WorldWideScience

Sample records for accelerator based microanalytical

  1. Accelerator-based BNCT

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the 9Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. - Highlights: • The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. • Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. • The present status and recent progress of the Argentine project will be reviewed. • Topics cover intense ion sources, accelerator tubes, transport of intense beams and beam diagnostics, among others

  2. Plasma based accelerators

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  3. Examining the Level of Convergence among Self-Regulated Learning Microanalytic Processes, Achievement, and a Self-Report Questionnaire

    Cleary, Timothy J.; Callan, Gregory L.; Malatesta, Jaime; Adams, Tanya

    2015-01-01

    This study examined the convergent and predictive validity of self-regulated learning (SRL) microanalytic measures. Specifically, theoretically based relations among a set of self-reflection processes, self-efficacy, and achievement were examined as was the level of convergence between a microanalytic strategy measure and a SRL self-report…

  4. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques

    Yumin Zhu; Hua Zhang; Liming Shao; Pinjing He

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW).In this study,we investigated fine particles of <2 mm,which are small fractions in MSW but constitute a significant component of the total heavy metal content,using bulk detection techniques.A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction.We also discussed the association,speciation and source apportionment of heavy metals.Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles.Zn-Cu,Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution.The overlapped enrichment,spatial association,and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles.The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.

  5. Plasma-based accelerator structures

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  6. Plasma-based and novel accelerators

    This publication is a collection of papers presented at Workshop on Plasma-Based and Novel Accelerators held at National Institute for Fusion Science, Nagoya, on December 19-20, 1991. Plasma-based accelerators are attracting considerable attention in these days a new, exciting field of plasma applications. The study gives rise to and spurs study of other unique accelerators like laser-based accelerators. The talks in the Workshop encompassed beat-wave accelerator (BWA), plasma wake field accelerator (PWFA), Vp x B accelerator, laser-based accelerators and some novel methods of acceleration. They also covered the topics such as FEL, cluster acceleration and plasma lens. Small scale experiments as those in universities have exhibited brilliant results while larger scale experiments like BWA in Institute of Laser Engineering, Osaka University, and PWFA in KEK start showing significant results as well. (J.P.N.)

  7. EM Structure Based and Vacuum Acceleration

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  8. Advances in the segmentation of multi-component microanalytical images

    Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms (C-means and fuzzy C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map

  9. Use of accelerator based neutron sources

    With the objective of discussing new requirements related to the use of accelerator based neutron generators an Advisory Group meeting was held in October 1998 in Vienna. This meeting was devoted to the specific field of the utilization of accelerator based neutron generators. This TECDOC reports on the technical discussions and presentations that took place at this meeting and reflects the current status of neutron generators. The 14 MeV neutron generators manufactured originally for neutron activation analysis are utilised also for nuclear structure and reaction studies, nuclear data acquisition, radiation effects and damage studies, fusion related studies, neutron radiography

  10. laser interaction and plasma based accelerator

    Plasma is an attractive medium for particle acceleration because of the high electric field can be sustained by Plasma. Our objective in this thesis concentrate mainly to study the physics of particle acceleration by different methods like microwave radiation propagates in the waveguides and also like beating two intense lasers in plasma based accelerators. So, it has been of great interest to consider the following subjects:1-The dynamics of an electron in the fields associated with transverse magnetic (TM) wave propagating inside rectangular waveguide is studied analytically. We have solved exactly the relativistic momentum and energy equations of a single electron which injected initially along the propagation of microwave. Expressions for the acceleration gradient and deflection angle are obtained.2-The dynamics of an electron in the fields associated with TE-electromagnetic wave propagating inside a circular waveguide is analytically studied. The motion of this electron along the axis of the waveguide is investigated in the existence of a helical magnet (in which the field is perpendicular to the axis of waveguide and rotating as a function of position along the magnet).3-The study of the beat wave plasma accelerator due to the interaction of two linearly polarized Bessel laser beams is investigated. The electron acceleration which driven by the generated longitudinal plasma waves with phase velocities near the speed of the light is studied. The wave equation descried the fields of this beat wave is obtained.

  11. Accelerated graph-based spectral polynomial filters

    Knyazev, Andrew; Malyshev, Alexander,

    2015-01-01

    Graph-based spectral denoising is a low-pass filtering using the eigendecomposition of the graph Laplacian matrix of a noisy signal. Polynomial filtering avoids costly computation of the eigendecomposition by projections onto suitable Krylov subspaces. Polynomial filters can be based, e.g., on the bilateral and guided filters. We propose constructing accelerated polynomial filters by running flexible Krylov subspace based linear and eigenvalue solvers such as the Block Locally Optimal Precond...

  12. A new basaltic glass microanalytical reference material for multiple techniques

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  13. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems

    Larsen, Esben Kjær Unmack; Larsen, Niels Bent

    2013-01-01

    The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes ...... microanalytical systems, including polystyrene (PS), cyclic olefin copolymer (COC), liquid crystalline polymer (LCP), and polyimide (PI)....

  14. Laser-machined components for microanalytical and chemical separation devices

    Matson, Dean W.; Martin, Peter M.; Bennett, Wendy D.

    1998-10-01

    Excimer lasers have proven to be powerful tools for machining polymeric components used in microanalytical and microchemical separation devices. We report the use of laser machining methods to produce microfluidic channels and liquid/liquid contact membranes for a number of devices fabricated at our laboratory. Microchannels 50- to 100- micrometers -wide have been produced directly in bulk polycarbonate chips using a direct-write laser micromachining system. Wider microchannels have been produced by laser machining paths through sheets of polyimide film, then sandwiching the patterned piece between solid chips of polycarbonate stock. A comparison of direct-write and mask machining processes used to produce some of the microfluidic features is made. Examples of microanalytical devices produced using these methods are presented. Included are microdialysis units used to remove electrolytes from liquid samples and electrophoretic separation devices, both used for extremely low volume samples intended for mass spectrometric analysis. A multilayered microfluidic device designed to analyze low volume groundwater samples for hazardous metals and a fluidics motherboard are also described. Laser machining processes have also been explored for producing polymeric membranes suitable for use in liquid/liquid contactors used for removal of soluble hazardous components from waste streams. A step-and-repeat mask machining process was used to produce 0.5 X 8 cm membranes in 25- and 50-micrometers -thick polyimide. Pore diameters produced using this method were five and ten micrometers. The laser machined membranes were sputter coated with PTFE prior to use to improve fluid breakthrough characteristics.

  15. Accelerator based atomic physics experiments: an overview

    Atomic Physics research with beams from accelerators has continued to expand and the number of papers and articles at meetings and in journals reflects a steadily increasing interest and an increasing support from various funding agencies. An attempt will be made to point out where interdisciplinary benefits have occurred, and where applications of the new results to engineering problems are expected. Drawing from material which will be discussed in the conference, a list of the most active areas of research is presented. Accelerator based atomic physics brings together techniques from many areas, including chemistry, astronomy and astrophysics, nuclear physics, solid state physics and engineering. An example is the use of crystal channeling to sort some of the phenomena of ordinary heavy ion stopping powers. This tool has helped us to reach a better understanding of stopping mechanisms with the result that now we have established a better base for predicting energy losses of heavy ions in various materials

  16. Accelerator-based neutrino oscillation experiments

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  17. Design Concepts for Muon-Based Accelerators

    Ryne, R. D.; et al.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced thus enabling high quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  18. Accelerator based steady state neutron source

    Using high current, cw linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the accelerator based neutron research facility (ABNR) would initially achieve the 1016 n/cm2s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450 M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source is most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc., with the development of a multibeam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  19. An accelerator based steady state neutron source

    Using high current, cw linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the accelerator based neutron research facility (ABNR) would initially achieve the 1016 n/cm2 s themal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of Dollar 300-450 is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of a multibeam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs. (orig.)

  20. Microanalytical investigation of environmental samples by TXRF spectrometry

    Considering the excellent micro and trace analytical capabilities of the TXRF spectrometry and the simple quantification by internal standardization, this analytical method offers a promising way for microanalytical investigation of low volume environmental samples. One of the most interesting field is the elemental analysis of airborne dust collected by filtration of impaction techniques. Depending on the sampling methods applied these samples can be analyzed after application of the following sample preparation techniques: (i) acidic digestion of loaded filters (e.g. MW assisted vapour phase digestion), (ii) ashing of small pieces of loaded filters in low temperature oxygen plasma directly on the quartz carrier plates, (iii) dissolution of filter pieces on the sample carrier plates by organic solvents, (iv) deposition of fine aerosol particles directly on the quartz carrier plates coated with medical vaseline or plastic films using single orifice cascade impactors. The size fractionated collection of the aerosol particles directly on the carrier plates suffers from re-entrainment and bounce-off effects. To minimize these phenomenon we apply butadiene copolymer (M-5000) dissolved in MEK. The influence of the film thickness on the detection limits and the spot formation will be presented in the lecture. An other microanalytical task is the determination of elements among various organs of mussels (Dreissene polymorpha) collected from the Danube. In the bio monitoring project the separated tissues (1-2 mg) were digested using MW-assisted vapour-phase digestion technique resulting in 1 cm3 solution for each individual organs. The accumulation capacities of these organs can be determined on basis of the TXRF measurements

  1. Accelerated GPU based SPECT Monte Carlo simulations.

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  2. Accelerated GPU based SPECT Monte Carlo simulations

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  3. Accelerated graph-based nonlinear denoising filters

    Knyazev, Andrew; Malyshev, Alexander,

    2015-01-01

    Denoising filters, such as bilateral, guided, and total variation filters, applied to images on general graphs may require repeated application if noise is not small enough. We formulate two acceleration techniques of the resulted iterations: conjugate gradient method and Nesterov's acceleration. We numerically show efficiency of the accelerated nonlinear filters for image denoising and demonstrate 2-12 times speed-up, i.e., the acceleration techniques reduce the number of iterations required...

  4. First accelerator-based physics of 2014

    Katarina Anthony

    2014-01-01

    Experiments in the East Area received their first beams from the PS this week. Theirs is CERN's first accelerator-based physics since LS1 began last year.   For the East Area, the PS performs a so-called slow extraction, where beam is extracted during many revolution periods (the time it take for particles to go around the PS, ~2.1 μs). The yellow line shows the circulating beam current in the PS, decreasing slowly during the slow extraction, which lasts 350 ms. The green line is the measured proton intensity in the transfer line toward the East Area target. Although LHC physics is still far away, we can now confirm that the injectors are producing physics! In the East Area - the experimental area behind the PS - the T9 and T10 beam lines are providing beams for physics. These beam lines serve experiments such as AIDA - which looks at new detector solutions for future accelerators - and the ALICE Inner Tracking System - which tests components for the ALICE experiment. &qu...

  5. Feature-based Analysis of Plasma-based Particle Acceleration Data

    Ruebel, Oliver

    2014-01-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a n...

  6. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XIIth Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  7. Ion accelerator based on plasma vircator

    The conception of a collective ion accelerator is proposed to be developed in the frameworks of STCU project 1569 (NSC KIPT, Ukraine) in coordination with the ISTC project 1629 (VNIEF, Russia). The main processes of acceleration are supposed to be consisted of two stages.First one is the plasma assistance virtual cathode (VC) in which plasma ions are accelerated in a potential well of VC. Along with ion acceleration the relaxation oscillations, caused by diminishing the potential well due to ion compensation, arise that provides the low-frequency (inverse ion transit time) temporal modulation of an intense relativistic electron beam (IREB) current. At the second stage temporally modulated IREB is injected into the spatially periodic magnetic field. The further ion acceleration is realized by the slow space charge wave that arises in IREB due to its simultaneous temporal and spatial modulation

  8. Ion accelerator based on plasma vircator

    Onishchenko, I N

    2001-01-01

    The conception of a collective ion accelerator is proposed to be developed in the frameworks of STCU project 1569 (NSC KIPT, Ukraine) in coordination with the ISTC project 1629 (VNIEF, Russia). The main processes of acceleration are supposed to be consisted of two stages.First one is the plasma assistance virtual cathode (VC) in which plasma ions are accelerated in a potential well of VC. Along with ion acceleration the relaxation oscillations, caused by diminishing the potential well due to ion compensation, arise that provides the low-frequency (inverse ion transit time) temporal modulation of an intense relativistic electron beam (IREB) current. At the second stage temporally modulated IREB is injected into the spatially periodic magnetic field. The further ion acceleration is realized by the slow space charge wave that arises in IREB due to its simultaneous temporal and spatial modulation.

  9. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare the ac...

  10. Electrophysical Systems Based On Charged Particle Accelerators

    Vorogushin, M F

    2004-01-01

    The advancement of the charged particle accelerator engineering affects appreciably the modern tendencies of the scientific and technological progress in the world. In a number of advanced countries, this trend is one of the most dynamically progressing in the field of applied science and high-technology production. Such internationally known firms as VARIAN, SIEMENS, PHILIPS, ELECTA, IBA, HITACHI, etc., with an annual budget of milliards of dollars and growth rate of tens of percent may serve as an example. Although nowadays the projects of new large-scale accelerators for physical research are not implemented so quickly and frequently as desired, accelerating facilities are finding ever-widening application in various fields of human activities. The contribution made by Russian scientists into high-energy beams physics is generally known. High scientific and technical potential in this field, qualified personnel with a high creative potential, modern production and test facilities and state-of-the-art techn...

  11. Development of Radioanalytical and Microanalytical Procedures for the Determination of Actinides in Environmental Samples

    A radio-analytical procedure has been developed for the simultaneous determination of actinides in swipe samples by alpha-spectrometry after the separation of the actinides by extraction chromatography. The procedure is based on the complete decomposition of the sample by destruction with microwave digestion or ashing in furnace. Actinides are separated on an extraction chromatographic column filled with TRU resin (product of Eichrom Industries Inc.). Alpha sources prepared from the separated fractions of americium, plutonium, thorium and uranium are counted by alpha spectrometry. Micro-analytical procedure is being developed for the location and identification of individual particles containing fissile material using solid state nuclear track detectors. The parameters of alpha and fission track detection have been optimized and a procedure has been elaborated to locate the particles on the sample by defining the coordinates of the tracks created by the particles on the track detector. Development of a procedure is planned to separate the located particles using micromanipulator and these particles will be examined individually by different micro- and radio-analytical techniques. (authors)

  12. A Qualitative Acceleration Model Based on Intervals

    Ester MARTINEZ-MARTIN

    2013-08-01

    Full Text Available On the way to autonomous service robots, spatial reasoning plays a main role since it properly deals with problems involving uncertainty. In particular, we are interested in knowing people's pose to avoid collisions. With that aim, in this paper, we present a qualitative acceleration model for robotic applications including representation, reasoning and a practical application.

  13. Accelerator based techniques for aerosol analysis

    At the 3 MV Tandetron accelerator of the LABEC laboratory of INFN (Florence, Italy) an external beam facility is fully dedicated to PIXE-PIGE measurements of elemental composition of atmospheric aerosols. Examples regarding recent monitoring campaigns, performed in urban and remote areas, both on a daily basis and with high time resolution, as well as with size selection, will be presented. It will be evidenced how PIXE can provide unique information in aerosol studies or can play a complementary role to traditional chemical analysis. Finally a short presentation of 14C analysis of the atmospheric aerosol by Accelerator Mass Spectrometry (AMS) for the evaluation of the contributions from either fossil fuel combustion or modern sources (wood burning, biogenic activity) will be given. (author)

  14. Beam-driven, Plasma-based Particle Accelerators

    Muggli, P

    2016-01-01

    We briefly give some of the characteristics of the beam-driven, plasma-based particle accelerator known as the plasma wakefield accelerator (PWFA). We also mention some of the major results that have been obtained since the birth of the concept. We focus on high-energy particle beams where possible.

  15. Photon Acceleration Based On Laser-Plasma

    2001-01-01

    One dimensional electron density perturbation is derived by using the cold fluid equation, Possion's equation and the conti nuity equation. The perturbation is generated by a driving laser pulse propagating through a plasma. The upshifting of the frequency of a trailing pulse induced by density perturbation is studied by using optical metric. The results show that it is possible that the photon will gain energy from the wakefield when assuming photon's number to be conserved, i.e., the photon will be accelerated.

  16. Business establishment mobility behavior in urban areas: a microanalytical model for the City of Hamilton in Ontario, Canada

    Maoh, Hanna; Kanaroglou, Pavlos

    2007-09-01

    We present a microanalytical firm mobility model for the City of Hamilton, Canada, developed with data from the Statistics Canada Business Register. Contributing to the scarce literature on firm migration behavior, we explore and model the determinants of mobility among small and medium size firms who retained less than 200 employees between 1996 and 1997. Our exploratory results suggest that short distance moves are more common and tend to occur among smaller firms. Econometric modeling results support these assertions and indicate that the willingness to move can be explained by a firm’s internal characteristics (e.g. age, size, growth and industry type) as well as location factors related to the urban environment where the firm is located. The modeling results will serve as input for the development of an agent-based firmographic decision support system that can be used to inform the planning process in the study area.

  17. FPGA Based Acceleration of Decimal Operations

    Nannarelli, Alberto

    2011-01-01

    Field Programmable Gate-Arrays (FPGAs) can efficiently implement application specific processors in nonconventional number systems, such as the decimal (Binary- Coded Decimal, or BCD) number system required for accounting accuracy in financial applications. The main purpose of this work is to show...... that applications requiring several decimal (BCD) operations can be accelerated by a processor implemented on a FPGA board connected to the computer by a standard bus. For the case of a telephone billing application, we demonstrate that even a basic implementation of the decimal processor on the FPGA...

  18. Micro-analytical characterisation of radioactive heterogeneities in samples from Central Asian TENORM sites

    The present work focuses on the use of micro-analytical techniques to demonstrate the heterogeneous distribution of radionuclides and metals in soils collected at Former Soviet Union mining sites in Central Asia. Based on digital autoradiography, radionuclides were heterogeneously distributed in soil samples collected at the abandoned uranium mining sites Kurday, Kazakhstan, Kadji Sai, Kyrgyzstan and Taboshar, Tajikistan. Using electron microscopy interfaced with X-ray microanalysis submicron – mm-sized radioactive particles and rock fragments with U, As, Se and toxic metals on the surfaces were identified in Kurday and Kadji Sai samples. Employing scanning and tomographic (3D) synchrotron radiation based micro-X-ray fluorescence (μ-SRXRF) and synchrotron radiation based micro-X-ray diffraction (μ-SRXRD) allowed us to observe the inner structure of the particles without physical sectioning. The distribution of elements in virtual crosssections demonstrated that U and a series of toxic elements were rather heterogeneously distributed also within individual radioactive TENORM particles. Compared to archived data, U in Kadji Sai particles was present as uraninite (U4O9+y or UO2+x) or Na-zippeite ((Na4(UO2)6[(OH)10(SO4)3]·4H2O), i.e. U minerals with very low solubility. The results suggested that TENORM particles can carry substantial amount of radioactivity, which can be subject to re-suspension, atmospheric transport and water transport. Thus, the potential radioecological and radioanalytical impact of radioactive particles at NORM and TENORM sites worldwide should be taken into account. The present work also demonstrates that radioecological studies should benefit from the use of advanced methods such as synchrotron radiation based techniques

  19. Accelerator

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  20. Reactor - and accelerator-based filtered beams

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10-3 eV up to 107 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  1. Accelerator-based neutron radioscopic systems

    There is interest in non-reactor source, thermal neutron inspection systems for applications in aircraft maintenance, explosive devices, investment-cast turbine blades, etc. Accelerator sources, (d-T), RFQ accelerators and cyclotrons as examples, are available for either transportable or fixed neutron inspection systems. Sources are reviewed for neutron output, portability, ease of use and cost, and for use with an electronic neutron imaging camera (image intensifier or scintillator-camera system) to provide a prompt response, neutron inspection system. Particular emphasis is given to the current aircraft inspection problem to detect and characterize corrosion. Systems are analyzed to determine usefulness in providing an on-line inspection technique to detect corrosion in aluminum honeycomb aircraft components, either on-aircraft or in a shop environment. The neutron imaging sensitivity to hydrogenous aluminum corrosion product offers early detection advantages for aircraft corrosion, to levels of aluminum metal loss as small as 25 μm. The practical capability for a continuous scan thermal neutron radioscopic system to inspect up to 500 square feet of component surface per day is used as an evaluation criterion, with the system showing contrast sensitivity of at least 5% and image detail in the order of 4 mm for parts 10 cm thick. Under these practical conditions and 3-shift operation, the source must provide an incident thermal neutron flux of 5.6x104 n cm-2 s-1 at an L/D of 30. A stop and go inspection approach, offering improved resolution, would require a source with similar characteristics

  2. Laser wakefield accelerator based light sources: potential applications and requirements

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  3. Laser wakefield accelerator based light sources: potential applications and requirements

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  4. Accelerator-based studies of intercombination transitions

    Intercombination transitions in multiply-charged few-electron ions have been studied for a number of years now by a number of methods, including beam-foil spectroscopy. Only very recently it has been realized that the intrinsic properties of the beam-foil light source, in particular the time resolution, offer means to single out and measure such transitions from the multiline spectra of many-electron ions where the exploitation of other light sources has been less successful. Wavelengths and transition rates of these lines provide both a test of many-electron atomic theory and tools for plasma diagnostics. As examples, data on Mg-, Al- and Si-like ions of elements Ti-Zn are presented and compared with tokamak, laser-produced plasma and solar flare data. It turns out that the level of adequacy reached by the various theoretical approaches for predictions of wavelengths and transition probabilities in the individual isoelectronic sequences is very different. However, even calculational schemes which are successful for one sequence are much worse for others. The variety of isoelectronic sequences and the ranges of ionic charge for each of the sequences which are accessible at typical heavy-ion accelerator laboratories are outlined in order to encourage the use of existing facilities for this type of spectroscopy. (orig.)

  5. Experimental demonstration of dielectric structure based two beam acceleration.

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  6. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    ZHANG Meng; GU Qiang

    2011-01-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility.It is also attractive in beam dynamics in maintaining a high quality electron beam,which is an important factor in the performance of a free electron laser.In this paper,a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility.Throughout the comprehensive simulation,we conclude that the C-band structure is much more competitive.

  7. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm opt...

  8. A count rate based contamination control standard for electron accelerators

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  9. Accelerator based neutron source for neutron capture therapy

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7Li(p,n)7Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  10. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems.

    Larsen, Esben Kjær Unmack; Larsen, Niels B

    2013-02-21

    The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes including hydrophobic and hydrophilic drugs (0.23 8) in their pharmaceutically relevant concentration range ≤100 nM. The low adsorption is mediated by photochemical conjugation, where polyethylene glycol (PEG) polymers in aqueous solution are covalently bound to the surface by UV illumination of dissolved benzophenone and a functionalized PEG. The method can coat the interior of polymer systems made from a range of materials commonly used in microanalytical systems, including polystyrene (PS), cyclic olefin copolymer (COC), liquid crystalline polymer (LCP), and polyimide (PI). PMID:23254780

  11. An accelerator-based epithermal photoneutron source for BNCT

    Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.; Yoon, W.Y. [and others

    1995-11-01

    Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.

  12. LU factorization for accelerator-based systems

    Agullo, Emmanuel

    2011-12-01

    Multicore architectures enhanced with multiple GPUs are likely to become mainstream High Performance Computing (HPC) platforms in a near future. In this paper, we present the design and implementation of an LU factorization using tile algorithm that can fully exploit the potential of such platforms in spite of their complexity. We use a methodology derived from previous work on Cholesky and QR factorizations. Our contributions essentially consist of providing new CPU/GPU hybrid LU kernels, studying the impact on performance of the looking variants as well as the storage layout in presence of pivoting, tuning the kernels for two different machines composed of multiple recent NVIDIA Tesla S1070 (four GPUs total) and Fermi-based S2050 GPUs (three GPUs total), respectively. The hybrid tile LU asymptotically achieves 1 Tflop/s in single precision on both hardwares. The performance in double precision arithmetic reaches 500 Gflop/s on the Fermi-based system, twice faster than the old GPU generation of Tesla S1070. We also discuss the impact of the number of tiles on the numerical stability. We show that the numerical results of the tile LU factorization will be accurate enough for most applications as long as the computations are performed in double precision arithmetic. © 2011 IEEE.

  13. FPGA based accelerators for financial applications

    2015-01-01

    This book covers the latest approaches and results from reconfigurable computing architectures employed in the finance domain. So-called field-programmable gate arrays (FPGAs) have already shown to outperform standard CPU- and GPU-based computing architectures by far, saving up to 99% of energy depending on the compute tasks. Renowned authors from financial mathematics, computer architecture, and finance business introduce the readers into today’s challenges in finance IT, illustrate the most advanced approaches and use cases, and present currently known methodologies for integrating FPGAs in finance systems together with latest results. The complete algorithm-to-hardware flow is covered holistically, so this book serves as a hands-on guide for IT managers, researchers, and quants/programmers who think about integrating FPGAs into their current IT systems.

  14. Facilitating an accelerated experience-based co-design project.

    Tollyfield, Ruth

    This article describes an accelerated experience-based co-design (AEBCD) quality improvement project that was undertaken in an adult critical care setting and the facilitation of that process. In doing so the aim is to encourage other clinical settings to engage with their patients, carers and staff alike and undertake their own quality improvement project. Patient, carer and staff experience and its place in the quality sphere is outlined and the importance of capturing patient, carer and staff feedback established. Experience-based co-design (EBCD) is described along with the recently tested accelerated version of the process. An overview of the project and outline of the organisational tasks and activities undertaken by the facilitator are given. The facilitation of the process and key outcomes are discussed and reflected on. Recommendations for future undertakings of the accelerated process are given and conclusions drawn. PMID:24526020

  15. Feature-based Analysis of Plasma-based Particle Acceleration Data

    Ruebel, Oliver; Geddes, Cameron G.R.; Chen, Min; Cormier-Michel, Estelle; Bethel, E. Wes

    2013-07-05

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  16. Spectrum shaping of accelerator-based neutron beams for BNCT

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  17. Transformer ratio improvement for beam based plasma accelerators

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R ≤ 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  18. Architecture exploration of FPGA based accelerators for bioinformatics applications

    Varma, B Sharat Chandra; Balakrishnan, M

    2016-01-01

    This book presents an evaluation methodology to design future FPGA fabrics incorporating hard embedded blocks (HEBs) to accelerate applications. This methodology will be useful for selection of blocks to be embedded into the fabric and for evaluating the performance gain that can be achieved by such an embedding. The authors illustrate the use of their methodology by studying the impact of HEBs on two important bioinformatics applications: protein docking and genome assembly. The book also explains how the respective HEBs are designed and how hardware implementation of the application is done using these HEBs. It shows that significant speedups can be achieved over pure software implementations by using such FPGA-based accelerators. The methodology presented in this book may also be used for designing HEBs for accelerating software implementations in other domains besides bioinformatics. This book will prove useful to students, researchers, and practicing engineers alike.

  19. Lifetime prediction based on Gamma processes from accelerated degradation data

    Wang Haowei; Xu Tingxue; Mi Qiaoli

    2015-01-01

    Accelerated degradation test is a useful approach to predict the product lifetime at the normal use stress level, especially for highly reliable products. Two kinds of the lifetime prediction based on Gamma processes were studied. One was to predict the lifetime of the population from accelerated degradation data, and the other was to predict the lifetime of an individual by taking the accelerated degradation data as prior information. For an extensive application, the Gamma process with a time transformation and random effects was considered. A novel contribution is that a deducing method for determining the relationships between the shape and scale parameters of Gamma processes and accelerated stresses was presented. When predicting the lifetime of an indi-vidual, Bayesian inference methods were adopted to improve the prediction accuracy, in which the conjugate prior distribution and the non-conjugate prior distribution of random parameters were studied. The conjugate prior distribution only considers the random effect of the scale parameter while the non-conjugate prior distribution considers the random effects of both the scale and shape parameter. The application and usefulness of the proposed method was demonstrated by the accelerated degradation data of carbon-film resistors.

  20. Proceedings of the specialists' meeting on accelerator-based transmutation

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  1. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  2. Accelerator Based Neutron Beams for Neutron Capture Therapy

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  3. A microanalytic study of self-regulated learning processes of expert, non-expert, and at-risk science students

    Dibenedetto, Maria K.

    2009-12-01

    The present investigation sought to examine differences in the self-regulated learning processes and beliefs of students who vary in their level of expertise in science and to investigate if there are gender differences. Participants were 51 ethnically diverse 11th grade students from three parochial high schools consisting of 34 females and 17 males. Students were grouped as either expert, non-expert, or at-risk based on the school's classification. Students were provided with a short passage on tornados to read and study. The two achievement measures obtained were the Tornado Knowledge Test : ten short-answer questions and the Conceptual Model Test : a question which required the students to draw and describe the three sequential images of tornado development from the textual description of the three phases. A microanalytic methodology was used which consists of asking a series of questions aimed at assessing students' psychological behaviors, feelings, and thoughts in each of Zimmerman's three phases of self-regulation: forethought, performance, and reflection. These questions were asked of the students while they were engaged in learning. Two additional measures were obtained: the Rating Student Self-Regulated Learning Outcomes: A Teacher Scale (RSSRL) and the Self-Efficacy for Self-Regulated Learning (SELF). Analysis of variance, chi square analysis, and post hoc test results showed significant expertise differences, large effect sizes, and positive linear trends on most measures. Regarding gender, there were significant differences on only two measures. Correlational analyses also revealed significant relations among the self-regulatory subprocesses across the three phases. The microanalytic measures were combined across the three phases and entered into a regression formula to predict the students' scores on the Tornado Knowledge Test. These self-regulatory processes explained 77% of the variance in the Tornado Knowledge Test, which was a significant and

  4. Android Graphic System Acceleration Based on DirectFB

    2013-05-01

    Full Text Available In this study, based on analyzing the hardware abstraction layer and native graphics libraries of Android graphics system, the drawback of Skia library which could only support software rendering is pointed out. And then the third-party open graphics library DirectFB which supports 2D hardware acceleration is introduced, the architecture and interface of DirectFB and Skia are analyzed and compared with each other in detail. After DirectFB being ported into Android system, a novel hardware acceleration layer with double-buffer technology is designed and implemented, which will make Skia and DirectFB coexist and complement with each other and ultimately implement the 2D hardware acceleration in Android system. A JNI interface is designed for Java programs. The optimization scheme is verified by the specialized test benchmarks df-dok, the experimental results indicated that the performance of Android graphics system in layer blending operations is accelerated by an average of 5.58x as well as 2.18x speedup on average in bitblit operations when processing complex graphics operations such as layer blending and bitblit etc.

  5. Research activities related to accelerator-based transmutation at PSI

    Transmutation of actinides and fission products using reactors and other types of nuclear systems may play a role in future waste management schemes. Possible advantages of separation and transmutation are: volume reductions, the re-use of materials, the avoidance of a cumulative risk, and limiting the duration of the risk. With its experience in reactor physics, accelerator-based physics, and the development of the SINQ spallation neutron source, PSI is in a good position to perform basic theoretical and experimental studies relating to the accelerator-based transmutation of actinides. Theoretical studies at PSI have been concentrated, so far, on systems in which protons are used directly to transmute actinides. With such systems and appropriate recycling schemes, the studies showed that considerable reduction factors for long-term toxicity can be obtained. With the aim of solving some specific data and method problems related to these types of systems, a programme of differential and integral measurements at the PSI ring accelerator has been initiated. In a first phase of this programme, thin samples of actinides will be irradiated with 590 MeV protons, using an existing irradiation facility. The generated spallation and fission products will be analysed using different experimental techniques, and the results will be compared with theoretical predictions based on high-energy nucleon-meson transport calculations. The principal motivation for these experiments is to resolve discrepancies observed between calculations based on different high-energy fission models. In a second phase of the programme, it is proposed to study the neutronic behaviour of multiplying target-blanket assemblies with the help of zero-power experiments set up at a separate, dedicated beam line of the accelerator. (author) 3 figs., 2 tabs., 8 refs

  6. Accelerator physics in ERL based polarized electron ion collider

    Hao, Yue [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  7. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    Sharma S; Kumar Sudhir; Dagaonkar S; Bisht Geetika; Dayanand S; Devi Reena; Deshpande S; Chaudhary S; Bhatt B; Kannan S

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured...

  8. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p, n)7Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7Li(p, n)7Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  9. Tandem-ESQ for accelerator-based BNCT

    A project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) is described. A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p,n)7Be reaction beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the '7Li(p,n)7Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. (author)

  10. A hard x-ray micro-analytical beamline at the CAMD synchrotron

    Argonne National Laboratory (ANL) is collaborating with Louisiana State University (LSU) in constructing a synchrotron x-ray micro-analytical beamline at the Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge. This project grew from earlier work at the National Synchrotron Light source (NSLS), where a team of ANL researchers developed techniques to examine small-scale structures in diffusion zones of a variety of materials. The ANL/CAMD beamline will use x-ray fluorescence, diffraction, and absorption spectroscopy techniques to reveal both compositional and structural information on a microscopic scale

  11. Report of the research co-ordination meeting on reference materials for microanalytical nuclear techniques

    Many microanalytical procedure require specific natural-matrix reference materials containing very low levels of trace elements and having a high degree of homogeneity. This proposed CRP will specifically address the question of quality control materials for these techniques. The participants of the meeting discussed the requirements for certified reference materials to by used in microanalysis with particular emphasis on the homogeneity issues. This publication contains summary of the discussions along with conclusions and recommendations made by the participants. The publication also contains 13 individual presentations delivered by the participants. Each of the individual papers has been provided with an abstract and indexed separately

  12. Support vector machine based on adaptive acceleration particle swarm optimization.

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  13. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  14. Accelerators and Beams, multimedia computer-based training in accelerator physics

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user close-quote s rate of learning and length of retention of the material. They integrate interactive On-Screen Laboratories, hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer. copyright 1999 American Institute of Physics

  15. ''Accelerators and Beams,'' multimedia computer-based training in accelerator physics

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user's rate of learning and length of retention of the material. They integrate interactive ''On-Screen Laboratories,'' hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer

  16. Microanalytical characterization of surface decoration in Majolica pottery

    Padilla, R. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); Schalm, O. [Micro and Trace Analysis Center, University of Antwerp (Belgium); Janssens, K. [Micro and Trace Analysis Center, University of Antwerp (Belgium); Arrazcaeta, R. [Gabinete de Arqueologia, Oficina del Historiador de la Ciudad de la Habana (OHCH) (Cuba); Espen, P. van [Micro and Trace Analysis Center, University of Antwerp (Belgium)]. E-mail: piet.vanespen@ua.ac.be

    2005-04-11

    This paper presents the results of the characterization of the surface finishing works in archaeological pottery fragments belonging to several Majolica types. The homogeneity, thickness and inclusions of both ground glaze and color decorations were, among other characteristics, inspected by scanning electron microscopy X-ray analysis (SEM-EDX). The identification of the main constituents in the decoration motifs was performed by means of scanning micro X-ray fluorescence analysis. Additionally, compositional classification based on non-destructive quantitative analysis of the ground glaze was performed.

  17. Multianalyte microspot immunoassay. The microanalytical 'compact disk' of the future.

    Ekins, R; Chu, F

    1992-01-01

    Throughout the 1970s, controversy centered both on immunoassay 'sensitivity' per se and on the relative sensitivities of labelled antibody and labelled analyte methods. Our own theoretical studies in this period revealed that radioimmunoassay (RIA) sensitivities could be surpassed only by the use of very high specific activity non-isotopic labels in 'non-competitive' designs, preferably based on the use of monoclonal antibodies. The time-resolved fluorescence methodology known as Delfia - developed in collaboration with the instrument manufacturer LKB/Wallac - represented the first commercial 'ultra-sensitive' non-isotopic technique based on these theoretical insights, the same concepts being subsequently adopted in comparable methodologies relying on the use of chemiluminescent and enzyme labels. However, a second advantage of high specific activity labels is that they permit the development of 'multi-analyte' immunoassay systems combining ultra-sensitivity with the simultaneous measurement of tens, hundreds or thousands of analytes in a small biological sample. This possibility relies on simple, albeit hitherto unexploited, physicochemical concepts. The first is that all immunoassays rely on measurement of Ab occupancy by analyte. The second is that, provided the Ab concentration used is 'vanishingly small', fractional Ab occupancy is independent of both Ab concentration and sample volume. This leads to the notion of 'ratiometric' immunoassay, involving measurement of the ratio of signals (eg fluorescent signals) emitted by two labelled Ab's, the first ('sensor' Ab) deposited as a microspot on a solid support, the second a 'developing' Ab directed against either occupied or unoccupied sensor Ab binding sites.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1485691

  18. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper

  19. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  20. Accelerating convergence of molecular dynamics-based structural relaxation

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...... the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to...

  1. Recursive least square vehicle mass estimation based on acceleration partition

    Feng, Yuan; Xiong, Lu; Yu, Zhuoping; Qu, Tong

    2014-05-01

    Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resistance that occur under different conditions. This paper proposes a vehicle mass estimator. The estimator incorporates road gradient information in the longitudinal accelerometer signal, and it removes the road grade from the longitudinal dynamics of the vehicle. Then, two different recursive least square method (RLSM) schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions. A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters. The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations. The modification of the algorithm is also discussed to improve the result of the mass estimation. Experiment data on a sphalt road, plastic runway, and gravel road and on sloping roads are used to validate the estimation algorithm. The adaptability of the algorithm is improved by using data collected under several critical operating conditions. The experimental results show the error of the estimation process to be within 2.6%, which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications. This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition.

