WorldWideScience

Sample records for accelerating potential

  1. Accelerating cosmologies from exponential potentials

    It is learnt that exponential potentials of the form V ∼ exp(-2cφ/Mp) arising from the hyperbolic or flux compactification of higher-dimensional theories are of interest for getting short periods of accelerated cosmological expansions. Using a similar potential but derived for the combined case of hyperbolic-flux compactification, we study a four-dimensional flat (or open) FRW cosmologies and give analytic (and numerical) solutions with exponential behavior of scale factors. We show that, for the M-theory motivated potentials, the cosmic acceleration of the universe can be eternal if the spatial curvature of the 4d spacetime is negative, while the acceleration is only transient for a spatially flat universe. We also briefly discuss about the mass of massive Kaluza-Klein modes and the dynamical stabilization of the compact hyperbolic extra dimensions. (author)

  2. Awakening the potential of plasma acceleration

    Katarina Anthony

    2014-01-01

    Civil engineering has begun for the new AWAKE experiment, which looks to push the boundaries of particle acceleration. This proof-of-principle experiment will harness the power of wakefields generated by proton beams in plasma cells, producing accelerator gradients hundreds of times higher than those used in current RF cavities.   Civil engineering works are currently ongoing at the AWAKE facility. As one of CERN's accelerator R&D experiments, the AWAKE project is rather unique. Like all of CERN's experiments, AWAKE is a collaborative endeavour with institutes and organisations participating around the world. "But unlike fixed-target experiments, where the users take over once CERN has delivered the facility, in AWAKE, the synchronised proton, electron and laser beams provided by CERN are an integral part of the experiment," explains Edda Gschwendtner, CERN AWAKE project leader. "So, of course, CERN's involvement in the project goes well...

  3. Potential application of electron accelerators in Malaysia

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing

  4. Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-11-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

  5. Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium

  6. Potential Impacts of Accelerated Climate Change

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vail, L. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-31

    This research project is part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research plan in support of developing a risk-informed licensing framework for flood hazards and design standards at proposed new facilities and significance determination tools for evaluating potential deficiencies related to flood protection at operating facilities. The PFHA plan aims to build upon recent advances in deterministic, probabilistic, and statistical modeling of extreme precipitation events to develop regulatory tools and guidance for NRC staff with regard to PFHA for nuclear facilities. The tools and guidance developed under the PFHA plan will support and enhance NRC’s capacity to perform thorough and efficient reviews of license applications and license amendment requests. They will also support risk-informed significance determination of inspection findings, unusual events, and other oversight activities.

  7. Electromagnetic forming - a potentially viable technique for accelerator technology

    Modern day accelerator development encompasses a myriad technologies required for their diverse needs. Whereas RF, high voltage, vacuum, cryogenics etc., technologies meet their functional requirements, high finish lapping processes, ceramic-metal joining, oven brazing, spark erosion or wire cutting etc., are a must to meet their fabrication requirements. Electromagnetic (EM) forming technique falls in the latter category and is developed as a special technology. It is currently catering to the development as a nuclear reactor technology, but has the potential to meet accelerator requirements too. This paper highlights the general principle of its working, simple design guidelines, advantages, and suggests some specific areas where this could benefit accelerator technologies

  8. Laser wakefield accelerator based light sources: potential applications and requirements

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  9. Laser wakefield accelerator based light sources: potential applications and requirements

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  10. The use and potential application of electron accelerator in Indonesia

    Danu, Sugiarto [National Nuclear Energy Agency, Center for Research and Development of Isotopes and Radiation Technology, Jakarta (Indonesia)

    2003-02-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  11. The use and potential application of electron accelerator in Indonesia

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  12. Accelerating universe in brane gravity with a confining potential

    Heydari-Fard, M. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Shirazi, M. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Jalalzadeh, S. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of)]. E-mail: s-jalalzadeh@sbu.ac.ir; Sepangi, H.R. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of)]. E-mail: hr-sepangi@sbu.ac.ir

    2006-08-31

    We construct the Einstein field equations on a 4-dimensional brane embedded in an m-dimensional bulk where the matter fields are confined to the brane by means of a confining potential. As a result, an extra term in the Friedmann equation in a m-dimensional bulk appears that may be interpreted as the X-matter, providing a possible phenomenological explanation for the acceleration of the universe. The study of the relevant observational data suggests good agreement with the predictions of this model.

  13. Accelerating universe in brane gravity with a confining potential

    Heydari-Fard, M; Sepangi, H R; Shirazi, M

    2006-01-01

    We construct the Einstein field equations on a 4-dimensional brane embedded in an $m$-dimensional bulk where the matter fields are confined to the brane by means of a confining potential. As a result, an extra term in the Friedmann equation in a $m$-dimensional bulk appears that may be interpreted as the X-matter, providing a possible phenomenological explanation for the acceleration of the universe. The study of the relevant observational data suggests good agreement with the predictions of this model.

  14. Risk of potential radiation accidental situations at TESLA accelerator installation

    The main aim of this paper is to recognize some of the numerous risks of potential exposure and to quantify requirements and probability of failure of radiation protection system due to design event tree. Nature of design and construction of Tesla Accelerator Installation (T.A.I.) make possibility of potential exposure as a result of proven design and modification, trade off, human error as well as defense in depth. In the case of potential exposure human risk is the result of two random events: first, the occurrence of the event that causes the exposure, and the second, the appearance of a harmful effect. The highest doses during potential exposure at T.A.I. can be received at the entrance to primary beam space (V.I.N.C.Y. cyclotron vault) as well as in space with target for fluorine production, high energy experimental channels, proton therapy channel and channel for neutron researches. Expected values of prompt radiation equivalent dose rate in the cyclotron vault is considerably high, in order of 10 Sv/h. Serious problem deals with such large research installation is a number of workers, as visiting research workers of different educational levels and people in Institute who are not professionally connected with ionizing radiation. They could cause willing or unwilling opening of the cyclotron vault doors. Considering some possible scenarios we assumed that during 7000 working hours per year it is reasonably to expect 300 unsafe entries per year. It can be concluded that safety system should be designed so that probability of failure of radiation protection system has to be less than 1.9 10-6. (authors)

  15. Overview of Accelerators with Potential Use in Homeland Security

    Garnett, Robert W.

    Quite a broad range of accelerators have been applied to solving many of the challenging problems related to homeland security and defense. These accelerator systems range from relatively small, simple, and compact, to large and complex, based on the specific application requirements. They have been used or proposed as sources of primary and secondary probe beams for applications such as radiography and to induce specific reactions that are key signatures for detecting conventional explosives or fissile material. A brief overview and description of these accelerator systems, their specifications, and application will be presented. Some recent technology trends will also be discussed.

  16. The potential for aeration of MSW landfills to accelerate completion

    Landfilling is a popular waste disposal method, but, as it is practised currently, it is fundamentally unsustainable. The low short-term financial costs belie the potential long-term environmental costs, and traditional landfill sites require long-term management in order to mitigate any possible environmental damage. Old landfill sites might require aftercare for decades or even centuries, and in some cases remediation may be necessary. Biological stabilisation of a landfill is the key issue; completion criteria provide a yardstick by which the success of any new technology may be measured. In order for a site to achieve completion it must pose no risk to human health or the environment, meaning that attenuation of any emissions from the site must occur within the local environment without causing harm. Remediation of old landfill sites by aerating the waste has been undertaken in Germany, the United States, Italy and The Netherlands, with considerable success. At a pilot scale, aeration has also been used in newly emplaced waste to accelerate stabilisation. This paper reviews the use of aerobic landfill worldwide, and assesses the ways in which the use of aerobic landfill techniques can decrease the risks associated with current landfill practices, making landfill a more sustainable waste disposal option. It focuses on assessing ways to utilise aeration to enhance stabilisation. The results demonstrated that aeration of old landfill sites may be an efficient and cost-effective method of remediation and allow the date of completion to be brought forward by decades. Similarly, aeration of newly emplaced waste can be effective in enhancing degradation, assisting with completion and reducing environmental risks. However, further research is required to establish what procedure for adding air to a landfill would be most suitable for the UK and to investigate new risks that may arise, such as the possible emission of non-methane organic compounds

  17. Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements

    Forsyth, C.; Fazakerley, A.N.; Walsh, A. P.; Watt, Clare E. J.; Garza, K. J.; Owen, C. J.; Constantinescu, D.; I. Dandouras; Fornaçon, K.-H.; E. Lucek; G. T. Marklund; Sadeghi, S. S.; Khotyaintsev, Y.; Masson, A.; N. Doss

    2012-01-01

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multi-spacecraft observations from Cluster we have examined two upward current regions on 14 December 2009. Our observations show that ...

  18. Investigation of toroidal acceleration and potential acceleration forces in EAST and J-TEXT plasmas

    Wang, Fudi; Pan, Xiayun; Cheng, Zhifeng; Chen, Jun; Cao, Guangming; Wang, Yuming; Han, Xiang; Li, Hao; Wu, Bin; Chen, Zhongyong; Bitter, Manfred; Hill, Kenneth; Rice, John; Morita, Shigeru; Li, Yadong; Zhuang, Ge; Ye, Minyou; Wan, Baonian; Shi, Yuejiang

    2014-01-01

    In order to produce intrinsic rotation, bulk plasmas must be collectively accelerated by the net force exerted on them, which results from both driving and damping forces. So, to study the possible mechanisms of intrinsic rotation generation, it is only needed to understand characteristics of driving and damping terms because the toroidal driving and damping forces induce net acceleration which generates intrinsic rotation. Experiments were performed on EAST and J-TEXT for ohmic plasmas with net counter- and co-current toroidal acceleration generated by density ramping up and ramping down. Additionally on EAST, net co-current toroidal acceleration was also formed by LHCD or ICRF. For the current experimental results, toroidal acceleration was between - 50 km/s^2 in counter-current direction and 70 km/s^2 in co-current direction. According to toroidal momentum equation, toroidal electric field (E\\-(\\g(f))), electron-ion toroidal friction, and toroidal viscous force etc. may play roles in the evolution of toroi...

  19. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  20. Accelerator

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  1. The effective inertial acceleration due to oscillations of the gravitational potential: footprints in the solar system

    Khokhlov, D L

    2003-01-01

    The conjecture is considered that every body induces the wave field which imposes oscillations on the gravitational potential of a body. The function for oscillations is chosen to prevent the gravitational collapse of the matter at the nucleus energy density. The conjecture leads to modification of the Newtonian gravity. The effect is too small to be seen in observations in the solar system. Oscillations of the gravitational potential of a body produce effective inertial outward acceleration for a particle orbiting around the body. Footprints of the effective inertial acceleration due to oscillations of the gravitational potentials of the Sun and Earth are investigated. The conjecture allows to explain the anomalous shift of the perihelion of Mercury and Icarus, the anomalous shift of the perigee of LAGEOS II, the anomalous acceleration acting on Pioneer 10, 11, the anomalous increase in the lunar semi-major axis. The advance of the Keplerian orbit for Earth, Jupiter, Neptune, Uranus caused by the effective i...

