WorldWideScience

Sample records for accelerates macrophage-mediated vascular

  1. Accelerated Vascular Aging as a Paradigm for Hypertensive Vascular Disease: Prevention and Therapy.

    Barton, Matthias; Husmann, Marc; Meyer, Matthias R

    2016-05-01

    Aging is considered the most important nonmodifiable risk factor for cardiovascular disease and death after age 28 years. Because of demographic changes the world population is expected to increase to 9 billion by the year 2050 and up to 12 billion by 2100, with several-fold increases among those 65 years of age and older. Healthy aging and prevention of aging-related diseases and associated health costs have become part of political agendas of governments around the world. Atherosclerotic vascular burden increases with age; accordingly, patients with progeria (premature aging) syndromes die from myocardial infarctions or stroke as teenagers or young adults. The incidence and prevalence of arterial hypertension also increases with age. Arterial hypertension-like diabetes and chronic renal failure-shares numerous pathologies and underlying mechanisms with the vascular aging process. In this article, we review how arterial hypertension resembles premature vascular aging, including the mechanisms by which arterial hypertension (as well as other risk factors such as diabetes mellitus, dyslipidemia, or chronic renal failure) accelerates the vascular aging process. We will also address the importance of cardiovascular risk factor control-including antihypertensive therapy-as a powerful intervention to interfere with premature vascular aging to reduce the age-associated prevalence of diseases such as myocardial infarction, heart failure, hypertensive nephropathy, and vascular dementia due to cerebrovascular disease. Finally, we will discuss the implementation of endothelial therapy, which aims at active patient participation to improve primary and secondary prevention of cardiovascular disease. PMID:27118295

  2. Engineered human vascularized constructs accelerate diabetic wound healing.

    Shen, Yu-I; Cho, Hongkwan; Papa, Arianne E; Burke, Jacqueline A; Chan, Xin Yi; Duh, Elia J; Gerecht, Sharon

    2016-09-01

    Stem cell-based therapy is emerging as a promising approach for chronic diabetic wounds, but strategies for optimizing both cellular differentiation and delivery remain as major obstacles. Here, we study bioengineered vascularized constructs as a therapeutic modality for diabetic wound healing. We developed a wound model in immunodeficient rodent and treated it with engineered vascularized constructs from endothelial progenitors or early vascular cells-derived from human induced pluripotent stem cells (hiPSCs) reprogrammed either from healthy donor or type-1 diabetic patient. We found that all vascularized constructs expedited wound closure and reperfusion, with endothelial progenitor constructs having the earliest maximum closure rate followed closely by healthy and diabetic hiPSC-derivative constructs. This was accompanied by rapid granulation layer formation and regression in all vascularized construct groups. Macrophage infiltration into the hydrogel matrix occurred during early stages of healing, seeming to facilitate rapid neovascularization of the wound that could then better persist in the vascularized constructs. Blood perfusion of the human vasculature could be detected after three days, indicating rapid integration with the host vasculature. Overall, we propose a potential therapeutic strategy using allograft or autologous vascularized constructs to treat type-1 diabetic wounds. This approach highlights the unprecedented prospects of designing patient-specific stem cell therapy. PMID:27328431

  3. Accelerating Vascularization in Polycaprolactone Scaffolds by Endothelial Progenitor Cells

    Singh, Shivani; Wu, Benjamin M.; Dunn, James C.Y.

    2011-01-01

    Vascularization is a major challenge in tissue engineering. The purpose of this study is to expedite the formation of blood vessels in porous polycaprolactone (PCL) scaffolds by the delivery of endothelial progenitor cells (EPCs). To establish a pro-angiogenic and pro-vasculogenic microenvironment, we employed EPCs seeded in PCL scaffold with surface-immobilized heparin and vascular endothelial growth factor (VEGF). EPCs seeded on scaffolds with VEGF exhibited phosphorylation of the receptor....

  4. Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis

    Cheung, Yiu-Fai

    2014-01-01

    Kawasaki disease (KD), an acute vasculitis that primarily affects young children, is the most common acquired paediatric cardiovascular disease in developed countries. While sequelae of arterial inflammation in the acute phase of KD are well documented, its late effects on vascular health are increasingly unveiled. Late vascular dysfunction is characterized by structural alterations and functional impairment in term of arterial stiffening and endothelial dysfunction and shown to involve both ...

  5. Phosphate overload accelerates vascular aging in uremic patients

    Diego Brancaccio

    2006-05-01

    Full Text Available Vascular calcification is a very common event in patients affected by diabetes and chronic kidney disease (CKD. Recently, it has been well documented that abnormalities in mineral and bone metabolism in CKD patients are associated with increased morbidity and mortality. Elevated serum phosphate and calcium-phosphate product levels play an important role in the pathogenesis of vascular mineralization in uremic patients and also appear to be associated with increased cardiovascular mortality. Together with classical passive precipitation of calciumphosphate in soft tissues, during the last decade it has been demonstrated that inorganic phosphate may cause extraskeletal calcification directly through a real “ossification” of the tunica media in the vasculature of CKD patients. Therefore, control of phosphate retention is now an even more crucial target of treatment in patients affected by chronic kidney disease.

  6. Effect of gravitational acceleration, hypokinesia and hypodynamia on the structure of the intestinal vascular bed

    Nikitin, M. V.

    1980-01-01

    A series of experiments comparing single and combined effects of hypokinesia and gravitational acceleration on morphology of intestinal blood vessels are discussed. Results indicate that hypokinesia has a whole body nonspecific effect reflected even in an organ whose activity shows little or no change due to hypokinesia. In early hypokinetic stages blood redistribution caused anorexia, intestinal atonia, and secretory disruption. Destructive changes from further exposure include aneurisms, varicoses, extravascular movement of blood elements, and vascular wall muscle fiber degeneration. The effect of acceleration is greatest in the ventrodorsal direction. Changes due to acceleration then hypokinesia are like those due to hypokinesia alone; changes due to acceleration before and after hypokinesia are like those due to acceleration. Adaptation raises acceleration tolerance but the effects do not survive four-week hypokinesia.

  7. Adipose-derived Stromal Cells Overexpressing Vascular Endothelial Growth Factor Accelerate Mouse Excisional Wound Healing

    Nauta, Allison; Seidel, Catharina; Deveza, Lorenzo; Montoro, Daniel; Grova, Monica; Ko, Sae Hee; Hyun, Jeong; Geoffrey C Gurtner; Longaker, Michael T.; Yang, Fan

    2012-01-01

    Angiogenesis is essential to wound repair, and vascular endothelial growth factor (VEGF) is a potent factor to stimulate angiogenesis. Here, we examine the potential of VEGF-overexpressing adipose-derived stromal cells (ASCs) for accelerating wound healing using nonviral, biodegradable polymeric vectors. Mouse ASCs were transfected with DNA plasmid encoding VEGF or green fluorescent protein (GFP) using biodegradable poly (β-amino) esters (PBAE). Cells transfected using Lipofectamine 2000, a c...

  8. Oxygen dependence of human alveolar macrophage-mediated antibody-dependent cytotoxicity.

    Conkling, P.; Papermaster-Bender, G; Whitcomb, M; Sagone, A L

    1982-01-01

    We studied the metabolic characteristics of the human alveolar macrophage-mediated antibody-dependent cytotoxicity (ADCC) reaction, using an anti-D sensitized human erythrocyte target system. Metabolic experiments demonstrated a high resting rate of glucose metabolism in macrophages, but no oxidative metabolic burst was found to accompany the ADCC reaction. These findings were confirmed by oxygen consumption studies, showing a high resting rate of oxygen consumption by macrophages, but no cha...

  9. Interleukin-10 overexpression promotes Fas-ligand-dependent chronic macrophage-mediated demyelinating polyneuropathy.

    Dru S Dace

    Full Text Available BACKGROUND: Demyelinating polyneuropathy is a debilitating, poorly understood disease that can exist in acute (Guillain-Barré syndrome or chronic forms. Interleukin-10 (IL-10, although traditionally considered an anti-inflammatory cytokine, has also been implicated in promoting abnormal angiogenesis in the eye and in the pathobiology of autoimmune diseases such as lupus and encephalomyelitis. PRINCIPAL FINDINGS: Overexpression of IL-10 in a transgenic mouse model leads to macrophage-mediated demyelinating polyneuropathy. IL-10 upregulates ICAM-1 within neural tissues, promoting massive macrophage influx, inflammation-induced demyelination, and subsequent loss of neural tissue resulting in muscle weakness and paralysis. The primary insult is to perineural myelin followed by secondary axonal loss. Infiltrating macrophages within the peripheral nerves demonstrate a highly pro-inflammatory signature. Macrophages are central players in the pathophysiology, as in vivo depletion of macrophages using clodronate liposomes reverses the phenotype, including progressive nerve loss and paralysis. Macrophage-mediate demyelination is dependent on Fas-ligand (FasL-mediated Schwann cell death. SIGNIFICANCE: These findings mimic the human disease chronic idiopathic demyelinating polyneuropathy (CIDP and may also promote further understanding of the pathobiology of related conditions such as acute idiopathic demyelinating polyneuropathy (AIDP or Guillain-Barré syndrome.

  10. Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film.

    Liu, Hengquan; Pan, Changjiang; Zhou, Shijie; Li, Junfeng; Huang, Nan; Dong, Lihua

    2016-12-01

    Bio-inorganic films and drug-eluting coatings are usually used to improve the hemocompatibility and inhibit restenosis of vascular stent; however, above bio-performances couldn't combine together with single materials. In the present study, we reported a simple approach to fabricate a metal film with the aim of imparting the stent with good blood compatibility and accelerating endothelialization. The films with various ratios of Cu and Ti were prepared through the physical vapor deposition. Phase structure and element composition were investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The releasing volume of copper ion in Cu/Ti film was determined by immersing test. The hemolysis ratio, platelet adhesion and clotting time were applied to evaluate the hemocompatibility. The proliferative behaviors of endothelial cells and smooth muscle cells under certain copper concentration were investigated in vitro and in vivo. Results indicated that copper-titanium films exhibited good hemocompatibility in vitro; however, the increase of Cu/Ti ratio could lead to increasing hemolysis ratio. Endothelial cells displayed more proliferative than smooth muscle cells when the copper concentration was <7.5μg/ml, however both cells tended to apoptosis to some degree when the copper concentration was increased. The complete endothelialization of the film with low copper in vivo was observed at the 2nd week, indicating that the copper-titanium film with the lower copper concentration could promote endothelialization. Therefore, the inorganic copper-titanium film could be potential biomaterials to improve blood compatibility and accelerating endothelialization of vascular stents. PMID:27612815

  11. Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection.

    Cabral-Piccin, M P; Guillermo, L V C; Vellozo, N S; Filardy, A A; Pereira-Marques, S T; Rigoni, T S; Pereira-Manfro, W F; DosReis, G A; Lopes, M F

    2016-01-01

    Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. CD8 T-lymphocytes help to control infection, but apoptosis of CD8 T cells disrupts immunity and efferocytosis can enhance parasite infection within macrophages. Here, we investigate how apoptosis of activated CD8 T cells affects M1 and M2 macrophage phenotypes. First, we found that CD8 T-lymphocytes and inflammatory monocytes/macrophages infiltrate peritoneum during acute T. cruzi infection. We show that treatment with anti-Fas ligand (FasL) prevents lymphocyte apoptosis, upregulates type-1 responses to parasite antigens, and reduces infection in macrophages cocultured with activated CD8 T cells. Anti-FasL skews mixed M1/M2 macrophage profiles into polarized M1 phenotype, both in vitro and following injection in infected mice. Moreover, inhibition of T-cell apoptosis induces a broad reprogramming of cytokine responses and improves macrophage-mediated immunity to T. cruzi. The results indicate that disposal of apoptotic CD8 T cells increases M2-macrophage differentiation and contributes to parasite persistence. PMID:27195678

  12. Platelets accelerate gastric ulcer healing through presentation of vascular endothelial growth factor

    Wallace, John L; Dicay, Michael; McKnight, Webb; Dudar, Genevieve K

    2006-01-01

    Platelets contain an array of growth factors that can modulate healing processes, including both pro- (e.g., vascular endothelial growth factor (VEGF)) and antiangiogenic (e.g., endostatin) factors. Previous studies have shown that circulating platelets contribute significantly to gastric ulcer healing, acting as a delivery system for these growth factors to the site of injury. In this study, we examined the effects of orally administered human platelets on the healing of gastric ulcers in ra...

  13. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation

    Schlosser, Anders; Pilecki, Bartosz; Hemstra, Line E; Kejling, Karin; Kristmannsdottir, Gudlaug B; Wulf-Johansson, Helle; Moeller, Jesper B; Füchtbauer, Ernst-Martin; Nielsen, Ole; Kirketerp-Møller, Katrine; Dubey, Lalit K; Hansen, Pernille B L; Stubbe, Jane; Wrede, Christoph; Hegermann, Jan; Ochs, Matthias; Rathkolb, Birgit; Schrewe, Anja; Bekeredjian, Raffi; Wolf, Eckhard; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lindholt, Jes S; Holmskov, Uffe; Sorensen, Grith L

    2016-01-01

    inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3-dependent manner. CONCLUSIONS: MFAP4 regulates integrin αVβ3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal...

  14. Accelerated ischemic vascular retinopathy after intravitreally injected bevacizumab for central retinal vein occlusion in elderly patients

    Isola V

    2013-03-01

    Full Text Available Vincenzo Isola,1 Alfredo Pece,1,2 Claudio Massironi,1 Simone Reposi,1 Fabio Dimastrogiovanni11Department of Ophthalmology, Melegnano Hospital, 2Fondazione Retina 3000, Milano, ItalyBackground: Ischemic changes in the retinal circulation are an uncommon but severe adverse vascular reaction to intravitreal bevacizumab (Avastin®, Genentech, San Francisco, CA, USA/Roche, Basel, Switzerland for central retinal vein occlusion (CRVO. In the two cases reported here, ischemic changes in the retina vasculature following intravitreal bevacizumab for CRVO were observed with the aim of describing the clinical and angiographic features of these changes.Methods: Two elderly patients with recent-onset CRVO received one off-label intravitreal injection of bevacizumab 0.05 mL/1.25 mg.Results: In Case 1, the patient's pre-treatment visual acuity was 20/400. At 3 weeks post injection, the patient could count fingers at a distance of 1 ft (30 cm and fluorescein angiography showed reduction in intraretinal hemorrhages and areas of retinal non-perfusion. However, at 6 weeks these were markedly increased compared with those seen in the photograph taken 3 weeks after treatment. In Case 2, the patient's pre-treatment visual acuity was 20/200. At 1 month post injection, vision had decreased to 20/400 and fluorescein angiography showed severe macular ischemia with a remarkable capillary dropout throughout the macula.Conclusion: Ischemic retinal injury may be an uncommon but severe adverse vascular reaction to intravitreal bevacizumab for CRVO. Although progression of retinal ischemia in CRVO could be observed shortly after intravitreal bevacizumab, whether this is a drug- or procedure-related effect or part of the natural history of the condition remains uncertain.Keywords: Avastin, ischemia, macular infarction, intraretinal hemorrhage, retinal non-perfusion

  15. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Nakashima, Yukiko; Morimoto, Mayuka [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Toda, Ken-ichi [Department of Dermatology, Kitano Hospital, The Tazuke Kofukai Nedical Institute, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480 (Japan); Shinya, Tomohiro; Sato, Keizo [Department of Clinical Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508 (Japan); Takahashi, Satoru, E-mail: imwalrus@mukogawa-u.ac.jp [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Institute for Biosciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan)

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  16. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells

  17. Interleukin-2 protects neonatal mice from lethal herpes simplex virus infection: a macrophage-mediated, gamma interferon-induced mechanism.

    Kohl, S; Loo, L S; Drath, D B; Cox, P

    1989-02-01

    Administration of human recombinant interleukin-2 (IL-2) protected neonatal mice from a lethal herpes simplex virus (HSV) infection. Protection was not associated with viral antibody production, enhanced natural killer cell cytotoxicity, or intrinsic resistance of macrophages to viral infection. Protection was associated with increased macrophage-mediated antiviral antibody-dependent cellular cytotoxicity (ADCC). Spleen cells from IL-2-treated neonatal mice and from neonatal mice that were treated in vitro with IL-2 transferred protection to neonatal mice. These cells, by adherence, silica, and asialo GM 1 antibody treatment, were shown to be macrophages. IL-2 treatment in vitro enhanced the neonatal macrophages' ADCC function and superoxide release. Similar protection was induced by gamma interferon (IFN-gamma)-treated spleen cells. Antibody to IFN-gamma ablated both IFN-gamma- and IL-2-induced protection by adherent spleen cells. Thus, IL-2-mediated protection against murine neonatal HSV infection was affected by stimulated macrophage activity, via helper T cell-produced IFN-gamma. PMID:2492588

  18. Immune modulation with sulfasalazine attenuates immunopathogenesis but enhances macrophage-mediated fungal clearance during Pneumocystis pneumonia.

    Jing Wang

    Full Text Available Although T cells are critical for host defense against respiratory fungal infections, they also contribute to the immunopathogenesis of Pneumocystis pneumonia (PcP. However, the precise downstream effector mechanisms by which T cells mediate these diverse processes are undefined. In the current study the effects of immune modulation with sulfasalazine were evaluated in a mouse model of PcP-related Immune Reconstitution Inflammatory Syndrome (PcP-IRIS. Recovery of T cell-mediated immunity in Pneumocystis-infected immunodeficient mice restored host defense, but also initiated the marked pulmonary inflammation and severe pulmonary function deficits characteristic of IRIS. Sulfasalazine produced a profound attenuation of IRIS, with the unexpected consequence of accelerated fungal clearance. To determine whether macrophage phagocytosis is an effector mechanism of T cell-mediated Pneumocystis clearance and whether sulfasalazine enhances clearance by altering alveolar macrophage phagocytic activity, a novel multispectral imaging flow cytometer-based method was developed to quantify the phagocytosis of Pneumocystis in vivo. Following immune reconstitution, alveolar macrophages from PcP-IRIS mice exhibited a dramatic increase in their ability to actively phagocytose Pneumocystis. Increased phagocytosis correlated temporally with fungal clearance, and required the presence of CD4(+ T cells. Sulfasalazine accelerated the onset of the CD4(+ T cell-dependent alveolar macrophage phagocytic response in PcP-IRIS mice, resulting in enhanced fungal clearance. Furthermore, sulfasalazine promoted a TH2-polarized cytokine environment in the lung, and sulfasalazine-enhanced phagocytosis of Pneumocystis was associated with an alternatively activated alveolar macrophage phenotype. These results provide evidence that macrophage phagocytosis is an important in vivo effector mechanism for T cell-mediated Pneumocystis clearance, and that macrophage phenotype can be altered

  19. Accelerator

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  20. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes.

    Christenson, Elizabeth M; Dadsetan, Mahrokh; Hiltner, Anne

    2005-08-01

    biodegradation of the polyether or polycarbonate soft segments; however, the rate of chain scission of PEU-S and PCU-S seemed to be slower than the control polyurethanes. To verify this finding and to quantify the rate of chain scission in order to predict long-term biostability, an in vitro environment that simulated the microenvironment at the adherent cell-material interface was used to accelerate the biodegradation of the polyurethanes. Polyurethane films were treated in vitro for up to 36 days in 20% hydrogen peroxide/0.1M cobalt chloride solution at 37 degrees Celsius. Characterization with attenuated total reflectance-Fourier transform infrared and scanning electron microscopy showed soft segment and hard segment degradation consistent with the chemical changes observed after long-term in vivo treatment. The biostability ranking of these four materials based on rate of chain scission and surface pitting was as follows: PEU modification increased the biostability of the PEU and PCU elastomers while maintaining the thermoplastic elastomeric properties. PMID:16201029

  1. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise;

    2007-01-01

    and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... not. Calcified cells expressed ALP and BSP activity in high levels. In conclusion, high concentration of insulin enhances in vitro-induced calcification in VSMCs. Altered OPG levels during the calcification raise the possibility that OPG may have a potent function in regulating the calcification...

  2. NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton

    Van Thai Ha

    2014-01-01

    Full Text Available AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO/prostaglandin (PG E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS- treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS, cyclooxygenase- (COX- 2, and interleukin- (IL- 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation.

  3. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    Research highlights: → Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. → Static pressure induces SREBP-1 activation. → Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. → Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. → Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 ± 2.8 mg/g, 31.8 ± 0.7 mg/g, 92.3 ± 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 ± 9.4 mg/g, 235.9 ± 3.0 mg/g, 386.7 ± 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static

  4. Vascular Cures

    ... our CEO Board of Directors Scientific Advisory Board History of Vascular Cures Impact Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic ...

  5. Melanoma exosome induction of endothelial cell GM-CSF in pre-metastatic lymph nodes may result in different M1 and M2 macrophage mediated angiogenic processes.

    Hood, Joshua L

    2016-09-01

    Angiogenesis is a key process in the preparation of lymph nodes for melanoma metastasis. Granulocyte macrophage colony stimulating factor (GM-CSF) induces hypoxia inducible factor 1 alpha (HIF-1α) in M1 or HIF-2α in M2 polarized macrophages. HIF-1α promotes neoangiogenesis while HIF-2α facilitates morphogenic normalization of neovasculature. Melanoma exosomes induce GM-CSF expression by endothelial cells in vitro and HIF-1α expression in pre-metastatic lymph nodes in vivo. This suggest a relationship between melanoma exosome induced endothelial GM-CSF and macrophage mediated angiogenesis in lymph nodes. Theoretically, induction of endothelial cell derived GM-CSF by melanoma exosomes mediates different angiogenic functions in pre-metastatic lymph nodes depending on subcapsular sinus (SCS) macrophage polarity. To explore this hypothesis, experiments utilizing melanoma exosomes in a lymph node model are outlined. Despite their opposing immune functions, indirect melanoma exosome stimulation of M1 or M2 SCS macrophages via endothelial derived GM-CSF in lymph nodes may induce different although complementary pro-tumor angiogenic processes. PMID:27515216

  6. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor.

    Wang, Qiujing; Gao, Yuyuan; Sun, Xinlin; Ji, Bin; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Jiang, Xiaodan; Zhu, Aiping; Quan, Daping

    2014-08-01

    Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can

  7. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor

    Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can

  8. Vascular MR

    This project investigates cardiac gated gradient echo pulses sequences for vascular MR imaging. These pulse sequences have been used to acquire and display MR projection angiograms. The authors have applied these methods in two distinct populations of patients for evaluation and comparison with standard angiography. Twenty patients with abdominal aortic aneurysms, and 35 patients with aortoiliac atherosclerotic disease or peripheral vascular disease were investigated using this method and the results are presented

  9. Vascular Dementia

    Maria Alekseyevna Cherdak; O. V. Uspenskaya

    2015-01-01

    Vascular dementia is one of the most common causes of dementia after Alzheimer's disease, causing around 15% of cases. However, unlike Alzheimer's disease, there are no licensed treatments for vascular dementia. Progress in the specialty has been difficult because of uncertainties over disease classification and diagnostic criteria, controversy over the exact nature of the relation between cerebrovascular pathology and cognitive impairment, and the paucity of identifiable tractable treatment ...

  10. 21-O-Angeloyltheasapogenol E3, a Novel Triterpenoid Saponin from the Seeds of Tea Plants, Inhibits Macrophage-Mediated Inflammatory Responses in a NF-κB-Dependent Manner

    Woo Seok Yang

    2014-01-01

    Full Text Available 21-O-Angeloyltheasapogenol E3 (ATS-E3 is a triterpenoid saponin recently isolated from the seeds of the tea tree Camellia sinensis (L. O. Kuntze. ATS-E3 has several beneficial properties including anti-inflammatory, antidiabetic, antiatherosclerotic, and anticancer effects. Unlike other phenolic compounds isolated from tea plants, there are no studies reporting the pharmacological action of ATS-E3. In this study, we therefore aimed to explore the cellular and molecular inhibitory activities of ATS-E3 in macrophage-mediated inflammatory responses. ATS-E3 remarkably diminished cellular responses of macrophages such as FITC-dextran-induced phagocytic uptake, sodium nitroprusside- (SNP- induced radical generation, and LPS-induced nitric oxide (NO production. Analysis of its molecular activity showed that this compound significantly suppressed the expression of inducible NO synthase (iNOS, nuclear translocation of nuclear factor- (NF- κB subunits (p50 and p65, phosphorylation of inhibitor of κB kinase (IKK, and the enzyme activity of AKT1. Taken together, the novel triterpenoid saponin compound ATS-E3 contributes to the beneficial effects of tea plants by exerting anti-inflammatory and antioxidative activities in an AKT/IKK/NF-κB-dependent manner.

  11. What Is Vascular Disease?

    ... our CEO Board of Directors Scientific Advisory Board History of Vascular Cures Impact Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic ...

  12. Diabetes and Vascular Disease

    ... our CEO Board of Directors Scientific Advisory Board History of Vascular Cures Impact Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic ...

  13. Cell-based strategies for vascular regeneration.

    Zou, Tongqiang; Fan, Jiabing; Fartash, Armita; Liu, Haifeng; Fan, Yubo

    2016-05-01

    Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1297-1314, 2016. PMID:26864677

  14. Fetal origin of vascular aging

    Shailesh Pitale

    2011-01-01

    Full Text Available Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke. It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD. These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ′Barker′s Hypothesis′. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological.

  15. Society for Vascular Medicine

    ... and find out! Patient Information Pages from Vascular Medicine August 2016 The Vascular Laboratory More info for ... Learn more. Trending Now: Hot Topics in Vascular Medicine Video Series Fibromuscular Dysplasia (FMD) with Drs. Jeffrey ...

  16. Molecular signal transduction in vascular cell apoptosis

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  17. Collagen vascular disease

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on this page, ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many of many ...

  18. Heart and vascular services

    ... branch of medicine that focuses on the cardiovascular system. ... Circulatory system; Vascular system; Cardiovascular system ... to diagnose, monitor or treat diseases of the circulatory and vascular system include: Cardiac CT for calcium scoring Cardiac MRI ...

  19. Can Accelerators Accelerate Learning?

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  20. How to Prevent Vascular Disease

    ... our CEO Board of Directors Scientific Advisory Board History of Vascular Cures Impact Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic ...

  1. Plasma accelerators

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  2. Linear Accelerators

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  3. Strategic Plan for Lung Vascular Research

    Erzurum, Serpil; Rounds, Sharon I.; Stevens, Troy; Aldred, Micheala; Aliotta, Jason; Archer, Stephen L.; Asosingh, Kewal; Balaban, Robert; Bauer, Natalie; Bhattacharya, Jahar; Bogaard, Harm; Choudhary, Gaurav; Dorn, Gerald W.; Dweik, Raed; Fagan, Karen; Fallon, Michael; Finkel, Toren; Geraci, Mark; Gladwin, Mark T.; Hassoun, Paul M.; Humbert, Marc; Kaminski, Naftali; Kawut, Steven M.; Loscalzo, Joseph; McDonald, Donald; McMurtry, Ivan F.; Newman, John; Nicolls, Mark; Rabinovitch, Marlene; Shizuru, Judy; Oka, Masahiko; Polgar, Peter; Rodman, David; Schumacker, Paul; Stenmark, Kurt; Tuder, Rubin; Voelkel, Norbert; Sullivan, Eugene; Weinshilboum, Richard; Yoder, Mervin C.; Zhao, Yingming; Gail, Dorothy; Moore, Timothy M.

    2010-01-01

    The Division of Lung Diseases of the National Heart, Lung, and Blood Institute, with the Office of Rare Diseases Research, held a workshop to identify priority areas and strategic goals to enhance and accelerate research that will result in improved understanding of the lung vasculature, translational research needs, and ultimately the care of patients with pulmonary vascular diseases. Multidisciplinary experts with diverse experience in laboratory, translational, and clinical studies identified seven priority areas and discussed limitations in our current knowledge, technologies, and approaches. The focus for future research efforts include the following: (1) better characterizing vascular genotype–phenotype relationships and incorporating systems biology approaches when appropriate; (2) advancing our understanding of pulmonary vascular metabolic regulatory signaling in health and disease; (3) expanding our knowledge of the biologic relationships between the lung circulation and circulating elements, systemic vascular function, and right heart function and disease; (4) improving translational research for identifying disease-modifying therapies for the pulmonary hypertensive diseases; (5) establishing an appropriate and effective platform for advancing translational findings into clinical studies testing; and (6) developing the specific technologies and tools that will be enabling for these goals, such as question-guided imaging techniques and lung vascular investigator training programs. Recommendations from this workshop will be used within the Lung Vascular Biology and Disease Extramural Research Program for planning and strategic implementation purposes. PMID:20833821

  4. Imaging Pediatric Vascular Lesions

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  5. Imaging Pediatric Vascular Lesions.

    Nguyen, Tuyet A; Krakowski, Andrew C; Naheedy, John H; Kruk, Peter G; Friedlander, Sheila Fallon

    2015-12-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  6. Vascularity in thyroid neoplasms

    Larsen, Karen Kjaer; Andersen, Niels Frost; Melsen, Flemming;

    2006-01-01

    The aim of the present study was to evaluate the reliability of four different methods (vascular grading, Chalkley count, microvessel density (MVD) and stereological estimation) for quantifying intratumoral microvascularity in thyroid neoplasms, by comparing the variability within and between...... count should be the preferred method for assessing microvascularity in thyroid neoplasms. The diagnostic evaluation revealed a tendency towards higher degree of vascularity in FA compared to both FC and PC for all methods. No statistically significant association was seen between vascular density and...