  2. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    Mehrling, Timon

    2014-01-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exc...

  3. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ−n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies

  4. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    Feizi, H.; Ranjbar, A. H.

    2016-02-01

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ-n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies.

  5. Subpanel on accelerator-based neutrino oscillation experiments

    Neutrinos are among nature's fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called open-quotes mixing.close quotes The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary

  6. Luminosity Limitations in Linear Colliders Based on Plasma Acceleration

    Lebedev, Valeri; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. However, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  7. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  8. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  9. Stock Market Dynamics, Leveraged Network-Based Financial Accelerator and Monetary Policy

    Luca RICCETTI; Russo, Alberto; Gallegati, Mauro

    2015-01-01

    In this paper we build an agent-based model based on a threefold financial accelerator: (i) leverage accelerator - negative shocks on firms' output make banks less willing to loan funds, and firms less willing to make investments, hence a credit reduction follows further reducing the output; (ii) stock market accelerator - due to lower profit, firms' capitalization on the stock market decreases, thus the distance-to-default (DD) diminishes and it reinforces the leverage accelerator; (iii) net...

  10. Summary Report of Working Group 3: High Gradient and Laser-Structure Based Acceleration

    The charge for the working group on high gradient and laser-structure based acceleration was to assess the current challenges involved in developing an advanced accelerator based on electromagnetic structures, and survey state-of-the-art methods to address those challenges. The topics of more than 50 presentations in the working group covered a very broad range of issues, from ideas, theoretical models and simulations, to design and manufacturing of accelerating structures and, finally, experimental results on obtaining extremely high accelerating gradients in structures from conventional microwave frequency range up to THz and laser frequencies. Workshop discussion topics included advances in the understanding of the physics of breakdown and other phenomena, limiting high gradient performance of accelerating structures. New results presented in this workshop demonstrated significant progress in the fields of conventional vacuum structure-based acceleration, dielectric wakefield acceleration, and laser-structure acceleration.

  11. Production of candidate natural matrix reference materials for micro-analytical techniques

    Homogeneity is considered to be the most vital prerequisite for a certified reference material (CRM); more stringent requirements exist for the analysis of small subsamples. Many of the natural matrix CRMs are prepared from bulk samples by grinding and milling them to a certain particle size, which is expected to provide a more homogenous material; however recommended sample sizes for biological and environmental reference materials are found to be more than 100 mg. Since the milling of materials is costly and has some drawbacks, natural materials that already occur as small particles such as air particulate matter, certain sediments, and cellular biological materials may form the basis of the required reference materials. The nature of these materials, i.e. naturally occurring particles, may provide ideal model reference material. We describe here the production of the materials and preliminary tests, the evaluation for the micro-analytical techniques

  12. Accelerated Search for Gaussian Generator Based on Triple Prime Integers

    Boris S. Verkhovsky

    2009-01-01

    Full Text Available Problem statement: Modern cryptographic algorithms are based on complexity of two problems: Integer factorization of real integers and a Discrete Logarithm Problem (DLP. Approach: The latter problem is even more complicated in the domain of complex integers, where Public Key Cryptosystems (PKC had an advantage over analogous encryption-decryption protocols in arithmetic of real integers modulo p: The former PKC have quadratic cycles of order O (p2 while the latter PKC had linear cycles of order O(p. Results: An accelerated non-deterministic search algorithm for a primitive root (generator in a domain of complex integers modulo triple prime p was provided in this study. It showed the properties of triple primes, the frequencies of their occurrence on a specified interval and analyzed the efficiency of the proposed algorithm. Conclusion: Numerous computer experiments and their analysis indicated that three trials were sufficient on average to find a Gaussian generator.

  13. Propositions for a PDF model based on fluid particle acceleration

    This paper describes theoretical propositions to model the acceleration of a fluid particle in a turbulent flow. Such a model is useful for the PDF approach to turbulent reactive flows as well as for the Lagrangian modelling of two-phase flows. The model developed here draws from ideas already put forward by Sawford but which are generalized to the case of non-homogeneous flows. The model is built so as to revert continuously to Pope's model, which uses a Langevin equation for particle velocities, when the Reynolds number becomes very high. The derivation is based on the technique of fast variable elimination. This technique allow a careful analysis of the relations between different levels of modelling. It also allows to address certain problems in a more rigorous way. In particular, application of this technique shows that models presently used can in principle simulate bubbly flows including the pressure-gradient and added-mass forces. (author)

  14. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  15. Torque-based optimal acceleration control for electric vehicle

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  16. Design of MEMS accelerometer based acceleration measurement system for automobiles

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  17. The Development of ADS Virtual Accelerator Based on XAL

    Peng-Fei, Wang; Qiang, Ye

    2013-01-01

    XAL is a high level accelerator application framework originally developed by the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. It has advanced design concept and adopted by many international accelerator laboratories. Adopting XAL for ADS is a key subject in the long term. This paper will present the modifications to the original XAL applications for ADS. The work includes proper relational database schema modification in order to better suit ADS configuration data requirement, redesigning and re-implementing db2xal application and modifying the virtual accelerator application. In addition, the new device types and new device attributes for ADS online modeling purpose is also described here.

  18. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  19. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    Takemoto, Mitsuhiro; Katsui, Kuniaki; Yoshida, Atsushi [Okayama Univ. (Japan). School of Medicine] [and others

    2003-05-01

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  20. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  1. Pedestrian movement analysis in transfer station corridor: Velocity-based and acceleration-based

    Ji, Xiangfeng; Zhang, Jian; Hu, Yongkai; Ran, Bin

    2016-05-01

    In this paper, pedestrians are classified into aggressive and conservative ones by their temper. Aggressive pedestrians' walking through crowd in transfer station corridor is analyzed. Treating pedestrians as particles, this paper uses the modified social force model (MSFM) as the building block, where forces involve self-driving force, repulsive force and friction force. The proposed model in this paper is a discrete model combining the MSFM and cellular automata (CA) model, where the updating rules of the CA are redefined with MSFM. Due to the continuity of values generated by the MSFM, we use the fuzzy logic to discretize the continuous values into cells pedestrians can move in one step. With the observation that stimulus around pedestrians influences their acceleration directly, an acceleration-based movement model is presented, compared to the generally reviewed velocity-based movement model. In the acceleration-based model, a discretized version of kinematic equation is presented based on the acceleration discretized with fuzzy logic. In real life, some pedestrians would rather keep their desired speed and this is also mimicked in this paper, which is called inertia. Compared to the simple triangular membership function, a trapezoidal membership function and a piecewise linear membership function are used to capture pedestrians' inertia. With the trapezoidal and the piecewise linear membership function, many overlapping scenarios should be carefully handled and Dubois and Prade's four-index method is used to completely describe the relative relationship of fuzzy quantities. Finally, a simulation is constructed to demonstrate the effect of our model.

  2. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    Sharma S

    2007-01-01

    Full Text Available Stereotactic radiosurgery (SRS is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC, are used for linear accelerator-based SRS systems (X-Knife. Output factor (St, tissue maximum ratio (TMR and off axis ratio (OAR of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer and Pinpoint (PTW cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well.

  3. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems were measured using CC01 (Scanditronix/Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well. (author)

  4. Beryllium Target for Accelerator - Based Boron Neutron Capture Therapy

    This work is part of a project for developing Accelerator Based Boron Neutron Capture Therapy (AB- BNCT) for which the generation of neutrons through nuclear reactions like 9Be(d,n) is necessary. In this paper first results of the design and development of such neutron production targets are presented. For this purpose, the neutron production target has to be able to withstand the mechanical and thermal stresses produced by intense beams of deuterons (of 1.4 MeV with a total current of about 30mA). In particular, the target should be able to dissipate an energy density of up to 1 kW/cm2 and preserve its physical and mechanical properties for a sufficient length of time under irradiation conditions and hydrogen damage. The target is proposed to consist of a thin Be deposit (neutron producing material) on a thin W or Mo layer to stop the beam and a Cu backing to help carry away the heat load. To achieve the adhesion of the Be films on W, Mo and Cu substrates, a powder blasting technique was applied with quartz and alumina microspheres. On the other hand, Ag deposits were made on some of the substrates previously blasted to favor the chemical affinity between Beryllium and the substrate thus improving adhesion. Be deposits were characterized by means of different techniques including Electron Microscopy (Sem) and Xr Diffraction. Roughness and thickness measurements were also made. To satisfy the power dissipation requirements for the neutron production target, a microchannel system model is proposed. The simulation based on this model permits to determine the geometric parameters of the prototype complying with the requirements of a microchannel system. Results were compared with those in several publications and discrepancies lower than 10% were found in all cases. A prototype for model validation is designed here for which simulations of fluid and structural mechanics were carried out and discussed

  5. Computer-based training for particle accelerator personnel

    A continuing problem at many laboratories is the training of new operators in the arcane technology of particle accelerators. Presently most of this training occurs on the job, under a mentor. Such training is expensive, and while it provides operational experience, it is frequently lax in providing the physics background needed to truly understand accelerator systems. Using computers in a self-paced, interactive environment can be more effective in meeting this training need. copyright 1999 American Institute of Physics

  6. Computer-based training for particle accelerator personnel

    A continuing problem at many laboratories is the training of new operators in the arcane technology of particle accelerators. Presently most of this training occurs ''on the job,'' under a mentor. Such training is expensive, and while it provides operational experience, it is frequently lax in providing the physics background needed to truly understand accelerator systems. Using computers in a self-paced, interactive environment can be more effective in meeting this training need

  7. Reference materials for microanalytical nuclear techniques. Final report of a co-ordinated research project 1994-1999

    A significant problem in the use of solid- and small-sample techniques is a general lack in suitable certified reference materials (CRM). Essentially, no CRM are certified for the small sample sizes typically used. Direct utilization of most existing CRM in solid sampling analysis procedures, typically 1 mg sample size, is often difficult or even impossible because trace components may not be sufficiently homogeneously distributed in the sample or their homogeneous distribution has not been tested. To explore the production, characterization and use of CRM for determinations with sample sizes much smaller than currently used, the Coordinated Research Program focused on selection of biological and environmental materials suitable for microanalytical techniques, definition of specifications for suitable CRM, evaluation of existing CRM for use with microanalytical techniques, evaluation of requirements for sample pre-treatment, evaluation of analytical techniques and research on development of techniques to be used in characterizing the homogeneity and chemical composition of small samples, and application of analytical techniques to the characterization of candidate reference materials for use with microanalytical techniques

  8. Computer Based Dose Control System on Linear Accelerator

    The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

  9. Development of the accelerator-based technique for hadron therapy

    Hadron therapy with protons and carbon ions is one of the most effective branches in radiation oncology. It has advantages over therapy using gamma-radiation and electron beams. Fifty thousands of patients per year need such a treatment in Russia. Review of the main modern trends in the development of accelerators for therapy and treatment techniques concerned with respiratory gated irradiation and scanning with the intensity modulated pencil beams is given. Main stages of forming, time-structure and main parameters of the beams used in proton therapy as well as requirements to medicine accelerators are considered. Main results of testing with the beam of C235-V3 cyclotron for the first Russian specialized hospital proton therapy center in Dimitrovgrad are presented. Using of the superconducting accelerators and gantry systems for hadron therapy is considered

  10. Microanalytical and structural characterization of optical materials by electron microscopy and related spectroscopies

    The fine probe forming capabilities of an analytical electron microscope combined with the development of related spectroscopies, diffraction and imaging techniques, makes it possible to obtain structural and chemical information from multiphase materials at high spatial resolution. These microanalytical methods are described with relevant examples from our studies of compounds in the Al2O3-AIN pseudo binary system, a potential window material, low-pressure synthesized diamond, diamond-like carbon and hydrocarbon films. A comprehensive example of the characterization of a novel AlON poltypoid structure (32H), level of resolution and the need to employ all the complementary methods of analysis, is discussed. Efforts to characterize a variety of diamond-like carbon films by the measurements of both the low-loss plasmon resonances and the fine structure in the core-loss edges observable in the energy-loss spectrum, to obtain sp3/sp2 ratios are outlined. The electronic structure of thin film diamonds, synthesized by a plasma enhanced chemical vapor deposition method, has been shown to be in agreement with band structure calculations

  11. Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods

    Echard, J.-P.; Cotte, M.; Dooryhee, E.; Bertrand, L.

    2008-07-01

    Though ancient violins and other stringed instruments are often revered for the beauty of their varnishes, the varnishing techniques are not much known. In particular, very few detailed varnish analyses have been published so far. Since 2002, a research program at the Musée de la musique (Paris) is dedicated to a detailed description of varnishes on famous ancient musical instruments using a series of novel analytical methods. For the first time, results are presented on the study of the varnish from a late 16th century Venetian lute, using synchrotron micro-analytical methods. Identification of both organic and inorganic compounds distributed within the individual layers of a varnish microsample has been performed using spatially resolved synchrotron Fourier transform infrared microscopy. The univocal identification of the mineral phases is obtained through synchrotron powder X-ray diffraction. The materials identified may be of utmost importance to understand the varnishing process and its similarities with some painting techniques. In particular, the proteinaceous binding medium and the calcium sulfate components (bassanite and anhydrite) that have been identified in the lower layers of the varnish microsample could be related, to a certain extent, to the ground materials of earlier Italian paintings.

  12. Microanalytical characterization of a powder metallurgical ledeburitic tool steel by transmission electron microscopy

    The microanalytical investigation of a new powder metallurgic tool steel was performed with an analytical transmission electron microscope. The chemical composition of the matrix and the precipitates were determined with the help of X-ray spectrometry (EDX) and electron energy loss spectrometry (EELS). The crystallographic parameters of the precipitates were determined by means of convergent beam electron diffraction (CBED). Two different types of precipitates could be prooved: small spherical precipitates with grain sizes of 0.3-1μm of type MX and larger precipitates with grain sizes of 1-4μm of type M7X3. The EDX and EELS microanalyses for the carbide MX resulted in a composition of 56.5 at.%V, 8.5 at.%Cr, 30 at.%C and 5 at.%N. For the carbide M7X3 the composition was 11at.%V, 32at.%Cr, 29at.%Fe and 28 at.%C. The lattice constant of the cubic vanadium carbonitride was determined as 0.4122 nm. The lattice constants of the hexagonal M7X3 are a0 = 0.69 nm and c0 = 0.47 nm. (Author)

  13. NAA study on homogeneity of reference materials and their suitability for microanalytical techniques

    Homogeneity of the existing (Virginia Tobacco Leaves CTA-VTL-2 (ICHTJ), Apatite Concentrate CTA-AC-1 (ICHTJ), Fine Fly Ash CTA-FFA-1 (ICHTJ)) and candidate certified reference materials (CRMs) (IAEA-338 Lichen, IAEA-413 Algae, Spruce Shoots RMF II (Germany)) was studied by neutron activation analysis (NAA). Several samples of small mass (ca. 1 or 10 mg) taken from various containers were analyzed by instrumental NAA and the results for several elements were compared by Fishers's test and t-test with analogous series of results for samples taken from one container. In the second approach, sampling variance was estimated for some elements from overall variance and the components of analytical variance. The results were interpreted with the aid of Ingamells' sampling constant. Particle size distribution of the reference materials was also measured by several techniques. In addition quantitative determinations for some elements were performed and results compared with the certified values. The results of the present study were discussed with reference to suitability of CRMs to microanalytical techniques. It was pointed out that the term 'microanalysis' itself is not always unequivocally understood and used. (author)

  14. Micro-analytical determination of pH, calcium, and phosphate in plaque fluid.

    Rankine, C A; Moreno, E C; Vogel, G L; Margolis, H C

    1985-11-01

    Micro-analytical techniques for the determination of calcium, phosphate, and pH in a small volume (less than 0.25 microliter) of plaque fluid are described and evaluated. The accuracy and the precision of the techniques were compared with those for standard macrotechniques applied to a large pooled plaque fluid sample. The results obtained for the micro-analysis of pooled plaque fluid were in excellent agreement with those obtained by macromethods. The described techniques were also used to analyze plaque fluid obtained from single quadrants of the oral cavities of five individuals. In this fashion, it was determined that, although a significant variation in plaque fluid composition exists between the quadrants, a greater variation exists between subjects. Analyses of plaque fluid obtained from six individuals, following sucrose exposure, were also conducted. The pH value of the fluid changed with time, following a typical Stephan curve, with a minimum value occurring between 15 and 30 minutes; following this, the pH increased to a value near that for resting plaque. An inverse relationship between pH and calcium and phosphorus concentrations was observed. It is noted that the described techniques are sensitive enough to carry out the above analyses both accurately and precisely using plaque obtained from a single quadrant. PMID:3867684

  15. A brief account of National Centre for Accelerator based Research: 3.0 MV pelletron accelerator (9SDH4) based research facility for interdisciplinary research

    The upcoming National Centre for Accelerator based Research is a flagship programme of the University. The Centre is financially supported by Ministry of Human Resource Development through University Grants Commission (UGC) and Department of Atomic Energy, Govt. of India through Board of Research in Nuclear Sciences (BRNS). In addition University has signed a MoU with Inter University Accelerator Centre, New Delhi. A brief outline of the experimental facilities being commissioned and the description of its salient features are described

  16. Prospects of Hybrid Plasma- and Radiofrequency-Based Electron Acceleration at DESY

    Osterhoff, Jens; Gruener, Florian; Elsen, Eckhard; Floettmann, Klaus; Foster, Brian; Brinkmann, Reinhard; Schmidt, Bernhard; Schlarb, Holger; Stephan, Frank

    2012-10-01

    The field of particle acceleration in plasma wakes has seen remarkable progress in recent years. Accelerating gradients of more than 10 GV/m can now be readily achieved using either ultra-short intense laser pulses or particle beams as wake drivers. The demonstration of the first GeV electron beams and a general trend towards improved reproducibility, beam quality and control over the involved plasma processes has led to plasma-acceleration techniques beginning to draw considerable interest in the traditional accelerator community. As a consequence, DESY, Germany's leading accelerator center, has established a research program for plasma-based novel acceleration techniques with the goal of exploiting the synergetic combination of conventional and new accelerator technology. Such a concept offers an attractive pathway to study many mechanisms occurring in plasma-based accelerators, for example electron-beam-emittance evolution, extreme bunch compression, the controlled emission of betatron radiation, and staging of accelerating units. In addition, it is assumed that bypassing the difficult-to-master process of particle self-injection, which is utilized in all current laser-plasma acceleration schemes, will greatly enhance the reliability of such machines compared to the state-of-the-art.

  17. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Calcagnile L.; Quarta G

    2012-01-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be ...

  18. JMS-based SOA monitors CERN particle accelerators

    Seeley, Rich

    2007-01-01

    "Service-oriented architecture (SOA) may not exactly be nuclear physics, but at the CERN (European Organization for Nuclear Research) physics laboratory on the border of France and Switzerland, an SOA system is watching over giant particle accelerators." (1,5 page)

  19. A DSP/FPGA-based accelerator for video

    Schier, Jan; Kovář, Bohumil

    Žilina: Slovenská elektrotechnická spoločnosť, 2006, s. 1-5. [Digital Technologies 2006. Žilina (SK), 01.12.2006] R&D Projects: GA AV ČR 1ET400750408 Institutional research plan: CEZ:AV0Z10750506 Keywords : video processing * hardware acceleration * configuration system Subject RIV: JC - Computer Hardware ; Software

  20. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  1. Life Prediction of DC Motor using Time Series Analysis based on Accelerated Degradation Testing

    Li Wang

    2013-12-01

    Full Text Available This study presents a method of life prediction for DC motor using time series modeling procedure based on DC motor accelerated degradation testing data. DC motor accelerated degradation data are treated as time series and stochastic process are utilized to describe the degradation process for life prediction. An accelerated degradation test is processed for DC motor until they failed and the accelerated degradation data are collected for life prediction. A comparison between the predicted lifetime and the real lifetime of DC motors is processed and the results show that the life prediction of DC motors using time series analysis is effective.

  2. BINP pilot accelerator-based neutron source for neutron capture therapy

    Neutron source based on accelerator has been proposed for neutron capture therapy at hospital. Innovative approach is based upon tandem accelerator with vacuum insulation and near threshold 7Li(p,n)7Be neutron generation. Pilot innovative accelerator based neutron source is under going to start operating now at BINP, Novosibirsk. Negative ion source with Penning geometry of electrodes has been manufactured and dc H- ion beam has been obtained. Study of beam transport was carried out using prototype of tandem accelerator. Tandem accelerator and ion optical channels have been manufactured and assembled. Neutron producing target has been manufactured, thermal regimes of target were studied, and lithium evaporation on target substrate was realized. In the report, the pilot facility design is given and design features of facility components are discussed. Current status of project realization, results of experiments and simulations are presented. (author)

  3. Summary report: Working Group 3 on 'Novel Structure-Based Acceleration Concepts'

    The Working Group 3 papers were divided into two general categories, those related to laser-based schemes and those based on microwave technology. In the laser-based area highlights include ongoing theoretical and experimental efforts to demonstrate electron acceleration in vacuum based either on ponderomotive or nonponderomotive mechanisms. Papers on advanced issues such as staging the laser acceleration process, compensating for space charge effects, improving inverse bremsstrahlung acceleration, and possible laser linear collider designs were also presented. In the microwave area, noteworthy contributions were reviewed on slow-wave accelerating structures employing dielectric loading; smooth-wall, fast-wave structures with a helical wiggler for inverse FEL acceleration; multistaging of smooth-wall, fast-wave structures with an axial magnetic field for increased energy cyclotron autoresonance acceleration; and technological approaches for fabrication and diamond coating of W-band structures to achieve high acceleration gradients. Dielectric-loaded structures to support multimode, multibunch wakefield excitations for trailing bunch acceleration were also discussed

  4. E-beam accelerator cavity development for the ground-based free electron laser

    Bultman, N. K.; Spalek, G.

    Los Alamos National Laboratory is designing and developing four prototype accelerator cavities for high power testing on the Modular Component Technology Development (MCTD) test stand at Boeing. These cavities provide the basis for the e-beam accelerator hardware that will be used in the Ground Based Free Electron Laser (GBFEL) to be sited at the White Sands Missile Range (WSMR) in New Mexico.

  5. Programming Heterogeneous Clusters with Accelerators Using Object-Based Programming

    David M. Kunzman; Laxmikant V. Kalé

    2011-01-01

    Heterogeneous clusters that include accelerators have become more common in the realm of high performance computing because of the high GFlop/s rates such clusters are capable of achieving. However, heterogeneous clusters are typically considered hard to program as they usually require programmers to interleave architecture-specific code within application code. We have extended the Charm++ programming model and runtime system to support heterogeneous clusters (with host cores that differ in ...

  6. Configuration System for a DSP/FPGA-Based Embedded Accelerator

    Schier, Jan; Kovář, Bohumil; Zuzaňák, J.

    Žilina: Slovenská elektrotechnická spoločnosť, 2007 - (Jarina, R.), s. 1-4 ISBN 978-80-8070-786-6. [Digital Technologies 2007. Žilina (SK), 29.11.2007-30.11.2007] R&D Projects: GA AV ČR 1ET400750408 Institutional research plan: CEZ:AV0Z10750506 Keywords : video-processing * FPGA * accelerator * configuration * Simulink Subject RIV: JB - Sensors, Measurment, Regulation

  7. A DSP/FPGA-based accelerator for video processing

    Schier, Jan; Kovář, Bohumil

    Žilina: Slovenská elektrotechnická spoločnosť, 2006. s. 13-13. ISBN 80-8070-624-7. [Digital Technologies 2006. 01.12.2006, Žilina] R&D Projects: GA AV ČR 1ET400750408 Institutional research plan: CEZ:AV0Z10750506 Keywords : video processing * hardware acceleration * configuration system Subject RIV: JC - Computer Hardware ; Software

  8. Configuration System for a DSP/FPGA-Based Embedded Accelerator

    Schier, Jan; Kovář, Bohumil; Zemčík, P.; Herout, A.; Zuzaňák, J.

    Žilina: Slovenská elektrotechnická spoločnosť, 2007 - (Jarina, R.). s. 32-33 [Digital Technologies 2007. 30.11.2007, Žilina] R&D Projects: GA AV ČR 1ET400750408 Institutional research plan: CEZ:AV0Z10750506 Keywords : FPGA * video-processing * accelerator * configuration * Simulink Subject RIV: JB - Sensors, Measurment, Regulation

  9. Pulsed neutron source based on accelerator-subcritical-assembly

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  10. Combined use of surface and micro-analytical techniques for the study of ancient coins

    Ingo, G. M.; Angelini, E.; de Caro, T.; Bultrini, G.

    By means of the combined use of surface and micro-analytical techniques the surface chemical composition of ancient coins and some aspects of their manufacturing techniques and of degradation mechanisms have been elucidated. Two case histories are described concerning silver Roman Republican coins and some coins plated with thin films of silver and gold. In particular, the coinage methods, the silvering and gilding techniques and the origin of the embrittlement of these selected Roman coins have been studied by means of the combined use of selected-area X-ray photoelectron spectroscopy (SA-XPS) and scanning electron microscopy and energy-dispersive spectrometry (SEM+EDS). This innovative approach has been utilised in order to gain further insight into the microchemical structure of the external regions of the coins as well as of the bulk features. The results show the use of mercury to coat a copper or silver core with a thin film of precious metals that could be considered the most important advance in the technology of gilding to be made in antiquity. Furthermore, the microchemical investigation of brittle Roman silver coins has allowed us to identify the origin of this troublesome problem. The microchemical results indicate that brittleness is induced by the presence of a low amount of lead that is retained in supersaturated solution when the cast blank was produced. This latter element segregates at the grain boundaries during the coin production and the subsequent long-term ageing at room temperature, thus inducing the alloy fracturing along the weakened grain boundaries.

  11. En Route: next-generation laser-plasma-based electron accelerators

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to ∼50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the ∼80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 1019W=cm2 into gas jets. The experimental observations could be explained via ''bubble acceleration'', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations < or similar 5 fs can thus be created, which is at least an order of magnitude shorter than with conventional accelerator technology. In addition, more than one laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table-top accelerators, while at the same

  12. An intense neutron generator based on a proton accelerator

    A study has been made of the demand for a neutron facility with a thermal flux of ≥ 1016 n cm-2 sec-1 and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of π and μ mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics, and perhaps also in

  13. Scanning and transmission electron microscopy of a craniopharyngioma: x-ray microanalytical study of the intratumoral mineralized deposits

    Vilches, J.; Lopez, A.; Martinez, M.C.; Gomez, J.; Barbera, J.

    This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.

  14. Report of the 2nd research co-ordination meeting on reference materials for microanalytical nuclear techniques

    Many microanalytical procedure require specific natural-matrix reference materials containing very low levels of trace elements and having a high degree of homogeneity. This proposed CRP will specifically address the question of quality control materials for these techniques. The participants of the meeting discussed the requirements for certified reference materials to by used in microanalysis with particular emphasis on the homogeneity issues. This publication contains summary of the discussions along with conclusions and recommendations made by the participants. The publication also contains ten individual presentations delivered by the participants. Each of the individual papers has been provided with an abstract and indexed separately

  15. Future colliders based on a modulated proton bunch driven plasma wakefield acceleration

    Xia, Guoxing; Muggli, Patric

    2012-01-01

    Recent simulation shows that a self-modulated high energy proton bunch can excite a large amplitude plasma wakefield and accelerate an externally injected electron bunch to the energy frontier in a single stage acceleration through a long plasma channel. Based on this scheme, future colliders, either an electron-positron linear collider (e+-e- collider) or an electron-hadron collider (e-p collider) can be conceived. In this paper, we discuss some key design issues for an e+-e- collider and a high energy e-p collider, based on the existing infrastructure of the CERN accelerator complex.

  16. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    Elsied, Ahmed M. M.; Hafz, Nasr A. M.; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Jie ZHANG

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized...

  17. GPU-based Acceleration of Deep Convolutional Neural Networks on Mobile Platforms

    Oskouei, Seyyed Salar Latifi; Golestani, Hossein; Kachuee, Mohamad; Hashemi, Matin; Mohammadzade, Hoda; Ghiasi, Soheil

    2015-01-01

    Mobile applications running on wearable devices and smartphones can greatly benefit from accurate and scalable deep CNN-based machine learning algorithms. While mobile CPU performance does not match the intensive computational requirement of deep CNNs, the embedded GPU which already exists in many mobile platforms can be leveraged for acceleration of CNN computations on the local device and without the use of a cloud service. We present a GPU-based accelerated deep CNN engine for mobile platf...

  18. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Congedo, Giuseppe

    2014-01-01

    The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-...

  19. Electron accelerator based system for assay of transuranic waste barrels

    A complete assay system for 208-liter barrels contianing transuranic wastes has been developed. The system consists of an 8-MeV commercial electron accelerator, neutron moderating cavity housing the waste barrel and containing neutron detectors, high resolution germanium gamma spectrometer, and x-ray radiography camera (both film and real time). The electron linac is used to produce bremsstrahlung and high-intensity pulsed neutron flux, both of which are used to interrogate the fissionable materials. The Differential Dieaway Technique is used to assay the amounts of fissile and fertile materials. The neutron flux is also used in the Prompt Gamma Activation Assay to determine and to quantify the matrix elements present in the barrels. This information is then used to correct the assay of fissionable material. The bremsstrahlung too, is also used by x-ray radiography system to further identify the matrix

  20. A DSP based data acquisition module for colliding beam accelerators

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented

  1. Phase Space Dynamics of Ionization Injection in Plasma Based Accelerators

    Xu, X L; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Mori, W B; Joshi, C

    2013-01-01

    The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially to a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.

  2. European Strategy for Accelerator-Based Neutrino Physics

    Bertolucci, Sergio; Cervera, Anselmo; Donini, Andrea; Dracos, Marcos; Duchesneau, Dominique; Dufour, Fanny; Edgecock, Rob; Efthymiopoulos, Ilias; Gschwendtner, Edda; Kudenko, Yury; Long, Ken; Maalampi, Jukka; Mezzetto, Mauro; Pascoli, Silvia; Palladino, Vittorio; Rondio, Ewa; Rubbia, Andre; Rubbia, Carlo; Stahl, Achim; Stanco, Luca; Thomas, Jenny; Wark, David; Wildner, Elena; Zito, Marco

    2012-01-01

    Massive neutrinos reveal physics beyond the Standard Model, which could have deep consequences for our understanding of the Universe. Their study should therefore receive the highest level of priority in the European Strategy. The discovery and study of leptonic CP violation and precision studies of the transitions between neutrino flavours require high intensity, high precision, long baseline accelerator neutrino experiments. The community of European neutrino physicists involved in oscillation experiments is strong enough to support a major neutrino long baseline project in Europe, and has an ambitious, competitive and coherent vision to propose. Following the 2006 European Strategy for Particle Physics (ESPP) recommendations, two complementary design studies have been carried out: LAGUNA/LBNO, focused on deep underground detector sites, and EUROnu, focused on high intensity neutrino facilities. LAGUNA LBNO recommends, as first step, a conventional neutrino beam CN2PY from a CERN SPS North Area Neutrino Fac...

  3. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    We discuss the design and current status of experiments to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  4. Photon Acceleration of Laser-plasma Based on Compton Scattering

    HAO Dong-shan; XIE Hong-jun

    2006-01-01

    The one-dimensional electron density disturbance is studied by using the inelastic collision model of the relativity electron and photon group, the relativity theory, the momentum equation and the continuity equation, which is generated by a driving laser pulse and scattered laser pulse propagating through a tenuous plasma, and the electron density disturbance is closely associated with the incident laser and scattering laser. The electron plasma wave(EPW)is formed by the propagation of the electron density disturbance. Owing to the action of EPW, the increasing of the frequency of the photons in the incident laser pulses that there is a distance with the driving laser pulses is studied by using optical metric. The results show that it is possible that the photon will gain higher energy from the EPW when photon number is decreased and one-photon Compton scattering enters, the photon will be accelerated.

  5. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  6. A new NEDO research project towards hospital based accelerator BNCT using advanced DDS system

    A new national project of developing a hospital based accelerator for boron neutron capture therapy (BNCT) with advanced drug delivery system (DDS) has been started in 2005. In this paper, the outline of the new project will be introduced. The project includes two main topics: 1) a hospital based accelerator for BNCT will be developed by a research consortium of Universities and companies. A fixed field alternating gradient (FFAG) type of accelerator with internal target is planned. 2) New boronated DDS using different methods including porphyrins, virus envelope vector, and liposome are planned. BNCT may become a first line charged particle therapy if the hospital based accelerator become feasible due to broadening the opportunity to use the neutron source. Due to such clinical convenience, there will be also possibility to spread the indication of BNCT for the diseases (cancer and other diseases) which has not been the candidate for BNCT in the nuclear-reactor era. (author)

  7. Beam shaping assembly optimization for 7Li(p,n)7Be accelerator based BNCT

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30 mA at about 2.5 MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the 7Li(p,n)7Be neutron production reaction to obtain neutron beams to treat deep seated tumors. - Highlights: • A Beam Shaping Assembly for accelerator based BNCT has been designed. • A conical port for easy patient positioning and the cooling system are included. • Several configurations can deliver tumor doses greater than 55 RBEGy. • Good tumor doses can be obtained in less than 60 min of irradiation time

  8. Comparison of accelerator-based with reactor-based nuclear waste transmutation schemes

    An overview of the most significant studies in the last 35 years of partitioning and transmutation of commercial light water reactor spent fuel is given. Recent Accelerator-based Transmutation of Waste (ATW) systems are compared with liquid-fuel thermal reactor systems that accomplish the same objectives. If no long-lived fission products (e.g. 99Tc and 129I) are to be burned, under ideal circumstances the neutron balance in an ATW systems becomes identical to that for a thermal reactor system. However, such a reactor would need extraordinarily rapid removal of internally-generated fission products to remain critical at equilibrium without enriched feed. The accelerator beam thus has two main purposes (1) the burning of long-lived fission products that could not be burned in a comparable reactor's margin (2) a relaxing of on-line chemical processing requirements without which a reactor-based system cannot maintain criticality. Fast systems would require a parallel, thermal ATW system for long-lived fission product transmutation. The actinide-burning part of a thermal ATW system is compared with the Advanced Liquid Metal Reactor (ALMR) using the well-known Pigford-Choi model. It is shown that the ATW produces superior inventory reduction factors for any near-term time scale. (author)

  9. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Calcagnile L.

    2012-04-01

    Full Text Available Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD, University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try radiocarbon dating and IB A (Ion Beam Analysis. An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel burned in WTE (Waste to Energy plants.

  10. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  11. Superlattice Photocathodes for Accelerator-Based Polarized Electron Source Applications

    A major improvement in the performance of the SLC was achieved with the introduction of thin strained-layer semiconductor crystals. After some optimization, polarizations of 75-85% became standard with lifetimes that were equal to or better than that of thick unstrained crystals. Other accelerators of polarized electrons, generally operating with a much higher duty factor, have now successfully utilized similar photocathodes. For future colliders, the principal remaining problem is the limit on the total charge that can be extracted in a time scale of 10 to 100 ns. In addition, higher polarization is critical for exploring new physics, especially supersymmetry. However, it appears that strained-layer crystals have reached the limit of their optimization. Today strained superlattice crystals are the most promising candidates for better performance. The individual layers of the superlattice can be designed to be below the critical thickness for strain relaxation, thus in principle improving the polarization. Thin layers also promote high electron conduction to the surface. In addition the potential barriers at the surface for both emission of conduction-band electrons to vacuum and for tunneling of valence-band holes to the surface can be significantly less than for single strained-layer crystals, thus enhancing both the yield at any intensity and also decreasing the limitations on the total charge. The inviting properties of the recently developed AlInGaAs/GaAs strained superlattice with minimal barriers in the conduction band are discussed in detail

  12. Accelerator-based fusion with a low temperature target

    Neutron generators are in use in a number of scientific and commercial endeavors. They function by triggering fusion reactions between accelerated ions (usually deuterons) and a stationary cold target (e.g., containing tritium). This setup has the potential to generate energy. It has been shown that if the energy transfer between injected ions and target electrons is sufficiently small, net energy gain can be achieved. Three possible avenues are: (a) a hot target with high electron temperature, (b) a cold non-neutral target with an electron deficiency, or (c) a cold target with a high Fermi energy. A study of the third possibility is reported in light of recent research that points to a new phase of hydrogen, which is hypothesized to be related to metallic hydrogen. As such, the target is considered to be composed of nuclei and delocalized electrons. The electrons are treated as conduction electrons, with the average minimum excitation energy being approximately equal to 40% of the Fermi energy. The Fermi energy is directly related to the electron density. Preliminary results indicate that if the claimed electron densities in the new phase of hydrogen were achieved in a target, the energy transfer to electrons would be small enough to allow net energy gain.

  13. Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions

    Hemker, Roy G

    2015-01-01

    In this dissertation, a fully object-oriented, fully relativistic, multi-dimensional Particle-In-Cell code was developed and applied to answer key questions in plasma-based accelerator research. The simulations increase the understanding of the processes in laser plasma and beam-plasma interaction, allow for comparison with experiments, and motivate the development of theoretical models. The simulations support the idea that the injection of electrons in a plasma wave by using a transversely propagating laser pulse is possible. The beam parameters of the injected electrons found in the simulations compare reasonably with beams produced by conventional methods and therefore laser injection is an interesting concept for future plasma-based accelerators. Simulations of the optical guiding of a laser wakefield driver in a parabolic plasma channel support the idea that electrons can be accelerated over distances much longer than the Rayleigh length in a channel. Simulations of plasma wakefield acceleration in the ...