  2. The influence of potential exposure to radiation protection system of accelerator installation TESLA

    Potential exposure of individuals at big nuclear machines like Accelerator Installation Tesla (AIT) generates direct requirements to reliability of radiation protection system. Starting from technical characteristics of AlT and international recommendation concerning potential exposure and the probability of death has been calculated. The reference risk has been specified. Comparing then we calculated the probability of the failure of the protective system. The reliability of the system has to be better (author)

  3. Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements

    Forsyth, C.; Fazakerley, A. N.; Walsh, A. P.; Watt, C. E.; Garza, K.; Owen, C. J.; Constantinescu, D. O.; Dandouras, I. S.; Fornacon, K.; Lucek, E. A.; Marklund, G. T.; Sadeghi, S. S.; Khotyaintsev, Y. V.; Masson, A.; Doss, N.

    2013-12-01

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.

  4. A model for the determination of the nominal potential for a linear accelerator

    The objective of the present work is to find a physical mathematical model based on the reason of the dose percentages at 10 and 20 cm depth, at 100 cm DFS and a 10 x 10 cm2 field. It was utilized literature data of new manufactured accelerators and those are in use in hospitals, which allow to prove the model under different conditions. Our objective consists only to obtain a model that verifies the nominal potential for a linear accelerator, but without pretending that such a model to be used to calculate any one factor to determination of absorbed dose. (Author)

  5. High-field plasma acceleration in a high-ionization-potential gas

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  6. Accelerated aging and controlled deterioration for the determination of the physiological potential of onion seeds

    Rodo Angelica Brod

    2003-01-01

    Full Text Available International research on vegetable seed vigor is not at the same level attained for grain crops species. This study was conducted to identify reliable procedures for the accelerated aging and controlled deterioration tests to rank onion (Allium cepa L. seed lots according to their physiological potential. Six seed lots of the cultivars Aurora and Petroline were evaluated in the laboratory for germination, first count, seedling vigor classification, traditional and saturated salt accelerated aging (41masculineC / 48 and 72 h, controlled deterioration (24% of water / 45masculineC / 24 h and seedling emergence tests. Seed moisture content after the saturated salt accelerated aging test was lower and uniform, which is considered an important advantage in comparison to the traditional procedure. The saturated salt accelerated aging (41masculineC / 48 and 72 h and controlled deterioration (moisture content adjusted to 24% / 45masculineC / 24 h tests were the best procedures to assess the physiological potential of onion seeds, and are indicated for use in quality control programs.

  7. Scalar dispersion in a periodically reoriented potential flow: acceleration via Lagrangian chaos.

    Lester, D R; Rudman, M; Metcalfe, G; Trefry, M G; Ord, A; Hobbs, B

    2010-04-01

    Although potential flows are irrotational, Lagrangian chaos can occur when these are unsteady, with rapid global mixing observed upon flow parameter optimization. What is unknown is whether Lagrangian chaos in potential flows results in accelerated scalar dispersion, to what magnitude, how robustly, and via what mechanisms. We consider scalar dispersion in a model unsteady potential flow, the Lagrangian topology of which is well understood. The asymptotic scalar dispersion rate q and corresponding scalar distribution (strange eigenmode) are calculated over the flow parameter space Q for Peclét numbers Pe=10{1}-10{4}. The richness of solutions over Q increases with Pe, with pattern mode locking, symmetry breaking transitions to chaos and fractally distributed maxima observed. Such behavior suggests detailed global resolution of Q is necessary for robust optimization, however localization of local optima to bifurcations between periodic and subharmonic eigenmodes suggests novel efficient means of optimization. Acceleration rates of 150 fold at Pe=10{4} are observed; significantly greater than corresponding values for chaotic Stokes flows, suggesting significant scope for dispersion acceleration in potential flows in general. PMID:20481839

  8. Direct Experimental Verification of Neutron Acceleration by the Material Optical Potential of Solid 2H2

    We have measured the acceleration of neutrons by the material optical potential of solid 2H2. Using a gravitational spectrometer, we find a minimal kinetic energy Ec=(99±7) neV of neutrons from a superthermal ultracold neutron (UCN) source with solid 2H2 as an UCN converter. The result is in excellent agreement with theoretical predictions, Ec=106 neV

  9. Quantum Fermi acceleration in the resonant gaps of a periodically driven one-dimensional potential box

    We study numerically the quantum mechanics of a point particle in the one-dimensional potential box, whose boundary oscillates periodically according to the sawtooth driving law. We perform very accurate numerical calculations over up to about 500 periods. Unlike in smooth driving, this system admits classical Fermi acceleration, because the Kolmogorov–Arnold–Moser theorem does not apply, and surprisingly also admits quantum Fermi acceleration, but only in the extremely narrow resonant gaps located at the values of the driving parameter that corresponds to either one-photon transitions or multi-photon transitions. In the gaps the energy of the particle increases indefinitely, quadratically with time, as predicted by our quite general two-level theory derived for general periodic quantum systems, whilst outside the gaps it oscillates and displays beatings with long or very long periods which are theoretically unexplained, but very well and clearly manifested. (paper)

  10. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia.

    Smout, Michael J; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N; Chan, Lai Yue; Johnson, Michael S; Turnbull, Lynne; Whitchurch, Cynthia B; Giacomin, Paul R; Moran, Corey S; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P; Brindley, Paul J; Loukas, Alex

    2015-10-01

    Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648

  11. On the estimation of the wake potential for an ultrarelativistic charge in an accelerating structure

    The method to derive the analytic estimations for wake fields of an ultrarelativistic charge in an accelerating structure, that are valid in the range of distances smalller or compared to the effective structure dimensions. The method is based on the approximate space-time domain integrating of the maxwell equations in the Kirchhoff formulation. the method is demonstrated on the examples of obtaining the wake potentials for energy loss of a bunch traversing a scraper, a cavity or periodic iris-loaded structure. Likewise formulae are derived for Green functions that describe transverse force action of wake fields. Simple formulae for the total energy loss evaluation of a bunch with the Gaussian charge density distribution are derived as well. The derived estimations are compared with the computer results and predictions of other models

  12. Sensitivity analysis in multipole-accelerated panel methods for potential flow

    Leathrum, James F., Jr.

    1995-01-01

    In the design of an airframe, the effect of changing the geometry on resulting computations is necessary for design optimization. The geometry is defined in terms of a series of design variables, including design variables to define the wing planform, tail, canard, pylon, and nacelle. Design optimization in this research is based on how these design variable affect the potential flow. The potential flow is computed as a function of the geometry and location of a series of panels describing the airframe, which are in turn a function of the design variables. Multipole accelerated panel methods improve the computational complexity of the problem and thus are an attractive approach. To utilize the methods in design optimization, it was necessary to define the appropriate sensitivity derivatives. The overhead incurred from finding the sensitivity derivatives in conjunction with the original computation should be small. This research developed the background for multipole-accelerated panel methods and the framework for finding sensitivity derivatives in the methods. Potential flow panel codes are commonly used for powered-lift aerodynamic predictions for three dimensional geometries. Given an airframe which has been discretized into a series of panels to define the airframe geometry, potential is computed as a function of the influence of all panels on all other panels. This is a computationally intensive problem for which efficient solutions are desired to improve the computational time and to allow greater resolution by use of more panels. One such solution is the use of hierarchical multipole methods which entail approximations of the effects of far-field terms. Hierarchical multipole methods have become prevalent in molecular dynamics and gravitational physics, and have been introduced into the fields of capacitance calculations, computational fluid dynamics, and electromagnetics. The methods utilize multipole expansions to describe the effect of bodies (i

  13. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Geng, Hua Y

    2014-01-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...

  14. An evaluation of the potential of GPUs to accelerate tracking algorithms for the ATLAS trigger

    Baines, JTM; The ATLAS collaboration; Emeliyanov, D; Howard, JR; Kama, S; Washbrook, AJ; Wynne, BM

    2014-01-01

    The potential of GPUs has been evaluated as a possible way to accelerate trigger algorithms for the ATLAS experiment located at the Large Hadron Collider (LHC). During LHC Run-1 ATLAS employed a three-level trigger system to progressively reduce the LHC collision rate of 20 MHz to a storage rate of about 600 Hz for offline processing. Reconstruction of charged particles trajectories through the Inner Detector (ID) was performed at the second (L2) and third (EF) trigger levels. The ID contains pixel, silicon strip (SCT) and straw-tube technologies. Prior to tracking, data-preparation algorithms processed the ID raw data producing measurements of the track position at each detector layer. The data-preparation and tracking consumed almost three-quarters of the total L2 CPU resources during 2012 data-taking. Detailed performance studies of a CUDA™ implementation of the L2 pixel and SCT data-preparation and tracking algorithms running on a Nvidia® Tesla C2050 GPU have shown a speed-up by a factor of 12 for the ...

  15. Evolution in fast forward: a potential role for mutators in accelerating Staphylococcus aureus pathoadaptation.

    Canfield, Gregory S; Schwingel, Johanna M; Foley, Matthew H; Vore, Kelly L; Boonanantanasarn, Kanitsak; Gill, Ann L; Sutton, Mark D; Gill, Steven R

    2013-02-01

    Pathogen evolution and subsequent phenotypic heterogeneity during chronic infection are proposed to enhance Staphylococcus aureus survival during human infection. We tested this theory by genetically and phenotypically characterizing strains with mutations constructed in the mismatch repair (MMR) and oxidized guanine (GO) system, termed mutators, which exhibit increased spontaneous-mutation frequencies. Analysis of these mutators revealed not only strain-dependent increases in the spontaneous-mutation frequency but also shifts in mutational type and hot spots consistent with loss of GO or MMR functions. Although the GO and MMR systems are relied upon in some bacterial species to prevent reactive oxygen species-induced DNA damage, no deficit in hydrogen peroxide sensitivity was found when either of these DNA repair pathways was lost in S. aureus. To gain insight into the contribution of increased mutation supply to S. aureus pathoadaptation, we measured the rate of α-hemolysin and staphyloxanthin inactivation during serial passage. Detection of increased rates of α-hemolysin and staphyloxanthin inactivation in GO and MMR mutants suggests that these strains are capable of modifying virulence phenotypes implicated in mediating infection. Accelerated derivation of altered virulence phenotypes, combined with the absence of increased ROS sensitivity, highlights the potential of mutators to drive pathoadaptation in the host and serve as catalysts for persistent infections. PMID:23204459

  16. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent;

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived...

  17. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent;

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module pow...

  18. Highly periodic laser-induced nanostructures on thin Ti and Cu foils for potential application in laser ion acceleration

    Das, Susanta Kumar; Andreev, Alexander; Messaoudi, Hamza; Braenzel, Julia; Schnuerer, Matthias; Grunwald, Ruediger

    2016-03-01

    The feasibility of femtosecond laser-induced periodic nanostructures on thin Ti and Cu foils (thickness down to 1 μm) is demonstrated. At pulse durations of 120 fs and a wavelength of 400 nm, periods of 61 nm to 320 nm were obtained. Particle-in-cell simulations of laser ion acceleration processes with such nanostructured targets indicate their potential for high energy particle physics applications. In particular, a measurable enhancement of the proton cut-off energy and a significant enhancement of the number of accelerated particles compared to non- or weakly structured targets of same thickness and material are expected.