  7. Poikiloderma vasculare atrophicans

    Padmavathy L

    1994-01-01

    Full Text Available A 65 year old lady presented with generalised pruritus and discolouration of skin and mucous membranes of 5 years duration. The histopathology from the cutaneous lesions revealed features suggestive of poikiloderma vasculare atrophicans (PVA. Investigations did not reveal any underlying connective tissue disease,lymphoma or systemic disease. A diagnosis of idiopathic poikiloderma vasculare atrophicans was made.

  8. Poikiloderma vasculare atrophicans

    Padmavathy L; Prasad PVS; Prasanna K; Rao L

    1994-01-01

    A 65 year old lady presented with generalised pruritus and discolouration of skin and mucous membranes of 5 years duration. The histopathology from the cutaneous lesions revealed features suggestive of poikiloderma vasculare atrophicans (PVA). Investigations did not reveal any underlying connective tissue disease,lymphoma or systemic disease. A diagnosis of idiopathic poikiloderma vasculare atrophicans was made.

  9. Future accelerators (?)

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made

  10. Future accelerators (?)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  11. Vascular grading of angiogenesis

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt; Bak, M; Vach, W; Rose, C

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... had clinical impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  12. [Vascular factors in glaucoma].

    Mottet, B; Aptel, F; Geiser, M; Romanet, J P; Chiquet, C

    2015-12-01

    The exact pathophysiology of glaucoma is not fully understood. Understanding of the vascular pathophysiology of glaucoma requires: knowing the techniques for measuring ocular blood flow and characterizing the topography of vascular disease and the mechanisms involved in this neuropathy. A decreased mean ocular perfusion pressure and a loss of vascular autoregulation are implicated in glaucomatous disease. Early decrease in ocular blood flow has been identified in primary open-angle glaucoma and normal pressure glaucoma, contributing to the progression of optic neuropathy. The vascular damage associated with glaucoma is present in various vascular territories within the eye (from the ophthalmic artery to the retina) and is characterized by a decrease in basal blood flow associated with a dysfunction of vasoregulation. PMID:26597554

  13. Accelerating Value Creation with Accelerators

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...

  14. Thyroid Hormone and Vascular Remodeling.

    Ichiki, Toshihiro

    2016-03-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  15. Pediatric vascular access

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  16. Pediatric vascular access

    Donaldson, James S. [Northwestern University, Feinberg School of Medicine, Department of Medical Imaging, Children' s Memorial Hospital, Chicago, IL (United States)

    2006-05-15

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  17. Congenital Vascular Malformation

    ... clots, obstruction of major vessels, causing progressive limb asymmetry by overgrowth, and for cosmetic indications or because ... t he Vascular Disease Foundation (VDF) develops educational information and initiatives for patients, their families and friends, ...

  18. Vascular Access for Hemodialysis

    ... for short-term use. [ Top ] What is an arteriovenous fistula? An AV fistula is a connection, made by ... to remove and return blood during hemodialysis. An arteriovenous (AV) fistula is a connection, made by a vascular surgeon, ...

  19. Heart and vascular services

    ... Repair of aneurysms (dilated/enlarged portions) of the aorta and its branches Procedures may also be used ... Nutrition and lifestyle counseling, including smoking cessation and diabetes education Supervised exercise Alternative Names Circulatory system; Vascular ...

  20. Management of Vascular Malformations

    Sadanori Akita, MD, PhD

    2014-03-01

    Conclusions: Treatment of vascular malformations is an integral part of multidisciplinary approaches. Venous malformations are more frequent in combination surgery, and if there are fewer complications, the patients’ satisfaction increases.

  1. Vascular Effects of Histamine.

    Ebeigbe, Anthony B; Talabi, Olufunke O

    2014-01-01

    Four subtypes of receptors (H1, H2, H3 and H4) mediate the actions of histamine. In the vascular wall, the effects of histamine are mediated via H1 and H2 receptors and the actions are modulated by H3 receptor subtype located on presynaptic neurones. Alterations in vascular responses to histamine are associated with experimental as well as a human form of hypertension, suggesting a role for histanine in cardiovascular regulation. PMID:26196559

  2. Digital vascular imaging (DVI)

    Digitization of the video signals from an image intensifier/TV chain, followed by subtraction, contrast enchancement and reconversion to analogue signals, enables high quality angiographic images to be obtained from an intravenous injection of contrast medium. As the examination is basically noninvasive it can be used in outpatients. The possibilities of Digital Vascular Imaging are demonstrated by images obtained from the various vascular regions using a triple-mode 14 in. image intensifier with a Plumbicon. TV tube. (Auth.)

  3. Thrombolysis in vascular surgery

    Smith, Linn

    2015-01-01

    Background and aims: Thrombolysis is in common use in the treatment of acute forms of vascular disease. It may be used both systemically and locally, in the latter case through an endovascular approach, socalled catheter-directed thrombolysis. The aims of this thesis were to investigate how thrombolysis affects performance-related outcomes pertaining to vascular patency after thrombolysis, and how it affects patient safety and the development of complications. Metho...

  4. [Zaidemberg's vascularized radial graft].

    Saint-Cast, Y

    2010-12-01

    In 1991, Carlos Zaidemberg described a new technique to repair scaphoid non-unions with a vascularized bone graft harvested from the radial styloid process. An anatomic study based on 30 dissections after colorized latex injection established the constancy of the radial styloid process's artery, while showing that its origin, course and length were subject to variations. In a retrospective series of 38 cases over a period of 10 years, the vascularized bone graft was indicated for: (1) scaphoid non-union with the presence of avascular changes of the proximal fragment (23 cases); (2) failed prior reconstruction with bone graft and internal fixation (nine cases); (3) degenerative styloid-scaphoid arthritis (three cases); (4) fracture on Preiser dystrophy (three cases). The five steps of the simplified operative technique without dissection of the vascular pedicle include: (1) longitudinal dorso-radial approach, identification of the periosteal portion of the radial styloid process artery; (2) incision of the first and second compartments, longitudinal arthrotomy under the second compartment; (3) styloidectomy and transversal resection of the scaphoid non-union and sclerotic bone; (4) elevation of the vascularized bone graft; (5) transversal and radial insertion of the vascularized bone graft, osteosynthesis by two or three K-wire touching the scaphoid's radial edge. Scaphoid union was obtained in 33 cases out of 38. The only postoperative complications were two transient radial paresthesia. The standardized surgical procedure using vascularized bone graft harvested from the radial styloid process provides an efficient scaphoid reconstruction. PMID:21087882

  5. Laser accelerator

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  6. Antioxidants and vascular health.

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies. PMID:26585821

  7. LIBO accelerates

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  8. Induction accelerators

    Takayama, Ken

    2011-01-01

    A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.

  9. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia

    Wu, Junxi; Hadoke, Patrick W.F.; Takov, Kaloyan; Korczak, Agnieszka; Denvir, Martin A.; Smith, Lee B.

    2016-01-01

    Aims Studies in global androgen receptor knockout (G-ARKO) and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall. Methods and Results Mice with selective deletion of AR (ARKO) from vascular smooth muscle cells (SM-ARKO), endoth...

  10. Plant vascular development

    Rybel, De Bert; Mähönen, Ari Pekka; Helariutta, Yrjö; Weijers, Dolf

    2016-01-01

    Vascular tissues in plants are crucial to provide physical support and to transport water, sugars and hormones and other small signalling molecules throughout the plant. Recent genetic and molecular studies have identified interconnections among some of the major signalling networks that regulate

  11. Renal posttransplant's vascular complications

    Bašić Dragoslav

    2003-01-01

    Full Text Available INTRODUCTION Despite high graft and recipient survival figures worldwide today, a variety of technical complications can threaten the transplant in the postoperative period. Vascular complications are commonly related to technical problems in establishing vascular continuity or to damage that occurs during donor nephrectomy or preservation [13]. AIM The aim of the presenting study is to evaluate counts and rates of vascular complications after renal transplantation and to compare the outcome by donor type. MATERIAL AND METHODS A total of 463 kidneys (319 from living related donor LD and 144 from cadaveric donor - CD were transplanted during the period between June 1975 and December 1998 at the Urology & Nephrology Institute of Clinical Centre of Serbia in Belgrade. Average recipients' age was 33.7 years (15-54 in LD group and 39.8 (19-62 in CD group. Retrospectively, we analyzed medical records of all recipients. Statistical analysis is estimated using Hi-squared test and Fischer's test of exact probability. RESULTS Major vascular complications including vascular anastomosis thrombosis, internal iliac artery stenosis, internal iliac artery rupture obliterant vasculitis and external iliac vein rupture were analyzed. In 25 recipients (5.4% some of major vascular complications were detected. Among these cases, 22 of them were from CD group vs. three from LD group. Relative rate of these complications was higher in CD group vs. LD group (p<0.0001. Among these complications dominant one was vascular anastomosis thrombosis which occurred in 18 recipients (17 from CD vs. one from LD. Of these recipients 16 from CD lost the graft, while the rest of two (one from each group had lethal outcome. DISCUSSION Thrombosis of renal allograft vascular anastomosis site is the most severe complication following renal transplantation. In the literature, renal allograft thrombosis is reported with different incidence rates, from 0.5-4% [14, 15, 16]. Data from the

  12. Vascular manifestations of Behcet's disease

    Regina Georgiyeva Goloeva

    2010-04-01

    Conclusion. Vascular disorders in BD were diagnosed in one fourth of the patients, mainly in young male patients. Severe thromboses with the development of chronic venous insignificance, Budd-Chiari syndrome, pulmonary and iliac artery aneurysms, and arterial thromboses were observed in male patients only. Vascular events were associated with erythema nodosum and epididymitis; in these concomitances, the vascular risk was substantially increased. Vascular death rates were 2,2%.

  13. Tandem accelerators

    After the installation of Ti-acceleration tubes and substantial modifications and additions to the EN tandem accelerator the performance of the machine has stabilized. The voltage behaviour of the tubes obviously improves as conditioning times necessary to run up to 6 MV decrease. A gridded lens has been added at the entrance of the first acceleration tube, and a second foil stripper is now installed in the short dead section between the high-energy tubes. The MP tandem also has been running stably during most of the year. However, beam instabilities originating from the last tube section and wear problems at the low-energy set of pelletron-chains caused some loss of beam time. During the fall, one set of pelletron charging chains has to be replaced after 49,000 hours of operation. In the course of the year, the MP and the EN tandem accelerators finished their 100,000th and 150,000th hours of operations, respectively. Preparations for the installation of the 3 MV negative heavy ion injector for the MP are progressing steadily. External beam transport, terminal ion optics, and data acquisition and control systems are to a major extent completed; the integration of the terminal power supplies has started. After the final assembly of the accelerator column structure, first voltage runs can be performed. (orig.)

  14. Self-Replenishing Vascularized Fouling-Release Surfaces

    Howell, C; Vu, TL; Lin, JJ; Kolle, S; Juthani, N; Watson, E; Weaver, JC; Alvarenga, J; Aizenberg, J

    2014-08-13

    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella sauna, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.

  15. Plant Vascular Biology 2010

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  16. Vascular cognitive impairment

    N.V. Vakhnina

    2014-05-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  17. Pathophysiology of vascular dementia

    Rizzo Claudia

    2009-11-01

    Full Text Available Abstract The concept of Vascular Dementia (VaD has been recognized for over a century, but its definition and diagnostic criteria remain unclear. Conventional definitions identify the patients too late, miss subjects with cognitive impairment short of dementia, and emphasize consequences rather than causes, the true bases for treatment and prevention. We should throw out current diagnostic categories and describe cognitive impairment clinically and according to commonly agreed instruments that document the demographic data in a standardized manner and undertake a systematic effort to identify the underlying aetiology in each case. Increased effort should be targeted towards the concept of and criteria for Vascular Cognitive Impairment and Post-Stroke Dementia as well as for genetic factors involved, especially as these categories hold promise for early prevention and treatment.

  18. Pathophysiology of vascular dementia

    Rizzo Claudia; Duro Giovanni; Iemolo Francesco; Castiglia Laura; Hachinski Vladimir; Caruso Calogero

    2009-01-01

    Abstract The concept of Vascular Dementia (VaD) has been recognized for over a century, but its definition and diagnostic criteria remain unclear. Conventional definitions identify the patients too late, miss subjects with cognitive impairment short of dementia, and emphasize consequences rather than causes, the true bases for treatment and prevention. We should throw out current diagnostic categories and describe cognitive impairment clinically and according to commonly agreed instruments th...

  19. Preserved saphenous vein allografts for vascular access.

    Piccone, V A; Sika, J; Ahmed, N; LeVeen, H H; DiScala, V

    1978-09-01

    Preserved venous allografts were used as an alternate access procedure in 70 patients receiving dialysis during a three year period. The clinical experience with allograft fistulas revealed an extremely high initial patency rate; absence of infection postoperatively and during three years of dialysis; suitability for dialysis a week after implantation, thus greatly obviating the need for Silastic shunts; a low long term thrombosis rate and the weakly antigenic allograft veins produced no accelerated rejection of subsequently transplanted kidneys. Surviving patients average 172 dialysis treatments per allograft. Allograft fistulas constituted 45 per cent of the last 100 vascular procedures, an indication of the extent of usage. Microscopic examination of grafts retrieved from patients who died during the late follow-up period demonstrated that structural components of the wall of the vein were still identifiable. Allograft venous fistulas offer dependable, safe vascular access, especially in the infection prone patient with diabetes who is receiving dialysis treatment. The clinical results of allograft fistulas suggests a major role for this technique in vascular access operations. PMID:684591

  20. Local Augmented Angiotensinogen Secreted from Apoptotic Vascular Endothelial Cells Is a Vital Mediator of Vascular Remodelling.

    Shyh-Jong Wu

    Full Text Available Vascular remodelling is a critical vasculopathy found in atheromatous diseases and allograft failures. The local renin angiotensin system (RAS has been implicated in vascular remodelling. However, the mechanisms by which the augmented local RAS is associated with the initial event of endothelial cell apoptosis in injured vasculature remain undefined. We induced the apoptosis of human umbilical vein endothelial cells (HUVECs and vascular smooth muscle cells (VSMCs through serum starvation (SS. After the cells were subjected to SS, we found that the mRNA expression of angiotensinogen (AGT was increased by >3-fold in HUVECs and by approximately 2.5-fold in VSMCs. In addition, the expression of angiotensin-converting enzyme (ACE mRNA was increased in VSMCs but decreased to 50% in HUVECs during the same apoptotic process. Increases in the expression of AGT protein and angiotensin II (Ang II were found in a serum-free medium conditioned by HUVECs (SSC. The increased Ang II was suppressed using lisinopril (an ACE inhibitor treatment. Moreover, the activation of ERK1/2 induced by the SSC in VSMCs was also suppressed by losartan. In conclusion, we first demonstrated that the augmented AGT released from apoptotic endothelial cells acts as a vital progenitor of Ang II to accelerate vascular remodelling, and we suggest that blocking local augmented Ang II might be an effective strategy for restraining intimal hyperplasia.

  1. Update on Vascular Dementia.

    Khan, Ayesha; Kalaria, Raj N; Corbett, Anne; Ballard, Clive

    2016-09-01

    Vascular dementia (VaD) is a major contributor to the dementia syndrome and is described as having problems with reasoning, planning, judgment, and memory caused by impaired blood flow to the brain and damage to the blood vessels resulting from events such as stroke. There are a variety of etiologies that contribute to the development of vascular cognitive impairment and VaD, and these are often associated with other dementia-related pathologies such as Alzheimer disease. The diagnosis of VaD is difficult due to the number and types of lesions and their locations in the brain. Factors that increase the risk of vascular diseases such as stroke, high blood pressure, high cholesterol, and smoking also raise the risk of VaD. Therefore, controlling these risk factors can help lower the chances of developing VaD. This update describes the subtypes of VaD, with details of their complex presentation, associated pathological lesions, and issues with diagnosis, prevention, and treatment. PMID:27502303

  2. Vascular Cambium Development

    Nieminen, Kaisa; Blomster, Tiina; Helariutta, Ykä; Mähönen, Ari Pekka

    2015-01-01

    Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species. PMID:26078728

  3. Particle acceleration

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  4. Accelerator design

    The feasibility of constructing a TeV region electron-positron linear collider in Japan is discussed. The design target of the collider is given as follows: Energy, 1 TeV + 1 TeV; luminosity, 1032-1033/cm2/s; total length, 25km; electric power, 250MW; energy dispersion, 1%-10%; the start of the first experiment, early 1990s. For realizing the above target, the following research and developmental works are necessary. (a) Development of an acceleration tube with short filling time and high shunt resistance. (b) Short pulse microwave source with high peak power. (c) High current, single bunch linac. (d) Beam dynamics. As for the acceleration tube, some possibility is considered: For example, the use of DAW (Disk and Washer) which is being developed for TRISTAN as a traveling-wave tube; and the Jungle Gym-type acceleration tube. As a promising candidate for the microwave source, the Lasertron has been studied. The total cost of the collider construction is estimated to be about 310 billion yen, of which 120 billion yen is for the tunnel and buildings, and 190 billion yen for the accelerator facilities. The operation cost is estimated to be about 3 billion yen per month. (Aoki, K.)

  5. Accelerator operations

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  6. Advanced accelerators

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  7. [How Treatable is Vascular Dementia?].

    Mori, Etsuro

    2016-04-01

    Vascular dementia is an umbrella term, encompassing the pathological changes in the brain due to cerebrovascular disease that result in dementia. Vascular dementia is the second most common form of dementia, after Alzheimer's disease. In this paper, I outline the concept of vascular dementia, the key aspects of the disease that are yet to be clarified, and the current status of clinical trials. Assessing these factors, I discuss how treatable vascular dementia presently is. Use of the term'vascular dementia'is riddled with uncertainties regarding disease classification, and non-standardized diagnostic criteria. There are difficulties in determining the exact relationship between cerebrovascular pathology and cognitive impairment. The comorbid effects of Alzheimer's pathology in some individuals also present an obstacle to reliable clinical diagnosis, and hinder research into effective management approaches. Vascular dementia is preventable and treatable, as there are established primary and secondary prevention measures for the causative cerebrovascular diseases, such as vascular risk factor intervention, antiplatelet therapy, and anticoagulation, amongst others. However, unlike Alzheimer's disease, there are no established symptomatic treatments for vascular dementia. Clinical trials of cholinesterase inhibitors and memantine indicate that they produce small cognitive benefits in patients with vascular dementia, though the exact clinical significance of these is uncertain. Data are insufficient to support the widespread use of these drugs in vascular dementia. Rehabilitation and physical and cognitive exercise may be beneficial, but evidence of cognitive benefit and relief of neuropsychiatric symptoms due to exercise is lacking. PMID:27056862

  8. The Vascular Depression Hypothesis: Mechanisms Linking Vascular Disease with Depression

    Taylor, Warren D.; Aizenstein, Howard J.; Alexopoulos, George S.

    2013-01-01

    The ‘Vascular Depression’ hypothesis posits that cerebrovascular disease may predispose, precipitate, or perpetuate some geriatric depressive syndromes. This hypothesis stimulated much research that has improved our understanding of the complex relationships between late-life depression (LLD), vascular risk factors, and cognition. Succinctly, there are well-established relationships between late-life depression, vascular risk factors, and cerebral hyperintensities, the radiological hallmark o...

  9. MUON ACCELERATION

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  10. KEKB accelerator

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  11. Accelerating networks

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  12. Abdominal Vascular Catastrophes.

    Singh, Manpreet; Koyfman, Alex; Martinez, Joseph P

    2016-05-01

    Abdominal vascular catastrophes are among the most challenging and time sensitive for emergency practitioners to recognize. Mesenteric ischemia remains a highly lethal entity for which the history and physical examination can be misleading. Laboratory tests are often unhelpful, and appropriate imaging must be quickly obtained. A multidisciplinary approach is required to have a positive impact on mortality rates. Ruptured abdominal aortic aneurysm likewise may present in a cryptic fashion. A specific type of ruptured aneurysm, the aortoenteric fistula, often masquerades as the more common routine gastrointestinal bleed. The astute clinician recognizes that this is a more lethal variant of gastrointestinal hemorrhage. PMID:27133247

  13. Microfluidic Technology in Vascular Research

    A. D. van der Meer

    2009-01-01

    Full Text Available Vascular cell biology is an area of research with great biomedical relevance. Vascular dysfunction is involved in major diseases such as atherosclerosis, diabetes, and cancer. However, when studying vascular cell biology in the laboratory, it is difficult to mimic the dynamic, three-dimensional microenvironment that is found in vivo. Microfluidic technology offers unique possibilities to overcome this difficulty. In this review, an overview of the recent applications of microfluidic technology in the field of vascular biological research will be given. Examples of how microfluidics can be used to generate shear stresses, growth factor gradients, cocultures, and migration assays will be provided. The use of microfluidic devices in studying three-dimensional models of vascular tissue will be discussed. It is concluded that microfluidic technology offers great possibilities to systematically study vascular cell biology with setups that more closely mimic the in vivo situation than those that are generated with conventional methods.

  14. MRI evaluation of vascular dementia

    Yicheng Liu; Hongxing Zhang; Wei Huang; Wenjun Wan; Hongfen Peng

    2006-01-01

    OBJECTTVE: To explain the association between vascular dementia and the cranial MRI manifestations, and recognize the value of cranial MRI in the early diagnosis of vascular dementia and the assessment of disease conditions.DATA SOURCES: Pubmed database was searched to identify articles about the cranial MRI manifestations of patients with vascular dementia published in English from January 1992 to June 2006 by using the key words of "MRI, vascular dementia". Others were collected by searching the name of journals and title of articles in the Chinese full-text journal database.STUDY SELECTTON: The collected articles were primarily checked, those correlated with the cranial MRI manifestations of patients with vascular dementia were selected, while the obviously irrelative ones were excluded, and the rest were retrieved manually, the full-texts were searched.DATA EXTRACTION: Totally 255 articles were collected, 41 of them were involved, and the other 214 were excluded.DATA SYNTHESIS: MRI can be taken as one of the effective methods for the early diagnosis and disease evaluation of vascular dementia. White matter lesions are the important risk factors of vascular dementia.Vascular dementia is accompanied by the atrophy of related brain sites, but further confirmation is needed to investigate whether there is significant difference. MRI can be used to quantitatively investigate the infarcted sites and sizes of patients with vascular dementia after infarction, but there is still lack of systematic investigation on the association of the infarcted sites and sizes with the cognitive function of patients with vascular dementia.CONCLUSTON: Cranial MRI can detect the symptoms of vascular dementia at early period, so that corresponding measures can be adopted to prevent and treat vascular dementia in time.

  15. Vascular Remodeling in Experimental Hypertension

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  16. Spinal vascular malformations

    Krings, Timo [University Hospital Aachen, Department of Neuroradiology, Aachen (Germany); University Hospital Aachen, Department of Neurosurgery, Aachen (Germany); Mull, Michael; Thron, Armin [University Hospital Aachen, Department of Neuroradiology, Aachen (Germany); Gilsbach, Joachim M. [University Hospital Aachen, Department of Neurosurgery, Aachen (Germany)

    2005-02-01

    Spinal vascular malformations are rare diseases that consist of true inborn cavernomas and arteriovenous malformations (including perimedullary fistulae, glomerular and juvenile AVMs) and presumably acquired dural arteriovenous fistulae. This review article gives an overview of the imaging features both on MRI and angiography, the differential diagnoses, the clinical symptomatology and the potential therapeutic approaches to these diseases. It is concluded that MRI is the diagnostic modality of first choice in suspected spinal vascular malformation and should be complemented by selective spinal angiography. Treatment in symptomatic patients offers an improvement in the prognosis, but should be performed in specialized centers. Patients with spinal cord cavernomas and perimedullary fistulae type I are surgical candidates. Dural arteriovenous fistulae can either be operated upon or can be treated by an endovascular approach, the former being a simple, quick and secure approach to obliterate the fistula, while the latter is technically demanding. In spinal arteriovenous malformations, the endovascular approach is the method of first choice; in selected cases, a combined therapy might be sensible. (orig.)

  17. Spinal vascular malformations

    Spinal vascular malformations are rare diseases that consist of true inborn cavernomas and arteriovenous malformations (including perimedullary fistulae, glomerular and juvenile AVMs) and presumably acquired dural arteriovenous fistulae. This review article gives an overview of the imaging features both on MRI and angiography, the differential diagnoses, the clinical symptomatology and the potential therapeutic approaches to these diseases. It is concluded that MRI is the diagnostic modality of first choice in suspected spinal vascular malformation and should be complemented by selective spinal angiography. Treatment in symptomatic patients offers an improvement in the prognosis, but should be performed in specialized centers. Patients with spinal cord cavernomas and perimedullary fistulae type I are surgical candidates. Dural arteriovenous fistulae can either be operated upon or can be treated by an endovascular approach, the former being a simple, quick and secure approach to obliterate the fistula, while the latter is technically demanding. In spinal arteriovenous malformations, the endovascular approach is the method of first choice; in selected cases, a combined therapy might be sensible. (orig.)

  18. Pulmonary vascular diseases.

    Mélot, C; Naeije, R

    2011-04-01

    Diseases of the pulmonary vasculature are a cause of increased pulmonary vascular resistance (PVR) in pulmonary embolism, chronic thromboembolic pulmonary hypertension (CTEPH), and pulmonary arterial hypertension or decreased PVR in pulmonary arteriovenous malformations on hereditary hemorrhagic telangiectasia, portal hypertension, or cavopulmonary anastomosis. All these conditions are associated with a decrease in both arterial PO2 and PCO2. Gas exchange in pulmonary vascular diseases with increased PVR is characterized by a shift of ventilation and perfusion to high ventilation-perfusion ratios, a mild to moderate increase in perfusion to low ventilation-perfusion ratios, and an increased physiologic dead space. Hypoxemia in these patients is essentially explained by altered ventilation-perfusion matching amplified by a decreased mixed venous PO2 caused by a low cardiac output. Hypocapnia is accounted for by hyperventilation, which is essentially related to an increased chemosensitivity. A cardiac shunt on a patent foramen ovale may be a cause of severe hypoxemia in a proportion of patients with pulmonary hypertension and an increase in right atrial pressure. Gas exchange in pulmonary arteriovenous malformations is characterized by variable degree of pulmonary shunting and/or diffusion-perfusion imbalance. Hypocapnia is caused by an increased ventilation in relation to an increased pulmonary blood flow with direct peripheral chemoreceptor stimulation by shunted mixed venous blood flow. PMID:23737196

  19. Accelerators and the Accelerator Community

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  20. accelerating cavity

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  1. Macrophage mediated endothelial injury and proliferation in renal transplant rejection.

    Adair, Anya

    2008-01-01

    Macrophages (Mφ) have previously been implicated in both acute and chronic renal allograft rejection however the mechanisms remain unclear. In this thesis I set out to explore the effect of the Mφ on the endothelium in the context of renal graft rejection. Initial studies focussed upon human renal allograft tissue from transplant nephrectomies performed because of chronic allograft nephropathy (CAN). Immunostaining was carried out on these tissues (n=29) and control kidne...

  2. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  3. Macrophage-mediated response to hypoxia in disease

    Tazzyman S

    2014-11-01

    Full Text Available Simon Tazzyman,1 Craig Murdoch,2 James Yeomans,1 Jack Harrison,1 Munitta Muthana3 1Department of Oncology, 2School of Clinical Dentistry, 3Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment. Keywords: macrophage, hypoxia, inflammation, cytokine

  4. Dynamic adaption of vascular morphology

    Okkels, Fridolin; Jacobsen, Jens Christian Brings

    2012-01-01

    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here ...

  5. Electron Accelerator Facilities

    Lecture presents main aspects of progress in development of industrial accelerators: adaptation of accelerators primary built for scientific experiments, electron energy and beam power increase in certain accelerator constructions, computer control system managing accelerator start-up, routine operation and technological process, maintenance (diagnostics), accelerator technology perfection (electrical efficiency, operation cost), compact and more efficient accelerator constructions, reliability improvement according to industrial standards, accelerators for MW power levels and accelerators tailored for specific use

  6. Accelerator system and method of accelerating particles

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  7. Vascular Aging: Lessons From Pediatric Hypertension.