  14. About the scheme of the infrared FEL system for the accelerator based on HF wells

    Kabanov, V.S.; Dzergach, A.I. [Moscow Radiotechnical Institute (Russian Federation)

    1995-12-31

    Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.

  15. Distributed Networked Control System for Power Supply System of the Accelerator Based on Canopen Protocol

    Network based control system for a power supply unit of the linear accelerator was developed. Front-end level of the system is based on CAN fieldbus with CANopen and CANEX application level protocols. Both local and remote control foe each CANopen node is provided. Level 2 control stations of the system are ARM9 CPU based machines, operating under Linux OS

  16. A Proposed Experimental Test of Proton-Driven Plasma Wakefield Acceleration Based on CERN SPS

    Xia, G X; Lotov, K; Pukhov, A; Assmann, R; Zimmermann, F; Huang, C; Vieira, J; Lopes, N; Fonseca, RA; Silva, LO; An, W; Joshi, C; Mori, W; Lu, W; Muggli, P

    2011-01-01

    Proton-bunch driven plasma wakefield acceleration (PDPWA) has been proposed as an approach to accelerate electron beam to TeV energy regime in a single plasma section. An experimental test has recently proposed to demonstrate the capability of PDPWA by using proton beams from the CERN SPS. The layout of the experiment is introduced. Particle-in-cell simulation results based on the realistic beam parameters are presented. Presented at PAC2011 New York, 28 March - 1 April 2011.

  17. Report of the consultant's meeting on applications of accelerator based analysis

    At the present meeting, applications of accelerator based analytical methods, often referred as ion beam analysis (IBA) methods, to the following areas have been discussed: materials (including thin films), Earth sciences (including environmental studies), biology and medicine, art and archaeology (cultural heritage), and other applications (including forensic applications). This report gives brief overview of IBA applications in these areas, with short background about accelerators needed and corresponding analytical techniques

  18. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma-acceleration

  19. Cycle-Based Algorithm Used to Accelerate VHDL Simulation

    杨勋; 刘明业

    2000-01-01

    Cycle-based algorithm has very high performance for the simula-tion of synchronous design, but it is confined to synchronous design and it is not as accurate as event-driven algorithm. In this paper, a revised cycle-based algorithm is proposed and implemented in VHDL simulator. Event-driven simulation engine and cycle-based simulation engine have been imbedded in the same simulation environ-ment and can be used to asynchronous design and synchronous design respectively. Thus the simulation performance is improved without losing the flexibility and ac-curacy of event-driven algorithm.

  20. Future development of high-current DC injectors for accelerator-based breeding systems

    The Chalk River Nuclear Laboratories are examining the economic and technical feasibility of producing nuclear fuel in a spallation breeder, which would consist of a 300 mA 1 GeV, 100 percent duty factor proton accelerator producing neutrons in a target assembly of fertile material. The requirements for the dc injector section of such an accelerator are discussed. They cannot be satisfied by present-day injectors. Design criteria for dc accelerating columns, based on experimental results and a literature survey, are summarized. One- and two-stage acceleration systems are compared, and the two-stage approach is shown to be preferable for the spallation breeder injector. A conceptual design for the injector is described. (author)

  1. Accelerating Value Creation with Accelerators

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...

  2. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  3. GPU-accelerated 3-D model-based tracking

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  4. GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking

    Friborg, Rune Møllegaard; Hauberg, Søren; Erleben, Kenny

    For many years articulated tracking has been an active research topic in the computer vision community. While working solutions have been suggested, computational time is still problematic. We present a GPU implementation of a ray-casting based likelihood model that is orders of magnitude faster...... than a traditional CPU implementation. We explain the non-intuitive steps required to attain an optimized GPU implementation, where the dominant part is to hide the memory latency effectively. Benchmarks show that computations which previously required several minutes, are now performed in few seconds....

  5. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  6. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p,n)7Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  7. Laser-based acceleration for nuclear physics experiments at ELI-NP

    Tesileanu, O.; Asavei, Th.; Dancus, I.; Gales, S.; Negoita, F.; Turcu, I. C. E.; Ursescu, D.; Zamfir, N. V.

    2016-05-01

    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments.

  8. Requirements for an evaluated nuclear data file for accelerator-based transmutation

    The importance of intermediate-energy nuclear data files as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is presented: - a data library from 0 to about 100 MeV (first priority), - a reference data library from 20 to 1500 MeV, - an activation/transmutation library from 0 to about 100 MeV. Furthermore, the proposed ENDF-6 structure of each library is given. The data needs for accelerator-based transmutation are translated in terms of the aforementioned intermediate-energy data libraries. This could be a starting point for an ''International Evaluated Nuclear Data File for Transmutation''. This library could also be of interest for other applications in science and technology. Finally, some conclusions and recommendations concerning future evaluation work are given. (orig.)

  9. Ensemble Manifold Rank Preserving for Acceleration-Based Human Activity Recognition.

    Tao, Dapeng; Jin, Lianwen; Yuan, Yuan; Xue, Yang

    2016-06-01

    With the rapid development of mobile devices and pervasive computing technologies, acceleration-based human activity recognition, a difficult yet essential problem in mobile apps, has received intensive attention recently. Different acceleration signals for representing different activities or even a same activity have different attributes, which causes troubles in normalizing the signals. We thus cannot directly compare these signals with each other, because they are embedded in a nonmetric space. Therefore, we present a nonmetric scheme that retains discriminative and robust frequency domain information by developing a novel ensemble manifold rank preserving (EMRP) algorithm. EMRP simultaneously considers three aspects: 1) it encodes the local geometry using the ranking order information of intraclass samples distributed on local patches; 2) it keeps the discriminative information by maximizing the margin between samples of different classes; and 3) it finds the optimal linear combination of the alignment matrices to approximate the intrinsic manifold lied in the data. Experiments are conducted on the South China University of Technology naturalistic 3-D acceleration-based activity dataset and the naturalistic mobile-devices based human activity dataset to demonstrate the robustness and effectiveness of the new nonmetric scheme for acceleration-based human activity recognition. PMID:25265635

  10. Investigation of Microopto-eletromechanical Angular Velocity and Acceleration Transducers based on Optical Tunneling Effect

    Busurin, V. I.; Lwin, Naing Htoo; Tuan, Pham Anh

    In this paper the possibility of microopto-electromechanical (MOEM) angular velocity and acceleration transducers based on optical tunneling effect (OTE) is considered. The generalized model of MOEM transducers with various types of sensing elements (SE) is developed, transfer functions are investigated, and the errors with various design parameters of transducers are estimated.

  11. Design of Power Efficient FPGA based Hardware Accelerators for Financial Applications

    Hegner, Jonas Stenbæk; Sindholt, Joakim; Nannarelli, Alberto

    2012-01-01

    Using Field Programmable Gate Arrays (FPGAs) to accelerate financial derivative calculations is becoming very common. In this work, we implement an FPGA-based specific processor for European option pricing using Monte Carlo simulations, and we compare its performance and power dissipation to the...

  12. Broadband Single-Shot Electron Spectrometer for GeV-Class Laser Plasma Based Accelerators

    Nakamura, K.; Wan, W.; Ybarrolaza, N.; Syversrud, D.; Wallig, J.; Leemans, W.P.

    2008-05-01

    Laser-plasma-based accelerators can provide electrons over a broad energy range and/or with large momentum spread. The electron beam energy distribution can be controlled via accurate control of laser and plasma properties, and beams with energies ranging from'0.5 to 1000 MeV have been observed. Measuring these energy distributions in a single shot requires the use of a diagnostic with large momentum acceptance and, ideally, sufficient resolution to accurately measure energy spread in the case of narrow energy spread. Such a broadband single-shot electron magnetic spectrometer for GeV-class laser-plasma-based accelerators has been developed at Lawrence Berkeley National Laboratory. A detailed description of the hardware and the design concept is presented, as well as a performance evaluation of the spectrometer. The spectrometer covered electron beam energies raging from 0.01 to 1.1 GeV in a single shot, and enabled the simultaneous measurement of the laser properties at the exit of the accelerator through the use of a sufficiently large pole gap. Based on measured field maps and 3rd-order transport analysis, a few percent-level resolution and determination of the absolute energy were achieved over the entire energy range. Laser-plasma-based accelerator experiments demonstrated the capability of the spectrometer as a diagnostic and its suitability for such a broadband electron source.

  13. Program for Plasma-Based Concepts for Future High Energy Accelerators

    OAK B204 Program for Plasma-Based Concepts for Future High Energy Accelerators. The progress made under this program in the period since November 15, 2002 is reflected in this report. The main activities for this period were to conduct the first run of the E-164 high-gradient wakefield experiment at SLAC, to prepare for run 2 and to continue our collaborative effort with CERN to model electron cloud interactions in circular accelerators. Each of these is described. Also attached to this report are papers that were prepared or appeared during this period

  14. A Study on the Storage Reliability of LSINS Based on Step-stress Accelerated Life Test

    Teng Fei

    2015-01-01

    Full Text Available Based on the step-stress accelerated life test and the laser strap-down inertial navigation system, this paper studies the accelerated life model and the test method, provides the likelihood function, the likelihood equation and the two-order derivative when the stress level is k, evaluates the effectiveness of the method with the simulation test model established by MATLAB, applies the research findings in the storage reliability study of the XX laser strap-down inertial navigation system, and puts forward an effective evaluation method of the storage life of the inertial navigation system.

  15. Optimal Trajectory Planning for Glass-Handing Robot Based on Execution Time Acceleration and Jerk

    Honggang Duan

    2016-01-01

    Full Text Available This study describes a trajectory planning method based on execution time, acceleration, and jerk to ensure that a glass-handing robot runs smoothly at execution time. The minimised objective function consists of the weighted sum of the square of the integral of the execution time, the integral of the acceleration, and the integral of the jerk, all of which are obtained through the weighted coefficient method. A three-dimensional kinematics model of the glass-handing robot is then established and nonuniform fifth-order B-splines are used to interpolate its path points. The acceleration and jerk are expressed as functions of time through mathematical simulation. Simulation results show that the designed method for robot trajectory planning not only improves the working efficiency of the glass-handing robot but also ensures that it runs smoothly.

  16. Accelerator based neutron source for the neutron capture therapy at hospital

    Accelerator source of epithermal neutrons for the hospital-based boron neutron capture therapy is proposed and discussed. Kinematically collimated neutrons are produced via near-threshold 7Li(p, n)7Be reaction at proton energies of 1.883 - 1.9 MeV. Steady-state accelerator current of 40 mA allows to provide therapeutically useful beams with treatment times of tens of minutes. The basic components of the facility are a hydrogen negative ion source, an electrostatic tandem accelerator with vacuum insulation, a sectioned rectifier, and a thin lithium neutron generating target on the surface of tungsten disk cooled by liquid metal heat carrier. Design features of facility components are discussed. The possibility of stabilization of proton energy is considered. At proton energy of 2.5 MeV the neutron beam production for NCT usage after moderation is also considered. (author)

  17. Design and realization of a high productivity cluster-based network application reconfigurable accelerator board

    Zeng Yu; Li Jun; Sun Ninghui; Wang Jie; Liu Zhaohui

    2008-01-01

    Improving processor frequency to strengthen massive data processing capability will lead to incremental server marginal costs and bring about a series of problems such as power consumption, management complexity, etc. Based on the field programmable gate array (FPGA), TCP offload engine (TOE), zero-copy and other key technologies, this paper describes the design and realization of a reconfigurable accelerator board. In this board, TCP/IP protocol will be moved to high-speed reconfigurable accelerator board. The packets will be labeled according to the protocol and submitted to the upper data processing software after IP-quintuple filtering in hardware. Reconfigurable accelerator board obtains higher performance speed-up compared with ordinary NIC card.

  18. A modified acceleration-based monthly gravity field solution from GRACE data

    Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze; Ju, Xiaolei

    2015-08-01

    This paper describes an alternative acceleration approach for determining GRACE monthly gravity field models. The main differences compared to the traditional acceleration approach can be summarized as: (1) The position errors of GRACE orbits in the functional model are taken into account; (2) The range ambiguity is eliminated via the difference of the range measurements and (3) The mean acceleration equation is formed based on Cowell integration. Using this developed approach, a new time-series of GRACE monthly solution spanning the period January 2003 to December 2010, called Tongji_Acc RL01, has been derived. The annual signals from the Tongji_Acc RL01 time-series agree well with those from the GLDAS model. The performance of Tongji_Acc RL01 shows that this new model is comparable with the RL05 models released by CSR and JPL as well as with the RL05a model released by GFZ.

  19. Research of accelerator-based neutron source for boron neutron capture therapy

    Background: 7Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  20. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies

  1. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  2. Neural network based expert system for fault diagnosis of particle accelerators

    Particle accelerators are generators that produce beams of charged particles, acquiring different energies, depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Its applications include isotope production, nuclear reaction, and mass spectroscopy studies. It is a complicated machine, it consists of five main parts, the ion source, the deflector, the beam transport system, the concentric and harmonic coils, and the radio frequency system. The diagnosis of this device is a very complex task. it depends on the conditions of 27 indicators of the control panel of the device. The accurate diagnosis can lead to a high system reliability and save maintenance costs. so an expert system for the cyclotron fault diagnosis is necessary to be built. In this thesis , a hybrid expert system was developed for the fault diagnosis of the MGC-20 cyclotron. Two intelligent techniques, multilayer feed forward back propagation neural network and the rule based expert system, are integrated as a pre-processor loosely coupled model to build the proposed hybrid expert system. The architecture of the developed hybrid expert system consists of two levels. The first level is two feed forward back propagation neural networks, used for isolating the faulty part of the cyclotron. The second level is the rule based expert system, used for troubleshooting the faults inside the isolated faulty part. 4-6 tabs., 4-5 figs., 36 refs

  3. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  4. Development of an accelerator-based BNCT facility at the Berkeley Lab

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7Li(p,n)7Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  5. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  6. Particle-in-Cell Codes for plasma-based particle acceleration

    Pukhov, Alexander

    2016-01-01

    Basic principles of particle-in-cell (PIC ) codes with the main application for plasma-based acceleration are discussed. The ab initio full electromagnetic relativistic PIC codes provide the most reliable description of plasmas. Their properties are considered in detail. Representing the most fundamental model, the full PIC codes are computationally expensive. The plasma-based acceler- ation is a multi-scale problem with very disparate scales. The smallest scale is the laser or plasma wavelength (from one to hundred microns) and the largest scale is the acceleration distance (from a few centimeters to meters or even kilometers). The Lorentz-boost technique allows to reduce the scale disparity at the costs of complicating the simulations and causing unphysical numerical instabilities in the code. Another possibility is to use the quasi-static approxi- mation where the disparate scales are separated analytically.

  7. Acceleration of image-based resolution modelling reconstruction using an expectation maximization nested algorithm

    Angelis, Georgios I.; Matthews, Julian C.; Markiewicz, Pawel J.; Kotasidis, Fotis A. [Manchester Univ. (United Kingdom). Dept. of Cancer and Enabling Sciences; Lionheart, William R. [Manchester Univ. (United Kingdom). School of Mathematics; Reader, Andrew J. [McGill Univ., Montreal, QC (Canada). Brain Imaging Centre

    2011-07-01

    Recent studies have demonstrated the benefits of a resolution model within the reconstruction algorithm in an attempt to account for those effects that degrade the resolution of an image. However, these algorithms usually suffer from slower convergence rates due to the additional need to solve an image resolution deconvolution problem. In this work we investigate a newly proposed algorithm, which decouples the tomographic and image resolution problems within an image based expectation maximization (EM) framework. Results showed that convergence can be accelerated by interleaving multiple iterations of an image based EM algorithm solving the resolution model problem with EM iterations solving the tomographic problem. Minor differences are observed using the proposed nested algorithm compared to the single iteration normally performed when optimal number of iterations are performed for each algorithm. However using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer iterations. This may be of particular benefit for slowly converging portions of the image. (orig.)

  8. NONLINEAR DYNAMICS OF AXIALLY ACCELERATING VISCOELASTIC BEAMS BASED ON DIFFERENTIAL QUADRATURE

    Hu Ding; Liqun Chen

    2009-01-01

    This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equa-tion, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numeri-cally the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numer-ical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.

  9. Beam-Based Error Identification and Correction Methods for Particle Accelerators

    AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas

    2014-06-10

    Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...

  10. Spallation target design and integration into an accelerator-based transmutation system

    Spallation target design and system integration is critical for the success of accelerator-based transmutation systems. Issues which must be considered in the design of spallation targets are identified, and representative parametric studies on the system integration of a sample target are given. The results illustrate the importance of a systems-driven target design approach due to the large effects that the target design can have on both the economics and physics performance of the system

  11. Accelerator-based systems for plutonium destruction and nuclear waste transmutation

    Accelerator-base systems are described that can eliminate long-lived nuclear materials. The impact of these systems on global issues relating to plutonium minimization and nuclear waste disposal can be significant. An overview of the components that comprise these systems is given, along with discussion of technology development status and needs. A technology development plan is presented with emphasis on first steps that would demonstrate technical performance

  12. Linear accelerator-based stereotactic radiosurgery in 140 brain metastases from malignant melanoma

    Hauswald, Henrik; Stenke, Alina; Debus, Jürgen; Combs, Stephanie E

    2015-01-01

    Background: To retrospectively access outcome and prognostic parameters of linear accelerator-based stereotactic radiosurgery in brain metastases from malignant melanoma. Methods: Between 1990 and 2011 140 brain metastases in 84 patients with malignant melanoma (median age 56 years) were treated with stereotactic radiosurgery. At initial stereotactic radiosurgery 48 % of patients showed extracerebral control. The median count of brain metastases in a single patient was 1, the median diamete...

  13. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma

    Selch, Michael T.; Tenn, Steve; Agazaryan, Nzhde; Lee, Steve P; Gorgulho, Alessandra; De Salles, Antonio A. F.

    2012-01-01

    Purpose: To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. Methods: Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple–Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median ...

  14. Craniospinal treatment with IMRT multi-isocentric and image-guided linear accelerator based on Gantry

    The objective is the realization of craniospinal treatment with a linear accelerator equipped with gantry based on MLC, carbon fiber table and Image Guided capability. The great length of treatment (patient l,80m in height) was a great difficulty for want of full length of the longitudinal movement of the table to adequately cover the PTV, plus free metallic screws fastening the head of the table extender preventing further incidents.

  15. Reliability Estimation based on Step-Stress Accelerated Degradation Testing by Unequal Interval Time Series Analysis

    Li Wang; Zaiwen Liu; Chongchong Yu

    2013-01-01

    This paper proposes a reliability estimation method based on Step-Stress Accelerated Degradation Testing (SSADT) data analysis using unequal interval time series analysis. A Multi-Regression Time Varying Auto-Regressive (MRTVAR) degradation time series model is proposed. Product SSADT data are treated as unequal interval composite time series and described using MRTVAR time series model and utilized to predict long-term trend of degradation. By using the suggested method, product reliability ...

  16. An accelerator-based neutron microbeam system for studies of radiation effects

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2010-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam...

  17. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R ampersand D plan for ABC are described on the bases of the ''strawman'' or ''point-of-departure'' plant layout that resulted from this study

  18. An Impulse-C Hardware Accelerator for Packet Classification Based on Fine/Coarse Grain Optimization

    O. Ahmed

    2013-01-01

    Full Text Available Current software-based packet classification algorithms exhibit relatively poor performance, prompting many researchers to concentrate on novel frameworks and architectures that employ both hardware and software components. The Packet Classification with Incremental Update (PCIU algorithm, Ahmed et al. (2010, is a novel and efficient packet classification algorithm with a unique incremental update capability that demonstrated excellent results and was shown to be scalable for many different tasks and clients. While a pure software implementation can generate powerful results on a server machine, an embedded solution may be more desirable for some applications and clients. Embedded, specialized hardware accelerator based solutions are typically much more efficient in speed, cost, and size than solutions that are implemented on general-purpose processor systems. This paper seeks to explore the design space of translating the PCIU algorithm into hardware by utilizing several optimization techniques, ranging from fine grain to coarse grain and parallel coarse grain approaches. The paper presents a detailed implementation of a hardware accelerator of the PCIU based on an Electronic System Level (ESL approach. Results obtained indicate that the hardware accelerator achieves on average 27x speedup over a state-of-the-art Xeon processor.

  19. The Acceleration/Deceleration Control Algorithm Based on Trapezoid-Curve Jerk in CNC Machining

    Guoyong Zhao

    2013-02-01

    Full Text Available In this study, we propose the acceleration/deceleration control algorithm based on trapezoid-curve jerk in CNC machining. In aviation and mould and die industry, it is much significant to achieve high accuracy CNC machining on complex profile parts. The unsmooth Acceleration/Deceleration (ab. Acc/Dec control in feed movement is one of the main reasons to bring about machine tools impact and vibration in practical machining. After analyzing the CNC machine tools dynamic model, an Acc/Dec control algorithm based on trapezoid-curve jerk is put forward in order to avoid step change in jerk curve in the study; Moreover, the motion profile smooth control approach based on continuous jerk is developed in details to decrease machine tools impact according to various kinematics constraint conditions, such as the maximum acceleration, the maximum jerk, the machining program segment displacement, the instruction feedrate and so on; Finally, the developed Acc/Dec approach and the traditional linear Acc/Dec approach are compared in the CNC experimental table. The results reveal that the developed approach can achieve more smooth and flexible motion profile, which is helpful to minish machine tools impact and enhance parts machining surface quality.

  20. A computational study of dielectric photonic-crystal-based accelerator cavities

    Bauer, C. A.

    Future particle accelerator cavities may use dielectric photonic crystals to reduce harmful wakefields and increase the accelerating electric field (or gradient). Reduced wakefields are predicted based on the bandgap property of some photonic crystals (i.e. frequency-selective reflection/transmission). Larger accelerating gradients are predicted based on certain dielectrics' strong resistance to electrical breakdown. Using computation, this thesis investigated a hybrid design of a 2D sapphire photonic crystal and traditional copper conducting cavity. The goals were to test the claim of reduced wakefields and, in general, judge the effectiveness of such structures as practical accelerating cavities. In the process, we discovered the following: (1) resonant cavities in truncated photonic crystals may confine radiation weakly compared to conducting cavities (depending on the level of truncation); however, confinement can be dramatically increased through optimizations that break lattice symmetry (but retain certain rotational symmetries); (2) photonic crystal cavities do not ideally reduce wakefields; using band structure calculations, we found that wakefields are increased by flat portions of the frequency dispersion (where the waves have vanishing group velocities). A complete comparison was drawn between the proposed photonic crystal cavities and the copper cavities for the Compact Linear Collider (CLIC); CLIC is one of the candidates for a future high-energy electron-positron collider that will study in greater detail the physics learned at the Large Hadron Collider. We found that the photonic crystal cavity, when compared to the CLIC cavity: (1) can lower maximum surface magnetic fields on conductors (growing evidence suggests this limits accelerating gradients by inducing electrical breakdown); (2) shows increased transverse dipole wakefields but decreased longitudinal monopole wakefields; and (3) exhibits lower accelerating efficiencies (unless a large photonic

  1. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations

    Hiroaki Miyagawa

    2013-07-01

    Full Text Available This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively.

  2. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations.

    Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki

    2013-01-01

    This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128

  3. A Java-based control system for the Orsay tandem accelerator

    A new control system was designed for the Tandem MP-9 at Orsay. Because of the existing devices located on high voltage platforms and the lack of space inside the accelerator, in-house electronic cards based on micro-controllers and an optical fieldbus were developed to collect data. VME processors under VxWorks, a real time operating system, manage the fieldbus, concentrate the accelerator information and transmit it to the supervisory software through the ethernet network. This software consists of a collection of Java virtual machines (JVM) running on several Unix workstations and PCs under Windows. Some of the Java virtual machines manage apparatus, instruments, local display and connections to an object database and VME concentrators. Others manage general synoptics. JVMs communicate between themselves with RMI protocol and JRPC with VME concentrators. So the supervisory software can be spread over several control stations throughout the network. (author)

  4. A Java-based control system for the Orsay tandem accelerator

    Dominique Delbourg; Gérard Penillault; Tran Khan Tuong; Martial Decourt; Nicole Borome; Henri Harroch; Bertrand Lessellier; Bernard Waast; Jean Pierre Mouffron

    2002-12-01

    A new control system was designed for the tandem MP-9 at Orsay. Because of the existing devices located on high voltage platforms and the lack of space inside the accelerator, in-house electronic cards based on micro-controllers and an optical fieldbus were developed to collect data. VME processors under VxWorks, a real time operating system, manage the fieldbus, concentrate the accelerator information and transmit it to the supervisory software through the ethernet network. This software consists of a collection of Java virtual machines (JVM) running on several Unix work-stations and PCs under Windows. Some of the Java virtual machines manage apparatus, instruments, local display and connections to an object database and VME concentrators. Others manage general synoptics. JVMs communicate between themselves with RMI protocol and JRPC with VME concentrators. So the supervisory software can be spread over several control stations throughout the network.

  5. Physical activity recognition based on rotated acceleration data using quaternion in sedentary behavior: a preliminary study.

    Shin, Y E; Choi, W H; Shin, T M

    2014-01-01

    This paper suggests a physical activity assessment method based on quaternion. To reduce user inconvenience, we measured the activity using a mobile device which is not put on fixed position. Recognized results were verified with various machine learning algorithms, such as neural network (multilayer perceptron), decision tree (J48), SVM (support vector machine) and naive bayes classifier. All algorithms have shown over 97% accuracy including decision tree (J48), which recognized the activity with 98.35% accuracy. As a result, physical activity assessment method based on rotated acceleration using quaternion can classify sedentary behavior with more accuracy without considering devices' position and orientation. PMID:25571109

  6. Energy efficiency of electric pulse installation based on a high-current plasma accelerator

    Shanenkov I.I.

    2014-01-01

    Full Text Available The energy efficiency of electric pulse installation based on a high-current plasma accelerator was investigated. A series of experiments with different central electrodes was carried out. The system based on carbon electrodes has a greater value of the charge energy conversion into the energy of arc discharge and the less discharge current level in comparison with other electrode systems. The power consumption value for producing 1 gram of powdered product was estimated and it was found this value is comparable to the work of the LED light bulb for 1 hour.

  7. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    Ye Fang

    Full Text Available Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU. First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

  8. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    Fang, Ye; Ding, Yun; Feinstein, Wei P; Koppelman, David M; Moreno, Juana; Jarrell, Mark; Ramanujam, J; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  9. A table-top x-ray FEL based on a laser wakefield accelerator-undulator system

    Nakajima, K.; Kawakubo, T.; Nakanishi, H. [National Lab. for High Energy Physics, Ibaraki-ken (Japan)] [and others

    1995-12-31

    Ultrahigh-gradient electron acceleration has been confirmed owing to the laser wakefield acceleration mechanism driven by an intense short laser wakefield acceleration mechanism driven by an intense short laser pulse in an underdense plasma. The laser wakefield acceleration makes it possible to build a compact electron linac capable of producing an ultra-short bunched electron beam. While the accelerator is attributed to longitudinal wakefields, transverse wakefields simultaneously generated by a short laser pulse can serve as a plasma undulator with a very short wavelength equal to a half of the plasma wavelength. We propose a new FEL concept for X-rays based on a laser wakefield accelerator-undulator system driven by intense short laser pulses delivered from table-top terawatt lasers. The system is composed of the accelerator stage and the undulator stage in a table-top size. A low energy electron beam is accelerated an bunched into microbunches due to laser wakefields in the accelerator stage. A micro-bunched beam travelling to the opposite direction of driving laser pulses produces coherent X-ray radiation in the undulator stage. A practical configuration and its analyses are presented.

  10. Proposed method for internal electron therapy based on high-intensity laser acceleration

    Tepper, Michal; Barkai, Uri; Gannot, Israel

    2015-05-01

    Radiotherapy is one of the main methods to treat cancer. However, due to the propagation pattern of high-energy photons in tissue and their inability to discriminate between healthy and malignant tissues, healthy tissues may also be damaged, causing undesired side effects. A possible method for internal electron therapy, based on laser acceleration of electrons inside the patient's body, is suggested. In this method, an optical waveguide, optimized for high intensities, is used to transmit the laser radiation and accelerate electrons toward the tumor. The radiation profile can be manipulated in order to create a patient-specific radiation treatment profile by changing the laser characteristics. The propagation pattern of electrons in tissues minimizes the side effects caused to healthy tissues. A simulation was developed to demonstrate the use of this method, calculating the trajectories of the accelerated electron as a function of laser properties. The simulation was validated by comparison to theory, showing a good fit for laser intensities of up to 2×1020 (W/cm2), and was then used to calculate suggested treatment profiles for two tumor test cases (with and without penetration to the tumor). The results show that treatment profiles can be designed to cover tumor area with minimal damage to adjacent tissues.

  11. Recent Advances and Some Results in Plasma-Based Accelerator Modeling

    Mori, W. B.

    2002-12-01

    Simulation, using particle-in-cell (PIC) methods, has played a critical role in the evolution of the field of plasma-based acceleration. Early on, simulations allowed the testing of new ideas using so-called cartoon parameters. These simulations were done in either one or two-dimensions using single processor supercomputers. Through the development of new algorithms and parallel computing, today, we can now use PIC simulations to model the full-scale of ongoing experiments in three-dimensions. These experiments are attempting to accelerate electrons to ˜1 GeV. In this article, I will present recent results in which simulation results are compared to experiment and I will discuss the future challenges in advanced accelerator modeling. Principally, these are 1.) to be able to model a 100+ on 100+ GeV collider in three-dimensions and, 2.) to develop more efficient, yet still accurate, algorithms so that simulation can be used for real-time feedback with experiment.

  12. Control of Switching Characteristics of Silicon-based Semiconductor Diode Using High Energy Linear Accelerator

    N. Harihara Krishnan

    2013-05-01

    Full Text Available This paper reports control of switching characteristics of silicon-based semiconductor diode using electron beam produced using linear accelerator. Conventionally, p-n junction chips of diode are exposed to gamma rays from a radioactive source or electron beam from a microtron, depending upon the required level of correction. High energy linear accelerators featuring simultaneous exposure of multiple chips are recent advancements in radiation technology. The paper presents the results of the radiation process using a 10 MeV linear accelerator as applied in industrial manufacturing of a high voltage diode (2600 V. The achieved values of reverse recovery time were found to be within the design limits. The suitability of the new process was verified by constructing the trade-off curve between the switching and conduction parameters of the diode for the complete range using large number of experimental samples. The paper summarizes the advantages of the new process over the conventional methods specifically with reference to industrial requirements. The developed process has been successfully implemented in semiconductor manufacturing.

  13. Design of an accelerator-based neutron source for neutron capture therapy

    The boron neutron capture therapy is mainly suited in the treatment of some tumor kinds which revealed ineffective to the traditional radiotherapy. In order to take advantage of such a therapeutic modality in hospital environments, neutron beams of suitable energy and flux levels provided by compact size facilities are needed. The advantages and drawbacks of several neutron beams are here analysed in terms of therapeutic gains. In detail the GEANT-3/MICAP simulations show that high tumor control probability, with sub-lethal dose at healthy tissues, can be achieved by using neutron beams of few keV energy having a flux of about 109 neutrons/(cm2 s). To produce such a neutron beam, the feasibility of a proton accelerator is investigated. In particular an appropriate choice of the radiofrequency parameters (modulation, efficiency of acceleration, phase shift, etc.) allows the development of relatively compact accelerators, having a proton beam current of 30 mA and an energy of 2 MeV, which could eventually lead to setting up of hospital-based neutron facilities.

  14. Materials considerations for molten salt accelerator-based plutonium conversion systems

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  15. Doppler Broadening Analysis of Steel Specimens Using Accelerator Based In Situ Pair Production

    Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma-induced pair-production techniques to produce positrons in thick samples (∼4-40 g/cm2, or ∼0.5-5 cm in steel). These techniques are called 'Accelerator-based Gamma-induced Positron Annihilation Spectroscopy'(AG-PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams by stopping 15 MeV electrons in a 1 mm thick tungsten converter. The accelerator is capable of operating with 30-60 ns pulse width, up to 200 mA peak current at 1 kHz repetition rate. The highly collimated bremsstrahlung beam impinged upon our steel tensile specimens, after traveling through a 1.2 m thick concrete wall. Annihilation radiation was detected by a well-shielded and collimated high-purity germanium detector (HPGe). Conventional Doppler broadening spectrometry (DBS) was performed to determine S, W and T parameters for our samples.

  16. A new LabVIEW-based control system for the Naval Research Laboratory Trace Element Accelerator Mass Spectrometer

    A new LabVIEW-based control system for the existing tandem accelerator and new AMS components has been implemented at the Trace Element Accelerator Mass Spectrometry (TEAMS) facility at the Naval Research Laboratory. Through the use of Device Interfaces (DIs) distributed along a fiber optic network, virtually every component of the accelerator system can be controlled from any networked computer terminal as well as remotely via modem or the internet. This paper discusses the LabVIEW-based control software, including remote operation, automatic calculation of ion optical component parameters, beam optimization, and data logging and retrieval

  17. Spectroscopy of laser-plasma accelerated electrons: A novel concept based on Thomson scattering

    The spectrum of relativistic electron bunches with large energy dispersion, like the ones usually generated with laser-plasma acceleration processes, is difficult to obtain with conventional methods. A novel spectroscopic concept, based on the analysis of the photons generated by Thomson scattering of a probe laser pulse by the electron bunch, is presented. The feasibility of a single-pulse spectrometer, using an energy-calibrated charge coupled device as detector, is investigated. Numerical simulations performed in conditions typical of a real experiment show the effectiveness and accuracy of the new method

  18. A Correlation Based Strategy for the Acceleration of Nonlocal Means Filtering Algorithm

    Junfeng Zhang

    2016-01-01

    Full Text Available Although the nonlocal means (NLM algorithm takes a significant step forward in image filtering field, it suffers from a high computational complexity. To deal with this drawback, this paper proposes an acceleration strategy based on a correlation operation. Instead of per-pixel processing, this approach performs a simultaneous calculation of all the image pixels with the help of correlation operators. Complexity analysis and experimental results are reported and show the advantage of the proposed algorithm in terms of computation and time cost.

  19. A New Dual Channel Speech Enhancement Approach Based on Accelerated Particle Swarm Optimization (APSO

    K.Prajna

    2014-03-01

    Full Text Available This research paper proposes a recently developed new variant of Particle Swarm Optimization (PSO called Accelerated Particle Swarm Optimization (APSO in speech enhancement application. Accelerated Particle Swarm Optimization technique is developed by Xin she Yang in 2010. APSO is simpler to implement and it has faster convergence when compared to the standard PSO (SPSO algorithm. Hence as an alternative to SPSO based speech enhancement algorithm, APSO is introduced to speech enhancement in the present paper. The present study aims to analyze the performance of APSO and to compare it with existing standard PSO algorithm, in the context of dual channel speech enhancement. Objective evaluation of the proposed method is carried out by using three objective measures of speech quality SNR, Improved SNR, PESQ and one objective measure of speech intelligibility FAI. The performance of the algorithm is studied under babble and factory noise environments. Simulation result proves that APSO based speech enhancement algorithm is superior to the standard PSO based algorithm with an improved speech quality and intelligibility measures.

  20. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    Lee, Seyong [ORNL; Vetter, Jeffrey S [ORNL

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing and implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.

  1. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  2. The future of particle accelerators

    Plasma-based accelerators are developing as credible, and compact, accelerators for the future. We review the status and prospects for electron and proton accelerators using laser Wakefield acceleration. (author)

  3. Elemental analysis of concrete samples using an accelerator-based PGNAA setup

    Naqvi, A. A.; Nagadi, M. M.; Baghabra Al-Amoudi, Omar S.

    2004-09-01

    Elemental analysis of concrete samples was carried out using an accelerator-based prompt gamma ray neutron activation analysis (PGNAA) setup. The gamma rays were produced via the capture of thermal neutron in the concrete sample. The prompt gamma ray yield was measured for 12 cm long concrete samples as a function of sample radius over a range of 6-11.5 cm radii. The optimum yield of the prompt gamma rays from the concrete sample was measured from a sample with 11.5 cm radius. The gamma ray yield was also calculated for 12 cm long concrete samples with 6-11.5 cm radius using Monte Carlo simulations. The experimental results were in excellent agreement with the calculated yield of the prompt gamma rays from the samples. Result of this study has shown the useful application of an accelerator-based PGNAA setup in elemental analysis of concrete sample. The facility can be further used to determine the chloride and sulfate concentrations in concrete samples for corrosion studies of reinforcement steel in concrete structures.