  19. The model of collective acceleration of ions in vacuum discharge based on the deep potential well concept

    The model of ions collective acceleration at the spark stage of a vacuum discharge is proposed on the basis of connection mechanism of a cathode spot functioning and deep nonstationary well concept. The principal possibility of the deep potential well formation by availability of an external electrical field is shown and the conditions of its formation in an explosion-emission diode are clarified. The mode proposed explains the basic processes, leading to the ions collective acceleration and it is in good agreement with the experimental results

  20. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  1. The Argonne ACWL, a potential accelerator-based neutron source for BNCT

    THE CWDD (Continuous Wave Deuterium Demonstrator) accelerator was designed to accelerate 80 mA cw of D- to 7.5 MeV. Most of the hardware for the first 2 MeV was installed at Argonne and major subsystems had been commissioned when program funding from the Ballistic Missile Defense Organization ended in October 1993. Renamed the Argonne Continuous Wave Linac (ACWL), we are proposing to complete it to accelerate either deuterons to 2 MeV or protons to 3-3.5 MeV. Equipped with a beryllium or other light-element target, it would make a potent source of neutrons (on the order of 1013 n/s) for BNCT and/or neutron radiography. Project status and proposals for turning ACWL into a neutron source are reviewed, including the results of a computational study that was carried out to design a target/moderator to produce an epithermal neutron beam for BNCT. (orig.)

  2. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  3. Surface-plasmon-ponderomotive electron acceleration as a potential carrier-envelope phase measurement tool

    Complete test of publication follows. There is a strong motivation among developers of few-cycle femtosecond laser systems to realize a compact carrier-envelope phase (CEP) detector that would enable direct, solid-state-based, single-shot CEP measurement. Such a tool would serve the diagnostics of ultrabright laser systems as well as that of other phase-stabilized femtosecond sources where only some nJs of pulse energy is desired to be sacrificed for online phase measurement. Recent advances in understanding light-solid interactions induced by few-cycle pulses have not proven sufficient for the construction of a compact, high-contrast phasemeter. Therefore, we propose a new method to overcome this problem and provide new physical insight into surface plasmon-enhanced (SP) electron acceleration, too. We demonstrate, for the first time, that SP electron acceleration can be coherently controlled through the CEP of the excitation pulse (see the fig. for illustration of launching of an SP wave and subsequent dynamics of photo-injected electrons). It is shown through model calculations that the kinetic energy gain experienced by an electron in the electric field of the SP wave depends intrinsically on the CEP (see figure for overlapped energy spectra of SP-accelerated electrons for CEP ranging from 0 to 2π and τlaser = 5 fs and for the variation of the total number of electrons above K0 = 300 eV). Analysis indicates that the physical origin of the CEP sensitivity arises from an electron's ponderomotive interaction with the oscillating electromagnetic field of the SP wave. The underlying mechanism also provides the desired properties required for a high-contrast phasemeter, moreover, the measurement of the CEP of several-cycle pulses (12 fs at 800 nm in our case) seems also within reach. Further development efforts along the proposed lines could culminate in true waveform synthesis in the optical domain which would provide a tool for ultimate coherent control of atomic

  4. Accelerator mass spectrometry for human biochemistry: The practice and the potential

    Isotopic labels are a primary tool for tracing chemicals in natural systems. Accelerator mass spectrometry (AMS) quantifies long-lived isotopes that can be used in safe, sensitive and precise biochemical research with human participants. AMS could reduce the use of animals in biochemical research and remove the uncertain extrapolations from animal models to humans. Animal data seldom represent the sort of variability expected in a human population. People, knowingly or not, routinely expose themselves to radiation risks much greater than AMS-based biochemical research that traces μg/kg doses of chemicals containing tens of nCi of 14C for as long as 7 months. AMS is applied to research in toxicology, pharmacology and nutrition

  5. Accelerated Thermalisation of 39K atoms in a Magnetic Trap with Superimposed Optical Potential

    Nath, Dipankar; Rajalakshmi, G; Unnikrishnan, C S

    2013-01-01

    We report the rapid accelerated thermalisation of Potassium 39 K atoms loaded in a magnetic trap, in the presence of a single dipole trap beam. More than an order of magnitude reduction in the thermalisation time, to less than a second, is observed with the focused off- resonant beam occupying only 0.01% of the volume of the magnetic trap. The cold atoms are loaded from a Magneto-Optical Trap(MOT) of 39 K that has gone through a compressed MOT and sub-Doppler cooling stage. The atoms are prepared in the magnetically stretched |F = 2, mF = 2> state prior to loading into the hybrid trap. We also report a direct loading of 39 K atoms, prepared in the state |F = 1>, into a single beam dipole trap.

  6. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO2 in the atmosphere. Carbonation converts CO2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO2. The pressure of CO2 inside the vessel has an effect on the rate of CO2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO2 initial pressure gives higher on rates of CO2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO2 sequestered into fly ash

  7. Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI).

    Ouyang, Zi; Mainali, Madan Kumar; Sinha, Neeharika; Strack, Guinevere; Altundal, Yucel; Hao, Yao; Winningham, Thomas Andrew; Sajo, Erno; Celli, Jonathan; Ngwa, Wilfred

    2016-04-01

    The purpose of this study is to investigate the feasibility of using cerium oxide nanoparticles (CONPs) as radical scavengers during accelerated partial breast irradiation (APBI) to protect normal tissue. We hypothesize that CONPs can be slowly released from the routinely used APBI balloon applicators-via a degradable coating-and protect the normal tissue on the border of the lumpectomy cavity over the duration of APBI. To assess the feasibility of this approach, we analytically calculated the initial concentration of CONPs required to protect normal breast tissue from reactive oxygen species (ROS) and the time required for the particles to diffuse to various distances from the lumpectomy wall. Given that cerium has a high atomic number, we took into account the possible inadvertent dose enhancement that could occur due to the photoelectric interactions with radiotherapy photons. To protect against a typical MammoSite treatment fraction of 3.4Gy, 5ng·g(-1) of CONPs is required to scavenge hydroxyl radicals and hydrogen peroxide. Using 2nm sized NPs, with an initial concentration of 1mg·g(-1), we found that 2-10days of diffusion is required to obtain desired concentrations of CONPs in regions 1-2cm away from the lumpectomy wall. The resultant dose enhancement factor (DEF) is less than 1.01 under such conditions. Our results predict that CONPs can be employed for radioprotection during APBI using a new design in which balloon applicators are coated with the NPs for sustained/controlled in-situ release from within the lumpectomy cavity. PMID:27053452

  8. Cardioprotective potential of Irish macroalgae: generation of glycine betaine and dimethylsulfoniopropionate containing extracts by accelerated solvent extraction.

    Valverde, Juan; Hayes, Maria; McLoughlin, Pádraig; Rai, Dilip K; Soler-Vila, Anna

    2015-06-01

    Accelerated solvent extraction (ASE®) was used to generate 18 macroalgal extracts from Irish seaweeds. The glycine betaine and dimethylsulfoniopriopionate content of the generated ASE® extracts were estimated using (1)H-NMR and confirmed for selected extracts using ultra performance liquid chromatography and mass spectrometry. Dimethylsulfoniopriopionate was only identified in the ASE® extract generated from Codium fragile ISCG0029. Glycine betaine was identified in the ASE® extract generated from Ulva intestinalis ISCG0356 using (1)H-NMR. Mass spectrometry analysis found that the seaweed species Cytoseira nodicaulis ISCG0070, Cytoseira tamariscofolia ISCG0283, and Polysiphonia lanosa ISCG0462 also had a glycine betaine content that ranged from 1.39 ng/ml to 105.11 ng/ml. Generated ASE® macroalgal extracts have potential for use as functional food ingredients in food products. PMID:26018918

  9. [The role of positive and negative angular accelerations in the genesis of early components of kinesthetic evoked potentials of the first somatosensory area in cats and rhesus monkeys].

    Fedan, V A

    1988-01-01

    Studies have been made on the input of negative and positive angular accelerations in the genesis of early complex of positive waves of kinesthetic evoked potentials in contralateral somatosensory cortex. It is suggested that the initial and final phases of these potentials play key role in the origin of the early complex of waves. PMID:3414221

  10. The potential of accelerating early detection of autism through content analysis of YouTube videos.

    Vincent A Fusaro

    Full Text Available Autism is on the rise, with 1 in 88 children receiving a diagnosis in the United States, yet the process for diagnosis remains cumbersome and time consuming. Research has shown that home videos of children can help increase the accuracy of diagnosis. However the use of videos in the diagnostic process is uncommon. In the present study, we assessed the feasibility of applying a gold-standard diagnostic instrument to brief and unstructured home videos and tested whether video analysis can enable more rapid detection of the core features of autism outside of clinical environments. We collected 100 public videos from YouTube of children ages 1-15 with either a self-reported diagnosis of an ASD (N = 45 or not (N = 55. Four non-clinical raters independently scored all videos using one of the most widely adopted tools for behavioral diagnosis of autism, the Autism Diagnostic Observation Schedule-Generic (ADOS. The classification accuracy was 96.8%, with 94.1% sensitivity and 100% specificity, the inter-rater correlation for the behavioral domains on the ADOS was 0.88, and the diagnoses matched a trained clinician in all but 3 of 22 randomly selected video cases. Despite the diversity of videos and non-clinical raters, our results indicate that it is possible to achieve high classification accuracy, sensitivity, and specificity as well as clinically acceptable inter-rater reliability with nonclinical personnel. Our results also demonstrate the potential for video-based detection of autism in short, unstructured home videos and further suggests that at least a percentage of the effort associated with detection and monitoring of autism may be mobilized and moved outside of traditional clinical environments.

  11. A model for the determination of the nominal potential for a linear accelerator; Un modelo para la determinacion del potencial nominal de un acelerador lineal

    Gutt, F.; Silva, P.; Guerrero, R.; Diaz, J.; Colmenares, J. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Laboratorio Secundario de Calibracion Dosimetrica (LSCD), Apartado 21827, Caracas 1020 A (Venezuela)

    1998-12-31

    The objective of the present work is to find a physical mathematical model based on the reason of the dose percentages at 10 and 20 cm depth, at 100 cm DFS and a 10 x 10 cm{sup 2} field. It was utilized literature data of new manufactured accelerators and those are in use in hospitals, which allow to prove the model under different conditions. Our objective consists only to obtain a model that verifies the nominal potential for a linear accelerator, but without pretending that such a model to be used to calculate any one factor to determination of absorbed dose. (Author)

  12. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  13. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied

  14. Advanced accelerators

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  15. Introduction of the interdependence between the glutathione half-cell reduction potential and thermodynamic parameters during accelerated aging of maize seeds

    Vesna D. Dragičević; SLOBODANKA D. SREDOJEVIĆ; MIHAJLO B. SPASIĆ

    2010-01-01

    Two maize hybrids with a different ability to maintain seed germination were examined during the course of accelerated aging (AA). Initially, the similar seed reduction potential of the GSSG/2GSH half-cell increased in H1 (dent hybrid) without influencing the seed germination ability up to the 6th day of AA, while in H2 (sweet corn hybrid), it was not changed up to the 6th day of AA but with a significant later loss of seed germination ability. During the AA course, the amount of free thiol d...

  16. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    Amato, E.; Italiano, A.; Margarone, D.; Pagano, B.; Baldari, S.; Korn, G.

    2016-04-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems.

