WorldWideScience

Sample records for accelerating beam stability

  1. Diaphragm effects on the stability of an electron beam in an induction linear accelerator

    The effect of shielding of an electron beam electromagnetic field by a sequence of metallic diaphragms, used in induction linear accelerators for acceleration tube protection against charge landing, on the stability of transverse beam motion is considered. The coefficients are calculated of shielding of quasi-stationary electric and magnetic fields of a beam displaced relative to the accelerator axis. The values of longitudinal magnetic field strength necessary for coherent beam focusing are determined. The electron beam instability increment on an asymmetric hybrid wave in a decelerating structure formed by the sequence of diaphragms is found. It is shown that the destabilizing effect of the diaphragm can be weakened by increasing the ratio of the structure period to its radius

  2. Effect of diaphragms on electron beam stability in a linear induction accelerator

    In diaphragms used for protection of accelerating tube of a linear induction accelerator from electron impinge, the electron beam being translated as to the axis induces currents, partially compensating the effect of the induced charges. Therefore, one can expect that when selecting certain geometry of the diaphraqms the limitations for the accelerator parameters will be considerably reduced. The sequence of diaphragms however is the beam energy degrader, the interaction with it being able to cause the instability of the beam high-frequency oscillations. In the present work the effect of the beam electromagnetic field screening by means of the sequence of diaphragms on the stability of the beam transverse motion has been studied. It is shown, that the rise of transverse oscillations amplitude can be reduced at the expense of the increase of the channel radius and focusing field intensity, as well as the decrease of screening factor, which can be achieved by the increase of the structure period. It is also shown, that arrangement of the accelerator sections, when voltage, created by all inductors of sections, is applied to one accelerating gap, is more preferable

  3. Optimisation of the pointing stability of laser-wakefield accelerated electron beams

    Garland, R J; Cole, J; Schumaker, W; Doria, D; Gizzi, L A; Grittani, G; Krushelnick, K; Kuschel, S; Mangles, S P D; Najmudin, Z; Symes, D; Thomas, A G R; Vargas, M; Zepf, M; Sarri, G

    2014-01-01

    Laser-wakefield acceleration is a promising technique for the next generation of ultra-compact, high-energy particle accelerators. However, for a meaningful use of laser-driven particle beams it is necessary that they present a high degree of pointing stability in order to be injected into transport lines and further acceleration stages. Here we show a comprehensive experimental study of the main factors limiting the pointing stability of laser-wakefield accelerated electron beams. It is shown that gas-cells provide a much more stable electron generation axis, if compared to gas-jet targets, virtually regardless of the gas density used. A sub-mrad shot-to-shot fluctuation in pointing is measured and a consistent non-zero offset of the electron axis in respect to the laser propagation axis is found to be solely related to a residual angular dispersion introduced by the laser compression system and can be used as a precise diagnostic tool for compression oprtimisation in chirped pulse amplified lasers.

  4. A new slit stabilization system for the beam energy at the Bucharest tandem Van de Graaff accelerator

    Moşu, D. V.; Ghiţă, D. G.; Dobrescu, S.; Sava, T.; Mitu, I. O.; Călinescu, I. C.; Naghel, G.; Dumitru, G.; Căta-Danil, Gh.

    2012-11-01

    Recent work has been undertaken to renew the stabilization system for the beam energy at the Bucharest Tandem Accelerator. In the present paper the mechatronic design of the new system is presented and the running consistency of the new electronic circuits is shown. The experimental tests have shown that the new system has improved the quality of the accelerated beams in terms of stability and energy resolution, especially at lower accelerating voltages. As a result of the present development we show an improvement with 20% for the peak to peak medium value of the high voltage ripple on the terminal. This improvement also allowed to lower the minimum stable voltage on the terminal from 1.5 MV to 0.8 MV.

  5. THE STABILITY OF AN AXIALLY ACCELERATING BEAM ON SIMPLE SUPPORTS WITH TORSION SPRINGS

    Yang Xiaodong; Chen Liqun

    2005-01-01

    The axially moving beams on simple supports with torsion springs are studied. The general modal functions of the axially moving beam with constant speed have been obtained from the supporting conditions. The contribution of the spring stiffness to the natural frequencies has been numerically investigated. Transverse stability is also studied for axially moving beams on simple supports with torsion springs. The method of multiple scales is applied to the partialdifferential equation governing the transverse parametric vibration. The stability boundary is derived from the solvability condition. Instability occurs if the axial speed fluctuation frequency is close to the sum of any two natural frequencies or is two fold natural frequency of the unperturbed system. It can be concluded that the spring stiffness makes both the natural frequencies and the instability regions smaller in the axial speed fluctuation frequency-amplitude plane for given mean axial speed and bending stiffness of the beam.

  6. On calculation of transverse beam stability in compact accelerators with drift tubes

    Peculiarities of beam dynamics in accelerator with drift tubes at low injection energy are considered by means of expansion of envelope equation to fast and slow components. Spatial distribution of external and inherent beam fields are taken into account at that. Simple analytical expressions for determination of quadrupole lens gradients, providing particle movement with assigned equilibrium radius were obtained. Results of calculation of parameters of structure focusing system, operating at 433 MHg frequency with 2...4 MeV injection energy, are presented and analyzed. 6 refs., 6 figs

  7. Accelerating nondiffracting beams

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  8. Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas

    Girardo, Jean-Baptiste [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Sharapov, Sergei; Fitzgerald, Michael; Hawkes, Nick; Kiptily, Vasily; Lupelli, Ivan [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boom, Jurrian [Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany); Dumont, Rémi; Garbet, Xavier; Sarazin, Yanick; Schneider, Mireille [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Eriksson, Jacob [Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala (Sweden); Mantsinen, Mervi [Catalan Institution for Research and Advanced Studies, 08010 Barcelona (Spain); Barcelona Supercomputing Center, 08034 Barcelona (Spain)

    2016-01-15

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfvén Eigenmodes inside the q = 1 surface (also called “tornado” modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.

  9. Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfvén Eigenmodes inside the q = 1 surface (also called “tornado” modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed

  10. High Power Amplifiers Chain nonlinearity influence on the accelerating beam stability in free electron laser (FLASH)

    Cichalewski, w

    2010-01-01

    The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.

  11. Hamiltonian control used to improve the beam stability in particle accelerator models

    Boreux, J; Carletti, T.; Skokos, Ch.; Vittot, M

    2012-01-01

    We develop a Hamiltonian control theory suitable for a 4D symplectic map that models a ring particle accelerator composed of elements with sextupole nonlinearity. The controlled system is designed to exhibit a more regular orbital behavior than the uncontrolled one. Using the Smaller Alignement Index (SALI) chaos indicator, we are able to show that the controlled system has a dynamical aperture up to 1.7 times larger than the original model.

  12. Improving beam stability in particle accelerator models by using Hamiltonian control

    Boreux, J; Carletti, T.; Skokos, Ch.; Vittot, M

    2010-01-01

    We derive a Hamiltonian control theory which can be applied to a 4D symplectic map that models a ring particle accelerator composed of elements with sextupole nonlinearity. The controlled system is designed to exhibit a more regular orbital behavior than the uncontrolled one. Using the Smaller Alignement Index (SALI) chaos indicator, we are able to show that the controlled system has a dynamical aperture up to 1.7 times larger than the original mode

  13. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  14. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: effect of ion chamber calibration and long-term stability

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL 'dose intercomparison' for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy and uncertainities are within reported values. (author)

  15. Self accelerating electron Airy beams

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  16. Fresnel diffraction patterns as accelerating beams

    Zhang, Yiqi; Belić, Milivoj R.; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is prese...

  17. An MCNPX accelerator beam source

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elson, Jay S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jason, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Laurie S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-06-04

    MCNPX is a powerful Monte Carlo code that can be used to conduct sophisticated radiation-transport simulations involving complex physics and geometry. Although MCNPX possesses a wide assortment of standardized modeling tools, there are instances in which a user's needs can eclipse existing code capabilities. Fortunately, although it may not be widely known, MCNPX can accommodate many customization needs. In this article, we demonstrate source-customization capability for a new SOURCE subroutine as part of our development to enable simulations involving accelerator beams for active-interrogation studies. Simulation results for a muon beam are presented to illustrate the new accelerator-source capability.

  18. Low voltage electron beam accelerators

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  19. Low voltage electron beam accelerators

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  20. Fresnel diffraction patterns as accelerating beams

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  1. Geometrically focused neutral beam accelerators

    A more reliable 40 kV, 65 A power supply drain at 0.4 A/cm2, neutral-beam accelerator was developed for the Tandem Mirror Experiment (TMX). Multiple slotted aperture grids of 60% transparency are fabricated from refractory metal wires mounted to form a spherical surface. This geometrically focuses the beam by aiming individual beamlets at the center of curvature of the spherical grid (r = 3.2 m). We attain greater reliability and faster conditioning with geometrical focusing than with the previous technique of electrostatically steering beamlets to a common point. Electrostatic steering, accomplished by offsetting grid wires, is satisfactory if the offset of a beamlet is much less than the distance from the beamlet to the grids. It was found that Pierce Angle entrance grids performed better if sharper edged. A redesigned accelerator grid support structure reduced the number of ceramic-to-metal vacuum joints, and eliminated O rings between precisely aligned parts. The suppressor grid feedthrough is required to withstand a maximum voltage of 15 kV occurring during breakdown, greatly exceeding the operating voltage of 1.5 kV. Convenient fabrication and assembly techniques have been developed. Assembly of accelerators and plasma sources in a clean room appears to reduce the conditioning time. Following the successful testing of the prototype, eight 40 kV accelerators were built for TMX. Furthermore, ten 20 kV versions were built that are modifiable to 40 kV by exchanging the entrance grid

  2. The electron test accelerator beam injector

    A beam chopper and buncher system has been designed to improve the capture efficiency and reduce the beam spill in the Electron Test Accelerator. The buncher increases the dc beam capture from 30 to 70%. 100% beam transmission through the accelerator structures is obtained with the chopper. This report describes results of experimental tests with the beam injector. Results from computer modeling and from measurements with prototypes that have led to the design of the beam chopper and buncher system are discussed

  3. Beam stability and nonlinear dynamics. Summary report

    A open-quotes Beam Stability and Nonlinear Dynamicsclose quotes Symposium was held October 3-5, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of our open-quotes New Ideas for Particle Acceleratorsclose quotes program. The symposia was organized and chaired by Dr. Zohreh Parsa of ITP/ Brookhaven National Laboratory. The purpose of this symposium was to deal with some of the fundamental theoretical problems of accelerator physics by bringing together leaders from accelerator physics communities, mathematics, and other fields of physics. The focus was on nonlinear dynamics and beam stability. The symposium began with some defining talks on relevant mathematical topics such as single-particle Hamiltonian dynamics, chaos, and new ideas in symplectic integrators. The physics topics included single-particle and many-particle dynamics. These topics concern circular accelerators in which particles circulate for a very large number of turns as well as linear accelerators where space charge and wakefields induced in accelerating cavities play a strong role. A major question is to determine the best model for numerical simulations in order to accurately reproduce behavior of beams in real accelerators and to predict long-term or long distance stability. Comparison with experiment is recognized as an important tool in improving models

  4. Multi-beam linear accelerator EVT

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  5. Nonparaxial Mathieu and Weber accelerating beams

    Zhang, Peng; Li, Tongcang; Cannan, Drake; Yin, Xiaobo; Morandotti, Roberto; Chen, Zhigang; Zhang, Xiang

    2012-01-01

    We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the paraxial limit. Not only generalized nonparaxial accelerating beams open up many possibilities of beam engineering for applications, but the fundamental concept developed here can be applied to other linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves.

  6. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  7. Essay: Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  8. Beam dynamics in high energy particle accelerators

    Wolski, Andrzej

    2014-01-01

    Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams.

  9. Resonant Laser Cooling of Circular Accelerator Beams

    Tumanian, R. V.

    2004-01-01

    The resonant laser cooling of circular accelerator beams of relativistic charged particle is studied. It is shown that in the approximation of the given external electromagnetic wave amplitude (small gain free electron laser) the emittance of a beam of charged particles decreases. In the field of particle energy about 100 in the mass energy units the beam energy losses are negligible. The discovered effect can be used for cooling of charged particle beams in various accelerators. The signific...

  10. Stability of longitudinal motion in intense ion beams

    Inertial confinement fusion using high energy heavy ion beams requires focussing of the igniting ion beams in longitudinal, as well as transverse, space at the pellet target. The focussing requirements set limits on the size of the beam emittances at the target, and obtaining sufficiently small emittances at the target requires sufficient stability in beam transport and acceleration from source to target, and an analysis of that stability is necessary for heavy ion fusion (HIF) accelerator design. Theoretical analysis is necessary since practical accelerator experience with high intensity non-relativistic ion beams has been limited. This analysis is particularly important for the case of a heavy ion induction linac, since previous induction linacs have been electron accelerators, and the highly relativistic electrons have negligible longitudinal motion. In this paper we present some results of our analysis of the stability of longitudinal motion

  11. Parallel beam dynamics simulation of linear accelerators

    Qiang, Ji; Ryne, Robert D.

    2002-01-01

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity b...

  12. Ion Beam Energy Calibration Method for Accelerator

    Ion beam energy calibration methods, i e : nuclear reaction method, magnetic field method and calorimeter method were elaborated and studied from its advantage and disadvantage in this paper. Ion beam energy calibration method for accelerator using the method of magnetic field on 3 MV Tandem Accelerator have been carried out at Tiara, JAERI, Japan. The result showed that the energy of ion beam current is 43.56 keV. The result of study conclude that nuclear reaction method generally used to calibrate ion beam energy at the accelerator of energy larger than 2 MeV, calorimetric method for the accelerator electron including linac, magnetic field method for all particle type of accelerator. (author)

  13. Beam-beam interaction in P-P colliding accelerators

    One model for beam growth due to the beam-beam interaction in P-P colliding accelerators is that it is due to the presence of non-linear forces generated by the fields produced by the beam plus some radomizing effect like noise, or a tune modulation. According to this model, to limit beam-beam effects, one should try to limit the size of the non-linear forces and the sources of noise or tune modulation. This model can also be used to compare the severity of beam-beam effects in two situations by comparing the size of the non-linear forces. In this paper, this approach will be used to study three problems: to compare the effects of beam-beam non-linear resonances in the ISR with those in ISABELLE; to estimate the strength of a spectrometer magnet that may be placed at one of the beam crossing points, without appreciably increasing the beam-beam effects; and to compare the beam-beam interaction for colliding beam accelerators with different crossing-angles and different ν/sub x/ and ν/sub y/ at the crossing points

  14. The Continuous Electron Beam Accelerator Facility

    On February 13, 1987, construction started on the Continuous Electron Beam Accelerator Facility - a 4-GeV, 200-μA, continuous beam, electron accelerator facility designed for nuclear physics research. The machine has a racetrack configuration with two antiparallel, 500-MeV, superconducting linac segments connected by beam lines to allow four passes of recirculation. The accelerating structure consists of 1500-MHz, five-cell niobium cavities developed at Cornell University. A liquid helium cryogenic system cools the cavities to an operating temperature of 2 K. Beam extraction after any three of the four passes allows simultaneous delivery of up to three beams of independently variable currents and different, but correlated, energies to the three experimental areas. Beam breakup thresholds exceed the design current by nearly two orders of magnitude. Project completion and the start of physics operations are scheduled for 1993. The total estimated cost is $255 million

  15. LONGITUDINAL RESISTIVE INSTABILITIES OF INTENSE COASTING BEAMS IN PARTICLE ACCELERATORS

    Neil, V. Kelvin; Sessler, Andrew M.

    1964-09-29

    The effect of finite resistance in the vacuum-tank walls on the longitudinal stability of an intense beam of particles in an accelerator is investigated theoretically. We show that even if the particle frequency is an increasing function of particle energy, the wall resistance can render the beam unstable against longitudinal bunching. In the absence of frequency spread in the unperturbed beam, the instability occurs with a growth rate that is proportional to (N/{sigma}){sup 1/2}, where N is the number of particles in the beam and {sigma} is the conductivity of the surface material. By means of the Vlasov equation a criterion for beam stability is obtained. In the limit of highly conducting walls the criterion involves the frequency spread in the unperturbed beam, the number of particles N, the beam energy, geometrical properties of the accelerator, but not the conductivity {sigma}. A numerical example presented indicates that certain observations of beam behavior in the MURA 40-Mev-electron accelerator may be related to the phenomenon we investigated.

  16. Acceleration of charged particles in laser beam

    M.J. Małachowski

    2009-12-01

    Full Text Available Purpose: The aim of this paper was to find parameters of the laser and maser beams in numerical ways with additionally applied external static axial magnetic field which satisfies the proper conditions for charged particle acceleration.Design/methodology/approach: The set acceleration was designed in order to obtain the possible high kinetic energy of the charged particles in the controllable manner. This was achieved applying a circularly polarized high intensity laser beam and a static axial magnetic field, both acting on the particle during the proper period.Findings: The quantitative illustrations of the calculation results, in a graphical form enabled to discuss the impact of many parameters on the acceleration process of the electrons and protons. We have found the impact of the Doppler Effect on the acceleration process to be significant. Increase in laser or maser beam intensity results in particle’s energy increase and its trajectory dimension. However, increase in external magnetic field results in shrinking of the helical trajectories. It enables to keep the particle inside the laser beam.Research limitations/implications: Limits in the energy of accelerated particles arise from the limitsin up-to-date available laser beam energy and the beam diameters.Originality/value: The authors show the parameters of the circularly polarized laser beam which should be satisfied in order to obtain the desired energy of the accelerated particles. The influence of the magnetic field strength is also shown.

  17. Negative ion beam formation, transport and acceleration

    Alessi, J.G.

    1981-01-01

    The BNL Neutral Beam Development Group is working on the development of negative ion based neutral beam systems, using high current density surface plasma sources of the magnetron and hollow cathode discharge (HCD) type. With the magnetron source, the plan is to transport a 2A D/sup -/ beam through a bending magnet before acceleration to 200 keV. In experiments with a pulsed magnetron, 0.4A of H/sup -/ was transported through a 90/sup 0/, n = 1, bending magnet with 80% transmission. With the lower operating pressure in the HCD source, close coupled acceleration will be applied. The MEQALAC, RFQ, and a dc accelerating scheme with periodic quadrupole focusing are considered for reaching higher energies. A preliminary experiment was performed with quadrupole beam transport and a 3.8 mA beam was transported through a series of twelve quadrupoles, with 3 mm apertures and a total length of 7.2 cm.

  18. CERN accelerator school: Antiprotons for colliding beam facilities

    This is a specialized course which addresses a wide spectrum of theoretical and technological problems confronting the designer of an antiproton facility for high-energy-physics research. A broad and profound basis is provided by the lecturers' substantial experience gained over many years with CERN's unique equipment. Topics include beam optics, special lattices for antiproton accumulation and storage rings, antiproton production, stochastic cooling, acceleration and storage, r.f. noise, r.f. beam manipulations, beam-beam interaction, beam stability due to ion accumulation, and diagnostics. The SPS (Super Proton Synchrotron) panti p collider, LEAR (the Low Energy Antiproton Ring at CERN), antiprotons in the ISR (Intersecting Storage Rings), the new antiproton collector (ACOL) and gas jet targets are also discussed. A table is included listing the parameters of all CERN's accelerators and storage rings. See hints under the relevant topics. (orig./HSI)

  19. Notes on beam dynamics in linear accelerators

    Gluckstern, R.L.

    1980-09-01

    A collection of notes, on various aspects of beam dynamics in linear accelerators, which were produced by the author during five years (1975 to 1980) of consultation for the LASL Accelerator Technology (AT) Division and Medium-Energy Physics (MP) Division is presented.

  20. Electron beam dynamics in the DARHT-II linear induction accelerator

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrata [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [NSTEC/STL; Williams, John [Los Alamos National Laboratory; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

    2008-01-01

    The DARHT-II linear induction accelerator (LIA) accelerates a 2-kA electron beam to more than 17 MeV. The beam pulse has a greater than 1.5-microsecond flattop region over which the electron kinetic energy is constant to within 1%. The beam dynamics are diagnosed with 21 beam-position monitors located throughout the injector, accelerator, and after the accelerator exit, where we also have beam imaging diagnostics. We discuss the tuning of the injector and accelerator, and present data for the resulting beam dynamics. We discuss the tuning procedures and other methods used to minimize beam motion, which is undesirable for its application as a bremsstrahlung source for multi-pulse radiography of exlosively driven hydrodynamic experiments. We also present beam stability measurements, which we relate to previous stability experiments at lower current and energy.

  1. Electron beam dynamics in the DARHT-II linear induction accelerator

    The DARHT-II linear induction accelerator (LIA) accelerates a 2-kA electron beam to more than 17 MeV. The beam pulse has a greater than 1.5-microsecond flattop region over which the electron kinetic energy is constant to within 1%. The beam dynamics are diagnosed with 21 beam-position monitors located throughout the injector, accelerator, and after the accelerator exit, where we also have beam imaging diagnostics. We discuss the tuning of the injector and accelerator, and present data for the resulting beam dynamics. We discuss the tuning procedures and other methods used to minimize beam motion, which is undesirable for its application as a bremsstrahlung source for multi-pulse radiography of exlosively driven hydrodynamic experiments. We also present beam stability measurements, which we relate to previous stability experiments at lower current and energy.

  2. Method for charged particle beam acceleration

    The method of charged particle beam acceleration based on its resonance interaction with electromagnetic field of travelling wave is suggested. The electron beam is injected into waveguide in which longitudinal magnetic field and electromagnetic wave are excited. With the purpose of reducing HF-power losses in the waveguide walls, the azimuthal particle motion is synchronized with azimuthal change of longitudinal component of electric field of the accelerating electromagnetic wave. The suggested method permits to increase the efficiency and shunting resistance of the accelerating waveguide by reducing its boundary surface

  3. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  4. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  5. Feedback system to stabilize accelerating field in the UNK

    To stabilize accelerating field in the UNK proton synchrotron, an HF feedback system is proposed with one-turn time delay and two loops of automatic voltage control having unequal gains. The system would handle a pair of crucial effects caused by the fundamental mode of the accelerating cavities: heavy transient beam loading, and strong dipole and quadrupole longitudinal instabilities of the beam. The beam-cavity coupling impedance near HF is shown to be split up by the feedback loops into a 2 x 2 matrix. Its elements are used to estimate the residual error of the voltage across the accelerating gap from its nominal, the instability driving impedances near HF, and the net current required to drive an HF amplifier. A new global parameters to outline technical contours of the system are evaluated. 8 refs., 8 figs

  6. Acceleration of trapped particles and beams

    Granot, Er'el

    2011-01-01

    The dynamics of a quantum particle bound by an accelerating delta-functional potential is investigated. Three cases are considered, using the reference frame moving along with the {\\delta}-function, in which the acceleration is converted into the additional linear potential. (i) A stationary regime, which corresponds to a resonance state, with a minimum degree of delocalization, supported by the accelerating potential trap. (ii) A pulling scenario: an initially bound particle follows the accelerating delta-functional trap, within a finite time. (iii) The pushing scenario: the particle, which was initially localized to the right of the repulsive delta-function, is shoved to the right by the accelerating potential. For the two latter scenarios, the life time of the trapped particle, and the largest velocity to which it can be accelerated while staying trapped, are found. The same regimes may be realized by Airy-like planar optical beams guided by a narrow bending potential channel or crest. Physical estimates a...

  7. Electron beam accelerator energy control system

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  8. Opportunities with accelerated Radioactive Ion Beams

    A discussion of the exciting and rapidly developing field of accelerated Radioactive Ion Beam (RIB) production for nuclear and astrophysics research is presented. In particular, some scientific opportunities with RIBs are highlighted, the methods of RIB production are reviewed, and the existing and proposed facilities for this research are described. In addition, the ORNL RIB project, the only funded ISOL project employing an electrostatic accelerator, is described in some detail

  9. Beam profile for Malaysian electron accelerator

    This paper comprises of two calculations that require in designing a dose profile for an electron accelerator machine before its fabrication. The first is to calculate the beam deflection due to changes of high voltage (HV) supply as well as the deflection coil currents so that the electron beam will only scan at the window foil of 18 cm length and 6 cm width. Secondly, we also require to calculate the beam profile at 50 mm underneath the window foil. The electron gun that produces a beam of 10 mm diameter has to be oscillated in a sawtooth wave for the prescribed window size at frequencies of 50 Hz and 400 Hz along the length and width directions respectively. For the beam deflection, we apply a basic formula from Lorentz force law to obtain a set of HV supply and the coil current that is suitable for both deflections and this result can assist in designing the coil current against HV changes via an electronic controller. The dose profile was calculated using the RMS current formulation along the length direction. We found that the measured and the calculated RMS currents are in comparable for the case of 1 MeV, 50 mA accelerator facility that is going to be installed at Nuclear Malaysia complex. A similar measurement will be carried out for our locally designed accelerator of 150 KeV, 10 mA after fabrication and installation of the machine are completed. (Author)

  10. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  11. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    Mastoridis, Themistoklis [Stanford Univ., CA (United States)

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  12. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    Mastoridis, Themistoklis; /Stanford U., Elect. Eng. Dept. /SLAC

    2011-03-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  13. Accelerator complex for unstable beams at INS

    The construction of the prototype facility of the Exotic arena in the Japan Hadron Project (JHP) is started in 1992 at the Institute for Nuclear Study (INS), University of Tokyo. The purpose of this facility is to study the various technical problems of the Exotic arena, and to perform the experiment on nuclear and astrophysics with unstable nuclear beam. The unstable nuclei produced by bombarding a thick target with 40 MeV proton beam from the existing SF cyclotron are ionized in the ion sources, mass-analyzed by an ISOL, and transported to the accelerator complex. The accelerator complex consists of a split coaxial RFQ and an interdigital H type linac. The construction of accelerator will be completed in fiscal year 1994. The development of the SCRFQ and the IH linac which is suitable to the post-accelerator of the SCRFQ are reported. Charge stripper and the beam matching between the SCRFQ and the IH linac are explained. A buncher is necessary for the matching of longitudinal phase space between the SCRFQ and the IH linac. (K.I.)

  14. Blood irradiation with accelerator produced electron beams

    Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time. (author)

  15. CTF3 Drive Beam Accelerating Structures

    Jensen, E

    2002-01-01

    The 3 GHz drive beam accelerator of the CLIC Test Facility CTF3, currently under construction at CERN, will be equipped with 16 novel SICA (Slotted Iris – Constant Aperture) accelerating structures. The slotted irises couple out the potentially disruptive induced transverse HOM energy to integrated silicon carbide loads (dipole mode Q's below 20). The use of nose cones for detuning allows a constant inner aperture (34 mm). The structures will be 1.2 m long and consist of 34 cells. A first 6 cell prototype structure has been tested successfully up to power levels of 100 MW (nominal: 30 MW), corresponding to surface electric field levels of 180 MV/m.

  16. Tesla-transformer-type electron beam accelerator

    An electron-beam Tesla-transformer accelerator is described. It consists of the primary storage energy system. Tesla transformer, oil Blumlein pulse form line, and the vacuum diode. The experiments of initial stage showed that diode voltage rises up to about 500 kV with an input of 20 kV and the maximum electron-beam current is about 9 kA, the pulse width is about 50 ns. This device can operate stably and be set up easily

  17. Laser driven proton acceleration and beam shaping

    Sinigardi, Stefano

    2014-01-01

    In the race to obtain protons with higher energies, using more compact systems at the same time, laser-driven plasma accelerators are becoming an interesting possibility. But for now, only beams with extremely broad energy spectra and high divergence have been produced. The driving line of this PhD thesis was the study and design of a compact system to extract a high quality beam out of the initial bunch of protons produced by the interaction of a laser pulse with a thin solid target, usi...

  18. Charged particle acceleration by electron beam in corrugated plasma waveguide

    A two-beam charged particle acceleration scheme in a plasma waveguide with corrugated conducting walls is considered. The guiding heavy-current relativistic electron beam is in synchronism with the first plasma wave space harmonics and the accelerated beam is synchronism with a quicker plasma wave. In this case under weak corrugation of the wall the accelerating resonance field effecting the accelerated particles notably increases the field braking the guiding beam. The process of plasma wave excitation with regard to the guiding beam space charge and the relativistic particle acceleration dynamics are investigated by numeric methods. Optimal acceleration modes are found. 19 refs.; 12 figs

  19. Jacobi equations and particle accelerator beam dynamics

    Torrome, Ricardo Gallego

    2012-01-01

    A geometric formulation of the linear beam dynamics in accelerator physics is presented. In particular, it is proved that the linear transverse and longitudinal dynamics can be interpret geometrically as an approximation to the Jacobi equation of an affine averaged Lorentz connection. We introduce a specific notion reference trajectory as integral curves of the main velocity vector field. A perturbation caused by the statistical nature of the bunch of particles is considered.

  20. High-powered pulsed-ion-beam acceleration and transport

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  1. Beam Stability of the LHC Beam Transfer Line TI8

    Wenninger, Jörg; Kain, Verena; Uythoven, Jan

    2005-01-01

    Injection of beam into the LHC at 450 GeV/c proceeds over two 2.7 km long transfer lines from the SPS. The small aperture of the LHC at injection imposes tight constraints on the stability of the beam transfer. The first transfer line TI 8 was commissioned in the fall of 2004 with low intensity beam. Since the beam position monitor signal fluctuations were dominated by noise with low intensity beam, the beam stability could not be obtained from a simple comparison of consecutive trajectories. Instead model independent analysis (MIA) techniques as well as scraping on collimators were used to estimate the intrinsic stability of the transfer line. This paper presents the analysis methods and the resulting stability estimates.

  2. Electron-beam dynamics for an advanced flash-radiography accelerator

    Ekdahl, Carl August Jr. [Los Alamos National Laboratory

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  3. Stabilization of electrostatic accelerator charging belt current

    For the purpose of improving reliability and quality of electrostatic accelerator basic parameters the stabilizer of charging belt current is developed. The stabilizer consists of two units: high-voltage unit and control unit. The charging rectifier assures voltage up to 60 kV at total current load of 750 μA. For the EG- 2.5 and the EGP-10 M accelerators supply circuits of charging device with an earth screen and posAitive voltage supply the needles. t the EGP-10-1 accelerator negative charging voltage is supplied to the screens of the charging device. ''Plus'' of the rectifier is earthed. Charging and recharging are performed by means of brushes slipping over the internal belt side. At all accelerators the stability of charging current mean value is not worse 0.1%. The highest response of the system are obtained at the EG-2.5 accelerator for account of rectifier load by charging current and instrument resistor from 140 to 400 MOhm

  4. The beam business: Accelerators in industry

    Most physicists know that particle accelerators are widely used for treating cancer. But few are acquainted with the depth and breadth of their use in a myriad of applications outside of pure science and medicine. Society benefits from the use of particle beams in the areas of communications, transportation, the environment, security, health, and safety - in terms both of the global economy and quality of life. On the manufacturing level, the use of industrial accelerators has resulted in the faster and cheaper production of better parts for medical devices, automobiles, aircraft, and virtually all modern electronics. Consumers also benefit from the use of accelerators to explore for oil, gas, and minerals; sterilize food, wastewater, and medical supplies; and aid in the development of drugs and biomaterials.