  4. Elemental analysis of concrete samples using an accelerator-based PGNAA setup

    Elemental analysis of concrete samples was carried out using an accelerator-based prompt gamma ray neutron activation analysis (PGNAA) setup. The gamma rays were produced via the capture of thermal neutron in the concrete sample. The prompt gamma ray yield was measured for 12 cm long concrete samples as a function of sample radius over a range of 6-11.5 cm radii. The optimum yield of the prompt gamma rays from the concrete sample was measured from a sample with 11.5 cm radius. The gamma ray yield was also calculated for 12 cm long concrete samples with 6-11.5 cm radius using Monte Carlo simulations. The experimental results were in excellent agreement with the calculated yield of the prompt gamma rays from the samples. Result of this study has shown the useful application of an accelerator-based PGNAA setup in elemental analysis of concrete sample. The facility can be further used to determine the chloride and sulfate concentrations in concrete samples for corrosion studies of reinforcement steel in concrete structures

  5. Study of medical RI production with accelerator-based neutron sources

    The single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have been widely adopted for nuclear medicine imaging to make diagnoses of body functions, identification of site of cancers, and so on. Now, almost all of medical radio isotopes are produced by nuclear reactors or charged particle accelerators. We propose a new route to produce the medical radio isotopes with accelerator-based neutron sources. In this paper, as an example, we introduce the proposed production method of 99Mo, which is the mother nuclide of 99mTc for SPECT. We determined the 100Mo(n,2n)99Mo reaction cross section to 1,415±82mb and it was consistent with the value (1,398mb) obtained from JENDL-4.0. Therefore, it indicates yields of produced RIs can be predicted with nuclear data based simulations. The simulation also can be used to design irradiation condition. In this paper some results of the simulations are also shown. (author)

  6. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    Hauptman, Jason S., E-mail: jhauptman@mednet.ucla.edu [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Barkhoudarian, Garni; Safaee, Michael; Gorgulho, Alessandra [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Tenn, Steven; Agazaryan, Nzhde; Selch, Michael [Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); De Salles, Antonio A.F. [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States)

    2012-06-01

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  7. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution

    Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data

  8. GPU-accelerated 3D neutron diffusion code based on finite difference method

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  9. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  10. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  11. Radiation recall secondary to adjuvant docetaxel after balloon-catheter based accelerated partial breast irradiation

    Wong, Nathan W. [Summer Intern, Mayo Clinic Arizona, Scottsdale, AZ (United States); Wong, William W., E-mail: wong.william@mayo.ed [Department of Radiation Oncology, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ 85259 (United States); Karlin, Nina J. [Division of Oncology, Mayo Clinic Arizona, Scottsdale, AZ (United States); Gray, Richard J. [Department of Surgery, Mayo Clinic Arizona, Scottsdale, AZ (United States)

    2010-08-15

    For early stage breast cancer, wide local excision and post-operative whole breast irradiation is a standard treatment. If adjuvant chemotherapy is recommended, radiation is usually given after completion of chemotherapy. In recent years, accelerated partial breast irradiation (APBI) with balloon-cathetered based brachytherapy has become an option for selected patients. For these patients, adjuvant chemotherapy would have to be administered after radiation. The sequence of treatment with radiation followed by chemotherapy results in increased risk of radiation recall reaction (RRD) in these patients. Docetaxel is becoming a more commonly used drug as adjuvant treatment for breast cancer. Here we report a case of docetaxel induced RRD after APBI with balloon-cathetered based brachytherapy. Such reaction would have an adverse impact on the cosmetic outcome and quality of life of the patient. For patients who develop an intense skin reaction after the administration of docetaxel following APBI, RRD should be considered in the differential diagnosis.

  12. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  13. Development of inter-digital-H mode linac for laser-plasma based proton accelerator

    We have proposed a compact proton accelerator which employs a transverse electric field of a laser wakefield and VP x B acceleration mechanism. For proof-of principle experiments of a new compact proton accelerator, the injector including the proton source is needed. We have developed a proton source with energy 30 keV. In order to accelerate protons extracted from the proton source up to 1 MeV, we have been designing IH (Inter-digital-H) linear accelerator as the injector to the final stage of the accelerator using lasers and plasmas. We redesigned and made the accelerator cavity after measuring the characteristics of the prototype made of a brass. In this article, we report the characteristics of accelerator cavity and our future plan. (author)

  14. The state of development of an intense resonance electron-ion accelerator based on Doppler effect

    An intense ion accelerator has been proposed and now is being developed in which accelerating and focusing electric fields in a slow wave structure are excited by an intense electron beam using the anomalous and the normal Doppler effects. The results of theoretical studies and computer simulations show the advantage of this acceleration method that will make it possible to obtain acceleration rates of the order of 10 - 100 MeV/m, and ion beam energies and currents of the order of 10-100 MeV, 1-10 A. The project and technical documentation of an experimental accelerating installation were worked out. Currently, the 5 MeV accelerator-injector URAL-5 is in operation; preliminary experiments on a small installation have been carried out; experimental investigations of an accelerating RF resonator model (in 1/2 scaling) are being performed; the accelerating test installation is being manufactured. (author). 1 tab. 12 fig., 6 refs

  15. Influence of a C12A7 mineral-based accelerator on the strength and durability of shotcrete

    This study analyzed the long-term strength and durability of shotcrete when a C12A7-based accelerator is added to the mixture. Since an accelerator with a high alkali content causes a remarkable decrease in the long-term strength of shotcrete and is toxic to humans, this study evaluated the setting time, compressive strength, and resistance to permeability and repeated freeze-thaw cycles of an amorphous C12A7-based accelerator. The results showed that the C12A7 accelerator set quickly by forming a web structure from its initial setting state due to the presence of ettringite. In addition, the ettringite, with its characteristic acicular crystals, proved resistant to permeability and repeated freeze-thaw cycles. Ettringite has a structure that encouraged a smooth hydration reaction, maintaining the voids at the surface of the cement particles and resulting in the observed initial strength and decrease in the reduction of the long-term strength

  16. Accelerated gradient methods for total-variation-based CT image reconstruction

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  17. An optimized slab-symmetric dielectric-based laser accelerator structure

    A slab-symmetric, partially dielectric filled, laser excited structure which maybe used to accelerate charged particles is analyzed theoretically and computationally. The fields associated with the accelerating mode are calculated, as are aspects of the resonant filling and impedance matching of the structure to the exciting laser. It is shown through computer simulation that the accelerating mode in this structure can be excited resonantly and with large quality factor Q. Practical aspects of implementing this structure as an accelerator are discussed

  18. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  19. Development of PLC based chiller control system for 3 MeV DC electron beam accelerator

    A 3 MeV DC electron beam accelerator is under development at Electron beam center, Kharghar, Navi Mumbai. The accelerator has various sections, where heat is generated during operation due to factors contributed by efficiency. The areas that produce heat such as beam dump, HV oscillator, scan horn region etc need to be cooled. A 5TR chiller unit has been installed in a room in the vicinity of the accelerator. Standard chiller unit available in the market do not provide a remote control interface, instead they provide on panel local controllers for the operation of the system. A PLC based interlock has been developed to control all the chiller components such as Cooling tower fan, cooling tower pump, ON/OFF operation of compressor etc. All the components used in chiller unit are interfaced to PLC besides temperature sensor. All machine safety interlock have been introduced by using suitable hardware such as antifreeze coil used to trip compressor in case of control failure may make the ice of water being cooled. The operating point of the chiller has been set to provide water 22-24 degree C. The PLC has been programmed using ladder logic programming method. The system is fully automatic. The system can be operated by setting the set temperature say 22 degree C and temperature hysteresis say 2 degree C. Pressing start button operates different units of the system automatically. Its starts the compressor when the water temperature is 22+2 degree C and stops the compressor when temp reaches at 22 degree C. Any unexpected failure such as 3Phase sequence change/phase failure, over load relay trip, excess temp are indicated by a hooter sound along with fault display on the HMI. A touch screen panel has been provided for human machine interface. This development of control system for chiller sub-system of accelerator has helped us in bringing the chiller unit control from the control room using Ethernet link using Modbus TCP-IP. The implementation of PLC controlled chiller

  20. Establishment of calorimetry based absorbed dose standard for newly installed Elekta Synergy accelerator at ARPANSA

    both quasi-adiabatic and quasi-isothermal modes. In the quasi-isothermal mode initially all the three bodies of the calorimeter (core, jacket and shield) are raised in temperatures with constant heating rates calculated based on the dose-rate obtained through the quasi-adiabatic mode. At the end of the heating period the radiation beam is brought on and the heaters switched off. Similarly at the end of the radiation run the heaters are switched on again to continue heating. The switching off/on of the heaters with radiation beam on/off is being done through a specially designed electronic circuit triggered by the output pulses from the monitor chamber.This has helped in reducing the uncertainties and improving the consistency of repeated measurements. Conversion of graphite absorbed dose to water absorbed dose is done through calorimetry, measurements of ionisation current in a graphite-walled chamber in a graphite phantom similar to the calorimeter and chamber measurements in a water tank all at the same distance. The conversion makes use of Monte-Carlo calculated doses in the graphite and water. Gap correction for the calorimeter is calculated using EGSnrc and the correction factor for radial non-uniformity is evaluated through beam profile measurements moving a thimble chamber mounted in a graphite phantom similar in construction to the calorimeter. As part of a bilateral intercomparison of accelerator measurements a graphite walled chamber was taken to NPL, U.K and was calibrated in their photon beams. The NPL-calibrated chamber was calibrated at ARPANSA against the IAEA calorimeter and the results of this intercomparison are presented here

  1. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  2. Generation of Accelerated Stability Experiment Profile of Inertial Platform Based on Finite Element

    CHEN Yunxia; HUANG Xiaokai; KANG Rui

    2012-01-01

    The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics (UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.

  3. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Zhao, Quantang, E-mail: zhaoquantang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Z.M.; Yuan, P.; Cao, S.C.; Shen, X.K.; Jing, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu, C.S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Z.P.; Liu, M.; Xiao, R.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zong, Y.; Wang, Y.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-11-21

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60–70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article. -- Highlights: •The key technology of DWA, including switches and pulse forming lines were studied. •The SiC PCSS obtained from Shanghai Institute were tested. •Two layers ZIP lines (new structure) and four layers Blumlein lines were studied with laser triggered spark gap switches. •A nanosecond pulse-width electron diode based on DWA technologies is achieved and studied experimentally. •The principle of DWA is also proved by the diode.

  4. Low - energy Accelerator - based Nuclear Biotechnology for Applications in Agriculture and Biomedicine

    A novel biotechnology based on low-energy-accelerator nuclear technology has recently been rapidly developed internationally. Low-energy ion beams with energy in a range of 10-100 keV generated from ion accelerators bombard plant seeds or tissues for mutation induction and plant or mammalian cells for gene transfection induction to benefit to agriculture and biomedicine. In Thailand, centered at Chiang Mai University, this so-called low-energy ion beam biotechnology has been explored and developed for more than a decade. Bioengineering-specialized ion implanters have been constructed and utilized for both research and applications. Certain Thai local rice mutants have been induced and achieved with improved characters of dwarf, photo-insensitivity, enriched nutrients and higher yields. Mutants of other plants such as flowers, vegetables and microorganisms have also been induced with improved properties. DNA transfer into bacterial and mammalian cells has been induced by ion beams. Particularly, ion-beam-induced gene transfection into human cells succeeded to initiate a new non-viral gene transfection method for potential gene therapy.

  5. Bioreactor Conditioning for Accelerated Remodeling of Fibrin-Based Tissue Engineered Heart Valves

    Schmidt, Jillian Beth

    Fibrin is a promising scaffold material for tissue engineered heart valves, as it is completely biological, allows for engineered matrix alignment, and is able to be degraded and replaced with collagen by entrapped cells. However, the initial fibrin matrix is mechanically weak, and extensive in vitro culture is required to create valves with sufficient mechanical strength and stiffness for in vivo function. Culture in bioreactor systems, which provide cyclic stretching and enhance nutrient transport, has been shown to increase collagen production by cells entrapped in a fibrin scaffold, accelerating strengthening of the tissue and reducing the required culture time. In the present work, steps were taken to improve bioreactor culture conditions with the goal of accelerating collagen production in fibrin-based tissue engineered heart valves using two approaches: (i) optimizing the cyclic stretching protocol and (ii) developing a novel bioreactor system that permits transmural and lumenal flow of culture medium for improved nutrient transport. The results indicated that incrementally increasing strain amplitude cyclic stretching with small, frequent increments in strain amplitude was optimal for collagen production in our system. In addition, proof of concept studies were performed in the novel bioreactor system and increased cellularity and collagen deposition near the lumenal surface of the tissue were observed.

  6. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z.; Gondal, M.A.; Rehman, Khateeb-ur [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Raashid, M.; Dastageer, M.A. [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-11-21

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  7. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples

  8. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  9. Uses of very high-power free-electron lasers based on electrostatic accelerators

    Free-electron lasers (FELs) have been demonstrated in the last decade in a wide range of operating frequencies ranging from microwaves to visible light. As the technology of FELs has matured, the possibility of high power levels with high efficiency while maintaining both coherence and wavelength tunability has become evident. This property of FELs leads to near-term and futuristic applications, which are compatible with the expected size and weight characteristics of such high-power devices. In reviewing the state of the art of FELs, the authors conclude that FELs based on electrostatic accelerators with energy recovery can fundamentally change the economics of producing coherent radiation over a very broad part of the spectrum. This is particularly true of applications requiring high average power and high efficiency. With a depressed collector energy retrieval scheme, overall wall plug energy conversion efficiencies in excess of 50% are expected to be realizable as is routinely achieved in microwave devices

  10. Accelerated equilibrium core composition search using a new MCNP-based simulator

    MocDown is a new Monte Carlo depletion and recycling simulator which couples neutron transport with MCNP and transmutation with ORIGEN. This modular approach to depletion allows for flexible operation by incorporating the accelerated progression of a complex fuel processing scheme towards equilibrium and by allowing for the online coupling of thermo-fluids feedback. MocDown also accounts for the variation of decay heat with fuel isotopics evolution. In typical cases, MocDown requires just over a day to find the equilibrium core composition for a multi-recycling fuel cycle, with a self-consistent thermo-fluids solution-a task that required between one and two weeks using previous Monte Carlo-based approaches. (authors)

  11. Assembly Based Modular Ray Tracing and CMFD Acceleration for BWR Cores with Different Fuel Lattices

    The geometry module of the DeCART direct whole core calculation code has been extended in order to analyze BWR cores which might have a mixed loading of different fuel types. First, an assembly based modular ray tracing scheme was implemented for the Method of Characteristic (MOC) calculation, and a CMFD formulation applicable for unaligned mesh conditions was then developed for acceleration the MOC calculation. The new calculation feature has been validated by comparing DeCART BWR assembly calculations with the MCU Monte Carlo calculations. A good agreement identified by the maximum eigenvalue difference of 120 pcm and the maximum pin power error of about 1% has been achieved. The CMFD scheme is shown to reduce the number of MOC iterations by factors of 12-25 without loss of accuracy. (authors)

  12. Accelerated gradient methods for total-variation-based CT image reconstruction

    Jørgensen, Jakob Heide; Jensen, Tobias Lindstrøm; Hansen, Per Christian; Jensen, Søren Holdt; Sidky, Emil Y.; Pan, Xiaochuan

    2011-01-01

    -based reconstruction is much more demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV...... reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton’s method. The simple gradient method has much lower memory requirements, but exhibits slow convergence....... The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped...

  13. Accelerated equilibrium core composition search using a new MCNP-based simulator

    Seifried, Jeffrey E.; Gorman, Phillip M.; Vujic, Jasmina L.; Greenspan, Ehud

    2014-06-01

    MocDown is a new Monte Carlo depletion and recycling simulator which couples neutron transport with MCNP and transmutation with ORIGEN. This modular approach to depletion allows for flexible operation by incorporating the accelerated progression of a complex fuel processing scheme towards equilibrium and by allowing for the online coupling of thermo-fluids feedback. MocDown also accounts for the variation of decay heat with fuel isotopics evolution. In typical cases, MocDown requires just over a day to find the equilibrium core composition for a multi-recycling fuel cycle, with a self-consistent thermo-fluids solution-a task that required between one and two weeks using previous Monte Carlo-based approaches.

  14. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  15. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (109 n/cm2/s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  16. A Model-Based Prognostics Methodology For Electrolytic Capacitors Based On Electrical Overstress Accelerated Aging

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical...

  17. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for elec- trolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical...

  18. Comparison between CARIBIC aerosol samples analysed by accelerator-based methods and optical particle counter measurements

    B. G. Martinsson

    2014-04-01

    Full Text Available Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container passenger aircraft based observatory, operating during intercontinental flights at 9–12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS, the extra-tropical upper troposphere (UT and the tropical mid troposphere (MT were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with accelerator-based methods particle-induced X-ray emission (PIXE and particle elastic scattering analysis (PESA. Data from 48 flights during one year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  19. Characterization of geosynthetic clay liner bentonite using micro-analytical methods

    In barrier design, familiarity of the structure and composition of the soil material at the micron scale is necessary for delineating the retention mechanisms of introduced metals, such as the formation of new mineral phases. In this study, the mineralogical and chemical makeup of the bentonite from a geosynthetic clay liner (GCL) was extensively characterized using a combination of conventional benchtop X-ray diffraction (XRD) and micro X-ray diffraction (μXRD) with synchrotron-generated micro X-ray fluorescence (μXRF) elemental mapping and μXRD (S-μXRD). These methods allow for the non-destructive, in situ investigation of a sample, with μm spatial resolution. Synchrotron-based hard X-ray microprobes are specifically advantageous to the study of trace metals due to higher spatial resolution (<10 μm) and higher analytical sensitivity (femtogram detection) than is possible using normal laboratory-based instruments. Minerals comprising less than 5% of the total bentonite sample such as gypsum, goethite and pyrite were identified that were not accessible by other conventional methods for the same GCL bentonite. Two dimensional General Area Diffraction Detector System (GADDS) images proved to be particularly advantageous in differentiating between the microcrystalline clay, which appeared as homogeneous Debye rings, and the 'spotty' or 'grainy' appearance of primary, more-coarsely-crystalline, accessory minerals. For S-μXRD, the tunability of the synchrotron X-rays allowed for efficient distinction of both clay minerals at low scattering angles and in identifying varying Fe oxide minerals at higher angles. GCL samples permeated with metal-bearing mining solutions were also examined in order to consider how mechanisms of metal attenuation may be identified using the same techniques. In addition to the cation exchange capacity from the montmorillonite clay, tests showed how minerals comprising only 1-2% of the bentonite such as goethite could potentially play a

  20. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  1. Microstructural and auger microanalytical characterization of Cu-Hf and Cu-Ti catalysts.

    Pisarek, M; Janik-Czachor, M

    2006-06-01

    Degradation processes occurring at the surface and in the bulk of Cu-based amorphous alloys during cathodic hydrogen charging were used for promoting the catalytic activity of such alloys. These processes modifying the structure, composition, and morphology of the substrate proved to be useful methods for transforming Cu-Hf and inactive Cu-Ti amorphous alloy precursors into active and durable catalysts. Indeed, their catalytic activity for dehydrogenation of 2-propanol increased up to a conversion level of approximately 60% at selectivities to acetone of about 99% for Cu-Ti and to conversion of approximately 90% at selectivities of approximately 95% for Cu-Hf. Previous attempts carried out by aging in air or hydrogen charging from the gas phase resulted in a maximum conversion level up to 15% for Cu-Hf and up to 3% for Cu-Ti. High resolution Auger spectroscopy allowed changes occurring during the activation process to be identified, namely, the formation of small Cu particles on the HfO2 surface and the formation of highly porous particles containing mostly Cu and some Ti and O (Cu-Ti-O) on a Cu-Ti substrate. Differences in the chemistry and structure of both catalysts are discussed, and the implications for catalytic function are considered. A probable configuration of active sites on the Cu-Ti-O/Ti-O-Cu catalyst for dehydrogenation of 2-propanol is proposed. PMID:17481359

  2. Rapid estimation of lives of deficient superpave mixes and laboratory-based accelerated mix testing models

    Manandhar, Chandra Bahadur

    The engineers from the Kansas Department of Transportation (KDOT) often have to decide whether or not to accept non-conforming Superpave mixtures during construction. The first part of this study focused on estimating lives of deficient Superpave pavements incorporating nonconforming Superpave mixtures. These criteria were based on the Hamburg Wheel-Tracking Device (HWTD) test results and analysis. The second part of this study focused on developing accelerated mix testing models to considerably reduce test duration. To accomplish the first objective, nine fine-graded Superpave mixes of 12.5-mm nominal maximum aggregate size (NMAS) with asphalt grade PG 64-22 from six administrative districts of KDOT were selected. Specimens were prepared at three different target air void levels Ndesign gyrations and four target simulated in-place density levels with the Superpave gyratory compactor. Average number of wheel passes to 20-mm rut depth, creep slope, stripping slope, and stripping inflection point in HWTD tests were recorded and then used in the statistical analysis. Results showed that, in general, higher simulated in-place density up to a certain limit of 91% to 93%, results in a higher number of wheel passes until 20-mm rut depth in HWTD tests. A Superpave mixture with very low air voids Ndesign (2%) level performed very poorly in the HWTD test. HWTD tests were also performed on six 12.5-mm NMAS mixtures with air voids Ndesign of 4% for six projects, simulated in-place density of 93%, two temperature levels and five load levels with binder grades of PG 64-22, PG 64-28, and PG 70-22. Field cores of 150-mm in diameter from three projects in three KDOT districts with 12.5-mm NMAS and asphalt grade of PG 64-22 were also obtained and tested in HWTD for model evaluation. HWTD test results indicated as expected. Statistical analysis was performed and accelerated mix testing models were developed to determine the effect of increased temperature and load on the duration of

  3. A distributed CAN bus based embedded control system for 750 KeV DC accelerator

    This paper describes a distributed embedded system that uses a high performance mixed signal controller C8051F040 for its DAQ nodes and is based on CAN bus protocol for remote monitoring and controlling of various subsystems of 750 KeV DC accelerator based irradiation facility at RRCAT, Indore. A PC with integrated PCI CAN card communicates with intelligent DAQ nodes over CAN bus and each node is interfaced with a subsystem. An opto isolated SN65HVD230 CAN driver is interfaced between each node and physical bus. Remote frames and message prioritising are used for efficient control. The PC application is developed using LabVIEW 8.6. The proposed system is more reliable and noise immune as compared to previously used systems that initially used a centralized system based on C8051 controller. This was then upgraded to a distributed system that used microcontroller AduC812 and communicated over RS485 link. The new system has been integrated and tested satisfactorily for its designed performance with test jigs that simulated the actual subsystems with a bus length of 75 meters. First the complete scheme of the system is presented, and then the hardware and software designs are discussed. (author)

  4. Strengthening the inherent safety and security of radioactive sources: Accelerator based options

    First and foremost, radioactive sources are both useful and cost effective. If a technology can't be utilized in an effective manner, it won't be useful, no matter how clever and elegant it is. Secondly, there are safety and proliferation concerns that must be addressed. Accidents, contamination, dirty bombs, etc., all represent real concerns. A single incident can impact the cost of all uses. These issues and regulations devised to reduce these risks are driving up the costs and lowering efficiency. An alternative would be the accelerator based option, which is nothing new, it has been around for decades. Using accelerator technologies to produce radiation will address the issues I raise by limiting the production of radiation to only those times when a switch has been flipped. Producing radiation that way has one main advantage over the use of radioactive sources. When the switch is off, there is no radiation. Making instruments that are doubly fail-safe is straightforward. Issues associated with radiation safety during transport and storage disappear. There are also minimal issues of disposal and tracking of materials. There is very little potential for diverting a transportable radiography machine or portable neutron generator for nefarious uses. There is a need to carefully monitor the balance between the increasing number of radioactive sources in use, increasing concern for their location and condition, and the cost of employing radiation generators. In many cases there will be a natural progression away from using sources towards the use of radiation generators. Another key factor that would influence this balance is if an accident and or misuse of radioactive sources were to occur. The costs of dealing with sources would rapidly escalate, and would likely tip the balance sooner

  5. Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts

    The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

  6. Integrating knowledge-based systems into operations at the McMaster University FN tandem accelerator laboratory

    The introduction of computer-based expertise in accelerator operations has resulted in the development of an Accelerator Operators' Companion which incorporates a knowledge-based front-end that is tuned to user operational expertise. The front-end also provides connections to traditional software packages such as database and spreadsheet programs. During work on the back-end, that is, real-time expert system control development, the knowledge engineering phase has revealed the importance of modifying expert procedures when a multitasking environment is involved

  7. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  8. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: ► Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. ► Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. ► Calculations: Monte Carlo simulations with the MCNP code. ► Measured and calculated figure-of-merit parameters in agreement with those of IAEA. ► Initial MCNP dose calculations for a treatment room to define future design actions.

  9. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    Chun-Yuan Lin

    2015-01-01

    Full Text Available Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2, where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC. The intrinsic time complexity of MCC problem is O(k2n2 with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  10. An optimized neutron-beam shaping assembly for accelerator-based BNCT

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon[reg ], and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the 7Li(p,n)7Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases

  11. Development of an accelerator based BNCT facility. Following the Ibaraki BNCT project development process

    An accelerator-based BNCT (Boron Neutron Capture Therapy) facility is being constructed at the Ibaraki Neutron Medical Research Center. It consists of a proton linac (8 MeV energy and 10 mA average current), a beryllium target, and a moderator system to provide an epi-thermal neutron flux for patient treatment. The technology choices for this present system were driven by the need to site the facility in a hospital and where low residual activity is essential. The maximum neutron energy produced from an 8 MeV-proton is 6 MeV, which is below the threshold energy of the main nuclear reactions which produce radioactive products. The down side of this technology choice is that it produces a high density heat load on the target so that cooling and hydrogen blistering amelioration prevent sever challenges requiring successful R and D progress. The latest design of the target and moderator system shows that a flux of 2.5x109 epi-thermal neutrons/cm2/sec can be obtained. This is two times higher than the flux from the existing nuclear reactor based BNCT facility at JAEA (JRR-4). (author)

  12. GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact, and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance evolution of a witness beam through elastic scattering from gaseous media and under transverse focusing wakefields is studied

  13. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-07-26

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of

  14. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n)3He and T(d,n)3He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 1010 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac are

  15. Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging

    Giménez, Mónica; Born, A Peter; Nagy, Zoltan;

    2008-01-01

    Twenty-seven preterm infants were compared to 10 full-term infants at term equivalent age using a voxel-based analysis of diffusion tensor imaging of the brain. Preterm infants exhibited higher fractional anisotropy values, which may suggest accelerated maturation, in the location of the sagittal...

  16. Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: A single center experience

    Sirin Sait

    2011-01-01

    Full Text Available Background/Aim. Management of patients with recurrent glioblastoma (GB comprises a therapeutic challenge in neurooncology owing to the aggressive nature of the disease with poor local control despite a combined modality treatment. The majority of cases recur within the highdose radiotherapy field limiting the use of conventional techniques for re-irradiation due to potential toxicity. Stereotactic radiosurgery (SRS offers a viable noninvasive therapeutic option in palliative treatment of recurrent GB as a sophisticated modality with improved setup accuracy allowing the administration of high-dose, precise radiotherapy. The aim of the study was to, we report our experience with single-dose linear accelerator (LINAC based SRS in the management of patients with recurrent GB. Methods. Between 1998 and 2010 a total of 19 patients with recurrent GB were treated using single-dose LINAC-based SRS. The median age was 47 (23-65 years at primary diagnosis. Karnofsky Performance Score was ≥ 70 for all the patients. The median planning target volume (PTV was 13 (7-19 cc. The median marginal dose was 16 (10-19 Gy prescribed to the 80%-95% isodose line encompassing the planning target volume. The median follow-up time was 13 (2-59 months. Results. The median survival was 21 months and 9.3 months from the initial GB diagnosis and from SRS, respectively. The median progression-free survival from SRS was 5.7 months. All the patients tolerated radiosurgical treatment well without any Common Toxicity Criteria (CTC grade > 2 acute side effects. Conclusion. Single-dose LINAC-based SRS is a safe and well- tolerated palliative therapeutic option in the management of patients with recurrent GB.

  17. Towards A Model-based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    Gautam Biswas

    2012-12-01

    Full Text Available This paper presents a model-driven methodology for predict- ing the remaining useful life of electrolytic capacitors. This methodology adopts a Kalman filter approach in conjunction with an empirical state-based degradation model to predict the degradation of capacitor parameters through the life of the capacitor. Electrolytic capacitors are important components of systems that range from power supplies on critical avion- ics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their critical role in the system, they are good candidates for component level prognostics and health management. Prognostics provides a way to assess remain- ing useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. This paper proposes and empirical degradation model and discusses experimental results for an accelerated aging test performed on a set of identical capacitors subjected to electrical stress. The data forms the basis for developing the Kalman-filter based remaining life prediction algorithm.

  18. Three-dimensional simulation of laser–plasma-based electron acceleration

    A Upadhyay; K Patel; B S Rao; P A Naik; P D Gupta

    2012-04-01

    A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out to assess the performance of this code. Simulations have been performed for a Gaussian laser beam of peak intensity 5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 1 × 1019 cm-3, and for a Gaussian laser beam of peak intensity 1.5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 3.5 × 1019 cm-3. The electron energy spectrum has been evaluated at different time-steps during the propagation of the laser beam. When the plasma density is 1 × 1019 cm-3, simulations show that the electron energy spectrum forms a monoenergetic peak at ∼ 14 MeV, with an energy spread of ± 7 MeV. On the other hand, when the plasma density is 3.5 × 1019 cm-3, simulations show that the electron energy spectrum forms a monoenergetic peak at ∼ 23 MeV, with an energy spread of ± 7.5 MeV.

  19. Analytical bunch compression studies for a linac-based electron accelerator

    Schreck, M.; Wesolowski, P.

    2015-10-01

    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general.

  20. Physical properties of a linear accelerator-based stereotactic installed at national cancer institute

    The purpose of this paper is to present the dosimetry and mechanical accuracy of the first dedicated Siemens PRIMUS M6/6ST linear accelerator-based Stereotactic installed in National Cancer Institute for stereotactic radiosurgery and radiotherapy (SRS/SRT). The data were obtained during the installation, acceptance test procedure, and commissioning of the unit. The Primus M6/6ST has a single 6-MV beam with the same beam characteristics as that of the mother unit, the Siemens. The dosimetric data were taken using pin point ion chamber. The cone sizes vary from 12.5 to 40.0 mm diameter. The mechanical stability of the entire system was verified. The variations in isocenter position with table, gantry, and collimator rotation were found to be < 0.5 mm with a compounded accuracy of < or = 1.0 mm. The beam profiles of all cones in the x and y directions were within +/- 0.5 mm and match with the physical size of the cone. The basic dosimetry parameters such as tissue maximum ratio (TMR), off-axis ratio (OAR) and cone factor needed for patient treatment were evaluated. The mechanical and dosimetric characteristics including dose linearity of this unit are presented and found to be suitable for SRS/SRT. The difficulty in absolute dose measurement for small cone is discussed

  1. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  2. Fiber Bragg Grating Sensors Based Monitoring System for Superconducting Accelerator Magnets

    Chiuchiolo, A; Perez, J C; Bajas, H; Consales, M; Giordano, M; Breglio, G; Cusano, A

    2014-01-01

    New generation of accelerator magnets for high energy applications currently designed, manufactured and tested at the European Organization for Nuclear Research (CERN) require the implementation of precise cryogenic sensors with long-term robustness and reliability able to withstand cryogenic temperature and to monitor the mechanical stresses affecting the winding during all the stages of his service life, assembly, cool down and powering. Monitoring the mechanical behavior of the magnet from assembly to operation is a critical task which aims to assure the integrity of the magnet and to safely handle the coils made of new brittle material. This contribution deals with the first successful embedding of Fiber Bragg Grating sensors in a subscale Nb3Sn dipole magnet in order to monitor the strain developed in the coil during the cool down to 1.9 K, the powering up to 15.8 kA and the warm up, offering new perspectives for the development of a complementary sensing technology based on fiber optic sensors.

  3. Activities on the physics of accelerator-based systems at CEA

    Nowadays, the interest for accelerator-based systems (ABS) in France is strongly related to the studies on long-lived radioactive waste management. Investigations aim to indicate whether ABS can play a role beside critical reactors in the process proposed to reduce the long term radiotoxicity of nuclear wastes. ABS is not envisaged to replace reactors for energy production even if the energy production is a mean to reduce the transmutation cost. Several French organisms (CEA, EDF, CNRS) are interested by ABS studies. Activities are shared out amongst different laboratories and involve international cooperation. The program aims at evaluating ABS performances for the report on waste management foreseen in 2006 and not at developing a project. This ABS evaluation concerns the following items: potential of radiotoxicity reduction, safety, economy, feasibility which must be compared with those of critical reactors. To achieve this end, activities at CEA are in progress on: - code development and validation, - nuclear data evaluation, -theoretical investigations on ABS characteristics, - study of existing projects. (author) 2 figs., 2 tabs., 8 refs

  4. Accelerator-based neutron tomography cooperating with X-ray radiography

    Neutron resonance absorption spectroscopy (N-RAS) using a pulsed neutron source can be applied to time-of-flight (TOF) radiography, and the obtained parameters from the peak shape analysis can be reconstructed as the tomograms of nuclide distributions using computed tomography (CT). The problem is that the available spatial resolution is not sufficient for radiography imaging. In this study, we combined neutron and X-ray radiographies to improve the quantitative reconstruction of the neutron tomogram. The accelerator-based neutron source emits X-rays (or gamma-rays) at the same time the neutron pulse is emitted. We utilized the X-ray beam from the neutron source to obtain X-ray radiogram on the same beam line with neutron radiography and then reconstructed the neutron tomogram quantitatively with the help of a detailed sample internal structure obtained from the X-ray radiogram. We calculated the nuclide number density distribution tomogram using a statistical reconstruction procedure, which was easy to include in the structure model during the reconstruction. The obtained result of nuclide number density distribution showed good coincidence with the original object number density.

  5. Accelerator based-boron neutron capture therapy (BNCT)-clinical QA and QC

    Alpha-particle and recoil Li atom yielded by the reaction (10B, n), due to their high LET properties, efficiently and specifically kill the cancer cell that has incorporated the boron. Efficacy of this boron neutron capture therapy (BNCT) has been demonstrated mainly in the treatment of recurrent head/neck and malignant brain cancers in Kyoto University Research Reactor Institute (KUR). As the clinical trial of BNCT is to start from 2009 based on an accelerator (not on the Reactor), this paper describes the tentative outline of the standard operation procedure of BNCT for its quality assurance (QA) and quality control (QC) along the flow of its clinical practice. Personnel concerned in the practice involve the attending physician, multiple physicians in charge of BNCT, medical physicists, nurses and reactor stuff. The flow order of the actual BNCT is as follows: Pre-therapeutic evaluation mainly including informed consent and confirmation of the prescription; Therapeutic planning including setting of therapy volume, and of irradiation axes followed by meeting for stuffs' agreement, decision of irradiating field in the irradiation room leading to final decision of the axis, CT for the planning, decision of the final therapeutic plan according to Japan Atomic Energy Agency-Computational Dosimetry System (JCDS) and meeting of all related personnel for the final confirmation of therapeutic plan; and BNCT including the transport of patient to KUR, dripping of boronophenylalanine, setting up of the patient on the machine, blood sampling for pharmacokinetics, boron level measurement for decision of irradiating time, switch on/off of the accelerator, confirmation of patient's movement in the irradiated field after the neutron irradiation, blood sampling for confirmation of the boron level, and patient's leave from the room. The QA/QC check is principally to be conducted with the two-person rule. The purpose of the clinical trial is to establish the usefulness of BNCT, and

  6. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  7. Numerical investigations into a fiber laser based dielectric reverse dual-grating accelerator

    Aimidula, A.; Welsch, C. P.; Xia, G.; Koyama, K.; Uesaka, M.; Yoshida, M.; Mete, O.; Matsumura, Y.

    2014-03-01

    Dielectric laser accelerators (DLAs) have great potential for applications, since they can generate acceleration gradients in the range of GeV/m and produce attosecond electron bunches. We described a novel reverse dual-grating dielectric accelerator structure made up of Silicon which is expected to improve beam confinement, and make fabrication easier. Numerical simulation results show that this structure effectively manipulates the laser field and generates a standing wave in the vacuum channel with a phase velocity synchronized to relativistic particles travelling through the structure. Optimum pillar height and channel width have been determined. All required laser parameters and initial particle energy have been analytically estimated and a suitable laser as an energy source is proposed. Finally, the effect of fabrication error on the acceleration gradient is discussed.