  17. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems

  18. Can Accelerators Accelerate Learning?

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  19. Plasma accelerators

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  20. Debye potentials, electromagnetic reciprocity and impedance boundary conditions for efficient analytic approximation of coupling impedances in complex heterogeneous accelerator pipes

    Petracca, S. [Salerno Univ. (Italy)

    1996-08-01

    Debye potentials, the Lorentz reciprocity theorem, and (extended) Leontovich boundary conditions can be used to obtain simple and accurate analytic estimates of the longitudinal and transverse coupling impedances of (piecewise longitudinally uniform) multi-layered pipes with non simple transverse geometry and/or (spatially inhomogeneous) boundary conditions. (author)

  1. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    Kuehr, Marietta, E-mail: marietta.kuehr@ukb.uni-bonn.de [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Wolfgarten, Matthias; Stoelzle, Marco [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Leutner, Claudia [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Hoeller, Tobias [Department of Medical Statistics and Epidemiology, University of Bonn, Bonn (Germany); Schrading, Simone; Kuhl, Christiane; Schild, Hans [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Kuhn, Walther; Braun, Michael [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany)

    2011-11-15

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size {<=}3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget's disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  2. Linear Accelerators

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  3. Study of potential of nuclear waste transmutation and safety characteristics of an hybrid system: sub critical accelerator reactor

    The study of potential of nuclear waste transmutation for the new reactor systems - hybrid reactors - was the object of this work. Global review of different projects is presented. The basic physical parameters definitions, as neutron surplus and relative importance of external source neutrons, are introduced and explained. For these parameters, numerical values are obtained. The advantage in neutron surplus of fast system is noted. Equilibrium model and corresponding toxicities of different isotopes nd nuclear cycles are presented. Numerical analysis for equilibrium model converge validation are performed also. The study of neutron consumption by 'transmutable' Long-Lived Fission Products (Tc, I and Cs) show the possibility of their incineration in dedicated fast hybrid reactors. Equilibrium model shown the influence of reprocessing losses level to cycle toxicity level. Relations between specific fuel inventories (mass normalised by power unit) for thermal and fast spectra are examined. The differences are relatively small. Finally, few hybrid reactor concepts with different objects were analysed. These studies confirm that in frameworks of certain Nuclear Energy scenarios the fast hybrid systems can reduce significantly the radio-toxicity of fuel cycle. Preliminary analyses of sub-critical reactor behaviour show big potential of this reactor type in 'Transient of Power' kind of accident, even if more detailed study is necessary. (author)

  4. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments

    Phytoextraction and phytostabilization are well-established sub-processes of phytoremediation that are being followed for in situ remediation of soils contaminated with toxic metals. Taraxacum mongolicum Hand-Mazz, a newly reported Cd accumulator has shown considerable potential for phytoextracting Cd. This paper investigated the effects of urea and chicken manure on T. mongolicum phytoextracting Cd from soil using pot culture experiments. The results showed that urea application did not affect the Cd concentrations in root, leaf, inflorescence and shoot of T. mongolicum, but chicken manure significantly decreased them (p -1) of T. mongolicum to Cd by 3-5-fold due to the increase in shoot biomass (increased 4-7 folds). Further, addition of urea and chicken manure increased organic matter, nitrogen, phosphorus and potassium, the microorganism count, urease and phosphatase activities of soil indicating their eco-friendly function. Urea is ideal for optimizing phytoextraction of T. mongolicum to Cd, while chicken manure is appropriate for phytostabilization.

  5. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments

    Wei Shuhe, E-mail: shuhewei@yahoo.com.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Wang Shanshan [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Qixing, E-mail: zhouqx523@yahoo.com.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Zhan Jie [Department of Biotechnology, Liaoning University of Traditional Chinese Medicine, Shenyang 110101 (China); Ma Lihui [Huayou Industrial Company, Liaohe Petroleum Exploration Bureau, Panjin 124010 (China); Wu Zhijie; Sun Tieheng [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Prasad, M.N.V. [Department of Plant Sciences, University of Hyderabad, Hyderabad 500046 (India)

    2010-09-15

    Phytoextraction and phytostabilization are well-established sub-processes of phytoremediation that are being followed for in situ remediation of soils contaminated with toxic metals. Taraxacum mongolicum Hand-Mazz, a newly reported Cd accumulator has shown considerable potential for phytoextracting Cd. This paper investigated the effects of urea and chicken manure on T. mongolicum phytoextracting Cd from soil using pot culture experiments. The results showed that urea application did not affect the Cd concentrations in root, leaf, inflorescence and shoot of T. mongolicum, but chicken manure significantly decreased them (p < 0.05) by 23.5%, 31.5%, 24.8% and 30.4% owing to decreased extractable Cd. Urea and chicken manure significantly increased (p < 0.05) the phytoextraction capacities ({mu}g pot{sup -1}) of T. mongolicum to Cd by 3-5-fold due to the increase in shoot biomass (increased 4-7 folds). Further, addition of urea and chicken manure increased organic matter, nitrogen, phosphorus and potassium, the microorganism count, urease and phosphatase activities of soil indicating their eco-friendly function. Urea is ideal for optimizing phytoextraction of T. mongolicum to Cd, while chicken manure is appropriate for phytostabilization.

  6. Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: a piecewise potential vorticity diagnosis

    Shenming Fu

    2014-03-01

    Full Text Available An extreme explosive extratropical cyclone over the northwestern Pacific Ocean (NPO that formed in winter 2004 and went through two distinct rapid deepening periods was successfully simulated by a non-hydrostatic mesoscale model (MM5. Based on the simulation, the cyclone's rapid deepening was investigated in detail using the piecewise potential vorticity (PV inversion method which successfully captured the characteristics of the cyclone and its associated background circulations. Results indicated that explosive development of the cyclone was dominated by forcings in the extended surface layer (ESL, which were closely related to baroclinity (temperature advection and boundary layer processes (sensible heat exchange. In the interior layer (IL, direct effects of condensation were mainly conducive to the cyclone's development, whereas indirect effects (interactions with other layers mainly acted conversely. Processes associated with latent heat release (LHR were characterised by nonlinearity. Features of the precipitation, including intensity, duration, range and relative configuration to the cyclone determined the influences of condensation on the cyclone. In the upper layer (UL, tropopause-folding processes and horizontal PV advection were main influencing factors to the evolution of the cyclone. Upper-level forcings firstly exerted slight effects on the cyclone's development, since upper-level positive PV anomalies were far from the cyclone; then, as the influencing short-wave trough and the cyclone both moved northeastward, upper-level positive PV anomalies merged, enhanced and entered key areas of the cyclone, and thus both direct and indirect effects associated with the upper-level forcings strengthened significantly around the cyclone, and this dominated the cyclone's transition from a moderate explosive cyclone to an extreme one.

  7. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    Lee, Kyoung-Rok; Koo, Weoncheol; Kim, Moo-Hyun

    2013-12-01

    A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  8. Future accelerators (?)

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made

  9. Future accelerators (?)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  10. Accelerating Value Creation with Accelerators

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...

  11. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  12. Laser accelerator

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  13. LIBO accelerates

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  14. Induction accelerators

    Takayama, Ken

    2011-01-01

    A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.

  15. Developments in laser-driven plasma accelerators

    Hooker, Simon Martin

    2014-01-01

    Laser-driven plasma accelerators provide acceleration gradients three orders of magnitude greater than conventional machines, offering the potential to shrink the length of accelerators by the same factor. To date, laser-acceleration of electron beams to particle energies comparable to those offered by synchrotron light sources has been demonstrated with plasma acceleration stages only a few centimetres long. This article describes the principles of operation of laser-driven plasma accelerators, and reviews their development from their proposal in 1979 to recent demonstrations. The potential applications of plasma accelerators are described and the challenges which must be overcome before they can become a practical tool are discussed.

  16. Large electrostatic accelerators

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  17. The miniature accelerator

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  18. Electron accelerators for environmental protection

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO2 and NOx removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where direct

  19. Tandem accelerators

    After the installation of Ti-acceleration tubes and substantial modifications and additions to the EN tandem accelerator the performance of the machine has stabilized. The voltage behaviour of the tubes obviously improves as conditioning times necessary to run up to 6 MV decrease. A gridded lens has been added at the entrance of the first acceleration tube, and a second foil stripper is now installed in the short dead section between the high-energy tubes. The MP tandem also has been running stably during most of the year. However, beam instabilities originating from the last tube section and wear problems at the low-energy set of pelletron-chains caused some loss of beam time. During the fall, one set of pelletron charging chains has to be replaced after 49,000 hours of operation. In the course of the year, the MP and the EN tandem accelerators finished their 100,000th and 150,000th hours of operations, respectively. Preparations for the installation of the 3 MV negative heavy ion injector for the MP are progressing steadily. External beam transport, terminal ion optics, and data acquisition and control systems are to a major extent completed; the integration of the terminal power supplies has started. After the final assembly of the accelerator column structure, first voltage runs can be performed. (orig.)

  20. Accelerator design

    The feasibility of constructing a TeV region electron-positron linear collider in Japan is discussed. The design target of the collider is given as follows: Energy, 1 TeV + 1 TeV; luminosity, 1032-1033/cm2/s; total length, 25km; electric power, 250MW; energy dispersion, 1%-10%; the start of the first experiment, early 1990s. For realizing the above target, the following research and developmental works are necessary. (a) Development of an acceleration tube with short filling time and high shunt resistance. (b) Short pulse microwave source with high peak power. (c) High current, single bunch linac. (d) Beam dynamics. As for the acceleration tube, some possibility is considered: For example, the use of DAW (Disk and Washer) which is being developed for TRISTAN as a traveling-wave tube; and the Jungle Gym-type acceleration tube. As a promising candidate for the microwave source, the Lasertron has been studied. The total cost of the collider construction is estimated to be about 310 billion yen, of which 120 billion yen is for the tunnel and buildings, and 190 billion yen for the accelerator facilities. The operation cost is estimated to be about 3 billion yen per month. (Aoki, K.)

  1. Particle acceleration

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  2. Accelerator operations

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  3. Particle accelerator; the Universe machine

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  4. Dielectric laser accelerators

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  5. MUON ACCELERATION

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  6. KEKB accelerator

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  7. Accelerating networks

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  8. Conception design of helium ion FFAG accelerator with induction accelerating cavity

    Huan-li, Luo; Xiang-qi, Wang; Hong-Liang, Xu

    2013-01-01

    In the recent decades of particle accelerator R&D area, fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost, although there are still some technical challenges. In this paper, FFAG accelerator is adopted to accelerate helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of FFAG accelerator and exploring the possibility of developing high power FFAG accelerators. The conventional period focusing unit of helium ion FFAG accelerator and three-dimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given. For low energy and low revolution frequency, induction acceleration is proposed to replace conventional radio frequency(RF) acceleration for helium ion FFAG accelerator, which avoids the potential breakdown of acceleration field caused by wake field and improves the acceleratio...