  5. LHC beam stability and feedback control

    Steinhagen, Ralph

    2007-07-20

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  6. LHC beam stability and feedback control

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a proportional

  7. The positioning device of beam probes for accelerator LUE-200

    The description of a device for the positioning of sliding beam probes which is the part of the beam diagnostic system for the LUE-200 electron linac of IREN installation is presented. The device provides remote control of input-output operation of beam probes of five diagnostic stations established in an accelerating tract and in the beam transportation channel of the accelerator

  8. Two-beam detuned-cavity electron accelerator structure

    Progress has been made in the theory, development, cavity design and optimization, beam dynamics study, beam transport design, and hardware construction for studies of a detuned two-beam electron accelerator structure.

  9. Accelerated ion beams for in-beam e-gamma spectroscopy

    Dionisio, JS; Vieu, C; Schuck, C; Meunier, R; Ledu, D; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Varley, BJ; Durell, JL; Dagnall, PG; Dorning, SJ; Jones, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Folger, H; Vanhorenbeeck, J; Urban, W

    1998-01-01

    A few accelerated ion beam requirements for in-beam e-gamma spectroscopy are briefly reviewed as well as several features of the MP Tandem accelerator of IPN-Orsay and the accelerated ion-beam transport devices leading to the experimental area of in-beam e-gamma spectroscopy. In particular, the main

  10. Development of four-beam IH-RFQ linear accelerator

    A multi-beam linear accelerator (linac) that accelerates the multiple beams in an acceleration cavity has advantages for downsizing and cost reduction of the linac system. However, the configuration of electrodes of the multi-beam linac is more complicated than that of single beam type, and so it influences the resonance frequency. A minimum of cavity diameter is restricted by the volume of electrodes, which depends largely on the numbers of beams. The relation between the numbers of beam and the acceleration structure is studied with electromagnetic simulation. (author)

  11. Coherent and incoherent nonparaxial self-accelerating Weber beams

    Zhang, Yiqi; Wen, Feng; Li, Changbiao; Zhang, Zhaoyang; Zhang, Yanpeng; Belić, Milivoj R

    2016-01-01

    We investigate the coherent and incoherent nonparaxial Weber beams, theoretically and numerically. We show that the superposition of coherent self-accelerating Weber beams with transverse displacement cannot display the nonparaxial accelerating Talbot effect. The reason is that their lobes do not accelerate in unison, which is a requirement for the appearance of the effect. While for the incoherent Weber beams, they naturally cannot display the accelerating Talbot effect but can display the nonparaxial accelerating properties, although the transverse coherence length is smaller than the beam width, based on the second-order coherence theory. Our research method directly applies to the nonparaxial Mathieu beams as well, and one will obtain similar conclusions as for the Weber beams, although this is not discussed in the paper. Our investigation identifies families of nonparaxial accelerating beams that do not exhibit the accelerating Talbot effect, and in addition broadens the understanding of coherence proper...

  12. Stability of Superconducting Rutherford Cables For accelerator magnets

    Willering, GP; Verweij, A P

    2009-01-01

    The stability of superconducting magnets has a high priority for particle accelerators, since the operational time and operational collision energy depend strongly on it. Local heat dissipation due to beam loss and conductor movement is inevitable, causing local hot spots in the conductor, possibly leading to magnet quench. For stability against local and transient energy deposition, the cable is the most important unit to investigate. Most superconducting accelerator magnets are wound from Rutherford cables with a flat cable layout, consisting of twisted strands. The mechanisms of normal zone propagation in Rutherford cables have been described in detail with experimental and modeling data. The onset of a local normal zone forces current to redistribute in adjacent neighboring superconducting strands, reducing the longitudinal normal zone propagation. Transversal normal zone propagation in adjacent and crossing strands is caused by the redistribution of current and by heat exchange. The mechanism of normal z...

  13. Reactor - and accelerator-based filtered beams

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10-3 eV up to 107 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  14. Stability of non-linear integrable accelerator

    Batalov, I.; Valishev, A.

    2012-01-01

    The stability of non-linear Integrable Optics Test Accelerator (IOTA) model was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the be...

  15. A beam-matching concept for medical linear accelerators

    Sjöström, David; Bjelkengren, Ulf; Ottosson, Wiviann;

    2009-01-01

    not revealed by the vendor-defined acceptance criteria, whereas the other six accelerators were satisfactorily matched. The beam-matching acceptance criteria defined by the vendor are not strict enough to guarantee optimal beam-match. Deviations related to dose calculations and to beam-matched accelerators may...

  16. Beam optics of the folded tandem ion accelerator at BARC

    S Santra; P Singh

    2002-07-01

    The beam optics of the 6 MV folded tandem ion accelerator, that has recently been commissioned at Bhabha Atomic Research Centre, Mumbai, is presented. Typical beam trajectories for proton and 12C beams under different conditions, are shown. The constraints on the design due to the use of the infrastructure of the Van de Graaff accelerator, which existed earlier, are discussed.

  17. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  18. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguide

    Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Mao, H.-S.; Benedetti, C.; Schroeder, C. B.; Tóth, Cs.; Tilborg, J. van; Vay, J.-L.; Geddes, C. G. R.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mittelberger, D. E.; Bulanov, S. S.; Leemans, W. P., E-mail: WPLeemans@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2015-05-15

    Laser pulses with peak power 0.3 PW were used to generate electron beams with energy >4 GeV within a 9 cm-long capillary discharge waveguide operated with a plasma density of ≈7×10{sup 17} cm{sup −3}. Simulations showed that the super-Gaussian near-field laser profile that is typical of high-power femtosecond laser systems reduces the efficacy of guiding in parabolic plasma channels compared with the Gaussian laser pulses that are typically simulated. In the experiments, this was mitigated by increasing the plasma density and hence the contribution of self-guiding. This allowed for the generation of multi-GeV electron beams, but these had angular fluctuation ≳2 mrad rms. Mitigation of capillary damage and more accurate alignment allowed for stable beams to be produced with energy 2.7±0.1 GeV. The pointing fluctuation was 0.6 mrad rms, which was less than the beam divergence of ≲1 mrad full-width-half-maximum.

  19. Proton external beam in the TANDAR Accelerator

    An external proton beam has been obtained in the TANDAR accelerator with radiological and biomedical purposes. The protons have excellent physical properties for their use in radiotherapy allowing a very good accuracy in the dose spatial distribution inside the tissue so in the side direction as in depth owing to the presence of Bragg curve. The advantage of the accuracy in the dose localization with proton therapy is good documented (M. Wagner, Med. Phys. 9, 749 (1982); M. Goitein and F. Chen, Med. Phys. 10, 831 (1983); M.R. Raju, Rad. Res. 145, 391 (1996)). It was obtained external proton beams with energies between 15-25 MeV, currents between 2-10 p A and a uniform transversal sections of 40 mm2 approximately. It was realized dosimetric evaluations with CR39 and Makrofol foliation. The irradiations over biological material contained experiences In vivo with laboratory animals, cellular and bacterial crops. It was fixed the optimal conditions of position and immobilization of the Wistar rats breeding for the In vivo studies. It was chosen dilutions and sowing techniques adequate for the exposition at the cellular and bacterial crops beam. (Author)

  20. LHC Beam Stability and Feedback Control - Orbit and Energy -

    Steinhagen, R J

    2007-01-01

    This report presents the stability and control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The LHC, presently being built at CERN, will store, accelerate and provide particle collisions with a maximum particle momentum of 7TeV/c and a nominal luminosity of L = 10^34 cm^−2s^−1. The presence of two beams, with both high intensity as well as high particle energies, requires excellent control of particle losses inside a superconducting environment, which will be provided by the LHC Cleaning and Machine Protection System. The performance and function of this and other systems depends critically on the stability of the beam and may eventually limit the LHC performance. Environmental and accelerator-inherent sources as well as failure of magnets and their power converters may perturb and reduce beam stability and may consequently lead to an increase of particle loss inside the cryogenic mass. In order to counteract these disturbances, c...

  1. GRAVITY: beam stabilization and light injection subsystems

    Pfuhl, O; Eisenhauer, F; Penka, D; Amorim, A; Kellner, S; Gillessen, S; Ott, T; Wieprecht, E; Sturm, E; Haussmann, F; Lippa, M; 10.1117/12.925391

    2012-01-01

    We present design results of the 2nd generation VLTI instrument GRAVITY beam stabilization and light injection subsystems. Designed to deliver micro-arcsecond astrometry, GRAVITY requires an unprecedented stability of the VLTI optical train. To meet the astrometric requirements, we have developed a dedicated 'laser guiding system', correcting the longitudinal and lateral pupil position as well as the image jitter. The actuators for the correction are provided by four 'fiber coupler' units located in the GRAVITY cryostat. Each fiber coupler picks the light of one telescope and stabilizes the beam. Furthermore each unit provides field de-rotation, polarization analysis as well as atmospheric piston correction. Using a novel roof prism design offers the possibility of on-axis as well as off-axis fringe tracking without changing the optical path. Finally the stabilized beam is injected with minimized losses into single-mode fibers via parabolic mirrors. We present lab results of the first guiding- as well as the ...

  2. High-energy accelerator for beams of heavy ions

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  3. Simulation of Phase Stability at the Flat Top of the CLIC Drive Beam

    Gerbershagen, A; Burrows, P

    2011-01-01

    The drive beam phase stability is one of the critical issues of the Compact Linear Collider (CLIC). In this paper the generation and propagation of drive beam phase errors is studied for effects that vary during the drive beam pulse. This includes the influence of drive beam current and phase errors as well as of drive beam accelerator RF phase and amplitude errors on the drive beam phase after the compressor chicanes and the analysis of the propagation of these errors through the drive beam combination scheme. The impact of the imperfections on the main beam is studied including the possible correction with help of a feedforward system.

  4. Highly localized accelerating beams using nano-scale metallic gratings

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.; Zakery, Abdolnaser; Miret, Juan J.

    2015-01-01

    Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature.

  5. Longitudinal beam stability in heavy ion storage rings

    This is an attempt to scale conditions for longitudinal beam stability to heavy ion storage rings (HIS) which have been proposed as part of some accelerator schemes to drive pellet fusion. The instability considered has been observed in many high intensity proton machines. In the CERN 25 GeV Proton Synchrotron (PS), this can occur near transition energy as well as during debunching at high energy. In the 30 GeV intersecting storage rings (ISR) similar effects happen to the newly injected beam when too many dense bunches are transferred. In all these cases the instability manifests itself by a rapid blow-up of the beam momentum spread and this blow-up is accompanied by rf activity observed on beam current pick-up electrodes at frequencies in the, say, 0.3 to 2 GHz region

  6. Beam-driven, Plasma-based Particle Accelerators

    Muggli, P

    2016-01-01

    We briefly give some of the characteristics of the beam-driven, plasma-based particle accelerator known as the plasma wakefield accelerator (PWFA). We also mention some of the major results that have been obtained since the birth of the concept. We focus on high-energy particle beams where possible.

  7. Beam transport system selection on the accelerator LU-10

    Presently at the NSC KIPT the upgrading of the linear accelerator LU-10, designed for radiation processing of materials and products within the range of about 10 MeV, is started. For the accelerator operation time be used more efficiently it is supposed to design the second beam output onto the target. Possible variants of the second channel have been considered. The beam characteristics and beam losses are calculated with taking into account the desired parameters of the beam at the accelerating section output. Analysis of some channel variants by various criteria has been performed. The most effective version is chosen

  8. Measurement of accelerated electron beam current at the Erevan synchrotron

    A system which ensures high accuracy of accelerated electro n beam current measurement at the synchrotron is described. The expected limits for the frequency characteristic of the measured magnitude, i.e. current of accelerated electron beam, are analyzed. A structure of measurement devices ensuring a necessary frecuency range for measured signals is chosen. A magnetoinduction feedback converter operating in aperiodic mode is taken as a primary beam current monitor. The parameters of the converter with a coincidence amplifier were calculated with a computer. Oscillograms of accelerated electron beam current corresponding to different operational modes of the synchrotron are presented

  9. Accelerating Airy beams in the presence of inhomogeneities

    Besieris, Ioannis M.; Shaarawi, Amr M.; Zamboni-Rached, Michel

    2016-06-01

    Studies have already been made of accelerating Airy beams in the presence of deterministic inhomogeneities, illustrating, in particular, that the inherent self-healing properties of such beams are preserved. The cases of a range-dependent linear transverse potential and a converging GRIN structure (harmonic oscillator) have been examined thoroughly. Examples will be given in this article of novel accelerating Airy beams in the presence of five other types of potential functions. Three of the resulting exact analytical solutions have a common salient characteristic property: they are constructed using the free-space accelerating Airy beam solution as a seed.

  10. Beam Stability at the Advanced Photon Source

    Decker, Glenn

    2005-01-01

    The Advanced Photon Source has been in operation since 1996. Since that time, extensive incremental improvements to orbit stabilization systems have been made. This includes the addition of 80 channels of narrowband rf beam position monitors (bpm's), 40 channels of bending magnet photon bpm's, and most recently the inclusion of 36 insertion device photon bpm's into the orbit correction response matrix. In addition, considerable improvements have been made in the area of power supply regulation, both for the main multipole magnets and the steering corrector magnets. The present status of overall performance will be discussed, including long term pointing stability, reproducibility, and AC beam motion.

  11. Characteristics of an electron-beam rocket pellet accelerator

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs

  12. Characteristics of an electron-beam rocket pellet accelerator

    Tsai, C.C.; Foster, C.A.; Schechter, D.E.

    1989-01-01

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs.

  13. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  14. Vibrations and stability of complex beam systems

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  15. GRAVITY: beam stabilization and light injection subsystems

    Pfuhl, O.; Haug, M.; Eisenhauer, F.; Penka, D.; A. Amorim; Kellner, S.; Gillessen, S.; Ott, T; Wieprecht, E.; Sturm, E.; Haussmann, F.; Lippa, M.

    2012-01-01

    We present design results of the 2nd generation VLTI instrument GRAVITY beam stabilization and light injection subsystems. Designed to deliver micro-arcsecond astrometry, GRAVITY requires an unprecedented stability of the VLTI optical train. To meet the astrometric requirements, we have developed a dedicated 'laser guiding system', correcting the longitudinal and lateral pupil position as well as the image jitter. The actuators for the correction are provided by four 'fiber coupler' units loc...

  16. Stability Analysis of Nonlinear Feedback Control Methods for Beam Halo-chaos

    WANGZhong-sheng; FANGJin-qing; CHENGuan-rong

    2003-01-01

    Control of beam halo-chaos has been a more challenge subject in recent years, in which nonlinear feedback method for beam halo-chaos has been developed for control of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of nonlinear feedback control methods for beam halo-chaos has still been an open and important topic in this field. In this letter.

  17. Generation and transport of laser accelerated ion beams

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  18. Staging laser plasma accelerators for increased beam energy

    Panasenko, Dmitriy

    2010-01-01

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, ...

  19. The operational procedure of an electron beam accelerator

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  20. Focusing of ion beam with limit emittance by accelerator tube of electrostatic accelerator

    Focusing of nonrelativistic ion beam with finite emittance by accelerator tube is considered. Analytical relation between positions of the entrance and exit crossovers as a function of the beam emittance and the accelerator tube parameters was obtained. The comparison of conditions providing crossover to crossover transformation and conditions of entrance crossover optical image forming was carried out. 10 refs.; 3 figs

  1. Staging laser plasma accelerators for increased beam energy

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  2. Staging laser plasma accelerators for increased beam energy

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  3. Intense ion beams accelerated by relativistic laser plasmas

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  4. High-gradient two-beam electron accelerator

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  5. Beam dynamics studies in a tesla positron pre-accelerator

    Moiseev, V A; Flöttmann, K

    2001-01-01

    The TESLA linear collider is based on superconducting accelerating cavities.Behind the positron production target normal conducting cavities have to be used in order to cope with high particle losses and with focusing solenoid surrounding the cavities.The main purpose of this pre-accelerator is to provide maximum capture efficiency for the useful part of the totally acceptable positron beam with technically reasonable parameters of the linac.The coupled optimization of the capture optics behind the target and pre-accelerator rf-operation has been carried out.The beam dynamics simulation results as well as the pre-accelerator peculiarities are presented.

  6. Implementation to spanish protocol of quality control of accelerators to daily control of electron beams

    A revised procedure for daily control of the electron beams to make measurements more meaningful physically, having a better reproducibility and more in line with the recommendations of the Spanish Protocol for Quality Control in Electron Linear Accelerators Clinical Use. The daily quality control beams of high energy electrons that had been done so far was the finding that the record of a series of measures (symmetry, uniformity, stability, energy, beam central dose) were within tolerance values established. The amendment is to check the beam quality by directly measuring changes in absorption depth at which the dose is reduced to half its maximum value, R50.

  7. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  8. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  9. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described

  10. Orbit correction of the electron beam using the linear accelerator model at SACLA

    In the X-ray free-electron laser facility SACLA, 24 hours continuous operation for the user experiments has been started from March 2012. To achieve stable XFEL operation, the stability of the electron beam orbit is one of important issues. We have introduced two orbit feedback systems. One is installed at the entrance of the undulator-beamline to maintain the beam orbit through the undulator beamline, which contributes to the laser axis stability. The other is a global orbit correction system over the whole linear accelerator to mainly keep the projected beam emittance, which contributes to the laser intensity stability. Since the previous accelerator model using linear transfer matrices does not reproduce observed beam orbit responses in SACLA, response functions for each steering magnet had been measured and used for the orbit correction. Recently we found that the disagreement of the previous model is due to the quadrupole components existing in the accelerator structures. In this report, we present the results of the beam orbit correction using the modified accelerator model including the quadrupole components. (author)

  11. Beam dynamics at the main LEBT of RAON accelerator

    Jin, Hyunchang

    2015-01-01

    The high-intensity rare-isotope accelerator (RAON) of the Rare Isotope Science Project (RISP) in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams. The ion beams, which are generated by Electron Cyclotron Resonance Ion Source (ECR-IS), will be transported through the main Low Energy Beam Transport (LEBT) system to the Radio Frequency Quadrupole (RFQ). While passing the beams through LEBT, we should keep the transverse beam size and longitudinal emittance small. Furthermore, the matching of required twiss parameter at the RFQ entrance will be performed by using electro-static quadrupoles at the main LEBT matching section which is from the multi-harmonic buncher (MHB) to the entrance of RFQ. We will briefly review the new aspects of main LEBT lattice and the beam matching at the main LEBT matching section will be presented. In addition, the effects of various errors on the beam orbit and the correction of distorted orbit will be discussed.

  12. Numerical simulations of driving beam dynamics in the plasma wakefield accelerator

    Novel plasma based acceleration devices have become the subject of active research because of their ability to support acceleration gradients in excess of 10 GeV/m. The plasma wakefield accelerator (PWFA) is one such device which consists of an intense electron beam (the primary beam) whose purpose is to excite a plasma wave which, in turn, accelerates a trailing electron bunch (the secondary beam). Two issues of current interest in the PWFA are (1) the equilibrium and stability of the driving beam and (2) the effect of the wakefield on the quality of the trailing electron bunch. In the UCLA experiment, a question of particular interest is the equilibrium state of the driving electron beam. Two intriguing suggestions have been made. The first is that in the limit that the beam density greatly exceeds the plasma density, the plasma electrons will be completely expelled from the axis. The second is that, in parameter regimes of interest, the driving beam will experience a severe radial pinching force. In order to investigate these assertions, the authors first consider the envelope equation for an electron beam propagating in a plasma with nb ≥ np. They then compare numerical solutions of this equation to results obtained via two-dimensional axisymmetric (r,z) particle simulation using the GRIEZR particle simulation code

  13. Progress Toward Doubling the Beam Power at Fermilab's Accelerator Complex

    Kourbanis, I.

    2014-01-01

    After a 14 month shutdown accelerator modifications and upgrades are in place to allow us doubling of the Main Injector beam power. We will discuss the past MI high power operation and the current progress towards doubling the power.

  14. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Hughes, Thomas [Los Alamos National Laboratory; Anaya, Richard [LLNL; Caporaso, George [LLNL; Chambers, Frank [LLNL; Chen, Yu - Jiuan [LLNL; Falabella, Steve [LLNL; Guethlein, Gary [LLNL; Raymond, Brett [LLNL; Richardson, Roger [LLNL; Trainham, C [NSTEC/STL; Watson, Jim [LLNL; Weir, John [LLNL; Genoni, Thomas [VOSS; Toma, Carsten [VOSS

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  15. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 (micro)s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  16. Beam manipulation and acceleration with Dielectric-Lined Waveguides

    Lemery, Francois [Northern Illinois Univ., DeKalb, IL (United States)

    2015-06-01

    The development of next-generation TeV+ electron accelerators will require either immense footprints based on conventional acceleraton techniques or the development of new higher{gradient acceleration methods. One possible alternative is beam-driven acceleration in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a highcharge bunch passes through a DLW and can excite gradients on the order of GV/m. An important characteristic of this acceleration class is the transformer ratio which characterizes the energy transfer of the scheme. This dissertation discusses alternative methods to improve the transformer ratio for beam-driven acceleration and also considers the use of DLWs for beam manipulation at low energy.

  17. Double-decker electron beam accelerator and pulse radiolysis

    A new concept of double-decker electron beam accelerator is proposed to study the ultra-fast electron-induced reactions in materials by pulse radiolysis. The double-decker electron beams are generated and accelerated in an S-band linear accelerator with different positions in vertical direction and a time delay. One of them is used as a pump electron source and another is converted to light as a probe light source. The time jitter between the pump electron beam and the probe light is thus reduced. The time resolution of pulse radiolysis is expected to be improved. The double-decker electron beam has been generated successfully by injected two laser beam into the photocathode RF gun, which is generated by splitting an Nd:YLF picosecond laser beam. The double-decker electron beams were accelerated up to 31 MeV by an S-band booster linear accelerator and compressed into femtosecond by a magnetic bunch compressor. The profiles of the double-decker electron beams were measured at the exits of the RF gun, the linac and the bunch compressor. The normalized transverse emittance was obtained to be 3.3 mm-mrad for the upper beam and 6.4 mm-mrad for the lower beam at bunch charge of 2nC. The relative energy spread was obtained to be 0.1-0.2% for both beams. The Cherenkov light generated in a suprasil plate and OTR produced on a mirror from the electron beam were also measured. (author)

  18. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario

  19. Beam operation aspects for the MYRRHA linear accelerator

    The aim of the MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) project is to demonstrate the technical feasibility of transmutation in a 100 MWth accelerator-driven System (ADS) by building a new flexible irradiation complex in Mol (Belgium). The MYRRHA Facility requires a 600 MeV accelerator delivering a maximum proton flux of 4 mA in continuous operation with an additional requirement for exceptional reliability. This paper describes the current status of this ADS accelerator design and focuses on the specific aspects related to beam operation such as beam time structure requirements, beam power control and ramp-up strategies, beam reconfiguration schemes in fault cases and beam instrumentation needs. (authors)

  20. Beam dynamics in a long-pulse linear induction accelerator

    Ekdahl, Carl [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mc Cuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rose, Chris R [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Scarpetti, Raymond [LLNL; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  1. Beam dynamics in a long-pulse linear induction accelerator

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  2. Isotropic beam bouquets for shaped beam linear accelerator radiosurgery

    Wagner, Thomas H.; Meeks, Sanford L.; Bova, Frank J.; Friedman, William A.; Buatti, John M.; Bouchet, Lionel G.

    2001-10-01

    In stereotactic radiosurgery and radiotherapy treatment planning, the steepest dose gradient is obtained by using beam arrangements with maximal beam separation. We propose a treatment plan optimization method that optimizes beam directions from the starting point of a set of isotropically convergent beams, as suggested by Webb. The optimization process then individually steers each beam to the best position, based on beam's-eye-view (BEV) critical structure overlaps with the target projection and the target's projected cross sectional area at each beam position. This final optimized beam arrangement maintains a large angular separation between adjacent beams while conformally avoiding critical structures. As shown by a radiosurgery plan, this optimization method improves the critical structure sparing properties of an unoptimized isotropic beam bouquet, while maintaining the same degree of dose conformity and dose gradient. This method provides a simple means of designing static beam radiosurgery plans with conformality indices that are within established guidelines for radiosurgery planning, and with dose gradients that approach those achieved in conventional radiosurgery planning.

  3. Isotropic beam bouquets for shaped beam linear accelerator radiosurgery

    In stereotactic radiosurgery and radiotherapy treatment planning, the steepest dose gradient is obtained by using beam arrangements with maximal beam separation. We propose a treatment plan optimization method that optimizes beam directions from the starting point of a set of isotropically convergent beams, as suggested by Webb. The optimization process then individually steers each beam to the best position, based on beam's-eye-view (BEV) critical structure overlaps with the target projection and the target's projected cross sectional area at each beam position. This final optimized beam arrangement maintains a large angular separation between adjacent beams while conformally avoiding critical structures. As shown by a radiosurgery plan, this optimization method improves the critical structure sparing properties of an unoptimized isotropic beam bouquet, while maintaining the same degree of dose conformity and dose gradient. This method provides a simple means of designing static beam radiosurgery plans with conformality indices that are within established guidelines for radiosurgery planning, and with dose gradients that approach those achieved in conventional radiosurgery planning. (author)

  4. Start-to-end simulation with rare isotope beam for post accelerator of the RAON accelerator

    Jin, Hyunchang

    2016-01-01

    The RAON accelerator of the Rare Isotope Science Project (RISP) has been developed to create and accelerate various kinds of stable heavy ion beams and rare isotope beams for a wide range of the science applications. In the RAON accelerator, the rare isotope beams generated by the Isotope Separation On-Line (ISOL) system will be transported through the post accelerator, namely, from the post Low Energy Beam Transport (LEBT) system and the post Radio Frequency Quadrupole (RFQ) to the superconducting linac (SCL3). The accelerated beams will be put to use in the low energy experimental hall or accelerated again by the superconducting linac (SCL2) in order to be used in the high energy experimental hall. In this paper, we will describe the results of the start-to-end simulations with the rare isotope beams generated by the ISOL system in the post accelerator of the RAON accelerator. In addition, the error analysis and correction at the superconducting linac SCL3 will be presented.

  5. CEBAF [Continuous Electron Beam Accelerator Facility] design report

    This book describes the conceptual design of, and the planning for, the Continuous Electron Beam Accelerator Facility (CEBAF), which will be a high-intensity, continuous-wave electron linear accelerator (linac) for nuclear physics. Its principal scientific goal is to understand the quark structure, behavior, and clustering of individual nucleons in the nuclear medium, and simultaneously to understand the forces governing this behavior. The linac will consist of 1 GeV of accelerating structure, split into two antiparallel 0.5-GeV segments. The segments will be connected by a beam transport system to circulate the electron beams from one segment to the other for up to four complete passes of acceleration. The maximum beam energy will be 4 GeV at a design current of 200 microamperes. The accelerator complex will also include systems to extract three continuous beams from the linac and to deliver them to three experimental halls equipped with detectors and instrumentation for nuclear physics research. The accelerating structure will be kept superconducting within insulated cryostats filled with liquid helium produced at a central helium refrigerator and distributed to the cryostats via insulated transfer lines. An injector, instrumentation and controls for the accelerator, radio-frequency power systems, and several support facilities will also be provided. A cost estimate based on the Work Breakdown Structure has been completed. Assuming a five-year construction schedule starting early in FY 1987, the total estimated cost is $236 million (actual year dollars), including contingency

  6. Generation of monoenergetic ion beams with a laser accelerator

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  7. Generation of monoenergetic ion beams with a laser accelerator

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  8. Unveiling orbital angular momentum and acceleration of light beams and electron beams

    Arie, Ady

    Special beams, such as the vortex beams that carry orbital angular momentum (OAM) and the Airy beam that preserves its shape while propagating along parabolic trajectory, have drawn significant attention recently both in light optics and in electron optics experiments. In order to utilize these beams, simple methods are needed that enable to easily quantify their defining properties, namely the OAM for the vortex beams and the nodal trajectory acceleration coefficient for the Airy beam. Here we demonstrate a straightforward method to determine these quantities by astigmatic Fourier transform of the beam. For electron beams in a transmission electron microscope, this transformation is easily realized using the condenser and objective stigmators, whereas for light beam this can be achieved using a cylindrical lens. In the case of Laguerre-Gauss vortex beams, it is already well known that applying the astigmatic Fourier transformation converts them to Hermite-Gauss beams. The topological charge (and hence the OAM) can be determined by simply counting the number of dark stripes of the Hermite-Gauss beam. We generated a series of electron vortex beams and managed to determine the topological charge up to a value of 10. The same concept of astigmatic transformation was then used to unveil the acceleration of an electron Airy beam. The shape of astigmatic-transformed depends only on the astigmatic measure and on the acceleration coefficient. This method was experimentally verified by generating electron Airy beams with different known acceleration parameters, enabling direct comparison to the deduced values from the astigmatic transformation measurements. The method can be extended to other types of waves. Specifically, we have recently used it to determine the acceleration of an optical Airy beams and the topological charge of so-called Airy-vortex light beam, i.e. an Airy light beam with an embedded vortex. This work was supported by DIP and the Israel Science

  9. Beam Physics of Integrable Optics Test Accelerator at Fermilab

    Nagaitsev, S.; Valishev, A.; Danilov, V. V.; Shatilov, D. N.

    2013-01-01

    Fermilab's Integrable Optics Test Accelerator is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on ...

  10. Nondestructive diagnostics of charged particle beams in accelerators

    Logachev, P. V.; Meshkov, O. I.; Starostenko, A. A.; Nikiforov, D. A.; Andrianov, A. V.; Maltseva, Yu. I.; Levichev, A. E.; Emanov, F. A.

    2016-03-01

    The basic techniques for nondestructive diagnostics and detection of losses of charged particle beams used in accelerator engineering are reviewed. The data provided may help choose the systems for diagnostics and detection of losses of beams and give a qualitative picture of the operation principles of such devices. Quantitative characteristics that define the limits of applicability of each diagnostic technique are outlined.

  11. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok [Institute for Basic Science, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of)

    2016-02-15

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement of the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.

  12. Off-axis beam quality change in linear accelerator x-ray beams

    The effective energy of the x-ray beam from linear accelerators changes as a function of the position in the beam due to nonuniform filtration by the flattening filter. In this work, the transmittance through a water column was measured in good geometry and the beam quality characterized in units of HVL in water. Measurements were made on a variety of linear accelerators from 4 to 10 MV. The beam energy decreased with increasing distance from the central ray for all accelerators measured

  13. A compact and high efficient electron beam accelerator

    To obtain short duration time high-current electron beam for KrF laser, a compact high-efficient electron beam accelerator has been constructed based on a co-axial Marx generator. The generator can be connected directly with a vacuum diode without additional pulse forming line because of low inductance. The energy conversion efficiency from the Marx generator to the electron beam reached to 61 % at an optimum condition. (author)

  14. Electron beam accelerators for environmental applications

    In the last decade, DC Electron Accelerators in the energy range (0.7-2.5 MeV) and power (100-600 kW) have been used for treatment of flue gases and industrial and municipal wastewater. Operation of such accelerators at the industrial plant level have been found to be economically viable in these environmental applications. India's power generation is largely dependent on coal-burning and the effect of consequent emission of polluting gases on the environment cannot be ignored. Besides this, water pollution resulting from discharge of effluents from industries like paper and textile mills degrade the environment irrevocably. This paper gives a brief description of application of accelerators in pollution control and describes efforts being made in India to tackle these issues by developing high power accelerator technology. (author)

  15. Crystal devices for beam steering in the IHEP accelerator

    Different crystal devices are described, which provide an extraction and splitting of beams for a long period of time at the U-70 accelerator of IHEP. The modes of channeling and volume reflections in the bent crystals are used for these tasks. In regular accelerator runs crystals produce the particle beams in a wide range of intensity, from 106 up to 1012 particles in a cycle. Novel crystal techniques suitable for charged particle beams deflection and focus as well as photon generation are presented also.