  8. Design of a high DC voltage generator and D-T fuser based on particle accelerator

    Araujo, Wagner L.; Campos, Tarcisio P.R., E-mail: wagnerleite@ufmg.b, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/ UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    This paper approaches a design and simulation of a high voltage Cockcroft Walton multiplier and a compact size deuteron accelerator addressed in neutron generation by d-t fusion. We proposed a circuit arrangement, which was led to simulations. The particle accelerator was computer-generated providing particle transport and electric potential analysis. As results, the simulated voltage multiplier achieved 119 kV, and the accelerator presented a deuteron beam current up to 15 mA, achieving energies in order to 100 keV. In conclusion, the simulation motivates experimental essays in order to investigate the viability of a deuteron accelerator powered by a Cockcroft-Walton source. Such d-t fusor shall produce an interesting ion beam profile, reaching energy values near the d-t fusion cross section peak. (author)

  9. Numerical investigations into a fiber laser based dielectric reverse dual-grating accelerator

    Dielectric laser accelerators (DLAs) have great potential for applications, since they can generate acceleration gradients in the range of GeV/m and produce attosecond electron bunches. We described a novel reverse dual-grating dielectric accelerator structure made up of Silicon which is expected to improve beam confinement, and make fabrication easier. Numerical simulation results show that this structure effectively manipulates the laser field and generates a standing wave in the vacuum channel with a phase velocity synchronized to relativistic particles travelling through the structure. Optimum pillar height and channel width have been determined. All required laser parameters and initial particle energy have been analytically estimated and a suitable laser as an energy source is proposed. Finally, the effect of fabrication error on the acceleration gradient is discussed

  10. Characteristics of an accelerator based system for in vivo aluminium measurement in peripheral bone

    In healthy individuals, renal clearance maintains tissue and plasma concentrations of aluminium at very low levels. Elevated levels are found in patients on renal dialysis, with dialysis solutions (dialysate) containing trace levels of AL; a further risk results from an associated long term use of AL-based phosphate binders. Amongst dialysis patients AL has been implicated as the causative agent of encephalopathy, osteomalacia, osteodystrophy, anaemia and general malaise. There is no easy, non-invasive, method of investigating AL overload measurements of AL concentration in plasma give only an estimate of recent exposure, while estimates of long term exposure can be derived from analysis of iliac crest biopsy samples which are obtained by a painful procedure, not suitable for serial measurements. The favourable neutron cross-section and energy of the gamma emission of the reaction 27AL(n,gamma) 28AL enables the technique of in-vivo neutron activation analysis to be contemplated for detecting AL. Previous studies have been undertaken at East Kilbride2 using 14 MeV neutrons, at Brookhaven3 using a reactor-based source, and at Swansea4 using a 252Cf source, with emphasis being on the measurement of either total body AL or in the bone of the hand. in all those systems a particular problem concerned the interfering 31P(n,gamma) 28AL reaction. The 252Cf system additionally suffered from a problem of low thermal neutron production and consequently of low usable dose-rate. in contrast, the University of Birmingham Dynamitron accelerator is capable of producing an intense source of fast neutrons from the reaction 3 H(p,n)3 He with a neutron energy that is lower than the threshold (2 MeV) for 31(P)(n,gamma)28 AL. 3 figs, 1 tab

  11. Kernel based methods for accelerated failure time model with ultra-high dimensional data

    Jiang Feng

    2010-12-01

    Full Text Available Abstract Background Most genomic data have ultra-high dimensions with more than 10,000 genes (probes. Regularization methods with L1 and Lp penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n ≪ m (the number of genes, directly identifying a small subset of genes from ultra-high (m > 10, 000 dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes. Results The accelerated failure time (AFT model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller n × n matrix. It is very efficient when the number of unknown variables (genes is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited. Conclusions Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.

  12. CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving

    Plunge diving is the most commonly used feeding method of a gannet, which can make the gannet transit from air to water rapidly and successfully. A large impact acceleration can be generated due to the air-to-water transition. However, the impact acceleration experienced by the gannet during plunge diving has not been studied. In this paper, this issue is investigated by using the CFD method. The effect of the dropping height and the water-entry inclination angle on the impact acceleration is considered. The results reveal that the impact acceleration along the longitudinal body axis increases with either of the two parameters. The peak time decreases with the dropping height. A quadratic relation is found between the peak impact acceleration and the initial water-entry velocity. According to the computation, when the dropping height is 30 m (most of gannets plunge from about this height), the peak impact acceleration can reach about 23 times the gravitational acceleration, which will exert a considerable force on the gannet body. Furthermore, the pressure distribution of different water-entry inclination angles indicates that the large pressure asymmetry caused by a small oblique angle may lead to a large impact acceleration in the direction perpendicular to the longitudinal body axis and cause damage to the neck of the gannet, which partly explains the reason why a gannet performing a high plunge diving in nature enters water with a large oblique angle from the perspective of impact mechanics. The investigation on the plunge-diving behavior in this paper will inspire and promote the development of a biomimetic amphibious robot that transits from air to water with the plunge-diving mode. (paper)

  13. Impact of accelerator based technologies on nuclear fission safety - Share cost project of the European Community

    As a result of the growing interest in Accelerator-Driven Systems (ADS), some European institutes have established a shared cost project in the framework of the European Community. The overall objective of the project is to make an assessment of the possibilities of accelerator-driven hybrid reactor systems from the point of view of safe energy production, minimum waste production and transmutation capabilities

  14. Aitken-based acceleration methods for assessing convergence of multilayer neural networks.

    Pilla, R S; Kamarthi, S V; Lindsay, B G

    2001-01-01

    This paper first develops the ideas of Aitken delta(2) method to accelerate the rate of convergence of an error sequence (value of the objective function at each step) obtained by training a neural network with a sigmoidal activation function via the backpropagation algorithm. The Aitken method is exact when the error sequence is exactly geometric. However, theoretical and empirical evidence suggests that the best possible rate of convergence obtainable for such an error sequence is log-geometric. This paper develops a new invariant extended-Aitken acceleration method for accelerating log-geometric sequences. The resulting accelerated sequence enables one to predict the final value of the error function. These predictions can in turn be used to assess the distance between the current and final solution and thereby provides a stopping criterion for a desired accuracy. Each of the techniques described is applicable to a wide range of problems. The invariant extended-Aitken acceleration approach shows improved acceleration as well as outstanding prediction of the final error in the practical problems considered. PMID:18249928

  15. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO2 concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO2 exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods

  16. Conceptual design study of an accelerator-based actinide transmutation plant with sodium-cooled solid target/core

    Research and development works on accelerator-based nuclear waste transmutation are carried out at JAERI under the national program OMEGA. The preliminary design of the proposed minor actinide transmutation plant with a solid target/core is described. The plant consists of a high intensity proton accelerator, spallation target of solid tungsten, and subcritical core loaded with actinide alloy fuel. Minor actinides are transmuted by fast fission reactions. The target and core are cooled by the forced flow of liquid sodium coolant. Thermal energy is recovered to supply electricity to power its own accelerator. The core with an effective multiplication factor of about 0.9 generates. The thermal power of 820 MW by using a 1.5 GeV proton beam with a current of 39 mA. The average burnup is about 8%, about 250 kg of actinides, after one year operation at an 80% of load factor. With the conventional steam turbine cycle, electric output of about 246 MW is produced. The design of the transmutation plant with sodium-cooled solid target/core is mostly based on the well-established technology of current LMFRs. Advantages and disadvantages of solid target/core are discussed. Recent progress in the development of intense proton accelerator, the development of simulation code system, and the spallation integral experiment is also presented. (author)

  17. On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers

    Treuer, H.; Hoevels, M.; Luyken, K.; Gierich, A.; Kocher, M.; Müller, R.-P.; Sturm, V.

    2000-08-01

    We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.

  18. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy

    Purpose: Gantry sag is one of the well-known sources of mechanical imperfections that compromise the spatial accuracy of radiation dose delivery. The objectives of this study were to quantify the gantry sag on multiple linear accelerators (linacs), to investigate a multileaf collimator (MLC)-based strategy to compensate for gantry sag, and to verify the gantry sag and its compensation with film measurements. Methods: The authors used the Winston-Lutz method to measure gantry sag on three Varian linacs. A ball bearing phantom was imaged with megavolt radiation fields at 10 deg. gantry angle intervals. The images recorded with an electronic portal imaging device were analyzed to derive the radiation isocenter and the gantry sag, that is, the superior-inferior wobble of the radiation field center, as a function of the gantry angle. The authors then attempted to compensate for the gantry sag by applying a gantry angle-specific correction to the MLC leaf positions. The gantry sag and its compensation were independently verified using film measurements. Results: Gantry sag was reproducible over a six-month measurement period. The maximum gantry sag was found to vary from 0.7 to 1.0 mm, depending on the linac and the collimator angle. The radiation field center moved inferiorly (i.e., away from the gantry) when the gantry was rotated from 0 deg. to 180 deg. After the MLC leaf position compensation was applied at 90 deg. collimator angle, the maximum gantry sag was reduced to <0.2 mm. The film measurements at gantry angles of 0 deg. and 180 deg. verified the inferior shift of the radiation fields and the effectiveness of MLC compensation. Conclusions: The results indicate that gantry sag on a linac can be quantitatively measured using a simple phantom and an electronic portal imaging device. Reduction of gantry sag is feasible by applying a gantry angle-specific correction to MLC leaf positions at 90 deg. collimator angle.

  19. Laser-plasma accelerators-based high energy radiation femtochemistry and spatio-temporal radiation biomedicine

    Gauduel, Y. A.; Lundh, O.; Martin, M. T.; Malka, V.

    2012-06-01

    The innovating advent of powerful TW laser sources (~1019 W cm-z) and laser-plasma interactions providing ultra-short relativistic particle beams (electron, proton) in the MeV domain open exciting opportunities for the simultaneous development of high energy radiation femtochemistry (HERF) and ultrafast radiation biomedicine. Femtolysis experiments (Femtosecond radiolysis) of aqueous targets performed with relativistic electron bunches of 2.5-15 MeV give new insights on transient physicochemical events that take place in the prethermal regime of confined ionization tracks. Femtolysis studies emphasize the pre-eminence of ultra-fast quantum effects in the temporal range 10-14 - 10-11 s. The most promising advances of HERF concern the quantification of ultrafast sub-nanometric biomolecular damages (bond weakening and bond breaking) in the radial direction of a relativistic particle beam. Combining ultra-short relativistic particle beams and near-infrared spectroscopic configurations, laser-plasma accelerators based high energy radiation femtochemistry foreshadows the development of real-time radiation chemistry in the prethermal regime of nascent ionisation clusters. These physico-chemical advances would be very useful for future developments in biochemically relevant environments (DNA, proteins) and in more complex biological systems such as living cells. The first investigation of single and multiple irradiation shots performed at high energy level (90 MeV) and very high dose rate, typically 1013 Gy s-1, demonstrates that measurable assessments of immediate and reversible DNA damage can be explored at single cell level. Ultrafast in vivo irradiations would permit the development of bio-nanodosimetry on the time scale of molecular motions, i.e. angstrom or sub-angstrom displacements and open new perspectives in the emerging domain of ultrafast radiation biomedicine such as pulsed radiotherapy.

  20. Linear Accelerator-Based Radiosurgery Alone for Arteriovenous Malformation: More Than 12 Years of Observation

    Matsuo, Takayuki, E-mail: takayuki@nagasaki-u.ac.jp; Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi

    2014-07-01

    Purpose: Although radiosurgery is an accepted treatment method for intracranial arteriovenous malformations (AVMs), its long-term therapeutic effects have not been sufficiently evaluated, and many reports of long-term observations are from gamma-knife facilities. Furthermore, there are few reported results of treatment using only linear accelerator (LINAC)-based radiosurgery (LBRS). Methods and Materials: Over a period of more than 12 years, we followed the long-term results of LBRS treatment performed in 51 AVM patients. Results: The actuarial obliteration rates, after a single radiosurgery session, at 3, 5, 10, and 15 years were 46.9%, 54.0%, 64.4%, and 68.0%, respectively; when subsequent radiosurgeries were included, the rates were 46.9%, 61.3%, 74.2%, and 90.3%, respectively. Obliteration rates were significantly related to target volumes ≥4 cm{sup 3}, marginal doses ≥12 Gy, Spetzler-Martin grades (1 vs other), and AVM scores ≥1.5; multivariate analyses revealed a significant difference for target volumes ≥4 cm{sup 3}. The postprocedural actuarial symptomatic radiation injury rates, after a single radiation surgery session, at 5, 10, and 15 years were 12.3%, 16.8%, and 19.1%, respectively. Volumes ≥4 cm{sup 3}, location (lobular or other), AVM scores ≥1.5, and the number of radiosurgery were related to radiation injury incidence; multivariate analyses revealed significant differences associated with volumes ≥4 cm{sup 3} and location (lobular or other). Conclusions: Positive results can be obtained with LBRS when performed with a target volume ≤4 cm{sup 3}, an AVM score ≤1.5, and ≥12 Gy radiation. Bleeding and radiation injuries may appear even 10 years after treatment, necessitating long-term observation.

  1. SU-E-T-528: Robustness Evaluation for Fiducial-Based Accelerated Partial Breast Proton Therapy

    Zhao, L; Rana, S; Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States)

    2014-06-01

    Purpose: To investigate the robustness of the proton treatment plans in the presence of rotational setup error when patient is aligned with implanted fiducials. Methods: Five Stage I invasive breast cancer patients treated with the APBP protocol (PCG BRE007-12) were studied. The rotational setup errors were simulated by rotating the original CT images around the body center clockwise and counterclockwise 5 degrees (5CW and 5CCW). Manual translational registration was then performed to match the implanted fiducials on the rotated images to the original dataset. Patient contours were copied to the newly created CT set. The original treatment plan was applied to the new CT dataset with the beam isocenter placed at the geometrical center of PTV. The dose distribution was recalculated for dosimetric parameters comparison. Results: CTV and PTV (D95 and V95) coverages were not significantly different between the two simulated plans (5CW and 5CCW) and the original plan. PTV D95 and CTV D95 absolute difference among the three plans were relatively small, with maximum changes of 0.28 CGE and 0.15 CGE, respectively. PTV V95 and CTV V95 absolute differences were 0.79% and 0.48%. The dosage to the thyroid, heart, contralateral breast and lung remained zero for all three plans. The Dmax and Dmean to the volume of ipsilateral breast excluding CTV were compared, with maximum difference values of 1.02 CGE for Dmax and 3.56 CGE for Dmean. Ipsilateral lung Dmean maintained no significant changes through the three plan comparison, with the largest value 0.32 CGE. Ipsilateral lung Dmax was the most sensitive parameter to this simulation study, with a maximum difference at 20.2 CGE. Conclusion: Our study suggests that fiducial-based Accelerated Partial Breast Proton Therapy is robust with respect to +/− 5 degree patient setup rotational errors, as long as the internal fiducial markers are used for patient alignment.

  2. Report of the workshop on accelerator-based atomic and molecular science

    This Workshop, held in New London, NH on July 27-30, 1980, had a registration of 43, representing an estimated one-third of all principal investigators in the United States in this research subfield. The workshop was organized into 5 working groups for the purpose of (1) identifying some vital physics problems which experimental and theoretical atomic and molecular science can address with current and projected techniques; (2) establishing facilities and equipment needs required to realize solutions to these problems; (3) formulating suggestions for a coherent national policy concerning this discipline; (4) assessing and projecting the manpower situation; and (5) evaluating the relations of this interdisciplinary science to other fields. Recommedations deal with equipment and operating costs for small accelerator laboratories, especially at universities; instrumentation of ion beam lines dedicated to atomic and molecular science at some large accelerators; development of low-velocity, high charge-state ion sources; synchrotron light sources; improvement or replacement of tandem van de Graaff accelerators; high-energy beam lines for atomic physics; the needs for postdoctoral support in this subfield; new accelerator development; need for representatives from atomic and molecular science on program committees for large national accelerator facilities; and the contributions the field can make to applied physics problems

  3. Particle acceleration

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  4. Web-based information sharing system for J-PARC accelerator operation

    A tool for browsing the accelerator operation history has been developed in the Web server so that information could be shared easily regardless of the platform. The following be cited as major services that run in the Web server currently. 1) Archive Data Viewer ... Reading of data from EPICS Archive System collecting the signal of 100000 points. 2) File Uploader ... Aggregation of related documents files, browse. 3) Retrieval system using RDB ... IP address search, EPICS record search, Screen shot search. 4) Electronic operation log system ... Accelerator operation log, log search. 5) Control Wiki ... Accelerator control information management system that employs MediaWiki. I will report on the operational status of the above. (author)

  5. Experimental study on resonance relativistic SHF generators on the base of linear induction electron accelerator

    The results of studies on relativistic SHF-generators - orotron and gyrotron for obtaining data on the quality of a high-current electron beam shaped in the section of a linear induction accelerator are given. Axisymmetric resonators as sections of weak-irregular waveguides were used in both generators. Stable generation of short-wave radiation of 15-20 MW at the efficiency of 5-7% SHF pulse duration of 50 ns was obtained in the orotron at the wave length of 8.5 mm and current of 600 A. Stable generation of 7-10 MW SHF-radiation at the efficiency of 3-5% and pulse duration of 150 ns was observed in the gyrotron at the wave length of 12 mm. Under further acceleration in the following sections of the accelerator the electron beam may be used for obtaining radiation of shorter waves

  6. "Growing your own" nursing staff with a collaborative accelerated second-degree, web-based program.

    Allen, Patricia; Vandyke, Yvonne; Armstrong, Myrna L

    2010-03-01

    A viable approach to addressing the nursing shortage has been the advent of accelerated models of nursing education (205 programs in 2007) to produce new baccalaureate-prepared nurses. This article provides a brief description of an online accelerated second-degree program and the accelerated students, followed by a discussion of the important collaborative role that hospital educators provide, along with nursing faculty, in the development of coaches for students' clinical experiences. Graduates of the program report feeling well prepared for the clinical arena after participating in this 12-month coach-student-faculty triad. Employment opportunities after graduation in the student's assigned clinical facility have led to an exciting outcome of "growing your own" nursing staff. Timely communication remains important among students, faculty, coaches, and the health care facility. PMID:20229962

  7. The Argonne ACWL, a potential accelerator-based neutron source for BNCT

    THE CWDD (Continuous Wave Deuterium Demonstrator) accelerator was designed to accelerate 80 mA cw of D- to 7.5 MeV. Most of the hardware for the first 2 MeV was installed at Argonne and major subsystems had been commissioned when program funding from the Ballistic Missile Defense Organization ended in October 1993. Renamed the Argonne Continuous Wave Linac (ACWL), we are proposing to complete it to accelerate either deuterons to 2 MeV or protons to 3-3.5 MeV. Equipped with a beryllium or other light-element target, it would make a potent source of neutrons (on the order of 1013 n/s) for BNCT and/or neutron radiography. Project status and proposals for turning ACWL into a neutron source are reviewed, including the results of a computational study that was carried out to design a target/moderator to produce an epithermal neutron beam for BNCT. (orig.)

  8. High Accuracy Speed-fed Grating Angular Acceleration Measurement System Based on FPGA

    Hao Zhao

    2012-09-01

    Full Text Available Shaft angular acceleration is one of the most important parameter of rotary machines, the error of angular acceleration increased when the shaft speed up. For this problem, a new high accuracy angular acceleration measurement system is presented, the principle of measurement is self-regulating the period of speed sampling signal according to the proportion of the shaft speed up. This measurement system combined FPGA and SCM, the speed of shaft is received by the timer of SCM responding the interrupts of FPGA, and then set the parameter of frequency divider in FPGA, so as to make the period of speed sampling consistent with the proportion of the speed up. This measurement system could overcome the error when system speed up according to the experiment.

  9. Switching the JLab Accelerator Operations Environment from an HP-UX Unix-based to a PC/Linux-based environment

    The Jefferson Lab Accelerator Controls Environment (ACE) was predominantly based on the HP-UX Unix platform from 1987 through the summer of 2004. During this period the Accelerator Machine Control Center (MCC) underwent a major renovation which included introducing Redhat Enterprise Linux machines, first as specialized process servers and then gradually as general login servers. As computer programs and scripts required to run the accelerator were modified, and inherent problems with the HP-UX platform compounded, more development tools became available for use with Linux and the MCC began to be converted over. In May 2008 the last HP-UX Unix login machine was removed from the MCC, leaving only a few Unix-based remote-login servers still available. This presentation will explore the process of converting an operational Control Room environment from the HP-UX to Linux platform as well as the many hurdles that had to be overcome throughout the transition period

  10. Minimum-acceleration Trajectory Optimization for Humanoid Manipulator Based on Differential Evolution

    Ren Ziwu

    2016-04-01

    Full Text Available A humanoid manipulator produces significantly reactive forces against a humanoid body when it operates in a rapid and continuous reaction environment (e.g., playing baseball, ping-pong etc.. This not only disturbs the balance and stability of the humanoid robot, but also influences its operation precision. To solve this problem, a novel approach, which is able to generate a minimum-acceleration and continuous acceleration trajectory for the humanoid manipulator, is presented in this paper. By this method, the whole trajectory of humanoid manipulation is divided into two processes, i.e., the operation process and the return process. Moreover, the target operation point is considered as a particular point that should be passed through. As such, the trajectory of each process is described through a quartic polynomial in the joint space, after which the trajectory planning problem for the humanoid manipulator can be formulated as a global constrained optimization problem. In order to alleviate the reactive force, a fitness function that aims to minimize the maximum acceleration of each joint of the manipulator is defined, while differential evolution is employed to determine the joint accelerations of the target operation point. Thus, a trajectory with a minimum-acceleration and continuous acceleration profile is obtained, which can reduce the effect on the body and be favourable for the balance and stability of the humanoid robot to a certain extent. Finally, a humanoid robot with a 7-DOF manipulator for ping-pong playing is employed as an example. Simulation experiment results show the effectiveness of this method for the trajectory planning problem being studied.

  11. Precision master trigger system for SLC based on the accelerator rf drive system

    A new trigger system consisting of a single 476 MHz rf doublet pulse superimposed on the main 476 MHz rf Drive Line signal that transits the 3 km accelerator has been implemented and is working well. This paper describes the general concept of this system, outlines the operation of the main master trigger generator, the fiducial (476 MHz doublet) generator, and the fiducial pickoff system. A companion paper by Paffrath et al describes the counter electronics that produces precision timed triggers for all SLC operations along the accelerator

  12. Accelerated Expansion of the universe based on Particle Creation-Destruction Processes in FRW universes

    Balfagon, Alberto C

    2015-01-01

    Particle creation has been considered as a possible justification for the accelerated expansion of the universe obeying the second law of thermodynamics. This paper introduces the possibility that the destruction of baryonic and/or dark matter particles also verifies the second law of thermodynamics thanks to a particle exchange with dark energy. General equations for the variation of the number of particles in accelerated universes have been obtained. Finally, a new model of the universe has been developed which predicts dark energy properties as well as particle exchange processes between dark energy and baryonic and/or dark matter.

  13. Simulation studies of laser wakefield acceleration based on typical 100 TW laser facilities

    LI Da-Zhang; GAO Jie; ZHU Xiong-Wei; HE An

    2011-01-01

    In this paper,2-D Particle-In-Cell simulations are made for Laser Wakefield Accelerations(LWFA).As in a real experiment,we perform plasma density scanning for typical 100 TW laser facilities.Several basic laws for self-injected acceleration in a bubble regime are presented.According to these laws,we choose a proper plasma density and then obtain a high quality quasi-monoenergetic electron bunch with arms energy of more than 650 MeV and a bunch length of less than 1.5 μn.

  14. Installation for electron beam sterilization based on 3 MeV linear accelerator

    Characteristics and short description of the sterilizing installation with the energy 3 MeV of accelerated electrons and power 2.5 kW in beam are presented. New compact radiation installation for the sterilization of food, medical items, post packages consists of the linear accelerator UEhl-3-2.5 with scanning device and irradiation chamber with equipment for transportation of irradiated objects. Feature of the installation consists of the presence of local radiation shield that lowering radiation level at the distance of 100 mm from outside surface of the installation to 1 μSv/h

  15. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength and hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, offer greater phase sensitivity and straightforward analysis, improving shot-to-shot plasma density diagnostics.

  16. Can Accelerators Accelerate Learning?

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  17. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  18. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  19. Study on the production of medical RIs like 99Mo based on accelerator neutrons generated by C(d,n))

    This paper introduces the development state of the manufacturing method for 99mTc that satisfies the conditions for radioactive preparations. In this process, using the high-speed neutrons obtained in C(d,n) reaction due to the deuterons of approximately 40 MeV from an accelerator, 99Mo is obtained based on 100Mo(n,2n) reaction. The authors considered cyclotron as a prototype accelerator, and used a thermal separation process to separate/purify and produce the quality 99mTc from the generated 99Mo with low specific radioactivity. This paper also introduces the attractiveness of fast neutrons as 'new neutron source to supplement reactor neutrons,' by referring to the case of the production of 67Cu expected as therapeutic isotope, based on 68Zn(n,x)67Cu reaction. (A.O.)

  20. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range

  1. Investigation of aluminised steel as a barrier to tritium using accelerator-based and hydrogen permeation techniques

    Aluminised steel has been proposed as a barrier to tritium permeation in fusion reactors. The properties of these materials as tritium barriers have been studied using accelerator-based techniques and hydrogen permeation methods. The aluminide layers has been characterised by Rutherford backscattering spectroscopy (RBS) and nuclear reaction analysis (NRA) techniques using the 3 MV Dynamitron accelerator based at the School of Physics and Space Research Radiation Centre. The effectiveness of the aluminide layer as a tritium barrier has been measured directly by a conventional permeation apparatus over a range of temperatures. The effect of high temperatures on the structure of the aluminide layer has been examined. Any correlation between the composition of the layer and its effectiveness as a tritium barrier is also discussed. (orig.)

  2. Data from accelerator-based experiments of relevance to the air shower observations

    Itow Yoshitaka

    2013-06-01

    Full Text Available Implications of air shower of ultra high energy cosmic rays (UHECRs need precise knowledge on hadronic interactions at very high energy. From this point of view recent LHC data have great impacts on the UHECR observation. Here various data from accelerator experiments including recent LHC data, of relevance to the air shower measurements, are briefly overviewed.

  3. The time-of-flight epithermal neutron spectrum measurement from accelerator based BNCT facility

    Results of epithermal neutrons spectrum measurement by time-of-flight method for different beam shaping assembly designed for BNCT purposes are presented. Discuss method to realize time-of-flight measurement at accelerator. Results looks are important for beam shaping assembly optimization and accurate and reliable treatment planning. (author)

  4. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  5. An Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method

    Park, Dong-Sam; Yun, Dae-Jin; Cho, Myeong-Woo; Shin, Bong-Cheol

    2007-01-01

    This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditio...

  6. An acceleration technique for 2D MOC based on Krylov subspace and domain decomposition methods

    Highlights: → We convert MOC into linear system solved by GMRES as an acceleration method. → We use domain decomposition method to overcome the inefficiency on large matrices. → Parallel technology is applied and a matched ray tracing system is developed. → Results show good efficiency even in large-scale and strong scattering problems. → The emphasis is that the technique is geometry-flexible. - Abstract: The method of characteristics (MOC) has great geometrical flexibility but poor computational efficiency in neutron transport calculations. The generalized minimal residual (GMRES) method, a type of Krylov subspace method, is utilized to accelerate a 2D generalized geometry characteristics solver AutoMOC. In this technique, a form of linear algebraic equation system for angular flux moments and boundary fluxes is derived to replace the conventional characteristics sweep (i.e. inner iteration) scheme, and then the GMRES method is implemented as an efficient linear system solver. This acceleration method is proved to be reliable in theory and simple for implementation. Furthermore, as introducing no restriction in geometry treatment, it is suitable for acceleration of an arbitrary geometry MOC solver. However, it is observed that the speedup decreases when the matrix becomes larger. The spatial domain decomposition method and multiprocessing parallel technology are then employed to overcome the problem. The calculation domain is partitioned into several sub-domains. For each of them, a smaller matrix is established and solved by GMRES; and the adjacent sub-domains are coupled by 'inner-edges', where the trajectory mismatches are considered adequately. Moreover, a matched ray tracing system is developed on the basis of AutoCAD, which allows a user to define the sub-domains on demand conveniently. Numerical results demonstrate that the acceleration techniques are efficient without loss of accuracy, even in the case of large-scale and strong scattering

  7. Accelerating System Verilog UVM Based VIP to Improve Methodology for Verification of Image Signal Processing Designs Using HW Emulator

    Abhishek Jain

    2013-12-01

    Full Text Available In this paper we present the development of Acceler atable UVCs from standard UVCs in System Verilog and their usage in UVM based Verification Environme nt of Image Signal Processing designs to increase run time performance. This paper covers development of Acceleratable UVCs from standard UVCs for internal control and data buses of ST imaging group by partitioning of transaction-level components an d cycle-accurate signal-level components between the software simulator and hardware accelerator respectively. Standard Co-Emulation API: Modeling I nterface (SCE-MI compliant, transaction-level communications link between test benches running on a host system and Emulation machine is established . Accelerated Verification IPs are used at UVM based Verification Environment of Image Signal Processing designs both with simulator and emulator as UVM acc eleration is an extension of the standard simulatio n- only UVM and is fully backward compatible with it. Acceleratable UVCs significantly reduces developmen t schedule risks while leveraging transaction models used during simulation. In this paper, we discuss our experiences on UVM ba sed methodology adoption on TestBench-Xpress (TBX based technology step by step. We are also do ing comparison between the run time performance results from earlier simulator-only environment and the new, hardware-accelerated environment. Althoug h this paper focuses on Acceleratable UVC’s developme nt and their usage for image signal processing designs. Same concept can be extended for non-image signal processing designs.

  8. Haste makes waste: accelerated molt adversely affects the expression of melanin-based and depigmented plumage ornaments in house sparrows.

    Csongor I Vágási

    Full Text Available BACKGROUND: Many animals display colorful signals in their integument which convey information about the quality of their bearer. Theoretically, these ornaments incur differential production and/or maintenance costs that enforce their honesty. However, the proximate mechanisms of production costs are poorly understood and contentious in cases of non-carotenoid-based plumage ornaments like the melanin-based badge and depigmented white wing-bar in house sparrows Passer domesticus. Costly life-history events are adaptively separated in time, thus, when reproduction is extended, the time available for molt is curtailed and, in turn, molt rate is accelerated. METHODOLOGY/PRINCIPAL FINDINGS: We experimentally accelerated the molt rate by shortening the photoperiod in order to test whether this environmental constraint is mirrored in the expression of plumage ornaments. Sparrows which had undergone an accelerated molt developed smaller badges and less bright wing-bars compared to conspecifics that molted at a natural rate being held at natural-like photoperiod. There was no difference in the brightness of the badge or the size of the wing-bar. CONCLUSIONS/SIGNIFICANCE: These results indicate that the time available for molt and thus the rate at which molt occurs may constrain the expression of melanin-based and depigmented plumage advertisements. This mechanism may lead to the evolution of honest signaling if the onset of molt is condition-dependent through the timing of and/or trade-off between breeding and molt.

  9. Plasma accelerators

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  10. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  11. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B.; Jia, Xun

    2015-10-01

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum

  12. Linear Accelerators

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  13. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes.

    Cosgriff-Hernandez, Elizabeth; Tkatchouk, Ekaterina; Touchet, Tyler; Sears, Nick; Kishan, Alysha; Jenney, Christopher; Padsalgikar, Ajay D; Chen, Emily

    2016-07-01

    Although silicone-based polyurethanes have demonstrated increased oxidative stability, there have been conflicting reports of the long-term hydrolytic stability of Optim™ and PurSil(®) 35 based on recent temperature-accelerated hydrolysis studies. The goal of the current study was to identify in vitro-in vivo correlations to determine the relevance of this accelerated in vitro model for predicting clinical outcomes. Temperature-accelerated hydrolytic aging of three commonly used cardiac lead insulation materials, Optim™, Elasthane™ 55D, Elasthane™ 80A, and a related silicone-polyurethane, PurSil(®) 35, was performed. After 1 year at 85°C, similar losses in Mn and Mz were observed for the poly(ether urethanes), but an increase in Mz loss as compared to Mn loss was observed for the silicone-based polyurethanes. A similar trend of increased Mz loss as compared to Mn loss was observed in explanted Optim™ leads after 2-3 years; however, no statistically significant Mn loss was detected between 2-3 and 7-8 years of implantation. Given this preferential loss of high molecular weight chains, it was hypothesized that the observed differences between the polyurethanes were due to allophanate dissociation rather than backbone chain scission. Following full dissociation of the small percentage of allophanates in vivo, the observed molecular weight stability and proven clinical performance of Optim™ was attributed to the well-documented stability of the urethane bond under physiological conditions. This allophanate dissociation reaction is incompatible with the first order mechanism proposed in previous temperature-accelerated hydrolysis studies and may be the reason for the model's inaccurate prediction of significant and progressive molecular weight loss in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1805-1816, 2016. PMID:26990709

  14. Accelerator development in BARC

    Charged particle accelerators have played crucial role in the field of both basic and applied sciences. This has been possible because the accelerators have been extensively utilized from unraveling the secrets of nature to diverse applications such as implantation, material modification, medical diagnostics and therapy, nuclear energy and clean air and water. The development of accelerators in BARC can be categorized in two broad categories namely proton and heavy ion based accelerators and electron based accelerators. The heavy ion accelerators with sufficiently high energies are currently being used for conducting frontline nuclear and allied research whereas the electron accelerators are being routinely used for various industrial applications. Recently, there is a strong interest for developing the high energy and high intensity accelerators due to their possibility of effective utilization towards concept of energy amplification (Accelerator Driven System), incineration nuclear waste and transmutation. This talk will discuss details of the accelerator development program in BARC with particular emphasis on the recent development at Low Energy High Intensity Proton Accelerator (LEHIPA) Facility in Ion Accelerator Development Division, BARC. (author)

  15. Disturbance rejection control based on acceleration projection method for walking robots

    Xu-yang WANG; Zhao-hong XU; Tian-sheng LU

    2008-01-01

    This paper presents a disturbance rejection scheme for walking robots under unknown external forces and moments.The disturbance rejection strategy,which combines the inverse dynamics control with the acceleration projection onto the ZMP (zero moment point)-plane,can ensure the overall dynamic stability of the robot during tracking the pre-computed trajectories.Under normal conditions,I.e.,the system is dynamically balanced,a primary inverse dynamics control is utilized.In the case that the system becomes unbalanced due to external disturbances,the acceleration projection control(APC)loop,will be activated to keep the dynamic stability of the walking robot through modifying the input torques.The preliminary experimental results on a robot leg demonstrate that the proposed method can actually make the robot keep a stable motion under unknown external per-turbations.

  16. Operating experience with a new accelerator control system based upon microprocessors

    This paper describes the design and operating experience with a high performance control system tailored to the requirements of the SuperHILAC accelerator. A large number (20) of the latest 16-bit microcomputer boards are used in a parallel-distributed manner to get a high system bandwidth. Because of the high bandwidth, software costs and complexity are significantly reduced. The system by its very nature and design is easily upgraded and repaired. Dynamically assigned and labeled knobs, together with touch-panels, allow a flexible and efficient operator interface. An X-Y vector graphics system provides for display and labeling of real-time signals as well as general plotting functions. This control system allows attachment of a powerful auxiliary computer for scientific processing with access to accelerator parameters

  17. A gait abnormality measure based on root mean square of trunk acceleration

    Sekine, Masaki; Tamura, Toshiyo; Yoshida, Masaki; Suda, Yuki; Kimura, Yuichi; Miyoshi, Hiroaki; Kijima, Yoshifumi; Higashi, Yuji; Fujimoto, Toshiro

    2013-01-01

    Background Root mean square (RMS) of trunk acceleration is seen frequently in gait analysis research. However, many studies have reported that the RMS value was related to walking speed. Therefore, the relationship between the RMS value and walking speed should be considered when the RMS value is used to assess gait abnormality. We hypothesized that the RMS values in three sensing axes exhibit common proportions for healthy people if they walk at their own preferred speed and that the RMS pro...

  18. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations

    Skjøth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars;

    2010-01-01

    Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large...... gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles....

  19. Well-To-Wheel based fiscal systems. Can a WTW fiscal basis accelerate the introduction of alternative fuels?

    This report explores to which extent alternative, (partially) Well-To-Wheel based fiscal systems may accelerate the introduction of low-carbon fuels and vehicles. The design of two alternative fiscal systems is described, as well as the challenges that any fiscal system must meet. The alternative systems are compared to the existing fiscal system with regard to (1) the extent to which they honour the 'polluter pays' principle, (2) the extent to which they are expected to accelerate the introduction of (alternative) gaseous fuels, liquid biofuels, and zero-emission vehicles, (3) their expected impact on the vehicle stock, and (4) a number of (undesired) side-effects. The results show that the alternative systems provide a stronger fiscal support for some alternative fuels and vehicles, but not for all.

  20. Assessment of radiation safety of a 4 MV Industrial Accelerator Facility using a TLD Based Passive Area Monitor

    Radiation levels around radiography enclosures where objects to be radiographed are carried into the radiography room by a conveyor belt system moving through a hatch provided at the entrance door, have been of significant concern to plant operators present in the immediate vicinity of the installation. Personal involved in the loading-unloading of jobs on the conveyor belt system and other operators of the plant remain stationed at these locations. Our present study is aimed at estimation of radiation levels at various locations in the immediate vicinity of a 4 MV industrial linear accelerator installation using passive area monitors based on CaSO4: Dy, Teflon TLD disc. The radiation levels measured using (i) passive area monitor and (ii) a portable dose rate meter, were found to be significantly lower than the values calculated for the various locations in the accelerator room. (author)

  1. Accelerator-based analytical technique in the evaluation of some Nigeria’s natural minerals: Fluorite, tourmaline and topaz

    Olabanji, S. O.; Ige, O. A.; Mazzoli, C.; Ceccato, D.; Akintunde, J. A.; De Poli, M.; Moschini, G.

    2005-10-01

    For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.