    Litwin, Mieczyslaw; Feber, Janusz; Ruzicka, Marcel

    2016-05-01

    Hypertension (HTN) in children is associated with early vascular aging (EVA) and underlying immunologic-metabolic abnormalities and accelerated biological maturation. Morphologic and functional vascular changes underlying EVA and HTN in children resemble those seen in the elderly including but not limited to an increase in intima-media thickness (IMT) and arterial stiffness and endothelial dysfunction. Although progeria syndrome leading to EVA and the development of clinically manifested cardiovascular (CV) disease in the second decade of life is a rare hereditary disorder, primary HTN, which is also associated with EVA, is much more common (reported in up to 10% in adolescents). EVA associated with HTN in children leads to the premature development of target organ injury in childhood and CV events in early adulthood. Limited evidence from prospective observational studies in children and adolescents indicates that early lifestyle measures (low salt/low sugar intake and exercise) or pharmacologic treatment of HTN, or both, partially reverses morphologic and functional changes underlying EVA such as an increase in carotid IMT and pulse wave velocity, a decrease in flow-mediated dilation of the brachial artery, and an increase in oxidative stress and visceral fat. Future mechanistic and therapeutic clinical trials are desirable to assess the mechanisms and treatment strategies of EVA in the context of HTN in children and their effect on CV events in early adulthood. PMID:27040097

  8. Retina vascular network recognition

    Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo

    1993-09-01

    The analysis of morphological and structural modifications of the retina vascular network is an interesting investigation method in the study of diabetes and hypertension. Normally this analysis is carried out by qualitative evaluations, according to standardized criteria, though medical research attaches great importance to quantitative analysis of vessel color, shape and dimensions. The paper describes a system which automatically segments and recognizes the ocular fundus circulation and micro circulation network, and extracts a set of features related to morphometric aspects of vessels. For this class of images the classical segmentation methods seem weak. We propose a computer vision system in which segmentation and recognition phases are strictly connected. The system is hierarchically organized in four modules. Firstly the Image Enhancement Module (IEM) operates a set of custom image enhancements to remove blur and to prepare data for subsequent segmentation and recognition processes. Secondly the Papilla Border Analysis Module (PBAM) automatically recognizes number, position and local diameter of blood vessels departing from optical papilla. Then the Vessel Tracking Module (VTM) analyses vessels comparing the results of body and edge tracking and detects branches and crossings. Finally the Feature Extraction Module evaluates PBAM and VTM output data and extracts some numerical indexes. Used algorithms appear to be robust and have been successfully tested on various ocular fundus images.

  9. Abdominopelvic vascular injuries.

    Sriussadaporn, S

    2000-01-01

    The clinical records of 25 patients with 32 abdominopelvic vascular injuries were reviewed. Sixty per cent of patients sustained blunt trauma and 40 per cent sustained penetrating trauma. Nineteen patients (76%) were in shock on arrival, 2 of them underwent ER thoracotomy when they first arrived in the emergency room. Nine patients (36%) had signs of lower extremity ischemia. The Injury Severity Score (ISS) ranged from 16-50, mean 29 +/- 10.0. Nineteen patients (76%) had 35 associated injuries. Of the 32 injured vessels; 8 were external iliac artery, 5 were renal vein, 4 were abdominal aorta, 3 were common iliac artery, common iliac vein, external iliac vein and inferior vena cava, and 1 was superior mesenteric artery, superior mesenteric vein and median sacral artery. Treatments included: 13 lateral repair, 4 prosthetic grafting, 4 nephrectomy, 3 ligation, 3 reversed saphenous vein grafting, 2 end to end anastomosis, 1 internal iliac artery grafting, 1 intravascular shunt and packing and 1 perihepatic packing. Nine patients (36%) died. High mortality was observed in injuries to the abdominal aorta (75%), inferior vena cava (66.7%), common iliac vein (66.7%) and associated major pelvic fractures (50%). Factors significantly associated with mortality were the presence of shock on arrival, associated injuries and high Injury Severity Score. The author concludes that short prehospital time, effective resuscitation and proper surgical decision making are important for survival in these critically injured patients. PMID:10710864

  10. Ultrasound in vascular disease & introduction

    Deane, C; S.Castellani; B. Brkljacic

    2012-01-01

    Il capitolo descrive i prin cipi generali fondamentali delle tecniche per la valutazione ultrasonografica con doppler vascolare The chapter describes the fundamental principles underlying the use of ultrasonographic techniques of vascular doppler

  11. Diabetes and Retinal Vascular Dysfunction

    Eui Seok Shin

    2014-01-01

    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  12. Vascular graft infections with Mycoplasma

    Levi-Mazloum, Niels Donald; Skov Jensen, J; Prag, J;

    1995-01-01

    laboratory techniques, the percentage of culture-negative yet grossly infected vascular grafts seems to be increasing and is not adequately explained by the prior use of antibiotics. We have recently reported the first case of aortic graft infection with Mycoplasma. We therefore suggest the hypothesis that...... the large number of culture-negative yet grossly infected vascular grafts may be due to Mycoplasma infection not detected with conventional laboratory technique....

  13. The relationships of vascular plants.

    Kenrick, P

    2000-01-01

    Recent phylogenetic research indicates that vascular plants evolved from bryophyte-like ancestors and that this involved extensive modifications to the life cycle. These conclusions are supported by a range of systematic data, including gene sequences, as well as evidence from comparative morphology and the fossil record. Within vascular plants, there is compelling evidence for two major clades, which have been termed lycophytes (clubmosses) and euphyllophytes (seed plants, ferns, horsetails)...

  14. The pathobiology of vascular dementia

    Iadecola, Costantino

    2013-01-01

    Vascular cognitive impairment defines alterations in cognition, ranging from subtle deficits to full-blown dementia, attributable to cerebrovascular causes. Often coexisting with Alzheimer’s disease, mixed vascular and neurodegenerative dementia has emerged as the leading cause of age-related cognitive impairment. Central to the disease mechanism is the crucial role that cerebral blood vessels play in brain health, not only for the delivery of oxygen and nutrients, but also for the trophic si...

  15. Calcium dynamics in vascular smooth muscle

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  16. Pulsed DC accelerator for laser wakefield accelerator

    For the acceleration of ultra-short, high-brightness electron bunches, a pulsed DC accelerator was constructed. The pulser produced megavolt pulses of 1 ns duration in a vacuum diode. Results are presented from field emission of electrons in the diode. The results indicate that the accelerating gradient in the diode is approximately 1.5 GV/m

  17. Linear Accelerator (LINAC)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays to ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  18. Obesity in Indian subjects with Vascular Dementia

    CHANDRA, Mina; Anand, Kuljeet Singh Anand

    2015-01-01

    ABSTRACT Background: Obesity is considered a public health challenge in South Asia. Obesity is an independent risk factor in vascular dementia. It also contributes to other risk factors of vascular dementia like hypertension, coronary artery disease, dyslipidaemia and diabetes. As the rate of obesity in Indian subjects with vascular dementia is not known, we decided to assess obesity in subjects with vascular dementia. Methods: Subjects with vascular dementia presenting to Mem...

  19. Vascular Aging across the Menopause Transition in Healthy Women

    Kerrie L. Moreau

    2014-01-01

    Full Text Available Vascular aging, featuring endothelial dysfunction and large artery stiffening, is a major risk factor for developing cardiovascular disease (CVD. In women, vascular aging appears to be accelerated during the menopause transition, particularly around the late perimenopausal period, presumably related to declines in ovarian function and estrogen levels. The mechanisms underlying endothelial dysfunction and large artery stiffening with the menopause transition are not completely understood. Oxidative stress and the proinflammatory cytokine tumor necrosis factor-α contribute to endothelial dysfunction and large artery stiffening in estrogen-deficient postmenopausal women. Habitual endurance exercise attenuates the age-related increase in large artery stiffness in estrogen-deficient postmenopausal women and can reverse arterial stiffening to premenopausal levels in estrogen-replete postmenopausal women. In contrast, estrogen status appears to play a key permissive role in the adaptive response of the endothelium to habitual endurance exercise in that endothelial improvements are absent in estrogen-deficient women but present in estrogen-replete women. We review here the current state of knowledge on the biological defects underlying vascular aging across the menopause transition, with particular focus on potential mechanisms, the role of habitual exercise in preserving vascular health, and key areas for future research.

  20. Vascular calcification: Inducers and inhibitors

    Lee, Donghyun, E-mail: dhlee@cau.ac.kr [Department of Biomedical Engineering, Division of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} Types of vascular calcification processes. {center_dot} Inducers of vascular calcification. {center_dot} Inhibitors of vascular calcifications. {center_dot} Clinical utility for vascular calcification therapy. {center_dot} Implications for the development of new tissue engineering strategies. - Abstract: Unlike the traditional beliefs, there are mounting evidences suggesting that ectopic mineral depositions, including vascular calcification are mostly active processes, many times resembling that of the bone mineralization. Numbers of agents are involved in the differentiation of certain subpopulation of smooth muscle cells (SMCs) into the osteoblast-like entity, and the activation and initiation of extracellular matrix ossification process. On the other hand, there are factors as well, that prevent such differentiation and ectopic calcium phosphate formation. In normal physiological environments, activities of such procalcific and anticalcific regulatory factors are in harmony, prohibiting abnormal calcification from occurring. However, in certain pathophysiological conditions, such as atherosclerosis, chronic kidney disease (CKD), and diabetes, such balances are altered, resulting in abnormal ectopic mineral deposition. Understanding the factors that regulate the formation and inhibition of ectopic mineral formation would be beneficial in the development of tissue engineering strategies for prevention and/or treatment of such soft-tissue calcification. Current review focuses on the factors that seem to be clinically relevant and/or could be useful in developing future tissue regeneration strategies. Clinical utilities and implications of such factors are also discussed.

  1. Vascular Injury in Orthopedic Trauma.

    Mavrogenis, Andreas F; Panagopoulos, George N; Kokkalis, Zinon T; Koulouvaris, Panayiotis; Megaloikonomos, Panayiotis D; Igoumenou, Vasilios; Mantas, George; Moulakakis, Konstantinos G; Sfyroeras, George S; Lazaris, Andreas; Soucacos, Panayotis N

    2016-07-01

    Vascular injury in orthopedic trauma is challenging. The risk to life and limb can be high, and clinical signs initially can be subtle. Recognition and management should be a critical skill for every orthopedic surgeon. There are 5 types of vascular injury: intimal injury (flaps, disruptions, or subintimal/intramural hematomas), complete wall defects with pseudoaneurysms or hemorrhage, complete transections with hemorrhage or occlusion, arteriovenous fistulas, and spasm. Intimal defects and subintimal hematomas with possible secondary occlusion are most commonly associated with blunt trauma, whereas wall defects, complete transections, and arteriovenous fistulas usually occur with penetrating trauma. Spasm can occur after either blunt or penetrating trauma to an extremity and is more common in young patients. Clinical presentation of vascular injury may not be straightforward. Physical examination can be misleading or initially unimpressive; a normal pulse examination may be present in 5% to 15% of patients with vascular injury. Detection and treatment of vascular injuries should take place within the context of the overall resuscitation of the patient according to the established principles of the Advanced Trauma Life Support (ATLS) protocols. Advances in the field, made mostly during times of war, have made limb salvage the rule rather than the exception. Teamwork, familiarity with the often subtle signs of vascular injuries, a high index of suspicion, effective communication, appropriate use of imaging modalities, sound knowledge of relevant technique, and sequence of surgical repairs are among the essential factors that will lead to a successful outcome. This article provides a comprehensive literature review on a subject that generates significant controversy and confusion among clinicians involved in the care of trauma patients. [Orthopedics. 2016; 39(4):249-259.]. PMID:27322172

  2. Vascular Gene Expression: A Hypothesis

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  3. Plant Vascular Biology and Agriculture

    William J.Lucas

    2010-01-01

    @@ The evolution of animal and plant vascular systems played a pivotal role in the advancement from simple to complex organisms,through the provision of a delivery system for the distribution of components essential for both metabolism and growth.Interestingly,although these two vascular systems conform to the same generel rules of fluid dynamics(Murray1926;McCulloh et al.2003),the developmental mechanisms adopted by plants and animals,to generate these long-distance transport systems.have little in common.

  4. Vascular Function in Alzheimer's Disease and Vascular Dementia.

    Tachibana, Hisatsugu; Washida, Kazuo; Kowa, Hisatomo; Kanda, Fumio; Toda, Tatsushi

    2016-08-01

    We investigated vascular functioning in patients with a clinical and radiological diagnosis of either Alzheimer's disease (AD) or vascular dementia (VaD) and examined a possible relationship between vascular function and cognitive status. Twenty-seven patients with AD, 23 patients with VaD, and 26 healthy control patients underwent measurements of flow-mediated dilation (FMD), ankle-brachial index (ABI), cardioankle vascular index (CAVI), and intima-media thickness (IMT). The FMD was significantly lower in patients with AD or VaD compared to controls. There were no significant differences in ABI, CAVI, or IMT among the 3 groups. A significant correlation was found between Mini-Mental State Examination (MMSE) scores and FMD. Furthermore, a multiple regression analysis revealed that FMD was significantly predicted by MMSE scores. These results suggest that endothelial involvement plays a role in AD pathogenesis, and FMD may be more sensitive than other surrogate methods (ABI, CAVI, and IMT) for detecting early-stage atherosclerosis and/or cognitive decline. PMID:27284205

  5. Acceleration without Horizons

    Doria, Alaric; Munoz, Gerardo

    2015-01-01

    We derive the metric of an accelerating observer moving with non-constant proper acceleration in flat spacetime. With the exception of a limiting case representing a Rindler observer, there are no horizons. In our solution, observers can accelerate to any desired terminal speed $v_{\\infty} < c$. The motion of the accelerating observer is completely determined by the distance of closest approach and terminal velocity or, equivalently, by an acceleration parameter and terminal velocity.

  6. Vascular complications in glioma patients.

    Le Rhun, Emilie; Perry, James R

    2016-01-01

    Vascular complications in patients with glioma most commonly include venous and arterial thromboembolism; however, treatment-induced vasculopathies are also problematic, especially in long-term survivors. The interactions between treatment such as radiation and chemotherapy, the coagulation cascade, endothelium, and regulators of angiogenesis are complex, drive glioma growth and invasion, and create common management problems in the clinic. We review the incidence of thrombotic complications in glioma, the biology of the coagulome as related to glioma progression, prevention and treatment of thrombosis, the role of anticoagulants as anticancer therapy, and vascular complications such as ischemic stroke and intracranial bleeding. The coagulation cascade is intimately involved in cancer-related thrombosis, glioma progression, and vascular complications of glioma therapy. Tissue factor is the principal initiator of coagulation and is upregulated in a glioma subtype-specific fashion. Short-term (perioperative) antithrombotic prophylaxis is effective, but long-term anticoagulation, although attractive, is not routinely indicated. Most patients with symptomatic venous thromboembolism can be safely anticoagulated, including those on anti-vascular endothelial growth factor therapeutics such as bevacizumab. Initial therapy should include low-molecular-weight heparin, and protracted anticoagulant treatment, perhaps indefinitely, is indicated. Many complex interactions resulting in vessel wall injury can lead to ischemic stroke, intracranial and intratumoral hemorrhage, and long-term sequelae such as cognitive impairment. PMID:26948359

  7. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-01

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts. PMID:26023741

  8. Pediatric central nervous system vascular malformations

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  9. Pediatric central nervous system vascular malformations

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  10. Dealing with vascular conundrums with MR imaging.

    Angthong, Wirana; Semelka, Richard C

    2014-07-01

    Magnetic resonance (MR) imaging is a robust imaging modality for evaluation of vascular diseases. Technological advances have made MR imaging widely available for accurate and time-efficient vascular assessment. In this article the clinical usefulness of MR imaging techniques and their application are reviewed, using examples of vascular abnormalities commonly encountered in clinical practice, including abdominal, pelvic, and thoracic vessels. Common pitfalls and problem solving in interpretation of vascular findings in body MR imaging are also discussed. PMID:24889175

  11. MicroRNAs in Vascular Biology

    Munekazu Yamakuchi

    2012-01-01

    Vascular inflammation is an important component of the pathophysiology of cardiovascular diseases, such as hypertension, atherosclerosis, and aneurysms. All vascular cells, including endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and infiltrating cells, such as macrophages, orchestrate a series of pathological events. Despite dramatic improvements in the treatment of atherosclerosis, the molecular basis of vascular inflammation is not well understood. In the last decade, mi...

  12. Diagnosis advances in vascular cognitive impairment

    Hua Zhou; Zhong Zhao

    2009-01-01

    Vascular cognitive impairment(VCI) encompasses the entire range of cognitive deficits associated with cerebrovascular disease(CVD), from mild deficits with little or no functional impairment, such as vascular cognitive impairment-no dementia(VCIND), to full-blown vascular dementia(VaD). Accurate diagnosis of vascular cognitive impairment is important but may be difficult. In this review we report advances in VCI in the following areas: etiology, subtypes, neuropsychology, biomarkers, neuroimaging, and diagnostic criteria.

  13. Congenital vascular malformations in scintigraphic evaluation

    Pilecki, Stanisław; Gierach, Marcin; Gierach, Joanna; Świętaszczyk, Cyprian; Junik, Roman; Lasek, Władysław

    2014-01-01

    Summary Background Congenital vascular malformations are tumour-like, non-neoplastic lesions caused by disorders of vascular tissue morphogenesis. They are characterised by a normal cell replacement cycle throughout all growth phases and do not undergo spontaneous involution. Here we present a scintigraphic image of familial congenital vascular malformations in two sisters. Material/Methods A 17-years-old young woman with a history of multiple hospitalisations for foci of vascular anomalies a...

  14. High intensity hadron accelerators

    In this paper we give an introductory discussion of high intensity hadron accelerators with special emphasis on the high intensity feature. The topics selected for this discussion are: Types of acclerator - The principal actions of an accelerator are to confine and to accelerate a particle beam. Focusing - This is a discussion of the confinement of single particles. Intensity limitations - These are related to confinement of intense beams of particles. Power economics - Considerations related to acceleration of intense beams of particles. Heavy ion kinematics - The adaptation of accelerators to accelerate all types of heavy ions

  15. The direction of acceleration

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  16. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  17. Near-infraread spectroscopy during peripheral vascular surgery

    Schroeder, Torben Veith; Eiberg, Jonas Peter; Vogt, Katja; Secher, Niels Henry

    Original,Near-infraread spectroscopy,Vascular disease,Vascular by-pass surgery,Perioperative oxymetry......Original,Near-infraread spectroscopy,Vascular disease,Vascular by-pass surgery,Perioperative oxymetry...

  18. San Francisco Accelerator Conference

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  19. Dielectric Laser Acceleration

    England, R. Joel; Noble, Robert J.; Wu, Ziran; Qi, Minghao

    2013-01-01

    We describe recent advances in the study of particle acceleration using dielectric near-field structures driven by infrared lasers, which we refer to as Dielectric Laser Accelerators. Implications for high energy physics and other applications are discussed.

  20. Standing wave linear accelerator

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  1. Improved plasma accelerator

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  2. High Energy Particle Accelerators

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  3. Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems

    Xu, Peng; Kong, Yimeng; Li, Xuan; Li, Laigeng

    2013-01-01

    Background Vascular system formation has been studied through molecular and genetic approaches in Arabidopsis, a herbaceous dicot that is used as a model system. Different vascular systems have developed in other plants such as crops and trees. Uncovering shared mechanisms underlying vascular development by transcriptome analysis of different vascular systems may help to transfer knowledge acquired from Arabidopsis to other economically important species. Results Conserved vascular genes and ...

  4. Maximal Acceleration Is Nonrotating

    Page, Don N.

    1997-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruenc...

  5. Accelerators at school

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  6. A Solid state accelerator

    We present a solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal. Acceleration gradients of order 100 GV/cm are theoretically possible, but channeling radiation limits the maximum attainable energy to 105 TeV for protons. Beam dechanneling due to multiple scattering is substantially reduced by the high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed

  7. Superconducting accelerator technology

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  8. Applications of particle accelerators

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  9. Vascularized osseous graft for scaphoid

    The most commonly used technique for treatment of pseudo-arthrosis of the scaphoid is osteo-synthesis with Kirschnet wires and cortical sponge grafts. Results reported by different teams using this procedure show no more than 90% osseous consolidation, especially in cases where vascularisation of the proximal fragment of the scaphoid is compromised. Here we present a series of ten cases of pseudo-arthrosis of the scaphoid, treated using a new surgical technique involving a vascularized osseous graft of the distal radius. Using this procedure we obtained 100% consolidation, with no complications either during the procedure or immediately post-operatively. Patients returned to work in week 15 on average. In 4 cases we observed discomfort in the area of the scar, which was successfully treated using local cortisone injection. The results obtained are very similar to those seen in the literature on the different techniques for vascularized osseous grafts for pseudo-arthrosis of the scaphoid

  10. Cellular mechanisms during vascular development

    Blum, Yannick

    2012-01-01

    The vascular system is an essential organ in vertebrate animals and provides the organism with enough oxygen and nutrients. It is composed of an interconnected network of blood vessels, which form using a number of different morphogenetic mechanisms. Angiogenesis describes the formation of new blood vessels from preexisting vessels. A number of molecular pathways have been shown to be essential during angiogenesis. However, cellular architecture of blood vessels as well as cellular mechanisms...

  11. Fascia and Primo Vascular System

    Chun Yang; Yi-kuan Du; Jian-bin Wu; Jun Wang; Ping Luan; Qin-lao Yang; Lin Yuan

    2015-01-01

    The anatomical basis for the concept of acupuncture points/meridians in traditional Chinese medicine (TCM) has not been resolved. This paper reviews the fascia research progress and the relationship among acupuncture points/meridians, primo vascular system (PVS), and fascia. Fascia is as a covering, with common origins of layers of the fascial system despite diverse names for individual parts. Fascia assists gliding and fluid flow and holds memory and is highly innervated. Fascia is intimatel...

  12. Quantitative analysis of vascular calcification

    Joh, Jin Hyun; Kim, Dong Ik

    2013-01-01

    Vascular calcification is a prominent feature of atherosclerosis. The mineral composition and quantity within calcified arterial plaques remains unelucidated; therefore, the aim of this study was to analyze the mineral composition of such plaques. Calcified arterial plaques were obtained from patients with abdominal aortic aneurysms (AAAs) and carotid artery stenoses. Calcified aneurysmal plaques were obtained during the routine open repair of AAAs, while calcified carotid plaques were collec...

  13. Vascular instruction of pancreas development

    Cleaver, Ondine; Dor, Yuval

    2012-01-01

    Blood vessels course through organs, providing them with essential nutrient and gaseous exchange. However, the vasculature has also been shown to provide non-nutritional signals that play key roles in the control of organ growth, morphogenesis and homeostasis. Here, we examine a decade of work on the contribution of vascular paracrine signals to developing tissues, with a focus on pancreatic β-cells. During the early stages of embryonic development, blood vessels are required for pancreas spe...

  14. NADPH Oxidases in Vascular Pathology

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta; Tomasz J. Guzik

    2014-01-01

    Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the ...

  15. Tbx1 regulates brain vascularization.

    Cioffi, Sara; Martucciello, Stefania; Fulcoli, Filomena Gabriella; Bilio, Marchesa; Ferrentino, Rosa; Nusco, Edoardo; Illingworth, Elizabeth

    2014-01-01

    The transcription factor TBX1 is the major gene involved in 22q11.2 deletion syndrome (22q11.2DS). Using mouse models of these diseases, we have previously shown that TBX1 activates VEGFR3 in endothelial cells (EC), and that this interaction is critical for the development of the lymphatic vasculature. In this study, we show that TBX1 regulates brain angiogenesis. Using loss-of-function genetics and molecular approaches, we show that TBX1 regulates the VEGFR3 and DLL4 genes in brain ECs. In mice, loss of TBX1 causes global brain vascular defects, comprising brain vessel hyperplasia, enhanced angiogenic sprouting and vessel network disorganization. This phenotype is recapitulated in EC-specific Tbx1 conditional mutants and in an EC-only 3-dimensional cell culture system (matrigel), indicating that the brain vascular phenotype is cell autonomous. Furthermore, EC-specific conditional Tbx1 mutants have poorly perfused brain vessels and brain hypoxia, indicating that the expanded vascular network is functionally impaired. In EC-matrigel cultures, a Notch1 agonist is able to partially rescue microtubule hyperbranching induced by TBX1 knockdown. Thus, we have identified a novel transcriptional regulator of angiogenesis that exerts its effect in brain by negatively regulating angiogenesis through the DLL4/Notch1-VEGFR3 regulatory axis. Given the similarity of the phenotypic consequences of TBX1 mutation in humans and mice, this unexpected role of TBX1 in murine brain vascularization should stimulate clinicians to search for brain microvascular anomalies in 22q11.2DS patients and to evaluate whether some of the anatomical and functional brain anomalies in patients may have a microvascular origin. PMID:23945394

  16. Cocaine-related vascular headaches.

    Dhuna, A; Pascual-Leone, A; Belgrade, M

    1991-01-01

    The records of 21 patients admitted to hospital from January 1985 to December 1988 for acute headache associated with cocaine intoxication were reviewed. Fifteen patients were identified who experienced headaches with migrainous features in the absence of neurological or systemic complications. None of them had a history of cocaine-unrelated headaches or a family history of migraine, and all had a favourable outcome. Three possible mechanisms of cocaine-related vascular headaches are discusse...

  17. Hydrogen sulfide and vascular relaxation

    SUN Yan; TANG Chao-shu; DU Jun-bao; JIN Hong-fang

    2011-01-01

    Objective To review the vasorelaxant effects of hydrogen sulfide (H2S) in arterial rings in the cardiovascular system under both physiological and pathophysiological conditions and the possible mechanisms involved.Data sources The data in this review were obtained from Medline and Pubmed sources from 1997 to 2011 using the search terms "hydrogen sulfide" and ""vascular relaxation".Study selection Articles describing the role of hydrogen sulfide in the regulation of vascular activity and its vasorelaxant effects were selected.Results H2S plays an important role in the regulation of cardiovascular tone.The vasomodulatory effects of H2S depend on factors including concentration,species and tissue type.The H2S donor,sodium hydrosulfide (NarS),causes vasorelaxation of rat isolated aortic rings in a dose-dependent manner.This effect was more pronounced than that observed in pulmonary arterial rings.The expression of KATP channel proteins and mRNA in the aortic rings was increased compared with pulmonary artery rings.H2S is involved in the pathogenesis of a variety of cardiovascular diseases.Downregulation of the endogenous H2S pathway is an important factor in the pathogenesis of cardiovascular diseases.The vasorelaxant effects of H2S have been shown to be mediated by activation of KATP channels in vascular smooth muscle cells and via the induction of acidification due to activation of the CI/HCO3 exchanger.It is speculated that the mechanisms underlying the vasoconstrictive function of H2S in the aortic rings involves decreased NO production and inhibition of cAMP accumulation.Conclusion H2S is an important endogenous gasotransmitter in the cardiovascular system and acts as a modulator of vascular tone in the homeostatic regulation of blood pressure.

  18. Vascular parameters from angiographic images

    This paper measures geometric and dynamic vascular parameters using digital angiographic image sequences: An image analysis system for neuroangiography is being developed by the Medical Imaging Division and Endovascular Therapy section of our department. Angiographic images are obtained from a GE Digital Fluoricon 5000 system. The image sets are analyzed on a Stellar GS2000 graphics mini-supercomputer using software modules written for use with the Application Visualization System (AVS). Flow phantoms are used to evaluate analysis routines and bolus injection techniques

  19. Vascular gene expression: a hypothesis

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular ti...

  20. Endangered vascular plants in Japan

    IWATSUKI, Kunio

    2008-01-01

    The history of the Red List of Japanese vascular plants is briefly reviewed for editing and research. Especially on the results of recent monitoring, the present status of information and conservation activities on the endangered plants in Japan is discussed and the dynamics of the Japanese flora are taken up, in relation to basic research on plant biodiversity on the Japanese Archipelago. The figures of endangered plants are not very variable during the past quarter of a century, but we can ...

  1. Radiology of peripheral vascular diseases

    This volume provides a comprehensive account of the use of modern imaging procedures for the diagnosis of arterial and venous diseases. Each imaging modality is separately considered and applications in individual diseases are then explained with the aid of excellent illustrations. In addition, vascular interventions such as balloon angioplasty, local thrombolysis, and stent implantation are discussed and appraised. Special attention is devoted to the problem of radiation burden for patients. The authors are all recognized experts in angiology, phlebology, and interventional radiology. (orig.)

  2. Accelerator development in BARC

    Charged particle accelerators have played crucial role in the field of both basic and applied sciences. This has been possible because the accelerators have been extensively utilized from unraveling the secrets of nature to diverse applications such as implantation, material modification, medical diagnostics and therapy, nuclear energy and clean air and water. The development of accelerators in BARC can be categorized in two broad categories namely proton and heavy ion based accelerators and electron based accelerators. The heavy ion accelerators with sufficiently high energies are currently being used for conducting frontline nuclear and allied research whereas the electron accelerators are being routinely used for various industrial applications. Recently, there is a strong interest for developing the high energy and high intensity accelerators due to their possibility of effective utilization towards concept of energy amplification (Accelerator Driven System), incineration nuclear waste and transmutation. This talk will discuss details of the accelerator development program in BARC with particular emphasis on the recent development at Low Energy High Intensity Proton Accelerator (LEHIPA) Facility in Ion Accelerator Development Division, BARC. (author)

  3. Far field acceleration

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  4. The CERN Accelerator School

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  5. Accelerators and Dinosaurs

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  6. Acceleration: It's Elementary

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  7. Vascular Complications of Cancer Chemotherapy.

    Cameron, Alan C; Touyz, Rhian M; Lang, Ninian N

    2016-07-01

    Development of new anticancer drugs has resulted in improved mortality rates and 5-year survival rates in patients with cancer. However, many of the modern chemotherapies are associated with cardiovascular toxicities that increase cardiovascular risk in cancer patients, including hypertension, thrombosis, heart failure, cardiomyopathy, and arrhythmias. These limitations restrict treatment options and might negatively affect the management of cancer. The cardiotoxic effects of older chemotherapeutic drugs such as alkylating agents, antimetabolites, and anticancer antibiotics have been known for a while. The newer agents, such as the antiangiogenic drugs that inhibit vascular endothelial growth factor signalling are also associated with cardiovascular pathology, especially hypertension, thromboembolism, myocardial infarction, and proteinuria. Exact mechanisms by which vascular endothelial growth factor inhibitors cause these complications are unclear but impaired endothelial function, vascular and renal damage, oxidative stress, and thrombosis might be important. With increasing use of modern chemotherapies and prolonged survival of cancer patients, the incidence of cardiovascular disease in this patient population will continue to increase. Accordingly, careful assessment and management of cardiovascular risk factors in cancer patients by oncologists and cardiologists working together is essential for optimal care so that prolonged cancer survival is not at the expense of increased cardiovascular events. PMID:26968393

  8. [Vascular Ehlers-Danlos syndrome].