  16. High energy gain electron beam acceleration by 100TW laser

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10-5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  17. Experimental demonstration of dielectric structure based two beam acceleration.

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  18. Transformer ratio improvement for beam based plasma accelerators

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R ≤ 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  19. A study on beam profile at an industrial electron beam accelerator

    An industrial type electron beam accelerator located at BARC-BRIT complex, Vashi, Navi Mumbai is operational for development of applications and technology demonstration to the Indian industry in the field of polymer modifications and for processing of various other products. Recently the accelerator has been upgraded from 2 MeV to 5 MeV to process thick polymers, packaged products and for waste water treatment. This accelerator is capable of delivering powered electron beams up to 15 kW average beam power in the energy range 3 to 5 MeV. In the facility, product is irradiated either in static or conveyor mode of operation under the scanning- type beam. In the present work, we have performed beam profile measurement at different distances from the beam extraction window under conveyor and static mode of operation. We have used cellulose triacetate (CTA) strip dosimeters for the beam profile measurement. Dose profile measured along the scan direction (beam width) in conveyor mode and beam length profile in static mode of operation at different distances below accelerator beam exit window is shown. In the conveyor mode of operation, as the distance increases from the beam window the uniformity of the dose distribution improves but dose decreases linearly with distance. For a scanned beam, the beam width defines the dimension of the beam sweep. For static mode of operation, the dose from the exit window of the accelerator follows inverse relation with distance (i.e. l/r). This shows that the system is a line-type directional radiation source. Beam length is critical for processes where product is stationary under the beam and also for setting speed of the conveyor depending on pulse frequency in conveyor mode of operation. The present paper describes optimization of operational parameters to maximize the efficiency of the irradiation process based on these measurements. (author)

  20. Extensions of MAD Version 8 to Include Beam Acceleration

    In this paper, the authors describe modifications to MAD version 8.23 to include linear accelerator cavities and beam acceleration. An additional energy variable has been added which is modified as the beam passes through LCAV elements (linear accelerator cavities) and can be used as a constraint in matching commands. The calculation of the beta functions and phase advance is consistent with that in other codes that treat acceleration such as TRANSPORT or DIMAD. These modifications allow this version of MAD to be used for the design and modeling of linacs and the authors present examples from the Next Linear Collider design as well as a muon acceleration complex. The code is available from CERN or SLAC

  1. Determination of beam intensity and position in a particle accelerator

    Kasprowicz, G

    2011-01-01

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors...

  2. Determination of Beam Intensity and Position in a Particle Accelerator

    Kasprowicz, Grzegorz; Raich, Uli

    2011-10-04

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN†, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC)‡. The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam posi...

  3. Development of negative ion beam accelerators for high power neutral beam systems

    A 500 keV negative ion source for JT-60U and a 1 MeV ion source for ITER are being developed at JAERI. Beam acceleration test of the JT-60U negative ion source, that is designed to produce a 500 keV, 22 A D- beam for 10 S, has started. The ion source consists of a cesium seeded volume negative ion generator and a three-stage multi-aperture accelerator. Up to now, D- ion beam of 410 keV, 6.1 A, 0.2 s, 2.5MW was accelerated. This is the world record of deuterium negative ion beam current and negative ion beam power. On the other hand, to demonstrate negative ion acceleration up to an energy of 1 MeV for ITER, the authors constructed a five-stage electrostatic accelerator and a 1MV/1A test facility called MeV Test Facility (MTF). The accelerator was conditioned up to a high voltage of 760 kV without beam. The H- ion beam was successfully accelerated up to the energy of 700 keV with a drain current of 230 mA for 1 s

  4. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  5. Accelerator Based Neutron Beams for Neutron Capture Therapy

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  6. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to be conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.

  7. Proceedings of the meeting on the acceleration of polarized beams

    The project for accelerating polarized proton beam with the 12 GeV synchrotron in the National Laboratory for High Energy Physics was started in full scale, and the development of a polarized ion source of high intensity and the analysis of reduced polarization problem on the way to accelerate in the booster or the main ring have been carried out. On the other hand, with the cyclotrons in the Research Center for Nuclear Physics, Osaka University, and the Institute for Nuclear Research, University of Tokyo, and with the tandem machine in the Accelerator Center, Tsukuba University, polarized beams have already been accelerated, and the steady operations have been continued. Taking this opportunity, this study meeting was planned, considering that it is necessary to exchange informations among the researchers on polarized beam. It was the significant study meeting as unexpectedly many persons took part and the useful advices to the polarized beam project in this Laboratory were obtained. The construction of the preaccelerator for polarized protons was commenced in this year in the National Laboratory for High Energy Physics. In the proceedings, the introduction, the foreword, and eight papers are summarized. The progress of polarized beam researches in the world was mentioned in the introduction, and the project for proton acceleration in this Laboratory was explained in the foreword. (Kako, I.)

  8. Ion collective acceleration and high current beam transport

    Results of investigation of high-current beam (HCB) transport in vacuum channels with dielectric walls (VCDW) are presented. It is shown, that HCB transport can be realized not only in rectilinear dielectric channels, but also in curvili also in curvilitear oges. In particular, it proved to be possible to bend the beam with parameters 50 kA, 400 keV by 90 deg. A problem of negative ion intense beam production is considered. It is shown, that in magnetic insulation diodes hydrogen ion currents of about several kA are obtained at current densities 10 A/cm2. Results of collective ion acceleration in VCDW are given. Two regions with different physical mechanisms of ion acceleration should be distinguished. In the first region (''plasma''), corresponding to HCB motion in VCDW ion generation and their acceleration in quasipotential field of HCB up to the energy of the order of electrons or less takes place. In the second region (''beam''), corresponding to joint motion of ''extracted'' ions and HCB electrons, ion acceleration takes place in the fields of waves, which can be excited due to the mechanism of two-beam instability type. Considerable contribution can also be made by stochastic mechanism of ion acceleration

  9. Positron beam production with a deuteron accelerator

    A graphite target was bombarded with 1.5 MeV deuterons, producing the isotope 13N, which is a positron emitter. Using the activated material a slow positron beam with an intensity of 0.7 (0.14)x105 s-1 was produced. A (saturated) 13N yield of 63 (11) MBq/μA was observed, with 1.5 MeV deuterons, which is consistent with previous calculations and experiments. Our results show that, with the method we outline, positron beams with an average intensity of up to 1x108 s-1 may be produced

  10. Electron Accelerators for Radioactive Ion Beams

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  11. Polarized antiproton beam at U-70 accelerator of IHEP

    Nurushev, S. B.; Chetvertkov, M. A.; Chetvertkova, V. A.; Garkusha, V. I.; Meschanin, A. P.; Mochalov, V. V.; Nurusheva, M. B.; Rykov, V. L.; Semenov, P. A.; Strikhanov, M. N.; Vasiliev, A. N.; Zapolsky, V. N.

    2016-02-01

    The polarized proton and antiproton beam channel is currently under development at the U-70 accelerator of IHEP, Protvino, Russia. An availability of the both, polarized protons and antiprotons provides an exciting opportunity for the comparative studies of spin effects induced by polarized protons and antiprotons in a variety of hadronic reactions. While the proton and antiproton beams are formed by essentially the same method, there is the specific in the antiproton beam shaping and properties compared to protons. In this report, we address some technical details of forming the polarized antiproton beam and describe its main properties.

  12. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2015-12-01

    The results of frequency stabilization by proportional-integral-derivative (PID) feedback control of acceleration voltage in the 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) are presented. The experiment was organized on the basis of the frequency modulation by modulation of acceleration voltage of beam electrons. The frequency stabilization during 10 h experiment was better than 10-6, which is compared with the results of the frequency deviation in free-running gyrotron operation.

  13. Enhancing the accelerated beam current in the booster synchrotron by optimizing the transport line beam propagation

    Saini R S; Tyagi Y; Ghodke A D; Puntambekar T A

    2016-04-01

    In this paper, we present the results of transverse beam emittance and twiss parameter measurement of an electron beam, delivered by a 20 MeV microtron which is used as a pre-injector system for a booster synchrotron in the Indus Accelerator Facility at RRCAT Indore. Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and Indus-2 synchrotron radiation facilities. To optimize the beam optics of a transport linefor proper beam transmission through the line as well as to match the beam twiss parameters at the beam injection point of another accelerator, it is necessary to know the transverse beam emittance and twiss parameters of the beam coming from the first one. A MATLAB-based GUI program has been developed to calculate the beam emittance and twiss parameters, using quadrupole scanmethod. The measured parameters have been used for beam transport line optimization and twiss parameters matching at booster injection point. After this optimization, an enhancement of ∼50% beam current has been observed in the booster synchrotron.

  14. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Seval Pinarbasi

    2012-01-01

    The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the li...

  15. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA

  16. Beam stability & nonlinear dynamics. Formal report

    Parsa, Z. [ed.

    1996-12-31

    his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  17. Beam stability ampersand nonlinear dynamics. Formal report

    This report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  18. Beam Loss Calibration Studies for High Energy Proton Accelerators

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  19. Beam acceleration test of the HIMAC injector

    A heavy-ion synchrotron dedicated to medical use is under construction at National Institute of Radiological Sciences. The injector system, comprising a PIG source, an ECR source, an RFQ linac, and an Alvarez linac of 100MHz, accelerates heavy ions with a charge-to-mass ratio as small as 1/7, up to 6 MeV/u. First operation of the injector system has shown satisfactory performance. (author)

  20. Surface acoustic wave acceleration sensor with high sensitivity incorporating ST-X quartz cantilever beam

    The implementation and performance of a surface acoustic wave (SAW)-based acceleration sensor is described. The sensor was composed of a flexible ST-X quartz cantilever beam with a relatively substantial proof mass at the undamped end, a pattern of a two-port SAW resonator deposited directly on the surface of the beam adjacent to the clamped end for maximum strain sensitivity and a SAW resonator affixed on the metal package base for temperature compensation. The acceleration was directed to the proof mass flex of the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW traveling along the beams. The frequency signal from the differential oscillation structure utilizing the SAW resonators as the feedback element varies as a function of acceleration. The sensor response mechanism was analyzed theoretically, with the aim of determining the optimized dimension of the cantilever beam. The coupling of modes (COM) model was used to simulate the synchronous SAW resonator prior to fabrication. The oscillator frequency stability was improved using the phase modulation approach; the obtained typical short-term frequency stability ranged up to 1 Hz s−1. The performance of the developed acceleration sensor was evaluated using the precise vibration table and was also evaluated in comparison to the theoretical calculation. A high frequency sensitivity of 29.7 kHz g−1, good linearity and a lower detection limit (∼1 × 10−4 g) were achieved in the measured results. (paper)

  1. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  2. Beam Commissioning of Phase I of the SARAF Accelerator

    The Soreq Applied Research Accelerator Facility (SARAF) linac's injector consists of a 20 keV/u protons and deuterons ECR ion source (EIS), a 5 mA low energy beam transport (MEBT) and a 1. 5 MeV/u, 4 m/k 176 MHz, 4-rod RFQ. The RFQ is followed by a short medium energy beam transport (MEBT) and a dedicated diagnostic plate (D-plate) for beam measurements. After beam commissioning of the RFQ the prototype superconducting module (PSM), housing six 176 MHz, s.c. half-wave resonators, will be installed between the MEBT and the D-plate finalizing phase I of SARAF. This paper describes the commissioning results of the ion source with H+, H2+ and D+ particle beams and of the RFQ with H+ beam

  3. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  4. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  5. Beam loading and cavity compensation for the Ground Test Accelerator

    The Ground Test Accelerator (GTA) will be heavily beam-loaded H- linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outline. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs

  6. HIGHLIGHTS LHC First Beam - Accelerating Science : 10 September 2008

    CERN Audiovisual Service

    2008-01-01

    First beam in the LHC - accelerating science A historic moment in the CERN Control Centre: the beam was successfully steered around the accelerator. Channel 1 : International Channel 2 : English guide A historic moment in the CERN Control Centre: the beam was successfully steered around the accelerator. Geneva, 10 September 2008. The first beam in the Large Hadron Collider at CERN1 was successfully steered around the full 27 kilometres of the world’s most powerful particle accelerator at 10h28 this morning. This historic event marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery. “It’s a fantastic moment,” said LHC project leader Lyn Evans, “we can now look forward to a new era of understanding about the origins and evolution of the universe.” Starting up a major new particle accelerator takes much more than flipping a switch. Thousands of individual elements have to work in harmony, timings have to be synchronized to under a billionth of a...

  7. H-Mode Accelerating Structures with PMQ Beam Focusing

    Kurennoy, Sergey S; O'Hara, James F; Olivas, Eric R; Wangler, Thomas P

    2011-01-01

    We have developed high-efficiency normal-conducting RF accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of inter-digital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3-D modeling - electromagnetic computations, multi-particle beam-dynamics simulations with high currents, and thermal-stress analysis - for an IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or ...

  8. Gamma-ray generation using laser-accelerated electron beam

    Park, Seong Hee; Lee, Ho-Hyung; Lee, Kitae; Cha, Yong-Ho; Lee, Ji-Young; Kim, Kyung-Nam; Jeong, Young Uk

    2011-06-01

    A compact gamma-ray source using laser-accelerated electron beam is being under development at KAERI for nuclear applications, such as, radiography, nuclear activation, photonuclear reaction, and so on. One of two different schemes, Bremsstrahlung radiation and Compton backscattering, may be selected depending on the required specification of photons and/or the energy of electron beams. Compton backscattered gamma-ray source is tunable and quasimonochromatic and requires electron beams with its energy of higher than 100 MeV to produced MeV photons. Bremsstrahlung radiation can generate high energy photons with 20 - 30 MeV electron beams, but its spectrum is continuous. As we know, laser accelerators are good for compact size due to localized shielding at the expense of low average flux, while linear RF accelerators are good for high average flux. We present the design issues for a compact gamma-ray source at KAERI, via either Bremsstrahlung radiation or Compton backscattering, using laser accelerated electron beams for the potential nuclear applications.

  9. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  10. Physics of beam self-modulation in plasma wakefield accelerators

    Lotov, K. V. [Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-10-15

    The self-modulation instability is a key effect that makes possible the usage of nowadays proton beams as drivers for plasma wakefield acceleration. Development of the instability in uniform plasmas and in plasmas with a small density up-step is numerically studied with the focus at nonlinear stages of beam evolution. The step parameters providing the strongest established wakefield are found, and the mechanism of stable bunch train formation is identified.

  11. Intense ion beams accelerated by ultra-intense laser pulses

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  12. Overview of the Beam diagnostics in the Medaustron Accelerator:Design choices and test Beam commissioning

    Osmic, F; Gyorgy, A; Kerschbaum, A; Repovz, M; Schwarz, S; Neustadt, W; Burtin, G

    2012-01-01

    The MedAustron centre is a synchrotron based accelerator complex for cancer treatment and clinical and non-clinical research with protons and light ions, currently under construction in Wiener Neustadt, Austria. The accelerator complex is based on the CERN-PIMMS study [1] and its technical implementation by the Italian CNAO foundation in Pavia [2]. The MedAustron beam diagnostics system is based on sixteen different monitor types (153 devices in total) and will allow measuring all relevant beam parameters from the source to the irradiation rooms. The monitors will have to cope with large intensities and energy ranges. Currently, one ion source, the low energy beam transfer line and the RFQ are being commissioned in the Injector Test Stand (ITS) at CERN. This paper gives an overview of all beam monitors foreseen for the MedAustron accelerator, elaborates some of the design choices and reports the first beam commissioning results from the ITS.

  13. Dynamics and transport of laser-accelerated particle beams

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  14. Dynamics and transport of laser-accelerated particle beams

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  15. Auto-focusing accelerating hyper-geometric laser beams

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-02-01

    We derive a new solution to the paraxial wave equation that defines a two-parameter family of three-dimensional structurally stable vortex annular auto-focusing hyper-geometric (AH) beams, with their complex amplitude expressed via a degenerate hyper-geometric function. The AH beams are found to carry an orbital angular momentum and be auto-focusing, propagating on an accelerating path toward a focus, where the annular intensity pattern is ‘sharply’ reduced in diameter. An explicit expression for the complex amplitude of vortex annular auto-focusing hyper-geometric-Gaussian beams is derived. The experiment has been shown to be in good agreement with theory.

  16. Active steering of laser-accelerated ion beams

    A technique for optical control of the spatial distribution of laser-accelerated ion beams is presented. An ultrashort laser pulse, tightly focused to relativistic intensities on a thin foil target, drives a beam of MeV ions. An auxiliary, nanosecond laser pulse drives a shock and locally deforms the initially flat target prior to the main pulse interaction. By changing the properties of the shock-driving laser pulse, the normal direction of the ion emitting surface is locally manipulated and the emission direction is thereby controlled. In the future, this method could be used to achieve dynamic control of the ion beam divergence

  17. Multiparametric ionization probes for monitoring accelerated particle beams

    Paper describes high-sensitive ionization probes of transverse cross section of accelerated particle beam. Image of beam real cross section is formed at the display of electron-optical converter on the basis of multichannel plates, is recorded by TV camera and is processes and presented by means of computer. Probe structures for 1-100 MeV energy round and strip beams are developed and tested. Distortions of beam cross section image under the effect of the external magnetic field and of space charge field are estimated. The results of the first investigations into prototype ionization probes to control form, duration, phase of cyclotron beam microclusters are presented. 13 refs.; 9 figs

  18. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  19. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling

  20. Outline of heavy ion beam accelerator for inertial confinement fusion

    Heavy ion inertial fusion program has become more promising through the intense works on high energy, heavy ion accelerators during past four years. The heavy iron method is superior to the methods with other particle beam, because the peak current requirement is reduced drastically to several kA. The driver efficiency is expected to be 20% or more in the heavy ion method, and the absorption efficiency in the pellets is three times as high as that of laser fusion method. In Japan, Institute of Plasma Physics of Nagoya University and Institute of Laser Engineering of Osaka University participate mainly in the design of reactor and pellet systems, while National Laboratory for High Energy Physics and Institute for Nuclear Study of University of Tokyo have studied on heavy ion accelerators. In this paper, the outline of the accelerator system is described on the basis of the typical parameters of pellet design. The determination of beam parameters, the beam lines in reactors, current multiplication, the main parameters of the storage ring, the ion source and the linear accelerator are explained. In the present design concept, an RFQ linac is proposed in low velocity region. The focus action is independent of the beam velocity, and it has the capture efficiency as high as about 90%. (Kako, I.)

  1. Irradiation application of electronic beam accelerator NBL-1010

    The application of electronic beam accelerator NBL-1010 in semiconductor denature, gem coloring, waster treatment, chemical synthesize of radiation, degrading of agricultural waster, sterilization of one-off medical treatment, sterilization of herbs, food preservation, crystal coloring and preservation of commodities was studied for its effects equaled with cobalt gamma irradiation

  2. Radiation Shielding Analysis of Electron Beam Accelerator Facility

    The objective of this technical report are to establish the radiation shielding technology of a high-energy electron accelerator to the facilities which utilize with electron beam. The technologies of electron beam irradiation(300 KeV -10 MeV) demand on the diverse areas of material processing, surface treatment, treatments on foods or food processing, improvement of metal properties, semiconductors, and ceramics, sterilization of medical goods and equipment, treatment and control of contamination and pollution, and so on. In order to acquire safety design for the protection of personnel from the radiations produced by electron beam accelerators, it is important to develop the radiation shielding analysis technology. The shielding analysis are carried out by which define source term, calculation modelling and computer calculations for 2 MeV and 10 MeV accelerators. And the shielding analysis for irradiation dump shield with 10 MeV accelerators are also performed by solving the complex 3-D geometry and long computer run time problem. The technology development of shielding analysis will be contributed to extend the further high energy accelerator development

  3. Low voltage, hermetically sealed electron beam accelerator for industrial applications

    Three types of hermetically sealed, low voltage electron beam accelerators and novel solid state power supply/control systems have been developed by Advanced Electron Beams. These accelerators produce uniform, unscanned electron beams through the unique management of the thermionic emitter profile and vacuum body shape. The power density of the accelerators range from 0.02 to 0.2 kW per square centimetre with accelerating voltages ranging from 60 to 150 kV and extracted electron currents of 1 to 30 mA. A wide variety of in-process-line industrial applications have been implemented and continue to be developed for these accelerators including: curing of high density and/or high opacity thin films; cross-linking or chain scission of thermoplastic films; pre-fill disinfestation of food and beverage packaging; sterilization of medical devices and pharmaceutical container surfaces; and the active treatment of air streams for pollution abatement and bioburden remediation. This paper will describe the design of the three emitters and the methods of application implementation. (author)

  4. A sensitiviy analysis for the stabilization of the CLIC main beam quadrupoles

    Janssens, S; Artoos, K; Fernandez Carmona, P; Hauviller, C

    2010-01-01

    In particle colliders (like the LHC), particles are highly accelerated in a circular beam pipe before the collision. However, due to the curved trajectory of the particles, they are also loosing energy because of the so-called Bremsstrahlung. In order to bypass this fundamental limitation imposed by circular beams, the next generation of particle colliders will accelerate two straight beams of particles before the collision. One of them, the Compact Linear Collider, is currently under study at CERN. The machine is constituted of a huge number of accelerating structures (used to accelerate the particles) and quadrupoles (electromagnets used to focus the particles). The latter ones are required to be stable at the nanometer level. This extreme stability has to be guaranteed by active vibration isolation from all types of disturbances like ground vibrations, ventilation, cooling system, or acoustic noise. Because of the huge number of quadrupoles (about 4000), it is critical that the strategy adopted for the act...

  5. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K+) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  6. Controls and Beam Diagnostics for Therapy-Accelerators

    Eickhoff, H

    2000-01-01

    During the last four years GSI has developed a new procedure for cancer treatment by means of the intensity controlled rasterscan-method. This method includes active variations of beam parameters during the treatment session and the integration of 'on-line' PET monitoring. Starting in 1997 several patients have been successfully treated within this GSI experimental cancer treatment program; within this program about 350 patients shall be treated in the next 5 years. The developments and experiences of this program accompanied by intensive discussions with the medical community led to a proposal for a hospital based light ion accelerator facility for the clinic in Heidelberg. An essential part for patients treatments is the measurement of the beam properties within acceptance and constancy tests and especially for the rasterscan method during the treatment sessions. The presented description of the accelerator controls and beam diagnostic devices mainly covers the requests for the active scanning method, which...

  7. Report on single beam stability - coherent effects

    Group 1A was concerned with single beam stability, coherent effects. Theory is available. Most of the material for this work was drawn from F.J. Sacherer theory which has been left in reasonably good shape in the sense that given any coupling impedance, its effect on the beam can be estimated. The EBI computer program was extensively used in this respect. We still lack thorough knowledge of the SPS coupling impedance. Accordingly our results rest on a model. This model should be too unrealistic since it originates from various data of the SPS and other machines. Nevertheless any complementary information about the SPS impedance would be welcome. Broad-band impedance and parasitic effects on transverse and longitudinal motions will be reviewed. We shall mainly focus on the 270 GeV case with six equidistant bunches and 1011 particles per bunch. For other schemes results can be obtained in a similar fashion. Some relevant figures will be given for the situation at injection. (orig.)

  8. Particle-beam accelerators for radiotherapy and radioisotopes

    The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines

  9. Analysis of lateral stability of I-section aluminum beams

    CHENG; Ming; SHI; Yongjiu

    2006-01-01

    This paper focuses on the lateral buckling of laterally-unrestrained aluminum beams subjected to a concentrated, uniformly loading and pure-bending action. The design methods of lateral stability of aluminum beams in the current codes are discussed. The influence of material property on the lateral buckling of aluminum beams is investigated with finite element analysis (FEA) methods. Some numerical examples are given, and the results from current codes are compared with the FEA solutions. The design method on lateral stability of steel beams specified in the Chinese standard GB 50017-2003 is modified to calibrate the stability factors of aluminum beams according to the European code, British code, and American code, and the modified method is verified by FEA results. Through comparison with the available test results, the modified design method for overall stability of aluminum bending members is proposed in this paper and proved applicable in the design of lateral stability of aluminum beams.

  10. Study on the conditions required for the transverse stability of a coasting beam in proton storage rings

    A general theory of the transverse instability of coasting beams in circular accelerators produced by the interaction of the beam charge and current with its electromagnetic environment is presented. The theory allows to numerically calculate the threshold current for an arbitrary frequency versus momentum curve. The numerical solution is used to study the stability of a coasting beam in a high energy proton storage ring like ISABELLE during the stacking process and for a full intensity beam

  11. Laser-accelerated proton beams as a new particle source

    Nuernberg, Frank

    2010-11-15

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10{sup 12} W/cm{sup 2}) prior to the main pulse ({proportional_to}ns), an optimum pre-plasma density scale length of 60 {mu}m is generated leading to an enhancement of the maximum proton energy ({proportional_to}25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 {mu}m foil irradiated with an intensity of 10{sup 19} W/cm{sup 2} onto a 60 {mu}m spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and

  12. Laser-accelerated proton beams as a new particle source

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (1012 W/cm2) prior to the main pulse (∝ns), an optimum pre-plasma density scale length of 60 μm is generated leading to an enhancement of the maximum proton energy (∝25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 μm foil irradiated with an intensity of 1019 W/cm2 onto a 60 μm spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and plasma physics group of the Technische Universitat Darmstadt

  13. Shaping of electron beam picosecond current pulses in waveguide accelerators

    Results are given of experiments on extracting a single bunch in an experimental SHF wavegujde accelerator operating in the stoped energy mode. The accelerator has the following parameters: 8 MeV energy, 1818 MHz frequency of the accelerating field, 10 ns pulse duration of current; 20 A pulsed current, operation in the mode of single massages. An electron beam in the shape of a 10 ns pulse has been injected into the waveguide at the end of a SHF-pulse. The shape of detected picosecond pulses of accelerated electron current is close to triangular one, pulse duration at half-height with correction for rise time of the measuring system is equal to 50 ps, pulse current is about 100 A, electron energy equals 8 MeV

  14. Superconducting accelerating structures for very low velocity ion beams

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  15. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    We discuss the design and current status of experiments to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  16. A large distributed digital camera system for accelerator beam diagnostics

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  17. A large distributed digital camera system for accelerator beam diagnostics

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system

  18. Optmized stability of a modulated driver in a plasma wakefield accelerator

    Martorelli, Roberto

    2016-01-01

    We analyze the transverse stability for a configuration of multiple gaussian bunches subject to the self-generated plasma wakefield. Through a semi-analytical approach we first study the equilibrium configuration for the modulated beam and then we investigate the evolution of the equilibrium configuration due to the emittance-driven expansion of the beam front that results in a rigid backward shift. The rear-directed shift brings the modulated beam out of the equilibrium, with the possibility for some of the bunch particles to be lost with a consequent deterioration of the driver. We look therefore for the proper position of the single bunches that maximize the stability without severely affecting the accelerating field behind the driver. We then compare the results with 3D PIC simulations.

  19. Beam loading compensation for acceleration of multi-bunch electron beam train

    Liu, Shengguang; Fukuda, Masafumi; Araki, Sakae; Terunuma, Nobuhiro; Urakawa, Junji; Hirano, Koichiro; Sasao, Noboru

    2008-01-01

    The laser undulator compact X-ray source (LUCX) is a test bench used with the compact, high-brightness X-ray generator at KEK (High Energy Accelerator Research Organization). Our group is conducting experiments with LUCX to demonstrate the possibility of K-edge digital subtraction angiography, based on Compton scattering. One of the challenging problems is to generate high-brightness multi-bunch electron beams to compensate for the energy difference arising from the beam loading effect. In this paper we calculate the transient beam loading voltage and energy gain from the RF field in the gun and accelerating tube for a multi-bunch train. To do so we consider the process by which the RF field builds up in the gun and accelerating tube, and the special shape of the RF pulse. We generate and accelerate 100 bunches with a 50 nC electron bunch train, effectively compensating for the beam loading effect by adjusting the injection timing. Using a beam position monitor (BPM) and optical transition radiation (OTR) system, we measure the electron beam energy bunch by bunch. The average energy of a 100-bunch train is 40.5 MeV and the maximum energy difference from bunch to bunch is 0.26 MeV.

  20. Beam loading compensation for acceleration of multi-bunch electron beam train

    The laser undulator compact X-ray source (LUCX) is a test bench used with the compact, high-brightness X-ray generator at KEK (High Energy Accelerator Research Organization). Our group is conducting experiments with LUCX to demonstrate the possibility of K-edge digital subtraction angiography, based on Compton scattering. One of the challenging problems is to generate high-brightness multi-bunch electron beams to compensate for the energy difference arising from the beam loading effect. In this paper we calculate the transient beam loading voltage and energy gain from the RF field in the gun and accelerating tube for a multi-bunch train. To do so we consider the process by which the RF field builds up in the gun and accelerating tube, and the special shape of the RF pulse. We generate and accelerate 100 bunches with a 50 nC electron bunch train, effectively compensating for the beam loading effect by adjusting the injection timing. Using a beam position monitor (BPM) and optical transition radiation (OTR) system, we measure the electron beam energy bunch by bunch. The average energy of a 100-bunch train is 40.5 MeV and the maximum energy difference from bunch to bunch is 0.26 MeV

  1. Determination of beam characteristic parameters for a linear accelerator

    A mechanism to determine electron beam characteristic parameters of a linear accelerator was constructed. The mechanism consists in an electro-calorimeter and an accurate optical densitometer. The following parameters: mean power, mean current, mean energy/particle, pulse Width, pulse amplitude dispersion, and pulse frequency, operating the 2 MeV linear accelerator of CBPF (Brazilian Center pf Physics Researches). The optical isodensity curves of irradiated glass lamellae were obtained, providing information about focus degradation penetration direction in material and the reach of particle. The point to point dose distribution in the material from optical density curves were obtained, using a semi empirical and approached model. (M.C.K.)

  2. The LICPA accelerator of dense plasma and ion beams

    Badziak, J.; Jabłoński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Rączka, P.; Rosiński, M.; Krouský, Eduard; Ullschmied, Jiří; Liska, R.; Kucharik, M.; Torrisi, L.