  9. Accelerators and the Accelerator Community

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  10. accelerating cavity

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  11. On the charged particle shock acceleration

    The shock acceleration method employs injection of beam particles into the linear accelerator unexcited structure. Upon injecting a wave of accelerating electromagnetic field is excited in the structure it catches up with the particles and accelerates them. Dynamics of particle acceleration using the abovesaid method is under consideration. A d gree of particle beam compression in the process of beam acceleration is found out. New technique is suggested of shock acceleration with particle outlet to the potential barrier plateau that enables to attain compression not only of relativistic beams but also of non relativistic ones. It is shown that the method in question enables to get compression of electron and ion beams while increasing essentially their current and reducing the density modulation period. Shock acceleration in high current accelerators enables to obtain high-energy current beams (above 104A), which ght be used in studies on ionic thermonuclear fusion in powerful free electron lasers

  12. Acceleration of trapped particles and beams

    Granot, Er'el

    2011-01-01

    The dynamics of a quantum particle bound by an accelerating delta-functional potential is investigated. Three cases are considered, using the reference frame moving along with the {\\delta}-function, in which the acceleration is converted into the additional linear potential. (i) A stationary regime, which corresponds to a resonance state, with a minimum degree of delocalization, supported by the accelerating potential trap. (ii) A pulling scenario: an initially bound particle follows the accelerating delta-functional trap, within a finite time. (iii) The pushing scenario: the particle, which was initially localized to the right of the repulsive delta-function, is shoved to the right by the accelerating potential. For the two latter scenarios, the life time of the trapped particle, and the largest velocity to which it can be accelerated while staying trapped, are found. The same regimes may be realized by Airy-like planar optical beams guided by a narrow bending potential channel or crest. Physical estimates a...

  13. Electron Accelerator Facilities

    Lecture presents main aspects of progress in development of industrial accelerators: adaptation of accelerators primary built for scientific experiments, electron energy and beam power increase in certain accelerator constructions, computer control system managing accelerator start-up, routine operation and technological process, maintenance (diagnostics), accelerator technology perfection (electrical efficiency, operation cost), compact and more efficient accelerator constructions, reliability improvement according to industrial standards, accelerators for MW power levels and accelerators tailored for specific use

  14. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: A potential therapy for the reduction of skin scarring.

    Li, Yan; Shi, Shan; Gao, Jianxin; Han, Shichao; Wu, Xue; Jia, Yanhui; Su, Linlin; Shi, Jihong; Hu, Dahai

    2016-05-01

    Hypertrophic scar (HS) is a skin fibrotic disease that causes major clinically problematic symptoms. Cryptotanshinone (CT) is an important ingredient of Danshen (Salvia miltiorrhiza Bunge extract) that has been used to treat cardio-cerebral vascular diseases. Its clinical efficacy in HS remains unclear. To investigate whether CT can inhibit HS fibrosis, HS-derived fibroblastic cells (HSFs) were established and treated with or without CT. Type-collagen-I (Col1), type-collagen-III (Col3) and α-smooth muscle actin (α-SMA) expression were measured by western blot and real-time quantitative polymerase chain reaction. HSFs migration and contraction were assessed with the scratch assay and the fibroblast-populated collagen lattice (FPCL) contraction assay, respectively. Wound healing in CT-treated Balb/c mice was assessed by immunohistochemical analysis of collagen expression and Masson's trichrome staining analysis of collagen deposition. CT treatment of HSFs down-regulated Col1, Col3 and α-SMA mRNA and protein expression, HSFs migration, and HSFs contraction, and improved FPCL architecture. In mice, CT treatment accelerated wound healing: the scar margins were narrow and there was less collagen deposition in the regenerated tissue. Thus, CT promotes wound healing and decreases excessive deposition of extracellular matrix components. CT may help to prevent and reduce scarring. PMID:27133042

  15. Prospects for Accelerator Technology

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  16. ACCELERATING NANO-TECHNOLOGICAL

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in...

  17. Accelerator system and method of accelerating particles

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  18. Imaging using accelerated heavy ions

    Several methods for imaging using accelerated heavy ion beams are being investigated at Lawrence Berkeley Laboratory. Using the HILAC (Heavy-Ion Linear Accelerator) as an injector, the Bevalac can accelerate fully stripped atomic nuclei from carbon (Z = 6) to krypton (Z = 34), and partly stripped ions up to uranium (Z = 92). Radiographic studies to date have been conducted with helium (from 184-inch cyclotron), carbon, oxygen, and neon beams. Useful ranges in tissue of 40 cm or more are available. To investigate the potential of heavy-ion projection radiography and computed tomography (CT), several methods and instrumentation have been studied

  19. RFQ accelerator development

    Radio frequency quadrupole (RFQ) accelerators have established themselves as highly efficient and potential tools for delivering intense beams of the order of 100 mA or more. They are being employed as injectors to high energy machines used for basic sciences, spallation neutron sources, fusion devices and accelerator breeders. They have also made their mark as neutron generators, ion implanters, x-ray generators, etc. Realising the importance of this programme, Bhabha Atomic Research Centre initiated a totally indigenous effort to develop RFQs for the light as well as heavy ion beams. A low power RFQ for the proton and deuteron beams is already in the final phase of commissioning. (author). 30 refs., 14 figs., 2 tabs

  20. EM Structure Based and Vacuum Acceleration

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  1. Linac transport and acceleration

    The acceleration of intense bunches maintaining high brightness is limited both by single-particle effects, e.g., misalignments, injection errors, and rf-steering, and collective phenomena, where the effects of the longitudinal and transverse wakefield on particles within a single bunch are the most severe. The working group has considered both problems and potentials of linac acceleration from ∼50 MeV to 1 GeV for free electron laser (FEL) applications, as well as from a few Gev to 1 TeV for linear colliders. The outlook for free electron lasers is bright: no fundamental problems seem to arise in the acceleration of peak currents in excess of 100 A with small emittance and low momentum spread. The situation of linear colliders is more complex and more difficult. Two examples, one operating at 11.4 GHz, the other at 30 GHz, are used to illustrate some of the difficulties and the exceedingly tight tolerances required. Both examples are based on round beams, and thus neither benefit from the advantages of flat beams nor address the increased care required in transporting beams of very small emittance in one plane. The working group acknowledges, but did not explore, promising concepts for colliders based on RF superconductivity

  2. Pulsed DC accelerator for laser wakefield accelerator

    For the acceleration of ultra-short, high-brightness electron bunches, a pulsed DC accelerator was constructed. The pulser produced megavolt pulses of 1 ns duration in a vacuum diode. Results are presented from field emission of electrons in the diode. The results indicate that the accelerating gradient in the diode is approximately 1.5 GV/m

  3. Linear Accelerator (LINAC)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays to ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  4. Chronic unpredictable stress (CUS) enhances the carcinogenic potential of 7,12-dimethylbenz(a)anthracene (DMBA) and accelerates the onset of tumor development in Swiss albino mice.

    Suhail, Nida; Bilal, Nayeem; Hasan, Shirin; Ahmad, Ausaf; Ashraf, Ghulam Md; Banu, Naheed

    2015-11-01

    Social stressors evolving from individual and population interactions produce stress reactions in many organisms (including humans), influencing homeostasis, altering the activity of the immunological system, and thus leading to various pathological states including cancer and their progression. The present study sought to validate the effectiveness of chronic unpredictable stress (CUS) in cancer promotion and to assess oxidative stress outcomes in terms of various in vivo biochemical parameters, oxidative stress markers, DNA damage, and the development of skin tumors in Swiss albino mice. Animals were randomized into different groups based on their exposure to CUS alone, 7,12-dimethylbenz(a)anthracene (DMBA) alone (topical), and DMBA-12-O-tetradecanoylphorbol-13-acetate (TPA) (topical) and exposure to CUS prior to DMBA or DMBA-TPA treatments and sacrificed after 16 weeks of treatment. Prior exposure to CUS significantly increased the pro-oxidant effect of carcinogen, depicted by compromised levels of antioxidants in the circulation and skin, accompanied by enhanced lipid peroxidation, plasma corticosterone, and marker enzymes as compared to DMBA-alone or DMBA-TPA treatments. DNA damage results corroborated the above biochemical outcomes. Also, the development of skin tumors (in terms of their incidence, tumor yield, and tumor burden) in mice in the presence and absence of stress further strongly supported our above biochemical measurements. CUS may work as a promoter of carcinogenesis by enhancing the pro-oxidant potential of carcinogens. Further studies may be aimed at the development of interventions for disease prevention by identifying the relations between psychological factors and DNA damage. PMID:26272695

  5. Prototype of industrial electrons accelerator

    The interest and the necessity of Mexico's industry in the use of irradiation process has been increased in the last years. As examples are the irradiation of combustion gases (elimination of NOx and SO2) and the polymer cross-linking between others. At present time at least twelve enterprises require immediately of them which have been contacted by electron accelerators suppliers of foreign countries. The first project step consisted in to identify the electrons accelerator type that in can be constructed in Mexico with the major number of possible equipment, instruments, components and acquisition materials local and useful for the major number of users. the characteristics of the accelerator prototype are: accelerator type transformer with multiple secondary insulated and rectifier circuits with a potential of 0.8 MV of voltage, the second step it consisted in an economic study that permitted to demonstrate the economic feasibility of its construction. (Author)

  6. Linear accelerator for tritium production

    For many years now, Los Alamos National Laboratory has been working to develop a conceptual design of a facility for accelerator production of tritium (API). The APT accelerator will produce high energy protons which will bombard a heavy metal target, resulting in the production of large numbers of spallation neutrons. These neutrons will be captured by a low-Z target to produce tritium. This paper describes the latest design of a room-temperature, 1.0 GeV, 100 mA, cw proton accelerator for tritium production. The potential advantages of using superconducting cavities in the high-energy section of the linac are also discussed and a comparison is made with the baseline room-temperature accelerator

  7. Linear accelerator for tritium production

    For many years now, Los Alamos National Laboratory has been working to develop a conceptual design of a facility for accelerator production of tritium (APT). The APT accelerator will produce high energy protons which will bombard a heavy metal target, resulting in the production of large numbers of spallation neutrons. These neutrons will be captured by a low-Z target to produce tritium. This paper describes the latest design of a room-temperature, 1.0 GeV, 100 mA, cw proton accelerator for tritium production. The potential advantages of using superconducting cavities in the high-energy section of the linac are also discussed and a comparison is made with the baseline room-temperature accelerator. copyright 1996 American Institute of Physics

  8. Terahertz-driven linear electron acceleration

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  9. Conception design of helium ion FFAG accelerator with induction accelerating cavity

    LUO Huan-Li; XU Yu-Cun; WANG Xiang-Qi; XU Hong-Liang

    2013-01-01

    In the recent decades of particle accelerator R&D area,the fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost,although there are still some technical challenges.In this paper,the FFAG accelerator is adopted to accelerate a helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of the FFAG accelerator and exploring the possibility of developing high power FFAG accelerators.The conventional period focusing unit of the helium ion FFAG accelerator and threedimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given.For low energy and low revolution frequency,induction acceleration is proposed to replace conventional radio frequency (RF) acceleration for the helium ion FFAG accelerator,which avoids the potential breakdown of the acceleration field caused by the wake field and improves the acceleration repetition frequency to gain higher beam intensity.The main parameters and three-dimensional model of induction cavity are given.Two special constraint waveforms are proposed to refrain from particle accelerating time slip (AT) caused by accelerating voltage drop of flat top and energy deviation.The particle longitudinal motion in two waveforms is simulated.

  10. Conception design of helium ion FFAG accelerator with induction accelerating cavity

    In the recent decades of particle accelerator R and D area, the fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost, although there are still some technical challenges. In this paper, the FFAG accelerator is adopted to accelerate a helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of the FFAG accelerator and exploring the possibility of developing high power FFAG accelerators. The conventional period focusing unit of the helium ion FFAG accelerator and three-dimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given. For low energy and low revolution frequency, induction acceleration is proposed to replace conventional radio frequency (RF) acceleration for the helium ion FFAG accelerator, which avoids the potential breakdown of the acceleration field caused by the wake field and improves the acceleration repetition frequency to gain higher beam intensity. The main parameters and three-dimensional model of induction cavity are given. Two special constraint waveforms are proposed to refrain from particle accelerating time slip (ΔT) caused by accelerating voltage drop of flat top and energy deviation. The particle longitudinal motion in two waveforms is simulated. (authors)

  11. Future HEP Accelerators: The US Perspective

    Bhat, Pushpalatha

    2015-01-01

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed...