    Frank, Michael

    2009-04-20

    Vascular type Ehlers-Danlos syndrome (EDS) is a rare inherited disease with an autosomal dominant trait. The mutation of the COL3A1 gene which encodes type III collagen, is responsible of early vascular (spontaneous arterial rupture or dissection), digestive (perforation) and obstetrical events (uterine and arterial rupture). Diagnosis of the disease is primarily clinical, especially in case of characteristic morphologic features. Diagnostic certainty is obtained by evidencing the mutation of the COL3A1 gene. Some arterial lesions are suggestive of the disease, as dissecting aneurysms of the internal carotid, of the iliac arteries, and of the anterior visceral aortic branches, fusiform aneurisms of the splenic artery, and the occurrence of a non traumatic direct carotid-cavernous fistula. The occurrence of a spontaneous peritonitis or of an extensive perineal tear after delivery should also draw physician's attention. Because of the unpredictability of arterial or organ rupture, any patient diagnosed with vascular type EDS presenting with an acute pain syndrome should be considered as a trauma situation and be investigated straightaway by CT-scan or MRI testing, in order to eliminate a life threatening complication. PMID:19462862

  9. Changing demographics in patients with vascular disease.

    Kwolek, Christopher J; Clagett, G Patrick

    2009-02-01

    The United States population with vascular disease has changed dramatically during the past 2 decades, with large increases in the proportion of Hispanic, African American, and other minority patients. Not only has the number of these patients increased, but the types and distribution of vascular disease in minority populations is also different from that encountered in non-Hispanic whites. Although genetic makeup accounts for some of these differences, access to vascular care is also an important determinant, with many minority patients presenting late in the course of the disease process. These factors create significant challenges for the vascular specialists caring for these patients. The vascular surgery workforce is composed of >90% white men and does not currently represent the changes in the population of patients with vascular disease. In addition, women with vascular disease comprise up to 50% of many vascular surgery practices. In many parts of the country, Hispanics and African Americans outnumber non-Hispanic whites with vascular disease. Yet, women and minority physicians are still significantly under-represented in the field of vascular surgery. This year's E. Stanley Crawford Critical Issues Forum at the Society for Vascular Surgery meeting addressed the disconnect between the vascular surgery workforce and the patients whom we serve. This article reviews the projected demographic changes in the population of the United States, which supports the need for training a vascular surgery workforce that is more diverse. This article also reviews the current status of minority and female representation in medical schools, surgical training programs, and vascular surgery programs in the United States. PMID:19216973

  10. The Accelerator Reliability Forum

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  11. Direct Laser Acceleration in Laser Wakefield Accelerators

    Shaw, Jessica

    2016-01-01

    In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are t...

  12. DNA Damage: A Main Determinant of Vascular Aging.

    Bautista-Niño, Paula K; Portilla-Fernandez, Eliana; Vaughan, Douglas E; Danser, A H Jan; Roks, Anton J M

    2016-01-01

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  13. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. PMID:27524062

  14. The future of particle accelerators

    Plasma-based accelerators are developing as credible, and compact, accelerators for the future. We review the status and prospects for electron and proton accelerators using laser Wakefield acceleration. (author)

  15. Particle-accelerator decommissioning

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  16. An introduction to acceleration mechanisms

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  17. Clinical pharmacology and vascular risk.

    Silvestrelli, G; Corea, F; Micheli, S; Lanari, A

    2010-01-01

    Pharmacological treatment and several drugs of abuse have been associated with ischemic heart disease (IHD) and cerebrovascular diseases (CVD). However, there is a paucity of data on the independent risk of vascular disease (VD) associated with pharmacological treatment and no controlled trials demonstrating a reduction in risk with abstinence. Information about IHD and CVD-related drug abuse is mainly limited to epidemiological studies focused on urban populations. The potential link between some pharmacological treatments (estrogen, some oncologic drugs and some atypical antipsychotics) and cerebrovascular adverse events was analyzed, but disagreement about an association persists. Drugs of abuse, including cocaine, amphetamines and heroin, have been associated with an increased vascular risk. These drugs can cause abrupt changes in blood pressure, vasculitic-type changes, lead to embolization caused by infective endocarditis, and hemostatic and hematologic abnormalities that can result in increased blood viscosity and platelet aggregation. Long-term treatment strategies based on medication, psychological support, and outreach programs play an important role in treatment of drug dependency. In these last years public interest in risk factors for VD has been constantly increasing and the successful identification and management of pharmacological treatment and drug abuse can be challenging. One of the major public health issues for the future will be to focus more on new vascular risk factor recognition and management. The objective of this chapter is to review the relevance of IHD and CVD associated with various pharmacological treatments and drug abuse with focusing on ischemic disease. This chapter reports the clinical evidence of this association and analyzes the experimental role of new drugs as a growing risk factor of VD with the hypothetical new association. In conclusion, in this chapter great attention is paid to evaluating the scientific and real

  18. Spinal vascular malformations; Spinale Gefaessmalformationen

    Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2012-05-15

    Spinal vascular malformations are a group of rare diseases with different clinical presentations ranging from incidental asymptomatic findings to progressive tetraplegia. This article provides an overview about imaging features as well as clinical and therapeutic aspects of spinal arteriovenous malformations, cavernomas and capillary telangiectasia. (orig.) [German] Spinale Gefaessmalformationen sind eine Gruppe seltener Erkrankungen mit unterschiedlichen klinischen Praesentationen, die vom asymptomatischen Zufallsbefund bis zur progredienten Tetraparese reichen. Dieser Artikel gibt einen Ueberblick ueber radiologische Befunde sowie klinische und therapeutische Aspekte von spinalen arteriovenoesen Malformationen, Kavernomen und kapillaeren Teleangiektasien. (orig.)

  19. DNA Damage and Repair in Vascular Disease.

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease. PMID:26442438

  20. Accelerator and radiation physics

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  1. Leaky Fermi accelerators

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  2. Accelerator reliability workshop

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  3. Nuclear physics accelerator facilities

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  4. Accelerator reliability workshop

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  5. Switched Matrix Accelerator

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  6. Extraordinary Vessels Needling for Vascular Dementia

    YU Jin; LAI Xin-sheng; HUANG Qiu-tang; XIAO Yuan-chun

    2003-01-01

    Purpose To observe the clinical efficacy of extraordinary vessels needling in treating vascular dementia. Method 39 cases vascular dementia were treated by acupoints selected from the eight extraordinary meridians and the time needling techniques such as eight methods of spiritual turtle, in accordance with time period and pattern identifition. Results 2 cases were cured, 30 cases improved and 7 cases failed; the total effective rate was 82.1%. Conclusion Extraordinary vessels needling has positive effects in treating vascular dementia.

  7. Vascular Risk Factors: Imaging and Neuropathologic Correlates

    Knopman, David S; Roberts, Rosebud

    2010-01-01

    Cerebrovascular disease plays an important role in cognitive disorders in the elderly. Cerebrovascular disease and Alzheimer’s disease interact on several levels, one important level being the overlap in risk factors. The major vascular risk factors such as diabetes and impaired glycemic control, hypertension, obesity and hyper- or dyslipidemia have been associated both with Alzheimer’s disease and vascular dementia. The purpose of this review is to consider the context in which vascular deme...

  8. Blood Flow Restricted Exercise and Vascular Function

    Masahiro Horiuchi; Koichi Okita

    2012-01-01

    It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular str...

  9. CAS - CERN Accelerator School: RF for Accelerators

    2012-01-01

    These proceedings present the lectures given at the twenty-fourth specialized course organized by the CERN Accelerator School (CAS). The course was held in Ebeltoft, Denmark, from 8-17 June, 2010 in collaboration with Aarhus University, with the topic 'RF for Accelerators' While this topic has been covered by CAS previously, early in the 1990s and again in 2000, it was recognized that recent advances in the field warranted an updated course. Following introductory courses covering the background physics, the course attempted to cover all aspects of RF for accelerators; from RF power generation and transport, through cavity and coupler design, electronics and low level control, to beam diagnostics and RF gymnastics. The lectures were supplemented with several sessions of exercises, which were completed by discussion sessions on the solutions.

  10. Accelerator shielding benchmark problems

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  11. Accelerator shielding benchmark problems

    Hirayama, H.; Ban, S.; Nakamura, T. [and others

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author).

  12. The foxhole accelerating structure

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons

  13. Japan Accelerator Conference

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  14. VASCULAR MALFORMATION OF CHEEK: A CASE REPORT

    Faiz

    2015-02-01

    Full Text Available Vascular lesions are among the most common congenital and neonatal abnormalities. Most of the congenital vascular malformations are often misdiagnosed and left untreated. These lesions are the result of an embryonic abnormality of the vascular system. This is a case report of 13 year male patient who came with a chief complaint of swelling on the right side of face since birth. It was diagnosed as vascular malformations of buccal mucosa of right side. It is emphasized that the management of these cases requ ires a multidisciplinary approach. Laser therapy, embolization followed by surgical excision is the favourable treatment modalities.

  15. Vascular endothelium - Gatekeeper of vessel health.

    Cahill, Paul A; Redmond, Eileen M

    2016-05-01

    The vascular endothelium is an interface between the blood stream and the vessel wall. Changes in this single cell layer of the artery wall are believed of primary importance in the pathogenesis of vascular disease/atherosclerosis. The endothelium responds to humoral, neural and especially hemodynamic stimuli and regulates platelet function, inflammatory responses, vascular smooth muscle cell growth and migration, in addition to modulating vascular tone by synthesizing and releasing vasoactive substances. Compromised endothelial function contributes to the pathogenesis of cardiovascular disease; endothelial 'dysfunction' is associated with risk factors, correlates with disease progression, and predicts cardiovascular events. Therapies for atherosclerosis have been developed, therefore, that are directed towards improving endothelial function. PMID:26994427

  16. Proatherogenic pathways leading to vascular calcification

    Mazzini, Michael J. [Department of Cardiology, Boston University Medical Center, Boston, MA (United States); Schulze, P. Christian [Department of Medicine, Boston University Medical Center, Boston, MA (United States)]. E-mail: christian.schulze@bmc.org

    2006-03-15

    Cardiovascular disease is the leading cause of morbidity and mortality in the western world and atherosclerosis is the major common underlying disease. The pathogenesis of atherosclerosis involves local vascular injury, inflammation and oxidative stress as well as vascular calcification. Vascular calcification has long been regarded as a degenerative process leading to mineral deposition in the vascular wall characteristic for late stages of atherosclerosis. However, recent studies identified vascular calcification in early stages of atherosclerosis and its occurrence has been linked to clinical events in patients with cardiovascular disease. Its degree correlates with local vascular inflammation and with the overall impact and the progression of atherosclerosis. Over the last decade, diverse and highly regulated molecular signaling cascades controlling vascular calcification have been described. Local and circulating molecules such as osteopontin, osteoprogerin, leptin and matrix Gla protein were identified as critical regulators of vascular calcification. We here review the current knowledge on molecular pathways of vascular calcification and their relevance for the progression of cardiovascular disease.

  17. Vascular grafting strategies in coronary intervention

    Knight, Darryl; Gillies, Elizabeth; Mequanint, Kibret

    2014-06-01

    With the growing need for coronary revascularizations globally, several strategies to restore blood flow to the heart have been explored. Bypassing the atherosclerotic coronary arteries with autologous grafts, synthetic prostheses and tissue-engineered vascular grafts continue to be evaluated in search of a readily available vascular graft with clinically acceptable outcomes. The development of such a vascular graft including tissue engineering approaches both in situ and in vitro is herein reviewed, facilitating a detailed comparison on the role of seeded cells in vascular graft patency.

  18. Superconducting accelerator magnets

    In the near future, a large number of high quality superconducting dipole and quadrupole magnets will be required for construction of the next generation multi-TeV high energy hadron accelerator-colliders. To establish the construction technology of such accelerator- colliders, extensive and world-wide R and D programs are now carrying out at several laboratories. In this paper the important issues in superconducting accelerator magnets such as cables, design, fabrication, testing and cryogenic system are discussed together with some details on coil cross- sectional current configurations, quality control of materials, quench protections, radiation heating and etc. The key technology in superconducting accelerator magnets is summarized

  19. High Gradient Accelerator Research

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  20. High-intensity accelerators

    The design of high-intensity accelerators is described, using examples of machines being built at the Los Alamos National Laboratory. The major design problem with these accelerators is associated with control of beam loss when accelerator intensity is increased. Beam dynamics, beam loss, and the radio-frequency quadrupole structure are discussed in the first part of the chapter followed by an explanation of plans to achieve high-intensity operation in three projects: the Fusion Material Irradiation Tests (a joint effort with the Hanford Development Laboratory in Richland, Washington), the Proton Storage Ring (an addition to the LAMPF accelerator), and the Racetrack Microtron Project

  1. Orthopedic issues in vascular anomalies.

    Spencer, Samantha A; Sorger, Joel

    2014-08-01

    Vascular malformations impact the musculoskeletal system depending on the tissue involved (skin, subcutis, muscle, cartilage, or bone), the extent of involvement, and the type of anomalous vessels (arteries, capillaries, veins, or lymphatics). These malformations can cause a multitude of musculoskeletal problems for the patient and their Orthopedic Surgeon to manage. Leg-length discrepancy, intra-articular involvement, muscular lesions, and primary or secondary scoliosis are just to name a few. All of these problems can cause pain, deformity, and a range of functional limitations. Surgical and nonsurgical treatment plans both have a role in the care of these patients. Patients with vascular malformations may also suffer from life-threatening cardiovascular and hematologic abnormalities. For those patients who undergo surgery, thromboembolic risk is elevated, wound breakdown and infection are much more common, and bleeding risk continues well into the postoperative course. Because of the complex nature of these disorders, the clinician must have a full understanding of the types of lesions, their natural history, appropriate diagnostic studies, associated medical problems, indications for treatment, and all the treatment options. For severe malformations, especially syndromes such as CLOVES and Klippel-Trenaunay syndrome, interdisciplinary team management is essential for the best outcomes. PMID:25241103

  2. Diffuse and vascular hepatic diseases

    In addition to focal liver lesions, diffuse and vascular disorders of the liver represent a wide spectrum of liver diseases which are from the radiological point of view often difficult or nearly impossible to diagnose. Classical diagnostic methods are computed tomography and magnetic resonance imaging in addition to ultrasound. Diffuse parenchymal damage caused by diseases of various etiologies is therefore difficult to evaluate because it often lacks characteristic morphological features. For hepatic steatosis, hemochromatosis/siderosis as an example of a diffuse storage disease and sarcoidosis and candidiasis as infectious/inflammatory diseases, an image-based diagnosis is appropriate in some cases. For most diffuse liver diseases, however only nonspecific changes are visualized. Vascular pathologies of the liver, such as the Budd-Chiari syndrome and portal vein thrombosis, however, can usually be diagnosed very clearly using radiology and there is also a very effective interventional radiological treatment. Chronic diseases very often culminate in liver cirrhosis which is highly associated with an increased risk of liver cancer. (orig.)

  3. CIRSE Vascular Closure Device Registry

    Purpose: Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods: The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results: Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only 5.9 cm, and two vessel occlusions. Conclusion: The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters.

  4. Neuroradiological findings in vascular dementia

    Guermazi, Ali; Miaux, Yves; Suhy, Joyce; Pauls, Jon; Lopez, Ria [Synarc, Inc., Department of Radiology Services, San Francisco, CA (United States); Rovira-Canellas, Alex [Hospital General Universitari Vall d' Hebron, Unita de Resonancia Magnetica, Barcelona (Spain); Posner, Holly [Eisai, Inc., Teaneck, NJ (United States)

    2007-01-15

    There are multiple diagnostic criteria for vascular dementia (VaD) that may define different populations. Utilizing the criteria of the National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherche et l'Enseignement en Neurosciences (NINDS-AIREN) has provided improved consistency in the diagnosis of VaD. The criteria include a table listing brain imaging lesions associated with VaD. The different neuroradiological aspects of the criteria are reviewed based on the imaging data from an ongoing large-scale clinical trial testing a new treatment for VaD. The NINDS-AIREN criteria were applied by a centralized imaging rater to determine eligibility for enrollment in 1,202 patients using brain CT or MRI. Based on the above data set, the neuroradiological features that are associated with VaD and that can result from cerebral small-vessel disease with extensive leukoencephalopathy or lacunae (basal ganglia or frontal white matter), or may be the consequence of single strategically located infarcts or multiple infarcts in large-vessel territories, are illustrated. These features may also be the consequence of global cerebral hypoperfusion, intracerebral hemorrhage, or other mechanisms such as genetically determined arteriopathies. Neuroimaging confirmation of cerebrovascular disease in VaD provides information about the topography and severity of vascular lesions. Neuroimaging may also assist with the differential diagnosis of dementia associated with normal pressure hydrocephalus, chronic subdural hematoma, arteriovenous malformation or tumoral diseases. (orig.)

  5. Displacement of plasma protein and conduction velocity in rats under action of acceleration forces and hypokinesia

    Baranski, S.; Edelwejn, Z.; Wojtkowiak, M.

    1980-01-01

    The permeability of capillary vessels was investigated in order to determine if acceleration alone or following prolonged hypokinesia would induce changes in the vascular wall leading to the penetration by l-albumins and/or proteins with larger molecules. In rats undergoing action of +5 Gz accelerations, no increase in vascular permeability, as tested with the use of (Cr-5k)-globulin, was demostrated. In rats immobilized for 4 weeks before centrifugation, rather weak migration of (Cr-51)-globulin from the vessels was observed. Immobilization resulted also in lowering of conduction velocity in the sciatic nerve.

  6. Biomarkers of vascular function in pre- and recent post-menopausal women of similar age

    Nyberg, Michael Permin; Seidelin, Kaare; Rostgaard Andersen, Thomas; Neumann Overby, Nickie; Hellsten, Ylva; Bangsbo, Jens

    2014-01-01

    Menopause is associated with an accelerated decline in vascular function, however, whether this is an effect of age and/or menopause and how exercise training may affect this decline remains unclear. We examined a range of molecular measures related to vascular function in matched pre- and post-menopausal...... women before and after 12 weeks of exercise training. Thirteen pre-menopausal and ten recently post-menopausal (1.6±0.3 (mean±SEM) years after final menstrual period) women only separated by three years (48±1 vs. 51±1 years) were included. Before training, diastolic blood pressure, soluble intercellular...... adhesion molecule-1 (sICAM-1) and skeletal muscle expression of thromboxane A synthase were higher in the post-menopausal women compared to the pre-menopausal women, all indicative of impaired vascular function. In both groups, exercise training lowered diastolic blood pressure, the levels of sICAM-1...

  7. Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells

    Cao, Yi; Jacobsen, Nicklas Raun; Danielsen, Pernille Høgh;

    2014-01-01

    Accumulating evidences indicate that pulmonary exposure to carbon nanotubes (CNTs) is associated with increased risk of lung diseases, whereas the effect on the vascular system is less studied. We investigated vascular effects of 2 types of multiwalled CNTs (MWCNTs) in apolipoprotein E(-/-) mice......, wild-type mice, and cultured cells. The ApoE(-/-) mice had accelerated plaque progression in aorta after 5 intracheal instillations of MWCNT (25.6 μg/mouse weekly for 5 weeks). The exposure was associated with pulmonary inflammation, lipid peroxidation, and increased expression of inflammatory......, oxidative stress, DNA repair, and vascular activation response genes. The level of oxidatively damaged DNA in lung tissue was unaltered, probably due to increased DNA repair capacities. Despite upregulation of inflammatory genes in the liver, effects on systemic cytokines and lipid peroxidation were minimal...

  8. Systemic and forearm vascular resistance changes after upright bicycle exercise in man.

    Coats, A J; Conway, J; Isea, J E; Pannarale, G; Sleight, P; Somers, V K

    1989-06-01

    1. Blood pressure, cardiac function and forearm blood flow following voluntary maximal upright bicycle exercise were studied in thirteen normal volunteers in a cross-over design against a control day. 2. After exercise there was a short-lived (5-10 min) increase in systolic blood pressure, peak aortic blood velocity and aortic acceleration suggesting a persistence of the positive inotropic influence of exercise. 3. Systemic vasodilation, which was seen immediately exercise stopped, lasted at least 60 min. This was associated with a reduction in diastolic blood pressure for the whole hour. After 30 min systolic blood pressure was also reduced. Heart rate and cardiac output were still significantly elevated and systemic vascular resistance still reduced at 60 min post-exercise. 4. A non-exercising limb vascular bed (forearm) showed a marked vasodilation for 1 h after predominately leg exercise indicating the presence of a vasodilatory influence affecting vascular beds other than the exercising muscle groups. PMID:2600851

  9. Advance in molecular imaging research of vascular smooth muscle cells in the vascular diseases

    Vascular smooth muscle cells (VSMCs) are the primary cells within the vascular wall structure and maintain the tension of blood vessels, playing a key role in the restenosis, atherosclerosis and some other vascular diseases. With the development of molecular imaging, VSMCs cellular level of imaging studies is becoming more and more attention. The phenotype modulation, proliferation, migration and molecular imaging research progress of VSMCs in pathologic state were reviewed, to improve the management of vascular restenosis and atherosclerosis. (authors)

  10. Diabetes and ageing-induced vascular inflammation.

    Assar, Mariam El; Angulo, Javier; Rodríguez-Mañas, Leocadio

    2016-04-15

    Diabetes and the ageing process independently increase the risk for cardiovascular disease (CVD). Since incidence of diabetes increases as people get older, the diabetic older adults represent the largest population of diabetic subjects. This group of patients would potentially be threatened by the development of CVD related to both ageing and diabetes. The relationship between CVD, ageing and diabetes is explained by the negative impact of these conditions on vascular function. Functional and clinical evidence supports the role of vascular inflammation induced by the ageing process and by diabetes in vascular impairment and CVD. Inflammatory mechanisms in both aged and diabetic vasculature include pro-inflammatory cytokines, vascular hyperactivation of nuclear factor-кB, increased expression of cyclooxygenase and inducible nitric oxide synthase, imbalanced expression of pro/anti-inflammatory microRNAs, and dysfunctional stress-response systems (sirtuins, Nrf2). In contrast, there are scarce data regarding the interaction of these mechanisms when ageing and diabetes co-exist and its impact on vascular function. Older diabetic animals and humans display higher vascular impairment and CVD risk than those either aged or diabetic, suggesting that chronic low-grade inflammation in ageing creates a vascular environment favouring the mechanisms of vascular damage driven by diabetes. Further research is needed to determine the specific inflammatory mechanisms responsible for exacerbated vascular impairment in older diabetic subjects in order to design effective therapeutic interventions to minimize the impact of vascular inflammation. This would help to prevent or delay CVD and the specific clinical manifestations (cognitive decline, frailty and disability) promoted by diabetes-induced vascular impairment in the elderly. PMID:26435167

  11. Angular velocities, angular accelerations, and coriolis accelerations

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  12. Accelerator Modeling with MATLAB Accelerator Toolbox

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  13. Accelerator-based BNCT

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the 9Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. - Highlights: • The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. • Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. • The present status and recent progress of the Argentine project will be reviewed. • Topics cover intense ion sources, accelerator tubes, transport of intense beams and beam diagnostics, among others

  14. COLLECTIVE-FIELD ACCELERATION

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  15. Racetrack linear accelerators

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  16. Hamburg Accelerator Conference (2)

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval

  17. Asia honours accelerator physicists

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  18. Accelerators for energy production

    A tremendous progress of accelerators for these several decades, has been motivated mainly by the research on subnuclear physics. The culmination in high energy accelerators might be SSC, 20 TeV collider in USA, probably the ultimate accelerator being built with the conventional principle. The technology cultivated and integrated for the accelerator development, can now stably offer the high power beam which could be used for the energy problems. The Inertial Confinement Fusion (ICF) with high current, 10 kA and short pulse, 20 ns heavy ion beam (HIB) of mass number ∼200, would be the most promising application of accelerators for energy production. In this scenario, the fuel containing D-T mixture, will be compressed to the high temperature, ∼10 keV and to the high density state, ∼1000 times the solid density with the pressure of ablative plasma or thermal X ray produced by bombarding of high power HIB. The efficiency, beam power/electric power for accelerator, and the repetition rate of HIB accelerators could be most suitable for the energy production. In the present paper, the outline of HIB ICF (HIF) is presented emphasizing the key issues of high current heavy ion accelerator system. (author)

  19. KEK digital accelerator

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  20. Accelerators Beyond The Tevatron?

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  1. Accelerator for nuclear transmutation

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program

  2. Thoughts of accelerator tubes

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  3. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    Son, Dong Ju; Kim, Soo Yeon; Han, Seong Su; Kim, Chan Woo; Kumar, Sandeep; Park, Byeoung Soo; Lee, Sung Eun; Yun, Yeo Pyo; Jo, Hanjoong; Park, Young Hyun

    2012-01-01

    Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significant...

  4. Do Thoroughbred and Standardbred horses have similar increases in pulmonary vascular pressures during exertion?

    Hackett, R. P.; Ducharme, N G; Gleed, R. D.; Mitchell, L; Soderholm, L. V.; Erickson, B. K.; Erb, H. N.

    2003-01-01

    To test the hypothesis that the pulmonary vascular pressures of Thoroughbred and Standardbred horses behave similarly during exertion. Measurements were made on 5 Thoroughbred and 5 Standardbred horses on a treadmill at rest and during 3-minute exercise intervals at speeds predicted to produce 75%, 90%, and 100% maximal heart rate. Left forelimb acceleration, heart rate, esophageal pressure, and pulmonary artery pressure were measured continuously. Pulmonary capillary and wedge pressures were...

  5. Vascular health in children and adolescents: effects of obesity and diabetes

    Short, Kevin R.; Blackett, Piers R.; Andrew W Gardner; et al.

    2009-01-01

    Kevin R Short, Piers R Blackett, Andrew W Gardner, Kenneth C CopelandDepartment of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USAAbstract: The foundations for cardiovascular disease in adults are laid in childhood and accelerated by the presence of comorbid conditions, such as obesity, diabetes, hypertension, and dyslipidemia. Early detection of vascular dysfunction is an important clinical objective to identif...

  6. Maximal Acceleration Is Nonrotating

    Page, D N

    1998-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry...

  7. Collinear wake field acceleration

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  8. Plasma based accelerators

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  9. Controllable Laser Ion Acceleration

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  10. Linear induction accelerator

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  11. Vascular malformations of the spine

    The vascular malformations of the spine and spinal cord are rare diseases. Possible symptoms may consist in a transient neurological deficit, a progressive sensorimotor transverse lesion or an acute para- or tetraplegia. Damage to the spinal cord occurs by bleeding, space-occupying effects and venous congestion, rarely by steal effects. Classification of the true inborn malformations differentiates between arteriovenous malformations (AVMs), cavernomas and capillary teleangiectasias. The more frequent spinal dural arteriovenous fistula (SDAVF) of the elderly patient is a probably acquired lesion which is presented in a separate paper. Capillary teleangiectasias are mostly incidental findings but may cause differential diagnostic problems. Cavernomas are important causes of hemorrhage and may initially be obscured within the bleeding. MRI is the most relevant imaging procedure in the early diagnostic workup. In case of an AVM selective spinal angiography is required to define the type of the lesion and to decide about the appropriate therapy which may be endovascular-interventional, neurosurgical, combined or attentive. (orig.)

  12. Megadolicho vascular malformation of the intracranial arteries.

    Lodder, J; Janevski, B; van der Lugt, P J

    1981-01-01

    A patient is presented suffering a hemiparesis. Megadolicho-vascular malformation of the intracranial part of the internal carotid arteries and some of its branches and of the basilar artery was suggested by CT and confirmed by angiography. The value of CT compared with angiography in relation to intracranial megadolicho vascular malformations is discussed. PMID:6273040

  13. Multinephron dynamics on the renal vascular network

    Marsh, Donald J; Wexler, Anthony S; Brazhe, Alexey;

    2012-01-01

    ensemble. Ensembles may synchronize. Smooth muscle cells in the ensemble depolarize periodically, generating electrical signals that propagate along the vascular network. We developed a mathematical model of a nephron-vascular network, with 16 versions of a single nephron model containing representations...

  14. Vascular surgery and diabetic foot revascularization

    GU Yong-quan

    2010-01-01

    @@ Patients with diabetes mellitus have an increased incidence of atherosclerotic vascular disease and infection involving the lower extremities.Lower limb arterial disease is more common among patients with diabetes, and lower limb atherosclerosis is the main cause of lower limb ischemia for these patients.Two types of vascular disease are seen in patients with diabetes.

  15. Covariance of lichen and vascular plant floras

    Bennett, J.P.; Wetmore, C.M.