    Vol. 508. Bristol: IOP Publishing, 2014, 012006-012006. (IOPscience. 508). ISSN 1742-6588. [Plasma Physics by Laser and Applications 2013 Conference (PPLA2013). Lecce (IT), 02.10.2013-04.10.2013] R&D Projects: GA MŠk LM2010014 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : LICPA accelerator * ion beams * macroparticle acceleration * PALS laser * PIC simulations Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) http://iopscience.iop.org/1742-6596/508/1/012006/pdf/1742-6596_508_1_012006.pdf

  3. Hertzian spectroscopy application to excited states in accelerated ion beams

    It is shown that accelerated ion beams enables the application of optical hertzian spectrometry methods to be extended to research on the excited states of free ionic systems. The photon beat method has proved especially simple to apply in beam foil geometry because of the unidirectional beam velocity while the beam gas device is suitable for experiments of the energy level crossing type. Only the resonance technique involving direct application of high-frequency magnetic fields poses serious problems because of the high HF powers necessary. So far structure intervals have been measured in ions carrying up to three charges (seven in the special case of Lamb shift measurements) with a precision of a few percent. The interest of these structure studies in free ions is emphasized particularly. The study of hydrogen-like or helium-like ions of high Z allows the fundamental calculations of quantum electrodynamics to be checked with regard to the Lamb shift or the spontaneous emission theory. In more complex electronic systems, optical spectroscopy of accelerated ion beams gives wavelengths with a resolution reaching 10-5, lifetimes with an accuracy better than 10% when the cascade effects are properly studied, and Lande factors with a precision of several % under present technical conditions. The photon beat method concerns hyperfine nuclear effects in light atoms of Z<=20. Another line of research study the hyperfine structure of a given configuration in an isoelectronic sequence

  4. Transformer ratio saturation in a beam-driven wakefield accelerator

    Farmer, J. P.; Martorelli, R.; Pukhov, A. [Institut für Theoretische Physik I, Heinrich Heine Universität, 40225 Düsseldorf (Germany)

    2015-12-15

    We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.

  5. H-Mode Accelerating Structures with PMQ Beam Focusing

    Kurennoy, Sergey S.; Rybarcyk, Lawrence J.; O'Hara, James F.; Olivas, Eric R.; Wangler, Thomas P.

    2011-01-01

    We have developed high-efficiency normal-conducting RF accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of inter-digital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3-D modeling - electromagnetic c...

  6. Nitrogen implantation in steel with a pulsed ion beam accelerator

    The modification of wear properties of high speed steel cutting tools for lathe by nitrogen implantation, were studied in a normal boring process of SAE 1045 steel parts. The implantation was done with a pulsed ion beam accelerator, which produced a nitrogen ion beam of continuous energy spectrum (10-300 KeV) with 400 ns pulsed duration on target. A tool fluence of 1.65 x 1017 cm-2 - obtained by 30 singles shot accumulation was used in the experiments. (author)

  7. Study of a microwave power source for a two-beam accelerator

    A theoretical and experimental study of a microwave power source suitable for driving a linear e+e- collider is reported. The power source is based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept, is driven by a 5-MeV, 1-kA induction accelerator electron beam, and operates at X-band frequencies. The development of a computer code to simulate the transverse beam dynamics of an intense relativistic electron beam transiting a system of microwave resonant structures is presented. This code is time dependent with self-consistent beam-cavity interactions and uses realistic beam parameters. Simulations performed with this code are compared with analytical theory and experiments. The concept of spacing resonant structures at distances equal to the betatron wavelength of the focusing system to suppress the growth of transverse instabilities is discussed. Simulations include energy spread over the beam to demonstrate the effect of Landau damping and establish the sensitivity of the betatron wavelength spacing scheme to errors in the focusing system. The design of the Reacceleration Experiment is described in detail and includes essentially all the issues related to a full scale RK-TBA microwave source. A total combined power from three output structures in excess of 170 MW with an amplitude stability of ±4% over a 25 ns pulse was achieved. The results of the experiment are compared to simulations used during the design phase to validate the various codes and methods used. The primary issue for the RK-TBA concept is identified as transverse beam instability associated with the excitation of higher order modes in the resonant structures used for extracting microwave power from the modulated beam. This work represents the first successful experimental demonstration of repeated cycles of microwave energy extraction from and reacceleration of a modulated beam

  8. Study of a multi-beam accelerator driven thorium reactor

    The primary advantages that accelerator driven systems have over critical reactors are: (1) Greater flexibility regarding the composition and placement of fissile, fertile, or fission product waste within the blanket surrounding the target, and (2) Potentially enhanced safety brought about by operating at a sufficiently low value of the multiplication factor to preclude reactivity induced events. The control of the power production can be achieved by vary the accelerator beam current. Furthermore, once the beam is shut off the system shuts down. The primary difference between the operation of an accelerator driven system and a critical system is the issue of beam interruptions of the accelerator. These beam interruptions impose thermo-mechanical loads on the fuel and mechanical components not found in critical systems. Studies have been performed to estimate an acceptable number of trips, and the value is significantly less stringent than had been previously estimated. The number of acceptable beam interruptions is a function of the length of the interruption and the mission of the system. Thus, for demonstration type systems and interruption durations of 1sec 5mins 2500/yr and 50/yr are deemed acceptable. However, for industrial scale power generation without energy storage type systems and interruption durations of t 5mins, the acceptable number of interruptions are 25000, 2500, 250, and 3 respectively. However, it has also been concluded that further development is required to reduce the number of trips. It is with this in mind that the following study was undertaken. The primary focus of this study will be the merit of a multi-beam target system, which allows for multiple spallation sources within the target/blanket assembly. In this manner it is possible to ameliorate the effects of sudden accelerator beam interruption on the surrounding reactor, since the remaining beams will still be supplying source neutrons. The proton beam will be assumed to have an

  9. Development of compact low energy election beam accelerator

    Sumitomo Heavy Industries has developed new compact accelerator jointly with its affiliated company RPC industries and some of which have already been in use in industries. Named WIPL, or WIP, which stands for Wire Ion Plasma, this accelerator is almost half the size of existing accelerators yet with performance as high as well enough to cope with industrial requirements. Background of our determination to develop such accelerator was that there prevails fairly good numbers of small laboratory units but only small numbers of production machines are in use. The main reason which brought such environment was that those production units were husky and costly. To overcome such problem and to turn situation in favor we launched the development programme and eventually succeeded to complete WIPL. Unique feature of WIPL was materialized by adopting special method of generating electrons. Unlike existing accelerators which use heated filaments WIPL utilizes the system using electron emission by bombardment of cathode plate by helium ions as electron source. Electrons are to be generated in following manner. 1) Thin helium gas is introduced in plasma chamber in which wire(s) for applying electric power. When power is supplied helium gas is turned into helium plasma by electric field. 2) Being energized by separate high voltage power source cathode plate is charged minus simultaneously. 3) Plus charged helium ions in plasma are then accelerated toward cathode plate and hit the surface. 4) Cathode plate emits electrons by bombardment and emitted electrons are compelled by the field and accelerated to the direction which helium ion came. Since such system no longer requires insulated transformers and control system for controlling electron beam current used in filament type machines equipment becomes remarkably small and economical. We really hope that this machine is accepted widely and contributes for exploiting the new horizon of electron beam market. (author)

  10. Collective ion acceleration in high current relativistic electron beams

    This report describes the progress made during the current contract period investigating the use of high power relativistic electron beams for electron and ion acceleration. Section 2 gives a summary of results from the relativistic klystron experiment and details our plans for a large diameter coaxial system. Section 3 summarizes our efforts to generate upper hybrid waves on relativistic electron beams. Simulation work of the upper hybrid excitation process is reported. Our experiment using high power microwaves for electron acceleration is discussed. This paper also reports progress on development of repetitive pulsed experimental and data acquisition systems. Our future research plans are outlined, followed by a list of publications and presentations from our present work. 10 figs

  11. Plasma opening switch experiments on the Particle Beam Accelerator II

    Plasma opening switch (POS) experiments have been done since 1986 on the PBFA-II ion beam accelerator to develop a rugged POS that will open rapidly (80%) into a high impedance (> 10 ohm) load. In a recent series of experiments on PBFA II, the authors have developed and tested three different switch designs that use magnetic fields to control and confine the injected plasma. All three configurations couple current efficiently to a 5-ohm electron beam diode. In this experimental series, the PBFA-II Delta Series, more extensive diagnostics were used than in previous switch experiments on PBFA II or on the Blackjack 5 accelerator at Maxwell Laboratories. Data from the experiments with these three switch designs is presented

  12. Beam by design: laser manipulation of electrons in modern accelerators

    Hemsing, Erik; Xiang, Dao; Zholents, Alexander

    2014-01-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, we review a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation. Basic theories of electron-laser interactions, techniques to create micro- and nano-structures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. We overview laser-based techniques for the generation ...

  13. Million revolution accelerator beam instrument for logging and evaluation

    A data acquisition and analysis instrument for the processing of accelerator beam position monitor (BPM) signals has been assembled and used preliminarily for beam diagnosis of the Fermilab accelerators. Up to eight BPM (or other analogue) channels are digitized and transmitted to an acquisition Sun workstation and from there both to a monitor workstation and a workstation for off-line (but immediate) data analysis. A coherent data description format permits fast data object transfers to and from memory, disk and tape, across the Sun ethernet. This has helped the development of both general purpose and experiment-specific data analysis, presentation and control tools. Flexible software permits immediate graphical display in both time and frequency domains. The instrument acts simultaneously as a digital oscilloscope, as a network analyzer and as a correlating, noise-reducing spectrum analyzer. 2 refs., 3 figs

  14. Manipulating nonlinear optical processes with accelerating light beams

    We show theoretically that accelerating light beams can be used to manipulate nonlinear optical processes through spatiotemporal quasi-phase-matching, allowing for unprecedented temporal and spectral shaping of the generated light. As a proof of principle, we demonstrate exquisite control over the high-order harmonic frequency conversion process, showing efficient enhancement of an extremely broad range of harmonics emitted during a selected quarter-cycle of the driving laser pulse.

  15. Shielding design of electron beam accelerators using supercomputer

    The MCNP5 neutron, electron, photon Monte Carlo transport program was installed on the KISTI's SUN Tachyon computer using the parallel programming. Electron beam accelerators were modeled and shielding calculations were performed in order to investigate the reduction of computation time in the supercomputer environment. It was observed that a speedup of 40 to 80 of computation time can be obtained using 64 CPUs compared to an IBM PC

  16. Trends for Electron Beam Accelerator Applications in Industry

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  17. Results of the SINGAP Neutral Beam Accelerator Experiment at JAEA

    de Esch, H. P. L.; Svensson, L.; Inoue, T.; Taniguchi, M.; Umeda, N.; Kashiwagi, M.; Fubiani, G.

    2009-03-01

    IRFM (CEA Cadarache) and JAEA Naka have entered into a collaboration in order to test a SINGAP [1] accelerator at the JAEA Megavolt Test Facility (MTF) at Naka, Japan. Whereas at the CEA testbed the acceleration current was limited to 0.1 A, at JAEA 0.5 A is available. This allows the acceleration of 15 H- beamlets in SINGAP to be tested and a direct comparison between SINGAP and MAMuG [2] to be made. High-voltage conditioning in the SINGAP configuration has been quite slow, with 581 kV in vacuum achieved after 140 hours of conditioning. With 0.1 Pa of H2 gas present in the accelerator 787 kV could be achieved. The conditioning curve for MAMuG is 200 kV higher. SINGAP beam optics appears in agreement with calculation results. A beamlet divergence better than 5 mrad was obtained. SINGAP accelerates electrons to a higher energy than MAMuG. Measurements of the power intercepted on one of the electron dumps have been compared with EAMCC code [3] calculations. Based on the experiments described here, electron production by a SINGAP accelerator scaled up to ITER size was estimated to be too high for comfort

  18. Studies of Nanotube Channeling for Efficient Beam Scraping at Accelerators

    Biryukov, V M

    2005-01-01

    While particle beam steering (and in particular, "scraping") in accelerators by bent channeling crystals is an established technique extensively tested at IHEP Protvino and other major high-energy labs, an interesting question is how one could improve channeling capabilities by applying modern nanotechnology. Theoretical research of nanotube channeling was in progress over recent years. In this work, we assess potential benefits from nanotube channeling for real accelerator systems. We report simulation studies of channeling in nanostructured material (carbon SWNT and MWNT) tested for possible serving as a primary scraper for the collimation systems of hadron colliders. The advantages of nanostructured material as a potential choice for a primary scraper in a high-energy accelerator such as LHC or the Tevatron are discussed in comparison to crystal lattices and amorphous material. We evaluate physical processes relevant to this application and reveal nanotechnology requirements.

  19. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01-1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  20. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  1. Electron Beam Focusing in the Linear Accelerator (linac)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  2. A DSP based data acquisition module for colliding beam accelerators

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented

  3. Beam control in the ETA-II linear induction accelerator

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-II induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused by a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 2π. (Author) 5 figs., 11 refs

  4. Stability Analysis of Some Nonlinear Feedback Control Methods for Beam Halo-Chaos Suppression

    FANG Jin-Qing; WANG Zhong-Sheng; CHEN Guan-Rong

    2004-01-01

    Control of beam halo-chaos has been a very challenging subject for research in recent years, in which some nonlinear feedback methods have been developed for suppression of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of such successful nonlinear feedback control methods has not yet been rigorously carried out, which remains an important open topic in the field. In this letter, we present a rigorous mathematical analysis of several nonlinear feedback control methods that are applied to control beam halo-chaos with great success on simulations.

  5. Stability Analysis of Some Nonlinear Feedback Control Methods for Beam Halo-ChaosSuppression

    FANGJin-Qing; WANGZhong-Sheng; CHENGuan-Rong

    2004-01-01

    Control of beam halo-chaos has been a very challenging subject for research in recent years, in which some nonlinear feedback methods have been developed for suppression of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of such successful nonlinear feedback control methods has not yet been rigorously carried out, which remains an important open topic in the field. In this letter, we present a rigorous mathematical analysis of several nonlinear feedback control methods that are applied to control beam halo-chaos with great success on simulations.

  6. Proton beam of 2 MeV 1.6 mA on a tandem accelerator with vacuum insulation

    A source of epithermal neutrons based on a tandem accelerator with vacuum insulation for boron neutron capture therapy of malignant tumors was proposed and constructed. Stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity and 0.5% current stability has just been obtained

  7. Study of electrostatic acceleration of H and D negative ion beams. Application to the 1 MeV SINGAP accelerator

    In the framework of the development of a neutral beam injection system for ITER (International Thermonuclear Experimental Reactor), the electrostatic acceleration of negative ion H/D beams up to an energy of 1 MeV has been studied. With the support of 3-D beam trajectory calculations, the limitations of the multi-aperture multi-grid acceleration concept, ITER reference concept, ar shown and the relevance of a new concept, called SINGAP, is demonstrated. In a SINGAP accelerator, beamlets are pre-accelerated with a classical triode multi-apertures system up to ∼ 50 keV. The pre-accelerated beamlets are then merged into a single beam and post-accelerated at high energy through a large SINGle APerture using one SINgle GAP. The optics of one pre-accelerated beamlet has been studied on the INCA triode accelerator at the Ecole Polytechnique. A diagnostic has been developed to measure the emittance of the pre-accelerated beamlet. A diagnostic has been developed to measure the emittance of the pre-accelerated beamlet. Values of ∼ 0.03π.mrad.cm for the effective normalized emittance and ∼ 12 mrad for the minimal beam divergence have been found (Hbeams). Besides, the effects of co-extracted electrons and pressure in the transport region on the beam optics are shown and experiment is compared to beam numerical simulation. On the Cadarache 1 MeV, 100 mA, D- SINGAP accelerator, beams of 1 s pulse were produced at a level of 900 keV (without observing breakdowns between electrodes). SINGAP optics has been investigated using an infrared calorimetric beam profile diagnostic (2-D) and a neutral beam profile diagnostic (1-D). The control of the beam optics is very satisfying: a divergence of ∼ 10 mrad has been measured, and 3-D simulations and experimentation are in good agreement. (author)

  8. Quadrupole betatron accelerator for high current ion beams

    Properties of a strong non-neutral ion ring in a quadrupole betatron field are investigated. Superimposed on the axial betatron field, it is shown that the quadrupole field is necessary for the stability of the orbits where the self-fields of the ion ring are not negligible. A closed algebraic expression for the ion limiting current is obtained in terms of the quadarupole field intensity, the channel radius, the transverse temperature of ion beam, and the strength of betatron field. According to the theoretical calculation, high energy ion beam with its current order of one kiloampere can easily be attainable

  9. Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns

    Davis, Jeffrey A.; Mitry, Mark J.; Bandres, Miguel A.; Ruiz, Isaac; McAuley, Kevin-P; Cottrell, Don M.

    2009-01-01

    We generate both accelerated Airy and accelerated parabolic beams using phase-only patterns encoded onto a liquid crystal display (LCD). The usual system length is 2f, where f is the focal length of the Fourier transform lens. We develop a compact optical system having a total system length of f. However, the mask must now incorporate the Fresnel diffraction that is not provided by the reduced optical system length. Finally we incorporate the Fourier transform lens onto the mask. We obtain ex...

  10. Time-pick-off from pulsed beam accelerators

    The accelerator radio-frequency or time pulses from nuclear radiation detectors are shifted by a voltage-controlled delay unit (VCD) in series with the start or stop input of the time-to-pulse-height converter (TPC). The counting rates of two single channel analysers are compared, whose windows select different areas of the TPC spectrum. A regulation signal is derived for the VCD, to stabilize the center of the spectrum in a closed loop control circuit. (Auth.)

  11. Upgrade of accelerator beam facilities and revitalization of the utilization

    Through this project, the quality of the research with the proton accelerator could be improved due to the construction of the sample radiation measurement system which monitor the radiation after proton beam irradiation and the optical properties analysis system which is necessary for the irradiated samples. The semiconductor ion implanter was moved to Gyungju PEFP from Daejeon and set up. The ion beam service was performed 95 times from August to November 30. Blue sapphire was made by the metal ion implanter so that the possibility for the mass production and the industrial application was certified. In addition, PCB drill durability enhancement research was performed in the various condition, which helps other research for the industrial parts, and the light catalyst research was also effective to the real products. The number of paper submission and acceptance exceeds the original plan and three patent are processing. The semiconductor ion implanter can provide the various metal ion beam, which is evaluated as a big outcome. We are planing to activate the use of the metal ion implanter, to increase the available metal ion beam after obtaining a budget, to collect some fee for ion beam service, to commercialize the blue and yellow sapphire, to apply the metal ion implanter for other sapphire coloring, to transfer the light catalyst technology to company after additional researches. For PCB drill which some companies notice about, we endeavor the possibility of commerce by evaluating the mass production and economic advantage

  12. Determination of Beam Intensity and Position in a Particle Accelerator

    Kasprowicz, Grzegorz

    2010-01-01

    The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajec- tory and orbit measurement system of the PS dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors (BPMs) and an analogue signal processing chain to acquire the trajectory of one single particle bunch out of many, over two consecutive turns at a maximum rate of once every 5ms. The BPMs were in good condition, however the electronics was aging and ...

  13. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100wind turbines at much higher Reynolds numbers suggest that even large flying animals could potentially exploit LEV-based force augmentation during slow hovering flight, take-offs or landing

  14. Accelerator Physics Experiments with Beam Loss Monitors at BESSY

    Kuske, P

    2001-01-01

    The extended use of beam loss monitoring has led to a better understanding of the linear and non-linear physics involved in the single and multiple particle dynamics at BESSY. This knowledge has been used for improving the performance of the light source in terms of lifetime, beam stability, and stability of the energy. The key to these experiments are loss monitors placed at strategic locations of the ring with high sensitivity to Touschek or Coulomb scattered particles. Coulomb-scattering depends strongly on the transverse dynamics which is determined by the magnetic guiding fields. Losses occur primarily at the vertical aperture restrictions imposed by the flat insertion device vacuum chambers. Tune scan measurements clearly show resonances produced by the lattice magnets and by some of the insertion devices. Touschek scattering depends on the 3-dimensional electron density and the spins of the colliding particles. In transfer function type experiments these dependencies have been used to observe the effec...

  15. Collective acceleration of protons by the plasma waves in a counterstreaming electron beam

    A novel advanced accelerator is proposed. The counterstreaming electron beam accelerator relies on the same physical mechanism as that of the plasma accelerator but replaces the stationary plasma in the plasma accelerator by a magnetized relativistic electron beam, drifting antiparallel to the driving source and the driven particles, as the wave supporting medium. The plasma wave in a counterstreaming electron beam can be excited either by a density-ramped driving electron beam or by properly beating two laser beams. The fundamental advantages of the counterstreaming electron beam accelerator over the plasma accelerator are a longer and tunable plasma wavelength, a longer pump depletion length or a larger transformer ratio, and easier pulse shaping for the driving source and the driven beam. Thus the energy gain of the driven particles can be greatly enhanced whereas the trapping threshold can be dramatically reduced so as to admit the possibility for proton acceleration

  16. Radiation Safety System for SPIDER Neutral Beam Accelerator

    Sandri, S.; Coniglio, A.; D'Arienzo, M.; Poggi, C.

    2011-12-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  17. Radiation Safety System for SPIDER Neutral Beam Accelerator

    Sandri, S.; Poggi, C. [ENEA, Radiation Protection Institute, IRP-FUAC, Frascati (Italy); Coniglio, A. [Medical Physics Department, S. Giovanni Calibita Hospital, Fatebenefratelli, Isola Tiberina, Roma (Italy); D' Arienzo, M. [ENEA, Ionizing Radiation Metrology National Institute, METR, Casaccia, Rome (Italy)

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  18. High energy electron beam processing experiments with induction accelerators

    Induction accelerators are capable of producing very high electron beam power for processing at energies of 1-10 MeV. A high energy electron beam (HEEB) material processing system based on all-solid-state induction accelerator technology is in operation at Science Research Laboratory. The system delivers 50 ns 500 A current pulses at 1.5 MeV and is capable of operating at high power (500 kW) and high ( similar 5 kHz) repetition rate. HEEB processing with induction accelerators is useful for a wide variety of applications including the joining of high temperature materials, powder metallurgical fabrication, treatment of organic-contaminated wastewater and the curing of polymer matrix composites. High temperature HEEB experiments at SRL have demonstrated the brazing of carbon-carbon composites to metallic substrates and the melting and sintering of powders for graded-alloy fabrication. Other experiments have demonstrated efficient destruction of low-concentration organic contaminants in water and low temperature free-radical cross-linking of fiber-reinforced composites with acrylated resin matrices. (orig.)

  19. Design and development of pulsed electron beam accelerator 'AMBICA - 600'

    Verma, Rishi; Deb, Pankaj; Shukla, Rohit; Sharma, Surender; Shyam, Anurag

    2012-11-01

    Short duration, high power pulses with fast rise time and good flat-top are essentially required for driving pulsed electron beam diodes. To attain this objective, a dual resonant Tesla transformer based pulsed power accelerator 'AMBICA-600' has been developed. In this newly developed system, a coaxial water line is charged through single turn Tesla transformer that operates in the dual resonant mode. For making the accelerator compact, in the high power pulse forming line, water has been used as dielectric medium because of its high dielectric constant, high dielectric strength and high energy density. The coaxial waterline can be pulsed charged up to 600kV, has impedance of ~5Ω and generates pulse width of ~60ns. The integrated system is capable of producing intense electron beam of 300keV, 60kA when connected to impedance matched vacuum diode. In this paper, system hardware details and experimental results of gigawatt electron beam generation have been presented.

  20. Spin dynamics of electron beams in circular accelerators

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  1. Environmental assessment: Continuous Electron Beam Accelerator Facility, Newport News, Virginia

    This Environmental Assessment has been prepared by the US Department of Energy (DOE) to fulfill its obligations pursuant to Sect. 102 of the National Environmental Policy Act (NEPA) of 1969 (Public Law 91-190). The proposed federal action addressed in this document is DOE's funding of a Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia. DOE intends to contract with the Southeastern Universities Research Association (SURA) for operation of CEBAF, a continuous wave (CW) linear accelerator system (linac) capable of providing high-duty-factor beams throughout the energy range from 0.5 to 4.0 GeV. CEBAF will be the first of its kind worldwide and will offer a multi-GeV energy, high-intensity, high-duty-factor electron beam for use by the US nuclear physics community in research on the states of nuclear matter and the short-distance behavior of nuclei. The CEBAF project is largely in the conceptual design stage, with some components in the preliminary design stage. Construction is anticipated to begin in 1987 and be completed by 1992

  2. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  3. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    Mehrling, Timon

    2014-01-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exc...

  4. Post acceleration of a pseudospark-produced high-brightness electron beam

    Preliminary results are presented of post-acceleration experiment of a pseudospark-produced high-brightness electron beam. The electron beam that is propagating in a low pressure gas is accelerated by a simple induction linac system. Time-resolved energy spectrum is constructed for the electron beam. The resultant spectrum reveals that the instantaneous beam energy is approximately equal to the sum of the cathode voltage and the induction-linac accelerating voltage

  5. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    Schroeder, Carl

    2014-01-01

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the chan...

  6. Rapid pointwise stabilization of vibrating strings and beams

    Alia BARHOUMI

    2009-11-01

    Full Text Available Applying a general construction and using former results on the observability we prove, under rather general assumptions, a rapid pointwise stabilization of vibrating strings and beams.

  7. Outline of application plans of accelerator beams in JAERI

    Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has various application plans of accelerators such as; Neutron Science Research Complex (NSRC), Positron Factory, International Fusion Material Irradiation Facility (IFMIF), and Spring-8 Project. Each application plan has its own research program and its own core accelerator. The NSRC is a multi-purpose research complex composed of seven research facilities: slow neutron scattering facility for material science, the nuclear energy research facility like nuclear transmutation and so on. The Positron Factory will be applied to the research of precise analysis of material structure by novel method of positron probing. The IFMIF aims at simulating the wall loading of a demo fusion reactor by producing high intense neutron flux. The SPring-8 is the largest synchrotron radiation source in the world. More than 60 X-ray beam lines will be equipped for the various researches. (author)

  8. The issue of accelerator beam trips for efficient ADS operation

    The development of accelerator-driven systems (ADSs) is motivated by the potential of these machines to reduce the volume and the radiotoxicity of accumulated nuclear waste, more particularly that of minor actinides currently generated by the operation of existing pressurized water reactors. The reduction of both volume and radiotoxicity of nuclear waste is achieved by transmutation and fission of minor actinides into less-active isotopes or shorter-lived by-products. Various technical challenges exist regarding designing reliable and efficient ADSs. The key points are very much linked to the design of the spallation module, the assurance that reactivity remains below criticality under any circumstances, and the accelerator reliability. This paper addresses the latter two challenges imposed on the accelerator in order to assure safe and reliable ADS operation. It discusses the possibility of performing online absolute reactivity measurements and the limits in the number of allowable accelerator beam trips, which might impede plant integrity and/or plant efficiency. (authors)

  9. Development of heavy ion beam probe and 3 MeV tandem accelerator

    Taking into account the plasma parameters of LHD (Large Helical Device), the heavy ion beam of mass number about 200 (Au+ or Tl+) is necessary for measuring plasma potential profiles and its fluctuations in the LHD plasma under the beam energy of 6 MeV. Authors had started the construction of the tandem accelerator of 3 MeV on 1998. Now Authors are the position to get the safety license for operation. Meanwhile, Authors had met many time consuming troubles as follows. The most time consuming troubles were the blocking of feedback stabilization circuits of the high voltage, mainly caused by noises from conditioning. In this case, we need high voltage stability of 10-5 to measure small electric fluctuations of plasma. The second was the leak and out flow of cooling gas of SF6 in accelerator tubes and or gas circulation pipes. The third was leaks of SF6 from feed-through sealing terminals located at the high voltage tank. We made many modifications in the ion source to get stable long-time steady-state operation. Authors measured charge-numbers of Au as a function of charge-exchange Ar gas pressure by the electro-static charge-number separator and also estimated geometrical characteristics of the Au+ beam. The results are useful for system optimization. We will be able to measure the plasma characteristics by the HIBP in near future after getting the safety license. (Y. Tanaka)

  10. ACCELERATED STABILITY STUDIES OF A POLYHERBAL PREPARATION (EAZMOVR) CAPSULE

    Chauhan, S K; A. Tyagi; Singh, B.; Agarwal, S.

    1999-01-01

    The stability of Eazmov capsule in accelerated condition ie by exposing it to the temperature at 45°C and 40°C with 75% relative humidity was studied. The samples were periodically anallysed upto six months for their organoleptic characteristics, assay of active plant ingredients and the DPTLC finger printing and their peak area analysis, which were found to be stable/ consistent during the period of study. The change in quantifiable components was within 90% of the initial amount, indicating...

  11. Direct Electron Acceleration with Radially Polarized Laser Beams

    Michel Piché

    2013-01-01

    Full Text Available In the past years, there has been a growing interest in innovative applications of radially polarized laser beams. Among them, the particular field of laser-driven electron acceleration has received much attention. Recent developments in high-power infrared laser sources at the INRS Advanced Laser Light Source (Varennes, Qc, Canada allowed the experimental observation of a quasi-monoenergetic 23-keV electron beam produced by a radially polarized laser pulse tightly focused into a low density gas. Theoretical analyses suggest that the production of collimated attosecond electron pulses is within reach of the actual technology. Such an ultrashort electron pulse source would be a unique tool for fundamental and applied research. In this paper, we propose an overview of this emerging topic and expose some of the challenges to meet in the future.

  12. Study on radiation sterilization of electron beam accelerator

    To study the effects of radiation sterilization of the electron beam, the three species of microorganisms, Escherichia. coli, Staphylococcus aureus and Proteus vulgaris were irradiated with the electron beam, delivered by the electron accelerator independently developed by the Institute of Modern Physics, Chinese Academy of Sciences, and the changes of superoxide dismutase (SOD) activity of these irradiated microorganisms were also tested. The results indicated that the Staphylococcus aureus were fully radio-sterilized with the radiation dosage of 2.0 kGy, but 2.2 kGy to the Escherichia. coli and Proteus vulgaris. Moreover, the data also demonstrated that the irradiation had noticeable effects on the SOD activity of the three microorganisms. (authors)

  13. The CEBAF [Continuous Electron Beam Accelerator Facility] superconducting accelerator: An overview

    The CEBAF accelerator is a CW linac based on rf superconductivity and making use of multiple recirculation. Its major components are a 50 MeV injector, two linac segments of 0.5 GeV energy gain each, and recirculator arcs connecting the two linac segments. Each linac segment consists of 25 cryomodules, separated by warm sections with quadrupoles, steering magnets, and beam diagnostics. Each cryomodule contains 8, 1500 MHz, 5-cell, Cornell type cavities with waveguide couplers for fundamental power and HOM damping, each cavity being powered by its own klystron. Recirculator arcs are vertically stacked, large radius, strong focusing beam lines that minimize synchrotron radiation effects. A high quality (ΔE/E ∼ 10-4, ε ∼ 10-9 m) beam of 200μA, 100% duty factor, with 0.5 GeV ≤ E ≤ 4.0 GeV will be generated

  14. Estimation of acceptable beam-trip frequencies of accelerators for accelerator-driven systems and comparison with existing performance data

    Frequent beam trips as experienced in the existing high-power proton accelerators may cause thermal fatigue in accelerator-driven system (ADS) components, which may lead to degradation of their structural integrity and reduction of their lifetime. In this study, acceptable beam-trip frequencies of the ADS accelerator were evaluated and compared with the performance of the ADS accelerator, which was estimated based on the operational data on existing accelerators. Thermal transient analyses were performed to investigate the effects of beam trips on the reactor components, with the objective of determining the feasibility of engineering the ADS and the reliability of the accelerator. These analyses were based on the thermal responses of the following reactor components: the beam window, the fuel cladding, the inner barrel and the reactor vessel. Assuming that the annual plant availability was 70%, our results indicated three acceptable beam-trip frequencies, depending on the beam-trip duration, τb: 2 x 104 times per year for 0 ≤ τb ≤ 10 s; 2 x 103 times per year for 10 s b ≤ 5 min; and 42 times per year for τb > 5 min. In order to consider methods to reduce beam-trip frequency, we compared the acceptable beam-trip frequency with the performance of the ADS accelerator, which was estimated based on the operational data on existing accelerators. The comparison showed that for beam trips with a duration of 10 s or less, the beam-trip frequency was acceptable. On the other hand, for beam trips with durations of 10 s b ≤ 5 min and τb > 5 min, it was necessary to reduce the beam-trip frequencies to about 1/6 and 1/35, respectively. (author)

  15. Laser-Accelerated Proton Beams as a New Particle Source

    Nürnberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. Today's high power, ultrashort pulse laser systems are capable of achieving laser intensities up to 10^21 W/cm^2. When focused onto thin foil targets, extremely high field gradients of the order of TV/m are produced on the rear side of the target resulting in the acceleration of protons to multi-MeV energies with an exponential spectrum including up to 10^13 particles. This a...