  12. ACCELERATING NANO-TECHNOLOGICAL

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in...... that opportunities are generally poorly appreciated by the industry and research communities alike. It is found that the construction industry is characterized by low-tech trajectories where dedicated innovation networks are often too fragile for innovations to stabilize and diffuse. The institutional...

  13. Fixed-Field Alternating-Gradient Accelerators

    Sheehy, S. L.

    2016-01-01

    These notes provide an overview of Fixed-Field Alternating-Gradient (FFAG) accelerators for medical applications. We begin with a review of the basic principles of this type of accelerator, including the scaling and non-scaling types, highlighting beam dynamics issues that are of relevance to hadron ac- celerators. The potential of FFAG accelerators in the field of hadron therapy is discussed in detail, including an overview of existing medical FFAG designs. The options for FFAG treatment gan...

  14. Fixed-Field Alternating-Gradient Accelerators

    Sheehy, S L

    2016-01-01

    These notes provide an overview of Fixed-Field Alternating-Gradient (FFAG) accelerators for medical applications. We begin with a review of the basic principles of this type of accelerator, including the scaling and non-scaling types, highlighting beam dynamics issues that are of relevance to hadron ac- celerators. The potential of FFAG accelerators in the field of hadron therapy is discussed in detail, including an overview of existing medical FFAG designs. The options for FFAG treatment gantries are also considered.

  15. High-Intensity Proton Accelerator

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  16. Ponderomotive Acceleration by Relativistic Waves

    Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-01-01

    In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...

  17. Probing electron acceleration and X-ray emission in laser-plasma accelerator

    Thaury, C; Corde, S; Brijesh, P; Lambert, G; Mangles, S P D; Bloom, M S; Kneip, S; Malka, V

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam is focused in the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  18. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.; Malka, V.

    2013-06-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  19. Acceleration without Horizons

    Doria, Alaric; Munoz, Gerardo

    2015-01-01

    We derive the metric of an accelerating observer moving with non-constant proper acceleration in flat spacetime. With the exception of a limiting case representing a Rindler observer, there are no horizons. In our solution, observers can accelerate to any desired terminal speed $v_{\\infty} < c$. The motion of the accelerating observer is completely determined by the distance of closest approach and terminal velocity or, equivalently, by an acceleration parameter and terminal velocity.

  20. Dusty-Plasma Particle Accelerator

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  1. Centralized digital control of accelerators

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors

  2. Smooth ion energy tuning in linear accelerator

    This paper presents the results of experimental research of energy variable proton linac, which consists of independently driven one-gap accelerating cavities. Cavity design proposed by authors seems to be optimal for high values of energy gain and beam current. A multichannel accelerating structure allows to accelerate several ion beams. Beam focusing is accomplished by means of electrostatic quadruples with variable potential, which is chosen from the viewpoint of maximum beam transit factor for each operation mode, determined by output energy. The other energy variable accelerating structures with operating frequency changing are also under consideration. (author)

  3. Pulse Power Supply for Plasma Dynamic Accelerator

    YANG Xuanzong; LIU Jian; FENG Chunhua; WANG Long

    2008-01-01

    A new concept of a coaxial plasma dynamic accelerator with a self-energized mag-netic compressor coil to simulate the effects of space debris impact is demonstrated. A brief description is presented about the pulse power supply system including the charging circuit, start switch and current transfer system along with some of the key techniques for this kind of acceler-ator. Using this accelerator configuration, ceramic beads of 100 μm in diameter were accelerated to a speed as high as 18 km/sec. The facility can be used in a laboratory setting to study impact phenomena on solar array materials, potential structural materials for use in space.

  4. The direction of acceleration

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  5. High intensity hadron accelerators

    In this paper we give an introductory discussion of high intensity hadron accelerators with special emphasis on the high intensity feature. The topics selected for this discussion are: Types of acclerator - The principal actions of an accelerator are to confine and to accelerate a particle beam. Focusing - This is a discussion of the confinement of single particles. Intensity limitations - These are related to confinement of intense beams of particles. Power economics - Considerations related to acceleration of intense beams of particles. Heavy ion kinematics - The adaptation of accelerators to accelerate all types of heavy ions

  6. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  7. Inverse free-electron laser accelerator development

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 1011 W) CO2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  8. Elements of a dielectric laser accelerator

    McNeur, Joshua; Schönenberger, Norbert; Leedle, Kenneth J; Deng, Huiyang; Ceballos, Andrew; Hoogland, Heinar; Ruehl, Axel; Hartl, Ingmar; Solgaard, Olav; Harris, James S; Byer, Robert L; Hommelhoff, Peter

    2016-01-01

    The widespread use of high energy particle beams in basic research, medicine and coherent X-ray generation coupled with the large size of modern radio frequency (RF) accelerator devices and facilities has motivated a strong need for alternative accelerators operating in regimes outside of RF. Working at optical frequencies, dielectric laser accelerators (DLAs) - transparent laser-driven nanoscale dielectric structures whose near fields can synchronously accelerate charged particles - have demonstrated high-gradient acceleration with a variety of laser wavelengths, materials, and electron beam parameters, potentially enabling miniaturized accelerators and table-top coherent x-ray sources. To realize a useful (i.e. scalable) DLA, crucial developments have remained: concatenation of components including sustained phase synchronicity to reach arbitrary final energies as well as deflection and focusing elements to keep the beam well collimated along the design axis. Here, all of these elements are demonstrated wit...

  9. High intensity laser-driven ion acceleration

    Ion acceleration by intense laser-plasma interactions is a very active field of research whose development can be traced in a large number of publications over the last few years. Past studies were mostly performed irradiating thin foils where protons are predominantly accelerated to energies up to 60 MeV in an exponentially decaying spectrum by a mechanism named target normal sheath acceleration (TNSA). We present our latest experimental advances on acceleration schemes away from TNSA, such as shock acceleration, ion beam generation from relativistically transparent targets and radiation-pressure acceleration. These results are a major step towards highly energetic, mono-chromatic ion beams generated at high conversion efficiencies as demanded by many potential applications. Those include fast ignition inertial confinement fusion (ICF) as well as oncology and radiation therapy of tumors.

  10. The Radiological Research Accelerator Facility

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  11. Feature-based Analysis of Plasma-based Particle Acceleration Data

    Ruebel, Oliver

    2014-01-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a n...

  12. NIH/NSF accelerate biomedical research innovations

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  13. Derivation of Hamiltonians for accelerators

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  14. A variable acceleration calibration system

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  15. Ion accelerator based on plasma vircator

    The conception of a collective ion accelerator is proposed to be developed in the frameworks of STCU project 1569 (NSC KIPT, Ukraine) in coordination with the ISTC project 1629 (VNIEF, Russia). The main processes of acceleration are supposed to be consisted of two stages.First one is the plasma assistance virtual cathode (VC) in which plasma ions are accelerated in a potential well of VC. Along with ion acceleration the relaxation oscillations, caused by diminishing the potential well due to ion compensation, arise that provides the low-frequency (inverse ion transit time) temporal modulation of an intense relativistic electron beam (IREB) current. At the second stage temporally modulated IREB is injected into the spatially periodic magnetic field. The further ion acceleration is realized by the slow space charge wave that arises in IREB due to its simultaneous temporal and spatial modulation

  16. Ion accelerator based on plasma vircator

    Onishchenko, I N

    2001-01-01

    The conception of a collective ion accelerator is proposed to be developed in the frameworks of STCU project 1569 (NSC KIPT, Ukraine) in coordination with the ISTC project 1629 (VNIEF, Russia). The main processes of acceleration are supposed to be consisted of two stages.First one is the plasma assistance virtual cathode (VC) in which plasma ions are accelerated in a potential well of VC. Along with ion acceleration the relaxation oscillations, caused by diminishing the potential well due to ion compensation, arise that provides the low-frequency (inverse ion transit time) temporal modulation of an intense relativistic electron beam (IREB) current. At the second stage temporally modulated IREB is injected into the spatially periodic magnetic field. The further ion acceleration is realized by the slow space charge wave that arises in IREB due to its simultaneous temporal and spatial modulation.

  17. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  18. Improved plasma accelerator

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  19. San Francisco Accelerator Conference

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  20. Dielectric Laser Acceleration

    England, R. Joel; Noble, Robert J.; Wu, Ziran; Qi, Minghao

    2013-01-01

    We describe recent advances in the study of particle acceleration using dielectric near-field structures driven by infrared lasers, which we refer to as Dielectric Laser Accelerators. Implications for high energy physics and other applications are discussed.

  1. Standing wave linear accelerator

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  2. High Energy Particle Accelerators

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  3. Maximal Acceleration Is Nonrotating

    Page, Don N.

    1997-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruenc...

  4. Accelerators at school

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  5. A Solid state accelerator

    We present a solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal. Acceleration gradients of order 100 GV/cm are theoretically possible, but channeling radiation limits the maximum attainable energy to 105 TeV for protons. Beam dechanneling due to multiple scattering is substantially reduced by the high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed

  6. Superconducting accelerator technology

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  7. Applications of particle accelerators

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  8. Acceleration: It's Elementary

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  9. The CERN Accelerator School

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  10. Accelerator development in BARC

    Charged particle accelerators have played crucial role in the field of both basic and applied sciences. This has been possible because the accelerators have been extensively utilized from unraveling the secrets of nature to diverse applications such as implantation, material modification, medical diagnostics and therapy, nuclear energy and clean air and water. The development of accelerators in BARC can be categorized in two broad categories namely proton and heavy ion based accelerators and electron based accelerators. The heavy ion accelerators with sufficiently high energies are currently being used for conducting frontline nuclear and allied research whereas the electron accelerators are being routinely used for various industrial applications. Recently, there is a strong interest for developing the high energy and high intensity accelerators due to their possibility of effective utilization towards concept of energy amplification (Accelerator Driven System), incineration nuclear waste and transmutation. This talk will discuss details of the accelerator development program in BARC with particular emphasis on the recent development at Low Energy High Intensity Proton Accelerator (LEHIPA) Facility in Ion Accelerator Development Division, BARC. (author)

  11. Far field acceleration

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  12. Accelerators and Dinosaurs

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  13. The Accelerator Reliability Forum

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  14. Direct Laser Acceleration in Laser Wakefield Accelerators

    Shaw, Jessica

    2016-01-01

    In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are t...

  15. Future HEP Accelerators: The US Perspective

    Bhat, Pushpalatha [Fermilab; Shiltsev, Vladimir [Fermilab

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  16. Quasi-steady plasma acceleration.

    Jahn, R. G.; Von Jaskowsky, W. F.; Clark, K. E.