  2. Accelerator-based analytical technique in the evaluation of some Nigeria's natural minerals: Fluorite, tourmaline and topaz

    Olabanji, S.O. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), viale dell' Universita 2, 35020 Legnaro, Padova (Italy)]. E-mail: skayode2002@yahoo.co.uk; Ige, O.A. [Natural History Museum, Obafemi Awolowo University, Ile-Ife (Nigeria); Mazzoli, C. [Dipartimento di Mineralogia e Petrologia, Universita di Padova, 35100 Padova (Italy); Ceccato, D. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35100 Padova (Italy); Akintunde, J.A. [CERD, Obafemi Awolowo University, Ile-Ife (Nigeria); De Poli, M. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Moschini, G. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35100 Padova (Italy)

    2005-10-15

    For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.

  3. Current Outlook for 99mTc Distribution Based on Electron Accelerator Production

    Benjamin L. Nelson; W. David Bence; John R. Snyder

    2007-07-01

    In 1999 a practical example illustrating the economical and reliable production of 99mTc from an accelerator was developed. It included the realistic costs involved in establishing and operating the accelerator facility and the distribution of the 99mTc to regions in Florida. However, the technology was never commercialized. Recent political and economic developments prompted this second look at accelerator produced 99mTc. The practicality of this system in 2007 dollars was established to account for inflation and current demand. The same distribution model and production schedule from the Global ‘99 study were used. Numbers were found using current rates and costs where possible and indexed estimations when necessary. Though several of the costs increased significantly and the sale price remains at approximately 35¢/mCi, the unit cost of 99mTc throughput only increased from 12.8¢/mCi to 15.0¢/mCi or approximately 17.2% from 1999 to 2007 thus continuing to be economically viable. This study provides ground work for creating business development models at additional locations within the U.S.

  4. Vibration-Based Method Developed to Detect Cracks in Rotors During Acceleration Through Resonance

    Sawicki, Jerzy T.; Baaklini, George Y.; Gyekenyesi, Andrew L.

    2004-01-01

    In recent years, there has been an increasing interest in developing rotating machinery shaft crack-detection methodologies and online techniques. Shaft crack problems present a significant safety and loss hazard in nearly every application of modern turbomachinery. In many cases, the rotors of modern machines are rapidly accelerated from rest to operating speed, to reduce the excessive vibrations at the critical speeds. The vibration monitoring during startup or shutdown has been receiving growing attention (ref. 1), especially for machines such as aircraft engines, which are subjected to frequent starts and stops, as well as high speeds and acceleration rates. It has been recognized that the presence of angular acceleration strongly affects the rotor's maximum response to unbalance and the speed at which it occurs. Unfortunately, conventional nondestructive evaluation (NDE) methods have unacceptable limits in terms of their application for online crack detection. Some of these techniques are time consuming and inconvenient for turbomachinery service testing. Almost all of these techniques require that the vicinity of the damage be known in advance, and they can provide only local information, with no indication of the structural strength at a component or system level. In addition, the effectiveness of these experimental techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the use of vibration monitoring along with vibration analysis has been receiving increasing attention.

  5. Geometry navigation acceleration based on automatic neighbor search and oriented bounding box in Monte Carlo simulation

    Geometry navigation plays the most fundamental role in Monte Carlo particle transport simulation. It's mainly responsible for locating a particle inside which geometry volume it is and computing the distance to the volume boundary along the certain particle trajectory during each particle history. Geometry navigation directly affects the run-time performance of the Monte Carlo particle transport simulation, especially for large scale complicated systems. Two geometry acceleration algorithms, the automatic neighbor search algorithm and the oriented bounding box algorithm, are presented for improving geometry navigation performance. The algorithms have been implemented in the Super Monte Carlo Calculation Program for Nuclear and Radiation Process (SuperMC) version 2.0. The FDS-II and ITER benchmark models have been tested to highlight the efficiency gains that can be achieved by using the acceleration algorithms. The exact gains may be problem dependent, but testing results showed that runtime of Monte Carlo simulation can be considerably reduced 50%∼60% with the proposed acceleration algorithms. (author)

  6. Current Outlook for 99mTc Distribution Based on Electron Accelerator Production

    In 1999 a practical example illustrating the economical and reliable production of 99mTc from an accelerator was developed. It included the realistic costs involved in establishing and operating the accelerator facility and the distribution of the 99mTc to regions in Florida. However, the technology was never commercialized. Recent political and economic developments prompted this second look at accelerator produced 99mTc. The practicality of this system in 2007 dollars was established to account for inflation and current demand. The same distribution model and production schedule from the Global 1999 study were used. Numbers were found using current rates and costs where possible and indexed estimations when necessary. Though several of the costs increased significantly and the sale price remains at approximately 35 cents/mCi, the unit cost of 99mTc throughput only increased from 12.8 cents/mCi to 15.0 cents/mCi or approximately 17.2% from 1999 to 2007 thus continuing to be economically viable. This study provides ground work for creating business development models at additional locations within the U.S

  7. International panel on 14 MeV intense neutron source based on accelerators for fusion material study

    The International Panel on 14 MeV Intense Neutron Source Based on Accelerators for Fusion Materials Study was held January 14--16, 1991, at the Department of Nuclear Engineering, the University of Tokyo. The panel was attended by 38 participants, including 9 from the US, 3 from the EC, and 1 from Canada. This meeting had initially been planned as a bilateral US-Japan workshop, but was expanded to international participation in response to the recently issued FPAC report in the US and the FPEB report in the EC. Both of these documents proposed schedules for the DEMO fusion reactor that present a challenge for the materials community, and restated the importance of the required materials development and the necessity of an international 14 MeV neutron source for the development of the magnetic fusion energy option. The scope of the panel was restricted to source concepts judged to be practical within the next five years little further development. The goals of the panel were to reach a consensus on a practical approach, to collect information on accelerator based concepts, to list critical issues, and to produce tentative schedules for design and development of a neutron source. Most of the panel presentations and discussions were on the d-Li approach to neutron source. The status of the FMI project at its termination and the advance in accelerator technology and target concepts since the time were summarized. No feasibility questions remaining with this approach were seen, but high power beam-on-target verification tests and demonstration of accelerator performance limits remain to be accomplished

  8. PREFACE: 6th Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS11)

    Lupi, Stefano; Perucchi, Andrea

    2012-05-01

    This volume of Journal of Physics: Conference Series is dedicated to a subset of papers related to the work presented at the 6th edition of the international Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS), held in Trieste, Italy, September 4-8 2011. Previous editions of the conference were held in Porquerolles (France), Lake Tahoe (USA), Rathen (Germany), Awaji (Japan), and Banff (Canada). This edition was organized and chaired by Stefano Lupi (Roma La Sapienza) and co-chaired by Andrea Perucchi (Elettra), with the support of the Italian Synchrotron Light Laboratory ELETTRA, which was honored to host the WIRMS workshop in its tenth anniversary. The 6th WIRMS edition addressed several different topics, ranging from biochemistry to strongly correlated materials, from geology to conservation science, and from forensics to the study of cometary dusts. Representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities. This edition was attended by 88 participants, including representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities, who enjoyed the stimulating scientific presentations, several detailed discussions, and the beautiful weather and scenery of the Trieste gulf. Participants came from 16 different nations and four continents, including many young scientists, six of which were supported by the organizers. There were 45 scientific talks divided in 11 sessions: Facilities, Microspectroscopy (I, II, III), Time-Resolved Spectroscopies, Extreme Conditions, Condensed Matter, Near-Field, Imaging, THz Techniques and High-Resolution Spectroscopy. 37 posters were also presented at two very lively evening poster sessions. We would like to use the opportunity of writing this preface to thank all the participants of the workshop for the very high level of their scientific contribution and for the very friendly atmosphere

  9. Power vircathor based on iron-less linear induction electron accelerator

    The design of the power vircathor, representing a UHF generator on the virtual cathode basis, is described. The power vircathor is realized for the first time on the basis of an iron-less linear induction accelerator on the radial forming lines. The vircathor contains the coaxial cathode and anode, the gas-controlled discharge and the inductors unit. The results of computer modeling of the vircathor geometry and its experimental optimization are presented. The following vircathor parameters: the cathode current of 35 kA, the UHF pulse duration of 18 ns and the peak capacity above 500 MW are obtained in the course of the performed experiments

  10. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions

    The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium

  11. Accelerator-based research activities at 'Centro Nacional de Aceleradores', Seville (Spain)

    Respaldiza, M.A. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Departmento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Sevilla (Spain)], E-mail: respaldiza@us.es; Ager, F.J. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Departmento de Fisica Aplicada I, Universidad de Sevilla, Sevilla (Spain); Carmona, A. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Laboratoire de Chimie Nucleaire Analytique et Bioenvironnementale, Universite de Bordeaux (France); Ferrer, J. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Garcia-Leon, M.; Garcia-Lopez, J. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Departmento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Sevilla (Spain); Garcia-Orellana, I. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Gomez-Tubio, B. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Departmento de Fisica Aplicada III, Universidad de Sevilla, Sevilla (Spain); Morilla, Y. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Ontalba, M.A. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Departmento de Fisica, Universidad de Extremadura, Caceres (Spain); Ortega-Feliu, I. [Centro Nacional de Aceleradores, Avd. Thomas A. Edison 7, E-41092 Sevilla (Spain); Departmento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Sevilla (Spain)

    2008-05-15

    In February 1998, almost 10 years ago, the set-up of the first IBA (ion beam analysis) facility in Spain took place with the arrival of a 3 MV tandem accelerator [J. Garcia-Lopez, F.J. Ager, M. Barbadillo-Rank, F.J. Madrigal, M.A. Ontalba, M.A. Respaldiza, M.D. Ynsa, Nucl. Instr. and Meth. B 161-163 (2000) 1137]. Since then, an intensive research program using IBA techniques has been carried out. Subsequently, a cyclotron for 18 MeV protons has been also installed at the 'Centro Nacional de Aceleradores' (CNA), devoted mainly to isotope production for PET (positron emission tomography) techniques, but possibly applied to material analysis and damage studies on a dedicated beam line. Moreover, a 1 MV tandem has been recently installed for AMS (accelerator mass spectrometry) {sup 14}C dating and environmental research with other isotopes. In the present paper we describe the new facilities and the developments of the 3 MV tandem beam lines occurred during the past years, as well as some examples of the most recent research activities in our Center in the fields of Material Science, Archaeometry, Biomedicine and Environment.

  12. Accelerator-based research activities at 'Centro Nacional de Aceleradores', Seville (Spain)

    In February 1998, almost 10 years ago, the set-up of the first IBA (ion beam analysis) facility in Spain took place with the arrival of a 3 MV tandem accelerator [J. Garcia-Lopez, F.J. Ager, M. Barbadillo-Rank, F.J. Madrigal, M.A. Ontalba, M.A. Respaldiza, M.D. Ynsa, Nucl. Instr. and Meth. B 161-163 (2000) 1137]. Since then, an intensive research program using IBA techniques has been carried out. Subsequently, a cyclotron for 18 MeV protons has been also installed at the 'Centro Nacional de Aceleradores' (CNA), devoted mainly to isotope production for PET (positron emission tomography) techniques, but possibly applied to material analysis and damage studies on a dedicated beam line. Moreover, a 1 MV tandem has been recently installed for AMS (accelerator mass spectrometry) 14C dating and environmental research with other isotopes. In the present paper we describe the new facilities and the developments of the 3 MV tandem beam lines occurred during the past years, as well as some examples of the most recent research activities in our Center in the fields of Material Science, Archaeometry, Biomedicine and Environment

  13. Control of Laser Plasma Based Accelerators up to 1 GeV

    This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 (micro)m diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 1018 W/cm2) over 3.3 centimeters of sufficiently low density (≅ 4.3 x 1018/cm3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≅ 0.5 GeV by using a 225 (micro)m diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 1018W/cm2) were guided over 3.3 centimeters of low density (≅ 3.5 x 1018/cm3) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate

  14. Control of Laser Plasma Based Accelerators up to 1 GeV

    Nakamura, Kei

    2007-12-03

    This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> {+-} 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 {micro}m diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10{sup 18} W/cm{sup 2}) over 3.3 centimeters of sufficiently low density ({approx_equal} 4.3 x 10{sup 18}/cm{sup 3}) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of {approx_equal} 0.5 GeV by using a 225 {micro}m diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10{sup 18}W/cm{sup 2}) were guided over 3.3 centimeters of low density ({approx_equal} 3.5 x 10{sup 18}/cm{sup 3}) plasma in this experiment. A statistical analysis of the CDG

  15. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    Berthou, V. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Slessarev, I.; Salvatores, M. [IRI, TU Delft (Netherlands)

    2001-07-01

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  16. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  17. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10−19 ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales

  18. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. (author)

  19. Characterization of solvents containing CyMe4-BTPhen in selected cyclohexanone-based diluents after irradiation by accelerated electrons

    Distler Petr

    2015-12-01

    Full Text Available Radiation stability of CyMe4-BTPhen was examined in systems with three selected cyclohexanone-based diluents. Accelerated electrons were used as a source of ionizing radiation. The CyMe4-BTPhen radiation degradation identification and characterization of the degradation products were performed by high performance liquid chromatography (HPLC and mass spectrometry (MS analyses. Residual concentrations of tested ligand were determined. Moreover, extraction properties of the solvents irradiated at two different doses were compared with the extraction properties of non-irradiated solvents to estimate the influence of the presence of degradation products in the organic phase.

  20. A Program To Calculate Operator - Parameters For Irradiation On UELR-10-15S2 Accelerator Basing On Experimental Results

    All elements effect to absorption dose inside object irradiated on UELR-10-15S2 electron beam accelerator at VINAGAMMA were researched. These were: depth-dose profile, beam-size, surface-dose vs distance scanning-horn to object, limitation of conveyor speed. Base on the received results, a computer program for operator to calculate the DUR and determine the set-up values of power, the speed of conveyor, and the scanning frequency of UELR-10-15S2 (operator-parameter) in a specific irradiation case were built. Outputs of the program are good appropriate with perform case. (author)

  1. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    T. Kerh

    2012-01-01

    Full Text Available It may not be possible to collect adequate records of strong ground motions in a short period of time; hence microtremor survey is frequently conducted to reveal the stratum structure and earthquake characteristics at a specified construction site. This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site, in a science park of Taiwan. The four key parameters used as inputs for the model are soil values of the standard penetration test, the medium grain size, the safety factor against liquefaction, and the distance between soil depth and measuring station. The results show that a neural network model with four neurons in the hidden layer can achieve better performance than other models presently available. Also, a weight-based neural network model is developed to provide reliable prediction of peak ground acceleration at an unmeasured site based on data at three nearby measuring stations. The method employed in this paper provides a new way to treat this type of seismic-related problem, and it may be applicable to other areas of interest around the world.

  2. Accelerated adhesion of grafted skins by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    Aizawa, Kazuya; Sato, Shunichi; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-02-01

    In our previous study, we delivered plasmid DNA coding for human hepatocyto growth factor (hHGF) to rat skin grafts based on laser-induced stress wave (LISW), by which production of CD31-positive cells in the grafted skins was found to be enhanced, suggesting improved angiogenesis. In this study, we validated the efficacy of this method to accelerate adhesion of grafted skins; reperfusion and reepithelialization in the grafted skins were examined. As a graft, dorsal skin of a rat was exsected and its subcutaneous fat was removed. Plasmid DNA expression vector for hHGF was injected into the graft; on its back surface a laser target with a transparent sheet for plasma confinement was placed, and irradiated with three nanosecond laser pulses at a laser fluence of 1.2 J/cm2 (532 nm; spot diameter, 3 mm) to generate LISWs. After the application of LISWs, the graft was transplanted onto its donor site. We evaluated blood flow by laser Doppler imaging and analyzed reepithelialization based on immunohistochemistry as a function of postgrafting time. It was found that both reperfusion and reepithelialization were significantly enhanced for the grafts with gene transfection than for normal grafts; reepithelialization was completed within 7 days after transplantation with the transfected grafts. These findings demonstrate that adhesion of grafted skins can be accelerated by delivering HGF gene to the grafts based on LISWs.

  3. Enhanced long-term strength and durability of shotcrete with high-strength C12A7 mineral-based accelerator

    This study evaluated the performance of shotcrete using high strength C12A7 mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C12A7 mineral-based accelerator exhibits better early strength than the high-strength C12A7 mineral-based accelerator until the early age, but high-strength C12A7 mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyze long-term strength development mechanism of high strength C12A7 mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C12A7 mineral-based accelerator

  4. Report of the advisory group meeting on optimal use of accelerator-based neutron generators

    During the past 20 to 25 years, the IAEA has provided a number of laboratories in the developing member states with neutron generators. These neutron generators were originally supplied for the primary purpose of neutron activation analysis. In order to promote the optimal use of these machines, a meeting was held in 1996, resulting in a technical document manual for the upgrading and troubleshooting of neutron generators. The present meeting is a follow-up to that earlier meeting. There are several reasons why some neutron generators are not fully utilized. These include lack of infrastructure, such as an appropriate shielded building and loss of adequately trained technical and academic personnel. Much of the equipment is old and lacking spare parts, and in a few cases there is a critical lack of locally available knowledge and experience in accelerator technology. The report contains recommendations for dealing with these obstacles

  5. The Los Alamos accelerator control system data base: A generic instrumentation interface

    Controlling experimental-physics applications requires a control system that can be quickly integrated and easily modified. One aspect of the control system is the interface to the instrumentation. An instrumentation set has been chosen to implement the basic functions needed to monitor and control these applications. A data-driven interface to this instrumentation set provides the required quick integration of the control system. This type of interface is limited by its built-in capabilities. Therefore, these capabilities must provide an adequate range of functions to be of any use. The data-driven interface must support the instrumentation range requird, the events on which to read or control the instrumentation and a method for manipulating the data to calculate terms or close control loops. The database for the Los Alamos Accelerator Control System addresses these requirements. (orig.)

  6. Discriminators for the Accelerator-Based Conversion (ABC) concept using a subcritical molten salt system

    Discriminators are described that quantify enhancements added to plutonium destruction and/or nuclear waste transmutation systems through use of an accelerator/fluid fuel combination. This combination produces a robust and flexible nuclear system capable of the destruction of all major long-lived actinides (including plutonium) and fission products. The discriminators discussed in this report are (1) impact of subcritical operation on safety, (2) impact of subcritical and fluid fuel operation on plutonium burnout scenarios, and (3) neutron economy enhancements brought about by subcritical operation. Neutron economy enhancements are quantified through assessment of long-term dose reduction resulting from transmutation of key fission products along with relaxation of processing frequencies afforded by subcritical operation

  7. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    Luo, W. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Zhuo, H. B.; Yu, T. P. [College of Science, National University of Defense Technology, Changsha 410073 (China); Ma, Y. Y. [College of Science, National University of Defense Technology, Changsha 410073 (China); Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Song, Y. M.; Zhu, Z. C. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Yu, M. Y. [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

  8. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. PMID:26474209

  9. Motivation and development of ultrafast laser-based accelerator techniques for chemical physics research

    The products of radiation induced chemical reactions are determined by rapid primary processes such as energy transfer, thermalization and solvation. Ultrafast photoionization experiments on liquid water demonstrate that these initial events occur on time scales <5 ps and involve a complicated interplay between electronic relaxation and vibrational energy redistribution. These experiments also show that the chemical processes originating from ionizing radiation are unique and cannot be reproduced by laser photons alone. Due to the lack of a suitable femtosecond source of ionizing radiation, knowledge of the primary processes in radiation chemistry remains poor. To address this issue a 20 TW laser system has been constructed to obtain subpicosecond electron pulses with energies in the 1-10 MeV range. In addition to the production of femtosecond electron pulses, future efforts will be directed towards using this laser for accelerating heavier particles such as protons and generating hard X-rays

  10. Language Classification using N-grams Accelerated by FPGA-based Bloom Filters

    Jacob, A; Gokhale, M

    2007-09-13

    N-Gram (n-character sequences in text documents) counting is a well-established technique used in classifying the language of text in a document. In this paper, n-gram processing is accelerated through the use of reconfigurable hardware on the XtremeData XD1000 system. Our design employs parallelism at multiple levels, with parallel Bloom Filters accessing on-chip RAM, parallel language classifiers, and parallel document processing. In contrast to another hardware implementation (HAIL algorithm) that uses off-chip SRAM for lookup, our highly scalable implementation uses only on-chip memory blocks. Our implementation of end-to-end language classification runs at 85x comparable software and 1.45x the competing hardware design.

  11. Acceleration of iterative tomographic image reconstruction by reference-based back projection

    Cheng, Chang-Chieh; Li, Ping-Hui; Ching, Yu-Tai

    2016-03-01

    The purpose of this paper is to design and implement an efficient iterative reconstruction algorithm for computational tomography. We accelerate the reconstruction speed of algebraic reconstruction technique (ART), an iterative reconstruction method, by using the result of filtered backprojection (FBP), a wide used algorithm of analytical reconstruction, to be an initial guess and the reference for the first iteration and each back projection stage respectively. Both two improvements can reduce the error between the forward projection of each iteration and the measurements. We use three methods of quantitative analysis, root-mean-square error (RMSE), peak signal to noise ratio (PSNR), and structural content (SC), to show that our method can reduce the number of iterations by more than half and the quality of the result is better than the original ART.

  12. Accelerator and radiation physics

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  13. Future accelerators (?)

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made

  14. Future accelerators (?)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  15. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ-Based Attitude Estimation with Smartphone Sensors for Indoor Pedestrian Navigation

    Valérie Renaudin

    2014-12-01

    Full Text Available The dependence of proposed pedestrian navigation solutions on a dedicated infrastructure is a limiting factor to the deployment of location based services. Consequently self-contained Pedestrian Dead-Reckoning (PDR approaches are gaining interest for autonomous navigation. Even if the quality of low cost inertial sensors and magnetometers has strongly improved, processing noisy sensor signals combined with high hand dynamics remains a challenge. Estimating accurate attitude angles for achieving long term positioning accuracy is targeted in this work. A new Magnetic, Acceleration fields and GYroscope Quaternion (MAGYQ-based attitude angles estimation filter is proposed and demonstrated with handheld sensors. It benefits from a gyroscope signal modelling in the quaternion set and two new opportunistic updates: magnetic angular rate update (MARU and acceleration gradient update (AGU. MAGYQ filter performances are assessed indoors, outdoors, with dynamic and static motion conditions. The heading error, using only the inertial solution, is found to be less than 10° after 1.5 km walking. The performance is also evaluated in the positioning domain with trajectories computed following a PDR strategy.

  16. Development of a knowledge-based control system for a model FN Van de Graaff accelerator: An operator's perspective

    In light of the manpower- and monetary restraint situation at the FN Tandem Accelerator facility of McMaster University and the difficulty in acquiring experienced personnel to operate and maintain the machine, an approach to solving this problem has been to firstly construct and operate a computer based knowledge system. This passive expert system directs an experienced or inexperienced person in the operation of the accelerator and helps diagnose many simple problems incurring in day-to-day operation. The system leads the person on a step by step diagnostic journey to the solution of the problem or at least to a reasonable response that will protect personnel and equipment until qualified experts can be contacted. The expert system contains all the required formulae, log readings, safety procedures and operating procedures in either database or knowledge base forms that are used to set the sequential steps in the consultation mode of the diagnostician. As the completion of this system nears, phase two will be initiated with the development of an active expert system where the interfacing of all machine variables will allow direct parameter assignments. At this time, the interface between expert system and operator of the machine will no longer require a human, except in a supervisory capacity. (orig.)

  17. John Adams Lecture | Accelerator-Based Neutrino Physics: Past, Present and Future by Kenneth Long | 8 December

    2014-01-01

    John Adams Lecture: Accelerator-Based Neutrino Physics: Past, Present and Future by Dr. Kenneth Long (Imperial College London & STFC).   Monday, 8 December 2014 from 2 p.m. to 4 p.m. at CERN ( 503-1-001 - Council Chamber ) Abstract: The study of the neutrino is the study of physics beyond the Standard Model. We now know that the neutrinos have mass and that neutrino mixing occurs causing neutrino flavour to oscillate as neutrinos propagate through space and time. Further, some measurements can be interpreted as hints for new particles known as sterile neutrinos. The measured values of the mixing parameters make it possible that the matter-antimatter (CP) symmetry may be violated through the mixing process. The consequences of observing CP-invariance violation in neutrinos would be profound. To discover CP-invariance violation will require measurements of exquisite precision. Accelerator-based neutrino sources are central to the future programme and advances in technique are required ...

  18. An Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method

    Bong-Cheol Shin

    2007-05-01

    Full Text Available This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditions were selected for the Pyrex glass machining. The dimensions of the designed glass sensor was 1.7×1.7×0.6mm for the vibrating mass, and 2.9×0.7×0.2mm for the cantilever beam. The machining results showed that the dimensional errors of the machined glass sensor ranged from 3 μm in minimum to 20 μm in maximum. These results imply that the micro powder blasting method can be applied for the micromachining of glass-based acceleration sensors to replace the exiting method.

  19. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation.

    Renaudin, Valérie; Combettes, Christophe

    2014-01-01

    The dependence of proposed pedestrian navigation solutions on a dedicated infrastructure is a limiting factor to the deployment of location based services. Consequently self-contained Pedestrian Dead-Reckoning (PDR) approaches are gaining interest for autonomous navigation. Even if the quality of low cost inertial sensors and magnetometers has strongly improved, processing noisy sensor signals combined with high hand dynamics remains a challenge. Estimating accurate attitude angles for achieving long term positioning accuracy is targeted in this work. A new Magnetic, Acceleration fields and GYroscope Quaternion (MAGYQ)-based attitude angles estimation filter is proposed and demonstrated with handheld sensors. It benefits from a gyroscope signal modelling in the quaternion set and two new opportunistic updates: magnetic angular rate update (MARU) and acceleration gradient update (AGU). MAGYQ filter performances are assessed indoors, outdoors, with dynamic and static motion conditions. The heading error, using only the inertial solution, is found to be less than 10° after 1.5 km walking. The performance is also evaluated in the positioning domain with trajectories computed following a PDR strategy. PMID:25474379

  20. Atomic oxygen ground-based accelerated tests of spacecraft materials and structures for long-term LEO missions

    Chernik, Vladimir; Novikov, Lev; Smirnova, Tatyana; Shumov, Andrey

    Spacecraft materials are degradated during long-term low earth orbit (LEO) flight. The Internation Space Station (ISS) is planed to be prolonged the term of action up to 20-25 years. To specify so long life one requires a validation of spacecraft material behaviour conservation for the period. The LEO environment includes atomic oxygen (AO) destructive incident flow. The appropriate AO fluence is proposed to be as high as 10E22-10E23 atom O/sq cm. The simulative ground-based test is evident to be acceptable if its duration is not too long usually under several hundreds of hours. In that case the rate of the test acceleration exceeds 100-200. One way to accelerate test is to increase oxygen particles energy. We test materials under oxygen plasma beam, formed by a magnetoplasmadynamic accelerator, with the oxygen particle energy of 20 -30 eV. In this way we determine an AO effective fluence by a kapton equivalent technique. The beam varies from LEO incident flow by energy, flux and rates of the oxygen dissociation / ionization/ excitation. To evaluate the test adequacy we measured and compared with LEO data erosion yields of a number of polymer materials, applied on spacecraft external surfaces. There were: polyimide (kapton), polyamide (nylon), polyethylene, polyvinyl fluoride (tedlar), polysteren, polymethyl methacrylate, epoxy, polyethylene terephthalate (mylar), graphite. Their relative erosion yields, measured and normalized by polyimide in this way, practically coincide with the data of flight experiments on the ISS. The results ground to use our plasma mode for accelerated tests of spacecraft material durability for long-term LEO flights. We tested quite a number of polymer-based materials and structures usable on ISS and another LEO spacecrafts. The effective AO fluencies ran up to 3,5 10E22 atom O/sq cm corresponding to the ISS flight duration about 20 years. We studied material behaviors like mass and thickness losses, erosion yield, surface morphology

  1. On the acceleration of spatially distributed agent-based computations: a patch dynamics scheme

    Liu, Ping; Samaey, Giovanni; Gear, C. William; Kevrekidis, Ioannis G.

    2014-01-01

    In recent years, individual-based/agent-based modeling has been applied to study a wide range of applications, ranging from engineering problems to phenomena in sociology, economics and biology. Simulating such agent-based models over extended spatiotemporal domains can be prohibitively expensive due to stochasticity and the presence of multiple scales. Nevertheless, many agent-based problems exhibit smooth behavior in space and time on a macroscopic scale, suggesting that a useful coarse-gra...

  2. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  3. Optimal Design of Multiple Stresses Accelerated Life Test Plan Based on Transforming the Multiple Stresses to Single Stress

    GAO Liang; CHEN Wenhua; QIAN Ping; PAN Jun; HE Qingchuan

    2014-01-01

    For planning optimum multiple stresses accelerated life test plans, a commonly followed guiding principle is that all parameters of the life-stress relationship should be estimated, and the number of the stress level combinations must be no less than the number of parameters of the life-stress relationship. However, the general objective of an accelerated life test(ALT) is to assess thep-th quantile of the product life distribution under normal stress. For this objective,estimating all model parameters is not necessary, and this will increase the cost of test. Based on the theoretical conclusion that the stress level combinations of the optimum multiple stresses ALT plan locate on a straight line through the origin of coordinate, it is proposed that a design idea of planning the optimum multiple stresses ALT plan through transforming the problem of designing an optimum multiple stresses ALT plan to designing an optimum single stress ALT plan. Moreover, a method of planning the optimum multiple stresses ALT plan which can avoid estimating all model parameters is established. An example shows that, the proposed plan which only has two stress level combinations could achieve an accuracy no less than the traditional plan, and save the test time and cost on one stress level combination at least; when the actual product life is less than the design value, even the deviation of the model initial parameters value is up to 20%, the variance of the estimation of thep-th quantile of the proposed plan is still smaller than the traditional plans approximately 25%. A design method is provided for planning the optimum multiple stresses ALT which uses the statistical optimum degenerate test plan as the optimum multiple stresses accelerated life test plan.

  4. Computation of thermal properties via 3D homogenization of multiphase materials using FFT-based accelerated scheme

    Lemaitre, Sophie; Choi, Daniel; Karamian, Philippe

    2015-01-01

    In this paper we study the thermal effective behaviour for 3D multiphase composite material consisting of three isotropic phases which are the matrix, the inclusions and the coating media. For this purpose we use an accelerated FFT-based scheme initially proposed in Eyre and Milton (1999) to evaluate the thermal conductivity tensor. Matrix and spherical inclusions media are polymers with similar properties whereas the coating medium is metallic hence better conducting. Thus, the contrast between the coating and the others media is very large. For our study, we use RVEs (Representative volume elements) generated by RSA (Random Sequential Adsorption) method developed in our previous works, then, we compute effective thermal properties using an FFT-based homogenization technique validated by comparison with the direct finite elements method. We study the thermal behaviour of the 3D-multiphase composite material and we show what features should be taken into account to make the computational approach efficient.

  5. Accelerator system for the PRISM based muon to electron conversion experiment

    Alekou, A; Aslaninejad, M; Barlow, R J; Hock, R Chudzinski K M; Garland, J; Jenner, L J; Kelliher, D J; Kuno, Y; Kurup, A; Lagrange, J-B; Lancaster, M; Machida, S; Mori, Y; Muratori, B; Ohmori, C; Owen, H; Pasternak, J; Planche, T; Prior, C; Sato, A; Shi, Y; Smith, S; Uchida, Y; Witte, H; Yokoi, T; C13-07-29.2

    2013-01-01

    The next generation of lepton flavor violation experiments need high intensity and high quality muon beams. Production of such beams requires sending a short, high intensity proton pulse to the pion production target, capturing pions and collecting the resulting muons in the large acceptance transport system. The substantial increase of beam quality can be obtained by applying the RF phase rotation on the muon beam in the dedicated FFAG ring, which was proposed for the PRISM project.This allows to reduce the momentum spread of the beam and to purify from the unwanted components like pions or secondary protons. A PRISM Task Force is addressing the accelerator and detector issues that need to be solved in order to realize the PRISM experiment. The parameters of the required proton beam, the principles of the PRISM experiment and the baseline FFAG design are introduced. The spectrum of alternative designs for the PRISM FFAG ring are shown. Progress on ring main systems like injection and RF are presented. The cu...

  6. Cost Based Failure Modes and Effects Analysis (FMEA) for Systems of Accelerator Magnets

    The proposed Next Linear Collider (NLC) has a proposed 85% overall availability goal, the availability specifications for all its 7200 magnets and their 6167 power supplies are 97.5% each. Thus all of the electromagnets and their power supplies must be highly reliable or quickly repairable. Improved reliability or repairability comes at a higher cost. We have developed a set of analysis procedures for magnet designers to use as they decide how much effort to exert, i.e. how much money to spend, to improve the reliability of a particular style of magnet. We show these procedures being applied to a standard SLAC electromagnet design in order to make it reliable enough to meet the NLC availability specs. First, empirical data from SLAC's accelerator failure database plus design experience are used to calculate MTBF for failure modes identified through a FMEA. Availability for one particular magnet can be calculated. Next, labor and material costs to repair magnet failures are used in a Monte Carlo simulation to calculate the total cost of all failures over a 30-year lifetime. Opportunity costs are included. Engineers choose from amongst various designs by comparing lifecycle costs

  7. Accelerator mass spectrometry programme at Mumbai pelletron accelerator facility

    The Accelerator Mass Spectrometry (AMS) programme and the related developments based on the Mumbai Pelletron accelerator are described. The initial results of the measurement of the ratio, 36Cl / Cl in water samples are presented. (author)

  8. Switched Matrix Accelerator

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  9. Accelerator-based analytical technique in the study of some anti-diabetic medicinal plants of Nigeria

    Olabanji, S.O. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), I-35020 Legnaro, Padova (Italy)], E-mail: skayode2002@yahoo.co.uk; Omobuwajo, O.R. [Department of Pharmacognosy, Obafemi Awolowo University, Ile-Ife (Nigeria); Ceccato, D. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), I-35020 Legnaro, Padova (Italy); Dipartmento di Fisica, Universita di Padova, Padova (Italy); Adebajo, A.C. [Department of Pharmacognosy, Obafemi Awolowo University, Ile-Ife (Nigeria); Buoso, M.C. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), I-35020 Legnaro, Padova (Italy); Moschini, G. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), I-35020 Legnaro, Padova (Italy); Dipartmento di Fisica, Universita di Padova, Padova (Italy)

    2008-05-15

    Diabetes mellitus, a clinical syndrome characterized by hyperglycemia due to deficiency of insulin, is a disease involving the endocrine pancreas and causes considerable morbidity and mortality in the world. In Nigeria, many plants, especially those implicated in herbal recipes for the treatment of diabetes, have not been screened for their elemental constituents while information on phytochemistry of some of them is not available. There is therefore the need to document these constituents as some of these plants are becoming increasingly important as herbal drugs or food additives. The accelerator-based technique PIXE, using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro (Padova) Italy, was employed in the determination of the elemental constituents of these anti-diabetic medicinal plants. Leaves of Gardenia ternifolia, Caesalpina pulcherrima, Solemostenon monostachys, whole plant of Momordica charantia and leaf and stem bark of Hunteria umbellata could be taken as vegetables, neutraceuticals, food additives and supplements in the management of diabetes. However, Hexabolus monopetalus root should be used under prescription.

  10. Accelerator-based analytical technique in the study of some anti-diabetic medicinal plants of Nigeria

    Diabetes mellitus, a clinical syndrome characterized by hyperglycemia due to deficiency of insulin, is a disease involving the endocrine pancreas and causes considerable morbidity and mortality in the world. In Nigeria, many plants, especially those implicated in herbal recipes for the treatment of diabetes, have not been screened for their elemental constituents while information on phytochemistry of some of them is not available. There is therefore the need to document these constituents as some of these plants are becoming increasingly important as herbal drugs or food additives. The accelerator-based technique PIXE, using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro (Padova) Italy, was employed in the determination of the elemental constituents of these anti-diabetic medicinal plants. Leaves of Gardenia ternifolia, Caesalpina pulcherrima, Solemostenon monostachys, whole plant of Momordica charantia and leaf and stem bark of Hunteria umbellata could be taken as vegetables, neutraceuticals, food additives and supplements in the management of diabetes. However, Hexabolus monopetalus root should be used under prescription

  11. Design and analysis of a piezoelectric material based touch screen with additional pressure and its acceleration measurement functions

    Touch screens are becoming more and more prevalent in everyday environments due to their convenience and humanized operation. In this paper, a piezoelectric material based touch screen is developed and investigated. Piezoelectric ceramics arrayed under the touch panel at the edges or corners are used as tactile sensors to measure the touch positioning point similarly to conventional touch screens. However, additional touch pressure and its acceleration performance can also be obtained to obtain a higher-level human–machine interface. The piezoelectric ceramics can also be added to a traditional touch screen structure, or they can be used independently to construct a novel touch screen with a high light transmittance approach to a transparent glass. The piezoelectric ceramics were processed from PZT piezoelectric ceramic powder into a round or rectangular shape. According to the varied touch position and physical press strength of a finger, or even a gloved hand or fingernail, the piezoelectric tactile sensors will have different output voltage responses. By calculating the ratio of different piezoelectric tactile sensors’ responses and summing up all piezoelectric tactile sensors’ output voltages, the touch point position, touch pressure and touch force acceleration can be detected. A prototype of such a touch screen is manufactured and its position accuracy, touch pressure and response speed are measured in detail. The experimental results show that the prototype has many advantages such as high light transmittance, low energy cost and high durability. (paper)

  12. Accelerator-based analytical technique in the study of some anti-diabetic medicinal plants of Nigeria

    Olabanji, S. O.; Omobuwajo, O. R.; Ceccato, D.; Adebajo, A. C.; Buoso, M. C.; Moschini, G.