  16. Transient beam loading compensation in traveling wave linear accelerators

    For normal conducting linear colliders the transient beam loading in the accelerating structures is typically of the order of 20-30%. This results in a multibunch energy spread of the same magnitude if no remedy is taken into account. On the other hand, in a linear collider the transient energy spread has to be controlled down to a few tenth of a percent. Two possible methods, assuming two different setups, e.g. klystron plus structure and klystron plus SLED cavity plus structure, are investigated. A description of the whole rf system and the resulting energy spread is presented especially for the case of the S-Band linear collider study. (orig.)

  17. Lua(Jit) for computing accelerator beam physics

    CERN. Geneva

    2016-01-01

    As mentioned in the 2nd developers meeting, I would like to open the debate with a special presentation on another language - Lua, and a tremendous technology - LuaJit. Lua is much less known at CERN, but it is very simple, much smaller than Python and its JIT is extremely performant. The language is a dynamic scripting language easy to learn and easy to embedded in applications. I will show how we use it in HPC for accelerator beam physics as a replacement for C, C++, Fortran and Python, with some benchmarks versus Python, PyPy4 and C/C++.

  18. Levy-Student distributions for halos in accelerator beams

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schroedinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

  19. Charge-state enhancement for radioactive beam post-acceleration

    A critical question for an ISOL-type radioactive-beam facility, such as that being discussed by the North American Isospin Laboratory Committee, is the efficiency and q/m of the ion source for the radioactive species. ISOLDE at CERN demonstrated that high efficiency is obtained for a wide variety of species in the 1+ charge state. These ion sources also generally have excellent transverse emittances and low energy spreads. One possibility is to use this proven technology plus an ionizer stage to increase the output of such sources to 2, 3, or 4+ with high efficiency. We are currently investigating technical options for such charge-state enhancement. There is a proposal by a Heidelberg/ISOLDE collaboration to build a open-quotes charge-state breederclose quotes as part of an experiment called REX-ISOLDE. This concept would deliver batches of radioactive ions with low duty cycle, optimized for relatively low-intensity secondary beams, on the order of 106/sec. We are independently doing simulations of an alternative approach, called the Electron-Beam Charge-State Amplifier (EBQA), which would yield DC beams with improved transverse emittance and would not have the intensity limitation of the batch transfer process. The cost and efficiency of the EBQA will have to be compared with those of a normally-conducting CW RFQ followed by ion stripping, as alternatives for the first stage of a secondary ion accelerator

  20. Vortex stabilized electron beam compressed fusion grade plasma

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  1. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  2. Multipass beam breakup in the CEBAF [Continuous Electron Beam Accelerator Facility] superconducting linac

    Multipass beam breakup can severely limit current in superconducting linear accelerators due to the inherently high Q's of transverse deflecting modes of the rf cavities. The success of higher-order-mode damping in increasing threshold currents for the 4-pass CEBAF SRF linac design is investigated with computer modeling. This simulation is shown to be in agreement with theoretical analyses which have successfully described beam breakup in the Stanford superconducting, recirculating linac. Numerical evaluation of an analytic treatment by Gluckstern of multipass beam breakup with distributed cavities is also found to be consistent with the computer model. Application of the simulation to the design array of 400 five-cell CEBAF/Cornell cavities with measured higher-order-mode damping indicates that the beam breakup threshold current is at least an order of magnitude above the CEBAF design current of 200 μA

  3. The beam delivery modeling and error sources analysis of beam stabilization system for lithography

    Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie

    2013-12-01

    Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2μm displacement error and 24.49μrad angle error. Measurement inaccuracy as a result of 5μm measurement noise results in the maximum 0.126mm displacement error and 57.2μrad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5μrad for angle and 28μm for displacement (both 1σ) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.

  4. The Research of a Novel SW Accelerating Structure with Small Beam Spot

    Yang, X; Chen, Y; Jin, X; Li, Maozhen; Lü, H; Xu, Z

    2004-01-01

    A new kind of on-axis coupled biperiodic standing-wave (SW) accelerating structure has been built for a 9 MeV accelerator. The research progress was introduced in this paper, it includes the choice of the accelerating structure, the analysis of electron beam dynamics, the tuning of the cavity, the measurement of the accelerating tube and the powered test. The small beam spot is the most interesting feature of this accelerating structure, the diameter of the beam spot is 1.4 mm. This accelerator has been used for the x photons generation and the x-ray dose rate is about 3400 rad/min/m.

  5. Beam Dynamics Studies for a Laser Acceleration Experiment

    Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert

    2005-01-01

    The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...

  6. Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation.

    Singh, Brijesh Kumar; Remez, Roei; Tsur, Yuval; Arie, Ady

    2015-11-15

    Special beams, including the Airy beam and the vortex-embedded Airy beam, draw much attention due to their unique features and promising applications. Therefore, it is necessary to devise a straightforward method for measuring these peculiar features of the beams with ease. Hence we present the astigmatic transformation of Airy and Airy-vortex beam. The "acceleration" coefficient of the Airy beam is directly determined from a single image by fitting the astigmatically transformed beam to an analytic expression. In addition, the orbital angular momentum of optical vortex in Airy-vortex beam is measured directly using a single image. PMID:26565887

  7. Femtosecond Planar Electron Beam Source for Micron-Scale Dielectric Wake Field Accelerator. Final report

    A new accelerator LACARA is under construction at ATF, Brookhaven National Laboratory. LACARA is to be powered by a 1 TW CO2 laser, and will utilize a 6-T 2-m long solenoidal magnetic field. For a 50 MeV injected electron bunch, LACARA is expected to produce a 100 MeV 1 ps gyrating beam with ∼ 3% energy spread. Beam electrons advance in phase at the laser frequency, executing one cycle each 35 fs. A beam stop with a small off-axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fs, 1-3 pC microbunches for each laser pulse. One application for this train of microbunches obtained from a LACARA-type device involves focusing a portion of the beam using a magnetic quadrupole into a rectangular cross-section having a narrow dimension of a few microns and a height of a few hundred microns. These microbunches may be injected into a planar dielectric-lined waveguide where cumulative buildup of wake fields can lead to an accelerating gradient > 1 GV/m. This proposed vacuum-based wake field structure is mechanically rigid and capable of accurate microfabrication, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed including bunch spreading and transport, bunch shaping, aperture radiation, dielectric breakdown, and bunch stability in the rectangular wake field structure. In appendices to this report, three supporting documents are attached. These include a set of drawings that show the layout of the beam line and optical line for LACARA at ATF-BNL; and two reprints of recent articles published in PRST-AB. The first article describes measurements of the coherent superposition of wake fields that arise from a periodic train of bunches, with supporting analysis. The second article presents theory that

  8. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  9. Planning and commissioning of a multipurpose election beam accelerator

    Full text: Electron beam (EB) irradiation is extensively used in a number of industries such as wire and cable, polyethylene foam, curing and converting, automobile tyre, sterilization, flue gas treatment etc. The efforts to introduce this sophisticated technology in the country gathered momentum with the commissioning of the ILU- 6 EB accelerator in BARC during 1980. The need for indigenisation of the EB accelerator components, particularly insulation formulations has been recognised and the issue was given due consideration by the Indian cable industry in the light of specifications laid by Indian Railways for the EB irradiation cross-linked wires and cables. Nicco Corporation Ltd. has developed the necessary insulation formulations for EB cross-linking of wires and also for heat shrinking accessories in collaboration with BARC, and IIT, Kharagpur with assistance from BRNS. The Company also ventured to establish an in-house EB accelerator at its premises. This paper highlights the various aspects of planning and commissioning of this collaborative effort

  10. Fundamental limits on beam stability at the Advanced Photon Source

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber and girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability

  11. Numerical simulation of high-current ion linear induction accelerator with additional electron beam injection

    The 2d3v particle-in-cell simulations of the transportation and acceleration of a high-current tubular ion beam through six magnetoinsulated accelerating gaps are presented. Charge and current compensations are carried out by an accompanying electron beam, and also by additionally injected electron beams. The accelerating electric field is enclosed to the first, third and fifth cusps. Its magnitudes are those, that initial kinetic energy of compensating electron beams is little bit higher than a potential barrier of an accelerating field in each cusp, that allows an electron beam to overcome accelerating potential in one cusp. The second, fourth and sixth cusps in which the accelerating field is absent, are used for injection of additional compensating electron beams which replace the electron beam which has 'worked-out' on the previous accelerating gap. The simulations involve solving a complete set of Maxwell's equations with charge-conserving scheme for calculating the current density on a mesh, and relativistic motion equations for charged particles. The possibility of transporting and acceleration of a high-current tubular ion beam in six cusps is shown. It is shown, that distribution function of a high-current ion beam on an output of the accelerator essentially improves due to optimization of parameters of additionally injected electron beams.

  12. A review of high beam current RFQ accelerators and funnels

    The authors review the design features of several high-current (> 20-mA) and high-power (> 1-mA average) proton or H- injectors, RFQs, and funnels. They include a summary of observed performance and will mention a sampling of new designs, including the proposed incorporation of beam choppers. Different programs and organizations have chosen to build the RFQ in diverse configurations. Although the majority of RFQs are either low-current or very low duty-factor, several versions have included high-current and/or high-power designs for either protons or H- ions. The challenges of cooling, handling high space-charge forces, and coupling with injectors and subsequent accelerators are significant. In all instances, beam tests were a valuable learning experience, because not always did these as-built structures perform exactly as predicted by the earlier design codes. They summarize the key operational parameters, indicate what was achieved, and highlight what was learned in these tests. Based on this generally good performance and high promise, even more challenging designs are being considered for new applications that include even higher powers, beam funnels and choppers

  13. A Beam Interlock System for CERN High Energy Accelerators

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  14. Performance testing of the LUEhR-40M structure with an accelerated beam

    The results of experimental investigation of the prototype of the accelerating structure of the therapeutic linear accelerator of the LUEhR-40M model with an accelerating beam are presented. The accelerating structure is the standing wave biperiodic structure with inner coupling cells of 1.6 m length. The design energy of accelerated electrons equalling 20 MeV (during single electron beam passage through an accelerating structure) is obtained. 60 % of accelerated particles are accumulated in the energy interval of (20±1) MeV at 20 mA pulse current and at 3.6 MW SHF-power at the structure input

  15. Accelerator beams for x-ray-gamma lasers

    The relativistic accelerator beams interaction with strong laser fields in different schemes for generation of intense shortwave coherent radiation is investigated. As a new generation of light sources of shortwave radiation, specifically for x-ray and γ-ray lasers, the high brightness ion beams or channelled in the crystals ultrarelativistic electron beams are considered where due to the existence of quantum bound states the ion-photon or channelled electron-photon interaction cross sections are resonantly enhanced by several orders with respect to the Thompson/Compton cross section on the free electrons. The latter means that the coherent radiation generated in such systems will rather exceed by intensity the contemporary Free Electron Laser systems. Hence, the stimulated radiation by relativistic charged particle beams with discrete energy levels is of certain interest as a potential synthesis of the conventional Quantum Generators and Free Electron Lasers in x-ray and γ-ray domains. Besides, the spectral intensity of spontaneous radiation of the channelled electrons/ ions well exceeds the intensities of other radiation processes in this frequency range. Hence, the Self-Amplified Spontaneous Emission (SASE) regimes of x-ray laser by means of relativistic ion beam or channelled in a crystal ultrarelativistic electron beam with the strong counterprop-agating pump laser fields are investigated. The consideration is based on the self-consistent set of the Maxwell and relativistic quantum kinetic equations. In the considering schemes the pump wave (optical or strong infrared laser radiation) due to the Doppler up-shifting of its frequency resonantly couples two internal ionic or transverse electronic levels in the channel of a crystal, and the necessity of the initial inverse population of energy levels for lasing in such systems vanishes, which is obligatory for conventional quantum generators on atomic systems. Different regimes of generation of coherent x

  16. Accelerator

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  17. Laser-driven proton beams: Acceleration mechanism, beam optimization, and radiographic applications

    Borghesi, M.; Romagnani, L.; Kar, S.; Wilson, P.A. [School of Mathematics and Physics, The Queen' s University of Belfast (United Kingdom); Cecchetti, C.A. [School of Mathematics and Physics, The Queen' s University of Belfast (United Kingdom); Also with the Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa (Italy); Toncian, T.; Pipahl, A.; Amin, M.; Jung, R.; Osterholz, J.; Willi, O. [Institute for Laser and Plasma Physics, Heinrich Heine University, Dusseldorf (Germany); Fuchs, J.; Audebert, P.; Brambrink, E. [Laboratoire pour l' Utilisation des Lasers Intenses LULI, UMR 7605 CNRS-CEA-Ecole Polytechnique, 91 - Palaiseau (France); Antici, P. [Laboratoire pour l' Utilisation des Lasers Intenses LULI, UMR 7605 CNRS CEA Ecole Polytechnique, 91 - Palaiseau (France); Frascati National Laboratories INFN, Frascati (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, St. Andrews (United Kingdom); Clarke, R.J.; Notley, M.; Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, OX Didcot (United Kingdom); Mora, P.; Grismayer, T. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91 - Palaiseau (France); Schurtz, G. [Centre d' Etudes des Lasers Intenses et Applications, UMR 5107 University Bordeaux I-CNRS-CEA, 33 - Talence (France); Schiavi, A. [Dipartimento di Energetica, Universita -La Sapienza-, Rome (Italy); Sentoku, Y.; D' Humieres, E. [Physics Department, MS 220, University of Nevada, Reno, NV (United States)

    2008-08-15

    This paper reviews recent experimental activity in the area of optimization, control, and application of laser-accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l'Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered micro-lens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted protons and select monochromatic beamlets; out of the broad spectrum beam. This approach could be advantageous in view of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses. (authors)

  18. Demonstration of 500 keV Beam Acceleration on JT-60 Negative-ion-based Neutral Beam Injector

    Full text: Hydrogen negative ion beams of 490 keV, 3 A and 510 keV, 1 A have been successfully produced in the JT-60 negative ion source with three acceleration stages. This is the first acceleration of the H-ions up to 500 keV at high-current of > 1 A. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of ∼ 2 m2 for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6 - 7 times longer than that for the small-area grid (0.02 m2). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60 SA and ITER. (author)

  19. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    Kourbanis, Ioanis [Fermilab

    2014-07-01

    After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.

  20. Accelerators and Beams, multimedia computer-based training in accelerator physics

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user close-quote s rate of learning and length of retention of the material. They integrate interactive On-Screen Laboratories, hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer. copyright 1999 American Institute of Physics

  1. ''Accelerators and Beams,'' multimedia computer-based training in accelerator physics

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user's rate of learning and length of retention of the material. They integrate interactive ''On-Screen Laboratories,'' hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer

  2. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  3. Dynamic response of an accelerator driven system to accelerator beam interruptions for criticality

    Subcritical nuclear reactors driven by intense neutron sources can be very suitable tools for nuclear waste transmutation, particularly in the case of minor actinides with very low fractions of delayed neutrons. A proper control of these systems needs to know at every time the absolute value of the reactor subcriticality (negative reactivity), which must be measured by fully reliable methods, usually conveying a short interruption of the accelerator beam in order to assess the neutron flux reduction. Those interruptions should be very short in time, for not disturbing too much the thermal magnitudes of the reactor. Otherwise, the cladding and the fuel would suffer from thermal fatigue produced by those perturbations, and the mechanical integrity of the reactor would be jeopardized. It is shown in this paper that beam interruptions of the order of 400 μs repeated every second would not disturb significantly the reactor thermal features, while enabling for an adequate measurement of the negative reactivity

  4. Mechanical stability study for Integrable Optics Test Accelerator at Fermilab

    McGee, M W; Carlson, K; Leibfritz, J; Nobrega, L; Valishev, A

    2016-01-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 3.96 m and (2) 3.1 m long girders with identical cross section completely encompass the ring. This study focuses on the 3.96 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  5. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    McGee, Mike [Fermilab; Andrews, Richard [Fermilab; Carlson, Kermit [Fermilab; Leibfritz, Jerry [Fermilab; Nobrega, Lucy [Fermilab; Valishev, Alexander [Fermilab

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  6. Lévy-Student distributions for halos in accelerator beams.

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    2005-12-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schrödinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Lévy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lévy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Lévy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams. PMID:16486070

  7. Transverse beams stability studies at the Large Hadron Collider

    Buffat, Xavier; Pieloni, Tatiana

    2015-01-30

    A charged particle beam travelling at the speed of light produces large electromagnetic wake fields which, through interactions with its surroundings, act back on the particles in the beam. This coupled system may become unstable, resulting in a deterioration of the beam quality. Such effects play a major role in most existing storage rings, as they limit the maximum performance achievable. In a collider, the presence of a second beam significantly changes the dynamics, as the electromagnetic interactions of the two beams on each other are usually very strong and may, also, limit the collider performances. This thesis treats the coherent stability of the two beams in a circular collider, including the effects of the electromagnetic wake fields and of the beam-beam interactions, with particular emphasis on CERN's Large Hadron Collider. As opposed to other colliders, this machine features a large number of bunches per beam each experiencing multiple long-range and head-on beam-beam interactions. Existing models...

  8. Accelerating airy beams generated by ultrafast laser induced space-variant nanostructures in glass

    Gecevičius, M.; M. Beresna; Kazansky, P. G.

    2012-01-01

    We demonstrate new technique to generate accelerating Airy beam with femtosecond laser imprinted space variant birefringence produced by self-assembled nanostructures in fused silica. The technique enables dual Airy beam generation.

  9. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    Schroeder, C. B.

    2011-01-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  10. Longitudinal Density Tailoring for the Enhancement of Electron Beams in the Capillary-discharge Laser-guided Wakefield Accelerator

    Density perturbations in a hydrogen-filled capillary discharge waveguide have been used to control the injection of electrons into a laser wakefield. This has allowed injection and acceleration in channels of lower density than previously possible, and the production of relativistic electron beams with improved stability. For parameters of optimum stability, the mean bunch energy was 300MeV +- 7 MeV rms, with divergence 1.3 mrad +- 0:1 mrad rms and pointing stability 0.8 mrad rms.

  11. Comparison of depth-dose distributions between reactor and accelerator neutron beams proposed by design studies

    Accelerator epithermal neutron beams produced by 7Li(p,n)7Be reactions were compared with reactor neutron beams using a fission converter (20% enriched 235U 5mm-thick plate) from view points of neutron spectrum and depth-dose distributions in a phantom. It is possible to design accelerator epithermal neutron beams having better depth-dose distributions than reactor neutron beams. (author)

  12. Beam Spot Measurement on a 400 keV Electron Accelerator

    Miller, Arne

    A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function.......A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function....

  13. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    G. Golovin; Banerjee, S.; Liu, C; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; P. Seller; Umstadter, D.

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of ...

  14. Neutrino factory and beta beam: accelerator options for future neutrino experiments

    Zisman, Michael S.

    2012-06-03

    Two accelerator options for producing intense neutrino beams a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions are described. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science.

  15. Beam optics and lattice design for particle accelerators

    Holzer, Bernhard J

    2013-01-01

    The goal of this manuscript is to give an introduction into the design of the magnet lattice and as a consequence into the transverse dynamics of the particles in a synchrotron or storage ring. Starting from the basic principles of how to design the geometry of the ring we will briefly review the transverse motion of the particles and apply this knowledge to study the layout and optimization of the principal elements, namely the lattice cells. The detailed arrangement of the accelerator magnets within the cells is explained and will be used to calculate well defined and predictable beam parameters. The more specific treatment of low beta insertions is included as well as the concept of dispersion suppressors that are an indispensable part of modern collider rings.

  16. ELIMED, future hadrontherapy applications of laser-accelerated beams

    Cirrone, Giuseppe A.P.; Carpinelli, M.; Cuttone, G.; Gammino, S.; Jia, S.B.; Korn, Georg; Maggiore, Mario; Manti, L.; Margarone, Daniele; Prokůpek, Jan; Renis, M.; Romano, F.; Schillaci, Francesco; Tomasello, B.; Torrisi, L.; Tramontana, A.; Velyhan, Andriy

    2013-01-01

    Roč. 730, Dec (2013), s. 174-177. ISSN 0168-9002. [International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices /9./(RESMDD). Florence, 09.10.2012-12.10.2012] R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0087 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 2 Laser Gen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : laser acceleration * cancer treatment * particle selection * Monte Carlo simulation * beam handling Subject RIV: BH - Optics, Masers, Laser s Impact factor: 1.316, year: 2013

  17. Studies of pear-shaped nuclei using accelerated radioactive beams

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  18. Modification of the beam transfer model of travelling wave accelerator structures at SACLA

    In order to perform efficient beam tuning at SACLA, we had developed a beam transfer model to calculate the beam transverse envelope in a linear accelerator using linear symplectic matrices. However the measured beam orbit responses were not consistent with the calculated orbit. In order to investigate the error source, we modify the transfer matrix of an accelerator structure so that the matrix model reproduces the measured orbit response. In this paper, we report detail of the error source and how the beam transfer model of a travelling wave accelerator structure is modified. (author)

  19. Two-beam type IH-RFQ linear accelerator for low-energy and high intensity heavy ion beam

    We developed a two-beam type IH-RFQ (Interdigital H type Radio Frequency Quadrupole) linac system to proof the principle of a multi-beam type IH-RFQ linac in Research Laboratory for Nuclear Reactors of Tokyo Institute of Technology. The multi-beam type RFQ linac has several beam channels in a cavity for accelerating high intensity and low energy heavy ion beams. The developed system consists of a two-beam type IH-RFQ cavity as a prototype of the multi-beam type cavity, a two-beam type laser ion source with DPIS (Direct Plasma Injection Scheme) and beam analyzers mainly. A a result of the beam acceleration test, the linac system accelerates carbon ions from 5 keV/u to 60 keV/u and generates about 108 mA (2x54 mA/channel) in the total output current. In this paper, we describe the development of the linac system and some results of the beam acceleration test. (author)

  20. Beam positioning stability analysis on large laser facilities

    Fang; Liu; Zhigang; Liu; Liunian; Zheng; Hongbiao; Huang; Jianqiang; Zhu

    2013-01-01

    Beam positioning stability in a laser-driven inertial confinement fusion(ICF) facility is a vital problem that needs to be fixed. Each laser beam in the facility is transmitted in lots of optics for hundreds of meters, and then targeted in a micro-sized pellet to realize controllable fusion. Any turbulence in the environment in such long-distance propagation would affect the displacement of optics and further result in beam focusing and positioning errors. This study concluded that the errors on each of the optics contributed to the target, and it presents an efficient method of enhancing the beam stability by eliminating errors on error-sensitive optics. Optimizations of the optical system and mechanical supporting structures are also presented.

  1. Beam Dynamics Measurements for the SLAC Laser Acceleration Experiment

    The NLC Test Accelerator (NLCTA) was built to address beam dynamics issues for the Next Linear Collider and beyond. An S-Band RF gun, diagnostics and low energy spectrometer (LES) at 6 MeV together with a large-angle extraction line at 60 MeV have now been built and commissioned for the laser acceleration experiment, E163. Following a four quad matching section after the NLCTA chicane, the extraction section is followed by another matching section, final focus and buncher. The laser-electron interaction point (IP) is followed by a broad range, high resolving power spectrometer (HES) for electron bunch analysis. Optical symmetries in the design of the 25.5 degree extraction line provide 1:1 phase space transfer without sextupoles for a large, 6D phase space volume and range of input conditions. Spot sizes down to a few microns at the IP (HES object) allow testing microscale structures with high resolving power at the HES image. Tolerances, tuning sensitivities, diagnostics and the latest commissioning results are discussed and compared to design expectations

  2. Education in a rapidly advancing technology: Accelerators and beams

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers

  3. Education in a rapidly advancing technology: Accelerators and beams

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A&B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A&B is described and addressed. The solution proposed, a type of "distance" education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A&B, primarily but not exclusively the national laboratories. The field of A&B is briefly summarized. The need for education outside the university framework, the raison d'être for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities.

  4. Beam Dynamics Studies for a Laser Acceleration Experiment

    The NLC Test Accelerator (NLCTA) at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun is being installed together with a large-angle extraction line at 60 MeV followed by a matching section, buncher and final focus for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. Another spectrometer at 6 MeV will be used for analysis of bunch charges up to 1 nC. Emittance compensating solenoids and the low energy spectrometer (LES) will be used to tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5o extraction line provide 1:1 phase space transfer without use of sextupoles for a large, 6D phase space volume and range of input conditions. Design techniques, tolerances, tuning sensitivities and orthogonal knobs are discussed

  5. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  6. Beam dynamics in a linear accelerator for generations of short electron beams and femtosecond hard X-ray pulses

    We investigate a linear accelerator system capable of generating short electron beams and femtosecond hard X-ray pulses. We show a detailed for a two-stage bunch compressor to generate the short electron beams in the linear accelerator. The bunch compressor system consists of two chicanes with a short system length that can compress an electron bunch of 0.6 nC and beam energy of 162 MeV, from 3 to 0.5 ps rms. One important design issue in the bunch compressor is to make as small growths of the emittance and energy spread as possible. The normalized horizontal emittance of 3 mm mrad is increased by approximately 10% due to coherent synchrotron radiation in the designed bunch compressor. Lattice distortions due to machine errors associate with quadrupole magnets, bending magnets and beam position monitors in the linear accelerator were investigated. It is shown that the lattice distortions due to the machine errors can be easily compensated by performing both orbit correction and dispersion correction in the linear accelerator. We have performed tolerance studies due to the various jitter sources in the linear accelerator to examine their sensitivities on the beam quality. From these results, it is shown that the linear accelerator system provides sufficient tolerances to maintain stable electron beams. We also investigated the generation of femtosecond hard X-ray pulses that may be provided by the interactions at 90deg of the short electron beams in the linear accelerator with a laser system. It is shown that 3.4x106 photons within 10% bandwidth at 0.04 A wavelength in about 350 fs rms pulse may be provided using the linear accelerator system. We presented studies on beam dynamics in the linear accelerator system that may provide the short beams and intense X-ray pulses. (author)

  7. Levy-Student Distributions for Halos in Accelerator Beams

    Petroni, N C; De Siena, S; Illuminati, F

    2005-01-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the Stochastic Mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Shchr\\"odinger--like (\\Sl) equation. The space charge effects have been introduced in a recent paper \\cite{prstab} by coupling this \\Sl equation with the Maxwell equations. We analyze the space charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self--consistent solutions are related to the (external, and space--charge) potentials both when we suppose that the external field is harmonic (\\emph{constant focusing}), and when we \\emph{a priori} prescribe the shape of the stationary solution. We then proceed to discuss a few new ideas \\cite{epac04} by introducing the generalized Student distributions, namely non--Gaussian, L\\'evy \\emph{infinitely divisible} (but not \\emph{sta...

  8. Nonlinear Stability Theorem for High-Intensity Charged Particle Beams

    Global conservation constraints based on the nonlinear Vlasov-Maxwell equations are used to derive a three-dimensional kinetic stability theorem for an intense non-neutral ion beam (or charge bunch) propagating with average axial velocity vb=const . It is shown that a sufficient condition for linear and nonlinear stability for perturbations with arbitrary polarization is that the equilibrium distribution be a monotonically decreasing function of the single-particle energy H' in the beam frame, i.e., ∂feq(H') /∂H'≤0 . copyright 1998 The American Physical Society

  9. Beam optics of a superconducting booster for the JAERI tandem accelerator

    In order to investigate beam optics of a superconducting booster for the JAERI tandem accelerator, a computer program has been written which calculates beam trajectories in the booster. By using this program various configurations have been examined and a configuration has been chosen as a 'good' candidate. Calculation has been made for 12C, 35Cl and 127I beams and it has been shown that 50-60% of continuous beam can be accelerated even without a prebuncher, if intended control of the beam can be accomplished. Some discussion is given on problems in contro-ling the beam. (author)

  10. ECR [electron cyclotron resonance] ion source beams for accelerator applications: Final report

    Reliable, easily operated ion sources are always in demand for accelerator applications. This paper reports on a systematic study of ion-beam characterisrtics and optimization of beam quality for production of light ion beams in an ECR ion source. Of particular interest is the optimization of beam brightness (defined as ion current divided by the square of the emittance), which is typically used as a figure-of-merit for accelerator-quality beams. Other areas to be discussed include the measurement of beam emittance values, the effects of various source parameters on emittances, and scaling effects from operating the same ECR source at different frequencies. 4 refs., 4 figs

  11. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples

  12. GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact, and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance evolution of a witness beam through elastic scattering from gaseous media and under transverse focusing wakefields is studied

  13. Development of heavy ion beam probe and 3 MeV tandem accelerator

    Nishizawa, Akimitsu; Hamada, Yasuji; Kawasumi, Yoshiaki [National Institute for Fusion Science, Nagoya (Japan)

    2001-02-01

    Taking into account the plasma parameters of LHD (Large Helical Device), the heavy ion beam of mass number about 200 (Au{sup +} or Tl{sup +}) is necessary for measuring plasma potential profiles and its fluctuations in the LHD plasma under the beam energy of 6 MeV. Authors had started the construction of the tandem accelerator of 3 MeV on 1998. Now Authors are the position to get the safety license for operation. Meanwhile, Authors had met many time consuming troubles as follows. The most time consuming troubles were the blocking of feedback stabilization circuits of the high voltage, mainly caused by noises from conditioning. In this case, we need high voltage stability of 10{sup -5} to measure small electric fluctuations of plasma. The second was the leak and out flow of cooling gas of SF{sub 6} in accelerator tubes and or gas circulation pipes. The third was leaks of SF{sub 6} from feed-through sealing terminals located at the high voltage tank. We made many modifications in the ion source to get stable long-time steady-state operation. Authors measured charge-numbers of Au as a function of charge-exchange Ar gas pressure by the electro-static charge-number separator and also estimated geometrical characteristics of the Au{sup +} beam. The results are useful for system optimization. We will be able to measure the plasma characteristics by the HIBP in near future after getting the safety license. (Y. Tanaka)

  14. Augmentation of beam currents in the JAERI tandem-booster accelerator facility

    Takeuchi, Suehiro; Matsuda, Makoto; Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-02-01

    Modifications have been executed in these years of the accelerator system, aiming at higher beam currents. Advanced experiments e.g. search of unknown heavy nuclei and their synthesis, need large current accelerators. The use of stripper foils in tandem accelerators for the electron detachment severely limits the beam current, however. The first modification is to install ECR (electron cyclotron resonance) ion source in a high voltage terminal board, multicharged, rare gas ions being accelerated directly. The second is to eliminate the use of the second foils, but to increase the beam intensity. (M. Tanaka)

  15. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  16. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  17. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >1010 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  18. Case studies in space charge and plasma acceleration of charged beams

    Plasma acceleration with electron or proton driver beams is a challenging opportunity for high-energy physics. An energy doubling experiment with electron drivers was successfully performed at SLAC and a key experiment AWAKE with proton drivers is on schedule at CERN. Simulations play an important role in choosing the best experimental conditions and in interpreting the results. The Vlasov equation is the theoretical tool to describe the interaction of a driver particle beam or a driver laser pulse with a plasma. Collective effects, such as tune shift and mismatch instabilities, appear in high intensity standard accelerators and are described by the Poisson-Vlasov equation. In the paper, we review the Vlasov equation in the electrostatic and fully electromagnetic cases. The general framework of variational principles is used to derive the equation, the local form of the balance equations and related conservation laws. In the electrostatic case, we remind the analytic Kapchinskij-Vladimirskij (K-V) model and we propose an extension of the adiabatic theory for Hamiltonian systems, which ensures stability for perturbation of size on times of order 1/ε. The variational framework is used to derive the Maxwell-Vlasov equations and related conservation laws and to briefly sketch the particle-in-cell (PIC) approximation schemes. Finally, the proton-driven acceleration is examined in the linear and quasilinear regime. A PIC simulation with the code ALaDyn developed at Bologna University is presented to illustrate the longitudinal and transverse fields evolution which allow a witness electron bunch to be accelerated with a gradient of a few GeV/m. We also present some remarks on future perspectives. (authors)

  19. Stability Issues of the Mu2e Proton Beam

    Ng, K.Y.; /Fermilab

    2009-05-01

    Stability issues of the mu2e proton beam are discussed. These include space-charge distortion of bunch shape, microwave instabilities, mode-coupling instabilities, head-tail instabilities, as well as electron-cloud effects. We have studied several beam stability issues of the proton beam heading to the target for the mu2e experiment. We find bunch-shape distortions driven by the space charge force is reasonably small, and longitudinal microwave instability will unlikely to occur. Electron-cloud buildup, with density up to {rho}{sub e} {approx} 2 x 10{sup 12} m{sup -3} in the Accumulator, can probably drive head-tail instabilities. However, these, together with the instabilities driven by the resistive-wall impedance can be avoided by restricting the chromaticity to larger than {approx} 0.2. TMCI will not occur even when the electron-cloud wake is included.

  20. Longitudinal Beam Stability in the SUPER B-FACTORY

    Novokhatski, A.; /SLAC; Zobov, M.; /Frascati

    2009-07-06

    We give an overview of wake fields and impedances in a proposed Super B project, which is based on extremely low emittance beams colliding at a large angle with a crab waist transformation. Understanding the effects that wake fields have on the beam is critical for a successful machine operation. We use our combined experience from the operation of the SLAC B-factory and DA{Phi}NE {Phi}-factory to eliminate strong HOM sources and minimize the chamber impedance in the Super B design. Based on a detailed study of the wake fields in this design we have developed a quasi-Green's function for the entire ring that is used to study bunch lengthening and beam stability. In particular, we check the stability threshold using numerical solutions of the Fokker-Plank equation. We also make a comparison of numerical simulations with the bunch lengthening data in the B- factory.

  1. Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration

    Marchetti, B.; Assmann, R.; Behrens, C.; Brinkmann, R.; Dorda, U.; Floettmann, K.; Hartl, I.; Huening, M.; Nie, Y.; Schlarb, H.; Zhu, J.

    2016-09-01

    The SINBAD facility (Short and INnovative Bunches and Accelerators at Desy) is foreseen to host various experiments in the field of production of ultra-short electron bunches and novel high gradient acceleration techniques. Besides studying novel acceleration techniques aiming to produce high brightness short electron bunches, the ARD group at DESY is working on the design of a conventional RF accelerator that will allow the production of low charge (0.5 pC - few pC) ultra-short electron bunches (having full width half maximum, FWHM, length ≤ 1 fs - few fs). The setup will allow the direct experimental comparison of the performance achievable by using different compression techniques (velocity bunching, magnetic compression, hybrid compression schemes). At a later stage the SINBAD linac will be used to inject such electron bunches into a laser driven Plasma Wakefield Accelerator, which imposes strong requirements on parameters such as the arrival time jitter and the pointing stability of the beam. In this paper we review the compression techniques that are foreseen at SINBAD and we underline the differences in terms of peak current, beam quality and arrival time stability.

  2. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams

    Bolton, P. R.; Borghesi, M. (Massimo); Brenner, C.; Carroll, D C; Martinis, C.; Fiorini, F.; Flacco, A.; Floquet, V; J. Fuchs; Gallegos, P.; Giove, D.; Green, J S; Green, S; Jones, B.; Kirby, D.

    2014-01-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented...

  3. Vacuum laser acceleration using a radially polarized CO2 laser beam

    Utilizing the high-power, radially polarized CO2 laser and high-quality electron beam at the Brookhaven Accelerator Test Facility, a vacuum laser acceleration scheme is proposed. In this scheme, optics configuration is simple, a small focused beam spot size can be easily maintained, and optical damage becomes less important. At least 0.5 GeV/m acceleration gradient is achievable by 1 TW laser power

  4. A theory of two-beam acceleration of charged particles in a plasma waveguide

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates

  5. FPIC: A Key Next Step for Stability Studies of Advanced Beam Driven FRCs

    Dettrick, Sean; Barnes, Dan; Ceccherini, Francesco; Galeotti, Laura; Guerrero, Victor; Hendrix, Doug; Hubbard, Kevin; Milroy, Richard; Necas, Ales; TAE Team

    2015-11-01

    The goal of the C-2U experiment is to use neutral beam heating and edge biasing to sustain an advanced beam-driven FRC for many milliseconds, longer than the growth times of known instabilities and the resistive wall time. To guide the experiment further into unexplored parameter regimes, it is desirable to have a stability code suitable for beam-driven FRC plasmas, in which the bulk of ion orbits are not Larmor-like and hence gyrokinetic approximations are inapplicable. Fully kinetic ions are required for stability simulations of beam driven FRCs, as are multiple ion species, end boundary conditions, and a resistive boundary. To meet these challenges a new 3D quasineutral hybrid code, FPIC, is being developed. FPIC has a choice of zero electron mass and finite electron mass Ohm's law solvers. Uniform staggered grids, finite differencing, and cut cell boundaries are used to simplify and optimize the PIC while allowing arbitrary boundary shapes. Finite resistivity of the boundary is implemented by coupling free-space exterior solutions to the cut-cell edges. The code is MPI parallelized and the particle push is GPU accelerated. Code benchmarks will be presented including the stability of the FRC tilt mode.

  6. Design alternatives for beam halo monitors in high intensity accelerators

    Braun, H; Corsini, R; Lefèvre, T; Schulte, Daniel; Tecker, F A; Welsch, C P

    2005-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Optical transition radiation (OTR) provides an interesting opportunity for linear real-time measurements of the transverse beam profile with a resolution which has been so far at best in the some μm range. However, the dynamic range of standard OTR systems is typically limited and needs to be improved for its application for halo measurements. In this contribution, the existing OTR system as it is installed in the CLIC test facility (CTF3) is analyzed and the contribution of each component to the final image quality discussed. Finally, possible halo measurement techniques based on OTR are pres...

  7. A new beam loss detector for low-energy proton and heavy-ion accelerators

    Liu, Zhengzheng, E-mail: liuz@frib.msu.edu; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-11

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR), to be implemented upstream of each FRIB cryomodule, as part of the direct loss monitoring system to fulfill the needs of machine protection. - Highlights: • Traditional BLM is not effective for beam loss monitoring at FRIB low energy linac segments. • We developed LMR to intercept a small portion of beam loss and output voltage signals. • We made a prototype LMR and demonstrated its functionality to monitor small beam losses. • The LMR is very sensitive for small beam losses and is independent of beam current. • The LMR is especially useful for loss monitoring at low energy ion/proton accelerators.

  8. A new beam loss detector for low-energy proton and heavy-ion accelerators

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR), to be implemented upstream of each FRIB cryomodule, as part of the direct loss monitoring system to fulfill the needs of machine protection. - Highlights: • Traditional BLM is not effective for beam loss monitoring at FRIB low energy linac segments. • We developed LMR to intercept a small portion of beam loss and output voltage signals. • We made a prototype LMR and demonstrated its functionality to monitor small beam losses. • The LMR is very sensitive for small beam losses and is independent of beam current. • The LMR is especially useful for loss monitoring at low energy ion/proton accelerators

  9. DIPAC 2005 7. European workshop on beam diagnostics and instrumentation for particle accelerators

    NONE

    2005-07-01

    Accelerators can not be improved without the development of adequate beam instruments and diagnostic tools. This year this statement is particularly right: a lot of contributions are dedicated to beam monitoring and to the design of new beam monitors based on original technologies. This document gathers about 100 contributions.

  10. DIPAC 2005 7. European workshop on beam diagnostics and instrumentation for particle accelerators

    Accelerators can not be improved without the development of adequate beam instruments and diagnostic tools. This year this statement is particularly right: a lot of contributions are dedicated to beam monitoring and to the design of new beam monitors based on original technologies. This document gathers about 100 contributions

  11. CEBAF [Continuous Electron Beam Accelerator Facility] design overview and project status

    This paper discusses the design and specifications of the Continuous Electron Beam Accelerator Facility. Beam performance objectives are discussed, as well as the recirculating linac concept, the injector, cavities, cryogenic system, beam transport and optics, rf system and construction progress. 19 refs., 10 figs

  12. Beam emittance reconstructions at the KFUPM 350 keV ion accelerator

    We successfully reconstructed the horizontal and vertical beam emittances of a 160 keV low-intensity deuteron ion beam from the Energy Research Laboratory's low intensity duoplasmatron deuteron ion source. Reconstructions were made from horizontal and vertical beam width measurements. These measurements were done using only one quadrupole triplet and a beam profile monitor situated towards the end of the 45 beam line of the 350 kV ion accelerator. The deuteron beam emittances were εh = 67 π mm-mrad and εv = 4π mm-mrad at 90% of the beam. (orig.)

  13. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators

  14. Start-to-end simulations for beam dynamics in the RISP heavy-ion accelerator

    Kim, Eun-San, E-mail: eskim1@knu.ac.kr [Department of Physics, Kyungpook National University, Deagu (Korea, Republic of); Bahng, JungBae [Department of Physics, Kyungpook National University, Deagu (Korea, Republic of); Hwang, Ji-Gwang [KIRAMS, Seoul (Korea, Republic of); Choi, Bong-Hyuk; Kim, Hye-Jin; Jeon, Dong-O [Institute for Basic Science, Daejeon (Korea, Republic of)

    2015-09-11

    RAON has been designed as a rare isotope accelerator facility for the Rare Isotope Science Project (RISP). The main accelerator for the in-flight system accelerates uranium and proton beams to 200 MeV/u and 660 MeV, respectively, with a beam power of 400 kW. The front-end system consists of two 28 GHz electron cyclotron resonance ion sources (10 keV/u), a low-energy beam transport (LEBT) line with two 90° bends, a multi-harmonic buncher with three different rf frequencies, a radio-frequency quadrupole (RFQ), and a medium-energy beam transport line (MEBT) with three rebunchers and eight quadrupoles. A driver linac system consisting of Linac-1 and Linac-2 has been designed to optimize the beam and accelerator parameters so as to meet the required design goals. A charge stripper section is located between Linac-1 and Linac-2. To optimize these designs, we performed start-to-end simulations with the beams from the LEBT to Linac-2 using 1 million macroparticles. We present the resulting beam dynamics to evaluate the performance of the accelerator. Our simulation results predict that the transmission rate of the uranium beam is 85.8% from the LEBT to Linac-2. The designed facility is expected to achieve the required beam loss condition of less than 1 W/m. The RAON driver linac lattice design was developed and an overview of the beam dynamics is presented.

  15. Conceptual design of parallel beam lines for tandem accelerator

    In order to get enough beam current for each parallel beam line, the beam intensity distribution along aperture on the diaphragm is calculated to deduce a function which is verified by computer program for simulating charged particle beam transport systems, based on this function relationship between emittance of beam and the different aperture parameters on diaphragm is analyzed. At the end, a conceptual design of parallel beam line is given and the parameters of the optical elements are calculated. The results are accurate and credible. quality of beam can reach the requirements of user for nuclear physics experiments. (authors)

  16. On the stability of ion beam in a layer with crossed electric and magnetic fields and magnetized electron background

    Dissipation instability of stationary states of space heterogeneous compensated ion beam in a layer with crossed electric and magnetic fields is considered within the framework of linear hydrodynamic description at random ΔV/V0 ratio, where ΔV-change of V0 initial beam velocity at layer length. The apparent form of space change of amplitude of initial perturbations of short-wave oscillations, propagating along the beam, was determined. It is shown, that stabilizing effect of accelerating field is manifested by the fact, that oscillations at the given length of diode gap have no time to develop. The obtained results can be used for study of stability of stationary states of accelerating magnetically insulated diode systems and recuperators

  17. Performance of MBE-4: An experimental multiple beam induction linear accelerator for heavy ions

    An experimental induction linac, called MBE-4, has been constructed to demonstrate acceleration and current amplification of multiple heavy ion beams. This work is part of a program to study the use of such an accelerator as a driver for heavy ion inertial fusion. MBE-4 is 16m long and accelerates four space-charge-dominated beams of singly-charged cesium ions, in this case from 200 keV to 700 keV, amplifying the current in each beam from 10mA by a factor of nine. Construction of the experiment was completed late in 1987 and we present the results of detailed measurements of the longitudinal beam dynamics. Of particular interest is the contribution of acceleration errors to the growth of current fluctuations and to the longitudinal emittance. The effectiveness of the longitudinal focusing, accomplished by means of the controlled time dependence of the accelerating fields, is also discussed. 4 refs., 5 figs., 1 tab

  18. Beam diagnostic of transverse geometric macrostructure errors for high energy part of linear ion accelerators

    The geometric transverse mismatching between the supports on which the elements of accelerating and trans-verse focusing structure are placed for high energy part of the linear accelerators for the ions with small mass, for example for protons or negative hydrogen ions, may lead to the particle loses of an accelerated beam or to the significant amplitudes for the beam center oscillations. The proposed method, in which it was supposed knowledge about the transverse geometric errors between the neighbour supports and application of the correction elements at the beginning of an accelerator part under investigation, permits to minimize amplitude of the transverse beam center oscillations. That leads to the reduction of possible beam loses and improvement a quality of the beam dynamics.

  19. Stability of Muon Beams to Langmuir Waves during Ionization Cooling

    Fast cooling of muon beams will be needed for building either TeV muon colliders that might explore the electroweak gauge symmetry breaking or muon storage rings that could become ultrabright neutrino sources. Stochastic and electron cooling take longer than the muon lifetime, so attention has been focused on the potentially faster but less explored ionization cooling. Addressing recent concerns that excitation of Langmuir waves might be deleterious for ionization cooling techniques, we show that, while the hydrodynamic instability indeed might be dangerous, the waves are, in fact, stabilized through a combination of resistive and kinetic effects at a very modest emittance of the beam

  20. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first investigated in the highly relativistic regime, using 100 TW class, 27fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundred MeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5GeV/cm. (physics of gases, plasmas, and electric discharges)

  1. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  2. New Beam Line Design of TRIAC as a Stable Heavy-Ion Accelerator at KAERI

    Lee, Cheol Ho; Chang, Dae Sik; Oh, Byung Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of); Seo, Chang Seog; Yun, Chong Cheoul [Institute for Basic Science, Daejeon (Korea, Republic of); Jeong, Sun Chan [dHigh Energy Accelerator Research Organization, Tsukuba-shi (Japan)

    2012-05-15

    KEK (High Energy Accelerator Research Organization) TRIAC (Tokai Radioactive Ion Accelerator Complex) was a radioactive isotope accelerator which can provide beams of uranium fission fragments with the maximum energy of 1.1 MeV/nucleon produced by protons of 30 MeV and 1 {mu}A (30 W in beam power, actually deposited in the production target) from the JAEA Tandem Accelerator. Because of the critical limitations in the reaccelerated energy and intensity of available RIBs (Radioactive ion beams), TRIAC considered an upgrade program seriously, but it was canceled. Finally the complex had been closed at the end of 2010, and it was transferred to KAERI (Korea Atomic Energy Research Institute) after being disassembled to promote a new availability in Korea. KAERI team has a plan to reassemble this device as a stable ion beam accelerator with a minimized change for the low energy beam line including the ion source and the target system. The new stable ion accelerator will be used not only for the basic research but also for the application of heavy ion beams. Before the reassembling of TRIAC at KAERI, new layout of the beam line should be designed, and checked by beam optics simulation. The operation conditions and beam optics characteristics of the new beam line components can be understood with this simulation. The works that should be done before reassembling as a new machine have been done in this study. The beam optics calculations were preferentially carried out with arbitrary order beam physics code COSY INFINITY (COSY) or beam envelope code TRANSPORT

  3. New Beam Line Design of TRIAC as a Stable Heavy-Ion Accelerator at KAERI

    KEK (High Energy Accelerator Research Organization) TRIAC (Tokai Radioactive Ion Accelerator Complex) was a radioactive isotope accelerator which can provide beams of uranium fission fragments with the maximum energy of 1.1 MeV/nucleon produced by protons of 30 MeV and 1 μA (30 W in beam power, actually deposited in the production target) from the JAEA Tandem Accelerator. Because of the critical limitations in the reaccelerated energy and intensity of available RIBs (Radioactive ion beams), TRIAC considered an upgrade program seriously, but it was canceled. Finally the complex had been closed at the end of 2010, and it was transferred to KAERI (Korea Atomic Energy Research Institute) after being disassembled to promote a new availability in Korea. KAERI team has a plan to reassemble this device as a stable ion beam accelerator with a minimized change for the low energy beam line including the ion source and the target system. The new stable ion accelerator will be used not only for the basic research but also for the application of heavy ion beams. Before the reassembling of TRIAC at KAERI, new layout of the beam line should be designed, and checked by beam optics simulation. The operation conditions and beam optics characteristics of the new beam line components can be understood with this simulation. The works that should be done before reassembling as a new machine have been done in this study. The beam optics calculations were preferentially carried out with arbitrary order beam physics code COSY INFINITY (COSY) or beam envelope code TRANSPORT

  4. The damped oscillating propagation of the compensating self-accelerating beams

    Liu, Wei-Wei; Yu, Pan-Pan; Wang, Hao-wei; Wang, Zi-qiang; Li, Yin-Mei

    2016-01-01

    We report a new form of compensating accelerating beam generated by amplitude modulation of the symmetric Airy beam (SAB) caustics with an exponential apodization mask. Our numerical study manifests that the compensating beam is with one main-lobe beam structure and can maintain the mean-intensity invariant both in the free space and loss media. Specially, the beam inherits the beamlets structure from the SAB and owns a novel damped oscillating propagation property. We also conduct a comparative study of its propagation property with that of the Airy beam theoretically. And by altering the signs of 2D masks, the main lobe of the compensating beam can be modulated to orientate in four different quadrants flexibly. The proposed compensating accelerating beam is anticipated to get special applications in particle manipulation or plasmas regions.

  5. 2 MeV, 60 kW dual-beam type electron accelerator irradiation facility

    The specification of new irradiation facility which has been constructed from 1978 through 1981 as the replacement of 1st Accelerator of JAERI, TRCRE are described. The accelerator is the Cockcroft-Walton type and both vertical and horizontal accelerating tubes are arranged on a single high voltage generator. Transferring of the high voltage to the horizontal accelerating tube is performed with the high voltage changing system in the pressure vessel. The output ratings of the accelerator are 2 MV of acceleration voltage and 30 mA of beam current. By providing the dual beam system, two irradiation rooms, one for vertical and the other for horizontal beam, are independently operationable. Persons can enter the horizontal irradiation room for experimental setting even when the vertical irradiation room is in operation. The specification of the buildings, the exhaust air treatment system, the irradiation conveyor and the safety observation system are also described. (author)

  6. Capture and Control of Laser-Accelerated Proton Beams: Experiment and Simulation

    This paper summarizes the ongoing studies on the possibilities for transport and RF capture of laser-accelerated proton beams in conventional accelerator structures. First results on the capture of laser-accelerated proton beams are presented, supported by Trace3D, CST particle studio and Warp simulations. Based on these results, the development of the pulsed high-field solenoid is guided by our desire to optimize the output particle number for this highly divergent beam with an exponential energy spectrum. A future experimental test stand is proposed to do studies concerning the application as a new particle source

  7. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  8. Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator

    An, W.; Zhou, M.; Vafaei-Najafabadi, N.; Marsh, K. A.; Clayton, C. E.; Joshi, C.; Mori, W. B.; Lu, W.; Adli, E.; Corde, S.; Litos, M.; Li, S.; Gessner, S.; Frederico, J.; Hogan, M. J.; Walz, D.; England, J.; Delahaye, J. P.; Muggli, P.

    2013-10-01

    Strategies for mitigating ionization-induced beam head erosion in an electron-beam-driven plasma wakefield accelerator (PWFA) are explored when the plasma and the wake are both formed by the transverse electric field of the beam itself. Beam head erosion can occur in a preformed plasma because of a lack of focusing force from the wake at the rising edge (head) of the beam due to the finite inertia of the electrons. When the plasma is produced by field ionization from the space charge field of the beam, the head erosion is significantly exacerbated due to the gradual recession (in the beam frame) of the 100% ionization contour. Beam particles in front of the ionization front cannot be focused (guided) causing them to expand as in vacuum. When they expand, the location of the ionization front recedes such that even more beam particles are completely unguided. Eventually this process terminates the wake formation prematurely, i.e., well before the beam is depleted of its energy. Ionization-induced head erosion can be mitigated by controlling the beam parameters (emittance, charge, and energy) and/or the plasma conditions. In this paper we explore how the latter can be optimized so as to extend the beam propagation distance and thereby increase the energy gain. In particular we show that, by using a combination of the alkali atoms of the lowest practical ionization potential (Cs) for plasma formation and a precursor laser pulse to generate a narrow plasma filament in front of the beam, the head erosion rate can be dramatically reduced. Simulation results show that in the upcoming “two-bunch PWFA experiments” on the FACET facility at SLAC national accelerator laboratory the energy gain of the trailing beam can be up to 10 times larger for the given parameters when employing these techniques. Comparison of the effect of beam head erosion in preformed and ionization produced plasmas is also presented.

  9. Alfven Eigenmode Stability with Beams in ITER-like Plasma

    N.N. Gorelenkov; H.L. Berk; R.V. Budny

    2004-07-16

    Toroidicity Alfven Eigenmodes (TAE) in ITER can be driven unstable by two groups of energetic particles, the 3.5 MeV {alpha}-particle fusion products and the tangentially injected 1MeV beam ions. Stability conditions are established using the perturbative NOVA/NOVA-K codes. A quasi-linear diffusion model is then used to assess the induced redistribution of energetic particles.

  10. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  11. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  12. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  13. Collaborative Research: Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models

    Katsouleas, Thomas [USC; Decyk, Viktor [UCLA

    2009-10-14

    Final Report for grant DE-FG02-06ER54888, "Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models" Viktor K. Decyk, University of California, Los Angeles Los Angeles, CA 90095-1547 The primary goal of this collaborative proposal was to modify the code QuickPIC and apply it to study the long-time stability of beam propagation in low density electron clouds present in circular accelerators. The UCLA contribution to this collaborative proposal was in supporting the development of the pipelining scheme for the QuickPIC code, which extended the parallel scaling of this code by two orders of magnitude. The USC work was as described here the PhD research for Ms. Bing Feng, lead author in reference 2 below, who performed the research at USC under the guidance of the PI Tom Katsouleas and the collaboration of Dr. Decyk The QuickPIC code [1] is a multi-scale Particle-in-Cell (PIC) code. The outer 3D code contains a beam which propagates through a long region of plasma and evolves slowly. The plasma response to this beam is modeled by slices of a 2D plasma code. This plasma response then is fed back to the beam code, and the process repeats. The pipelining is based on the observation that once the beam has passed a 2D slice, its response can be fed back to the beam immediately without waiting for the beam to pass all the other slices. Thus independent blocks of 2D slices from different time steps can be running simultaneously. The major difficulty was when particles at the edges needed to communicate with other blocks. Two versions of the pipelining scheme were developed, for the the full quasi-static code and the other for the basic quasi-static code used by this e-cloud proposal. Details of the pipelining scheme were published in [2]. The new version of QuickPIC was able to run with more than 1,000 processors, and was successfully applied in modeling e-clouds by our collaborators in this proposal [3-8]. Jean-Luc Vay at Lawrence Berkeley

  14. Vibration Energy Harvester with Bi-stable Curved Beam Spring Offset by Gravitational Acceleration

    Yamamoto, Koki; Fujita, Takayuki; Badel, Adrien; Formosa, Fabien; Kanda, Kensuke; Maenaka, Kazusuke

    2015-12-01

    We developed MEMS bi-stable spring for vibration energy harvester (VEH), which consists of intrinsically curved shape spring and gravitational acceleration. By applying the gravitational acceleration, the curved beam is offset to the gravity direction. It will make more symmetrical bi-stable motion and the symmetry is improved from 3.3 to 65.4%. We proposed that the combination between curved beam and gravity acceleration for decreasing snap- through acceleration. From the analytical result, we investigate the combination can effective to use for decreasing of snap-through force. We also fabricated the prototype device by using MEMS fabrication process. The frequency response for horizontal direction and the acceleration response for vertical direction are measured. The acceleration response shows that the gravitational acceleration improves the symmetry of snap-through force.

  15. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report the resulting neutron and photon dose fields.

  16. Quality Assesment Of Photon And Electron Beams From Siemens PRIMUS Radiotherapy Accelerator

    There are two types of radiation from SIEMENS Primus Radiotherapy Accelerator at the National Cancer Hospital (K Hospital): electron and photon beams. Electron beams with four different energies of 6; 9; 12 and 15 MeV. Photon beams with two different energies: 6 MV and 15 MV. The symmetry as well as flatness of profiles created by all these beams are very important factors using in clinical practice. This report presents the method using water phantom to define absorbed dose distribution in medium of all beams. This is an effective and accurate method to define quality of radiation beams with different field sizes using in radiotherapy. (author)

  17. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  18. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  19. Development of bipolar pulse accelerator for high-purity intense pulsed ion beam

    In order to improve the purity of the intense pulsed ion beam, a new type of a pulsed ion beam accelerator named “bipolar pulse accelerator” has been proposed. A double coaxial type bipolar pulse generator was developed as the power supply of the bipolar pulse accelerator. By applying the bipolar pulse with voltage of about ±100 kV and pulse duration of about 70 ns to the drift tube of the bipolar pulse accelerator, the ion beam was successfully accelerated from the grounded anode to the drift tube in the 1st gap by the negative pulse of the bipolar pulse and the pulsed ion beam with current density of 40 A/cm2 and pulse duration of 30 ns was obtained at 50 mm downstream from the anode surface. In addition, part of the ion beam was again accelerated toward the grounded cathode in the 2nd gap by the positive pulse of the bipolar pulse. The pulsed ion beam with the peak ion current density of 2 A/cm2 and the beam pulse duration of 30 ns was obtained at 25 mm downstream from the cathode surface, which suggests the bipolar pulse acceleration. (author)

  20. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954

  1. Nuclear-structure studies far from stability with high-energy radioactive beams

    The fragmentation of high-energy heavy-ion projectiles routinely produces nuclei at the limits of stability. The recent combination of versatile heavy-ion accelerators (primarily cyclotrons) with large acceptance fragment separators has made these exotic isotopes available for nuclear structure studies. The four presently operating projectile-fragmentation facilities devote significant fractions of their experimental programs to studies of nuclei divided into three rough categories: demonstration of existence, measured at the limits to stability that can be divided in to three rough categories: demonstration of existance, measurement of the decay properties, and use in secondary reactions. Recent work using unusual isotopic beams has demonstrated the production of nuclei along the proton drip-line up to A∼80 and up to A∼30 in the substantially harder to attain neutron drip line. The measurement of the decay properties of such exotic nuclei have been readily carried out by transporting, them with normal beam lines to low background vaults for traditional measurements of beta-decay half-lives, delayed particle emission', etc. of the stopped beams. Perhaps the most exciting and new feature of these radioactive beams is that even the most exotic unstable nuclei can be used in secondary nuclear reactions. Intense effort has been put into studies of light neutron-rich nuclei, ranging from elastic scattering, to direct reactions and even secondary open-quote projectile-fragmentationclose quotes but many other possibilities are beginning to be explored

  2. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    Yu, S.; Goffeney, N. [Lawrence Berkeley Lab., CA (United States); Deadrick, F. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ``bottom-up`` cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%.

  3. Simulation of high-intense beam transport in electrostatic accelerating column

    卢小龙; 姚泽恩; 张宇; 徐大鹏; 陈尚文; 王俊润; 黄智武; 马占文; 王伟

    2015-01-01

    An electrostatic accelerating column was designed and fabricated by Lanzhou University for an intense D-T/D-D neutron generator. In order to achieve a neutron yield of 5.0 × 1012 n/s, a deuteron beam of 30 mA, accelerated to 400 kV, and transported in the electrostatic accelerating column smoothly are required. One particle-in-cell code BEAMPATH was used to simulate the beam transport, and the IONB1.0 code was used to simulate the intense beam envelopes. Emittance growths due to space charge effect and spherical aberration were analyzed. The simulation results show that the accelerating column can transport deuteron beam of 30 mA smoothly and the requirement for the neutron generator is satisfied.

  4. Beam collimation and transport of laser-accelerated protons by a solenoid field

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 1012 particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  5. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    Kourbanis, ioanis

    2014-06-01

    After a 14 month shutdown accelerator modifications and upgrades are in place to allow us doubling of the Main Injector beam power. We will discuss the past MI high power operation and the current progress towards doubling the power.

  6. Beam shaping assembly optimization for 7Li(p,n)7Be accelerator based BNCT

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30 mA at about 2.5 MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the 7Li(p,n)7Be neutron production reaction to obtain neutron beams to treat deep seated tumors. - Highlights: • A Beam Shaping Assembly for accelerator based BNCT has been designed. • A conical port for easy patient positioning and the cooling system are included. • Several configurations can deliver tumor doses greater than 55 RBEGy. • Good tumor doses can be obtained in less than 60 min of irradiation time

  7. Simulation of Quasi-Adiabatic Beam Capture into Acceleration at the Nuclotron

    Volkov, V I; Issinsky, I B; Kovalenko, A D

    2003-01-01

    The routine RF system being used at the Nuclotron allows one to inject the beam at ramping magnetic field with following acceleration at constant amplitude of accelerating voltage. At these conditions at least a half of the particles circulating in the vacuum chamber after injection is not captured in longitudinal acceptance. At the same time vacuum chamber sizes permit to extend the momentum spread of the beam enough to make gymnastic with it inside the stable zone of longitudinal phase space on the flat magnetic field at injection. A quasi-adiabatic capture was considered for increasing the Nuclotron beam intensity. Simulation of such a kind of process with subsequent acceleration was performed. It was shown that in this case it is possible to capture and accelerate up to 100 % of the injected beam.