    1973-01-01

    A coaxial plasma accelerator driven by protracted pulses of current in the range of 10,000 to 100,000 A and synchronized mass flows from 1.0 to 36 g/sec argon attains, after some tens of microseconds, a stable magnetoplasmadynamic acceleration mode. This 'quasi-steady' discharge form is characterized by constant terminal voltage and current, a diffuse, fixed current distribution within the discharge, and a steady plasma efflux at velocities of approximately 20 km/sec. Measured potential distributions reveal that the bulk of the arc voltage gradient, exclusive of the electrode falls, occurs within two diameters of the cathode, and is normal to it. The anode fall voltage varies inversely with local current density, implying substantially lower anode losses at higher power arc operation. Spectroscopic, potential, and velocity measurements indicate the existence of a characteristic mass flow rate for a given current, below which arc operation becomes erratic.

  17. Potencial fisiológico de sementes de brássicas com ênfase no teste de envelhecimento acelerado Physiological potential of Brassica seeds with emphasis to the accelerated aging test

    Caroline J Costa

    2008-06-01

    different tests for the evaluation of the physiological potential of Brassica seeds with emphasis to the accelerated aging test (AAT. Four lots of cabbage seeds cv. Coração de Boi, four lots of broccoli seeds cv. Piracicaba Precoce and five lots of collard seeds cv. Georgia were used. Tests of germination, first germination counting, seedling emergence, electrical conductivity and accelerated aging were accomplished. In this test three procedures were used: traditional (water, saturated NaCl solution (40 g/100 mL and diluted NaCl solution (11 g/100 mL, at 42°C for 48, 72 and 96 hours. The experiment followed a completely randomized design with four replicates and individual evaluations for each test. The tests of first germination counting and speed of seedling emergence presented potential for evaluation of the physiological potential of cabbage and broccoli seeds. For collard seeds, the tests of seedling emergence and electrical conductivity were the most efficient. The AAT was also efficient in the evaluation of the physiological potential of Brassica seeds. For cabbage, the best distinction among the physiological potential of the seeds through the AAT was obtained following the traditional procedure and with diluted NaCl solution, both for 48 and 72 hours, and with saturated NaCl solution for 72 and 96 hours. For broccoli seeds, all of tested AAT procedures were efficient in the identification of the seed lots of superior quality. For collard seeds, the best results were obtained with the AAT in the traditional methodology for 96 hours and with diluted NaCl solution for 72 hours. It was observed that, in comparison to the use of water, the use of saline solution in the AAT inhibited sensibly the fungi growth and development.

  18. Photonic Crystal Laser Accelerator Structures

    Cowan, Benjamin; Javanmard, Mehdi; Siemann, Robert H.

    2003-01-01

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optic...

  19. Dummy accelerating tube as a matching lens for 14UD Pelletron Accelerator, BARC-TIFR, Mumbai

    14UD Pelletron Accelerator Facility has been operational since 1989. The potential grading in the accelerator column and tube is achieved by corona points. At present column and tube corona points are replaced by resistance. The resistance per module in the column and tube are 36 GΩ and 33 GΩ respectively

  20. The design of the accelerating gaps for the linear induction accelerator RADLAC II

    In high current (50 kA) linear induction accelerators, the accelerating gaps can excite large radial oscillations. A gap was designed that minimized the radial oscillations and reduced potential depressions. The envelope equation predicted radial oscillation amplitudes of 1 mm which agreed with experimental measurements

  1. The future of particle accelerators

    Plasma-based accelerators are developing as credible, and compact, accelerators for the future. We review the status and prospects for electron and proton accelerators using laser Wakefield acceleration. (author)

  2. Particle-accelerator decommissioning

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  3. An introduction to acceleration mechanisms

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  4. Variable energy constant current accelerator structure

    Anderson, O.A.

    1988-07-13

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.

  5. Accelerator and radiation physics

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  6. Switched Matrix Accelerator

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  7. Accelerator reliability workshop

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  8. Leaky Fermi accelerators

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  9. Accelerator reliability workshop

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  10. Nuclear physics accelerator facilities

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  11. CAS - CERN Accelerator School: RF for Accelerators

    2012-01-01

    These proceedings present the lectures given at the twenty-fourth specialized course organized by the CERN Accelerator School (CAS). The course was held in Ebeltoft, Denmark, from 8-17 June, 2010 in collaboration with Aarhus University, with the topic 'RF for Accelerators' While this topic has been covered by CAS previously, early in the 1990s and again in 2000, it was recognized that recent advances in the field warranted an updated course. Following introductory courses covering the background physics, the course attempted to cover all aspects of RF for accelerators; from RF power generation and transport, through cavity and coupler design, electronics and low level control, to beam diagnostics and RF gymnastics. The lectures were supplemented with several sessions of exercises, which were completed by discussion sessions on the solutions.

  12. Accelerator shielding benchmark problems

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  13. The foxhole accelerating structure

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons

  14. Japan Accelerator Conference

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  15. Accelerator shielding benchmark problems

    Hirayama, H.; Ban, S.; Nakamura, T. [and others

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author).

  16. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  17. Superconducting accelerator magnets

    In the near future, a large number of high quality superconducting dipole and quadrupole magnets will be required for construction of the next generation multi-TeV high energy hadron accelerator-colliders. To establish the construction technology of such accelerator- colliders, extensive and world-wide R and D programs are now carrying out at several laboratories. In this paper the important issues in superconducting accelerator magnets such as cables, design, fabrication, testing and cryogenic system are discussed together with some details on coil cross- sectional current configurations, quality control of materials, quench protections, radiation heating and etc. The key technology in superconducting accelerator magnets is summarized

  18. High-intensity accelerators

    The design of high-intensity accelerators is described, using examples of machines being built at the Los Alamos National Laboratory. The major design problem with these accelerators is associated with control of beam loss when accelerator intensity is increased. Beam dynamics, beam loss, and the radio-frequency quadrupole structure are discussed in the first part of the chapter followed by an explanation of plans to achieve high-intensity operation in three projects: the Fusion Material Irradiation Tests (a joint effort with the Hanford Development Laboratory in Richland, Washington), the Proton Storage Ring (an addition to the LAMPF accelerator), and the Racetrack Microtron Project

  19. High Gradient Accelerator Research

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  20. Development of the HRIBF 25-MV tandem accelerator as a RIB accelerator

    The Holifield Facility 25URC tandem accelerator will begin accelerating radioactive ion beams (RIBs) for nuclear structure and astrophysics research in 1996. This paper addresses the development of the accelerator to allow optimum operation with the particular challenges associated with RIBs. New diagnostics for ultra-low-intensity beams are being installed and the terminal potential stabilization system is being studied to optimize control with these low beam intensities. A new resistor-based voltage-grading system has resulted in more stable operation as well as allowing operation at the very low terminal potentials which are required for some astrophysics experiments. Also addressed is beam transmission optimization, particularly at low terminal potentials, and operation of the accelerator at high terminal potentials

  1. Experience on high voltage testing and conditioning of accelerator tube for 3 MeV DC accelerator

    In DC Electron Beam Accelerator, accelerating potentials are generated using high voltage multiplier column. Accelerating potentials are uniformly graded to the accelerator tubes for accelerating the electron to attain the required energy. 3 MeV DC Accelerator is in the advance stages of commissioning at Electron Beam Centre Kharghar, Navi Mumbai. It has 10 numbers of accelerating tube each rated for 335 kVdc in 6 kg/cm2 SF6 gas environment outside and vacuum better than 10-7 mbar inside the tube. For safe and reliable operation of the accelerator, all the dynode gaps have to be conditioned and tested for high voltage withstand capability. Accelerating Tube Test Facility (ATTF) was developed for the testing and HV Conditioning of the accelerator tube. Tubes are conditioned with plasma, baking and application of ascending high Voltages. This paper describes the experience on the high voltage conditioning and testing of the accelerator tube of 3 MeV DC Accelerator. The accelerator has been successfully tested at 1 MeV and 10 kW beam power and 1.8 MeV at no load. (author)

  2. Laser acceleration... now with added fibre

    Katarina Anthony

    2012-01-01

    Laser acceleration technology is plagued by two main issues: efficiency and repetition rates. In other words, lasers consume too much power and cannot sustain accelerating particles long enough to produce collisions. ICAN, a new EU-funded project, is examining how fibre lasers may help physicists tackle these issues.   A diode-pumped fibre laser. (Image courtesy of Laser Zentrum Hannover.) The International Coherent Amplification Network (ICAN) is studying the potential of lasers for collision physics. CERN is a beneficiary of the project and will collaborate with 15 other institutes from around the world, including KEK in Japan, Fermilab in the USA, and DESY in Germany. “The network is looking into existing fibre laser technology, which we believe has fantastic potential for accelerators,” says Gerard Mourou, ICAN co-ordinator at the École Polytechnique in France. “The hope is to make laser acceleration competitive with traditional radio-fre...

  3. Laser ion source for particle accelerators

    Sherwood, T R

    1995-01-01

    There is an interest in accelerating atomic nuclei to produce particle beams for medical therapy, atomic and nuclear physics, inertial confinement fusion and particle physics. Laser Ion Sources, in which ions are extracted from plasma created when a high power density laser beam pulse strikes a solid surface in a vacuum, are not in common use. However, some new developments in which heavy ions have been accelerated show that such sources have the potential to provide the beams required for high-energy accelerator systems.

  4. Velocity, acceleration and gravity in Einstein's relativity

    Abramowicz, Marek A

    2016-01-01

    Einstein's relativity theory demands that all meaningful physical objects should be defined covariantly, i.e. in a coordinate independent way. Concepts of relative velocity, acceleration, gravity acceleration and gravity potential are fundamental in Newton's theory and they are imprinted in everyone's physical intuition. Unfortunately, relativistic definitions of them are not commonly known or appreciated. Every now and then some confused authors use wrong, non-covariant, definitions of velocity, acceleration and gravity, based on their vague Newtonian intuitions and hidden in a superficial, often purely semantic, relativistic disguise. A recent example of such a confusion (Gorkavyi & Vasilkov, 2016) is discussed at the end of this Note.

  5. Wake fields and wake field acceleration

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e+e- linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures

  6. GPU-Accelerated Text Mining

    Cui, Xiaohui [ORNL; Mueller, Frank [North Carolina State University; Zhang, Yongpeng [ORNL; Potok, Thomas E [ORNL

    2009-01-01

    Accelerating hardware devices represent a novel promise for improving the performance for many problem domains but it is not clear for which domains what accelerators are suitable. While there is no room in general-purpose processor design to significantly increase the processor frequency, developers are instead resorting to multi-core chips duplicating conventional computing capabilities on a single die. Yet, accelerators offer more radical designs with a much higher level of parallelism and novel programming environments. This present work assesses the viability of text mining on CUDA. Text mining is one of the key concepts that has become prominent as an effective means to index the Internet, but its applications range beyond this scope and extend to providing document similarity metrics, the subject of this work. We have developed and optimized text search algorithms for GPUs to exploit their potential for massive data processing. We discuss the algorithmic challenges of parallelization for text search problems on GPUs and demonstrate the potential of these devices in experiments by reporting significant speedups. Our study may be one of the first to assess more complex text search problems for suitability for GPU devices, and it may also be one of the first to exploit and report on atomic instruction usage that have recently become available in NVIDIA devices.