    1999-01-01

    The geographic relationships among taxonomic groups are important to study to determine patterns of biodiversity and whether or not associations occur between large groups, e.g., birds and vascular plants. This study was undertaken to determine relationships between higher plants and lower plants, specifically vascular plant and lichen floras in nine national parks of the Great Lakes region. No significant relationship was found between vascular plant floras and lichen floras in this area, which spans 1200 km longitudinally, or between an additional 19 areas from North America that were less than 1000 km(2) in area. For areas larger than 1000 km(2), however, a significant positive relationship existed for 33 areas that span one to approximately 150 million km(2). The ratio of numbers of vascular plants to lichens appeared to average just over 6 across the 33 areas. In the Great Lakes parks, between 28-30% of either the vascular plant or lichen species were singletons (occurring in only one park), but the parks that contained the most singletons were not congruent: Isle Royale had the most singleton lichens, while Indiana Dunes had the most vascular plant singletons. Fewer lichen species (2%) than vascular plants (4%) occurred in all nine parks. Latitude appeared to explain some of the variation between the two groups: vascular plants decreased with increasing latitude, while lichens increased.

  16. Biomarkers of drug-induced vascular injury

    In pre-clinical safety studies, drug-induced vascular injury is an issue of concern because there are no obvious diagnostic markers for pre-clinical or clinical monitoring and there is an intellectual gap in our understanding of the pathogenesis of this lesion. While vasodilatation and increased shear stress appear to play a role, the exact mechanism(s) of injury to the primary targets, smooth muscle and endothelial cells are unknown. However, evaluation of novel markers for potential clinical monitoring with a mechanistic underpinning would add value in risk assessment and management. This mini review focuses on the progress to identify diagnostic markers of drug-induced vascular injury. Von Willebrand factor (vWF), released upon perturbation of endothelial cells, is transiently increased in plasma prior to morphological evidence of damage in dogs or rats treated with vascular toxicants. Therefore, vWF might be a predictive biomarker of vascular injury. However, vWF is not an appropriate biomarker of lesion progression or severity since levels return to baseline values when there is morphological evidence of injury. A potential mechanistically linked biomarker of vascular injury is caveolin-1. Expression of this protein, localized primarily to smooth muscle and endothelial cells, decreases with the onset of vascular damage. Since vascular injury involves multiple mediators and cell types, evaluation of a panel rather than a single biomarker may be more useful in monitoring early and severe progressive vascular injury

  17. What "helps" tumors evade vascular targeting treatment?

    SI Zhi-chao; LIU Jie

    2008-01-01

    Objective To throw a light on the possible factors which might induce resistance of vascular targeting treatment in tumors by reviewing the recent publications in the field of tumor angiogenesis and vascular targeting treatment.Data sources The data used in this review were mainly from Medline and PubMed for relevant English language articles published from 1971 to January 2008. The search terms were "angiogenesis", "vascular targeting treatment" and "endothelial progenitor cells".Study selection Articles involved in the possible influence factors during angiogenesis and vascular targeting treatment were selected, including angiogenic or anti-angiogenic mechanism, tumor vasculature, tumor cells, cancer stem cells and endothelial progenitor cells.Results As a promising strategy vascular targeting treatment still has experimental and clinical setbacks which may term tumor vasculature's resistance to anti-angiogenesis agents. There are several possible explanations for such a resistance that might account for clinical and preclinical failures of anti-angiogenic treatment against tumor.Proangiogenic effect of hypoxia, normal tumor vasculature, escape of tumor cells and tumor vasculogenesis are included.This review reveals some clues which might be helpful to direct future research in order to remove obstacles to vascular targeting treatment.Conclusions Generally and undoubtedly vascular targeting treatment remains a promising strategy. But we still have to realize the existence of a challenging future. Further research is required to enhance our knowledge of vascular targeting treatment strategy before it could make a more substantial success.

  18. Mechanics of Vascular Smooth Muscle.

    Ratz, Paul H

    2015-01-01

    Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM. PMID:26756629

  19. The Vascular Microenvironment and Systemic Sclerosis

    Tracy Frech

    2010-01-01

    Full Text Available The role of the vascular microenvironment in the pathogenesis Systemic Sclerosis (SSc is appreciated clinically as Raynaud's syndrome with capillary nail bed change. This manifestation of vasculopathy is used diagnostically in both limited and diffuse cutaneous subsets of SSc, and is thought to precede fibrosis. The degree of subsequent fibrosis may also be determined by the vascular microenvironment. This paper describes why the vascular microenvironment might determine the degree of end-organ damage that occurs in SSc, with a focus on vascular cell senescence, endothelial progenitor cells (EPC including multipotential mesenchymal stem cells (MSC, pericytes, and angiogenic monocytes. An explanation of the role of EPC, pericytes, and angiogenic monocytes is important to an understanding of SSc pathogenesis. An evolving understanding of the vascular microenvironment in SSc may allow directed treatment.

  20. Vascular Stiffness in Insulin Resistance and Obesity

    Guanghong eJia

    2015-08-01

    Full Text Available Obesity, insulin resistance, and type 2 diabetes are associated with a substantially increased prevalence of vascular fibrosis and stiffness, with attendant increased risk of cardiovascular and chronic kidney disease. Although the underlying mechanisms and mediators of vascular stiffness are not well understood, accumulating evidence supports the role of metabolic and immune dysregulation related to increased adiposity, activation of the renin angiotensin aldosterone system, reduced bioavailable nitric oxide, increased vascular extracellular matrix (ECM and ECM remodeling in the pathogenesis of vascular stiffness. This review will give a brief overview of the relationship between obesity, insulin resistance and increased vascular stiffness to provide a contemporary understanding of the proposed underlying mechanisms and potential therapeutic strategies.

  1. Geometry optimization of branchings in vascular networks

    Khamassi, Jamel; Bierwisch, Claas; Pelz, Peter

    2016-06-01

    Progress has been made in developing manufacturing technologies which enable the fabrication of artificial vascular networks for tissue cultivation. However, those networks are rudimentary designed with respect to their geometry. This restricts long-term biological functionality of vascular cells which depends on geometry-related fluid mechanical stimuli and the avoidance of vessel occlusion. In the present work, a bioinspired geometry optimization for branchings in artificial vascular networks has been conducted. The analysis could be simplified by exploiting self-similarity properties of the system. Design rules in the form of two geometrical parameters, i.e., the branching angle and the radius ratio of the daughter branches, are derived using the wall shear stress as command variable. The numerical values of these parameters are within the range of experimental observations. Those design rules are not only beneficial for tissue engineering applications. Moreover, they can be used as indicators for diagnoses of vascular diseases or for the layout of vascular grafts.

  2. PanVascular medicine. 2. ed.

    Lanzer, Peter (ed.) [Health Care Center Bitterfeld (Germany). Division of Cardiovascular Disease

    2015-06-01

    Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.

  3. Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth.

    Yang, Yang; Yang, Qingmao; Zhou, Fang; Zhao, Yunhui; Jia, Xiaoling; Yuan, Xiaoyan; Fan, Yubo

    2016-06-01

    One of the major challenges in tissue engineering of small-diameter vascular grafts is to inhibit intimal hyperplasia and keep long-term patency after implantation. Rapid endothelialization of the grafts could be an effective approach. In this study, QK, a peptide mimicking vascular endothelial growth factor, was selected as the bioactive substrate and loaded in electrospun membranes for enhancement of vascular endothelial cell growth. In detail, QK peptide was firstly introduced with poly(ethylene glycol) diacrylate into a thiolated chitosan solution that could transfer into hydrogel. Then, suspensions or emulsions of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) containing QK peptide (with or without chitosan hydrogel) were electrospun into fibrous membranes. For comparison, the electrospun PELCL membrane without QK was also fabricated. Results of release behaviors showed that the electrospun membranes, especially that contained chitosan hydrogel prepared by suspension electrospinning, could successfully encapsulate QK peptide and maintain its secondary structure after released. In vitro cell culture studies exhibited that the release of QK peptide could accelerate the proliferation of vascular endothelial cells in the 9 days. It was suggested that the electrospun PELCL membranes loaded with QK peptide might have potential applications in vascular tissue engineering. PMID:27107890

  4. Accelerator programme at CAT

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  5. The miniature accelerator

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  6. Collective ion acceleration

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  7. Collective ion acceleration

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed.

  8. Large electrostatic accelerators

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  9. Risk factors for vascular dementia: Hypotension as a key point

    Rita Moretti

    2008-04-01

    Full Text Available Rita Moretti, Paola Torre, Rodolfo M Antonello, Davide Manganaro, Cristina Vilotti, Gilberto PizzolatoDepartment of Internal Medicine and Clinical Neurology University of Trieste, ItalyAbstract: Physiologically, the cerebral autoregulation system allows maintenance of constant cerebral blood flow over a wide range of blood pressure. In old people, there is a progressive reshape of cerebral autoregulation from a sigmoid curve to a straight line. This implies that any abrupt change in blood pressure will result in a rapid and significant change in cerebral blood flow. Hypertension has often been observed to be a risk factor for vascular dementia (VaD and sometimes for Alzheimer disease although not always. Indeed, high blood pressure may accelerate cerebral white matter lesions, but white matter lesions have been found to be facilitated by excessive fall in blood pressure, including orthostatic dysregulation and postprandial hypotension. Many recent studies observed among other data, that there was a correlation between systolic pressure reduction and cognitive decline in women, which was not accounted for by other factors. Baseline blood pressure level was not significantly related to cognitive decline with initial good cognition. Some researchers speculate that blood pressure reduction might be an early change of the dementing process. The most confounding factor is that low pressure by itself might be a predictor of death; nevertheless, the effect of low blood pressure on cognition is underestimated because of a survival bias. Another explanation is that clinically unrecognized vascular lesions in the brain or atherosclerosis are responsible for both cognitive decline and blood pressure reduction. We discuss the entire process, and try to define a possible mechanism that is able to explain the dynamic by which hypotension might be related to dementia.Keywords: vascular dementia, hypotension, low blood pressure, alzheimer disease

  10. Hypertensive organ damage in patients with vascular disease

    Vlek, A.L.M.

    2009-01-01

    Hypertension is one of the most common vascular risk factors, and is an important cause of development of different vascular diseases. The main aim of this thesis was to determine the burden of hypertension-associated vascular diseases and end-organ damage in patients with manifest vascular disease. Patients with manifest vascular diseases are at high risk for recurrent vascular diseases. We studied the effect of the metabolic syndrome and type 2 diabetes mellitus on the occurrence of cardiov...

  11. RF linear accelerators

    Wangler, Thomas P

    2008-01-01

    Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007

  12. Entropic accelerating universe

    Easson, Damien A., E-mail: easson@asu.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Phoenix, AZ 85287-1504 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Frampton, Paul H., E-mail: frampton@physics.unc.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Smoot, George F., E-mail: gfsmoot@lbl.go [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Physics Department, University of California, Berkeley, CA 94720 (United States); Institute for the Early Universe, Ewha Womans University and Advanced Academy, Seoul (Korea, Republic of); Chaire Blaise Pascale, Universite Paris Denis Diderot, Paris (France)

    2011-01-31

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  13. Entropic accelerating universe

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  14. ACCELERATORS: School prizes

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  15. FMIT accelerator vacuum system

    The Fusion Materials Irradiation Test (FMIT) Facility accelerator is being designed to continuously accelerate 100-mA deuterons to 25 MeV. High vacuum pumping of the accelerator structure and beam lines will be done by ion pumps and titanium sublimation pumps. The design of the roughing system includes a Roots blower/mechanical pump package. For economy the size of the system has been designed to operate at 10-6 torr, where beam particle scattering on residual gases is negligible. For minimum maintenance in this neutron factory, the FMIT vacuum system is designed from the point of view of simplicity and reliability

  16. Hadron accelerators in medicine

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  17. The auroral electron accelerator

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  18. Confronting Twin Paradox Acceleration

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  19. Auroral electron acceleration

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  20. Accelerated simulated tempering

    We propose a new stochastic global optimization method by accelerating the simulated tempering scheme with random walks executed on a temperature ladder with various transition step sizes. By suitably choosing the length of the transition steps, the accelerated scheme enables the search process to execute large jumps and escape entrapment in local minima, while retaining the capability to explore local details, whenever warranted. Our simulations confirm the expected improvements and show that the accelerated simulated tempering scheme has a much faster convergence to the target distribution than Geyer and Thompson's simulated tempering algorithm and exhibits accuracy comparable to the simulated annealing method

  1. Accelerated simulated tempering

    Li, Yaohang; Protopopescu, Vladimir A.; Gorin, Andrey

    2004-08-01

    We propose a new stochastic global optimization method by accelerating the simulated tempering scheme with random walks executed on a temperature ladder with various transition step sizes. By suitably choosing the length of the transition steps, the accelerated scheme enables the search process to execute large jumps and escape entrapment in local minima, while retaining the capability to explore local details, whenever warranted. Our simulations confirm the expected improvements and show that the accelerated simulated tempering scheme has a much faster convergence to the target distribution than Geyer and Thompson's simulated tempering algorithm and exhibits accuracy comparable to the simulated annealing method.

  2. The particle accelerator

    As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures

  3. Accelerator Toolbox for MATLAB

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  4. Bypass materials in vascular surgery

    Willich, Stephan N.

    2006-03-01

    Full Text Available Introduction: Arteriosclerotic changes can lead to circulatory disturbances in various areas of the human vascular system. In addition to pharmacological therapy and the management of risk factors (e. g. hypertension, diabetes, lipid metabolism disorders, and lifestyle, surgical interventions also play an important role in the treatment of arteriosclerosis. Long-segment arterial occlusions, in particular, can be treated successfully with bypass sur-gery. A number of different materials are available for this type of operation, such as autologous vein or pros-thetic grafts comprised of polytetrafluoroethylene (PTFE or Dacron®. Prosthetic materials are used especially in the treatment of peripheral artery disease, such as in aortoiliac or femoropopliteal bypass surgery. The present report will thus focus on this area in order to examine the effectiveness of different bypass materials. Among the efforts being made to refine the newly introduced DRG system in Germany, analysing the different bypass materials used in vascular surgery is particularly important. Indeed, in its current version the German DRG system does not distinguish between bypass materials in terms of reimbursement rates. Differences in cost structures are thus of especial interest to hospitals in their budget calculations, whereas both private and statutory health insurance funds are primarily interested in long-term results and their costs. Objectives: The goal of this HTA is to compare the different bypass materials used in vascular surgery in terms of their medical efficiency and cost-effectiveness, as well as with regard to their ethical, social and legal implications. In addition, this report aims to point out the areas in which further medical, epidemiological and health economic research is still needed. Methods: Relevant publications were identified by means of a structured search of databases accessed through the German Institute of Medical Documentation and Information

  5. Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  6. Assessment of vascular invasion in pancreatic carcinoma by MDCT

    Omar Hassanen

    2014-06-01

    Conclusion: Assessment of vascular invasion is crucial in the evaluation of resectability for pancreatic cancer. MDCT is an accurate diagnostic tool for peripancreatic vascular invasion in cancer pancreas.

  7. [A new specialty is born: Vascular medicine].

    Laroche, J-P

    2016-05-01

    On the 4th of December 2015, the French authorities officially recognized the birth of a specialty in vascular medicine entitled CO-DES cardiology-vascular/vascular Medicine. France is the 7th country to obtain this specialty after Switzerland, Germany, Austria, Czech Republic, Slovakia and Slovenia, six countries in the EEC. It has taken years to achieve a long but exciting experience: we went from hopes to disappointments, sometimes with the blues, but lobbying helping… with sustained confidence. This article tells the story of 30 years of struggle to achieve this vascular medicine specialty. Gaston Bachelard wrote: "Nothing is obvious, nothing is given, all is built." For the construction of vascular medicine, we had to overcome many obstacles, nothing was given to us, everything was conquered. Beware "The specialist is one who knows more and more things about an increasingly restricted field, up to 'knowing everything about nothing"' recalled Ralph Barton Ferry, philosopher; so there is room for modesty and humility but also convictions. The physical examination will remain the basis of our exercise. But let us recall the contributions of all those vascular physicians who practiced in the past, together with those currently active, who built day after day, year after year, a vascular medicine of quality. It is because of the trust of our colleagues and our patients that we can occupy the place that is ours today. PMID:27090098

  8. Vascular Biomarkers in Asthma and COPD.

    Bakakos, Petros; Patentalakis, George; Papi, Alberto

    2016-01-01

    Bronchial asthma and chronic obstructive pulmonary disease (COPD) remain a global health problem with significant morbidity and mortality. The changes in bronchial microvasculature that occurin asthma and COPD contribute to airway wall remodeling. Angiogenesis seems to be more prevalent in asthma and vasodilatation seemsmore relevant in COPD while vascular leak is present in both diseases. Recently, there has been increased interest in the vascular component of airway remodeling in chronic bronchial inflammation of asthma and COPD although its role in the progression of the diseases has not been fully elucidated. Various cells andmediators are involved in the vascular remodeling in asthma and COPD while proinflammatory cytokines and growth factors exert angiogenic and antiangiogenic effects. Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel growth mainly in asthma but also in COPD. In asthmatic airways VEGF promotes proliferation and differentiation of endothelial cells and induces vascular leakage and permeability. It has also been involved in enhanced allergic sensitization, upregulated subsequent T-helper-2 type inflammatory responses, chemotaxis for monocytes and eosinophils, and airway oedema. Impaired VEGF signaling has been associated with emphysema in animal models. Studies on lung biopsies have shown a decreasing effect of anti-asthma drugs to the vascular component of airway remodeling. There is less available evidence on the effect of the currently used drugs on airway microvascular network in COPD. This review article explores the current knowledge regarding vascular biomarkers in asthma and COPD as well as the therapeutic implications of these mediators. PMID:26420364

  9. Modeling of angioadaptation: insights for vascular development.

    Pries, Axel R; Reglin, Bettina; Secomb, Timothy W

    2011-01-01

    Vascular beds are generated by vasculogenesis and sprouting angiogenesis, and these processes have strong stochastic components. As a result, vascular patterns exhibit significant heterogeneity with respect to the topological arrangement of the individual vessel segments and the characteristics (length, number of segments) of different arterio-venous pathways. This structural heterogeneity tends to cause heterogeneous distributions of flow and oxygen availability in tissue. However, these quantities must be maintained within tolerable ranges to allow normal tissue function. This is achieved largely through adjustment of vascular flow resistance by control of vessel diameters. While short-term diameter control by changes in vascular tone in arterioles and small arteries plays an important role, in the long term an even more important role is played by structural adaptation (angioadaptation), occurring in response to metabolic and hemodynamic signals. The effectiveness, stability and robustness of this angioadaptation depend sensitively on the nature and strength of the vascular responses involved and their interactions with the network structure. Mathematical models are helpful in understanding these complex interactions, and can be used to simulate the consequences of failures in sensing or signal transmission mechanisms. For the tumor microcirculation, this strategy of combining experimental observations with theoretical models, has led to the hypothesis that dysfunctional information transport via vascular connexins is a major cause of the observed vascular pathology and increased heterogeneity in oxygen distribution. PMID:21858766

  10. Vascular elastic photoacoustic tomography in humans

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2016-03-01

    Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.

  11. SPS accelerating cavity

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  12. SPS accelerating cavity

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  13. Applicatons of accelerators

    The great diversity of possible applications of accelerators has been demonstrated in the past few years. Apart from the more familiar uses of accelerators for fundamental particle, nuclear, and solid state physics research, the applications range from microscopic trace analysis through cancer therapy to nuclear power and large volume radiation processing. Accelerators are also being used for applied research in proton radiography, radiation damage studies, laser excitation and materials analysis. The required beam properties vary from an extremely low emittance with very low beam current to megawatt beam power with a low level of beam spill. At the Chalk River Nuclear Laboratories developments are underway on applications of accelerators to nuclear fuel breeding and to cancer therapy. (author)

  14. Non-accelerator experiments

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay

  15. Joint International Accelerator School

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  16. Rejuvenating CERN's Accelerators

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  17. Vibration control in accelerators

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  18. Acceleration of Logarithmic Convergence

    Gaskin, J. G.; Ford, W. F.

    1998-01-01

    In this paper, we shall give a characterization of all monotonically decreasing sequence of positive terms, whose sum converge and then introduce a Transformation which can be used to accelerate the convergence of a large class of logarithmically convergent series.

  19. Amps particle accelerator definition study

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  20. A symmetrical rail accelerator

    Igenbergs, E. (Technische Univ. Muenchen, Lehrstuhl fuer Raumfahrttechnik, Richard-Wagner-Strasse 18, 8000 Muenchen 2 (DE))

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator.

  1. Entropic Accelerating Universe

    Easson, Damien A.; Frampton, Paul H.; Smoot, George F.

    2010-01-01

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic...

  2. Accelerated cyclic corrosion tests

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  3. CEBAF Accelerator Achievements

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  4. Designing reliability into accelerators

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed

  5. Advanced Accelerator Concepts

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  6. Nuclear physics accelerator facilities

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  7. Multimegawatt cyclotron autoresonance accelerator

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE111-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE11-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance accelerator (CARA) can operate with near-100% efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40%. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96%. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. copyright 1996 American Institute of Physics

  8. Accelerators for America's Future

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  9. APT accelerator technology

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  10. Imaging evaluation of fetal vascular anomalies

    Vascular anomalies can be detected in utero and should be considered in the setting of solid, mixed or cystic lesions in the fetus. Evaluation of the gray-scale and color Doppler US and MRI characteristics can guide diagnosis. We present a case-based pictorial essay to illustrate the prenatal imaging characteristics in 11 pregnancies with vascular malformations (5 lymphatic malformations, 2 Klippel-Trenaunay syndrome, 1 venous-lymphatic malformation, 1 Parkes-Weber syndrome) and vascular tumors (1 congenital hemangioma, 1 kaposiform hemangioendothelioma). Concordance between prenatal and postnatal diagnoses is analyzed, with further discussion regarding potential pitfalls in identification. (orig.)

  11. Imaging evaluation of fetal vascular anomalies

    Calvo-Garcia, Maria A.; Kline-Fath, Beth M.; Koch, Bernadette L.; Laor, Tal [MLC 5031 Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Adams, Denise M. [Cincinnati Children' s Hospital Medical Center, Department of Pediatrics and Hemangioma and Vascular Malformation Center, Cincinnati, OH (United States); Gupta, Anita [Cincinnati Children' s Hospital Medical Center, Department of Pathology, Cincinnati, OH (United States); Lim, Foong-Yen [Cincinnati Children' s Hospital Medical Center, Pediatric Surgery and Fetal Center of Cincinnati, Cincinnati, OH (United States)

    2015-08-15

    Vascular anomalies can be detected in utero and should be considered in the setting of solid, mixed or cystic lesions in the fetus. Evaluation of the gray-scale and color Doppler US and MRI characteristics can guide diagnosis. We present a case-based pictorial essay to illustrate the prenatal imaging characteristics in 11 pregnancies with vascular malformations (5 lymphatic malformations, 2 Klippel-Trenaunay syndrome, 1 venous-lymphatic malformation, 1 Parkes-Weber syndrome) and vascular tumors (1 congenital hemangioma, 1 kaposiform hemangioendothelioma). Concordance between prenatal and postnatal diagnoses is analyzed, with further discussion regarding potential pitfalls in identification. (orig.)

  12. Oral vascular malformations: laser treatment and management

    Romeo, U.; Rocchetti, F.; Gaimari, G.; Tenore, G.; Palaia, G.; Lo Giudice, G.

    2016-03-01

    Vascular malformations are a very heterogeneous group of circulatory system's diseases that can involve different kind of vessels: arterial, venous or lymphatic ones. Many treatments, such as conventional surgery, embolization, steroid therapy and laser therapy, are available for vascular lesions. The laser approach relies more therapeutic techniques: the transmucosal thermophotocoagulation, intralesional photocoagulation, the excisional biopsy. Today laser is demonstrated to be the gold standard technique to treat vascular lesions that allows a safe and efficient treatment and a lower post-operative healing time. The only disadvantage is the risk of carbonization that could be avoided by using the multiple-spot single pulsed wave technique.

  13. Dynamics of nephron-vascular network

    Postnov, Dmitry; Postnov, D E; Marsh, D J; von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga

    2012-01-01

    The paper presents a modeling study of the spatial dynamics of a nephro-vascular network consisting of individual nephrons connected via a tree-like vascular branching structure. We focus on the effects of nonlinear mechanisms that are responsible for the formation of synchronous patterns in order...... to learn about processes not directly amenable to experimentation. We demonstrate that: (i) the nearest nephrons are synchronized in-phase due to a vascular propagated electrical coupling, (ii) the next few branching levels display a formation of phase-shifted patterns due to hemodynamic coupling and...

  14. Vascular inflammatory cells in hypertension

    DavidG.Harrison

    2012-05-01

    Full Text Available Hypertension is a common disorder with uncertain etiology. In the last several years, it has become evident that components of both the innate and adaptive immune system play an essential role in hypertension. Macrophages and T cells accumulate in the perivascular fat, the heart and the kidney of hypertensive patients and in animals with experimental hypertension. Various immunosuppressive agents lower blood pressure and prevent end-organ damage. Mice lacking lymphocytes are protected against hypertension, and adoptive transfer of T cells, but not B cells in the animals restores their blood pressure response to stimuli such as angiotensin II or high salt. Recent studies have shown that mice lacking macrophages have blunted hypertension in response to angiotensin II and that genetic deletion of macrophages markedly reduces experimental hypertension. Dendritic cells have also been implicated in this disease. Many hypertensive stimuli have triggering effects on the central nervous system and signals arising from the circumventricular organ seem to promote inflammation. Studies have suggested that central signals activate macrophages and T cells, which home to the kidney and vasculature and release cytokines, including IL-6 and IL-17, which in turn cause renal and vascular dysfunction and lead to blood pressure elevation. These recent discoveries provide a new understanding of hypertension and provide novel therapeutic opportunities for treatment of this serious disease.

  15. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  16. Accelerator business in Japan expanding

    Accelerators have become to be used increasingly in Japan in such fields as medicine, physics research and industry. This has caused stiff competition for market share by the manufacturers of accelerators. Electron beam accelerators for industrial use provide an indispensable means for adding values to products, for example, electric cables with incombustible insulators. Linear accelerators for the nondestructive inspection of nuclear components have been widely installed at equipment manufacturing plants. Active efforts have been exerted to develop small synchrotron radiation accelerators for next generation electronic industry. Cyclotrons for producing short life radioisotopes for medical diagnosis and electron beam accelerators for radiation therapy are also used routinely. The suppliers of accelerators include the companies manufacturing heavy electric machinery, heavy machinery and the engineering division of steelmakers. Accelerator physics is being formed, but universities do not yet offer the course regarding accelerators. Accelerator use in Japan and the trend of accelerator manufacturers are reported. (K.I.)

  17. Atherectomy: Treatment for Peripheral Vascular Disease

    Full Text Available Atherectomy: Treatment for Peripheral Vascular Disease You must have Javascript enabled in your web browser. View Program Transcript Click Here to view the OR-Live, Inc. Privacy ...

  18. Visualization of vascular disease with MR imaging

    Results of preliminary studies with MR imaging-angiography in patients with vascular diseases (stenoses, occlusions) are presented. The method is based on a bipolar gradient motion refocusing technique in combination with spin-echo sequences or gradient-echo sequences and a two-dimensional or three-dimensional acquisition technique, respectively. Isotropic three-dimensional resolution of about 1.2 mm facilitates identification of vascular structure. However, the discrimination of vascular abnormalities is still better on two-dimensional images with highest in-plane resolution. Vessels and vascular diseases are clearly delineated on subtraction images of flow-enhanced and flow-suppressed sequences with a spatial resolution of 0.5 mm. The potential of MR imaging-angiography is demonstrated in 20 patients who underwent correlative x-ray studies (conventional angiography, digital subtraction angiography)

  19. Vascular training and endovascular practice in Europe

    Liapis, C.D.; Avgerinos, E.D.; Sillesen, H.;

    2009-01-01

    OBJECTIVE: To evaluate the influence of the status of vascular surgery (VS) training paradigms on the actual practice of endovascular therapy among the European countries. METHODS: An email-based survey concerning vascular surgery training models and endovascular practices of different clinical...... specialties was distributed to a VS educator within 14 European countries. European Vascular and Endovascular Monitor (EVEM) data also were processed to correlate endovascular practice with training models. RESULTS: Fourteen questionnaires were gathered. Vascular training in Europe appears in 3 models: 1....... Mono-specialty (independence): 7 countries, 2. Subspecialty: 5 countries, 3. An existing specialty within general surgery: 2 countries. Independent compared to non-independent certification shortens overall training length (5.9 vs 7.9 years, p=0.006), while increasing overall training devoted...

  20. Lower limb vascular dysfunction in cyclists

    Thiago Ayala Melo Di Alencar

    2013-06-01

    Full Text Available Sports-related vascular insufficiency affecting the lower limbs is uncommon, and early signs and symptoms can be confused with musculoskeletal injuries. This is also the case among professional cyclists, who are always at the threshold between endurance and excess training. The aim of this review was to analyze the occurrence of vascular disorders in the lower limbs of cyclists and to discuss possible etiologies. Eighty-five texts, including papers and books, published from 1950 to 2012, were used. According to the literature reviewed, some cyclists receive a late diagnosis of vascular dysfunction due to a lack of familiarity of the medical team with this type of dysfunction. Data revealed that a reduced blood flow in the external iliac artery, especially on the left, is much more common than in the femoral and popliteal arteries, and that vascular impairment is responsible for the occurrence of early fatigue and reduced performance in cycling.