  8. CERN Accelerator School: Intensity Limitations in Particle Beams | 2-11 November

    2015-01-01

    Registration is now open for the CERN Accelerator School’s specialised course on Intensity Limitations in Particle Beams, to be held at CERN between 2 and 11 November 2015.   This course will mainly be of interest to staff in accelerator laboratories, university departments and companies manufacturing accelerator equipment. Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. The programme for this course will cover the interaction of beams with their surroundings, with other beams and further collective effects. Lectures on the effects and possible mitigations will be complemented by tutorials. Further information can be found at: http://cas.web.cern.ch/cas/Intensity-Limitations-2015/IL-advert.html   http:/...

  9. On the polarized beam acceleration in medium energy synchrotrons

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  10. The influence of density distribution on the stability of beams

    We examine the effect of various density distributions in four-dimensional phase space and their projections in real and velocity space on the stability of continuous beams in alternating-gradient transport lines using particle-following computer simulations. We discuss the susceptibility of three different distributions (Kapchinskii-Vladimirskii, bicylinder, and thermal) to third- and higher-order mode instabilities. These distributions are all uniform in real space, but their velocity distributions are different; they also react differently to structure resonances. Velocity distributions of high-current beams tend to evolve to a peaked Gaussian-like form. Is there a specific velocity distribution that is stable and, therefore, the preferred injection distribution for minimizing emittance growth? Forced smoothness or uniformity in real space is necessary for setting up particle simulations of high-current beams so that spurious charge-redistribution emittance growth can be avoided. Is forced smoothness also desirable in four dimensions for continuous beams and possibly in six dimensions for bunched beams? We consider these and related questions

  11. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma-acceleration

  12. On the validity of the paraxial approximation for electron acceleration with radially polarized laser beams

    Marceau, Vincent; Varin, Charles; Piché, Michel

    2013-01-01

    In the study of laser-driven electron acceleration, it has become customary to work within the framework of paraxial wave optics. Using an exact solution to the Helmholtz equation as well as its paraxial counterpart, we perform numerical simulations of electron acceleration with a high-power TM01 beam. For beam waist sizes at which the paraxial approximation was previously recognized valid, we highlight significant differences in the angular divergence and energy distribution of the electron ...

  13. Initial investigation using statistical process control for quality control of accelerator beam steering

    Able Charles M; Hampton Carnell J; Baydush Alan H; Munley Michael T

    2011-01-01

    Abstract Background This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC) to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated). Methods Steering coil currents (SCC) for the transverse and radial planes are set such that a reproducibly useful photon or electron...

  14. Transverse beam dynamics in recirculating accelerators for heavy-ion fusion

    A conceptual design for a circular induction accelerator has been proposed as a driver for heavy-ion fusion. In such an accelerator, errors in dipole strength and quadrupole alignment affect the transverse motion of the beam centroid. Analytic and numerical estimates are made of the beam-centroid displacement due to these errors, and a steering algorithm to correct the transverse mismatch from these errors is described and tested numerically

  15. Electron acceleration by two crossed Bessel-Gaussian beams in vacuum

    Zhao Zhi-Guo; Lü Bai-Da

    2006-01-01

    The direct acceleration of electrons by using two linearly polarized crossed Bessel-Gaussian (BG) beams with equal frequency and amplitude in vacuum is proposed and studied. It is shown that two linearly polarized BG beams of the same order (0 or 1) with a π-rad phase difference have a resultant non-zero longitudinal electric field on the z-axis and can be used, in principle, to accelerate electrons.

  16. Post-acceleration study for neutrino super-beam at CSNS

    WU Yang; TANG Jing-Yu

    2013-01-01

    A post-acceleration system based on the accelerators at CSNS (China Spallation Neutron Source) is proposed to build a super-beam facility for neutrino physics.Two post-acceleration schemes,one using superconducting dipole magnets in the main ring and the other using room temperature magnets,have been studied,both to achieve the final proton energy of 128 GeV and the beam power of 4 MW by taking 10% of the CSNS beam from the neutron source.The main design features and the comparison for the two schemes are presented.The CSNS super-beam facility will be very competitive in long-baseline neutrino physics studies,compared with other super-beam facilities proposed in the world.

  17. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  18. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000∼8000 seconds and time averaged thrust of up to 5000∼6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration

  19. Unveiling the orbital angular momentum and acceleration of electron beams.

    Shiloh, Roy; Tsur, Yuval; Remez, Roei; Lereah, Yossi; Malomed, Boris A; Shvedov, Vladlen; Hnatovsky, Cyril; Krolikowski, Wieslaw; Arie, Ady

    2015-03-01

    New forms of electron beams have been intensively investigated recently, including vortex beams carrying orbital angular momentum, as well as Airy beams propagating along a parabolic trajectory. Their traits may be harnessed for applications in materials science, electron microscopy, and interferometry, and so it is important to measure their properties with ease. Here, we show how one may immediately quantify these beams' parameters without need for additional fabrication or nonstandard microscopic tools. Our experimental results are backed by numerical simulations and analytic derivation. PMID:25793830

  20. Unveiling the orbital angular momentum and acceleration of electron beams

    Shiloh, Roy; Lereah, Yossi; Malomed, Boris A; Shvedov, Vladlen; Hnatovsky, Cyril; Krolikowski, Wieslaw; Arie, Ady

    2014-01-01

    New forms of electron beams have been intensively investigated recently, including vortex beams carrying orbital angular momentum, as well as Airy beams propagating along a parabolic trajectory. Their traits may be harnessed for applications in materials science, electron microscopy and interferometry, and so it is important to measure their properties with ease. Here we show how one may immediately quantify these beams' parameters without need for additional fabrication or non-standard microscopic tools. Our experimental results are backed by numerical simulations and analytic derivation.

  1. Beam instrumentation for future high intense hadron accelerators at Fermilab

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  2. Noninterceptive method to measure longitudinal Twiss parameters of a beam in a hadron linear accelerator using beam position monitors

    Shishlo, A.; Aleksandrov, A.

    2013-06-01

    A new method of measuring of the rms longitudinal Twiss parameters of a beam in linear accelerators is presented. It is based on using sum signals from beam position monitors sensitive to the longitudinal charge distribution in the bunch. The applicability of the method is demonstrated on the superconducting section of the Oak Ridge Spallation Neutron Source linear accelerator. The results are compared to a direct measurement of the bunch longitudinal profiles using an interceptive bunch shape monitor in the linac warm section of the same accelerator. Limitations of the method are discussed. The method is fast and simple, and can be used to obtain the initial parameters for the longitudinal matching in linear accelerators where interceptive diagnostics are not desirable.

  3. Lifetime improvement and beam stabilization by longitudinal phase modulation at the DELTA electron storage ring

    In DELTA especially at high beam currents often the occurence of an instability of a longitudinal oscillation mode is observed. In the framework of the present thesis first with different procedure the cause of the longitudinal oscillation mode, which is especially strongly excited at high beam currents, is searched for. Thereby connections between the occurrence of this mode and parameters from the region of the storage-ring high-frequency system is observed. It is shown by comparison of different procedures, simulation calculations, and experimental pre-examinations, that especially by a phase modulation of the storage-ring high frequency an essential improvement of especially the longitudinal beam stability and the beam lifetime can be reached. For the durable and reliable improvement of these beam properties in the framework of the present thesis a system for the longitudinal phase modulation of the after-acceleration voltage in the cavity resonator of the DELTA storage ring is concipated, developed, constructed, taken in operation, and tested. Finally the results aimed hereby are presented and discussed.

  4. Beam transport in the crystal x-ray accelerator

    A Fokker-Planck model of charged particle transport in crystal channels which includes the effect of strong accelerating gradients has been developed for application to the crystal x-ray accelerator and other crystal accelerator schemes. We indicate the implications of the analytic solutions found for a harmonic channeling potential for the accelerating gradient and the multiple scattering which, because we consider only the acceleration of positive particles, is dominated by scattering from the valence electrons. In order to relax the constraints imposed by these, we have been exploring the application of novel materials to this problem. One candidate is porous Si and our investigation into this material which is as yet preliminary is discussed and other possible materials are indicated

  5. A prototype of a beam steering assistant tool for accelerator operations

    The CEBAF accelerator provides nuclear physics experiments at Jefferson Lab with high quality electron beams. Three experimental end stations can simultaneously receive the beams with different energies and intensities. For each operational mode, the accelerator setup procedures are complicated and require very careful checking of beam spot sizes and positions on multiple beam viewers. To simplify these procedures and make them reproducible, a beam steering assistant GUI tool has been created. The tool is implemented as a multi-window control screen. The screen has an interactive graphical object window, which is an overlay on top of a digitized live video image from a beam viewer. It allows a user to easily create and edit any graphical objects consisting of text, ellipses, and lines, right above the live beam viewer image and then save them in a file that is called a beam steering template. The template can show, for example, the area within which the beam must always be on the viewer. Later, this template can be loaded in the interactive graphical object window to help accelerator operators steer the beam to the specified area on the viewer

  6. E-beam accelerator cavity development for the ground-based free electron laser

    Bultman, N. K.; Spalek, G.

    Los Alamos National Laboratory is designing and developing four prototype accelerator cavities for high power testing on the Modular Component Technology Development (MCTD) test stand at Boeing. These cavities provide the basis for the e-beam accelerator hardware that will be used in the Ground Based Free Electron Laser (GBFEL) to be sited at the White Sands Missile Range (WSMR) in New Mexico.

  7. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  8. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90o downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety

  9. System for measuring parameters of electron beams injected into collective heavy ion accelerator

    The description of automation system for measurement of the intensive nanosecond electron beam characteristics of a collective heavy ion accelerator at JINR is presented. The system includes a set of the collector sensors for registering electronics for all sensors. The range of beam measured currents reaches 1000 A at repetition frequency of cycles up to 50 Hz

  10. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  11. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Prost, Lionel R

    2016-01-01

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  12. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  13. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied

  14. Electron Cloud Density Measurements in Accelerator Beam-pipe Using Resonant Microwave Excitation

    Sikora, John P.; Carlson, Benjamin T.; Duggins, Danielle O.; Hammond, Kenneth C.; De Santis, Stefano; Tencate, Alister J.

    2013-01-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the pha...

  15. Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking

    Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria

    One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...

  16. Optimization of laser accelerated proton beams for possible applications

    Optimization of transported proton beams through a pulsed solenoid in the laser proton experiment LIGHT at GSI has been studied numerically. TraceWin, SRIM and ATIMA codes were employed for this study with an initial distribution generated by MATLAB program fitted to Phelix measured data. Two individual tools have been used to produce protons beam as a later beam source: an aperture located at the solenoid focal spot as energy selection tool; and a scattering foil at a suitable position in the beam path that smoothens the simulated radial energy imprint on the beam profile. The simulation results show that the proton energy spectrum is filtered by the aperture and the radial energy correlation is smoothened.

  17. Pulsed power for particle beam accelerators in military applications

    Techniques useful for generating and conditioning power for high energy pulsed accelerators with potential weapon applications are described. Pulsed electron accelerators are exemplified by ETA and ATA at Lawrence Livermore Laboratories and RADLAC at Sandia Laboratories Albuquerque. Pulse-power techniques used in other applications are briefly mentioned, including some that may be useful for collective ion accelerators. The limitations of pulse-power and the general directions of desirable development are illustrated. The main needs are to increase repetition rate and to decrease size

  18. Laser-driven multicharged heavy ion beam acceleration

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of stripped Fe ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  19. Electron-optical monitoring of beam profile of a pulse accelerator

    Electron-optical methods of studying spatial-time characteristics of high-current electron beams on the basis of their bremsstrahlung are described. Data on dynamics of compression of electron beams of ORION-1 electrostatic accelerator, obtained under photochronographic monitoring at electron-optical converter, are presented. It is shown that in radial compression phase the rate of the beam inner boundary attains the value of ∼1.5x108 cm/s

  20. Development of a low-energy beam transport system at KBSI heavy-ion accelerator

    Bahng, Jungbae; Lee, Byoung-Seob; Sato, Yoichi; Ok, Jung-Woo; Park, Jin Yong; Yoon, Jang-Hee; Choi, Seyong; Won, Mi-Sook; Kim, Eun-San

    2015-01-01

    The Korea Basic Science Institute has developed a heavy ion accelerator for fast neutron radiography [1]. To meet the requirements for fast neutron generation, we have developed an accelerator system that consists of an electron cyclotron resonance ion source (ECR-IS), low-energy beam transport (LEBT) system, radio-frequency quadrupole (RFQ), medium-energy beam transport system, and drift tube linac. In this paper, we present the development of the LEBT system as a part of the heavy ion accelerator system, which operates from the ECR-IS to the RFQ entrance.

  1. Testing General Relativity With Laser Accelerated Electron Beams

    Gergely, L. Á.; Harko, T.

    2012-01-01

    Electron accelerations of the order of $10^{21} g$ obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a un...

  2. Accelerator and detector physics at the Bern medical cyclotron and its beam transport line

    Auger Martin

    2016-03-01

    Full Text Available The cyclotron laboratory for radioisotope production and multi-disciplinary research at the Bern University Hospital (Inselspital is based on an 18-MeV proton accelerator, equipped with a specifically conceived 6-m long external beam line, ending in a separate bunker. This facility allows performing daily positron emission tomography (PET radioisotope production and research activities running in parallel. Some of the latest developments on accelerator and detector physics are reported. They encompass novel detectors for beam monitoring and studies of low current beams.

  3. Chirp mitigation of plasma-accelerated beams using a modulated plasma density

    Brinkmann, R; Dornmair, I; Assmann, R; Behrens, C; Floettmann, K; Grebenyuk, J; Gross, M; Jalas, S; Kirchen, M; Mehrling, T; de la Ossa, A Martinez; Osterhoff, J; Schmidt, B; Wacker, V; Maier, A R

    2016-01-01

    Plasma-based accelerators offer the possibility to drive future compact light sources and high-energy physics applications. Achieving good beam quality, especially a small beam energy spread, is still one of the major challenges. For stable transport, the beam is located in the focusing region of the wakefield which covers only the slope of the accelerating field. This, however, imprints a longitudinal energy correlation (chirp) along the bunch. Here, we propose an alternating focusing scheme in the plasma to mitigate the development of this chirp and thus maintain a small energy spread.

  4. Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure

    Palaia, Andrea; Jacewicz, Marek; Ruber, Roger; Ziemann, Volker; Farabolini, Wilfrid

    2013-01-01

    Understanding the effects of rf breakdown in high-gradient accelerator structures on the acceleratedbeam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC) andis one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN.During a rf breakdown high currents are generated causing parasitic magnetic fields that interact withthe accelerated beam affecting its orbit. The beam energy is also affected because the power is part...

  5. Accelerator System Design, Injection, Extraction and Beam-Material Interaction: Working Group C Summary Report

    Mokhov, N V

    2014-01-01

    The performance of high beam power accelerators is strongly dependent on appropriate injection, acceleration and extraction system designs as well as on the way interactions of the beam with machine components are handled. The experience of the previous ICFA High -Brightness Beam workshops has proven that it is quite beneficial to combine analyses and discussion of these issues in one group. A broad range of topics was presented and discussed at the Working Group C sessions at the HB2012 Workshop. Highlights from the talks, outstanding issues along with plans and proposals for future work are briefly described in this report.

  6. X-ray generation experiment in STF accelerator on quantum beam technology program

    To obtain high brightness quasi-monochromatic X-ray via Inverse Compton Scattering, highly intensified laser beam is designed and implemented in a new beam line of KEK Superconducting RF Test Facility (STF) accelerator, under the program of 'Quantum Beam Technology Program'. The STF accelerator is a superconducting Linac using ILC technology, operated with a 5 Hz repetition, 1 ms electron bunch train, and 40 MeV beam energy. The intensified laser beam was generated by a 4-mirror optical cavity with beam-synchronized burst-amplified laser input. The high brightness X-ray is generated by the collision between incoming electron beam and stored laser beam in the 4-mirror cavity. The 4-mirror optical cavity technology has been selected for their stable laser storage with long mirror distance, where electron beam is coming in and out for head-on collision between them. On this report, STF accelerator construction including collision laser system, and also collision results are described. (author)

  7. Industrial application of e-beam accelerators in Korea

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri; Jeong, Kwang-Young

    2012-07-01

    Electron Accelerators are the most common means of radiation processing, and they are used in diverse industries to enhance the physical and the chemical properties of materials and to reduce undesirable contaminants, such as pathogens or toxic by-products of materials. Fifteen thousand [1,500] electron accelerators are commercially used in the world, and this number is eight or nine times greater than the number of Gamma irradiation facilities. Electron accelerators are reliable and durable electrically-sourced equipment that can produce ionizing radiation when it is needed for a particular commercial use. Electron accelerators were introduced in Korea during the 1970s, firstly for research and later for insulated wire and cable production. At present, over sixty electron accelerators are in commercial use, providing several billion USD annually in Korean industries, mainly for purposes such as, productions of wires, cables, thermo-shrinkable materials, foam sheets, and coating, curing of materials, sterilization of medical products, environmental protection, and others. With the increasing needs in the automobile and electronics industries, applicable areas for electron accelerator will be extended greatly in the future.

  8. Laser Ion Acceleration Toward Future Ion Beam Cancer Therapy - Numerical Simulation Sudy-

    Kawata, Shigeo; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Ming

    2013-01-01

    Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions ...

  9. Proceedings of the workshop on deuteron beam acceleration in the KEK 12 GeV PS

    The acceleration of atomic nucleus beam with the 12 GeV proton synchrotron in National Laboratory for High Energy Physics (KEK-PS) has been demanded by the experimenters of nuclear physics, and there was the move to concretely realize it at the beginning of 1980, but actually it was not materialized up to now due to various circumstances. The reason that makes the acceleration even in light nuclear beam like deuterons difficult is various, but one is that the acceleration method considered so far particularly in a booster main ring is very complicated. Recently as one of the various proposals made from the viewpoint of the future utilization of the KEK-PS, that of using nuclear beam and the experiment with the PS-collider have been discussed, and the method of accelerating nuclear beam in the PS was reexamined. As the result, together with the technical progress such as ring RF and linear accelerator augmentation, the method with high realization possibility became to be proposed. This proceedings is the report of the first workshop on deutron acceleration held on February 20, 1991, to prepare for the experiment using deuteron beam. (K.I.)

  10. GeV electron beams from table-top laser-plasma accelerator using capillary waveguides

    Complete test of publication follows. Conventional particle accelerators for radiation sources, high-energy physics, and other applications are typically limited to accelerating gradients ∼ 50 MV/m to avoid material breakdown, resulting in bulky, expensive machines. A new technology for generating intense energetic electron beam and synchronized femtosecond radiation sources is plasma acceleration using high-peak power, ultrashort-pulse, high energy lasers. The physics, research status, and challenges of laser-plasma accelerators and future radiation sources based on these advanced particle accelerators will be discussed. The radiation pressure of an intense laser pulse drives a space charge wave in fully ionized plasma, producing acceleration gradients on the order of 100 GV/m and micron-wavelength accelerating structures for femtosecond beams. To drive such structures, short pulse lasers are used (40 fs, 40 TW, I = 1018-1019 W/cm2), so that the ponderomotive force resonantly drives the plasma wave (Llaser ∼ c/ωp) in cold, low-density plasmas (Tc ∼ 10 eV, nc ∼ 1018 cm-3). Structured plasmas (channels) are used to guide this drive pulse, maintaining the accelerating field beyond the laser diffraction range. Electron beams of narrow energy spread and good emittance have been produced at several facilities by extending the acceleration distance to match the dephasing length over which the particles outrun the wave. Recently, the acceleration distance has been extended again to cm-scale at LBNL, using channels in a capillary discharge, developed at University of Oxford, and resulting in energies up to 1 GeV. Challenges of applications of laser accelerators include control and reproducibility of the electron beam, scaling to higher energies, and detailed modelling to understand what optimization are available. In particular, injection of particles into the wave must be accurately controlled, and shot to shot variation must be reduced.

  11. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    Roychowdhury, P., E-mail: pradipr@barc.gov.in; Mishra, L.; Kewlani, H.; Mittal, K. C. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D. S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  12. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10−3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source

  13. The stability of a cantilever beam subjected to one-dimensional leakage flow

    The stability of a cantilever beam subjected to one-dimensional leakage flow is studied both theoretically and experimentally. It is clarified that in the case that the beam is clamped at the upstream end, the system loses stability by coupled-mode flutter, on the other hand, in the case that the beam is clamped at the downstream end, the system first loses stability by divergence and successively loses stability by flutter with increasing flow velocity. (author)

  14. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. PMID:24100298

  15. Radiation vulcanization of natural rubber latex (NRL) using low energy electron beam accelerator

    The electron beam induced vulcanization of natural rubber latex has been studied using low energy Electron Beam (EB) accelerators of 300, 250 and 175 keV ne latex was irradiated in a special type stainless steel reaction reactor with a stirrer at the bottom of the reactor. From the results it was found that 300 and 250 keV accelerators could effectively vulcanize NRL. But accelerator of 175 keV is too low energy to vulcanize the latex. At the same time a drum type irradiator where thin layer of NRL was irradiated by accelerator, was used for vulcanization of NRL. This type of irradiator also showed good physical properties of vulcanized latex. The effects of beam current and stirrer speed on vulcanization were studied

  16. Development of multi-megawatt negative ion sources and accelerators for neutral beam injectors

    High energy and high power negative ion sources and accelerators have been developed for neutral beam (NB) injectors of future fusion machines such as International Thermonuclear Experimental Reactor (ITER). Using a 5-stage electrostatic accelerator, negative ion beam has been successfully accelerated up to the energy of 1 MeV, which is the required energy for ITER. Powerful negative ion beams of 18.5 A, 360 keV H- and 14.3 A, 380 keV D- have been produced with a high arc efficiency of 0.11 A/kW at a low source pressure of 0.15 Pa in JT-60 negative ion sources, and neutral beams of 5.2 MW have been injected into the plasma. Continuous operation of a Cs-seeded negative ion source has also been demonstrated for 140 hours, which is equivalent to the half year operation in the ITER-NB system. (author)

  17. On the diagnostic of the beam line in A 150 KeV ion accelerator

    The present work investigates the behaviour of the beam inside a lens consisting of three cylinders. The optical parameters of the accelerating lens are obtained. We also find the maximum beam radius at the end of the accelerating lens. The total voltage effect which limits the voltage across an evacuated tube in a manner distinct from that of ordinary insulation, generally prevents a linear increase in voltage with an increase in tube length for fixed voltage gradient along the tube. The avoid the total voltage effect it is necessary to incline the central plane of the electrodes to the axis of the tube, thereby reducing the length of the electric field lines of force to only a fraction of the insulating length of the tube. So acceleration tubes utilizing inclined field principles are discussed and calculations of the ion beam in axis in inclined field tubes with equal maximum displacement of the beam are made

  18. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  19. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted. (authors)

  20. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  1. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    Zhang, Guo-Bo; Chen, Min; Schroeder, C. B.; Luo, Ji; Zeng, Ming; Li, Fei-Yu; Yu, Lu-Le; Weng, Su-Ming; Ma, Yan-Yun; Yu, Tong-Pu; Sheng, Zheng-Ming; Esarey, E.

    2016-03-01

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radius on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.

  2. Beam loss monitor system of the rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    The 3 GeV Rapid Cycling Synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) provides more than 300 kW beam to the Material and Life Science Facility (MLF) and the Main Ring (MR). In such high intensity hadron accelerator, the lost protons that are a fraction of the beam less than 0.1% cause many problems. Those particles bring about a serious radioactivation and a malfunction of the accelerator components. Therefore, the beam loss monitor (BLM) is one of the most important equipment to observe the state of the beam during operation, and to keep a steady operation. Moreover, if we set operation parameters of BLM adequately, it can detect the beam loss that is 10-6 fraction of the beam. Thus it enables fine-tuning of the accelerator. In the J-PARC RCS, a proportional counter and a plastic scintillation counter are used for the beam commission and the stable operation as BLM. We report present status of the BLM system in J-PARC RCS. (author)

  3. Establishment of nuclear data system - Feasibility study for neutron-beam= facility at pohang accelerator laboratory

    Nam Kung, Won; Koh, In Soo; Cho, Moo Hyun; Kim, Kui Nyun; Kwang, Hung Sik; Park, Sung Joo [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    1996-12-01

    Nuclear data which have been produced by a few developed countries in the= past are essential elements to many disciplines, especially to nuclear engineering. As we promote our nuclear industry further to the level of advanced countries, we also have to establish the Nuclear Data System to produce and evaluate nuclear data independently. We have studied the possibility to build a neutron-beam facility utilizing accelerator facilities, technologies and man powers at pohang Accelerator Laboratory. We found specific parameters for the PAL 100-MeV electron linac based on the existing klystron, modulator, accelerating tubes and other facilities in the PAL; the beam energy is 60-100 MeV, the beam current for the short pulse (10 ns) is 2 A and for the long pulse is 500 mA and the pulse repetition rate is 60 Hz. We propose a neutron-beam facility using PAL 100-MeV electron linac where we can use a Ta-target for the neutron generation and three different time-of-flight beam lines (10 m, 20 m, and 100 m). One may find that the proposed neutron-beam facility is comparable with other operating neutron facilities in the world. We conclude that the proposed neutron-beam facility utilizing the existing accelerator facility in the PAL would be an excellent facility for neutron data production in combination with the ` Hanaro` facility in KAERI. 8 refs., 11 tabs., 12 figs. (author)

  4. Beam test of multi-bunch energy compensation system in the accelerator test facility at KEK

    A beam test of the multi-bunch energy compensation system (ECS) was performed using the ΔF method with the 2856±4.327 HMz accelerating structures in the accelerator test facility (ATF) at KEK. The 1.54 GeV S-band linac of the ATF was designed to accelerate a multi-bunch beam the consists of 20 bunches with 2.8 ns spacing. The multi-bunch beam with 2.0 x 1010 electrons/bunch has an energy deviation of about 8.5% at the end of the linac due to transient beam loading without ECS. The ATF linac is the injector of the ATF damping ring (DR), whose energy acceptance is ±0.5%. The beam loading compensation system is necessary in the ATF linac for the successful injection of multi-bunch into DR. The rf system of the linac consists of 8 regular rf units with the SLED system and 2 ECS rf units without the SLED system. The accelerating structures of the regular units are driven at 2856 MHz and the 2 ECS structures are operated with slightly different rf frequencies of 2856±4.327 MHz. In the beam test, we have succeeded in compressing the multi-bunch energy spread within the energy acceptance of the DR using ΔF ECS. The principle of the beam loading compensation system of KEK-ATF and the experimental results are described in this paper. (author)

  5. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  6. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  7. Development of a 400 keV multi-stage electrostatic accelerator for neutral beam injectors

    A three-stage electrostatic accelerator has been tested up to 400 keV. The structure of the accelerator is the same as that of the 500 keV accelerator for the JT-60U negative-ion-based neutral beam injection (N-NBI) system. It was confirmed that the heat loads were mainly due to secondary particles generated by the stripping of H- ions in the accelerator, and suppressed effectively by reducing the operational gas pressure. The heat loads at the source pressure of 0.3 Pa, which is the design pressure of the JT-60U ion source, were evaluated to be 3.4 % (the first acceleration grid), 4.3 % (the second acceleration grid) and 2.4 % (the grounded grid) of the input electric power. A H- beam of 0.18 A has been accelerated successfully up to 400 keV for 1 s from 9 apertures. The accelerated H- current density was 13 mA/cm2, the same current density of the JT-60U source. Higher H- beam current of 0.5 A was also obtained at 350 keV from 49 apertures. (orig.)

  8. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  9. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  10. Timing control of a high voltage pulse deflector to stabilize EUV laser light at the SCSS test accelerator

    A high-voltage pulse deflector cuts out a single bunch beam of 1 ns from a long beam pulse of more than 2 μs generated with a single crystal thermionic gun at the SCSS test accelerator. In order to realize a stable EUV laser, we should precisely control the deflector gate timing, which determines a beam arrival time at a 238-MHz pre-buncher cavity. Unfortunately, the deflector timing system was not enough for our requirement in an early stage, because the gate timing drifted due to a temperature change of a timing module. In addition, machine operators of the accelerator often manually had to tune the gate timing for the stable machine operation. To ameliorate this situation, we improved the timing monitor system of the high-voltage pulse passing through the deflector strip line. The detail of the improvements were exchanging an IC in a level converter module to improve a temperature coefficient and replacing a manual delay line with a remote control one. We also introduced a PID control system using the remote control delay line to automatically stabilize the timing. At the result, the stability of the EUV laser is not affected by the deflector gate timing anymore. (author)

  11. Soliton pair generation in the interactions of Airy and nonlinear accelerating beams

    Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Lu, Keqing; Li, Yuanyuan; Zhang, Yanpeng

    2013-01-01

    We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound states, after shedding some radiation initially. In the out-of-phase case, they repel each other and after an initial interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton pairs generated from those beams do not.

  12. Beam Emittance Measurements for the Low-Energy Demonstration Accelerator Radio-Frequency Quadrupole

    Schulze, M. E.; Gilpatrick, J.D.; Lysenko, W. P.; Rybarcyk, L. J.; Schneider, J. D.; Smith, Jr., Norman Austin; You, L. M.

    2000-01-01

    The Low-Energy Demonstration Accelerator (LEDA) radio-frequency quadrupole (RFQ) is a 100% duty factor (CW) linac that delivers >100 mA of H+ beam at 6.7 MeV. The 8-m-long, 350-MHz RFQ structure accelerates a dc, 75-keV, 110-mA H+ beam from the LEDA injector with >90% transmission. LEDA [1,2] consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW RFQ with associated high-power and low-level rf systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam stop. The beam...

  13. Experimental study of ion beam optics in a two-stage accelerator

    Hydrogen ion beam optics in a two-stage linear acceleration system is studied by examining the beam divergence as a function of the voltage and gap distribution, the beam perveance, the background gas pressure, the aspect ratio, and the total accelerating energy (60-110 keV). The system consists of four electrodes with single, cylindrical, straight-bore apertures acting as an extraction-accel--decel column. An optimum relation between the field ratio and the extraction perveance is obtained from measurements for the minimum beam divergence condition. The HWHM divergence angle is 0 under optimum conditions. Qualitative agreement between the measurements and a previous theoretical study is noticed. A potential application of the results to high energy neutral beam injectors for fusion research is also discussed

  14. Application of Real-time Digitization Technique in Beam Measurement for Accelerators

    Zhao, Lei; Gao, Xingshun; Liu, Shubin; An, Qi

    2015-01-01

    Beam measurement is very important for accelerators. With the development of analog-to-digital conversion techniques, digital beam measurement becomes a research hot spot. IQ (In-phase & Quadrature-phase) analysis based method is an important beam measurement approach, the principle of which is presented and discussed in this paper. The State Key Laboratory of Particle Detection and Electronics in University of Science and Technology of China has devoted efforts to the research of digital beam measurement based on high-speed high-resolution analog-to-digital conversion, and a series of beam measurement instruments were designed for China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS).

