. State of accelerator for therapy

    Maruhashi, A

    2002-01-01

    21 facilities carry out particle radiotherapy in the world and 6 facilities will start in the next year. They are shown in the table. 6 facilities of them exist in Japan. Small accelerator for proton therapy is developed. The area of them becomes smaller than 100 m sup 2. 5 makers, form, kinds of accelerator, length of track, beam energy of them are shown. States of particle radiotherapy in 4 facilities in Japan are explained by the kinds of particle, energy, beam intensity, time structure and radiation room. The important problems are reconsideration of building and compact rotating gantry. The problems of radiotherapy are explained. (S.Y.)

  4. Clean energy deployment: addressing financing cost

    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low–middle income range facing financial constraints. (letter)

  5. Acoustic Echoes Reveal Room Shape

    Dokmanic, Ivan; Parhizkar, Reza; Walther, Andreas; Lu, Yue M.; Vetterli, Martin

    2013-01-01

    Imagine that you are blindfolded inside an unknown room. You snap your fingers and listen to the room’s response. Can you hear the shape of the room? Some people can do it naturally, but can we design computer algorithms that hear rooms? We show how to compute the shape of a convex polyhedral room from its response to a known sound, recorded by a few microphones. Geometric relationships between the arrival times of echoes enable us to “blindfoldedly” estimate the room geometry. This is achiev...

  6. Introducing the Clean-Tech Adoption Model: A California Case Study

    2012-01-01

    Abstract. The Clean-Tech Adoption Model (C-TAM) explains the adoption process of clean technology. Based on the Unified Theory of Acceptance and Usage of Technology (UTAUT) combined with qualitative research and empirical data gathering, the model predicts adoption based on the perceived quality, effort, transition, experience and knowledge. Social media introduces a moderating effect, thus legitimizing its effectiveness as a marketing instrument on accelerating the adoption of clean technolo...

  7. [Interstate Clean Transportation]. Final Report for FG02-99EE50591

    Wendt, Lee

    2002-07-19

    The Interstate Clean Transportation (ICTC) purpose is to develop a public-private partnership dedicated to accelerating the market penetration of clean, alternative fuel vehicles (AFVs) in interstate goods movement. In order to foster project development, the ICTC activity sought to increase awareness of heavy-duty AFVs among truck fleet operators.

  8. Performance and Effectiveness of Portable Air Cleaners in an Office Room

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2015-01-01

    Nowadays, many people work in an office environment. Air pollutants, including particles and gases, are generated by humans and by different devices that are used in offices. Pollutants can also enter an office room with the air supplied from outdoors. It has been established that air pollutants...... have adverse health effects on human body. Air cleaning devices are commonly marketed as being beneficial for the health by removing air pollutants and consequently improving indoor air quality. The performance of five air cleaning technologies was tested in order to determine the generation of ozone...... and particles in an office room. The particle removal effectiveness of the technologies was also determined in order to clarify their ability to remove UFPs (ultrafine particles) in the office room. The tested five air cleaning technologies are non-thermal plasma, corona discharge ionizer, portable...

  9. WINDOW-CLEANING

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  10. Neutrino Detection With CLEAN

    McKinsey, D N

    2005-01-01

    This article describes CLEAN, an approach to the detection of low-energy solar neutrinos and neutrinos released from supernovae. The CLEAN concept is based on the detection of elastic scattering events (neutrino-electron scattering and neutrino-nuclear scattering) in liquified noble gases such as liquid helium, liquid neon, and liquid xenon, all of which scintillate brightly in the ultraviolet. Key to the CLEAN technique is the use of a thin film of wavelength-shifting fluor to convert the ultraviolet scintillation light to the visible. This allows the same liquid to be used as both a passive shielding medium and an active self-shielding detector, allowing lower intrinsic radioactive backgrounds at low energies. Liquid neon is a particularly promising medium for CLEAN. Because liquid neon has a high scintillation yield, has no long-lived radioactive isotopes, and can be easily purified by use of cold traps, it is an ideal medium for the detection of rare nuclear events. In addition, neon is inexpensive, dense...

  11. Acrylic vessel cleaning tests

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory

  12. Clean Cities Tools

    None

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  13. Clean coal technologies

    The recent developments and implementations in clean coal technologies foe power generation and industry are reviewed in the present work. The requirements of the Clean Air Act in the United States, and the Directives of the European communities, on the limitations of emissions of pollutants from coal uses are firstly briefly reviewed, and later technological means that are available to coal producers and utilizers to comply with them. Coal cleaning, before combustion may be achieved by physical, chemical and biotechnological methods, these technologies are then examined as well as coal refining. The developments in clean coal combustion are extremely rapid, particularly in regard to poor coals, they are reviewed and in particular fluidized bed combustion, in its varieties, as well as coal gasification and combined cycle and the utilization of the gas in fuel cells. A further chapter is devoted to the control of emissions of gases from coal combustion, to reduce SO2 and NOx emitted in the atmosphere. The economic implications of the technologies are evaluated according to the most recent information available from published literature and from industry publications, and the results compared. The implications of meand to reduced the emission of CO2 to the atmosphere are also evaluated. (authors)

  14. Road-Cleaning Device

    Roman, Harry T.

    2014-01-01

    Roadways are literally soaked with petrochemical byproducts, oils, gasoline, and other volatile substances that eventually run off into sewers and end up in rivers, waterways, and other undesirable places. Can the roads be cleaned of these wastes, with their proper disposal? Can vehicles, robots, or other devices be designed that could be driven…

  15. Mechanism of clean development

    The mechanism of clean development represents an opportunity to attract significant foreign investment for the realization of projects in a country like Colombia, characterized by its forest vocation and with enormous potential to reduce emissions in sectors of energy generation, industry, transport and agro-industry

  16. Burning clean and green

    A new style of oil burner has been developed for use on exploration platforms offshore. The design improves oil combustion through enhanced air induction, producing stable flames in the clean burn region which do not generate smoke and oil fallout. Successful tests have led to it now being ready for commercial exploitation. (UK)

  17. CLEAN_LNAME: Stata module to clean lastname variables

    Adrien Bouguen

    2015-01-01

    This program removes blanks, accents, full stops, hyphens and apostrophes within a string variable. It also returns the uppercased version of the variable. clean_lname (together with clean_fname) is particularly useful for name matching procedure.

  18. CLEAN_FNAME: Stata module to clean firstname variables

    Adrien Bouguen

    2015-01-01

    This program removes blanks, accents, full stops, hyphens and apostrophes from a string variable. It returns the proper version of the variable. clean_fname (together with clean_lname) is particularly useful for name matching procedure.

  19. Niobium LEP 2 accelerating cavities

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  20. Status report on cleaning and maintaining laser disk amplifiers

    This report describes the activities and advances in engineering and technology made by the Solid State Mechanical Maintenance Group within the laser program at Lawrence Livermore Laboratory. It includes design and operation of clean rooms, contamination control on optical surfaces, cleaning techniques, and glass damage mechanisms. This report, a much expanded version of a section in the laser program's 1976 annual report, covers work accomplished from July 1976 to April 1977. It has been used as the source for five papers presented at various national conferences

  1. ISR main control room

    1970-01-01

    The ISR main control room (SRC) on the night of 20 October when beam was first successfully injected into Ring I. The panels along the left contain controls and observational information about the beam-transfer system and injection. Along the right are recorders showing beam intensity (in the centre) and controls for currents in the main magnets, the pole face windings, and auxiliary magnets, and the magnetic field display panel (further for the rear). At the far back are controls and observations for the r.f. system and the betatron-frequency meter. Also at the far back (in the centre) are oscilloscopes for looking at signals from the pick-up electrodes.

  2. Tandem accelerators

    After the installation of Ti-acceleration tubes and substantial modifications and additions to the EN tandem accelerator the performance of the machine has stabilized. The voltage behaviour of the tubes obviously improves as conditioning times necessary to run up to 6 MV decrease. A gridded lens has been added at the entrance of the first acceleration tube, and a second foil stripper is now installed in the short dead section between the high-energy tubes. The MP tandem also has been running stably during most of the year. However, beam instabilities originating from the last tube section and wear problems at the low-energy set of pelletron-chains caused some loss of beam time. During the fall, one set of pelletron charging chains has to be replaced after 49,000 hours of operation. In the course of the year, the MP and the EN tandem accelerators finished their 100,000th and 150,000th hours of operations, respectively. Preparations for the installation of the 3 MV negative heavy ion injector for the MP are progressing steadily. External beam transport, terminal ion optics, and data acquisition and control systems are to a major extent completed; the integration of the terminal power supplies has started. After the final assembly of the accelerator column structure, first voltage runs can be performed. (orig.)