  1. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  2. Hydrogels for Engineering of Perfusable Vascular Networks

    Juan Liu

    2015-07-01

    Full Text Available Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation.

  3. Amplatzer vascular plug as an embolic agent in different vascular pathologies: A pictorial essay

    Tresley, Jonathan; Bhatia, Shivank; Kably, Issam; Poozhikunnath Mohan, Prasoon; Salsamendi, Jason; Narayanan, Govindarajan

    2016-01-01

    The Amplatzer Vascular Plug (AVP) is a cylindrical plug made of self-expanding nitinol wire mesh with precise delivery control, which can be used for a variety of vascular pathologies. An AVP is an ideal vascular occlusion device particularly in high-flow vessels, where there is high risk of migration and systemic embolization with traditional occlusion devices. We performed 28 embolizations using the AVP from 2009 to 2014 and achieved complete occlusion without complications.

  4. Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-no, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Cit...

  5. Small type accelerator. Try for accelerator driven system

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)

  6. Evidence for a vascular factor in migraine

    Asghar, Mohammad S; Hansen, Adam E; Amin, Faisal Mohammad;

    2011-01-01

    It has been suggested that migraine is caused by neural dysfunction without involvement of vasodilatation. Because dismissal of vascular mechanisms seemed premature, we examined diameter of extra- and intracranial vessels in migraine without aura patients.......It has been suggested that migraine is caused by neural dysfunction without involvement of vasodilatation. Because dismissal of vascular mechanisms seemed premature, we examined diameter of extra- and intracranial vessels in migraine without aura patients....

  7. Viral vectors for vascular gene therapy

    Fischer, Lukas; Preis, Meir; Weisz, Anat; Koren, Belly; Lewis, Basil S; Flugelman, Moshe Y

    2002-01-01

    Vascular gene therapy is the focus of multiple experimental and clinical research efforts. While several genes with therapeutic potential have been identified, the best method of gene delivery is unknown. Viral vectors have the capacity to transfer genes at high efficiency rates. Several viral-based vectors have been used in experimental vascular gene therapy for in vivo and ex vivo gene transfer. Adenoviral-based vectors are being used for the induction of angiogenesis in phase 1 and 2 clini...

  8. Review: Interventional radiology in peripheral vascular disease

    Peripheral vascular diseases (PVD) are referred to as diseases affecting the blood vessels other than the heart and the brain. Interventional endovascular treatment whenever feasible has become the first line of management in the treatment of PVD. Interventions may be aimed at either revascularization or deliberate occlusion of a diseased vessel(s). This article reviews the various peripheral vascular diseases with their appropriate endovascular management

  9. Cardiac tumours simulating collagen vascular disease.

    Fitzpatrick, A. P.; Lanham, J. G.; Doyle, D V

    1986-01-01

    Cardiac tumours can mimic collagen vascular disease and they are often accompanied by profound systemic upset. Both benign and malignant tumours may present in this way. Three cases of cardiac tumour, two malignant and one benign, are reported with just such a presentation. A review of fifteen similar case reports showed that a spectrum of different collagen vascular diseases was diagnosed and treated before the true diagnosis emerged. In half of these cases the cardiac tumour was only diagno...

  10. Pattern formation by vascular mesenchymal cells

    Garfinkel, Alan; Tintut, Yin; Petrasek, Danny; Boström, Kristina; Demer, Linda L.

    2004-01-01

    In embryogenesis, immature mesenchymal cells aggregate and organize into patterned tissues. Later in life, a pathological recapitulation of this process takes place in atherosclerotic lesions, when vascular mesenchymal cells organize into trabecular bone tissue within the artery wall. Here we show that multipotential adult vascular mesenchymal cells self-organize in vitro into patterns that are predicted by a mathematical model based on molecular morphogens interacting in a reaction-diffusion...

  11. New polymeric materials for vascular surgery

    Cortecchia, Elisa

    2011-01-01

    The dramatic impact that vascular diseases have on human life quality and expectancy nowadays is the reason why both medical and scientific communities put great effort in discovering new and effective ways to fight vascular pathologies. Among the many different treatments, endovascular surgery is a minimally-invasive technique that makes use of X-ray fluoroscopy to obtain real-time images of the patient during interventions. In this context radiopaque biomaterials, i.e. materials able to abs...

  12. Vascular progenitor cells in arterial remodeling

    Grudzinska, Monika K.

    2011-01-01

    Cardiovascular disease is the leading cause of global mortality and physical disability mainly due to the complications such as myocardial infarction or stroke. Physiological healing reaction takes place in the diseased vessel wall aimed to repair the vessel after an injury. There are two factors essentially important for clinical improvement of vascular diseases. The first one is protection of the vascular damage, and the second one is repair of injured, ischemic and regenerating tissues to ...

  13. How to Measure Peripheral Pulmonary Vascular Mechanics

    Chesler, Naomi C; Argiento, Paola; Vanderpool, Rebecca; D’Alto, Michele; Naeije, Robert

    2009-01-01

    Pulmonary hypertension (PH) is initially a disease of the small, peripheral resistance arteries. Changes in these vessels are best assessed by measurement of pulmonary artery pressure at several levels of flow to generate multi-point pressure-flow curves. This approach is superior to the traditional single-point measurement of pulmonary vascular resistance (PVR) because it allows a flow-independent definition of the resistive properties of that portion of the pulmonary vascular bed and also p...

  14. The Vascular Plants of Losap Atoll

    MANNER, Harley I.; SANA, Dickson

    1995-01-01

    Prior to 1988, studies and observations on Losap Atoll (Chuuk, Federated States of Micronesia) indicated a vascular flora of 43 species. A recent collection and observations of the flora of Losap Atoll indicated the presence of 101 species of vascular plants, of which 70 are indigenous and 31 are introduced species. Of these, 34 indigenous and 22 introduced species can be considered new records. An implication of these increases in numbers of species is that the floras of most atolls in the P...

  15. Review: Interventional radiology in peripheral vascular disease

    Cherian, Mathew P; Mehta, Pankaj; Tejas M Kalyanpur; Gupta, Prashanth

    2008-01-01

    Peripheral vascular diseases (PVD) are referred to as diseases affecting the blood vessels other than the heart and the brain. Interventional endovascular treatment whenever feasible has become the first line of management in the treatment of PVD. Interventions may be aimed at either revascularization or deliberate occlusion of a diseased vessel(s). This article reviews the various peripheral vascular diseases with their appropriate endovascular management.

  16. HIF and pulmonary vascular responses to hypoxia

    Shimoda, Larissa A.; Steven S Laurie

    2013-01-01

    In the lung, acute reductions in oxygen lead to hypoxic pulmonary vasoconstriction, whereas prolonged exposures to hypoxia result in sustained vasoconstriction, pulmonary vascular remodeling, and the development of pulmonary hypertension. Data from both human subjects and animal models implicate a role for hypoxia-inducible factors (HIFs), oxygen-sensitive transcription factors, in pulmonary vascular responses to both acute and chronic hypoxia. In this review, we discuss work from our laborat...

  17. Vascular risk factors, cognitve decline, and dementia

    Hanon, Olivier

    2008-01-01

    E Duron, Olivier HanonBroca Hospital, Paris, FranceAbstract: Dementia is one of the most important neurological disorders in the elderly. Aging is associated with a large increase in the prevalence and incidence of degenerative (Alzheimer’s disease) and vascular dementia, leading to a devastating loss of autonomy. In view of the increasing longevity of populations worldwide, prevention of dementia has turned into a major public health challenge. In the past decade, several vascular ...

  18. Airway vascular damage in elite swimmers.

    Moreira, André; Palmares, Carmo; Lopes, Cristina; Delgado, Luís

    2011-11-01

    We postulated that high level swimming can promote airway inflammation and thus asthma by enhancing local vascular permeability. We aimed to test this hypothesis by a cross-sectional study comparing swimmers (n = 13, 17 ± 3 years, competing 7 ± 4 years, training 18 ± 3 h per week), asthmatic-swimmers (n = 6, 17 ± 2 years, competing 8 ± 3 years, training 16 ± 4 h per week), and asthmatics (n = 19, 14 ± 3 years). Subjects performed induced sputum and had exhaled nitric oxide, lung volumes, and airway responsiveness determined. Airway vascular permeability index was defined as the ratio of albumin in sputum and serum. Results from the multiple linear regression showed each unit change in airway vascular permeability index was associated with an increase of 0.97% (95%CI: 0.02 to 1.92; p = 0.047) in sputum eosinophilis, and of 2.64% (95%CI:0.96 to 4.31; p = 0.006) in sputum neutrophils after adjustment for confounders. In a general linear model no significant differences between airway vascular permeability between index study groups existed, after controlling for sputum eosinophilis and neutrophils. In conclusion, competitive swimmers training in chlorine-rich pools have similar levels of airway vascular permeability than asthmatics. Although competitive swimming has been associated with asthma, airway inflammation and airway hyperesponsiveness do not seem to be dependent on increased airway vascular permeability. PMID:21669516

  19. Lymphangiosarcoma complicating extensive congenital mixed vascular malformations.

    Al Dhaybi, Rola; Agoumi, Mehdi; Powell, Julie; Dubois, Josée; Kokta, Victor

    2010-09-01

    Pediatric hepatic angiosarcoma is a very rare malignant vascular tumor. A few cases have shown pediatric hepatic angiosarcoma occurring on a background of preexisting vascular lesions. We report the case of a newborn girl who presented extensive limbs and upper trunk cutaneous mixed vascular malformations at birth. These malformations were associated with thrombocytopenia. Cutaneous biopsies revealed complex vascular malformations with a significant lymphatic component. Compressive body suit therapy led to regression of the limbs' cutaneous vascular malformations. At the age of 9 months, the patient presented multiple heterogeneous hepatosplenic nodules. Aggressive treatment with prednisone, vincristine, and hepatosplenic embolizations resulted in initial improvement of the hepatosplenic lesions for few months, followed by an increase of the lesions with failure of response to treatment despite adding alpha-interferon-2b to treatment. The patient died at the age of 19 months. The autopsy's pathological examination revealed a hepatic-based angiosarcoma with plurimetastatic dissemination to the spleen, lungs, peritoneum, pleura, mesenteric linings as well as the serosa of the stomach and small intestine. Multiple cutaneous and visceral complex capillaro-lymphatico-venous malformations were also identified. We hypothesize that these multiple extensive mixed vascular malformations were associated with chronic lymphedema which probably predisposed to the development of the angiosarcoma in our patient. PMID:20863270

  20. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  1. Stroke injury, cognitive impairment and vascular dementia☆

    Kalaria, Raj N.; Akinyemi, Rufus; Ihara, Masafumi

    2016-01-01

    The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25–30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood–brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26806700

  2. Stroke injury, cognitive impairment and vascular dementia.

    Kalaria, Raj N; Akinyemi, Rufus; Ihara, Masafumi

    2016-05-01

    The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25-30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood-brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26806700

  3. High energy plasma accelerators

    Colinear intense laser beams ω0, kappa0 and ω1, kappa1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 1018 cm-3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  4. Relativistic heavy ion accelerators

    There is a growing interest in the scientific community in the use of accelerators to produce relativistic heavy ion beams for a number of purposes. It now appears that relativistic heavy ion collisions may provide an opportunity to study nuclear matter far from equilibrium density, pressure, and temperature. Heavy ion beams can also be used as simulated cosmic rays for astrophysical research and in planning space probes. At present the only relativistic heavy ion accelerator is the Belvalac at LBL. It has been devoted to this use since 1974. The operating experience and capabilities of this machine are reviewed as well as present and planned experimental programs. Designs of accelerators for relativistic heavy ions are discussed. A number of considerations will cause a machine to differ from a proton machine if optimally designed for heavy ion acceleration. A possible set of parameters is presented for an accelerator to produce intense beams of mass 10 to 200 ions, at energies up to 10 GeV/amu

  5. Dielectric laser accelerators

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  6. Accelerating nondiffracting beams

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  7. Accelerators for atomic energy research

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  8. Plasma-based accelerator structures

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  9. Treatment of subclavian vascular injuries in 15 cases

    WANG Zi-ming; WANG Ai-min; SUN Hong-zhen; DU Quan-yin; GUO Qing-shan; YIN Liang-jun; WU Si-yu; TANG Ying

    2006-01-01

    @@ Subclavian vascular injury accounts for 1%-5 % of all vascular injuries. If not found in time or managed swiftly, subclavian vascular injury is likely to cause hemorrhagic shock and even death. From March of 1998 through August of 2003, a total of 15 cases with subclavian vascular injury were treated in our department. The details are described in this report.

  10. Vascular associated gene variants in patients with preeclampsia

    Lykke, Jacob A; Bare, Lance A; Olsen, Jørn; Lagier, Robert; Tong, Carmen; Arellano, Andre; Paidas, Michael J; Langhoff-Roos, Jens

    2012-01-01

    Preeclampsia has been linked to subsequent vascular disease with many shared predisposing factors. We investigated the association between severe preeclampsia, and its subtypes, and specific vascular-related polymorphisms.......Preeclampsia has been linked to subsequent vascular disease with many shared predisposing factors. We investigated the association between severe preeclampsia, and its subtypes, and specific vascular-related polymorphisms....

  11. Uniform Acceleration in General Relativity

    Friedman, Yaakov

    2016-01-01

    We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  12. Superconducting Accelerator Magnets

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  13. Entropic Accelerating Universe

    Easson, Damien A; Smoot, George F

    2010-01-01

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lema\\^{i}tre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the temperature intrinsic to the information holographically stored on the screen which is the surface of the universe. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on a surface screen. We consider an additional quantitative approach based upon the entropy and surface terms usually neglected in General Relativity and show that this leads to the entropic accelerating universe.

  14. Superconducting accelerator magnet design

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  15. Accelerators for therapy

    In the past decades circular and linear electron accelerators have been developed for clinical use in radiation therapy of tumors with the aim of achieving a high radiation dose in the tumor and as low as possible dose in the adjacent normal tissues. Today about one thousand accelerators are in medical use throughout the world and many hundred thousand patients are treated every day with accelerator-produced radiation. There exists, however, a large number of patients who cannot be treated satisfactorily in this way. New types of radiations such as neutrons, negative pions, protons and heavy ions were therefore tested recently. The clinical experience with these radiations and with new types of treatment procedures indicate that in future the use of a scanning beam of high energy protons might be optimal for the treatment of tumors. (orig.)

  16. Microelectromechanical acceleration-sensing apparatus

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  17. Studies of accelerated compact toruses

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa -2, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  18. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering.

    Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran

    2011-11-01

    Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. PMID:21855129

  19. CERN: Accelerator school

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  20. Nuclear Physics accelerator facilities

    The Nuclear Physics program requires the existence and effective operation of large and complex accelerator facilities. These facilities provide the variety of projectile beams upon which virtually all experimental nuclear research depends. Their capability determine which experiments can be performed and which cannot. Seven existing accelerator facilities are operated by the Nuclear Physics program as national facilities. These are made available to all the Nation's scientists on the basis of scientific merit and technical feasibility of proposals. The national facilities are the Clinton P. Anderson Meson Physics Facility (LAMPF) at Los Alamos National Laboratory; the Bates Linear Accelerator Center at Massachusetts Institute of Technology; the Bevalac at Lawrence Berkeley Laboratory; the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory; the ATLAS facility at Argonne National Laboratory; the 88-Inch Cyclotron at Lawrence Berkeley Laboratory; the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory. The Nuclear Physics Injector at the Stanford Linear Accelerator Center (SLAC) enables the SLAC facility to provide a limited amount of beam time for nuclear physics research on the same basis as the other national facilities. To complement the national facilities, the Nuclear Physics program supports on-campus accelerators at Duke University, Texas A and M University, the University of Washington, and Yale University. The facility at Duke University, called the Triangle Universities Nuclear Laboratory (TUNL), is jointly staffed by Duke University, North Carolina State University, and the University of North Carolina. These accelerators are operated primarily for the research use of the local university faculty, junior scientists, and graduate students

  1. Intermittent Sea Level Acceleration

    Olivieri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Spada, G.; Dipartimento di Scienze di Base e Fondamenti, Università di Urbino Carlo Bo, Urbino

    2013-01-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea{level acceleration for the last 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, con firm the existence of a global sea level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0:01 mm/yr2. However, di fferently from previous studies, we discuss how change points or ...

  2. Acceleration of polarized particles

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  3. Space charge wave accelerators

    We present an account of experimental observations showing control of the wave phase velocity for a slow wave, measurements of the wave electric field, and indicate how these results might apply to an ion accelerator. An interesting and new possibility is also indicated, namely the use of fast waves for electron accelerators. In this case preliminary estimates indicate that comparable field gradients to those already obtained in the slow wave scheme should be obtainable in fast waves and that these field gradients can be maintained at phase velocities close to the speed of light. (orig./HSI)

  4. High intensity hadron accelerators

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  5. Seismic surveying and accelerators

    The paper deals with an investigation into the impact of earth vibrations on charged particle beams in modern colliders. It is ascertained that the displacement of accelerator magnetic elements from the perfect position results in the excitation of betatron oscillations and distortion of particle orbit position. The results of experimental investigations into seismic noises are presented for ASR, SSC, DESY and KEK. The rms orbit displacement in accelerators is estimated relying on the law of earth diffusion motion, according to which the variance of relative displacements is proportional to the distance between these points and time of observation. 6 refs., 3 figs., 2 tabs

  6. Interfacing to accelerator instrumentation

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  7. Congenital vascular malformations in scintigraphic evaluation

    Congenital vascular malformations are tumour-like, non-neoplastic lesions caused by disorders of vascular tissue morphogenesis. They are characterised by a normal cell replacement cycle throughout all growth phases and do not undergo spontaneous involution. Here we present a scintigraphic image of familial congenital vascular malformations in two sisters. A 17-years-old young woman with a history of multiple hospitalisations for foci of vascular anomalies appearing progressively in the upper and lower right limbs, chest wall and spleen. A Parkes Weber syndrome was diagnosed based on the clinical picture. Due to the occurrence of new foci of malformations, a whole-body scintigraphic examination was performed. A 12-years-old girl reported a lump in the right lower limb present for approximately 2 years, which was clinically identified as a vascular lesion in the area of calcaneus and talus. Phleboscintigraphy visualized normal radiomarker outflow from the feet via the deep venous system, also observed in the superficial venous system once the tourniquets were released. In static and whole-body examinations vascular malformations were visualised in the area of the medial cuneiform, navicular and talus bones of the left foot, as well as in the projection of right calcaneus and above the right talocrural joint. People with undiagnosed disorders related to the presence of vascular malformations should undergo periodic follow-up to identify lesions that may be the cause of potentially serious complications and to assess the results of treatment. Presented scintigraphic methods may be used for both diagnosing and monitoring of disease progression

  8. Vascular health in children and adolescents: effects of obesity and diabetes

    Kevin R Short

    2009-11-01

    Full Text Available Kevin R Short, Piers R Blackett, Andrew W Gardner, Kenneth C CopelandDepartment of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USAAbstract: The foundations for cardiovascular disease in adults are laid in childhood and accelerated by the presence of comorbid conditions, such as obesity, diabetes, hypertension, and dyslipidemia. Early detection of vascular dysfunction is an important clinical objective to identify those at risk for subsequent cardiovascular morbidity and events, and to initiate behavioral and medical interventions to reduce risk. Typically, cardiovascular screening is recommended for young adults, especially in people with a family history of cardiovascular conditions. Children and adolescents were once considered to be at low risk, but with the growing health concerns related to sedentary lifestyle, poor diet and obesity, cardiovascular screening may be needed earlier so that interventions to improve cardiovascular health can be initiated. This review describes comorbid conditions that increase cardiovascular risk in youth, namely obesity and diabetes, and describes noninvasive methods to objectively detect vascular disease and quantify vascular function and structure through measurements of endothelial function, arterial compliance, and intima-media thickness. Additionally, current strategies directed toward prevention of vascular disease in these populations, including exercise, dietary interventions and pharmacological therapy are described.Keywords: endothelial function, arterial compliance, intimal medial thickness, inflammation, intervention

  9. The role of vascular remodeling and inflammation in the pathogenesis of intracranial aneurysms.

    Penn, David L; Witte, Samantha R; Komotar, Ricardo J; Sander Connolly, E

    2014-01-01

    While the mechanisms triggering pathogenesis of intracranial aneurysms have not been fully elucidated, different mechanisms have been proposed ranging from hemodynamic mechanisms to genetic predispositions. One mechanism that has been thoroughly explored is the physiological and pathological vascular remodeling that occurs in conjunction with inflammatory reactions resulting in the initiation and progression of these lesions. Both hemodynamic stimuli and vascular inflammation can trigger a series of biochemical reactions resulting in vascular smooth muscle cell apoptosis and migration causing thinned, dilated areas of the cerebral vasculature. In addition, an imbalance between extracellular matrix remodeling proteins, such as matrix metalloproteinases and their inhibitors, can result in accelerated degradation of the internal elastic lamina and the adventitial layers, further weakening the vessel. While these processes occur under normal physiological conditions, situations that alter their balance such as inflammation caused by cigarette smoking or cocaine usage or hypoxia induced under chronic hypertensive conditions can alter the delicate balance of these reactions potentiating pathological remodeling and aneurysm development. The present study represents a thorough literature review of the vascular remodeling and inflammatory components to aneurysmal pathogenesis. PMID:24120708

  10. SPS accelerating cavity

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  11. SPS accelerating cavity

    1983-01-01

    See photo 8302397: View from the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138. Giacomo Primadei stands on the left.

  12. Hamburg Accelerator Conference

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  13. Heavy ion accelerator GANIL

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream

  14. Dissociation by acceleration

    Peeters, K.; Zamaklar, M.

    2008-01-01

    We show that mesons, described using rotating relativistic strings in a holographic setup, undergo dissociation when their acceleration 'a' exceeds a value which scales with the angular momentum 'J' as a_max ~ \\sqrt{T_s/J}, where 'T_s' is the string tension.

  15. Dissociation by acceleration

    2007-01-01

    We show that mesons, described using rotating relativistic strings in a holographic setup, undergo dissociation when their acceleration 'a' exceeds a value which scales with the angular momentum 'J' as a_max ~ \\sqrt{T_s/J}, where 'T_s' is the string tension.

  16. The CERN accelerator complex

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  17. SPS accelerating cavity

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  18. Accelerators in the sky

    The author surveys the large body of evidence showing that there are very efficient mechanisms capable of accelerating particles to high energies under very different astrophysical conditions. The circumstances whereby huge amounts of relativistic and ultrarelativistic particles such as one finds in a) cosmic rays, b) supernova remnants and c) radio galaxies and quasars are produced are considered. (Auth.)

  19. Prospects for Accelerator Technology

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  20. Radioisotope Dating with Accelerators.

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  1. Accelerating News Issue 5

    Szeberenyi, A

    2013-01-01

    In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

  2. The CERN Accelerator School

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  3. The CERN Accelerator School

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  4. The CERN accelerator complex

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  5. The CERN accelerator complex

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  6. Superconducting traveling wave accelerators

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 106 in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 103, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRA reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table

  7. Accelerating Fermionic Molecular Dynamics

    Clark, M. A.; Kennedy, A. D.

    2004-01-01

    We consider how to accelerate fermionic molecular dynamics algorithms by introducing n pseudofermion fields coupled with the nth root of the fermionic kernel. This reduces the maximum pseudofermionic force, and thus allows a larger molecular dynamics integration step size without hitting an instability in the integrator.

  8. The Bevalac accelerator

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  9. Vascular injuries following road traffic collisions in a high-income developing country: a prospective cohort study

    Eid Hani O

    2010-05-01

    Full Text Available Abstract Background The mechanism and pattern of vascular injury vary between different populations. The commonest mechanism of vascular injury in civilian practice is road traffic collisions. We aimed to prospectively study the incidence, detailed mechanism and anatomical distribution of hospitalized vascular trauma patients following road traffic collisions in a high-income developing country. Methods Data were collected prospectively on road traffic collision injuries in the whole city of Al-Ain, United Arab Emirates, from April 2006 to October 2007 with full details of mechanism of injury and its relation to sustained injuries. Results Out of 1008 patients in the registry, 13 patients had vascular injury, a calculated incidence of 1.87 cases/100 000 inhabitants per year. There were eight car occupants, four pedestrians, and one motorcyclist. Upper limb vascular injuries were the most common anatomical site (n = 4 followed by thoracic aorta (n = 3. All thoracic aortic injuries were acceleration injuries (pedestrians hit by a moving vehicle. None of the eight car occupants was wearing a seatbelt and the majority sustained a front impact deceleration injuries. The median injury severity score, hospital stay, and ICU stay were significantly higher in the vascular injury group compared with nonvascular group (P Conclusions The incidence of hospitalized vascular injury due to road traffic collisions in Al-Ain city is 1.87 cases/100 000 inhabitants. These injuries occurred mainly in the upper part of the body. Seatbelt compliance of car occupants having vascular injuries was very low. Compliance with safety measures needs more enforcement in our community.

  10. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    Sevostyanova, V. V.; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  11. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo (Russian Federation)

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  12. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts

  13. Design and development of multilayer vascular graft

    Madhavan, Krishna

    2011-07-01

    Vascular graft is a widely-used medical device for the treatment of vascular diseases such as atherosclerosis and aneurysm as well as for the use of vascular access and pediatric shunt, which are major causes of mortality and morbidity in this world. Dysfunction of vascular grafts often occurs, particularly for grafts with diameter less than 6mm, and is associated with the design of graft materials. Mechanical strength, compliance, permeability, endothelialization and availability are issues of most concern for vascular graft materials. To address these issues, we have designed a biodegradable, compliant graft made of hybrid multilayer by combining an intimal equivalent, electrospun heparin-impregnated poly-epsilon-caprolactone nanofibers, with a medial equivalent, a crosslinked collagen-chitosan-based gel scaffold. The intimal equivalent is designed to build mechanical strength and stability suitable for in vivo grafting and to prevent thrombosis. The medial equivalent is designed to serve as a scaffold for the activity of the smooth muscle cells important for vascular healing and regeneration. Our results have shown that genipin is a biocompatible crosslinker to enhance the mechanical properties of collagen-chitosan based scaffolds, and the degradation time and the activity of smooth muscle cells in the scaffold can be modulated by the crosslinking degree. For vascular grafting and regeneration in vivo, an important design parameter of the hybrid multilayer is the interface adhesion between the intimal and medial equivalents. With diametrically opposite affinities to water, delamination of the two layers occurs. Physical or chemical modification techniques were thus used to enhance the adhesion. Microscopic examination and graft-relevant functional characterizations have been performed to evaluate these techniques. Results from characterization of microstructure and functional properties, including burst strength, compliance, water permeability and suture

  14. Arteriographic evaluation, in the perispheric vascular trauma

    136 patients were angiographically studied under the suspicion of perispheric vascular lesion submitted to the radiology department of the San Vicente de Paul University Hospital (H.U.S.VP.) Medellin Colombia. The majority of the patients were young with wounds caused by gunshots (79.4%). the must frequent angiographic indication was the proximity of the wound to a vascular path (44.5%). 63% of the patients with angiography indicative of abnormality needed surgery from which 21% were because of the proximity of the wound to a vascular path and 76% because of the mayor findings when admitted to the hospital. the possible complications as a result of the angiographic procedure were revised only find inc two mayor reactions to the contrast media. there were no late complications. Angiography is highlighting sensitive (100%) specific (98.5%) and secure in the evaluation of patients with perispheric vascular trauma. Due to the high number of false negatives when the physical examination is performed, every patient with a wound near a vascular path must be evaluated angiographically

  15. Cytoskeleton, cytoskeletal interactions, and vascular endothelial function

    Wang J

    2012-12-01

    Full Text Available Jingli Wang,1 Michael E Widlansky1,21Department of Medicine, Cardiovascular Medicine Division, 2Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USAAbstract: Far from being inert, the vascular endothelium is a critical regulator of vascular function. While the endothelium participates in autocrine, paracrine, and endocrine signaling, it also transduces mechanical signals from the cell surface involving key cell structural elements. In this review, we discuss the structure of the vascular endothelium and its relationship to traditional cardiovascular risk factors and clinical cardiovascular events. Further, we review the emerging evidence that cell structural elements, including the glycocalyx, intercellular junctions, and cytoskeleton elements, help the endothelium to communicate with its environment to regulate vascular function, including vessel permeability and signal transduction via nitric oxide bioavailability. Further work is necessary to better delineate the regulatory relationships between known key regulators of vascular function and endothelial cell structural elements.Keywords: endothelium, shear stress, eNOS, cardiovascular risk factors, glycocalyx

  16. Blood Flow Restricted Exercise and Vascular Function

    Masahiro Horiuchi

    2012-01-01

    Full Text Available It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  17. The vascular pattern in the flower of some Mesembryanthemaceae: Aptenia cordifolia and Dorotheanthus bellidiformis. The effect of an ontogenetical shifting on the vascular pattern and vascular conservatism

    Meulen-Bruijns, van der C.