  15. Spectrum shaping of accelerator-based neutron beams for BNCT

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  16. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  17. Beam focusing by aperture displacement in two-stage acceleration system

    The effects of beam focusing and the influence of total beam deflection on injection efficiency are estimated numerically for the neutral beam injectors of large tokamaks such as the JT-60. It is shown that beam focusing is important in improving injection efficiency in such a large device. As one method of focusing, beam focusing by aperture displacement was investigated in the two-stage acceleration system on the basis of a thin lens approximation. The simultaneous displacement of apertures in the plasma and gradient grids (or suppressor and exit grids) was found to be adequate for beam focusing, because the focal point hardly depends on the field intensity ratio which determines the two-stage ion beam optics. (author)

  18. High-Energy Beam Transport in the Hanford FMIT Linear Accelerator

    The High-Energy Beam Transport (HEBT) for the Hanford Fusion Materials Irradiation Test (FMIT) Facility's Linear Accelerator must transport a large emittance, high-current, high-power continuous duty deuteron beam with a large energy spread. Both periodic and nonperiodic systems have been designed to transport and shape the beam as required by the liquid lithium target. An energy spreader system distributes the Bragg Peak within the lithium. A beam spreader and a beam stop have been provided for tune-up purposes. Characterizing the beam will require extensions of beam diagnostics techniques and non-interceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports

  19. Transport of a high brightness proton beam through the Munich tandem accelerator

    Moser, M., E-mail: marcus.moser@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Department für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Greubel, C. [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Department für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Carli, W. [Beschleunigerlabor MLL, 85478 Garching (Germany); Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T. [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Department für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Dollinger, G., E-mail: guenther.dollinger@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Department für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany)

    2015-04-01

    Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.

  20. Transport of a high brightness proton beam through the Munich tandem accelerator

    Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction

  1. Electron Cloud Density Measurements in Accelerator Beam-pipe Using Resonant Microwave Excitation

    Sikora, John P

    2013-01-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. This paper describes a technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length, as well as greatly improving the signal to noise ratio.

  2. Stability analysis of multigrid acceleration methods for the solution of partial differential equations

    Fay, John F.

    1990-01-01

    A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.

  3. Accelerated stability testing of organic photovoltaics using concentrated sunlight

    Katz, Eugene A.; Manor, Assaf; Mescheloff, Asaf;

    2012-01-01

    We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported.......We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported....

  4. Interactive visualization of particle beams for accelerator design

    We describe a hybrid data-representation and rendering technique for visualizing large-scale particle data generated from numerical modeling of beam dynamics. The basis of the technique is mixing volume rendering and point rendering according to particle density distribution, visibility, and the user's instruction. A hierarchical representation of the data is created on a parallel computer, allowing real-time partitioning into high-density areas for volume rendering, and low-density areas for point rendering. This allows the beam to be interactively visualized while preserving the fine structure usually visible only with slow point based rendering techniques

  5. Acceleration region influence on beam parameters on stripping foil

    Some formulas describing the beam parameters on the stripping foil (SF) as a function of the radial amplitude of betatron oscillations and energy gain are derived. The results computed by these formulas are in good agreement with the results of the numerical calculations. Obtained results show that between the radial emittance and the energy spread exists parametric dependence via amplitude of radial betatron oscillations. This conclusion allows one to create a working diagram of expected beam parameters on SF. This diagram may be particularly useful for the extraction system designers since it gives relationship between parameters considered as the extraction system input parameters. (author)

  6. GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS

    Yu-Chiu Chao

    2007-06-25

    Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.

  7. Electron beam accelerator at BARC-BRIT complex - electron beam processing of materials and industrial utilization

    During the last decade, the 2MeV/20kW electron beam (EB) accelerator located at BARC-BRIT complex, Vashi has been successfully utilised for non-thermal applications to develop speciality products useful for the industry. Polymer materials are exposed to high energy electrons to induce crosslinking and degradation reactions in a number of industrial products without the use of external chemicals and additives. Various EB crosslinked products viz. PE O-rings, automotive components, automobile tyres, electrical insulations, etc have been found to be much superior in quality compared to those produced conventionally. A process has been developed to enhance colours in the polished diamonds and gem stones using EB irradiation at the facility which has attracted much attention in the Indian diamond industry as a value-addition process. Recycling of polymer waste processed under EB to produce microfine PTFE powder, to reuse in automobile industry etc. has shown good potential for the industrial use. The process feasibility both in terms of economics and technology have been amply demonstrated on a technological scale by installing special conveyors at our facility for irradiating various industrial products. Around 100 km cable insulations, 1.5 million PE O-rings and more than 40000 carats of polished diamonds have been processed in our facility over a period of time on commercial scale. Encouraged with the results, Indian private entrepreneurs have set up dedicated EB machines in some of the most significant industries producing wire and cables, electrical gadgets based on polymer composites, automobile tyres and diamonds. The products are unique in properties and are in some cases, became import substitutes. The industry is now fully geared up to adapt the technology by realising the advantages viz ease in adaptability, convenient, safe and environmental-friendly nature. Encouraged by the process demonstrations, while five EB accelerators were setup and are in operation

  8. Characteristics of pulsed heavy ion beam generated in bipolar pulse accelerator

    We have developed a new type of a pulsed ion beam accelerator named 'bipolar pulse accelerator' for improvement of the purity of the intense pulsed ion beam. The system utilizes a magnetically insulated accelerate on gap and was operated with the bipolar pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside of the grounded anode. Source plasma (nitrogen) of current density of ≈30 A/cm2 and pulse duration of ≈1.0 μs was injected into the acceleration gap. When the bipolar pulse of -114 kV, 70 ns (1st pulse) and 85 kV, 62 ns (2nd pulse) was applied to the drift tube, the ions were successfully accelerated from the grounded anode to the drift tube in the 1st gap by the negative pulse of the bipolar pulse. The pulsed ion beam with current density of 60 A/cm2 and pulse duration of ≈50 ns was obtained at 48 mm downstream from the anode surface. The energy spectrum of the ion beam was evaluated by a magnetic energy spectrometer. The ion energy was in reasonable good agreement with the acceleration voltage, i.e., 1st pulse (negative pulse) voltage of the bipolar pulse. (author)

  9. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators

    Avila-Rodriguez, M.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada); Unidad PET/CT-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (Mexico)], E-mail: avilarod@uwalumni.com; Wilson, J.S.; McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada)

    2009-11-15

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8 MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  10. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired. PMID:19054679

  11. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  12. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  13. Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators

    Beierholm, Anders Ravnsborg; Behrens, C.F.; Hoffmann, L.;

    2013-01-01

    -resolved dosimetry on a highly detailed level. In this study, we present beam data for a Varian TrueBeam linear accelerator, which is capable of delivering flattening-filter free (FFF1) clinical X-ray beams. The beam data have been acquired using an in-house developed dosimetry system based on fibre-coupled organic...... scintillators. The presented data exhibit high accuracy and precision when compared with data obtained using commercial dosimetry methods, and agree well with results published in the literature....

  14. Computer simulation of 2-D and 3-D ion beam extraction and acceleration

    Ido, Shunji; Nakajima, Yuji [Saitama Univ., Urawa (Japan). Faculty of Engineering

    1997-03-01

    The two-dimensional code and the three-dimensional code have been developed to study the physical features of the ion beams in the extraction and acceleration stages. By using the two-dimensional code, the design of first electrode(plasma grid) is examined in regard to the beam divergence. In the computational studies by using the three-dimensional code, the axis-off model of ion beam is investigated. It is found that the deflection angle of ion beam is proportional to the gap displacement of the electrodes. (author)

  15. Thermal response of the multiplier of an accelerator-driven system to beam interruptions

    Thermal response of the multiplier of an accelerator-driven system to beam trips has been calculated for sodium cooled and lead-bismuth cooled multipliers. The temperature transients caused by a beam trip lead to thermal fatigue in structural components, and restoring the beam causes an additional temperature transient that adds to thermal fatigue. Design lifetimes for various multiplier components are calculated, based on the frequency of beam interruptions and on the thermal fatigue per interruption. Mitigation strategies to increase design lifetimes are discussed. (author)

  16. Thermal response of the multiplier of an accelerator driven system to beam interruptions

    Thermal response of the multiplier of an accelerator driven system to beam trips has been calculated for sodium cooled and lead-bismuth cooled multipliers. The temperature transients caused by a beam trip lead to thermal fatigue in structural components, and restoring the beam causes an additional temperature transient that adds to thermal fatigue. Design lifetimes for various multiplier components are calculated, based on the frequency of beam interruptions and on the thermal fatigue per interruption. Mitigation strategies to increase design lifetimes are discussed

  17. Trends and applications for MeV electrostatic ion beam accelerators

    Norton, G.A.; Stodola, S.E., E-mail: nec@pelletron.com

    2014-08-15

    Highlights: • Discussion of properties of electrostatic accelerators. • Listing and description of the main techniques used for materials analysis and modification. • Summary of specific applications and the related technique. • New trends in fission reactor research and biomedical research related to electrostatic accelerators. - Abstract: The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background {sup 14}C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  18. Energy loss mechanism of a gold ion beam on a tandem acceleration system

    Heavy ion beam probe (HIBP) is used as a reliable method to measure plasma potential and its fluctuation in magnetically confined fusion plasma. The origins of the energy spread on a tandem accelerator system are the fluctuation of acceleration voltage, the energy spread of negative ions produced in an ion source, and the energy broadening caused in a charge stripping gas cell. In the present work, the experimental and theoretical studies mainly on the second and third problems were carried out. A tandem acceleration test stand was constructed, which consists of a negative gold ion source, a tandem acceleration system, a movable Faraday cup and an energy analyzer. The energy spectra of the Au- beam extracted from the ion source were measured. The energy shift between the primary negative ion beam and the positive ion beam converted in a gas cell at small gas thickness was measured. The energy loss spectra and the energy broadening of Au+ beam are explained. A simple model is proposed by using the semi-classical internal energy transfer function of Firsov and the scattering by the unified potential of Ziegler. The energy broadening of Au+ beam produced by a tandem system can be estimated by the present theoretical prediction. (K.I.)

  19. Development of the heat sink structure of a beam dump for the proton accelerator

    The beam dump is the essential component for the good beam quality and the reliable performance of the proton accelerator. The beam dump for a 20 MeV and 20 mA proton accelerator was designed and manufactured in this study. The high heats deposited, and the large amount of radioactivity produced in beam dump should be reduced by the proper heat sink structure. The heat source by the proton beam of 20 MeV and 20 mA was calculated. The radioactivity assessments of the beam dump were carried out for the economic shielding design with safety. The radioactivity by the protons and secondary neutrons in designed beam dump were calculated in this sturdy. The effective engineering design for the beam dump cooling was performed, considering the mitigation methods of the deposited heats with small angle, the power densities with the stopping ranges in the materials and the heat distributions in the beam dump. The heat sink structure of the beam dump was designed to meet the accelerator characteristics by placing two plates of 30 cm by 60 cm at an angle of 12 degree. The highest temperatures of the graphite, copper, and copper faced by cooling water were designed to be 223 degree, 146 degree, and 85 degree, respectively when the velocity of cooling water was 3 m/s. The heat sink structure was manufactured by the brazing graphite tiles to a copper plate with the filler alloy of Ti-Cu-Ag. The brazing procedure was developed. The tensile stress of the graphite was less than 75% of a maximum tensile stress during the accelerator operation based on the analysis. The safety analyses for the commissioning of the accelerator operation were also performed. The specimens from the brazed parts of beam dump structure were made to identify manufacturing problems. The soundness of the heat sink structure of the beam dump was confirmed by the fatigue tests of the brazed specimens of the graphite-copper tile components with the repetitive heating and cooling. The heat sink structure developed

  20. Chromaticity of the lattice and beam stability in energy-recovery linacs

    Litvinenko, V.N.

    2011-12-23

    Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

  1. Plasmas in particle accelerators: adiabatic theories for bunched beams

    Three different formalisms for discussing Vlasov's equation for bunched beam problems with anharmonic space charge forces are outlined. These correspond to the use of a drift kinetic equation averaged over random betatron motions; a fluidkinetic adiabatic regime analogous to the theory of Chew, Goldberger, and Low; and an adiabatic hydrodynamic theory

  2. Computer and network applications in beam measurement system of accelerator

    The applications of computer and its network in beam measurement system for Beijing Electron Positron Collider (BEPC) are described. It includes the instrumentation interfaces, the hardware and software implementations for the network connection between microcomputers and VAX series minicomputers. The communication program using Windows socket, a network programming interface for Microsoft Windows, are also described

  3. BEAM DYNAMICS SIMULATIONS OF SARAF ACCELERATOR INCLUDING ERROR PROPAGATION AND IMPLICATIONS FOR THE EURISOL DRIVER

    J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)

    AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.

  4. Beam Matching to a Plasma Wakefield Accelerator Using a Ramped Density Profile at the Plasma Boundary

    Marsh, K.A.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-02-17

    An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense plasma regime, the drive beam creates an ion channel which acts on the beam as a strong thick focusing lens. The ion channel causes the beam to undergo multiple betatron oscillations along the length of the plasma. There are several advantages if the beam size can be matched to a constant radius. First, simulations have shown that instabilities such as hosing are reduced when the beam is matched [1]. Second, synchrotron radiation losses are minimized when the beam is matched. Third, an initially matched beam will propagate with no significant change in beam size in spite of large energy loss or gain. Coupling to the plasma with a matched radius can be difficult in some cases. This paper shows how an appropriate density ramp at the plasma entrance can be useful for achieving a matched beam. Additionally, the density ramp is helpful in bringing a misaligned trailing beam onto the drive beam axis. A plasma source with boundary profiles useful for matching has been created for the E-164X PWFA experiments at SLAC.

  5. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  6. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report

    R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

    2011-11-28

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  7. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  8. Beam Extraction for 1-MV Electrostatic Accelerator at the 300 kV Test Stand

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. A beam extraction experiment for the test stand was performed, and the beam current was measured using a faraday cup in the chamber. A beam extraction results for the RF ion source will be presented. Beam extraction from the RF ion source of the test stand is verified by measuring the beam current with a faraday cup in the chamber. Thus far NI Labview, PLC and faraday cup have been used to measure the beam current. The OPC server is useful for monitoring the PLC values. The average beam current of (a), (b) and (c) shown in figure 2 are 110.241µA, 105.8597µA and 103.5278µA respectively

  9. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than  ±2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy. (paper)

  10. Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-Gradient Accelerating Structures

    Tecker, F; Kelisani, M; Doebert, S; Grudiev, A; Quirante, J; Riddone, G; Syratchev, I; Wuensch, W; Kononenko, O; Solodko, A; Lebet, S

    2013-01-01

    RF breakdown is a key issue for the multi-TeV highluminosity e+e- Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.

  11. Simulation of Beam Envelop Transport in Medium Energy of Ion Accelerator

    Simulation of beam envelop transport in medium energy of ion accelerator (Tandem) using beam particle optic laboratory program of version 1.1.1 has been carried out. The accelerated ion beam are hydrogen and nitrogen ion, which leave the SNICS ion source within X and Y direction of initial radius of 1 cm respectively and having vertical and horizontal degree of emittance of 16.4 π mm mRad respectively. The simulation is completed twice, i.e. for negative ion is made on low energy of accelerator and for positive ion is arranged on medium energy of accelerator. To keep the beam envelop radius of simulation result of low energy simulation, the fitting program is used with four einzel lenses. two bending magnet and one electrostatic quadrupole. On the first einzel lens the obtained focus length is 70 cm, the bending magnetic field as 3.378 kG, the angle of bending as 30o and the curvature radius as 0.533 m. On the second einzel lens the obtained focus length is 24 cm with bending beam angle as 90o, the bending magnetic field obtained as 3.89 kG and the obtained curvature radius is 0.457 m. The beam envelop is then entered into einzel lens with focus length of 30 cm and it then focused by using electrostatic quadrupole with coefficient quadrupole 54.25 and -89.51 and electrode length of 0.07 m. Before the beam envelop entered accelerator tube, it pass the einzel lens with focus length of 26 cm. To accelerate positive ion of the beam envelop simulation at medium energy the -1.5 MV voltage of accelerator tube is used, then the beam passes through a bending magnet and a magnetic quadrupole. Beam envelop transport by using fitting method obtained a bending magnet 15o and a magnetic field strength 3.997 kG. While at the electrode length of 0.14 m of quadrupole magnetic doublet, it was obtained the magnetic field strengths of 3.2 kG and -3.4 kG. (author)

  12. Beam optics and lattice design for particle accelerators

    Holzer, Bernhard J.

    2013-01-01

    The goal of this manuscript is to give an introduction into the design of the magnet lattice and as a consequence into the transverse dynamics of the particles in a synchrotron or storage ring. Starting from the basic principles of how to design the geometry of the ring we will briefly review the transverse motion of the particles and apply this knowledge to study the layout and optimization of the principal elements, namely the lattice cells. The detailed arrangement of the accelerator magne...

  13. Hadron production measurements to constrain accelerator neutrino beams

    Korzenev, Alexander

    2014-01-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the neutrino flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted lat...

  14. Thermionic gun control system for the CEBAF [Continuous Electron Beam Accelerator Facility] injector

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  15. LHC Report: Rehearsing the LHC accelerator systems for the Run 2 start-up with beam

    Reyes Alemany Fernandez

    2015-01-01

    While the commissioning of the superconducting circuits is ongoing, great care is also being taken to make sure that the other key LHC accelerator systems are qualified for beam. Since spring 2014, small-scale integration tests on the accelerator systems have been scheduled and carried out successfully to exercise them fully and thoroughly debug their multiple interfaces. The LHC Operations team leads this activity in tight collaboration with the equipment experts and the essential support of the Accelerator Controls group. The tests start once individual system qualification has been performed by the equipment owners and they are ready to be handed over to operations. These tests performed by Operations are called dry runs – dry because they are performed without beam – and they are carried out from the CERN Control Centre (CCC) using the same high-level software applications that will be used during beam operation. The dry runs are the first step towards a global integration test ...

  16. Accelerator and Ion Beam Tradeoffs for Studies of Warm Dense Matter

    Barnard, John J; Callahan, Debra; Davidson, Ronald C; Friedman, Alex; Grant-Logan, B; Grisham, Larry; Lee, Edward; Lee, Richard; Olson, Craig; Rose, David; Santhanam, Parthiban; Sessler, Andrew M; Staples, John W; Tabak, Max; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    One approach to heat a target to "Warm Dense Matter" conditions (similar, for example, to the interiors of giant planets or certain stages in Inertial Confinement Fusion targets), is to use intense ion beams as the heating source. By consideration of ion beam phase space constraints, both at the injector, and at the final focus, and consideration of simple equations of state, approximate conditions at a target foil may be calculated. Thus target temperature and pressure may be calculated as a function of ion mass, ion energy, pulse duration, velocity tilt, and other accelerator parameters. We examine the variation in target performance as a function of various beam and accelerator parameters, in the context of several different accelerator concepts, recently proposed for WDM studies.

  17. Reduction of beam corkscrew motion on the ETAII linear induction accelerator

    The ETAII linear induction accelerator (6MeV, 3kA, 70ns ) is designed to drive a microwave free electron laser (FEL) and demonstrate the front end accelerator technology for a shorter wavelength FEL. Performance to date has been limited by beam corkscrew motion that is driven by energy sweep and misalignment of the solenoidal focusing magnets. Modifications to the pulse power distribution system and magnetic alignment are expected to reduce the radius of corkscrew motion from its present value of 1 cm to less than 1mm. The modifications have so far been carried out on the first 2.7 MeV (injector plus 20 accelerator cells) and experiments are beginning. In this paper the authors present calculations of central flux line alignment, beam corkscrew motion and beam brightness that are anticipated with the modified ETAII

  18. Global Accelerator Network, Control Systems And Beam Diagnostics

    Raich, U

    2003-01-01

    Falling funds force all accelerator centers to look for new sources of financing and for the most efficient way of implementing new projects. This very often leads to collaborations between institutes scattered around the globe, a problem well known to big high energy physics experiments. The collaborations working on big detectors e.g. for LHC started thinking about detector acquisition and control systems which can be remotely used from their respective home institutes with minimal support on the spot. This idea was taken up by A. Wagner from DESY for the TESLA machine, who proposed the “Global Accelerator Network” (GAN) enabling users from around the world to run an accelerator remotely. Questions around this subject that immediately come to mind Is the GAN only relevant to big labs ? Or is it reasonable e.g. for operators or engineers in charge to do certain manipulations from home? Are our instruments ready for the GAN? Does the fact of being “GAN ready” increa...

  19. Strange quark matter in the Universe and accelerator nuclear beams

    An almost symmetric mixture of u, d and s-quarks - Strange Quark Matter (SQM) is strongly argued to be the ground and absolutely stable of the matter. Astrophysical objects, supposed to be the SQM states, could be formed as the result of the Big Bang (in the early Universe) and the conversion of neutron stars into strange ones. Such objects are considered to be favourable candidates as black holes. The unique possibility to produce the SQM under terrestrial conditions (at accelerator laboratories) are violent relativistic nucleus-nucleus collisions so called 'little big bang'. The expected singulares of SQM are reviewed which could be revealed from astrophysical observations of peculiarities of large SQM objects as well as from accelerator experiments with searching smaller SQM states including the simplest one - metastable six-quark H dihyperon. The first results of the Dubna search experiments, with considerable heating of matter and formation a dense strangeness abundant fireball (mixed phase?) in central nuclear collisions, is presented. Under these favourable conditions a candidate for H dihyperon is observed and an upper limit of production cross sections of this SQM state is estimated. Some prospects and advantages of further searches for light SQM states, using the JINR new superconducting accelerator - Nuclotron with energy 5-6 GeV per nucleon, are briefly outlined. 19 refs., 7 figs

  20. Colliding ionization injection in a beam driven plasma accelerator

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  1. Stability of the self-accelerating universe in massive gravity

    Khosravi, Nima [Cosmology Group, African Institute for Mathematical Sciences, Muizenberg, 7945 (South Africa); Niz, Gustavo; Koyama, Kazuya; Tasinato, Gianmassimo, E-mail: nima@aims.ac.za, E-mail: g.niz@ugto.mx, E-mail: Kazuya.Koyama@port.ac.uk, E-mail: gianmassimo.tasinato@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-08-01

    We study linear perturbations around time dependent spherically symmetric solutions in the Λ{sub 3} massive gravity theory, which self-accelerate in the vacuum. We find that the dynamics of the scalar perturbations depend on the choice of the fiducial metric for the background solutions. For particular choice of fiducial metric there is a symmetry enhancement, leaving no propagating scalar degrees of freedom at linear order in perturbations. In contrast, any other choice propagates a single scalar mode. We find that the Hamiltonian of this scalar mode is unbounded from below for all self-accelerating solutions, signalling an instability.

  2. Mechanical stability study for Integrable Optics Test Accelerator at Fermilab

    McGee, M. W.; Andrews, R; Carlson, K.; Leibfritz, J.; Nobrega, L.; Valishev, A.

    2016-01-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 3.96 m and (2) 3.1 m long girders with identical cross secti...

  3. CEBAF [Continuous Electron Beam Accelerator Facility] scientific program

    The principal scientific mission of the Continuous Electron Beam Facility (CEBAF) is to study collective phenomena in cold (or normal) nucler matter in order to understand the structure and behavior of macroscopic systems constructed from nuclei. This document discusses in broad popular terms those issues which the CEBAF experimental and theoretical program are designed to address. Specific experimental programs currently planned for CEBAF are also reivewed. 35 refs., 19 figs

  4. Interactive visualization of particle beams for accelerator design

    Wilson, Brett; Ma, Kwan-Liu; Qiang, Ji; Ryne, Robert

    2002-01-01

    We describe a hybrid data-representation and rendering technique for visualizing large-scale particle data generated from numerical modeling of beam dynamics. The basis of the technique is mixing volume rendering and point rendering according to particle density distribution, visibility, and the user's instruction. A hierarchical representation of the data is created on a parallel computer, allowing real-time partitioning into high-density areas for volume rendering, and low-density are...

  5. Stability properties of intense nonneutral ion beams for heavy-ion fusion

    The transverse stability properties of an intense ion beam in a quadrupole magnetic field are investigated within the framework of the Vlasov-Maxwell equations, including the important influence of beam rotation and transverse beam temperature on stability behaviour. It is shown that the strongest instability occurs for zero rotational frequency ωsub(h)=(O). The system can, however, be easily stabilized by slightly detuning the rotational frequency from ωsub(h) = O. (author)

  6. Preliminary experiments of a repetitive relativistic electron beam accelerator using tesla transform

    A repetitive Tesla-type relativistic electron beam accelerator was constructed and tested. A Tesla transformer with air core was adopted in the accelerator for charging of oil-filled Blumlein transmission line. The diode with flat cathode and meter foil anode was constructed. The main switch of the accelerator is a self-breakdown oil spark gap. Preliminary experiments were performed under rep-rate 0.2 Hz and 1 Hz. At 0.2 Hz, relativistic electron beam accelerator continuously operated for over than 70 shots. The voltage amplitude of diode of 300 kV, the pulse width (FWHM) of 30 ns and the rise-time of 5 ns were obtained

  7. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  8. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  9. Beamed neutron emission driven by laser accelerated light ions

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ∼ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  10. Beamed neutron emission driven by laser accelerated light ions

    Kar, S; Ahmed, H; Alejo, A; Robinson, A P L; Cerchez, M; Clarke, R; Doria, D; Dorkings, S; Fernandez, J; Mirfyazi, S R; McKenna, P; Naughton, K; Neely, D; Norreys, P; Peth, C; Powell, H; Ruiz, J A; Swain, J; Willi, O; Borghesi, M

    2015-01-01

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  11. Acceleration of image reconstruction by generalized Landweber's iteration for X-ray cone-beam CT

    Low-dose data acquisition is required for the imaging of rapidly moving objects, and the number of projections is usually sparse. In this case, severe artifacts will be introduced by conventional Filtered-backprojection (FBP) method. However, Iterative reconstruction (IR) has been shown to achieve great image quality improvements with the advantage of better noise tolerance and handling of sparse data. The main repellant for using IR in clinical situations was the slow speed. In this paper, we introduce an acceleration procedure based on the generalized Landweber's iteration (GLI) method for X-ray CT image reconstruction from cone-beam projections. Compared to conventional iterative methods, GLI can accelerate the reconstruction of high frequency components and preserve the stability of the solution when the system matrix is illconditioned. Specifically, the relaxation parameter in GLI is selected to be a linear operator, which can shape the response to singular functions of the forward operator. We study various linear operators, and their behavior with respect to speed up the convergence. Basically, we choose the linear operator as polynomials. Compared to conventional iterative methods which updates the image by multiplying a constant to the difference of measured and calculated projections, GLI methods update the image by several reprojection-backprojection of the difference of measured and calculated projections. At last, we compare the performance of using various linear operators by numerical experiments. Computational complexity is also analyzed. While our primary interest is in X-ray CT image reconstruction, it can be applied to radar, acoustic and geophysical imaging, to name a few. (orig.)

  12. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble

  13. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  14. Development of Multiple Beam Guns for High Power RF Sources for Accelerators and Colliders

    There is a need for high power RF sources for the next generation of accelerators and colliders. Sources that operate at reduced beam voltage allow solid state power supplies with significant cost reduction over conventional pulse modulators. Multiple beam RF sources provide reduced beam voltage by using a multiplicity of beamlets that traverse the RF circuit through individual beam tunnels, reducing the space charge forces that drive the voltage requirement. The current generation of multiple beam devices typically use Brillouin focusing, which limits high power operation. The devices reported here utilize confined flow focusing which allows much tighter control of the electron beamlets and consequently, higher power operation. Progress in the development of a 100 MW multiple beam electron gun with confined flow focusing is reported

  15. Effect of beam emittance on self-modulation of long beams in plasma wakefield accelerators

    Lotov, K V

    2015-01-01

    The initial beam emittance determines the maximum wakefield amplitude that can be reached as a result of beam self-modulation in the plasma. The wakefield excited by the fully self-modulated beam decreases linearly with the increase of the beam emittance. There is a value of initial emittance beyond which the self-modulation does not develop even if the instability is initiated by a strong seed perturbation. The emittance scale at which the wakefield is twice suppressed with respect to the zero-emittance case (the so called critical emittance) is determined by inability of the excited wave to confine beam particles radially and is related to beam and plasma parameters by a simple formula. The effect of beam emittance can be observed in several discussed self-modulation experiments.

  16. Operating experience with acceleration of high intensity heavy-ion beams in RIBF

    Since 2008, the accelerator complex of RIKEN RI-Beam Factory has provided heavy ion beams which nuclear physicists requested. To date, the ions which have been developed are deuteron (polarized, unpolarized), 4He, 14N, 18O, 48Ca, 70Zn, 86Kr, 124Xe, and 238U. Using the acceleration mode of variable energy, the energy range from 230 to 235 MeV/u has been achieved with 18O and their intensities were 1 pμA to the maximum. On the other hand the beam currents of very heavy ions like uranium did not respond to the intensities requested for the nucleosynthesis experiments at RIBF. In the last year the uranium beam with an intensity of 3.5 pnA has been successfully achieved owing to the new injector RILAC2 and 28 GHz SC-ECR ion source. (author)

  17. On the effect of the inductive self-acceleration of heavy-current electron beam

    The possibility of existing the effect of the electron beam inductive self-acceleration by its reset on the thick diaphragm with a small opening is studied. The computer modeling of the dynamics of the heavy-current relativistic electron beam reset on the thick diaphragm with openings is carried out. The modeled structure constitutes the heavy-current vacuum electron diode with and annular cathode and thick diaphragm with a thin annular opening. The results on modeling the 3 mm opening width, 8 mm diaphragm thickness and 5 kA beam current are presented. The computer modeling results prove the possibility of existence of the effect of the heavy-current electron beam inductive self-acceleration by its transmission through the thick diaphragm with an opening

  18. Accelerator and Ion Beam Tradeoffs for Studies of Warm Dense Matter

    One approach for heating a target to ''Warm Dense Matter'' conditions (similar, for example, to the interiors of giant planets or certain stages in Inertial Confinement Fusion targets), is to use intense ion beams as the heating source (see refs.[6] and [7] and references therein for motivation and accelerator concepts). By consideration of ion beam phase space constraints, both at the injector, and at the final focus, and consideration of simple equations of state and relations for ion stopping, approximate conditions at a target foil may be calculated. Thus target temperature and pressure may be calculated as a function of ion mass, ion energy, pulse duration, velocity tilt, and other accelerator parameters. We connect some of these basic parameters to help search the extensive parameter space (including ion mass, ion energy, total charge in beam pulse, beam emittance, target thickness and density)

  19. Beam optics optimization in the KEK digital accelerator LEBT considering the effect of remnant magnetic fields

    KEK Digital Accelerator is a compact induction synchrotron which sets little limitation on the charged ion beam's species and injection velocities. Extracted from an Electron Cyclotron Resonance Ion Source (ECRIS), the ion beam (A/Q=2, 4) is transported though Low Energy Beam Transport (LEBT) line before injected into the ring for acceleration. As the velocity is relatively small (β∼10-2), effects originating from remnant fields in different magnets along the LEBT line should be taken into account for orbit correction and optics optimization. With the help of online wire monitors, the following goals have been realized: (1) Beam orbit correction; (2) Twiss parameters and emittance at a chosen position are estimated; (3) beta function and injection focusing mismatch are studied with fitted results. These processes and results are presented and discussed in this paper. (author)

  20. Design and fabrication of an ion accelerator for TFTR-type neutral beam systems

    The design of the prototype 120-keV, 65-A, 0.5-sec ion accelerator for TFTR-type beam systems is described. Details of the manufacture of the constituent parts are given along with descriptions of the major components of the accelerator. Included are the molybdenum grid structures, molybdenum shields, stainless steel hats and the epoxy insulator. Specific manufacturing problems are discussed along with the results of tests to determine the voltage holding capabilities of the assembly