    2008-05-01

    Diabetes mellitus, a clinical syndrome characterized by hyperglycemia due to deficiency of insulin, is a disease involving the endocrine pancreas and causes considerable morbidity and mortality in the world. In Nigeria, many plants, especially those implicated in herbal recipes for the treatment of diabetes, have not been screened for their elemental constituents while information on phytochemistry of some of them is not available. There is therefore the need to document these constituents as some of these plants are becoming increasingly important as herbal drugs or food additives. The accelerator-based technique PIXE, using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro (Padova) Italy, was employed in the determination of the elemental constituents of these anti-diabetic medicinal plants. Leaves of Gardenia ternifolia, Caesalpina pulcherrima, Solemostenon monostachys, whole plant of Momordica charantia and leaf and stem bark of Hunteria umbellata could be taken as vegetables, neutraceuticals, food additives and supplements in the management of diabetes. However, Hexabolus monopetalus root should be used under prescription.

  13. Evaluation of oxidative behavior of polyolefin geosynthetics utilizing accelerated aging tests based on temperature and pressure

    Li, Mengjia

    Polyolefin geosynthetics are susceptible to oxidation, which eventually leads to the reduction in their engineering properties. In the application of polyolefin geosynthetics, a major issue is an estimate of the materials durability (i.e. service lifetime) under various aging conditions. Antioxidant packages are added to the polyolefin products to extend the induction time, during which antioxidants are gradually depleted and polymer oxidation reactions are prevented. In this PhD study, an improved laboratory accelerating aging method under elevated and high pressure environments was applied to evaluate the combined effect of temperature and pressure on the depletion of the antioxidants and the oxidation of polymers. Four types of commercial polyolefn geosynthetic materials selected for aging tests included HDPE geogrid, polypropylene woven and nonwoven geotextiles. A total of 33 different temperature/pressure aging conditions were used, with the incubation duration up to 24 months. The applied oven temperature ranged from 35°C to 105°C and the partial oxygen pressure ranged from 0.005 MPa to 6.3 MPa. Using the Oxidative Induction Time (OIT) test, the antioxidant depletion, which is correlated to the decrease of the OIT value, was found to follow apparent first-order decay. The OIT data also showed that, the antioxidant depletion rate increased with temperature according to the Arrhenius equation, while under constant temperatures, the rate increased exponentially with the partial pressure of oxygen. A modified Arrhenius model was developed to fit the antioxidant depletion rate as a function of temperature and pressure and to predict the antioxidant lifetime under various field conditions. This study has developed new temperature/pressure incubation aging test method with lifetime prediction models. Using this new technique, the antioxidant lifetime prediction results are close to regular temperature aging data while the aging duration can be reduced considerably

  14. Comparison between CARIBIC Aerosol Samples Analysed by Accelerator-Based Methods and Optical Particle Counter Measurements

    B. G. Martinsson; J. Friberg; Andersson, S M; Weigelt, A; Hermann, M.; D. Assmann; J. Voigtländer; C. A. M. Brenninkmeijer; Velthoven, P. J. F.; Zahn, A.

    2014-01-01

    Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on a Instrument Container) passenger aircraft based observatory, operating during intercontinental flights at 9–12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS), the extra-tropical upper troposphere (UT) and the tropical mid troposphere (MT) were investigated. Aerosol particle volume concentration measur...

  15. CHO: A Benchmark Suite for OpenCL-based FPGA Accelerators

    Ndu, Geoffrey; Lujan, Mikel; Navaridas, Javier

    2014-01-01

    Programming FPGAs with OpenCL-based high-level synthesis frameworks is gaining attention with a number of commercial and research frameworks announced. However, there are no benchmarks for evaluating these frameworks. To this end, we present CHO benchmark suite an extension of CHStone, a commonly used C-based high-level synthesis benchmark suite, for OpenCl. We characterise CHO at various levels and use it to investigate compiling non-trivial software to FPGAs.

  16. Design and techniques for fusion blanket neutronics experiments using an accelerator-based deuterium-tritium neutron source

    The experiments performed in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics are designed with consideration of geometrical and material configurations. The general guide that is used to design the engineering-oriented neutronics experiment, which uses an accelerator-based 14-MeV neutron source, is discussed and compared with neutronics characteristics of the reactor models. Preparation of the experimental assembly, blanket materials, and the neutron source is described. A variety of techniques for measuring the nuclear parameters such as the tritium production rate are developed or introduced through the collaboration as a basis of the neutronics experiments. The features of these techniques are discussed with the experimental error and compared with each other. 25 refs., 15 figs., 4 tabs

  17. An Acceleration Slip Regulation Strategy for Four-Wheel Drive Electric Vehicles Based on Sliding Mode Control

    Hongwen He

    2014-06-01

    Full Text Available This paper presents an acceleration slip regulation (ASR system for four-wheel drive (4WD electric vehicles, which are driven by the front and rear axles simultaneously. The ASR control strategy includes three control modes: average distribution of inter-axle torque, optimal distribution of inter-axle torque and independent control of optimal slip rate, respectively, which are designed based on the torque adaptive principle of inter-axle differential and sliding mode control theory. Furthermore, in order to accurately describe the longitudinal tyre force characteristic, a slip rate calculation formula in the form of a state equation was used for solving the numerical problem posed by the traditional way. A simulation was carried out with the MATLAB/Simulink software. The simulation results show that the proposed ASR system can fully use the road friction condition, inhibit the drive-wheels from slipping, and improve the vehicle longitudinal driving stability.

  18. Novel design concepts for creating and utilizing intense accelerator based beams of mono-energetic fast neutrons

    The delivered intensity from neutron sources plays a major role in the applicability of neutron techniques. This is particularly true when the application requires mono-energetic neutron beams. Development of such neutron sources depends on two main factors; i) the output ion beam current from the accelerator and, ii) the design of the target system for generating neutrons. The design of an intense monoenergetic neutron source reported in this paper is based on a radio-frequency quadrupole deuteron linac system, coupled to a novel high pressure differentially pumped deuterium gas target. The operation of a working system, capable of generating in excess of 1010 neutrons per second is reported, along with examples of diverse applications. Also discussed are proposed improvements to the design, such that in excess of 1012 neutron per second will be generated. (author)

  19. Accelerator-based Single-shot Ultrafast Transmission Electron Microscope with Picosecond Temporal Resolution and Nanometer Spatial Resolution

    Xiang, D; Zhang, J; Huang, X; Wang, L; Wang, X; Wan, W

    2014-01-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs, and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond $10^{-19}~$m*s will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.

  20. Laser accelerator

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  1. Micro-controller based fiber optic data telemetry system for the ion source of low energy accelerator facility at BARC

    The Low Energy Accelerator Facility (LEAF) is a 50 keV, high intensity, negative ion accelerator facility that has been set up indigenously at Nuclear Physics Division, BARC. This facility is capable of delivering a wide range of negative ion beams of both light and heavy ions across the periodic table using a SNICS II (Source of Negative Ion by Caesium Sputtering) source. A micro-controller based control and monitoring system has been developed exclusively for the ion source parameters of LEAF. The data control and monitoring system mainly targets acquiring the data from the field in the terms of parameters such as voltages and currents. There are processes which need to be monitored continuously in order to keep certain parameters under check. The microcontroller based fiber optic data telemetry system allows us to perform the aforesaid task. The voltages can be controlled and monitored by providing the inputs and receiving the feedback through a user friendly graphic user interface. With this system one can control the status as well as analog value of the high voltage power supplies like extractor, cathode, filament, focus line heater and oven. This system consists of Fiber optic transceiver, which is connected on serial port (RS 232C) of microcontroller as well as RS232 port of PC. The whole control system is reliable even in noisy environments including RF and worse EMI conditions. This compact modular design is implemented using low cost devices and allows easy and fast maintainability. In the paper, the details of the system are presented. (author)

  2. Do technological advances in linear accelerators improve dosimetric outcomes in stereotaxy? A head-on comparison of seven linear accelerators using volumetric modulated arc therapy-based stereotactic planning

    Sarkar, B.; Pradhan, A.; A Munshi

    2016-01-01

    Introduction: Linear accelerator (Linac) based stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) using volumetric modulated arc therapy (VMAT) has been used for treating small intracranial lesions. Recent development in the Linacs such as inbuilt micro multileaf collimator (MLC) and flattening filter free (FFF) beam are intended to provide a better dose conformity and faster delivery when using VMAT technique. This study was aimed to compare the dosimetric outcomes and monit...

  3. Study of laser driven plasma based electron acceleration and Bremsstrahlung radiation emission using ultra-high intensity laser pulses

    High energy particle accelerators are one of the most important inventions of the twentieth century which have led to enormous advances in basic scientific understanding of world around us. Despite their grand success, the present day high energy accelerators are hitting practical limits due to their large size and cost. This is because the accelerating gradients in conventional radio-frequency (RF) accelerators are typically limited to < 50 MV/m by the field breakdown of the accelerating structure. To address this major issue, many advanced accelerator techniques have been proposed and some of them are being actively pursued. Laser wakefield acceleration (LWFA) in plasma medium is one of the techniques being most actively pursued world over due to extremely large acceleration gradients of the order of 100 GV/m possible in this scheme which promises significant reduction of the size and cost of the future high energy accelerators. The present thesis work mainly deals with laser wakefield acceleration (LWFA) of self-injected electrons to 10s of MeV energy in plasma medium of length of the order of 500 μm using the table-top 10 TW laser at Laser Plasma Division, Raja Ramanna Centre for Advanced Technology

  4. Acceleration of high resolution temperature based optimization for hyperthermia treatment planning using element grouping

    H.P. Kok; M. de Greef; A. Bel; J. Crezee

    2009-01-01

    In regional hyperthermia, optimization is useful to obtain adequate applicator settings. A speed-up of the previously published method for high resolution temperature based optimization is proposed. Element grouping as described in literature uses selected voxel sets instead of single voxels to redu

  5. Accelerator based Production of Auger-Electron-emitting Isotopes for Radionuclide Therapy

    Thisgaard, Helge

    has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of......In this research project the focus has been on the identification and production of new, unconventional Augerelectron- emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Augeremitter 119Sb has been identified......-energy cyclotron, two new ”High Power” cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finiteelement- analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of...

  6. Shell-based support structures for Nb$_{3}$Sn accelerator quadrupole magnets

    Ferracin, P

    2009-01-01

    Shell-based support structures are being fabricated and tested as part of the development of large-aperture Nb3Sn superconducting quadrupoles for future upgrades of the LHC Interaction Regions. These structures utilize water pressurized bladders for room-temperature pre-load control, and rely on a pre-tensioned aluminum shell to deliver a substantial part of the coil pre-stress during cooldown. The coil final pre-load is therefore monotonically approached from below, without overstressing the strainsensitive conductor. This method has been adopted by the US LARP collaboration to test subscale racetrack coils (SQ series), 1 m long cos-theta coils (TQS series), and 4 m long magnets (LRS and LQS series). We present recent progress in the development of shell-based support structures, with a description of the principles of operations and the future plans.

  7. Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics

    Ellsworth, David; Chiang, Ling-Jen; Shen, Han-Wei; Kwak, Dochan (Technical Monitor)

    2000-01-01

    This paper describes a new hardware volume rendering algorithm for time-varying data. The algorithm uses the Time-Space Partitioning (TSP) tree data structure to identify regions within the data that have spatial or temporal coherence. By using this coherence, the rendering algorithm can improve performance when the volume data is larger than the texture memory capacity by decreasing the amount of textures required. This coherence can also allow improved speed by appropriately rendering flat-shaded polygons instead of textured polygons, and by not rendering transparent regions. To reduce the polygonization overhead caused by the use of the hierarchical data structure, we introduce an optimization method using polygon templates. The paper also introduces new color-based error metrics, which more accurately identify coherent regions compared to the earlier scalar-based metrics. By showing experimental results from runs using different data sets and error metrics, we demonstrate that the new methods give substantial improvements in volume rendering performance.

  8. Shell-Based Support Structures for Nb3Sn Accelerator Quadrupole Magnets

    Shell-based support structures are being fabricated and tested as part of the development of large-aperture Nb3Sn superconducting quadrupoles for future upgrades of the LHC Interaction Regions. These structures utilize water pressurized bladders for room-temperature pre-load control, and rely on a pre-tensioned aluminum shell to deliver a substantial part of the coil pre-stress during cool-down. The coil final pre-load is therefore monotonically approached from below, without overstressing the strain-sensitive conductor. This method has been adopted by the US LARP collaboration to test subscale racetrack coils (SQ series), 1 m long cos-theta coils (TQS series), and 4 m long magnets (LRS and LQS series). We present recent progress in the development of shell-based support structures, with a description of the principles of operations and the future plans.

  9. Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework

    Mukherjee, Subhayan; Guddeti, Ram Mohana Reddy

    2014-09-01

    We propose a hybrid method for stereo disparity estimation by combining block and region-based stereo matching approaches. It generates dense depth maps from disparity measurements of only 18 % image pixels (left or right). The methodology involves segmenting pixel lightness values using fast K-Means implementation, refining segment boundaries using morphological filtering and connected components analysis; then determining boundaries' disparities using sum of absolute differences (SAD) cost function. Complete disparity maps are reconstructed from boundaries' disparities. We consider an application of our method for depth-based selective blurring of non-interest regions of stereo images, using Gaussian blur to de-focus users' non-interest regions. Experiments on Middlebury dataset demonstrate that our method outperforms traditional disparity estimation approaches using SAD and normalized cross correlation by up to 33.6 % and some recent methods by up to 6.1 %. Further, our method is highly parallelizable using CPU-GPU framework based on Java Thread Pool and APARAPI with speed-up of 5.8 for 250 stereo video frames (4,096 × 2,304).

  10. Acceleration of EM-Based 3D CT Reconstruction Using FPGA.

    Choi, Young-Kyu; Cong, Jason

    2016-06-01

    Reducing radiation doses is one of the key concerns in computed tomography (CT) based 3D reconstruction. Although iterative methods such as the expectation maximization (EM) algorithm can be used to address this issue, applying this algorithm to practice is difficult due to the long execution time. Our goal is to decrease this long execution time to an order of a few minutes, so that low-dose 3D reconstruction can be performed even in time-critical events. In this paper we introduce a novel parallel scheme that takes advantage of numerous block RAMs on field-programmable gate arrays (FPGAs). Also, an external memory bandwidth reduction strategy is presented to reuse both the sinogram and the voxel intensity. Moreover, a customized processing engine based on the FPGA is presented to increase overall throughput while reducing the logic consumption. Finally, a hardware and software flow is proposed to quickly construct a design for various CT machines. The complete reconstruction system is implemented on an FPGA-based server-class node. Experiments on actual patient data show that a 26.9 × speedup can be achieved over a 16-thread multicore CPU implementation. PMID:26462240

  11. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system

    Purpose: Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. Methods: An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. Results: For relatively large and complex three-field head and neck cases, i.e., >100 000 spots with a target volume of ∼1000 cm3 and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. Conclusions: A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45 000

  12. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system

    Ma, Jiasen, E-mail: ma.jiasen@mayo.edu; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G. [Department of Radiation Oncology, Division of Medical Physics, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States)

    2014-12-15

    Purpose: Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. Methods: An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. Results: For relatively large and complex three-field head and neck cases, i.e., >100 000 spots with a target volume of ∼1000 cm{sup 3} and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. Conclusions: A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45

  13. The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose

    Grebe, A; Lu, T; Mokhov, N; Pronskikh, V

    2016-01-01

    The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.

  14. LIBO accelerates

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  15. En Route: next-generation laser-plasma-based electron accelerators; En Route: Elektronenbeschleuniger der naechsten Generation auf Laser-Plasma-Basis

    Hidding, Bernhard

    2008-05-15

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to {approx}50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the {approx}80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10{sup 19}W=cm{sup 2} into gas jets. The experimental observations could be explained via 'bubble acceleration', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations accelerator technology. In addition, more than one laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table

  16. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation.

    Zhipeng Gui

    Full Text Available Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1 an Integer Linear Programming (ILP based algorithm from combinational optimization perspective; 2 a K-Means and Kernighan-Lin combined heuristic algorithm (K&K integrating geometric and coordinate-free methods by merging local and global partitioning; 3 an automatic seeded region growing based geometric and local partitioning algorithm (ASRG. The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric

  17. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation.

    Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan

    2016-01-01

    Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical

  18. Wireless based Operation and control of Electron Gun for Medical LINAC (Linear Accelerator)

    Rupali V Satpute, Dr. Ram Chand Sethi, Prof. N S Killarikar

    2012-01-01

    This paper gives brief idea about wireless based operation and control of electron gun for medical LINAC. A medical LINAC that use to destroy tumors using high-energy beams. The electron gun is a source of electron beams. Todays leading technologies, such as ZigBee, Bluetooth, GPRS/GSM can help to make wireless operation and control which gives reliability and security as well reduce the wiring and cost.The aim of this project is to make operation and control of electron gun through a long d...

  19. Induction accelerators

    Takayama, Ken

    2011-01-01

    A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.

  20. GPU acceleration of predictiion-based lower triangular transform for lossless compression

    Wei, Shih-Chieh; Huang, Bormin

    2012-10-01

    The prediction-based lower triangular transform (PLT) features the same de-correlation and coding gain properties as the Karhunen-Loeve transform (KLT), but with a lower design and implementational cost. Unlike KLT, PLT has the perfect reconstruction property which allows its direct use for lossless compression. Our previous work has shown that PLT is good for lossless compression of ultraspectral sounder data with several thousands of channels. As the computation involves many operations on large matrices, this work will exploit the parallel compute power of graphics processing unit (GPU) to speed up the PLT encoding scheme. The CUDA (Compute Unified Device Architecture) platform by NVidia will be used for comparison with a single threaded CPU core. The experimental result reveals that our GPU implementation of the PLT encoding scheme shows a speedup of 95x compared to its original Matlab implementation on CPU. Thus it is promising to apply the GPU-based PLT encoding scheme for ultraspectral sounder data compression.

  1. The equipment access software for a distributed UNIX-based accelerator control system

    This paper presents a generic equipment access software package for a distributed control system using computers with UNIX or UNIX-like operating systems. The package consists of three main components, an application Equipment Access Library, Message Handler and Equipment Data Base. An application task, which may run in any computer in the network, sends requests to access equipment through Equipment Library calls. The basic request is in the form Equipment-Action-Data and is routed via a remote procedure call to the computer to which the given equipment is connected. In this computer the request is received by the Message Handler. According to the type of the equipment connection, the Message Handler either passes the request to the specific process software in the same computer or forwards it to a lower level network of equipment controllers using MIL1553B, GPIB, RS232 or BITBUS communication. The answer is then returned to the calling application. Descriptive information required for request routing and processing is stored in the real-time Equipment Data Base. The package has been written to be portable and is currently available on DEC Ultrix, LynxOS, HPUX, XENIX, OS-9 and Apollo domain. ((orig.))

  2. Controllable Laser Ion Acceleration

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  3. Linear induction accelerator

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  4. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  5. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  6. EURAC: accelerator-based material testing device for a fusion reactor

    The European Communities' Joint Research Center (JCR) has studied the feasibility of spallation neutrons to simulate the fusion reactor first wall conditions. It can be shown that spallation neutrons, produced by 600 MeV protons impinging on a thin lead target are simulating the fusion reactor first wall conditions as well as, or even better than, neutron sources based on the D-Li stripping or D-T fusion reaction. A D-T fusion cycle produces five times more neutrons per unit of energy released than a fission cycle, with about twice the damage energy and the capability to produce ten times more hydrogen, helium and transmutation products than fission neutrons. They determine, together with other parameters, the lifetime of the construction materials for the low plasma-density fusion reactors (Tokamak, Tandem-Mirror, etc.), which require a first wall. 15 refs., 1 fig

  7. Measurement of an accelerator based mixed field with a Timepix detector

    George, S P; Fröjdh, E; Murtas, F; Silari, M

    2015-01-01

    We present an analysis of a high energy mixed field taken with a Timepix chip at the CERF facility at CERN. The Timepix is an active array of 65K energy measuring pixels which allows visualization and energy measurement of the tracks created by individual particles. This allows characteristics of interest such as the LET and angular distributions of the incoming tracks to be calculated, as well as broad morphological track categories based on pattern recognition techniques. We compute and compare LET-like and angular information for different morphological track categories. Morphological track categories are found to possess overlapping LET and energy spectra, however the approaches are found to be complementary with morphological clustering yielding information which is indistinguishable on the basis of LET alone. The use of the Timepix as an indirect monitoring device outside of the primary beam at CERF is briefly discussed.

  8. GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems

    Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen; Schwan, Karsten

    2015-09-30

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host and the device.

  9. GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems

    Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil; Schwan, Karsten

    2015-11-15

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host and device.

  10. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes.

    Altun, Mikael; Kramer, Holger B; Willems, Lianne I; McDermott, Jeffrey L; Leach, Craig A; Goldenberg, Seth J; Kumar, K G Suresh; Konietzny, Rebecca; Fischer, Roman; Kogan, Edward; Mackeen, Mukram M; McGouran, Joanna; Khoronenkova, Svetlana V; Parsons, Jason L; Dianov, Grigory L; Nicholson, Benjamin; Kessler, Benedikt M

    2011-11-23

    Converting lead compounds into drug candidates is a crucial step in drug development, requiring early assessment of potency, selectivity, and off-target effects. We have utilized activity-based chemical proteomics to determine the potency and selectivity of deubiquitylating enzyme (DUB) inhibitors in cell culture models. Importantly, we characterized the small molecule PR-619 as a broad-range DUB inhibitor, and P22077 as a USP7 inhibitor with potential for further development as a chemotherapeutic agent in cancer therapy. A striking accumulation of polyubiquitylated proteins was observed after both selective and general inhibition of cellular DUB activity without direct impairment of proteasomal proteolysis. The repertoire of ubiquitylated substrates was analyzed by tandem mass spectrometry, identifying distinct subsets for general or specific inhibition of DUBs. This enabled identification of previously unknown functional links between USP7 and enzymes involved in DNA repair. PMID:22118674

  11. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery.

    Wen, Ning; Li, Haisen; Song, Kwang; Chin-Snyder, Karen; Qin, Yujiao; Kim, Jinkoo; Bellon, Maria; Gulam, Misbah; Gardner, Stephen; Doemer, Anthony; Devpura, Suneetha; Gordon, James; Chetty, Indrin; Siddiqui, Farzan; Ajlouni, Munther; Pompa, Robert; Hammoud, Zane; Simoff, Michael; Kalkanis, Steven; Movsas, Benjamin; Siddiqui, M Salim

    2015-01-01

    The purpose of this study is to characterize the dosimetric properties and accuracy of a novel treatment platform (Edge radiosurgery system) for localizing and treating patients with frameless, image-guided stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). Initial measurements of various components of the system, such as a comprehensive assessment of the dosimetric properties of the flattening filter-free (FFF) beams for both high definition (HD120) MLC and conical cone-based treatment, positioning accuracy and beam attenuation of a six degree of freedom (6DoF) couch, treatment head leakage test, and integrated end-to-end accuracy tests, have been performed. The end-to-end test of the system was performed by CT imaging a phantom and registering hidden targets on the treatment couch to determine the localization accuracy of the optical surface monitoring system (OSMS), cone-beam CT (CBCT), and MV imaging systems, as well as the radiation isocenter targeting accuracy. The deviations between the percent depth-dose curves acquired on the new linac-based system (Edge), and the previously published machine with FFF beams (TrueBeam) beyond D(max) were within 1.0% for both energies. The maximum deviation of output factors between the Edge and TrueBeam was 1.6%. The optimized dosimetric leaf gap values, which were fitted using Eclipse dose calculations and measurements based on representative spine radiosurgery plans, were 0.700 mm and 1.000 mm, respectively. For the conical cones, 6X FFF has sharper penumbra ranging from 1.2-1.8 mm (80%-20%) and 1.9-3.8 mm (90%-10%) relative to 10X FFF, which has 1.2-2.2mm and 2.3-5.1mm, respectively. The relative attenuation measurements of the couch for PA, PA (rails-in), oblique, oblique (rails-out), oblique (rails-in) were: -2.0%, -2.5%, -15.6%, -2.5%, -5.0% for 6X FFF and -1.4%, -1.5%, -12.2%, -2.5%, -5.0% for 10X FFF, respectively, with a slight decrease in attenuation versus field size. The systematic

  12. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  13. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including

  14. Accelerated Stress Testing of Hydrocarbon-Based Encapsulants for Medium-Concentration CPV Applications

    Kempe, M. D.; Moricone, T. J.; Kilkenny, M.; Zhang, J. Z.

    2011-02-01

    Concentrating photovoltaic (CPV) systems have great potential to reduce photovoltaic (PV) electricity costs because of the relatively low cost of optical components as compared to PV cells. A transparent polymeric material is used to optically couple the PV cell to optical components and is thus exposed to the concentrated light source at elevated temperatures. In this work polymeric encapsulant materials are positioned close to a Xenon arc lamp to expose them to ultraviolet radiation (UV) that is about 42 times as intense as sunlight. Furthermore, different glass types are used as filters to modify the spectral distribution of light in the UV range. A strong sensitivity of non-silicone-based encapsulants to light below ~350 nm is demonstrated. Of all the materials examined in this study, the polydimethyl silicone samples performed the best. The next best material was an ionomer which maintained optical transmission but became photo-oxidized where exposed to the atmosphere.

  15. INTELLIGENT PRODUCT BASED ON MOBILE AGENT TO ACCELERATE THE NEW PRODUCT DEVELOPMENT PROCESS

    Abdelhak Boulaalam

    2013-01-01

    Full Text Available To improve the ever-increasing demands products that are customized, all business activities performed along the product life cycle must be coordinated and efficiently managed along the extended enterprise. For this, enterprise had wanted to retain control over the whole product lifecycle especially when the product is in use/repair/recycling (End of Life phase. Although there have been many previous research works about product lifecycle management in the Beginning of Life (BOL and Middle of Life (MOL phases, few addressed the End of Life (EOL phase, in particular. In this study, based on Auto-ID combined with mobile multi-agent system technologies, we will try to improve innovation: (a by minimize the lunch phase, (b and the involvement of the customer in product lifecycle (voice of customer."

  16. Accelerated surface-enhanced Raman spectroscopy (SERS)-based immunoassay on a gold-plated membrane.

    Penn, Michelle A; Drake, David M; Driskell, Jeremy D

    2013-09-17

    A rapid and simple SERS-based immunoassay has been developed to overcome diffusion-limited binding kinetics that often impedes rapid analysis in conventional heterogeneous immunoassays. This paper describes the development of an antibody-modified membrane as a flow-through capture substrate for a nanoparticle-enabled SERS immunoassay to enhance antibody-antigen binding kinetics. A thin layer of gold is plated onto polycarbonate track-etched nanoporous membranes via electroless deposition. Capture antibody is immobilized onto the surface of a gold-plated membrane via thiolate coupling chemistry to serve as a capture substrate. A syringe is then used to actively transport the analyte and extrinsic Raman labels to the capture substrate. The fabrication of the gold-plated membrane is thoroughly investigated and established as a viable capture substrate for a SERS-based immunoassay in the absence of sample/SERS label flow. A syringe pump is used to systematically investigate the effect of flow rate on antibody-antigen binding kinetics and demonstrate that active transport to the capture membrane surface expedites antibody-antigen binding. Mouse IgG and goat anti-mouse IgG are selected as a model antigen-antibody system to establish proof of principle. It is demonstrated that the assay for mouse IgG is reduced from 24 h to 10 min and a 10-fold improvement in detection limit is achieved with the flow assay developed herein relative to the passive, i.e., no flow, assay. Moreover, mouse serum is directly analyzed and IgG level is determined using the flow assay. PMID:23972208

  17. Assessment of General Atomics accelerator transmutation of waste concept based on gas-turbine-modular helium cooled reactor technology

    An assessment has been performed for an Accelerator Transmutation of Waste (ATW) concept based on the use of the high temperature gas reactor technology. The concept has been proposed by General Atomics for the ATW system. The assessment was jointly conducted at Argonne National Laboratory (ANL) and Los Alamos national laboratory to assess and to define the potential candidates for the ATW system. This report represents the assessment work performed at ANL. The concept uses recycled light water reactor (LWR)-discharge-transuranic extracted from irradiated oxide fuel in a critical and sub-critical accelerator driven gas-cooled transmuter. In this concept, the transmuter operates at 600 MWt first in the critical mode for three cycles and then operates in a subcritical accelerator-driven mode for a single cycle. The transmuter contains both thermal and fast spectrum transmutation zones. The thermal zone is fueled with the TRU oxide material in the form of coated particles, which are mixed with graphite powder, packed into cylindrical compacts, and loaded in hexagonal graphite blocks with cylindrical channels; the fast zone is fueled with TRU-oxide material in the form of coated particles without the graphite powder and the graphite blocks that has been burned in the thermal region for three critical cycles and one additional accelerator-driven cycle. The fuel loaded into the fast zone is irradiated for four additional cycles. This fuel management scheme is intended to achieve a high Pu isotopes consumption in the thermal spectrum zone, and to consume the minor actinides in the fast-spectrum zone. Monte Carlo and deterministic codes have been used to assess the system performance and to determine the feasibility of achieving high TRU consumption levels. The studies revealed the potential for high consumption of Pu-239 (97%), total Pu (71%) and total TRU (64%) in the system. The analyses confirmed the need for burnable absorber for both suppressing the initial excess

  18. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. PMID:26260448

  19. Dual-rate-loop control based on disturbance observer of angular acceleration for a three-axis aerial inertially stabilized platform.

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Cai, Tongtong

    2016-07-01

    This paper presents a dual-rate-loop control method based on disturbance observer (DOB) of angular acceleration for a three-axis ISP for aerial remote sensing applications, by which the control accuracy and stabilization of ISP are improved obviously. In stabilization loop of ISP, a dual-rate-loop strategy is designed through constituting inner rate loop and the outer rate loop, by which the capability of disturbance rejection is advanced. Further, a DOB-based on angular acceleration is proposed to attenuate the influences of the main disturbances on stabilization accuracy. Particularly, an information fusion method is suggested to obtain accurate angular acceleration in DOB design, which is the key for the disturbance compensation. The proposed methods are theoretically analyzed and experimentally validated to illustrate the effectiveness. PMID:27016450

  20. Acceleration Feedback-Based Active and Semi-Active Seismic Response Control of Rail-Counterweight Systems of Elevators

    Rildova

    2005-01-01

    Full Text Available Based on the observations in the past earthquake events, the traction elevators in buildings are known to be vulnerable to earthquake induced ground motions. Among several components of an elevator, the counterweight being heaviest is also known to be more susceptible than others. The inertial effects of the counterweight can overstress the guide rails on which it moves. Here we investigate to use the well-known acceleration feedback-based active and semi-active control methods to reduce stresses in the rails. The only way a control action can be applied to a moving counterweight-rail system is through a mass damper placed in the plane of the counterweight. For this, a part of the counterweight mass can be configured as a mass damper attached to a small actuator for an active scheme or to a magneto-rheological damper for a semi-active scheme. A comprehensive numerical study is conducted to evaluate the effectiveness of the proposed configuration of control system. It is observed that the two control schemes are effective in reducing the stress response by about 20 to 25% and improve the system fragility over a good range of seismic intensities.

  1. Improving the making of steel and other primary metals by using sensors based on nuclear particle accelerators

    Although sensor techniques using radioisotope radiation sources have long been used in industry for simple applications, such as thickness sensors in sheet materials or as level sensors, recent developments in compact accelerator-based radiation sources as well as in radiation detectors have led to the development of real-time, non-invasive sensors with capabilities beyond that of conventional measuring methods. We will describe two new sensors: the first being a solidification sensor for the metal casting industry which measures in three-dimensions the liquid/solid interface in continuous casting of steel and other metals, and the second being a sensor for real-time analysis of hearth wall integrity in blast furnaces to measure both erosion of carbon thickness and to detect the formation of cracks in the bricks. The prototype of the solidification sensor is based on the use of a compact 6 MeV electron linac and produces tomographic images in real-time of the solidification process in molten aluminum. The blast furnace wall monitor has been modeled and components of the system are currently being designed using the 6 MeV linac as well as a 14 MeV neutron source. (author)

  2. Overview of accelerators in medicine

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  3. Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine.

    Green, Robert C; Goddard, Katrina A B; Jarvik, Gail P; Amendola, Laura M; Appelbaum, Paul S; Berg, Jonathan S; Bernhardt, Barbara A; Biesecker, Leslie G; Biswas, Sawona; Blout, Carrie L; Bowling, Kevin M; Brothers, Kyle B; Burke, Wylie; Caga-Anan, Charlisse F; Chinnaiyan, Arul M; Chung, Wendy K; Clayton, Ellen W; Cooper, Gregory M; East, Kelly; Evans, James P; Fullerton, Stephanie M; Garraway, Levi A; Garrett, Jeremy R; Gray, Stacy W; Henderson, Gail E; Hindorff, Lucia A; Holm, Ingrid A; Lewis, Michelle Huckaby; Hutter, Carolyn M; Janne, Pasi A; Joffe, Steven; Kaufman, David; Knoppers, Bartha M; Koenig, Barbara A; Krantz, Ian D; Manolio, Teri A; McCullough, Laurence; McEwen, Jean; McGuire, Amy; Muzny, Donna; Myers, Richard M; Nickerson, Deborah A; Ou, Jeffrey; Parsons, Donald W; Petersen, Gloria M; Plon, Sharon E; Rehm, Heidi L; Roberts, J Scott; Robinson, Dan; Salama, Joseph S; Scollon, Sarah; Sharp, Richard R; Shirts, Brian; Spinner, Nancy B; Tabor, Holly K; Tarczy-Hornoch, Peter; Veenstra, David L; Wagle, Nikhil; Weck, Karen; Wilfond, Benjamin S; Wilhelmsen, Kirk; Wolf, Susan M; Wynn, Julia; Yu, Joon-Ho

    2016-06-01

    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine. PMID:27181682

  4. Optimization of Dose Distribution for the System of Linear Accelerator-Based Stereotactic Radiosurgery.

    Suh, Tae-Suk

    The work suggested in this paper addresses a method for obtaining an optimal dose distribution for stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer -aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer -aided design and visual optimization.

  5. Accelerating seismic interpolation with a gradient projection method based on tight frame property of curvelet

    Cao, Jingjie; Wang, Yanfei; Wang, Benfeng

    2015-08-01

    Seismic interpolation, as an efficient strategy of providing reliable wavefields, belongs to large-scale computing problems. The rapid increase of data volume in high dimensional interpolation requires highly efficient methods to relieve computational burden. Most methods adopt the L1 norm as a sparsity constraint of solutions in some transformed domain; however, the L1 norm is non-differentiable and gradient-type methods cannot be applied directly. On the other hand, methods for unconstrained L1 norm optimisation always depend on the regularisation parameter which needs to be chosen carefully. In this paper, a fast gradient projection method for the smooth L1 problem is proposed based on the tight frame property of the curvelet transform that can overcome these shortcomings. Some smooth L1 norm functions are discussed and their properties are analysed, then the Huber function is chosen to replace the L1 norm. The novelty of the proposed method is that the tight frame property of the curvelet transform is utilised to improve the computational efficiency. Numerical experiments on synthetic and real data demonstrate the validity of the proposed method which can be used in large-scale computing.

  6. Coupling of microanalytical techniques to study the relationships between chemical durability and irradiation resistance of alumino-borosilicate glasses

    Safety assessment of a nuclear waste deposit is based on the chemical durability and irradiation resistance of the nuclear waste forms. It is well-known that the consequences of the impact of α, β and γ irradiation on glass integrity essentially affect the level of its recrystallized fraction and its initial dissolution rate. Complex alkali-borosilico-aluminate glasses were submitted to aqueous leaching tests at temperature ranging from 25 to 100 deg. C, from pH = 0 to pH = 12. Simple glasses containing one or two transition metal oxides have been synthesized. Some of them have been irradiated before being leached at 90 deg. C. Irradiation experiments have been performed with 150 keV Xe+ions mainly producing displacement cascades in the first hundreds of nanometers beneath the sample surfaces. The leached samples were then characterized by coupling performance techniques such as scanning electron microscopy (SEM), electron microprobe analysis (EMA), secondary ion mass spectrometry (SIMS) and ion beam analytical (IBA) methods: Rutherford backscattering and elastic recoil spectrometries (RBS and ERDA)

  7. Integrative molecular and microanalytical studies of syntrophic partnerships linking C, S, and N cycles in anoxic environments

    Orphan, Victoria [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-07-15

    Syntrophy and other forms of symbiotic associations between microorganisms are central to carbon and nutrient cycling in the environment. However, the inherent interdependence of these interactions, dynamic behavior, and frequent existence at thermodynamic limits has hindered our ability to both recognize syntrophic partnerships in nature and effectively study their behavior in the laboratory. To characterize and understand the underlying factors influencing syntrophic associations within complex communities requires a suite of tools that extend beyond basic molecular identification and cultivation. This specifically includes methods that preserve the natural spatial relationships between metabolically interdependent microorganisms while allowing downstream geochemical and/or molecular analysis. With support from this award, we have developed and applied new combinations of molecular, microscopy, and stable isotope-based methodologies that enable the characterization of fundamental links between phylogenetically-identified microorganisms and their specific metabolic activities and interactions in the environment. Through the coupling of fluorescence in situ hybridization (FISH) with cell capture and targeted metagenomics (Magneto-FISH), and FISH + secondary ion mass spectrometry (i.e. FISH-SIMS or FISH-nanoSIMS), we have defined new microbial interactions and the ecophysiology of anaerobic microorganisms involved in environmental methane cycling.

  8. Evaluation of spray and freeze dried excipient bases containing disintegration accelerators for the formulation of metoclopramide orally disintegrating tablets

    Orally disintegrating tablets (ODT) are gaining attractiveness over conventional tablets especially for patients having difficulty in swallowing such as pediatric, geriatric, bedridden and disable patients. ODT technologies render the tablets disintegrate in the mouth without chewing or additional water intake. So far there have been many patents for ODT, but only few publications are dealing with this dosage form. The aim of the present study was to formulate metoclopramide in ODT with sufficient mechanical strength and fast disintegration from bases prepared by both spray (SD) and freeze drying (FD) techniques. Different disintegration accelerators (DA) were utilized to prepare proper ODT using various super-disintegrants (Ac-Di-Sol, Kollidon and Sodium Starch glycolate), a volatilizing solvent (ethanol) and an amino acid (glycine). Metoclopramide, an antiemetic medication, was used a model drug in the formulated ODT. It was noted that the disintegration of ODT depends on utilization of DA in both SD and FD techniques to prepare tablet bases for ODT and so many other factors such as drying processes. The good disintegration property of the prepared tablets was related to the excellent wettability of the ingredients after being subjected to the drying processes. Results also showed that the addition of DA to the tablet bases before drying process results in lengthening of the disintegration time in comparison to their addition to the tablet bases after the drying process. Those findings be utilized for many drugs and they may be considered versatile in their applications. Also, the disintegration of the ODT in the buccal cavity may favor fast absorption via the mucus membrane in the oral cavity. (author)

  9. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0±0.3) ps, and the ratio of the Grueneisen parameters was found to be γe / γi = (0.5±0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A1g mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase and its development for excitations close to the

  10. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  11. Accelerator programme at CAT

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  12. Radioecological studies at the National Center of Accelerators based on the use of the accelerator mass spectrometry; Estudios radioecologicos en el Centro Nacional de Aceleradores basados en el uso de la Espectrometria de Masas con Acelerador (AMS)

    Chamizo, E.; Lopez-Gutierrez, J. M.; Gomez-Guzman, J. M.; Santos, F. J.; Garcia-Leon, M.; Garcia-Tenorio, R.

    2013-03-01

    Since mid-2006 a compact Accelerator Mass Spectrometry (AMS) of 1 MV, Tandetron type, named SARA (Spanish Accelerator for Radionuclide Analysis) is installed at the National Accelerator Centre in Seville. After an initial period, to set-up the equipment and to study its capability to detect the long-lived radionuclides {sup 1}4C, {sup 1}0B, {sup 2}6Al, {sup 1}29I and plutonium isotopes ({sup 2}39Pu and {sup 2}40Pu) compared to other techniques of mass spectrometry (MS), numerous research lines in fields as diverse as archaeology, geology, palaeontology, oceanography, internal dosimetry, astrophysics and characterization of radioactive waste, among others, have been opened. In particular, since 2008 numerous contributions in the field of Radioecology have been done, based in the measurements of {sup 1}29I and Pu isotopes ({sup 2}39Pu and {sup 2}40Pu). In this article, some of these radioecological researches are summarized and presented, with special emphasis on showing that its accomplishment requires the application of the AMS technique, to be able to achieve sensitivities and detection limits which are impossible to reach when radiometric and mass spectrometry conventional techniques are applied. (Author) 13 refs.

  13. Non Parametric Determination of Acceleration Characteristics in Supernova Shocks Based on Spectra of Cosmic Rays and Remnant Radiation

    Petrosian, Vahe

    2016-07-01

    We have developed an inversion method for determination of the characteristics of the acceleration mechanism directly and non-parametrically from observations, in contrast to the usual forward fitting of parametric model variables to observations. This is done in the frame work of the so-called leaky box model of acceleration, valid for isotropic momentum distribution and for volume integrated characteristics in a finite acceleration site. We consider both acceleration by shocks and stochastic acceleration where turbulence plays the primary role to determine the acceleration, scattering and escape rates. Assuming a knowledge of the background plasma the model has essentially two unknown parameters, namely the momentum and pitch angle scattering diffusion coefficients, which can be evaluated given two independent spectral observations. These coefficients are obtained directly from the spectrum of radiation from the supernova remnants (SNRs), which gives the spectrum of accelerated particles, and the observed spectrum of cosmic rays (CRs), which are related to the spectrum of particles escaping the SNRs. The results obtained from application of this method will be presented.

  14. Angular velocities, angular accelerations, and coriolis accelerations

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  15. Accelerator Modeling with MATLAB Accelerator Toolbox

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  16. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  17. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  18. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  19. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  20. Optimal design of a standing-wave accelerating tube with a high shunt impedance based on a genetic algorithm

    Tang, Zhenxing; Pei, Yuanji; Pang, Jian

    2015-08-01

    In this paper, we present an optimal design based on a genetic algorithm for a compact standing-wave (SW) accelerating tube with an operating frequency of 2998 MHz for industrial and medical applications. It consists of bi-periodic structures with a nose cone whose inter-cavity coupling is achieved through electric coupling rather than magnetic coupling. A mathematical model is established to optimize the arc at the cavity wall to reduce the microwave power loss and to optimize the nose cone to increase the electric field along the axis to achieve a high shunt impedance. The simulation results indicate that with the proper nose cone and arc, the shunt impedance of the cavity can be as high as 114 MΩ / m. Afterward, we present the tuning of the tube using SUPERFISH and the calculation of the beam dynamics using ASTRA and Parmela. The total length of the optimal tube is only 30.175 cm. Finally, a coupler is designed with a small-aperture coupling using CST MICROWAVE STUDIO.

  1. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    Hailong Xu

    2016-03-01

    Full Text Available Nowadays, software-defined radio (SDR has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP and Space-Frequency Adaptive Processing (SFAP are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  2. Accelerated adhesion of grafted skin by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    Aizawa, Kazuya; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-11-01

    Gene therapy using wound healing-associated growth factor gene has received much attention as a new strategy for improving the outcome of tissue transplantation. We delivered plasmid DNA coding for human hepatocyte growth factor (hHGF) to rat free skin grafts by the use of laser-induced stress waves (LISWs); autografting was performed with the grafts. Systematic analysis was conducted to evaluate the adhesion properties of the grafted tissue; angiogenesis, cell proliferation, and reepithelialization were assessed by immunohistochemistry, and reperfusion was measured by laser Doppler imaging as a function of time after grafting. Both the level of angiogenesis on day 3 after grafting and the increased ratio of blood flow on day 4 to that on day 3 were significantly higher than those in five control groups: grafting with hHGF gene injection alone, grafting with control plasmid vector injection alone, grafting with LISW application alone, grafting with LISW application after control plasmid vector injection, and normal grafting. Reepithelialization was almost completed on day 7 even at the center of the graft with LISW application after hHGF gene injection, while it was not for the grafts of the five control groups. These findings demonstrate the validity of our LISW-based HGF gene transfection to accelerate the adhesion of grafted skins.

  3. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  4. VHEeP: A very high energy electron-proton collider based on proton-driven plasma wakefield acceleration

    Caldwell, Allen

    2015-01-01

    Based on current CERN infrastructure, an electron-proton collider is proposed at a centre-of-mass energy of about 9 TeV. A 7 TeV LHC bunch is used as the proton driver to create a plasma wakefield which then accelerates electrons to 3 TeV, these then colliding with the other 7 TeV LHC proton beam. The basic parameters of the collider are presented, which although of very high energy, has integrated luminosities of the order of 1 pb$^{-1}$/year. For such a collider, with a centre-of-mass energy 30 times greater than HERA, parton momentum fractions, $x$, down to about $10^{-8}$ are accessible for $Q^2$ of 1 GeV$^2$ and could lead to effects of saturation or some other breakdown of DGLAP being observed. The total photon-proton cross section can be measured up to very high energies and also at different energies as the possibility of varying the electron beam energy is assumed; this could have synergy with cosmic-ray physics. Other physics which can be pursued at such a collider are contact interaction searches, ...

  5. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  6. Significant acceleration of 2D-3D registration-based fusion of ultrasound and x-ray images by mesh-based DRR rendering

    Kaiser, Markus; John, Matthias; Borsdorf, Anja; Mountney, Peter; Ionasec, Razvan; Nöttling, Alois; Kiefer, Philipp; Seeburger, Jörg; Neumuth, Thomas

    2013-03-01

    For transcatheter-based minimally invasive procedures in structural heart disease ultrasound and X-ray are the two enabling imaging modalities. A live fusion of both real-time modalities can potentially improve the workflow and the catheter navigation by combining the excellent instrument imaging of X-ray with the high-quality soft tissue imaging of ultrasound. A recently published approach to fuse X-ray fluoroscopy with trans-esophageal echo (TEE) registers the ultrasound probe to X-ray images by a 2D-3D registration method which inherently provides a registration of ultrasound images to X-ray images. In this paper, we significantly accelerate the 2D-3D registration method in this context. The main novelty is to generate the projection images (DRR) of the 3D object not via volume ray-casting but instead via a fast rendering of triangular meshes. This is possible, because in the setting for TEE/X-ray fusion the 3D geometry of the ultrasound probe is known in advance and their main components can be described by triangular meshes. We show that the new approach can achieve a speedup factor up to 65 and does not affect the registration accuracy when used in conjunction with the gradient correlation similarity measure. The improvement is independent of the underlying registration optimizer. Based on the results, a TEE/X-ray fusion could be performed with a higher frame rate and a shorter time lag towards real-time registration performance. The approach could potentially accelerate other applications of 2D-3D registrations, e.g. the registration of implant models with X-ray images.

  7. Theoretical and experimental investigations of HF oscillation excitation in an ion collective accelerator based on the Doppler effect

    The studies on the two-beam method for acceleration of the HF field ions, excited by an electron beam on the normal and Doppler effects, are presented. The dynamics of exciting the eigen waves of the periodic slowing down structure by relativistic ion beam on the Doppler anomalous effect is theoretically studied. The instability stabilization mechanisms are considered and the analytical expressions for the electron beam energy transfer efficiency to the excited wave are presented. The description of the experimental acceleration bench, created for verifying the possibility of accelerating the protons up to 3 A by the energy up to 8 MeV is set forth. The double resonance on the anomalous and normal Doppler effects by an electron beam interaction with a spiral slowing down structure is experimentally studied. Increase in the efficiency of the accelerating HF field excitation is identified

  8. Pixe method as microanalytical instrument

    The PIXE method (Particle Induced X-Ray Emission) as analytical method presenting the evolution, the theoretical fundaments, the detection limit, the optimization for operational conditions is evaluated. The applications of the method to air pollution control and aerosol studies in regions such as Antartic, Amazon and other regions are analysed. (M.C.K.)

  9. Surface Studies by Microanalytical Techniques

    Tow elemental microprobe spectrometers,scanning electron microscope (SEM) JSM-5600-LV equipped with energy dispersive x-ray spectrometer (EDX) Oxford and laser ablation (LA) GEOLAS-MERCHANTEK attached to double focusing inductively coupled plasma mass spectrometer (ICP-MS)JMS-PLASMA X2, are used in the study. optimization of the operational parameters of the spectrometers are performed to reach good precision and accuracy for measuring concentrations of major, minor elements and oxides using SEMEDX, and trace element concentrations using LA-ICP-MS in solids. the thesis includes four chapters. chapter(1), includes an introduction and aim of the work. chapter(2) contains the theoretical considerations and technical aspects of the energy dispersive x-ray spectrometer and its combination with the scanning electron microscope producing microprobe spectrometer for solid surfaces. moreover, the theoretical considerations and technical concepts of the laser ablation system and its attachment to the double focusing inductively coupled plasma mass spectrometer producing microprobe trace elemental analyses for solid surfaces and bulk materials.chapter (3), explains the experimental setup and the operational conditions of the present work using the SEMEDX and LA-ICP-MS microprobes. chapter (4), contains the measurements and the results of elemental oxide concentrations in the range of major, minor and traces

  10. Long-Term Efficacy and Patterns of Failure After Accelerated Partial Breast Irradiation: A Molecular Assay-Based Clonality Evaluation

    Purpose: To determine the long-term efficacy and cosmetic results of accelerated partial breast irradiation (APBI) by reviewing our institution's experience. Methods and Materials: A total of 199 patients with early-stage breast cancer were treated prospectively with adjuvant APBI after lumpectomy using interstitial brachytherapy. All patients had negative margins, 82% had Stage I disease, median tumor size was 1.1 cm, and 12% had positive lymph nodes. The median follow-up for surviving patients was 8.6 years. Fifty-three patients (27%) have been followed for ≥10 years. Results: Six ipsilateral breast tumor recurrences (IBTRs) were observed, for a 5-year and 10-year actuarial rate of 1.6% and 3.8%, respectively. A total of three regional nodal failures were observed, for a 10-year actuarial rate of 1.6%. Five contralateral breast cancers developed, for a 5- and 10-year actuarial rate of 2.2% and 5.2%, respectively. The type of IBTR (clonally related vs. clonally distinct) was analyzed using a polymerase chain reaction-based loss of heterozygosity assay. Eighty-three percent of IBTRs (n = 5) were classified as clonally related. Multiple clinical, pathologic, and treatment-related factors were analyzed for an association with the development of an IBTR, regional nodal failure, or contralateral breast cancer. On multivariate analysis, no variable was associated with any of these events. Cosmetic results were rated as excellent/good in 99% of patients. Conclusions: Long-term results with APBI using interstitial brachytherapy continue to demonstrate excellent long-term local and regional control rates and cosmetic results. According to a polymerase chain reaction-based loss of heterozygosity assay, 83% of recurrences were classified as clonally related

  11. Combined modulated electron and photon beams planned by a Monte-Carlo-based optimization procedure for accelerated partial breast irradiation

    Atriana Palma, Bianey; Ureba Sánchez, Ana; Salguero, Francisco Javier; Arráns, Rafael; Míguez Sánchez, Carlos; Walls Zurita, Amadeo; Romero Hermida, María Isabel; Leal, Antonio

    2012-03-01

    The purpose of this study was to present a Monte-Carlo (MC)-based optimization procedure to improve conventional treatment plans for accelerated partial breast irradiation (APBI) using modulated electron beams alone or combined with modulated photon beams, to be delivered by a single collimation device, i.e. a photon multi-leaf collimator (xMLC) already installed in a standard hospital. Five left-sided breast cases were retrospectively planned using modulated photon and/or electron beams with an in-house treatment planning system (TPS), called CARMEN, and based on MC simulations. For comparison, the same cases were also planned by a PINNACLE TPS using conventional inverse intensity modulated radiation therapy (IMRT). Normal tissue complication probability for pericarditis, pneumonitis and breast fibrosis was calculated. CARMEN plans showed similar acceptable planning target volume (PTV) coverage as conventional IMRT plans with 90% of PTV volume covered by the prescribed dose (Dp). Heart and ipsilateral lung receiving 5% Dp and 15% Dp, respectively, was 3.2-3.6 times lower for CARMEN plans. Ipsilateral breast receiving 50% Dp and 100% Dp was an average of 1.4-1.7 times lower for CARMEN plans. Skin and whole body low-dose volume was also reduced. Modulated photon and/or electron beams planned by the CARMEN TPS improve APBI treatments by increasing normal tissue sparing maintaining the same PTV coverage achieved by other techniques. The use of the xMLC, already installed in the linac, to collimate photon and electron beams favors the clinical implementation of APBI with the highest efficiency.

  12. Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)

    The current hydrogen production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. Thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. Although, solar hydrogen production could be also used for practical applications because it's lower environmental impact. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur–iodine (S–I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Softwares based on CPS (chemical process simulation) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility respect to the thermodynamics parameters: temperature, pressure and mass flow is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model for different values of initial reactant's flow, is analyzed. - Highlights: • Chemical Process Simulation (CPS) of the complete sulfur iodine cycle. • Conceptual design of an accelerator driven system for hydrogen production. • Radial and axial temperature profile for the end of stationary cycle (EOC). • Thermal stability of the sulfuric and hydriodic acid sections determination. • Sulfur iodine cycle efficiency analyses for different heat flow from the ADS

  13. Tandem accelerators

    After the installation of Ti-acceleration tubes and substantial modifications and additions to the EN tandem accelerator the performance of the machine has stabilized. The voltage behaviour of the tubes obviously improves as conditioning times necessary to run up to 6 MV decrease. A gridded lens has been added at the entrance of the first acceleration tube, and a second foil stripper is now installed in the short dead section between the high-energy tubes. The MP tandem also has been running stably during most of the year. However, beam instabilities originating from the last tube section and wear problems at the low-energy set of pelletron-chains caused some loss of beam time. During the fall, one set of pelletron charging chains has to be replaced after 49,000 hours of operation. In the course of the year, the MP and the EN tandem accelerators finished their 100,000th and 150,000th hours of operations, respectively. Preparations for the installation of the 3 MV negative heavy ion injector for the MP are progressing steadily. External beam transport, terminal ion optics, and data acquisition and control systems are to a major extent completed; the integration of the terminal power supplies has started. After the final assembly of the accelerator column structure, first voltage runs can be performed. (orig.)

  14. Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off

    Hong, Linda X.; Garg, Madhur; Lasala, Patrick; Kim, Mimi; Mah, Dennis; Chen, Chin-Cheng; Yaparpalvi, Ravindra; Mynampati, Dinesh; Kuo, Hsiang-Chi; Guha, Chandan; Kalnicki, Shalom [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Neurosurgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Epidemiology and Population Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2011-03-15

    Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems, Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group

  15. Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off

    Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters ≤20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems, Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R50-R100 (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV50) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R50-R100 and NTV50 initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group (maximum diameters ≤20 mm) had the most HI dependence

  16. Microanalysis of clay-based pigments by XRD techniques

    Hradil, David; Bezdička, Petr; Hradilová, J.

    Catania : Technart, 2015. "O-48". [Technart 2015 : non-destructive and microanalytical techniques in art and cultural heritage. 27.04.2015-30.04.2015, Catania] R&D Projects: GA ČR GA14-22984S Keywords : micro-XRD * clay-based pigments * paintings Subject RIV: CA - Inorganic Chemistry http://technart2015.lns.infn.it/images/BoA.pdf

  17. Factors Predictive of Symptomatic Radiation Injury After Linear Accelerator-Based Stereotactic Radiosurgery for Intracerebral Arteriovenous Malformations

    Herbert, Christopher, E-mail: cherbert@bccancer.bc.ca [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Moiseenko, Vitali [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, BC (Canada); McKenzie, Michael [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Redekop, Gary [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Hsu, Fred [Department of Radiation Oncology, British Columbia Cancer Agency, Abbotsford, BC (Canada); Gete, Ermias; Gill, Brad; Lee, Richard; Luchka, Kurt [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, BC (Canada); Haw, Charles [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Lee, Andrew [Department of Neurosurgery, Royal Columbian Hospital, New Westminster, BC (Canada); Toyota, Brian [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Martin, Montgomery [Department of Medical Imaging, British Columbia Cancer Agency, Vancouver, BC (Canada)

    2012-07-01

    Purpose: To investigate predictive factors in the development of symptomatic radiation injury after treatment with linear accelerator-based stereotactic radiosurgery for intracerebral arteriovenous malformations and relate the findings to the conclusions drawn by Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC). Methods and Materials: Archived plans for 73 patients who were treated at the British Columbia Cancer Agency were studied. Actuarial estimates of freedom from radiation injury were calculated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards models were used for analysis of incidence of radiation injury. Log-rank test was used to search for dosimetric parameters associated with freedom from radiation injury. Results: Symptomatic radiation injury was exhibited by 14 of 73 patients (19.2%). Actuarial rate of symptomatic radiation injury was 23.0% at 4 years. Most patients (78.5%) had mild to moderate deficits according to Common Terminology Criteria for Adverse Events, version 4.0. On univariate analysis, lesion volume and diameter, dose to isocenter, and a V{sub x} for doses {>=}8 Gy showed statistical significance. Only lesion diameter showed statistical significance (p < 0.05) in a multivariate model. According to the log-rank test, AVM volumes >5 cm{sup 3} and diameters >30 mm were significantly associated with the risk of radiation injury (p < 0.01). The V{sub 12} also showed strong association with the incidence of radiation injury. Actuarial incidence of radiation injury was 16.8% if V{sub 12} was <28 cm{sup 3} and 53.2% if >28 cm{sup 3} (log-rank test, p = 0.001). Conclusions: This study confirms that the risk of developing symptomatic radiation injury after radiosurgery is related to lesion diameter and volume and irradiated volume. Results suggest a higher tolerance than proposed by QUANTEC. The widely differing findings reported in the literature, however, raise considerable uncertainties.

  18. Design study of Be-target for proton accelerator based neutron source with 13MeV cyclotron

    There is a cyclotron named KIRAMS-13 in Pusan National University, Busan, Korea, which has the proton energy of 13MeV and the beam current of 0.05mA. Originally, it was developed for producing medical radioisotopes and nuclear physics research. To improve the utilization of the facility, we are considering the possibilities of installing a neutron generation target in it. The Beryllium target has been considered and neutrons can be generated by 9Be(p,n)9B reaction above the threshold proton energy of 2.057MeV. In this presentation, we suggest candidate materials and structures, thicknesses, metal layers and cooling systems of target, which is optimal for the KIRAMS-13. We chose the Beryllium material of 1.14mm thick, which is calculated by stopping power of Beryllium, based on PSTAR, NIST. As for the cooling system, we chose to use water as a coolant, which will also act as a moderator. As protons pass through the target, hydrogen ions continue to pile up in the material and this makes the material brittle. To solve this problem, we chose Vanadium material because it has high hydrogen diffusion coefficient and short half-life isotope after being activated by neutrons. We simulated the neutron characteristics by the Monte Carlo simulation code, Geant4, CERN and performed thermal analysis on the target. The design of target system is very important to produce neutrons for the desired purposes. There are several other existing facilities in Korea, in addition to the cyclotron facility considered in this study, where new neutron target system can be installed and neutrons can be generated. Two prominent facilities are KOMAC, Gyeongju and RFT-30, Jeongeup and we are planning to do study on the possibilities of utilizing the accelerators for neutron generation.

  19. Changing practice patterns of Gamma Knife versus linear accelerator-based stereotactic radiosurgery for brain metastases in the US.

    Park, Henry S; Wang, Elyn H; Rutter, Charles E; Corso, Christopher D; Chiang, Veronica L; Yu, James B

    2016-04-01

    OBJECT Single-fraction stereotactic radiosurgery (SRS) is a crucial component in the management of limited brain metastases from non-small cell lung cancer (NSCLC). Intracranial SRS has traditionally been delivered using a frame-based Gamma Knife (GK) platform, but stereotactic modifications to the linear accelerator (LINAC) have made an alternative approach possible. In the absence of definitive prospective trials comparing the efficacy and toxicities of treatment between the 2 techniques, nonclinical factors (such as technology accessibility, costs, and efficiency) may play a larger role in determining which radiosurgery system a facility may choose to install. To the authors' knowledge, this study is the first to investigate national patterns of GK SRS versus LINAC SRS use and to determine which factors may be associated with the adoption of these radiosurgery systems. METHODS The National Cancer Data Base was used to identify patients > 18 years old with NSCLC who were treated with single-fraction SRS to the brain between 2003 and 2011. Patients who received "SRS not otherwise specified" or who did not receive a radiotherapy dose within the range of 12-24 Gy were excluded to reduce the potential for misclassification. The chi-square test, t-test, and multivariable logistic regression analysis were used to compare potential demographic, clinicopathologic, and health care system predictors of GK versus LINAC SRS use, when appropriate. RESULTS This study included 1780 patients, among whom 1371 (77.0%) received GK SRS and 409 (23.0%) underwent LINAC SRS. Over time, the proportion of patients undergoing LINAC SRS steadily increased, from 3.2% in 2003 to 30.8% in 2011 (p academic facilities (overall 29.2% vs 17.2%, p academic facility type (AOR 2.04, 95% CI 1.60-2.60, p < 0.001), non-West versus West geographic location (AOR 4.50, 95% CI 2.87-7.09, p < 0.001), and distance from cancer reporting facility of < 20 versus ≥ 20 miles (AOR 1.57, 95% CI 1.21-2.04, p = 0

  20. Extreme short electron bunch generation based on velocity bunching in accelerating structure at t-ACTS, Tohoku University

    We are conducting a beam experiment of sub-picosecond electron bunch generation at t-ACTS (test accelerator as a coherent terahertz source), Tohoku University. In the t-ACTS, the intense coherent terahertz radiation will be generated from an undulator and an isochronous accumulator ring via producing sub-picosecond bunches. The accelerator is composed of a thermionic cathode rf gun, an alpha magnet and a 3 m-long accelerating structure. Velocity bunching scheme in accelerating structure is applied to generate the short electron bunch. The thermionic rf gun consists of two independent cavities has been developed, which is capable of manipulating the beam longitudinal phase space. To produced femtosecond electron bunch, the longitudinal phase space distribution of the beam entering the accelerating structure is optimized by changing the rf gun parameters. The bunch length is measured by observing an optical tradition radiation using a streak camera. In the study of femtosecond electron bunch generation, a relation between the rf gun parameters and the bunch length after compression was investigated. The preliminary results of experiments are described in this report. (author)

  1. Accelerator design

    The feasibility of constructing a TeV region electron-positron linear collider in Japan is discussed. The design target of the collider is given as follows: Energy, 1 TeV + 1 TeV; luminosity, 1032-1033/cm2/s; total length, 25km; electric power, 250MW; energy dispersion, 1%-10%; the start of the first experiment, early 1990s. For realizing the above target, the following research and developmental works are necessary. (a) Development of an acceleration tube with short filling time and high shunt resistance. (b) Short pulse microwave source with high peak power. (c) High current, single bunch linac. (d) Beam dynamics. As for the acceleration tube, some possibility is considered: For example, the use of DAW (Disk and Washer) which is being developed for TRISTAN as a traveling-wave tube; and the Jungle Gym-type acceleration tube. As a promising candidate for the microwave source, the Lasertron has been studied. The total cost of the collider construction is estimated to be about 310 billion yen, of which 120 billion yen is for the tunnel and buildings, and 190 billion yen for the accelerator facilities. The operation cost is estimated to be about 3 billion yen per month. (Aoki, K.)

  2. Accelerator operations

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  3. Performance Analysis of GPU-Accelerated Filter-Based Source Finding for HI Spectral Line Image Data

    Westerlund, Stefan

    2015-01-01

    Searching for sources of electromagnetic emission in spectral-line radio astronomy interferometric data is a computationally intensive process. Parallel programming techniques and High Performance Computing hardware may be used to improve the computational performance of a source finding program. However, it is desirable to further reduce the processing time of source finding in order to decrease the computational resources required for the task. GPU acceleration is a method that may achieve significant increases in performance for some source finding algorithms, particularly for filtering image data. This work considers the application of GPU acceleration to the task of source finding and the techniques used to achieve the best performance, such as memory management. We also examine the changes in performance, where the algorithms that were GPU accelerated achieved a speedup of around 3.2 times the 12 core per node CPU-only performance, while the program as a whole experienced a speedup of 2.0 times.

  4. Advanced accelerators

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  5. Accelerator based pyrohydrolysis of sodium diuranate and subsequent determination of F- and Cl- by ion-chromatography

    In the present paper we report a method for the extraction of F- and Cl- from sodium diuranate (SDU) using accelerator U3O8 by pyrohydrolysis technique and their simultaneous determination by ion chromatography. The effect of temperature, extraction time, sample size and accelerators MoO3, WO3 and U3O8 on the recovery of F- and Cl- from SDU has been studied and pyrohydrolysis conditions were optimized. The average recoveries obtained for F- and Cl- in spiked samples were more than 90%. (author)

  6. The model of collective acceleration of ions in vacuum discharge based on the deep potential well concept

    The model of ions collective acceleration at the spark stage of a vacuum discharge is proposed on the basis of connection mechanism of a cathode spot functioning and deep nonstationary well concept. The principal possibility of the deep potential well formation by availability of an external electrical field is shown and the conditions of its formation in an explosion-emission diode are clarified. The mode proposed explains the basic processes, leading to the ions collective acceleration and it is in good agreement with the experimental results

  7. Individualized Positron Emission Tomography–Based Isotoxic Accelerated Radiation Therapy Is Cost-Effective Compared With Conventional Radiation Therapy: A Model-Based Evaluation

    Bongers, Mathilda L., E-mail: ml.bongers@vumc.nl [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Coupé, Veerle M.H. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); De Ruysscher, Dirk [Radiation Oncology University Hospitals Leuven/KU Leuven, Leuven (Belgium); Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Oberije, Cary; Lambin, Philippe [Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Uyl-de Groot, Cornelia A. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2015-03-15

    Purpose: To evaluate long-term health effects, costs, and cost-effectiveness of positron emission tomography (PET)-based isotoxic accelerated radiation therapy treatment (PET-ART) compared with conventional fixed-dose CT-based radiation therapy treatment (CRT) in non-small cell lung cancer (NSCLC). Methods and Materials: Our analysis uses a validated decision model, based on data of 200 NSCLC patients with inoperable stage I-IIIB. Clinical outcomes, resource use, costs, and utilities were obtained from the Maastro Clinic and the literature. Primary model outcomes were the difference in life-years (LYs), quality-adjusted life-years (QALYs), costs, and the incremental cost-effectiveness and cost/utility ratio (ICER and ICUR) of PET-ART versus CRT. Model outcomes were obtained from averaging the predictions for 50,000 simulated patients. A probabilistic sensitivity analysis and scenario analyses were carried out. Results: The average incremental costs per patient of PET-ART were €569 (95% confidence interval [CI] €−5327-€6936) for 0.42 incremental LYs (95% CI 0.19-0.61) and 0.33 QALYs gained (95% CI 0.13-0.49). The base-case scenario resulted in an ICER of €1360 per LY gained and an ICUR of €1744 per QALY gained. The probabilistic analysis gave a 36% probability that PET-ART improves health outcomes at reduced costs and a 64% probability that PET-ART is more effective at slightly higher costs. Conclusion: On the basis of the available data, individualized PET-ART for NSCLC seems to be cost-effective compared with CRT.

  8. Individualized Positron Emission Tomography–Based Isotoxic Accelerated Radiation Therapy Is Cost-Effective Compared With Conventional Radiation Therapy: A Model-Based Evaluation

    Purpose: To evaluate long-term health effects, costs, and cost-effectiveness of positron emission tomography (PET)-based isotoxic accelerated radiation therapy treatment (PET-ART) compared with conventional fixed-dose CT-based radiation therapy treatment (CRT) in non-small cell lung cancer (NSCLC). Methods and Materials: Our analysis uses a validated decision model, based on data of 200 NSCLC patients with inoperable stage I-IIIB. Clinical outcomes, resource use, costs, and utilities were obtained from the Maastro Clinic and the literature. Primary model outcomes were the difference in life-years (LYs), quality-adjusted life-years (QALYs), costs, and the incremental cost-effectiveness and cost/utility ratio (ICER and ICUR) of PET-ART versus CRT. Model outcomes were obtained from averaging the predictions for 50,000 simulated patients. A probabilistic sensitivity analysis and scenario analyses were carried out. Results: The average incremental costs per patient of PET-ART were €569 (95% confidence interval [CI] €−5327-€6936) for 0.42 incremental LYs (95% CI 0.19-0.61) and 0.33 QALYs gained (95% CI 0.13-0.49). The base-case scenario resulted in an ICER of €1360 per LY gained and an ICUR of €1744 per QALY gained. The probabilistic analysis gave a 36% probability that PET-ART improves health outcomes at reduced costs and a 64% probability that PET-ART is more effective at slightly higher costs. Conclusion: On the basis of the available data, individualized PET-ART for NSCLC seems to be cost-effective compared with CRT

  9. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators

  10. Accelerating fDOT image reconstruction based on path-history fluorescence Monte Carlo model by using three-level parallel architecture.

    Jiang, Xu; Deng, Yong; Luo, Zhaoyang; Luo, Qingming

    2015-10-01

    The excessive time required by fluorescence diffuse optical tomography (fDOT) image reconstruction based on path-history fluorescence Monte Carlo model is its primary limiting factor. Herein, we present a method that accelerates fDOT image reconstruction. We employ three-level parallel architecture including multiple nodes in cluster, multiple cores in central processing unit (CPU), and multiple streaming multiprocessors in graphics processing unit (GPU). Different GPU memories are selectively used, the data-writing time is effectively eliminated, and the data transport per iteration is minimized. Simulation experiments demonstrated that this method can utilize general-purpose computing platforms to efficiently implement and accelerate fDOT image reconstruction, thus providing a practical means of using path-history-based fluorescence Monte Carlo model for fDOT imaging. PMID:26480115

  11. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  12. Characterization of solvents containing CyMe4-BTPhen in selected cyclohexanone-based diluents after irradiation by accelerated electrons

    Distler, P.; Kondé, J.; John, J.; Hájková, Zuzana; Švehla, Jaroslav; Grüner, Bohumír

    2015-01-01

    Roč. 60, č. 4 (2015), s. 885-891. ISSN 0029-5922 EU Projects: European Commission(XE) 323282 - SACSESS Institutional support: RVO:61388980 Keywords : accelerated electrons * CyMe4-BTPhen * irradiation * radiation stability * solvent extraction Subject RIV: CA - Inorganic Chemistry Impact factor: 0.477, year: 2014

  13. AOT-based microemulsions accelerate the 1,3-cycloaddition of benzonitrile oxide to N-ethylmaleimide

    Engberts, J. B. F. N.; Fernandez, E.; Garcia-Rio, L.; Leis, J. R.

    2006-01-01

    We studied the 1,3-dipolar cycloaddition of benzonitrile oxide to N-ethylmaleimide in AOT/isooctane/water microemulsions at 25.0 degrees C and found the reaction rate to be roughly 150 and 35 times greater than that in isooctane and pure water, respectively. The accelerating effect of the microemuls

  14. Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov–Fokker–Planck–Ampère system, part I: Collisionless aspects

    In this study, we propose a charge, momentum, and energy conserving discretization for the 1D–1V Vlasov–Ampère system of equations on an Eulerian grid. The new conservative discretization is nonlinear in nature, but can be efficiently converged with a moment-based nonlinear accelerator algorithm. We demonstrate the conservation and convergence properties of the scheme with various numerical examples, including a multi-scale ion–acoustic shockwave problem

  15. Study on particle transport to wall in JFT-2M edge plasma by accelerator-based analysis

    Transport of hydrogen-isotope particles, D and H, in the scrape-off layer (SOL) of JFT-2M having S.S.304 wall (partially covered with carbon ∼ 40%) was studied using an accelerator-based collector probe method. Here irradiation conditions were provided with the Taylor discharge cleaning (TDC) and the ohmically heated discharge (OHD) with or without neutral beam injection (NBI). First, effects of the wall on TDC-particle transport were examined with Si probes in the D-OHD after the D2-(or H2-)TDC; some of the D(or H) particles absorbed in the wall in the preceding D2-(or H2-)TDC are recycled in the subsequent OHD to reach the plasma boundary through the SOL. This effect was also confirmed in another experiment; in the H2-TDC followed by the D-OHD the H/D fluence ratio distribution is found to increase toward the wall, indicating that some of the H particles due to the H2-TDC are recycled from the wall to join the SOL plasma. Next, we measured the effect of high-fluence H2-TDC particles on the H retention of two C probes (C: Type AX-650K of Toyo Carbon Co., which is the same as JFT-2M divertor-plate material). In spite of the same H fluence (∼6 x 1020 cm-2) the retention of a sample having the smooth surface reached a saturated level of 5.44 x 1017 cm-2 while that of the other sample having the rough surface (as made) was in an unsaturated region (1.6 x 1017 cm-2), suggesting an importance of the surface condition. Finally, it becomes evident from the C-probe experiment in the D2→H2 (or H2→D2) TDC that some of the D(or H) particles absorbed in C during the preceding D2-(or H2-) TDC are replaced 'partially' by the H(or D) particles entering during the subsequent H2-(or D2-) TDC even under the 'unsaturated' condition. (J.P.N.)

  16. MUON ACCELERATION

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  17. KEKB accelerator

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  18. Accelerating networks

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  19. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques

    Švarcová, Silvie; Čermáková, Zdeňka; Hradilová, J.; Bezdička, Petr; Hradil, David

    2014-01-01

    Roč. 132, NOV (2014), s. 514-525. ISSN 1386-1425 Institutional support: RVO:61388980 Keywords : Copper pigments * Infrared spectroscopy * Microanalysis * Model experiments * Paintings * Powder X-ray micro-diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 2.353, year: 2014

  20. Accelerating News Issue 5

    Szeberenyi, A

    2013-01-01

    In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.