    1976-01-01

    1. The vascular pattern in the flower at various stages of maturity of Aptenia cordifolia and Dorotheanthus bellidiformis is examined. 2. The vascular pattern of Dorotheanthus has been compared with that of Aptenia: typologically, Dorotheanthus is derived from Aptenia. 3. The vascular pattern of Apt

  18. Nonlinear dynamics in particle accelerators

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  19. Accelerator mass spectrometry programme at Mumbai pelletron accelerator facility

    The Accelerator Mass Spectrometry (AMS) programme and the related developments based on the Mumbai Pelletron accelerator are described. The initial results of the measurement of the ratio, 36Cl / Cl in water samples are presented. (author)

  20. Evaluation of vascular pathologies with MR angiography

    The flow sensitivity of MR imaging methods can be used to visualize vascular structures (MR angiography). In this paper the method of flow-enhanced three-dimensional MR angiography will be presented. This technique makes use of the signal enhancement due to inflow of unsaturated spins into the imaging volume in combination with flow-compensated three-dimensional Fourier transform gradient-echo sequences. Projective images are calculated from the measured data by means of a maximum-intensity algorithm. The procedure was optimized for the visualization of the intra-and extracranial vasculature. The purpose of this study was to demonstrate the potential of this MR angiographic procedure to evaluate vascular disease in a clinical situation. Prospective studies in patients with vascular disease including aneurysms, arteriovenous malformations, arterial occlusion, and stenosis are shown in correlation with conventional procedures

  1. Serelaxin: A Novel Therapeutic for Vascular Diseases.

    Leo, Chen Huei; Jelinic, Maria; Ng, Hooi Hooi; Tare, Marianne; Parry, Laura J

    2016-06-01

    Vascular dysfunction is an important hallmark of cardiovascular disease. It is characterized by increased sensitivity to vasoconstrictors, decreases in the endothelium-derived vasodilators nitric oxide (NO) and prostacyclin (PGI2), and endothelium-derived hyperpolarization (EDH). Serelaxin (recombinant human relaxin) has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in acute heart failure. In this review we first describe the contribution of endogenous relaxin to vascular homeostasis. We then provide a comprehensive overview of the novel mechanisms of serelaxin action in blood vessels that differentiate it from other vasodilator drugs and explain how this peptide could be used more widely as a therapeutic to alleviate vascular dysfunction in several cardiovascular diseases. PMID:27130518

  2. Vascular corrosion casting of human heart

    J. Vasudeva Reddy

    2013-06-01

    Full Text Available Variation in the morphological pattern of coronary arteries and their major branches is an important factor in the assessment and treatment of coronary heart disease. Detailed knowledge of the blood supply of the heart is necessary today because of the wider practice of cardiac surgery, and also for better understanding of the anomalous branches, anastomosis and dominance pattern in circulation caused by coronary vasculature. We utilized 80 human heart specimens and found right dominance in 69 specimens, left dominance in 9 specimens and balanced type of circulation in 2 specimens. We observed anastomosis between the major arteries in arteriogram but in vascular corrosion method we did not found because cast substance interpretation to minor vessels is too difficult. The present study acknowledges about Coronary vascular pattern, circulatory dominance of the arteries and by using the vascular corrosion method. [Int J Res Med Sci 2013; 1(3.000: 237-239

  3. Circadian pattern in cerebro vascular disorders.

    Bhalla A

    2002-10-01

    Full Text Available Over the last decade, various studies have been reported to evaluate the circadian pattern of cardiovascular and cerebro-vascular diseases. The data from Indian population is lacking. We undertook this prospective observational study to evaluate the circadian variation in disorders like cerebro-vascular accidents and transient ischemic attacks. Total of 146 patients (events were studied. Only 10 patients had TIA′s. 55% had hemorrhage and 45% had infarction. The 24 hours period was divided into 6 equal portions of 4 hours each. The maximum events were seen between 4 am to 8 am and 12 noon to 4 pm (23.28% each. Minimum events were seen between 12 midnight to 4 am 14/146 - 9.58%. The circadian variation in occurrence of cerebro-vascular disorders was present with two equal peaks.

  4. Effects of vascularization on cancer nanochemotherapy outcomes

    Paiva, L. R.; Ferreira, S. C.; Martins, M. L.

    2016-08-01

    Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.

  5. Modulation of hydrogen sulfide by vascular hypoxia

    Osmond JM

    2014-08-01

    Full Text Available Jessica M Osmond, Nancy L KanagyVascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USAAbstract: Hydrogen sulfide (H2S has emerged as a key regulator of cardiovascular function. This gasotransmitter is produced in the vasculature and is involved in numerous processes that promote vascular homeostasis, including vasodilation and endothelial cell proliferation. Although H2S plays a role under physiological conditions, it has become clear in recent years that hypoxia modulates the production and action of H2S. Furthermore, there is growing evidence that H2S is cytoprotective in the face of hypoxic insults. This review focuses on the synthesis and signaling of H2S in hypoxic conditions in the vasculature, and highlights recent studies providing evidence that H2S is a potential therapy for preventing tissue damage in hypoxic conditions.Keywords: H2S, cystathionine γ-lyase, vascular smooth muscle, endothelium

  6. VESGEN Software for Mapping and Quantification of Vascular Regulators

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2012-01-01

    VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.

  7. Pain management in patients with vascular disease.

    Seretny, M; Colvin, L A

    2016-09-01

    Vascular disease covers a wide range of conditions, including arterial, venous, and lymphatic disorders, with many of these being more common in the elderly. As the population ages, the incidence of vascular disease will increase, with a consequent increase in the requirement to manage both acute and chronic pain in this patient population. Pain management can be complex, as there are often multiple co-morbidities to be considered. An understanding of the underlying pain mechanisms is helpful in the logical direction of treatment, particularly in chronic pain states, such as phantom limb pain or complex regional pain syndrome. Acute pain management for vascular surgery presents a number of challenges, including coexisting anticoagulant medication, that may preclude the use of regional techniques. Within the limited evidence base, there is a suggestion that epidural analgesia provides better pain relief and reduced respiratory complications after major vascular surgery. For carotid endarterectomy, there is again some evidence supporting the use of local anaesthetic analgesia, either by infiltration or by superficial cervical plexus block. Chronic pain in vascular disease includes post-amputation pain, for which well-known risk factors include high pain levels before amputation and in the immediate postoperative period, emphasizing the importance of good pain control in the perioperative period. Complex regional pain syndrome is another challenging chronic pain syndrome with a wide variety of treatment options available, with the strongest evidence being for physical therapies. Further research is required to gain a better understanding of the underlying pathophysiological mechanisms in pain associated with vascular disease and the best analgesic approaches to manage it. PMID:27566812

  8. Statistical modeling of the arterial vascular tree

    Beck, Thomas; Godenschwager, Christian; Bauer, Miriam; Bernhardt, Dominik; Dillmann, Rüdiger

    2011-03-01

    Automatic examination of medical images becomes increasingly important due to the rising amount of data. Therefore automated methods are required which combine anatomical knowledge and robust segmentation to examine the structure of interest. We propose a statistical model of the vascular tree based on vascular landmarks and unbranched vessel sections. An undirected graph provides anatomical topology, semantics, existing landmarks and attached vessel sections. The atlas was built using semi-automatically generated geometric models of various body regions ranging from carotid arteries to the lower legs. Geometric models contain vessel centerlines as well as orthogonal cross-sections in equidistant intervals with the vessel contour having the form of a polygon path. The geometric vascular model is supplemented by anatomical landmarks which are not necessarily related to the vascular system. These anatomical landmarks define point correspondences which are used for registration with a Thin-Plate-Spline interpolation. After the registration process, the models were merged to form the statistical model which can be mapped to unseen images based on a subset of anatomical landmarks. This approach provides probability distributions for the location of landmarks, vessel-specific geometric properties including shape, expected radii and branching points and vascular topology. The applications of this statistical model include model-based extraction of the vascular tree which greatly benefits from vessel-specific geometry description and variation ranges. Furthermore, the statistical model can be applied as a basis for computer aided diagnosis systems as indicator for pathologically deformed vessels and the interaction with the geometric model is significantly more user friendly for physicians through anatomical names.

  9. Total knee arthroplasty in vascular malformation

    Harish Bhende

    2015-01-01

    Full Text Available In Klippel–Trenaunay syndrome, vascular malformations are not only in skin and superficial soft tissues but also in deep tissues like muscles bones and joints. It is well documemted that these recurrent intraarticular bleeds can cause early arthritis and joint pain. Performing arthroplasty in such patients is difficult and fraught with complications. We describe such a case where navigated total knee arthroplasty was performed with success to avoid the problems of intra medullary alignment used in the presence of intra medullary vascular malformations. We also suggest certain measures when knee arthroplasty is considered in such patients.

  10. Prediction of Major Vascular Events after Stroke

    Ovbiagele, Bruce; Goldstein, Larry B.; Amarenco, Pierre;

    2014-01-01

    BACKGROUND: Identifying patients with recent stroke or transient ischemic attack (TIA) at high risk of major vascular events (MVEs; stroke, myocardial infarction, or vascular death) may help optimize the intensity of secondary preventive interventions. We evaluated the relationships between the...... baseline Framingham Coronary Risk Score (FCRS) and a novel risk prediction model and with the occurrence of MVEs after stroke or TIA in subjects enrolled in the Stroke Prevention by Aggressive Reduction in Cholesterol Level (SPARCL) trial. METHODS: Data from the 4731 subjects enrolled in the SPARCL study...

  11. Angiogenesis and vascular targeting: Relevance for hyperthermia

    Horsman, Michael R

    2008-01-01

    The creation of a functional blood supply from the normal tissue vasculature via the process of angiogenesis is critical for the continued growth and development of solid tumours. This importance has led to the concept of targeting the tumour vasculature as a therapeutic strategy, and two major...... types of vascular targeting agents (VTAs) have developed; those that inhibit the angiogenic process-angiogenesis inhibiting agents (AIAs)-and those that specifically damage the already established neovasculature-vascular disrupting agents (VDAs). The tumour vasculature also plays a critical role in...

  12. Macroevolución en plantas vasculares

    Carrión García, José Sebastián; Guerra Montes, Juan

    2003-01-01

    Macroevolución en plantas vasculares. Se revisan los sistemas jerarquizados de evolución vegetal, desde una perspectiva paleoecológica y con énfasis en los controles del nivel superior para las plantas vasculares. Este nivel supone la existencia de breves episodios de intensa radiación, seguidos por largas fases de estabilización y declive taxonómico. El registro fósil sugiere que no han existido extinciones masivas entre las plantas terrestres, en el sentido en que ésta expresión se emplea p...

  13. Vascular injuries during total hip revision

    Although most patients undergoing a revision total hip replacement (THR) will have an uneventful procedure, in others the potential of serous vascular injuries is real. Migrating prosthesis or excessive cement may be in compromising positions adjacent or adherent to vessels and pose a particular danger at surgery with inadvertent lacerations of vessels such as the internal and external iliac arteries. In out study of 20 patients with THR, CT with two-dimensional reconstructions is used to define vessel position. In eight of these patients, the hip prosthesis or displaced cement lies within 5 mm of major vessels. In patients with dislocation of the acetabular cup, the potential of vascular injury is highest

  14. accelerating cavity from LEP

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  15. Review of accelerator instrumentation

    Some of the problems associated with the monitoring of accelerator beams, particularly storage rings' beams, are reviewed along with their most common solutions. The various electrode structures used for the measurement of beam current, beam position, and the detection of the bunches' transverse oscillations, yield pulses with sub-nanosecond widths. The electronics for the processing of these short pulses involves wide band techniques and circuits usually not readily available from industry or the integrated circuit market: passive or active, successive integrations, linear gating, sample-and-hold circuits with nanosecond acquisition time, etc. This report also presents the work performed recently for monitoring the ultrashort beams of colliding linear accelerators or single-pass colliders. To minimize the beam emittance, the beam position must be measured with a high resolution, and digitized on a pulse-to-pulse basis. Experimental results obtained with the Stanford two-mile Linac single bunches are included

  16. Hardware Accelerated Simulated Radiography

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  17. Review of ion accelerators

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  18. RFQ accelerator development

    Radio frequency quadrupole (RFQ) accelerators have established themselves as highly efficient and potential tools for delivering intense beams of the order of 100 mA or more. They are being employed as injectors to high energy machines used for basic sciences, spallation neutron sources, fusion devices and accelerator breeders. They have also made their mark as neutron generators, ion implanters, x-ray generators, etc. Realising the importance of this programme, Bhabha Atomic Research Centre initiated a totally indigenous effort to develop RFQs for the light as well as heavy ion beams. A low power RFQ for the proton and deuteron beams is already in the final phase of commissioning. (author). 30 refs., 14 figs., 2 tabs

  19. Accelerator research studies

    This progress report for the Accelerator Research Studies program at the University of Maryland covers the second year (June 1, 1989 to May 31, 1990) of the current three-year contract period from June 1, 1988 to May 31, 1991, funded by the Department of Energy under Contract No. AC05-85ER40216. The research program is divided into three separate tasks, as follows: the study of Transport and Longitudinal Compression of Intense, High-Brightness Beams; the study of Collective Ion Acceleration by Intense Electron Beams and Pulse-Powered Plasma Focus; the study of Microwave Sources and Parameter Scaling for High-Frequency Linacs. This report consists of three sections in which the progress for each task is documented separately. An introduction and synopsis is presented at the beginning of the progress report for each task

  20. Particle accelerator physics

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  1. Accelerators for Cancer Therapy

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  2. Accelerator research studies

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under contract number AC05-85ER40216-8, is currently in the third year of its three-year funding cycle. This Renewal Proposal requests DOE support for the next three-year period from June 1, 1991 to May 31, 1994. It documents the progress made during the past year and outlines the proposed research program for the next three years. The program consisted of the following three tasks: Task A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' Task B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' Task C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders.'' These tasks will be discussed in this paper

  3. Accelerator research studies

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks

  4. Accelerator research studies

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks

  5. Advanced medical accelerator design

    This report describes the design of an advanced medical facility dedicated to charged particle radiotherapy and other biomedical applications of relativistic heavy ions. Project status is reviewed and some technical aspects discussed. Clinical standards of reliability are regarded as essential features of this facility. Particular emphasis is therefore placed on the control system and on the use of technology which will maximize operational efficiency. The accelerator will produce a variety of heavy ion beams from helium to argon with intensities sufficient to provide delivered dose rates of several hundred rad/minute over large, uniform fields. The technical components consist of a linac injector with multiple PIG ion sources, a synchrotron and a versatile beam delivery system. An overview is given of both design philosophy and selected accelerator subsystems. Finally, a plan of the facility is described

  6. Particle acceleration by pulsars

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  7. LEP copper accelerating cavities

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  8. Accelerator Experiments for Astrophysics

    Ng, Johnny S. T.

    2003-01-01

    Many recent discoveries in astrophysics involve phenomena that are highly complex. Carefully designed experiments, together with sophisticated computer simulations, are required to gain insights into the underlying physics. We show that particle accelerators are unique tools in this area of research, by providing precision calibration data and by creating extreme experimental conditions relevant for astrophysics. In this paper we discuss laboratory experiments that can be carried out at the S...

  9. GPU accelerated face detection

    Mäkelä, J.

    2013-01-01

    Graphics processing units have massive parallel processing capabilities, and there is a growing interest in utilizing them for generic computing. One area of interest is computationally heavy computer vision algorithms, such as face detection and recognition. Face detection is used in a variety of applications, for example the autofocus on cameras, face and emotion recognition, and access control. In this thesis, the face detection algorithm was accelerated with GPU using OpenCL. The goal was...

  10. Compact pulsed accelerator

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab

  11. Laser plasma accelerators

    Malka, V.

    2012-01-01

    Research activities on laser plasma accelerators are paved by many significant breakthroughs. This review article provides an opportunity to show the incredible evolution of this field of research which has, in record time, allowed physicists to produce high quality electron beams at the GeV level using compact laser systems. I will show the scientific path that led us to explore different injection schemes and to produce stable, high peak current and high quality electron beams with control ...

  12. Future Accelerator Magnet Needs

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  13. GPU accelerated dislocation dynamics

    Ferroni, Francesco; Tarleton, Edmund; Fitzgerald, Steven

    2014-09-01

    In this paper we analyze the computational bottlenecks in discrete dislocation dynamics modeling (associated with segment-segment interactions as well as the treatment of free surfaces), discuss the parallelization and optimization strategies, and demonstrate the effectiveness of Graphical Processing Unit (GPU) computation in accelerating dislocation dynamics simulations and expanding their scope. Individual algorithmic benchmark tests as well as an example large simulation of a thin film are presented.

  14. Laser-driven electron accelerators

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  15. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  16. Accelerated Profile HMM Searches.

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  17. Oxidised cosmic acceleration

    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R-ring vanishes everywhere, or if R-ring and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R-ring everywhere vanishing, exceeding the bound implies the NEC is violated. If R-ring does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions

  18. Accelerated GLAS exposure station

    The Geoscience Laser Altimeter System (GLAS) is being developed by NASA/GSFC to measure the dynamics of the ice sheet mass balance, land, and cloud and atmospheric properties. An instrument altimetric resolution of 10 cm per shot is required. The laser transmitter will be a diode pumped, Q-switched, Nd:YAG laser producing 1064 nm, 100 mJ, 4 ns pulses at 40 Hz repetition rate in a TEM∞ mode. A minimum lifetime goal of 2 billion shots is required per laser transmitter. The performance of the GLAS laser can be limited by physical damage to the optical components caused by the interaction of intense laser energy with the optical coatings and substrates. Very little data exists describing the effects of long duration laser exposure, of 4 ns pulses, on an optical component. An Accelerated GLAS Exposure Station (AGES) is being developed which will autonomously operate and monitor the GLAS laser at an accelerated rate of 500 Hz. The effects of a large number of laser shots will be recorded. Parameters to be monitored include: laser power, pulsewidth, beam size, laser diode drive current and power, Q-switch drive voltage, temperature, and humidity. For comparison, one set of AGES-sister optical components will be used in the non-accelerated GLAS laser and another will be evaluated by a commercial optical damage test facility

  19. Linac transport and acceleration

    The acceleration of intense bunches maintaining high brightness is limited both by single-particle effects, e.g., misalignments, injection errors, and rf-steering, and collective phenomena, where the effects of the longitudinal and transverse wakefield on particles within a single bunch are the most severe. The working group has considered both problems and potentials of linac acceleration from ∼50 MeV to 1 GeV for free electron laser (FEL) applications, as well as from a few Gev to 1 TeV for linear colliders. The outlook for free electron lasers is bright: no fundamental problems seem to arise in the acceleration of peak currents in excess of 100 A with small emittance and low momentum spread. The situation of linear colliders is more complex and more difficult. Two examples, one operating at 11.4 GHz, the other at 30 GHz, are used to illustrate some of the difficulties and the exceedingly tight tolerances required. Both examples are based on round beams, and thus neither benefit from the advantages of flat beams nor address the increased care required in transporting beams of very small emittance in one plane. The working group acknowledges, but did not explore, promising concepts for colliders based on RF superconductivity

  20. TRACKING ACCELERATOR SETTINGS

    Recording setting changes within an accelerator facility provides information that can be used to answer questions about when, why, and how changes were made to some accelerator system. This can be very useful during normal operations, but can also aid with security concerns and in detecting unusual software behavior. The Set History System (SHS) is a new client-server system developed at the Collider-Accelerator Department of Brookhaven National Laboratory to provide these capabilities. The SHS has been operational for over two years and currently stores about IOOK settings per day into a commercial database management system. The SHS system consists of a server written in Java, client tools written in both Java and C++, and a web interface for querying the database of setting changes. The design of the SHS focuses on performance, portability, and a minimal impact on database resources. In this paper, we present an overview of the system design along with benchmark results showing the performance and reliability of the SHS over the last year

  1. Laser driven particle acceleration

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  2. CESR Test Accelerator

    Rubin, David L

    2013-01-01

    The Cornell Electron Storage Ring (CESR) was reconfigured in 2008 as a test accelerator to investigate the physics of ultra-low emittance damping rings. During the approximately 40 days/year available for dedicated operation as a test accelerator, specialized instrumentation is used to measure growth and mitigation of the electron cloud, emittance growth due to electron cloud, intra-beam scattering, and ions, and single and multi-bunch instabilities generated by collective effects. The flexibility of the CESR guide field optics and the integration of accelerator modeling codes with the control system have made possible an extraordinary range of experiments. Findings at CesrTA with respect to electron cloud effects, emittance tuning techniques, and beam instrumentation for measuring electron cloud, beam sizes, and beam positions are the basis for much of the design of the ILC damping rings as documented in the ILC-Technical Design Report. The program has allowed the Cornell group to cultivate the kind of talen...

  3. Optimizing accelerator technology

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  4. Acceleration during magnetic reconnection

    Beresnyak, Andrey [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  5. Overview of accelerators in medicine

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  6. Electron accelerators for environmental protection

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO2 and NOx removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where direct

  7. ACCELERATORS: Nonlinear dynamics in Sardinia

    In the last few years, two schools devoted to accelerator physics have been set up, one on either side of the Atlantic. The US School on High Energy Particle Accelerators has organized Summer Schools on the physics of particle accelerators, hosted by the major American Laboratories, each year since 1981

  8. High intensity circular proton accelerators

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  9. Vascularization of plastic calcium phosphate cement in vivo induced by in-situ-generated hollow channels.

    Yu, Tao; Dong, Chao; Shen, Zhonghua; Chen, Yan; Yu, Bo; Shi, Haishan; Zhou, Changren; Ye, Jiandong

    2016-11-01

    Despite calcium phosphate cement (CPC) is promising for bone repair therapy, slow biodegradation and insufficient vascularization in constructs negatively impacts its clinical application. A self-setting CPC composited with gelatin fiber is investigated to test the utility of this tissue engineering strategy to support rapid and extensive vascularization process. The interconnected hollow channels in CPC are formed after dissolution of gelatin fibers in vivo. The CPC-gelatin samples exhibit relatively decent/enhanced mechanical property, compared to the control. When implanted in vivo, the pre-established vascular networks in material anastomose with host vessels and accelerate vascular infiltration throughout the whole tissue construct. Different channel sizes induce different vascularization behaviors in vivo. Results indicate that the channel with the size of 250μm increases the expression of the representative angiogenic factors HIF1α, PLGF and migration factor CXCR4, which benefit the formation of small vessels. On the other hand, the channel with the size of 500μm enhances VEGF-A expression, which benefit the development of large vessels. Notably, the intersection area of channels has high invasive, sprouting and vasculogenesis potential under hypoxic condition, because more HIF1α-positive cells are observed there. Observation of the CD31-positive lumen in the border of scaffold indicates the ingrowth of blood vessels from its host into material through channel, benefited from gradually increased HIF1α expression. This kind of material was suggested to promote the effective application of bone regeneration through the combination of in situ self-setting, plasticity, angiogenesis, and osteoconductivity. PMID:27524007

  10. Audit of the Danish national vascular database

    Levi-Mazloum, Niels Donald; Jensen, L P; Schroeder, T V

    1996-01-01

    The accuracy of data contained in the Danish vascular database was compared with the case notes. A total of 100 case notes were reviewed for 11 pertinent variables in the database. A high error rate ranging from 2 to 34% was found. Also, approximately 10% of patients had never been entered into t...

  11. Diacylglycerol Kinase Inhibition and Vascular Function.

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction. PMID:21547002

  12. Lectinas : 1. Plantas vasculares y celulares

    Elola, María Teresa; Fink, Nilda

    1995-01-01

    En la presente revisión se brinda información sobre lectinas de plantas celulares y vasculares. En particular se discute la defmición de lectinas, su estructura, especificidad sacarídica, localización y funciones biológicas.

  13. Electrotonic vascular signal conduction and nephron synchronization

    Marsh, D.J.; Toma, I.; Sosnovtseva, Olga;

    2009-01-01

    smooth muscle cells. The depolarization spread to the cortical radial artery and other afferent arterioles and declined with distance from the perfused juxtaglomerular apparatus, consistent with electrotonic vascular signal propagation. With a mathematical model of two coupled nephrons, we estimated the...

  14. Urticarial Reactions: Vascular Erythema, Urticaria, Vasculitis

    Sibbald, R. Gary

    1987-01-01

    Vascular erythemas, including urticaria and vasculitis, represent diagnostic and therapeutic challenges. A careful systemic approach to history and physical examination should be followed by appropriate investigations to rule out systemic disease. Chronic urticaria patients should be physically tested to identify cholinergic, dermagraphic, and cold-induced responses. Food diaries and careful drug history may be important to identify exacerbating factors in chronic urticaria.

  15. Poldip2 sustains vascular structure and function

    Sutliff, Roy L.; Hilenski, Lula L.; Amanso, Angélica M.; Parastatidis, Ioannis; Dikalova, Anna E.; Hansen, Laura; Datla, Srinivasa Raju; Long, James S.; El-Ali, Alexander M.; Joseph, Giji; Gleason, Rudolph L.; Taylor, W. Robert; Hart, C. Michael; Griendling, Kathy K.; Lassègue, Bernard

    2013-01-01

    Objective Based on previous evidence that polymerase delta interacting protein 2 (Poldip2) increases NADPH oxidase 4 (Nox4) activity in vascular smooth muscle cells (VSMC), we hypothesized that in vivo knockdown of Poldip2 would inhibit reactive oxygen species (ROS) production and alter vascular function. Approach and Results Because homozygous Poldip2 deletion is lethal, Poldip2+/− mice were employed. Poldip2 mRNA and protein levels were reduced by about 50% in Poldip2+/− aorta, with no change in p22phox, Nox1, Nox2 and Nox4 mRNAs. NADPH oxidase activity was also inhibited in Poldip2+/− tissue. Isolated aortas from Poldip2+/− mice demonstrated impaired phenylephrine and potassium chloride-induced contractions, increased stiffness and reduced compliance, associated with disruption of elastic lamellae and excessive extracellular matrix deposition. Collagen I secretion was elevated in cultured VSMC from Poldip2+/− mice and restored by H2O2 supplementation, suggesting that this novel function of Poldip2 is mediated by reactive oxygen species. Furthermore, Poldip2+/− mice were protected against aortic dilatation in a model of experimental aneurysm, an effect consistent with increased collagen secretion. Conclusions Poldip2 knockdown reduces H2O2 production in vivo, leading to increases in extracellular matrix, greater vascular stiffness and impaired agonist-mediated contraction. Thus, unaltered expression of Poldip2 is necessary for vascular integrity and function. PMID:23825363

  16. Noninvasive blood flow tests in vascular disease.

    Steinmetz, O.K.; Cole, C W

    1993-01-01

    Noninvasive testing is now routine for assessing vascular conditions. Many noninvasive tests are available for obtaining physiologic and anatomic information that is both precise and reproducible. This paper discusses noninvasive testing with plethysmography, Doppler ultrasonography, and duplex scanning for carotid artery occlusive disease, deep venous thrombosis, and peripheral arterial occlusive disease.

  17. Cocaine mediated apoptosis of vascular cells as a mechanism for carotid artery dissection leading to ischemic stroke.

    Dabbouseh, Noura M; Ardelt, Agnieszka

    2011-08-01

    In arterial dissection, blood may enter the arterial wall through an intimal tear, splitting the arterial wall and activating the coagulation cascade at the site of endothelial damage. Dissection of extracranial and intracranial vessels may lead to ischemic stroke through thromboembolic or hemodynamic mechanisms. Major blunt trauma or rapid acceleration-deceleration may cause dissection, but in patients with inherent arterial wall weakness, dissection can occur spontaneously or as a result of minor neck movement. Cocaine use has been associated with dissection of the aortic arch and coronary and renal arteries through cocaine-mediated hypertension. Recent preclinical studies have suggested, however, that cocaine may cause apoptosis of cells in the vascular wall. In this article, we postulate that cocaine may cause apoptosis of vascular endothelial and/or smooth muscle cells, thus weakening the vascular wall and resulting in a dissection-prone state. We review the literature and propose a biological basis for vasculopathy, vascular dissection, and ischemic stroke in the setting of cocaine use. Further research studies on vascular cells, as well as focused analysis of human pathological material, will be important in providing evidence for or against our hypotheses. PMID:21546166

  18. Calcium handling by vascular myocytes in hypertension

    R.C.A. Tostes

    1997-03-01

    Full Text Available Calcium ions (Ca2+ trigger the contraction of vascular myocytes and the level of free intracellular Ca2+ within the myocyte is precisely regulated by sequestration and extrusion mechanisms. Extensive evidence indicates that a defect in the regulation of intracellular Ca2+ plays a role in the augmented vascular reactivity characteristic of clinical and experimental hypertension. For example, arteries from spontaneously hypertensive rats (SHR have an increased contractile sensitivity to extracellular Ca2+ and intracellular Ca2+ levels are elevated in aortic smooth muscle cells of SHR. We hypothesize that these changes are due to an increase in membrane Ca2+ channel density and possibly function in vascular myocytes from hypertensive animals. Several observations using various experimental approaches support this hypothesis: 1 the contractile activity in response to depolarizing stimuli is increased in arteries from hypertensive animals demonstrating increased voltage-dependent Ca2+ channel activity in hypertension; 2 Ca2+ channel agonists such as Bay K 8644 produce contractions in isolated arterial segments from hypertensive rats and minimal contraction in those from normotensive rats; 3 intracellular Ca2+ concentration is abnormally increased in vascular myocytes from hypertensive animals following treatment with Ca2+ channel agonists and depolarizing interventions, and 4 using the voltage-clamp technique, the inward Ca2+ current in arterial myocytes from hypertensive rats is nearly twice as large as that from myocytes of normotensive rats. We suggest that an alteration in Ca2+ channel function and/or an increase in Ca2+ channel density, resulting from increased channel synthesis or reduced turnover, underlies the increased vascular reactivity characteristic of hypertension

  19. Coexistence of pheochromocytoma with uncommon vascular lesions

    Sunil Kumar Kota

    2012-01-01

    Full Text Available Background: Pheochromocytoma/paragangliomas have been described to be associated with rare vascular abnormalities like renal artery stenosis. Coexistence of physiologically significant renal artery lesions is a compounding factor that alters management and prognosis of pheochromocytoma patients. Apart from individual case reports, data on such association in Indian population is not available. The aim of this study is to find the nature and prevalence of associated vascular abnormalities. Materials and Methods: From 1990 to 2010, a total of 50 patients were diagnosed with pheochromocytoma/paragangliomas. Hospital charts of these patients were reviewed retrospectively to identify those with unusual vascular abnormalities. Available literature was also reviewed. Results: Of the 50 patients with pheochromocytoma, 7 (14% had coexisting vascular lesions including renal artery stenosis in 4, aortoarteritis in 1, aortic aneurysm in 1 and inferior vena cava thrombosis in 1. Pheochromocytoma was adrenal in 42 and extra adrenal in 8. Laparoscopic adrenalectomy was done in the patients. One patient with renal artery stenosis due to intimal fibrosis was subjected to percutaneous balloon angioplasty; the other three improved after adrenalectomy and lysis of fibrous adhesive bands. The patient with aortoarteritos was treated with oral steroids. Inferior vena cava thrombosis was reversed with anticoagulants. The patient with abdominal aortic aneurysm was advised for annual follow-up on account of its size of 4.5 cm and asymptomatic presentation. Conclusion: There are multiple mechanisms that can lead to renal artery stenosis and other vascular abnormalities in a case of pheochromocytoma. A high index of suspicion is necessary to enable both entities to be diagnosed preoperatively and allow proper planning of surgical therapy. Incomplete diagnosis may lead to persistent hypertension postoperatively in a case of associated renal artery stenosis.

  20. Observations on the vegetation and vascular plants of Hopen

    Skye, Erik

    1986-01-01

    The vascular plant flora of the small arctic island of Hopen, located in the Barents Sea. was inventoried during a visit in the summer of 1982. Eighteen vascular plant species were observed and mapped. and the vegetation described.

  1. High intensity proton accelerator program

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  2. Vascular oxidative stress: the common link in hypertensive and diabetic vascular disease

    Cohen, Richard A.; Tong, XiaoYong

    2010-01-01

    Vascular disease in hypertension and diabetes is associated with increased oxidants. The oxidants arise from NADPH oxidase, xanthine oxidase, and mitochondria. Superoxide anion and hydrogen peroxide are produced by both leukocytes and vascular cells. Nitric oxide is produced in excess by inducible nitric oxide synthase, and the potent oxidant, peroxynitrite, is formed from superoxide and nitric oxide. The damage to proteins caused by oxidants is selective, affecting specific oxidant-sensitive...

  3. Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi's sarcoma.

    Cornali, E.; Zietz, C; Benelli, R; Weninger, W.; Masiello, L.; Breier, G; Tschachler, E; Albini, A; Stürzl, M

    1996-01-01

    Abundant vasculature with increased permeability is a prominent histological feature of Kaposi's sarcoma (KS), a multifocal, cytokine-regulated tumor. Here we report on the role of vascular endothelial growth factor (VEGF) in AIDS-KS angiogenesis and vascular permeability. We demonstrate that different cytokines, which were previously shown to be active in KS development, modulate VEGF expression in KS spindle cells and cooperate with VEGF on the functional level. Northern blot analysis as we...

  4. APT accelerator. Topical report

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation's stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century

  5. VLHC accelerator physics

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  6. APT accelerator. Topical report

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  7. Stimulation of vascular cells by extracellular signals - A biophysical analysis

    Biela, Sarah A.

    2009-01-01

    Stimulation of vascular cells by extracellullar signals Treatment of vascular diseases often requires the selective addressing of endothelial (ECs) and smooth muscle cells (SMCs). The two vascular cell types are important for the wound healing after stent implantation. Recent research designs new materials and coatings for stents to improve the complex healing process. The aim of my work was to find and investigate different reactions in the two vascular cell types (ECs and SMCs) through surf...

  8. Organisation of vascular surgical services: evolution or revolution?

    Michaels, J. A.; Galland, R B; Morris, P. J.

    1994-01-01

    The trend towards subspecialisation in hospital services is likely to lead to the development of vascular surgery as a separate specialty. If vascular surgery is to emerge as a high quality service then vascular emergencies--a substantial component of the workload--should be dealt with by surgeons with adequate training, and all patients should have equal access to the service. A specialist vascular surgical unit would have to be large enough to make efficient use of other services that it ne...

  9. Molecular regulation of vascular cambium identity and activity

    Kucukoglu, Melis

    2015-01-01

    In plants, secondary development and wood formation originates from the cell divisions within the vascular meristem, where the vascular stem cells are located. This thesis work presents my results on the molecular regulation of vascular cambium stem cell identity and activity. I have investigated the role of the receptor-like kinase PXC1 during vascular development in Arabidopsis thaliana. Mutant analysis revealed that in the absence of PXC1, plants display a pendant phenotype and reduced...

  10. Immune activation caused by vascular oxidation promotes fibrosis and hypertension

    Wu, Jing; Saleh, Mohamed A; Kirabo, Annet; Itani, Hana A.; Montaniel, Kim Ramil C.; Xiao, Liang; Chen, Wei; Mernaugh, Raymond L.; Cai, Hua; Bernstein, Kenneth E.; Goronzy, Jörg J.; Weyand, Cornelia M.; Curci, John A.; Barbaro, Natalia R.; Moreno, Heitor

    2015-01-01

    Vascular oxidative injury accompanies many common conditions associated with hypertension. In the present study, we employed mouse models with excessive vascular production of ROS (tgsm/p22phox mice, which overexpress the NADPH oxidase subunit p22phox in smooth muscle, and mice with vascular-specific deletion of extracellular SOD) and have shown that these animals develop vascular collagen deposition, aortic stiffening, renal dysfunction, and hypertension with age. T cells from tgsm/p22phox m...

  11. Oral encapsulated vascular malformation: An undescribed presentation in the mouth

    Dias, Márcio-Américo; Dias, Pedro-de Souza; Martínez-Martínez, Marisol; Sena-Filho, Marcondes; de Almeida, Oslei-Paes

    2016-01-01

    Vascular lesions have been classified in two broad categories, hemangiomas and malformations. Encapsulated vascular lesions have not been reported in the oral cavity, but they were described in other sites, mainly in the orbit. Herein, we present a case of an oral encapsulated vascular lesion located in the right buccal mucosa of a 69-year-old male, including histological and immunohistochemical description and a literature review. Key words:Buccal mucosa, hemangioma, vascular malformation, oral cavity. PMID:26855712

  12. Vascular injuries after bear attacks: Incidence, surgical challenges and outcome

    Wani Mohd; Ahangar Abdul; Lone Gh; Lone Reyaz; Ashraf Hakeem; Dar Abdul; Bhat M; Singh Shyam; Bijli Akram; Irshad Ifat

    2011-01-01

    Background : Bear mauling is rarely reported in medical literature due to its rare occurrence. Present study was undertaken to describe the pattern and management of bear maul vascular injuries in Kashmir. Methods : Study of patients with bear maul vascular injury from 1st Jan 2004 to 31st Dec. 2008. Fifteen patients with bear maul vascular injury were studied. All patients of bear maul without vascular injury were excluded from the study. Results : Most of the patients were treated by revers...

  13. Diagnosis and Treatment of Vascular Surgery Related Infection

    Zhang, Yong-Gan; Guo, Xue-Li; Song, Yan; Miao, Chao-Feng; Zhang, Chuang; Chen, Ning-Heng

    2015-01-01

    Surgical site infection (SSI) is an important component of infections acquired from hospital. The most significant feature of vascular surgery different from other surgeries is frequent application of artificial grafts. Once SSI occurs after vascular operations with grafts, it might results in a serious disaster. Staphylococcus aureus and coagulase-negative Staphylococcus are the most common pathogenic bacteria for SSI after vascular surgery. Although SSI in vascular surgery often lacks of ty...

  14. Vascular risk factors and dementia: How to move forward?

    Viswanathan, Anand; Rocca, Walter A.; Tzourio, Christophe

    2009-01-01

    In recent years, accumulating evidence has suggested that vascular risk factors contribute to Alzheimer disease (AD). Vascular dementia had been traditionally considered secondary to stroke and vascular disease. It has been traditionally distinguished from AD, considered to be a purely neurodegenerative form of dementia. However, in light of this more recent literature, it appears that there is a spectrum: ranging from patients with pure vascular dementia to patients with pure AD and includin...

  15. Advances in the Management of Cerebral Vascular Disease

    Muhammad Imran Qadir; Hina Kanwal

    2015-01-01

    A cerebral vascular disease occurred with the arteries of brain due to the less supply of blood.  Stroke is mostly caused by cerebral vascular disease and it is also a common cause of vascular dementia due to reduced oxygen supply and blood flow to the brain. In industrialized countries, neurologic disability is most frequently caused by cerebeovascular disease. Individuals with cardiovascular disease, diabetes and high blood pressure etc are at higher possibility for cerebral vascular diseas...

  16. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW bio...

  17. ACCELERATING NANO-TECHNOLOGICAL

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in...

  18. 2014 CERN Accelerator Schools

    2014-01-01

    A specialised school on Power Converters will be held in Baden, Switzerland, from 7 to 14 May 2014. Please note that the deadline for applications is 7 FEBRUARY 2014. A course on Introduction to Accelerator Physics will be held in Prague, Czech Republic, from 31 August to 12 September 2014. Applications are now open for this school; the application deadline is 25 APRIL 2014. Further information on these schools and other CAS events can be found on the CAS website and on the Indico page. For further information please contact Barbara.strasser@cern.ch

  19. Hardware Accelerated Power Estimation

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  20. Plasma wake field accelerator

    A new scheme of electron acceleration, employing relativistic electron bunches in a cold plasma, is analyzed. The wake field of a leading bunch is derived in a single-particle model. We then extend the model to include finite bunch length effect. In particular, we discuss the relation between the charge distributions of the driving bunch and the energies transformable to the trailing electrons. It is shown that for symmetric charge distribution of the driving bunches, the maximum energy gain for a driven electron is 2γ0mc2. This limitation can be overcome by introducing asymmetric charge distributions. 13 refs., 5 figs

  1. Accelerated Innovation Pilot

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  2. Using biplanar fluoroscopy to guide radiopaque vascular injections: a new method for vascular imaging.

    Haley D O'Brien

    Full Text Available Studying vascular anatomy, especially in the context of relationships with hard tissues, is of great interest to biologists. Vascular studies have provided significant insight into physiology, function, phylogenetic relationships, and evolutionary patterns. Injection of resin or latex into the vascular system has been a standard technique for decades. There has been a recent surge in popularity of more modern methods, especially radiopaque latex vascular injection followed by CT scanning and digital "dissection." This technique best displays both blood vessels and bone, and allows injections to be performed on cadaveric specimens. Vascular injection is risky, however, because it is not a standardizable technique, as each specimen is variable with regard to injection pressure and timing. Moreover, it is not possible to view the perfusion of injection medium throughout the vascular system of interest. Both data and rare specimens can therefore be lost due to poor or excessive perfusion. Here, we use biplanar video fluoroscopy as a technique to guide craniovascular radiopaque latex injection. Cadaveric domestic pigs (Sus scrofa domestica and white-tailed deer (Odocoileus virginianus were injected with radiopaque latex under guidance of fluoroscopy. This method was found to enable adjustments, in real-time, to the rate, location, and pressure at which latex is injected in order to avoid data and specimen loss. In addition to visualizing the injection process, this technique can be used to determine flow patterns, and has facilitated the development of consistent markers for complete perfusion.

  3. VASCULAR AGING IN WOMEN: IS ESTROGEN THE FOUNTAIN OF YOUTH?

    CarlosHermenegildo

    2012-06-01

    In this review, we discuss clinical and experimental data on the effects of aging, estrogens and hormonal replacement therapy on vascular function of females to delve into how menopause and aging contribute jointly to vascular aging and how estrogen modulates the vascular responses at different ages.

  4. Chicago particle accelerator conference

    Naturally, emphasis at the Particle Accelerator Conference in Chicago in March was on work in the US, just as the newly instituted European Particle Accelerator Conference places emphasis on work in the 'old continent'. All will come together at the international conference in Japan in August. The proposed US Superconducting Supercollider (SSC) was highlighted in the opening talk at Chicago. Progress on this inchoate project to explore the TeV (1000 GeV) energy region by colliding 20 TeV proton beams was reported by the recently-appointed Director of the SSC Laboratory, Roy Schwitters. He reviewed the physics challenges and described progress and plans towards full authorization of construction.This year, the SSC conceptual design will be transformed into a 'site specific' report, now that the location at Waxahachie in Ellis County, Texas, has been selected. The Central Design Group, based in Berkeley for the past few years, will soon move to the Waxahachie region. The top management structure is taking shape and an International Advisory Committee is being formed

  5. Accelerator research studies

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  6. Accelerator School Success

    2004-01-01

    Accelerator specialists don't grow on trees: training them is the job of the CERN Accelerator School (CAS). Group photo during visit to the Daresbury Laboratory. CAS and the CCLRC Daresbury Laboratory jointly organised a specialised school on Power Converters in Warrington, England from 12-18 May 2004. The last CAS Power Converter course was in 1990, so there was plenty of ground to cover. The challenging programme proposed a review of the state of the art and the latest developments in the field, including 30 hours of tuition. The school also included a visit to the CCLRC Daresbury laboratory, a one-day excursion to Liverpool and Chester and a themed (Welsh medieval) dinner at the school's closure. A record attendance of 91 students of more than 20 different nationalities included not only participants from Europe and North America but also from Armenia, Taiwan, India, Turkey, Iran and for the first time, fee-paying students from China and Australia. European industry showed a welcome and solid interest in...

  7. Medical Proton Accelerator Project

    A project for a medical proton accelerator for cancer treatment is outlined. The project is motivated by the need for a precise modality for cancer curing especially in children. Proton therapy is known by its superior radiation and biological effectiveness as compared to photon or electron therapy. With 26 proton and 3 heavy-ion therapy complexes operating worldwide only one (p) exists in South Africa, and none in south Asia and the Middle East. The accelerator of choice should provide protons with energy 75 MeV for eye treatment and 250 MeV for body treatment. Four treatment rooms are suggested: two with isocentric gantries, one with fixed beams and one for development. Passive scanning is recommended. The project can serve Middle East and North Africa with ∼ 400 million populations. The annual capacity of the project is estimated as 1,100 to be compared with expected radiation cases eligible for proton cancer treatment of not less than 200,000

  8. Broadband accelerator control network

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  9. Washington Accelerator Conference

    Highlights of the 1993 Particle Accelerator Conference, held in Washington in May, were picked out in the previous issue (page 18). Talks on the big hadron colliders reflected the sea-change in the accelerator world where the scale, complexity and cost of the front-line projects has slowed the pace of developments (not unlike the scene in particle physics itself). Speaking before the anti-SSC vote in the House of Representatives in June, Dick Briggs reviewed the situation at the SSC Superconducting Supercollider in Ellis County, Texas. The linac building is near completion and the Low Energy Booster will be ready to receive components early next year. Tunnelling for the Main Ring is advancing rapidly with four boring machines in action. Five miles of tunnel have been completed since January and the pace has now stepped up to nearly a mile each week. The superconducting magnet news is good. Following the successful initial string test of a half cell of the magnet lattice, a two-ring full cell with all associated services is being assembled. The mechanical robustness of the magnet design was confirmed when a dipole was taken to 9.7 T when cooled to 1.8 K. In the Magnet Test Lab itself, ten test stands are installed and equipped

  10. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  11. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  12. Insight into 144 patients with ocular vascular events during VEGF antagonist injections

    Mansour, Ahmad M; Shahin, Maha; Kofoed, Peter K;

    2012-01-01

    To record ocular vascular events following injections of vascular endothelium growth factor (VEGF) antagonists.......To record ocular vascular events following injections of vascular endothelium growth factor (VEGF) antagonists....

  13. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 1

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  14. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 2

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  15. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  16. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  17. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    Raouf A. Khalil

    2013-03-01

    Full Text Available Blood pressure (BP is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN. In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i, which forms a complex with calmodulin, activates myosin light chain (MLC kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC. PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK and MAPK kinase (MEK, a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  18. Biophysical Regulation of Vascular Differentiation and Assembly

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  19. Carbon dioxide in vascular imaging and intervention

    Yang Xiaoming [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland); Manninen, H. [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland); Soimakallio, S. [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland)

    1995-07-01

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO{sub 2}) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO{sub 2}-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO{sub 2}-DSA as well as some clinical trials. Applications of CO{sub 2} gas in vascular interventions and other imagings, and the advantages and limitations of using CO{sub 2} gas in DSA are also discussed. (orig.).

  20. Carbon dioxide in vascular imaging and intervention.

    Yang, X; Manninen, H; Soimakallio, S

    1995-07-01

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO2) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO2-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO2-DSA as well as some clinical trials. Applications of CO2 gas in vascular interventions and other imagings, and the advantages and limitations of using CO2 gas in DSA are also discussed. PMID:7619608

  1. Mitochondria in vascular health and disease.

    Dromparis, Peter; Michelakis, Evangelos D

    2013-01-01

    The eukaryote's mitochondrial network is perhaps the cell's most sophisticated and dynamic responsive sensing system. Integrating metabolic, oxygen, or danger signals with inputs from other organelles, as well as local and systemic signals, mitochondria have a profound impact on vascular function in both health and disease. This review highlights recently discovered aspects of mitochondrial function (oxygen sensing, inflammation, autophagy, and apoptosis) and discusses their role in diseases of both systemic and pulmonary vessels. We also emphasize the role of mitochondria as therapeutic targets for vascular disease. We highlight the intriguing similarities of mitochondria-driven molecular mechanisms in terms of both pathogenesis and therapies in very diverse diseases, such as atherosclerosis, pulmonary hypertension, and cancer, to support the foundation of a new field in medicine: mitochondrial medicine. PMID:23157555

  2. Vascular endothelium receptors and transduction mechanisms

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  3. World Federation of Vascular Societies: presidential address

    Sillesen, Henrik Hegaard

    2010-01-01

    The presidential address describes briefly the history of the World Federation for Vascular Societies (WFVS) and its objectives. Vascular Surgery today includes interventional procedures (open surgical and endovascular) in addition to risk factor reduction and medical treatment. It is equally....... Similar, in order to be able to train with relevant case mix and numbers, and in order always to have both complex open and endovascular skills on call 24 hours per day, 365 days a year, centralisation into larger units is necessary. The WFVS is important simply looking at the huge demographic differences...... throughout the world. In addition, for introduction of new treatments, training issues and dissemination of science a global organisation like the WFVS is needed....

  4. Carbon dioxide in vascular imaging and intervention

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO2) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO2-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO2-DSA as well as some clinical trials. Applications of CO2 gas in vascular interventions and other imagings, and the advantages and limitations of using CO2 gas in DSA are also discussed. (orig.)

  5. Perioperative smoking cessation in vascular surgery

    Kehlet, M.; Heesemann, Sabine; Tonnesen, H.;

    2015-01-01

    Background: The effect of intensive smoking cessation programs on postoperative complications has never before been assessed in soft tissue surgery when smoking cessation is initiated on the day of surgery. Methods: A single-blinded randomized clinical trial conducted at two vascular surgery...... departments in Denmark. The intervention group was offered the Gold Standard Program (GSP) for smoking cessation intervention. The control group was offered the departments' standard care. Inclusion criteria were patients with planned open peripheral vascular surgery and who were daily smokers. According to...... intervention and 21 as controls. There was no difference in 30-day complication rates or 6-week abstinence rates between the two groups. Conclusions: A trial assessing the effect of smoking cessation on postoperative complications on the day of soft tissue surgery is still needed. If another trial is to be...

  6. AUTOMATIC REGISTRATION OF CEREBRAL VASCULAR STRUCTURES

    Marwa HERMASSI

    2011-01-01

    Full Text Available In this paper we present a registration method for cerebral vascular structures in the 2D MRA images. The method is based on bifurcation structures. The usual registration methods, based on point matching, largely depend on the branching angels of each bifurcation point. This may cause multiple feature correspondence due to similar branching angels. Hence, bifurcation structures offer better registration. Each bifurcation structure is composed of a master bifurcation point and its three connected neighbors. The characteristic vector of each bifurcation structure consists of the normalized branching angle and length, and it is invariant against translation, rotation, scaling, and even modest distortion. The validation of the registration accuracy is particularly important. Virtual and physical images may provide the gold standard for validation. Also, image databases may in the future provide a source for the objective comparison of different vascular registration methods.

  7. Vascular anomalies of the upper limb

    G Balakrishnan

    2011-01-01

    Full Text Available Vascular anomalies of the upper extremity are a surgical challenge to the hand surgeons. The treatment modality varies with respect to the presentation, extent of the lesion, progression and their complications. Based on our experience in treating patients with vascular malformations, a protocol has been formulated for their management, which we have found to be very useful and successful. With the use of the tumescent technique and good planning, haemangiomas are best excised in infancy or early childhood. Investigations like contrast computed tomography and magnetic resonance imaging have been found to be a useful tool in the diagnosis and planning of surgery for venous malformations. Embolisation seems to be a safe option in arteriovenous malformations.

  8. Renovascular hypertension causes cerebral vascular remodeling

    Yamei Tang; Xiangpen Li; Yi Li; Qingyu Shen; Xiaoming Rong; Ruxun Huang; Ying Peng

    2011-01-01

    Renovascular hypertensive rats (RHRs) were developed using the 2-kidney, 2-clip method. All RHRs at 10 weeks displayed high permeability of the cerebral surface blood vessels. Vascular casts of the RHRs showed that the vascular network was sparse. The arterioles of the RHRs at 10 weeks had smaller lumen diameters, but thicker vessel walls with hyalinosis formation compared with control animals. The endothelial cell membrane appeared damaged, and microthrombus formed. After ischemia, the infarction size was larger in RHRs than in control animals. These results suggest that cerebral arterioles in RHRs underwent structural remodeling. High blood pressure may aggravate the severity of brain injury in cerebral ischemia and affect the recovery of ischemia.

  9. Computed Tomographic Angiography (CTA) in Vascular Trauma

    M. Tehrai

    2007-01-01

    In the evaluation of trauma patients, computed tomo-graphy and CT angiography (CTA) are powerful non-invasive tools that provide a large amount of informa-tion in so little time that they have virtually replaced plain film radiography and catheter angiography. In our hospital, CTA has replaced catheter angiogra-phy for diagnosing most vascular injuries, resulting from penetrating and blunt trauma to head, neck, thorax, abdomen and extremities. This lecture will cover current imaging protocols...

  10. Temporary intravascular shunts for peripheral vascular trauma.

    Husain A

    1992-04-01

    Full Text Available Polyvinylchloride (PVC disposable endotracheal suction catheters were successfully used as temporary intravascular shunts in 5 patients of popliteal artery trauma. These simple shunts should be used routinely in such conditions to immediately re-establish blood supply to the ischaemic limb particularly in patients of polytrauma where systemic anticoagulation is contraindicated. This avoids the inherent delay prior to vascular repair and reduces the incidence of irreversible ischemia.

  11. Engineering vascular development for tissue regeneration

    Rivron, Nicolas Clemens

    2010-01-01

    Tissue engineering and regenerative medicine aim at restoring a damaged tissue by recreating in vitro or promoting its regeneratin in vovo. The vasculature is central to these therapies for the irrigation of the defective tissue (oxygen, nutrients or circulating regenerative cells) and as an inductive, trophic embedded organ. This thesis describes the in vitro formation of biological vascular networks for tissue engineering and regenerative medicine applications. In a first part, we show the ...

  12. Elastic and Collagenous Networks in Vascular Diseases

    Arteaga-Solis, Emilio; Gayraud, Barbara; Ramirez, Francesco

    2000-01-01

    Supravalvular aortic stenosis (SVAS), Marfan syndrome (MFS) and Ehlers-Danlos syndrome type IV (EDS IV) are three clinical entities characterized by vascular abnormalities that result from mutations of structural components of the extracellular matrix (ECM). Analyses of naturally occurring human mutations and of artificially generated deficiencies in the mouse have provided insights into the pathogenesis of these heritable disorders of the connective tissue. SVAS is associated with haploinsuf...

  13. Arsenic Induced Decreases in the Vascular Matrix

    Hays, Allison M.; Lantz, R. Clark; Rodgers, Laurel S.; Sollome, James J.; Vaillancourt, Richard R.; Andrew, Angeline S; Hamilton, Joshua W.; Camenisch, Todd D.

    2008-01-01

    Chronic ingestion of arsenic is associated with increased incidence of respiratory and cardiovascular diseases. To investigate the role of arsenic in early events in vascular pathology, C57BL/6 mice ingested drinking water with or without 50 ppb sodium arsenite (AsIII) for four, five or eight weeks. At five and eight weeks, RNA from the lungs of control and AsIII exposed animals was processed for microarray. Sixty-five genes were significantly and differentially expressed. Differential expres...

  14. Vascularized networks with two optimized channel sizes

    This paper reports the development of optimal vascularization for supplying self-healing smart materials with liquid that fills and seals the cracks that may occur throughout their volume. The vascularization consists of two-dimensional grids of interconnected orthogonal channels with two hydraulic diameters (D1, D2). The smallest square loop is designed to match the size (d) of the smallest crack. The network is sealed with respect to the outside and is filled with pressurized liquid. In this work, the crack site is modelled as a small spherical volume of diameter d. When a crack is formed, fluid flows from neighbouring channels to the crack site. This volume-to-point flow is optimized using two formulations: (1) incompressible liquid from steady constant-strength sources located in every node of the grid and from sources located equidistantly on the perimeter of the vascularized body of length scale L and (2) slightly compressible liquid from an initially pressurized grid discharging in time-dependent fashion into one crack site. The flow in every channel is laminar and fully developed. The objectives are (a) to minimize the global resistance to the flow from the grid to the crack site and (b) to minimize the time of discharge from the pressurized grid to the crack site. It is shown that methods (a) and (b) yield similar results. There is an optimal ratio of channel diameters D2/D1 1 D2). The optimized ratio of diameters and the minimized global resistance depend on how the grid intersects the crack site: this effect is minor and stresses the robustness of the vascularized design

  15. The vascular depression hypothesis: An update

    Sneed, Joel R.; Culang-Reinlieb, Michelle E.

    2011-01-01

    Since being proposed as a unique subtype of late-life depression (LLD), the vascular depression hypothesis has received considerable research attention. Although this effort has generated considerable empirical support for the validity of the subtype, fundamental questions remain including how the illness is defined, whether cerebrovascular disease and executive dysfunction (ED) define two separate entities or one underlying subtype, and whether ED is responsible for poor response to antidepr...

  16. Laser Treatment of Pediatric Vascular Lesions

    Cole, Patrick D.; Sonabend, Michael L.; Levy, Moise L.

    2007-01-01

    Since its introduction in 1967, laser therapy has benefited patients and physicians alike. After the first clinical application by Goldman (Anderson RR, Parrish JA. Science 1983;220:524–527), laser therapy has become indispensable in the management of vascular birthmarks. In selecting a proper balance of wavelength, pulse duration, and energy density (fluence), the physician can mold laser energy to effectively manage lesions once considered untreatable. Now, the vast array of lesions amenabl...

  17. A work atlas of vascular imaging

    This book is a practical, atlas of technique - ideal as a single source reference for radiologists, radiology residents, and internists and surgeons interested in vascular disease. It aids in the performance and interpretation of peripheral angiography, and of patient care for the procedure. In addition it provides a cross-reference between angiographic findings and disease entities, and helps reader to correlate angiography, DSA, CT, ultrasound and nuclear medicine for the most efficient and productive management of the patient

  18. Analgesics and sedatives in vascular interventionist radiologic

    Interventionist radiology routinely requires the use of different drugs (analgesics and sedatives) in the course of a procedure. Aside from their therapeutic action, these drugs can produce secondary or undesirable effects, making necessary an in-depth knowledge of them to assure their safe and efficient management. The aim of this work is to provide the vascular interventionist radiologist with additional information on the management of those drugs that contribute to minimizing patient discomfort and pain in interventionist procedures. Author

  19. Connexins in Vascular Physiology and Pathology

    Brisset, Anne C.; Isakson, Brant E; Kwak, Brenda R.

    2009-01-01

    Cellular interaction in blood vessels is maintained by multiple communication pathways, including gap junctions. They consist of intercellular channels ensuring direct interaction between endothelial and smooth muscle cells and the synchronization of their behavior along the vascular wall. Gap-junction channels arise from the docking of two hemichannels or connexons, formed by the assembly of six connexins, and achieve direct cellular communication by allowing the transport of small metabolit...

  20. European red list of vascular plants

    Abeli, Th.; Acevedo Rodríguez, A.; Aguiar, Carlos

    2011-01-01

    The European Red List is a review of the conservation status of c. 6,000 European species (mammals, reptiles, amphibians, dragonflies, butterflies, freshwater fishes, and selected groups of beetles, molluscs, and vascular plants) according to IUCN regional Red Listing guidelines. It identifies those species that are threatened with extinction at the regional level – in order that appropriate conservation action can be taken to improve their status. This Red List public...