  3. Large high-vacuum systems for CERN accelerators

    Strubin, P.

    2008-05-01

    CERN operated over the more than 50 years of its existence particle accelerators and storage rings ranging from a few tens of metre to 27 km, the size of its latest project, the Large Hadron Collider (LHC) which is under construction and will be started in 2008. The challenges began with the Intersection Storage Rings (ISR) in the seventies. With a beam pipe length of 2 × 1 km, this accelerator required innovative solutions like bake-out and glow discharge to achieve the required static vacuum level, fight against beam-induced pressure increases and cancel beam neutralisation by trapped electrons. The vacuum system of the Large Electron Positron (LEP) storage ring (in operation between 1989 and 2001) of a total length of 27 km had to cope with very high levels of synchrotron power. The beam vacuum system of LHC (2 × 27 km) integrates some parts at 1.9 K and others at room temperature and will also have to cope with dynamic effects. In addition to the beam vacuum system, LHC requires insulation vacuum for the superconducting magnets and the helium distribution line. Whereas the required pressure is not very low, the leak detection and localisation is significantly more demanding for the insulation vacuum than for the beam vacuum because of the large volumes and the thermal insulation. When the size of an accelerator grows, the difficulties are not only to get a clean and leak tight vacuum system, but also to be able to measure reliably pressure or gas composition over long distances. Furthermore, in the case of LHC the integration of the beam vacuum system was particularly difficult because of the complexity induced by a superconducting magnet scheme and the reduced space available for the beam pipes. Planning and logistics aspects during installation, including the usage of mobile pumping and diagnostic means, were much more difficult to manage in LHC than in previous projects.

  4. A microwave plasma cleaning apparatus

    Tsai, C. C.; Nelson, W. D.; Schechter, D. E.; Thompson, L. M.; Glover, A. L.

    1995-01-01

    In a microwave electron cyclotron resonance plasma source, reactive plasmas of oxygen and its mixtures of argon have been used for evaluating plasma cleaning technologies. Small aluminum samples (0.95 x 1.9 cm) were coated with thin films (less than or equal to 20 micrometers in thickness) of Shell Vitrea oil and cleaned with reactive plasmas. The discharge parameters, such as gas pressure, magnetic field, substrate biasing, and microwave power, were varied to change cleaning conditions. A mass spectroscopy (or residual gas analyzer) was used to monitor the status of plasma cleaning. Mass loss of the samples after plasma cleaning was measured to estimate cleaning rates. Measured cleaning rates of low-pressure (0.5-m torr) argon/oxygen plasmas were as high as 2.7 micrometers/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces. In this paper, significant results of the plasma cleaning are reported and discussed.

  5. Clean Energy Solutions Center Services

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  6. Handwashing: Clean Hands Save Lives

    ... The CDC Cancel Submit Search The CDC Handwashing: Clean Hands Save Lives Note: Javascript is disabled or ... and what you can do if soap and clean, running water are not available. Whether you are ...

  7. Automated cleaning of electronic components

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations

  8. Sustainable development with clean coal

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  9. Laser cleaning of Rakowicze sandstone

    Nijland, T.G.; Wijffels, T.J.

    2003-01-01

    Decisions about the cleaning of natural stone should always be made within the awareness of direct and indirect damage that may be the result of cleaning. During the last decade, laser cleaning of objects and monuments of natural stone has become increasingly popular. Whereas a considerable amount o

  10. Mental health. Clean sweep.

    Godfrey, Kathryn

    2003-10-30

    A private finance initiative-built psychiatric unit has replaced a crumbling hospital block in Essex. Chapters House includes single rooms for patients, with two-way doors for safety. It was designed by a specialist architect to create a more comfortable and pleasant environment. PMID:14619168