  7. GPU-Accelerated Text Mining

    Accelerating hardware devices represent a novel promise for improving the performance for many problem domains but it is not clear for which domains what accelerators are suitable. While there is no room in general-purpose processor design to significantly increase the processor frequency, developers are instead resorting to multi-core chips duplicating conventional computing capabilities on a single die. Yet, accelerators offer more radical designs with a much higher level of parallelism and novel programming environments. This present work assesses the viability of text mining on CUDA. Text mining is one of the key concepts that has become prominent as an effective means to index the Internet, but its applications range beyond this scope and extend to providing document similarity metrics, the subject of this work. We have developed and optimized text search algorithms for GPUs to exploit their potential for massive data processing. We discuss the algorithmic challenges of parallelization for text search problems on GPUs and demonstrate the potential of these devices in experiments by reporting significant speedups. Our study may be one of the first to assess more complex text search problems for suitability for GPU devices, and it may also be one of the first to exploit and report on atomic instruction usage that have recently become available in NVIDIA devices

  8. Accelerator modes of square well system

    Sankaranarayanan, R; Sheorey, V.B.

    2002-01-01

    We study accelerator modes of a particle, confined in an one-dimensional infinite square well potential, subjected to a time-periodic pulsed field. Dynamics of such a particle can be described by one generalization of the kicked rotor. In comparison with the kicked rotor, this generalization is shown to have a much larger parametric space for existence of the modes. Using this freedom we provide evidence that accelerator mode assisted anomalous transport is greatly enhanced when low order res...

  9. Leadership Excellence Through Accelerated Development (LEAD)

    Wanders, Stephen P.

    2014-01-01

    The Leadership Excellence through Accelerated Development (LEAD) Institute at CH2M HILL provides a yearlong curriculum designed to accelerate the development of leaders of individual contributors and leaders of managers who have demonstrated skill, potential, and aspiration for roles requiring strategic, operational, and leadership capabilities. An overview of the program and intended outcomes will be presented and the various elements comprising the LEAD Institute will be discussed.

  10. Modeling Ion Acceleration Using LSP

    McMahon, Matthew

    This thesis presents the development of simulations modeling ion acceleration using the particle-in-cell code LSP. A new technique was developed to model the Target Normal Sheath Acceleration (TNSA) mechanism. Multiple simulations are performed, each optimized for a certain part of the TNSA process with appropriate information being passed from one to the next. The technique allows for tradeoffs between accuracy and speed. Physical length and timescales are met when necessary and different physical models are employed as needed. This TNSA modeling technique is used to perform a study on the effect front-surface structures have on the resulting ion acceleration. The front-surface structures tested have been shown to either modify the electron kinetic energy spectrum by increasing the maximum energy obtained or by increasing the overall coupling of laser energy to electron energy. Both of these types of front-surface structures are tested for their potential benefits for the accelerated ions. It is shown that optimizing the coupling of laser energy to electron energy is more important than producing extremely energetic electrons in the case of the TNSA ions. Simulations modeling the interaction of an intense laser with very thin (<100 nm thick) liquid crystal targets, modeled for the first time, are presented. Modeling this interaction is difficult and the effect of different simulation design choices is explored in depth. In particular, it is shown that the initial electron temperature used in the simulation has a significant effect on the resulting ion acceleration and light transmitted through the target. This behavior is explored through numerous 1D simulations.

  11. Actinides, accelerators and erosion

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  12. Angular velocities, angular accelerations, and coriolis accelerations

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  13. Accelerator Modeling with MATLAB Accelerator Toolbox

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  14. The Radiological Research Accelerator Facility

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  15. Centralized digital control of accelerators

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  16. Self accelerating electron Airy beams

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  17. Hamburg Accelerator Conference (2)

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval

  18. Asia honours accelerator physicists

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  19. Accelerator-based BNCT

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the 9Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. - Highlights: • The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. • Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. • The present status and recent progress of the Argentine project will be reviewed. • Topics cover intense ion sources, accelerator tubes, transport of intense beams and beam diagnostics, among others

  20. COLLECTIVE-FIELD ACCELERATION

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  1. Racetrack linear accelerators

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  2. Thoughts of accelerator tubes

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  3. Accelerators for energy production

    A tremendous progress of accelerators for these several decades, has been motivated mainly by the research on subnuclear physics. The culmination in high energy accelerators might be SSC, 20 TeV collider in USA, probably the ultimate accelerator being built with the conventional principle. The technology cultivated and integrated for the accelerator development, can now stably offer the high power beam which could be used for the energy problems. The Inertial Confinement Fusion (ICF) with high current, 10 kA and short pulse, 20 ns heavy ion beam (HIB) of mass number ∼200, would be the most promising application of accelerators for energy production. In this scenario, the fuel containing D-T mixture, will be compressed to the high temperature, ∼10 keV and to the high density state, ∼1000 times the solid density with the pressure of ablative plasma or thermal X ray produced by bombarding of high power HIB. The efficiency, beam power/electric power for accelerator, and the repetition rate of HIB accelerators could be most suitable for the energy production. In the present paper, the outline of HIB ICF (HIF) is presented emphasizing the key issues of high current heavy ion accelerator system. (author)

  4. Accelerators Beyond The Tevatron?

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  5. Accelerator for nuclear transmutation

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program

  6. KEK digital accelerator

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  7. Maximal Acceleration Is Nonrotating

    Page, D N

    1998-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry...

  8. Collinear wake field acceleration

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  9. Plasma based accelerators

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  10. Controllable Laser Ion Acceleration

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  11. Linear induction accelerator

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  12. Accelerator programme at CAT

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  13. Collective ion acceleration

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed.

  14. Collective ion acceleration

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  15. ACCELERATORS: School prizes

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  16. FMIT accelerator vacuum system

    The Fusion Materials Irradiation Test (FMIT) Facility accelerator is being designed to continuously accelerate 100-mA deuterons to 25 MeV. High vacuum pumping of the accelerator structure and beam lines will be done by ion pumps and titanium sublimation pumps. The design of the roughing system includes a Roots blower/mechanical pump package. For economy the size of the system has been designed to operate at 10-6 torr, where beam particle scattering on residual gases is negligible. For minimum maintenance in this neutron factory, the FMIT vacuum system is designed from the point of view of simplicity and reliability

  17. Hadron accelerators in medicine

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  18. The auroral electron accelerator

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  19. Confronting Twin Paradox Acceleration

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  20. Accelerated simulated tempering

    We propose a new stochastic global optimization method by accelerating the simulated tempering scheme with random walks executed on a temperature ladder with various transition step sizes. By suitably choosing the length of the transition steps, the accelerated scheme enables the search process to execute large jumps and escape entrapment in local minima, while retaining the capability to explore local details, whenever warranted. Our simulations confirm the expected improvements and show that the accelerated simulated tempering scheme has a much faster convergence to the target distribution than Geyer and Thompson's simulated tempering algorithm and exhibits accuracy comparable to the simulated annealing method

  1. Accelerated simulated tempering

    Li, Yaohang; Protopopescu, Vladimir A.; Gorin, Andrey

    2004-08-01

    We propose a new stochastic global optimization method by accelerating the simulated tempering scheme with random walks executed on a temperature ladder with various transition step sizes. By suitably choosing the length of the transition steps, the accelerated scheme enables the search process to execute large jumps and escape entrapment in local minima, while retaining the capability to explore local details, whenever warranted. Our simulations confirm the expected improvements and show that the accelerated simulated tempering scheme has a much faster convergence to the target distribution than Geyer and Thompson's simulated tempering algorithm and exhibits accuracy comparable to the simulated annealing method.

  2. RF linear accelerators

    Wangler, Thomas P

    2008-01-01

    Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007

  3. Entropic accelerating universe

    Easson, Damien A., E-mail: easson@asu.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Phoenix, AZ 85287-1504 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Frampton, Paul H., E-mail: frampton@physics.unc.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Smoot, George F., E-mail: gfsmoot@lbl.go [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Physics Department, University of California, Berkeley, CA 94720 (United States); Institute for the Early Universe, Ewha Womans University and Advanced Academy, Seoul (Korea, Republic of); Chaire Blaise Pascale, Universite Paris Denis Diderot, Paris (France)

    2011-01-31

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  4. Entropic accelerating universe

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  5. Accelerator Toolbox for MATLAB

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  6. Auroral electron acceleration

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  7. The particle accelerator

    As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures

  8. Centrifugal acceleration in the magnetotail lobes

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  9. Analytical tools in accelerator physics

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  10. Accelerating DSMC data extraction.

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  11. Vibration control in accelerators

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  12. Acceleration of Logarithmic Convergence

    Gaskin, J. G.; Ford, W. F.

    1998-01-01

    In this paper, we shall give a characterization of all monotonically decreasing sequence of positive terms, whose sum converge and then introduce a Transformation which can be used to accelerate the convergence of a large class of logarithmically convergent series.

  13. SPS accelerating cavity

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  14. SPS accelerating cavity

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  15. Applicatons of accelerators

    The great diversity of possible applications of accelerators has been demonstrated in the past few years. Apart from the more familiar uses of accelerators for fundamental particle, nuclear, and solid state physics research, the applications range from microscopic trace analysis through cancer therapy to nuclear power and large volume radiation processing. Accelerators are also being used for applied research in proton radiography, radiation damage studies, laser excitation and materials analysis. The required beam properties vary from an extremely low emittance with very low beam current to megawatt beam power with a low level of beam spill. At the Chalk River Nuclear Laboratories developments are underway on applications of accelerators to nuclear fuel breeding and to cancer therapy. (author)

  16. Non-accelerator experiments

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay

  17. Joint International Accelerator School

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  18. Rejuvenating CERN's Accelerators

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  19. Amps particle accelerator definition study

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  20. The Role of natural gas and biomethane in the fuel mix of the future in Germany. Required action and potential solutions to accelerate adoption in transport applications; Erdgas und Biomethan im kuenftigen Kraftstoffmix. Handlungsbedarf und Loesungsansaetze fuer eine beschleunigte Etablierung im Verkehr

    NONE

    2011-09-15

    The contribution under consideration reports on the need of action and on solution attempts for an accelerated establishment of natural gas and bio methane in the future fuel mix. The authors come to the following conclusions: The energy situation and climatic situation require a stronger diversification of fuels and drives. The targets for the amount of natural gas and bio methane as a fuel are not reached yet. The characteristics of natural gas speak for an accelerated establishment in the traffic sector. The admixture of bio methane can increase the climatic, environmental and resources advantages. In order to penetrate the market all participants involved must commit themselves to a concrete 'roadmap'. The contribution shows which measures must be converted by the participants involved in order to be able to utilize fully the potentials of the employment of natural gas and bio methane in the traffic sector.

  1. CEBAF Accelerator Achievements

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  2. Designing reliability into accelerators

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed

  3. A symmetrical rail accelerator

    Igenbergs, E. (Technische Univ. Muenchen, Lehrstuhl fuer Raumfahrttechnik, Richard-Wagner-Strasse 18, 8000 Muenchen 2 (DE))

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator.

  4. Entropic Accelerating Universe

    Easson, Damien A.; Frampton, Paul H.; Smoot, George F.

    2010-01-01

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic...

  5. Accelerated cyclic corrosion tests

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  6. Advanced Accelerator Concepts

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  7. Status of JAERI tandem accelerator

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  8. Nuclear physics accelerator facilities

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  9. Multimegawatt cyclotron autoresonance accelerator

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE111-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE11-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance accelerator (CARA) can operate with near-100% efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40%. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96%. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. copyright 1996 American Institute of Physics

  10. Accelerators for America's Future

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented